From 5bd5dde84fec6b4bd5b087408f5a5e0e1adcf4b9 Mon Sep 17 00:00:00 2001 From: Daniel Falbel Date: Tue, 25 Aug 2020 17:14:21 -0300 Subject: [PATCH] remove docs folder as we will autogenerate and move to gh-pages --- .gitignore | 1 + docs/404.html | 191 - docs/CONTRIBUTING.html | 228 - docs/LICENSE-text.html | 193 - docs/LICENSE.html | 197 - docs/articles/examples/mnist-cnn.html | 215 - .../empty-anchor.js | 15 - .../header-attrs-2.1.1/header-attrs.js | 12 - .../header-attrs-2.3/header-attrs.js | 12 - docs/articles/examples/mnist-dcgan.html | 296 - .../empty-anchor.js | 15 - .../header-attrs-2.3/header-attrs.js | 12 - docs/articles/examples/mnist-mlp.html | 203 - .../empty-anchor.js | 15 - .../header-attrs-2.1.1/header-attrs.js | 12 - .../header-attrs-2.3/header-attrs.js | 12 - docs/articles/extending-autograd.html | 222 - .../empty-anchor.js | 15 - .../header-attrs-2.1.1/header-attrs.js | 12 - .../header-attrs-2.3/header-attrs.js | 12 - docs/articles/index.html | 204 - docs/articles/indexing.html | 224 - .../empty-anchor.js | 15 - .../header-attrs-2.1.1/header-attrs.js | 12 - .../header-attrs-2.3/header-attrs.js | 12 - docs/articles/loading-data.html | 274 - .../empty-anchor.js | 15 - .../header-attrs-2.3/header-attrs.js | 12 - docs/articles/tensor-creation.html | 231 - .../empty-anchor.js | 15 - .../header-attrs-2.1.1/header-attrs.js | 12 - .../header-attrs-2.3/header-attrs.js | 12 - docs/articles/using-autograd.html | 268 - .../empty-anchor.js | 15 - .../header-attrs-2.1.1/header-attrs.js | 12 - .../header-attrs-2.3/header-attrs.js | 12 - docs/authors.html | 206 - docs/bootstrap-toc.css | 60 - docs/bootstrap-toc.js | 159 - docs/docsearch.css | 148 - docs/docsearch.js | 85 - docs/index.html | 272 - docs/link.svg | 12 - docs/pkgdown.css | 367 -- docs/pkgdown.js | 108 - docs/pkgdown.yml | 14 - docs/reference/AutogradContext.html | 306 - docs/reference/as_array.html | 205 - docs/reference/autograd_backward.html | 258 - docs/reference/autograd_function.html | 246 - docs/reference/autograd_grad.html | 272 - docs/reference/autograd_set_grad_mode.html | 205 - docs/reference/cuda_current_device.html | 197 - docs/reference/cuda_device_count.html | 197 - docs/reference/cuda_is_available.html | 197 - docs/reference/dataloader.html | 278 - docs/reference/dataloader_make_iter.html | 205 - docs/reference/dataloader_next.html | 205 - docs/reference/dataset.html | 230 - docs/reference/default_dtype.html | 208 - docs/reference/enumerate.dataloader.html | 214 - docs/reference/enumerate.html | 209 - docs/reference/figures/torch.png | Bin 1697283 -> 0 bytes docs/reference/index.html | 2839 --------- docs/reference/install_torch.html | 234 - docs/reference/is_dataloader.html | 205 - docs/reference/is_torch_dtype.html | 205 - docs/reference/is_torch_layout.html | 205 - docs/reference/is_torch_memory_format.html | 205 - docs/reference/is_torch_qscheme.html | 205 - docs/reference/kmnist_dataset.html | 233 - docs/reference/mnist_dataset.html | 233 - .../nn_adaptive_log_softmax_with_loss.html | 303 - docs/reference/nn_batch_norm1d.html | 287 - docs/reference/nn_batch_norm2d.html | 286 - docs/reference/nn_bce_loss.html | 271 - docs/reference/nn_bilinear.html | 257 - docs/reference/nn_celu.html | 233 - docs/reference/nn_conv1d.html | 344 -- docs/reference/nn_conv2d.html | 361 -- docs/reference/nn_conv3d.html | 349 -- docs/reference/nn_conv_transpose1d.html | 342 -- docs/reference/nn_conv_transpose2d.html | 361 -- docs/reference/nn_conv_transpose3d.html | 354 -- docs/reference/nn_cross_entropy_loss.html | 277 - docs/reference/nn_dropout.html | 239 - docs/reference/nn_dropout2d.html | 243 - docs/reference/nn_dropout3d.html | 243 - docs/reference/nn_elu.html | 231 - docs/reference/nn_embedding.html | 311 - docs/reference/nn_gelu.html | 219 - docs/reference/nn_glu.html | 226 - docs/reference/nn_hardshrink.html | 233 - docs/reference/nn_hardsigmoid.html | 224 - docs/reference/nn_hardswish.html | 220 - docs/reference/nn_hardtanh.html | 244 - docs/reference/nn_identity.html | 213 - docs/reference/nn_init_calculate_gain.html | 209 - docs/reference/nn_init_constant_.html | 219 - docs/reference/nn_init_dirac_.html | 217 - docs/reference/nn_init_eye_.html | 219 - docs/reference/nn_init_kaiming_normal_.html | 240 - docs/reference/nn_init_kaiming_uniform_.html | 240 - docs/reference/nn_init_normal_.html | 223 - docs/reference/nn_init_ones_.html | 215 - docs/reference/nn_init_orthogonal_.html | 225 - docs/reference/nn_init_sparse_.html | 220 - docs/reference/nn_init_trunc_normal_.html | 233 - docs/reference/nn_init_uniform_.html | 223 - docs/reference/nn_init_xavier_normal_.html | 223 - docs/reference/nn_init_xavier_uniform_.html | 223 - docs/reference/nn_init_zeros_.html | 215 - docs/reference/nn_leaky_relu.html | 240 - docs/reference/nn_linear.html | 248 - docs/reference/nn_log_sigmoid.html | 220 - docs/reference/nn_log_softmax.html | 233 - docs/reference/nn_max_pool1d.html | 268 - docs/reference/nn_max_pool2d.html | 283 - docs/reference/nn_module.html | 234 - docs/reference/nn_module_list.html | 224 - docs/reference/nn_multihead_attention.html | 289 - docs/reference/nn_prelu.html | 270 - docs/reference/nn_relu.html | 227 - docs/reference/nn_relu6.html | 227 - docs/reference/nn_rnn.html | 446 -- docs/reference/nn_rrelu.html | 250 - docs/reference/nn_selu.html | 231 - docs/reference/nn_sequential.html | 226 - docs/reference/nn_sigmoid.html | 219 - docs/reference/nn_softmax.html | 246 - docs/reference/nn_softmax2d.html | 221 - docs/reference/nn_softmin.html | 238 - docs/reference/nn_softplus.html | 238 - docs/reference/nn_softshrink.html | 233 - docs/reference/nn_softsign.html | 220 - docs/reference/nn_tanh.html | 219 - docs/reference/nn_tanhshrink.html | 219 - docs/reference/nn_threshold.html | 241 - .../nn_utils_rnn_pack_padded_sequence.html | 246 - .../reference/nn_utils_rnn_pack_sequence.html | 232 - .../nn_utils_rnn_pad_packed_sequence.html | 273 - docs/reference/nn_utils_rnn_pad_sequence.html | 243 - docs/reference/nnf_adaptive_avg_pool1d.html | 211 - docs/reference/nnf_adaptive_avg_pool2d.html | 211 - docs/reference/nnf_adaptive_avg_pool3d.html | 211 - docs/reference/nnf_adaptive_max_pool1d.html | 215 - docs/reference/nnf_adaptive_max_pool2d.html | 215 - docs/reference/nnf_adaptive_max_pool3d.html | 215 - docs/reference/nnf_affine_grid.html | 229 - docs/reference/nnf_alpha_dropout.html | 218 - docs/reference/nnf_avg_pool1d.html | 239 - docs/reference/nnf_avg_pool2d.html | 247 - docs/reference/nnf_avg_pool3d.html | 247 - docs/reference/nnf_batch_norm.html | 243 - docs/reference/nnf_bilinear.html | 226 - docs/reference/nnf_binary_cross_entropy.html | 227 - .../nnf_binary_cross_entropy_with_logits.html | 234 - docs/reference/nnf_celu.html | 216 - docs/reference/nnf_conv1d.html | 243 - docs/reference/nnf_conv2d.html | 243 - docs/reference/nnf_conv3d.html | 243 - docs/reference/nnf_conv_tbc.html | 221 - docs/reference/nnf_conv_transpose1d.html | 248 - docs/reference/nnf_conv_transpose2d.html | 248 - docs/reference/nnf_conv_transpose3d.html | 248 - docs/reference/nnf_cosine_embedding_loss.html | 237 - docs/reference/nnf_cosine_similarity.html | 223 - docs/reference/nnf_cross_entropy.html | 237 - docs/reference/nnf_ctc_loss.html | 245 - docs/reference/nnf_dropout.html | 222 - docs/reference/nnf_dropout2d.html | 226 - docs/reference/nnf_dropout3d.html | 226 - docs/reference/nnf_elu.html | 228 - docs/reference/nnf_embedding.html | 250 - docs/reference/nnf_embedding_bag.html | 267 - docs/reference/nnf_fold.html | 245 - docs/reference/nnf_fractional_max_pool2d.html | 242 - docs/reference/nnf_fractional_max_pool3d.html | 243 - docs/reference/nnf_gelu.html | 216 - docs/reference/nnf_glu.html | 216 - docs/reference/nnf_grid_sample.html | 277 - docs/reference/nnf_group_norm.html | 221 - docs/reference/nnf_gumbel_softmax.html | 219 - docs/reference/nnf_hardshrink.html | 210 - docs/reference/nnf_hardsigmoid.html | 210 - docs/reference/nnf_hardswish.html | 221 - docs/reference/nnf_hardtanh.html | 220 - docs/reference/nnf_hinge_embedding_loss.html | 226 - docs/reference/nnf_instance_norm.html | 244 - docs/reference/nnf_interpolate.html | 263 - docs/reference/nnf_kl_div.html | 216 - docs/reference/nnf_l1_loss.html | 216 - docs/reference/nnf_layer_norm.html | 229 - docs/reference/nnf_leaky_relu.html | 216 - docs/reference/nnf_linear.html | 214 - docs/reference/nnf_local_response_norm.html | 225 - docs/reference/nnf_log_softmax.html | 221 - docs/reference/nnf_logsigmoid.html | 206 - docs/reference/nnf_lp_pool1d.html | 226 - docs/reference/nnf_lp_pool2d.html | 226 - docs/reference/nnf_margin_ranking_loss.html | 226 - docs/reference/nnf_max_pool1d.html | 244 - docs/reference/nnf_max_pool2d.html | 244 - docs/reference/nnf_max_pool3d.html | 244 - docs/reference/nnf_max_unpool1d.html | 232 - docs/reference/nnf_max_unpool2d.html | 232 - docs/reference/nnf_max_unpool3d.html | 232 - docs/reference/nnf_mse_loss.html | 216 - .../nnf_multi_head_attention_forward.html | 334 -- docs/reference/nnf_multi_margin_loss.html | 240 - .../reference/nnf_multilabel_margin_loss.html | 220 - .../nnf_multilabel_soft_margin_loss.html | 222 - docs/reference/nnf_nll_loss.html | 235 - docs/reference/nnf_normalize.html | 230 - docs/reference/nnf_one_hot.html | 220 - docs/reference/nnf_pad.html | 248 - docs/reference/nnf_pairwise_distance.html | 222 - docs/reference/nnf_pdist.html | 220 - docs/reference/nnf_pixel_shuffle.html | 211 - docs/reference/nnf_poisson_nll_loss.html | 239 - docs/reference/nnf_prelu.html | 214 - docs/reference/nnf_relu.html | 212 - docs/reference/nnf_relu6.html | 210 - docs/reference/nnf_rrelu.html | 224 - docs/reference/nnf_selu.html | 228 - docs/reference/nnf_smooth_l1_loss.html | 218 - docs/reference/nnf_soft_margin_loss.html | 218 - docs/reference/nnf_softmax.html | 220 - docs/reference/nnf_softmin.html | 220 - docs/reference/nnf_softplus.html | 218 - docs/reference/nnf_softshrink.html | 211 - docs/reference/nnf_softsign.html | 206 - docs/reference/nnf_tanhshrink.html | 206 - docs/reference/nnf_threshold.html | 220 - docs/reference/nnf_triplet_margin_loss.html | 255 - docs/reference/nnf_unfold.html | 237 - docs/reference/optim_adam.html | 239 - docs/reference/optim_required.html | 197 - docs/reference/optim_sgd.html | 264 - docs/reference/tensor_dataset.html | 205 - docs/reference/torch_abs.html | 226 - docs/reference/torch_acos.html | 233 - docs/reference/torch_adaptive_avg_pool1d.html | 212 - docs/reference/torch_add.html | 278 - docs/reference/torch_addbmm.html | 257 - docs/reference/torch_addcdiv.html | 260 - docs/reference/torch_addcmul.html | 247 - docs/reference/torch_addmm.html | 253 - docs/reference/torch_addmv.html | 254 - docs/reference/torch_addr.html | 256 - docs/reference/torch_allclose.html | 236 - docs/reference/torch_angle.html | 219 - docs/reference/torch_arange.html | 265 - docs/reference/torch_argmax.html | 230 - docs/reference/torch_argmin.html | 254 - docs/reference/torch_argsort.html | 237 - docs/reference/torch_as_strided.html | 254 - docs/reference/torch_asin.html | 233 - docs/reference/torch_atan.html | 233 - docs/reference/torch_atan2.html | 241 - docs/reference/torch_avg_pool1d.html | 232 - docs/reference/torch_baddbmm.html | 303 - docs/reference/torch_bartlett_window.html | 252 - docs/reference/torch_bernoulli.html | 256 - docs/reference/torch_bincount.html | 263 - docs/reference/torch_bitwise_and.html | 219 - docs/reference/torch_bitwise_not.html | 215 - docs/reference/torch_bitwise_or.html | 219 - docs/reference/torch_bitwise_xor.html | 219 - docs/reference/torch_blackman_window.html | 248 - docs/reference/torch_bmm.html | 289 - docs/reference/torch_broadcast_tensors.html | 221 - docs/reference/torch_can_cast.html | 220 - docs/reference/torch_cartesian_prod.html | 227 - docs/reference/torch_cat.html | 242 - docs/reference/torch_cdist.html | 222 - docs/reference/torch_ceil.html | 234 - docs/reference/torch_celu_.html | 202 - docs/reference/torch_chain_matmul.html | 227 - docs/reference/torch_cholesky.html | 236 - docs/reference/torch_cholesky_inverse.html | 232 - docs/reference/torch_cholesky_solve.html | 261 - docs/reference/torch_chunk.html | 221 - docs/reference/torch_clamp.html | 295 - docs/reference/torch_combinations.html | 240 - docs/reference/torch_conj.html | 219 - docs/reference/torch_conv1d.html | 4820 --------------- docs/reference/torch_conv2d.html | 301 - docs/reference/torch_conv3d.html | 245 - docs/reference/torch_conv_tbc.html | 223 - docs/reference/torch_conv_transpose1d.html | 5300 ----------------- docs/reference/torch_conv_transpose2d.html | 305 - docs/reference/torch_conv_transpose3d.html | 243 - docs/reference/torch_cos.html | 233 - docs/reference/torch_cosh.html | 234 - docs/reference/torch_cosine_similarity.html | 334 -- docs/reference/torch_cross.html | 254 - docs/reference/torch_cummax.html | 267 - docs/reference/torch_cummin.html | 267 - docs/reference/torch_cumprod.html | 256 - docs/reference/torch_cumsum.html | 256 - docs/reference/torch_det.html | 244 - docs/reference/torch_device.html | 225 - docs/reference/torch_diag.html | 229 - docs/reference/torch_diag_embed.html | 272 - docs/reference/torch_diagflat.html | 253 - docs/reference/torch_diagonal.html | 268 - docs/reference/torch_digamma.html | 222 - docs/reference/torch_dist.html | 245 - docs/reference/torch_div.html | 283 - docs/reference/torch_dot.html | 212 - docs/reference/torch_dtype.html | 231 - docs/reference/torch_eig.html | 225 - docs/reference/torch_einsum.html | 260 - docs/reference/torch_empty.html | 247 - docs/reference/torch_empty_like.html | 240 - docs/reference/torch_empty_strided.html | 254 - docs/reference/torch_eq.html | 230 - docs/reference/torch_equal.html | 207 - docs/reference/torch_erf.html | 226 - docs/reference/torch_erfc.html | 227 - docs/reference/torch_erfinv.html | 227 - docs/reference/torch_exp.html | 226 - docs/reference/torch_expm1.html | 226 - docs/reference/torch_eye.html | 243 - docs/reference/torch_fft.html | 618 -- docs/reference/torch_flatten.html | 229 - docs/reference/torch_flip.html | 236 - docs/reference/torch_floor.html | 234 - docs/reference/torch_floor_divide.html | 231 - docs/reference/torch_fmod.html | 240 - docs/reference/torch_frac.html | 214 - docs/reference/torch_full.html | 251 - docs/reference/torch_full_like.html | 237 - docs/reference/torch_gather.html | 244 - docs/reference/torch_ge.html | 229 - docs/reference/torch_generator.html | 221 - docs/reference/torch_geqrf.html | 221 - docs/reference/torch_ger.html | 235 - docs/reference/torch_gt.html | 229 - docs/reference/torch_hamming_window.html | 259 - docs/reference/torch_hann_window.html | 249 - docs/reference/torch_histc.html | 239 - docs/reference/torch_ifft.html | 288 - docs/reference/torch_imag.html | 224 - docs/reference/torch_index_select.html | 250 - docs/reference/torch_inverse.html | 225 - docs/reference/torch_irfft.html | 328 - docs/reference/torch_is_complex.html | 211 - docs/reference/torch_is_floating_point.html | 211 - docs/reference/torch_isfinite.html | 221 - docs/reference/torch_isinf.html | 221 - docs/reference/torch_isnan.html | 219 - docs/reference/torch_kthvalue.html | 268 - docs/reference/torch_layout.html | 199 - docs/reference/torch_le.html | 229 - docs/reference/torch_lerp.html | 256 - docs/reference/torch_lgamma.html | 227 - docs/reference/torch_linspace.html | 265 - docs/reference/torch_load.html | 209 - docs/reference/torch_log.html | 236 - docs/reference/torch_log10.html | 236 - docs/reference/torch_log1p.html | 239 - docs/reference/torch_log2.html | 236 - docs/reference/torch_logdet.html | 241 - docs/reference/torch_logical_and.html | 221 - docs/reference/torch_logical_not.html | 231 - docs/reference/torch_logical_or.html | 221 - docs/reference/torch_logical_xor.html | 245 - docs/reference/torch_logspace.html | 266 - docs/reference/torch_logsumexp.html | 242 - docs/reference/torch_lstsq.html | 268 - docs/reference/torch_lt.html | 229 - docs/reference/torch_lu.html | 248 - docs/reference/torch_lu_solve.html | 233 - docs/reference/torch_masked_select.html | 245 - docs/reference/torch_matmul.html | 380 -- docs/reference/torch_matrix_power.html | 242 - docs/reference/torch_matrix_rank.html | 234 - docs/reference/torch_max.html | 315 - docs/reference/torch_mean.html | 259 - docs/reference/torch_median.html | 270 - docs/reference/torch_memory_format.html | 201 - docs/reference/torch_meshgrid.html | 237 - docs/reference/torch_min.html | 316 - docs/reference/torch_mm.html | 234 - docs/reference/torch_mode.html | 254 - docs/reference/torch_mul.html | 275 - docs/reference/torch_multinomial.html | 263 - docs/reference/torch_mv.html | 234 - docs/reference/torch_mvlgamma.html | 232 - docs/reference/torch_narrow.html | 237 - docs/reference/torch_ne.html | 229 - docs/reference/torch_neg.html | 235 - docs/reference/torch_nonzero.html | 254 - docs/reference/torch_norm.html | 246 - docs/reference/torch_normal.html | 260 - docs/reference/torch_ones.html | 245 - docs/reference/torch_ones_like.html | 248 - docs/reference/torch_orgqr.html | 217 - docs/reference/torch_ormqr.html | 221 - docs/reference/torch_pdist.html | 223 - docs/reference/torch_pinverse.html | 257 - docs/reference/torch_pixel_shuffle.html | 221 - docs/reference/torch_poisson.html | 230 - docs/reference/torch_polygamma.html | 230 - docs/reference/torch_pow.html | 288 - docs/reference/torch_prod.html | 254 - docs/reference/torch_promote_types.html | 222 - docs/reference/torch_qr.html | 247 - docs/reference/torch_qscheme.html | 203 - .../reference/torch_quantize_per_channel.html | 239 - docs/reference/torch_quantize_per_tensor.html | 236 - docs/reference/torch_rand.html | 245 - docs/reference/torch_rand_like.html | 233 - docs/reference/torch_randint.html | 263 - docs/reference/torch_randint_like.html | 244 - docs/reference/torch_randn.html | 249 - docs/reference/torch_randn_like.html | 233 - docs/reference/torch_randperm.html | 240 - docs/reference/torch_range.html | 264 - docs/reference/torch_real.html | 226 - docs/reference/torch_reciprocal.html | 233 - docs/reference/torch_reduction.html | 201 - docs/reference/torch_relu_.html | 202 - docs/reference/torch_remainder.html | 240 - docs/reference/torch_renorm.html | 252 - docs/reference/torch_repeat_interleave.html | 234 - docs/reference/torch_reshape.html | 236 - docs/reference/torch_result_type.html | 222 - docs/reference/torch_rfft.html | 324 - docs/reference/torch_roll.html | 247 - docs/reference/torch_rot90.html | 248 - docs/reference/torch_round.html | 231 - docs/reference/torch_rrelu_.html | 202 - docs/reference/torch_rsqrt.html | 234 - docs/reference/torch_save.html | 219 - docs/reference/torch_selu_.html | 202 - docs/reference/torch_sigmoid.html | 233 - docs/reference/torch_sign.html | 233 - docs/reference/torch_sin.html | 233 - docs/reference/torch_sinh.html | 234 - docs/reference/torch_slogdet.html | 245 - docs/reference/torch_solve.html | 259 - docs/reference/torch_sort.html | 263 - docs/reference/torch_sparse_coo_tensor.html | 277 - docs/reference/torch_split.html | 227 - docs/reference/torch_sqrt.html | 233 - docs/reference/torch_square.html | 230 - docs/reference/torch_squeeze.html | 282 - docs/reference/torch_stack.html | 219 - docs/reference/torch_std.html | 265 - docs/reference/torch_std_mean.html | 278 - docs/reference/torch_stft.html | 296 - docs/reference/torch_sum.html | 263 - docs/reference/torch_svd.html | 274 - docs/reference/torch_symeig.html | 275 - docs/reference/torch_t.html | 243 - docs/reference/torch_take.html | 226 - docs/reference/torch_tan.html | 233 - docs/reference/torch_tanh.html | 234 - docs/reference/torch_tensor.html | 242 - docs/reference/torch_tensordot.html | 222 - docs/reference/torch_threshold_.html | 202 - docs/reference/torch_topk.html | 262 - docs/reference/torch_trace.html | 214 - docs/reference/torch_transpose.html | 235 - docs/reference/torch_trapz.html | 242 - docs/reference/torch_triangular_solve.html | 256 - docs/reference/torch_tril.html | 258 - docs/reference/torch_tril_indices.html | 251 - docs/reference/torch_triu.html | 267 - docs/reference/torch_triu_indices.html | 251 - docs/reference/torch_true_divide.html | 233 - docs/reference/torch_trunc.html | 231 - docs/reference/torch_unbind.html | 240 - docs/reference/torch_unique_consecutive.html | 293 - docs/reference/torch_unsqueeze.html | 232 - docs/reference/torch_var.html | 264 - docs/reference/torch_var_mean.html | 277 - docs/reference/torch_where.html | 244 - docs/reference/torch_zeros.html | 245 - docs/reference/torch_zeros_like.html | 248 - docs/reference/utils_dataset.html | 192 - docs/reference/utils_dataset_tensor.html | 176 - docs/reference/vision_make_grid.html | 229 - docs/reference/with_enable_grad.html | 226 - docs/reference/with_no_grad.html | 226 - 488 files changed, 1 insertion(+), 123121 deletions(-) delete mode 100644 docs/404.html delete mode 100644 docs/CONTRIBUTING.html delete mode 100644 docs/LICENSE-text.html delete mode 100644 docs/LICENSE.html delete mode 100644 docs/articles/examples/mnist-cnn.html delete mode 100644 docs/articles/examples/mnist-cnn_files/accessible-code-block-0.0.1/empty-anchor.js delete mode 100644 docs/articles/examples/mnist-cnn_files/header-attrs-2.1.1/header-attrs.js delete mode 100644 docs/articles/examples/mnist-cnn_files/header-attrs-2.3/header-attrs.js delete mode 100644 docs/articles/examples/mnist-dcgan.html delete mode 100644 docs/articles/examples/mnist-dcgan_files/accessible-code-block-0.0.1/empty-anchor.js delete mode 100644 docs/articles/examples/mnist-dcgan_files/header-attrs-2.3/header-attrs.js delete mode 100644 docs/articles/examples/mnist-mlp.html delete mode 100644 docs/articles/examples/mnist-mlp_files/accessible-code-block-0.0.1/empty-anchor.js delete mode 100644 docs/articles/examples/mnist-mlp_files/header-attrs-2.1.1/header-attrs.js delete mode 100644 docs/articles/examples/mnist-mlp_files/header-attrs-2.3/header-attrs.js delete mode 100644 docs/articles/extending-autograd.html delete mode 100644 docs/articles/extending-autograd_files/accessible-code-block-0.0.1/empty-anchor.js delete mode 100644 docs/articles/extending-autograd_files/header-attrs-2.1.1/header-attrs.js delete mode 100644 docs/articles/extending-autograd_files/header-attrs-2.3/header-attrs.js delete mode 100644 docs/articles/index.html delete mode 100644 docs/articles/indexing.html delete mode 100644 docs/articles/indexing_files/accessible-code-block-0.0.1/empty-anchor.js delete mode 100644 docs/articles/indexing_files/header-attrs-2.1.1/header-attrs.js delete mode 100644 docs/articles/indexing_files/header-attrs-2.3/header-attrs.js delete mode 100644 docs/articles/loading-data.html delete mode 100644 docs/articles/loading-data_files/accessible-code-block-0.0.1/empty-anchor.js delete mode 100644 docs/articles/loading-data_files/header-attrs-2.3/header-attrs.js delete mode 100644 docs/articles/tensor-creation.html delete mode 100644 docs/articles/tensor-creation_files/accessible-code-block-0.0.1/empty-anchor.js delete mode 100644 docs/articles/tensor-creation_files/header-attrs-2.1.1/header-attrs.js delete mode 100644 docs/articles/tensor-creation_files/header-attrs-2.3/header-attrs.js delete mode 100644 docs/articles/using-autograd.html delete mode 100644 docs/articles/using-autograd_files/accessible-code-block-0.0.1/empty-anchor.js delete mode 100644 docs/articles/using-autograd_files/header-attrs-2.1.1/header-attrs.js delete mode 100644 docs/articles/using-autograd_files/header-attrs-2.3/header-attrs.js delete mode 100644 docs/authors.html delete mode 100644 docs/bootstrap-toc.css delete mode 100644 docs/bootstrap-toc.js delete mode 100644 docs/docsearch.css delete mode 100644 docs/docsearch.js delete mode 100644 docs/index.html delete mode 100644 docs/link.svg delete mode 100644 docs/pkgdown.css delete mode 100644 docs/pkgdown.js delete mode 100644 docs/pkgdown.yml delete mode 100644 docs/reference/AutogradContext.html delete mode 100644 docs/reference/as_array.html delete mode 100644 docs/reference/autograd_backward.html delete mode 100644 docs/reference/autograd_function.html delete mode 100644 docs/reference/autograd_grad.html delete mode 100644 docs/reference/autograd_set_grad_mode.html delete mode 100644 docs/reference/cuda_current_device.html delete mode 100644 docs/reference/cuda_device_count.html delete mode 100644 docs/reference/cuda_is_available.html delete mode 100644 docs/reference/dataloader.html delete mode 100644 docs/reference/dataloader_make_iter.html delete mode 100644 docs/reference/dataloader_next.html delete mode 100644 docs/reference/dataset.html delete mode 100644 docs/reference/default_dtype.html delete mode 100644 docs/reference/enumerate.dataloader.html delete mode 100644 docs/reference/enumerate.html delete mode 100644 docs/reference/figures/torch.png delete mode 100644 docs/reference/index.html delete mode 100644 docs/reference/install_torch.html delete mode 100644 docs/reference/is_dataloader.html delete mode 100644 docs/reference/is_torch_dtype.html delete mode 100644 docs/reference/is_torch_layout.html delete mode 100644 docs/reference/is_torch_memory_format.html delete mode 100644 docs/reference/is_torch_qscheme.html delete mode 100644 docs/reference/kmnist_dataset.html delete mode 100644 docs/reference/mnist_dataset.html delete mode 100644 docs/reference/nn_adaptive_log_softmax_with_loss.html delete mode 100644 docs/reference/nn_batch_norm1d.html delete mode 100644 docs/reference/nn_batch_norm2d.html delete mode 100644 docs/reference/nn_bce_loss.html delete mode 100644 docs/reference/nn_bilinear.html delete mode 100644 docs/reference/nn_celu.html delete mode 100644 docs/reference/nn_conv1d.html delete mode 100644 docs/reference/nn_conv2d.html delete mode 100644 docs/reference/nn_conv3d.html delete mode 100644 docs/reference/nn_conv_transpose1d.html delete mode 100644 docs/reference/nn_conv_transpose2d.html delete mode 100644 docs/reference/nn_conv_transpose3d.html delete mode 100644 docs/reference/nn_cross_entropy_loss.html delete mode 100644 docs/reference/nn_dropout.html delete mode 100644 docs/reference/nn_dropout2d.html delete mode 100644 docs/reference/nn_dropout3d.html delete mode 100644 docs/reference/nn_elu.html delete mode 100644 docs/reference/nn_embedding.html delete mode 100644 docs/reference/nn_gelu.html delete mode 100644 docs/reference/nn_glu.html delete mode 100644 docs/reference/nn_hardshrink.html delete mode 100644 docs/reference/nn_hardsigmoid.html delete mode 100644 docs/reference/nn_hardswish.html delete mode 100644 docs/reference/nn_hardtanh.html delete mode 100644 docs/reference/nn_identity.html delete mode 100644 docs/reference/nn_init_calculate_gain.html delete mode 100644 docs/reference/nn_init_constant_.html delete mode 100644 docs/reference/nn_init_dirac_.html delete mode 100644 docs/reference/nn_init_eye_.html delete mode 100644 docs/reference/nn_init_kaiming_normal_.html delete mode 100644 docs/reference/nn_init_kaiming_uniform_.html delete mode 100644 docs/reference/nn_init_normal_.html delete mode 100644 docs/reference/nn_init_ones_.html delete mode 100644 docs/reference/nn_init_orthogonal_.html delete mode 100644 docs/reference/nn_init_sparse_.html delete mode 100644 docs/reference/nn_init_trunc_normal_.html delete mode 100644 docs/reference/nn_init_uniform_.html delete mode 100644 docs/reference/nn_init_xavier_normal_.html delete mode 100644 docs/reference/nn_init_xavier_uniform_.html delete mode 100644 docs/reference/nn_init_zeros_.html delete mode 100644 docs/reference/nn_leaky_relu.html delete mode 100644 docs/reference/nn_linear.html delete mode 100644 docs/reference/nn_log_sigmoid.html delete mode 100644 docs/reference/nn_log_softmax.html delete mode 100644 docs/reference/nn_max_pool1d.html delete mode 100644 docs/reference/nn_max_pool2d.html delete mode 100644 docs/reference/nn_module.html delete mode 100644 docs/reference/nn_module_list.html delete mode 100644 docs/reference/nn_multihead_attention.html delete mode 100644 docs/reference/nn_prelu.html delete mode 100644 docs/reference/nn_relu.html delete mode 100644 docs/reference/nn_relu6.html delete mode 100644 docs/reference/nn_rnn.html delete mode 100644 docs/reference/nn_rrelu.html delete mode 100644 docs/reference/nn_selu.html delete mode 100644 docs/reference/nn_sequential.html delete mode 100644 docs/reference/nn_sigmoid.html delete mode 100644 docs/reference/nn_softmax.html delete mode 100644 docs/reference/nn_softmax2d.html delete mode 100644 docs/reference/nn_softmin.html delete mode 100644 docs/reference/nn_softplus.html delete mode 100644 docs/reference/nn_softshrink.html delete mode 100644 docs/reference/nn_softsign.html delete mode 100644 docs/reference/nn_tanh.html delete mode 100644 docs/reference/nn_tanhshrink.html delete mode 100644 docs/reference/nn_threshold.html delete mode 100644 docs/reference/nn_utils_rnn_pack_padded_sequence.html delete mode 100644 docs/reference/nn_utils_rnn_pack_sequence.html delete mode 100644 docs/reference/nn_utils_rnn_pad_packed_sequence.html delete mode 100644 docs/reference/nn_utils_rnn_pad_sequence.html delete mode 100644 docs/reference/nnf_adaptive_avg_pool1d.html delete mode 100644 docs/reference/nnf_adaptive_avg_pool2d.html delete mode 100644 docs/reference/nnf_adaptive_avg_pool3d.html delete mode 100644 docs/reference/nnf_adaptive_max_pool1d.html delete mode 100644 docs/reference/nnf_adaptive_max_pool2d.html delete mode 100644 docs/reference/nnf_adaptive_max_pool3d.html delete mode 100644 docs/reference/nnf_affine_grid.html delete mode 100644 docs/reference/nnf_alpha_dropout.html delete mode 100644 docs/reference/nnf_avg_pool1d.html delete mode 100644 docs/reference/nnf_avg_pool2d.html delete mode 100644 docs/reference/nnf_avg_pool3d.html delete mode 100644 docs/reference/nnf_batch_norm.html delete mode 100644 docs/reference/nnf_bilinear.html delete mode 100644 docs/reference/nnf_binary_cross_entropy.html delete mode 100644 docs/reference/nnf_binary_cross_entropy_with_logits.html delete mode 100644 docs/reference/nnf_celu.html delete mode 100644 docs/reference/nnf_conv1d.html delete mode 100644 docs/reference/nnf_conv2d.html delete mode 100644 docs/reference/nnf_conv3d.html delete mode 100644 docs/reference/nnf_conv_tbc.html delete mode 100644 docs/reference/nnf_conv_transpose1d.html delete mode 100644 docs/reference/nnf_conv_transpose2d.html delete mode 100644 docs/reference/nnf_conv_transpose3d.html delete mode 100644 docs/reference/nnf_cosine_embedding_loss.html delete mode 100644 docs/reference/nnf_cosine_similarity.html delete mode 100644 docs/reference/nnf_cross_entropy.html delete mode 100644 docs/reference/nnf_ctc_loss.html delete mode 100644 docs/reference/nnf_dropout.html delete mode 100644 docs/reference/nnf_dropout2d.html delete mode 100644 docs/reference/nnf_dropout3d.html delete mode 100644 docs/reference/nnf_elu.html delete mode 100644 docs/reference/nnf_embedding.html delete mode 100644 docs/reference/nnf_embedding_bag.html delete mode 100644 docs/reference/nnf_fold.html delete mode 100644 docs/reference/nnf_fractional_max_pool2d.html delete mode 100644 docs/reference/nnf_fractional_max_pool3d.html delete mode 100644 docs/reference/nnf_gelu.html delete mode 100644 docs/reference/nnf_glu.html delete mode 100644 docs/reference/nnf_grid_sample.html delete mode 100644 docs/reference/nnf_group_norm.html delete mode 100644 docs/reference/nnf_gumbel_softmax.html delete mode 100644 docs/reference/nnf_hardshrink.html delete mode 100644 docs/reference/nnf_hardsigmoid.html delete mode 100644 docs/reference/nnf_hardswish.html delete mode 100644 docs/reference/nnf_hardtanh.html delete mode 100644 docs/reference/nnf_hinge_embedding_loss.html delete mode 100644 docs/reference/nnf_instance_norm.html delete mode 100644 docs/reference/nnf_interpolate.html delete mode 100644 docs/reference/nnf_kl_div.html delete mode 100644 docs/reference/nnf_l1_loss.html delete mode 100644 docs/reference/nnf_layer_norm.html delete mode 100644 docs/reference/nnf_leaky_relu.html delete mode 100644 docs/reference/nnf_linear.html delete mode 100644 docs/reference/nnf_local_response_norm.html delete mode 100644 docs/reference/nnf_log_softmax.html delete mode 100644 docs/reference/nnf_logsigmoid.html delete mode 100644 docs/reference/nnf_lp_pool1d.html delete mode 100644 docs/reference/nnf_lp_pool2d.html delete mode 100644 docs/reference/nnf_margin_ranking_loss.html delete mode 100644 docs/reference/nnf_max_pool1d.html delete mode 100644 docs/reference/nnf_max_pool2d.html delete mode 100644 docs/reference/nnf_max_pool3d.html delete mode 100644 docs/reference/nnf_max_unpool1d.html delete mode 100644 docs/reference/nnf_max_unpool2d.html delete mode 100644 docs/reference/nnf_max_unpool3d.html delete mode 100644 docs/reference/nnf_mse_loss.html delete mode 100644 docs/reference/nnf_multi_head_attention_forward.html delete mode 100644 docs/reference/nnf_multi_margin_loss.html delete mode 100644 docs/reference/nnf_multilabel_margin_loss.html delete mode 100644 docs/reference/nnf_multilabel_soft_margin_loss.html delete mode 100644 docs/reference/nnf_nll_loss.html delete mode 100644 docs/reference/nnf_normalize.html delete mode 100644 docs/reference/nnf_one_hot.html delete mode 100644 docs/reference/nnf_pad.html delete mode 100644 docs/reference/nnf_pairwise_distance.html delete mode 100644 docs/reference/nnf_pdist.html delete mode 100644 docs/reference/nnf_pixel_shuffle.html delete mode 100644 docs/reference/nnf_poisson_nll_loss.html delete mode 100644 docs/reference/nnf_prelu.html delete mode 100644 docs/reference/nnf_relu.html delete mode 100644 docs/reference/nnf_relu6.html delete mode 100644 docs/reference/nnf_rrelu.html delete mode 100644 docs/reference/nnf_selu.html delete mode 100644 docs/reference/nnf_smooth_l1_loss.html delete mode 100644 docs/reference/nnf_soft_margin_loss.html delete mode 100644 docs/reference/nnf_softmax.html delete mode 100644 docs/reference/nnf_softmin.html delete mode 100644 docs/reference/nnf_softplus.html delete mode 100644 docs/reference/nnf_softshrink.html delete mode 100644 docs/reference/nnf_softsign.html delete mode 100644 docs/reference/nnf_tanhshrink.html delete mode 100644 docs/reference/nnf_threshold.html delete mode 100644 docs/reference/nnf_triplet_margin_loss.html delete mode 100644 docs/reference/nnf_unfold.html delete mode 100644 docs/reference/optim_adam.html delete mode 100644 docs/reference/optim_required.html delete mode 100644 docs/reference/optim_sgd.html delete mode 100644 docs/reference/tensor_dataset.html delete mode 100644 docs/reference/torch_abs.html delete mode 100644 docs/reference/torch_acos.html delete mode 100644 docs/reference/torch_adaptive_avg_pool1d.html delete mode 100644 docs/reference/torch_add.html delete mode 100644 docs/reference/torch_addbmm.html delete mode 100644 docs/reference/torch_addcdiv.html delete mode 100644 docs/reference/torch_addcmul.html delete mode 100644 docs/reference/torch_addmm.html delete mode 100644 docs/reference/torch_addmv.html delete mode 100644 docs/reference/torch_addr.html delete mode 100644 docs/reference/torch_allclose.html delete mode 100644 docs/reference/torch_angle.html delete mode 100644 docs/reference/torch_arange.html delete mode 100644 docs/reference/torch_argmax.html delete mode 100644 docs/reference/torch_argmin.html delete mode 100644 docs/reference/torch_argsort.html delete mode 100644 docs/reference/torch_as_strided.html delete mode 100644 docs/reference/torch_asin.html delete mode 100644 docs/reference/torch_atan.html delete mode 100644 docs/reference/torch_atan2.html delete mode 100644 docs/reference/torch_avg_pool1d.html delete mode 100644 docs/reference/torch_baddbmm.html delete mode 100644 docs/reference/torch_bartlett_window.html delete mode 100644 docs/reference/torch_bernoulli.html delete mode 100644 docs/reference/torch_bincount.html delete mode 100644 docs/reference/torch_bitwise_and.html delete mode 100644 docs/reference/torch_bitwise_not.html delete mode 100644 docs/reference/torch_bitwise_or.html delete mode 100644 docs/reference/torch_bitwise_xor.html delete mode 100644 docs/reference/torch_blackman_window.html delete mode 100644 docs/reference/torch_bmm.html delete mode 100644 docs/reference/torch_broadcast_tensors.html delete mode 100644 docs/reference/torch_can_cast.html delete mode 100644 docs/reference/torch_cartesian_prod.html delete mode 100644 docs/reference/torch_cat.html delete mode 100644 docs/reference/torch_cdist.html delete mode 100644 docs/reference/torch_ceil.html delete mode 100644 docs/reference/torch_celu_.html delete mode 100644 docs/reference/torch_chain_matmul.html delete mode 100644 docs/reference/torch_cholesky.html delete mode 100644 docs/reference/torch_cholesky_inverse.html delete mode 100644 docs/reference/torch_cholesky_solve.html delete mode 100644 docs/reference/torch_chunk.html delete mode 100644 docs/reference/torch_clamp.html delete mode 100644 docs/reference/torch_combinations.html delete mode 100644 docs/reference/torch_conj.html delete mode 100644 docs/reference/torch_conv1d.html delete mode 100644 docs/reference/torch_conv2d.html delete mode 100644 docs/reference/torch_conv3d.html delete mode 100644 docs/reference/torch_conv_tbc.html delete mode 100644 docs/reference/torch_conv_transpose1d.html delete mode 100644 docs/reference/torch_conv_transpose2d.html delete mode 100644 docs/reference/torch_conv_transpose3d.html delete mode 100644 docs/reference/torch_cos.html delete mode 100644 docs/reference/torch_cosh.html delete mode 100644 docs/reference/torch_cosine_similarity.html delete mode 100644 docs/reference/torch_cross.html delete mode 100644 docs/reference/torch_cummax.html delete mode 100644 docs/reference/torch_cummin.html delete mode 100644 docs/reference/torch_cumprod.html delete mode 100644 docs/reference/torch_cumsum.html delete mode 100644 docs/reference/torch_det.html delete mode 100644 docs/reference/torch_device.html delete mode 100644 docs/reference/torch_diag.html delete mode 100644 docs/reference/torch_diag_embed.html delete mode 100644 docs/reference/torch_diagflat.html delete mode 100644 docs/reference/torch_diagonal.html delete mode 100644 docs/reference/torch_digamma.html delete mode 100644 docs/reference/torch_dist.html delete mode 100644 docs/reference/torch_div.html delete mode 100644 docs/reference/torch_dot.html delete mode 100644 docs/reference/torch_dtype.html delete mode 100644 docs/reference/torch_eig.html delete mode 100644 docs/reference/torch_einsum.html delete mode 100644 docs/reference/torch_empty.html delete mode 100644 docs/reference/torch_empty_like.html delete mode 100644 docs/reference/torch_empty_strided.html delete mode 100644 docs/reference/torch_eq.html delete mode 100644 docs/reference/torch_equal.html delete mode 100644 docs/reference/torch_erf.html delete mode 100644 docs/reference/torch_erfc.html delete mode 100644 docs/reference/torch_erfinv.html delete mode 100644 docs/reference/torch_exp.html delete mode 100644 docs/reference/torch_expm1.html delete mode 100644 docs/reference/torch_eye.html delete mode 100644 docs/reference/torch_fft.html delete mode 100644 docs/reference/torch_flatten.html delete mode 100644 docs/reference/torch_flip.html delete mode 100644 docs/reference/torch_floor.html delete mode 100644 docs/reference/torch_floor_divide.html delete mode 100644 docs/reference/torch_fmod.html delete mode 100644 docs/reference/torch_frac.html delete mode 100644 docs/reference/torch_full.html delete mode 100644 docs/reference/torch_full_like.html delete mode 100644 docs/reference/torch_gather.html delete mode 100644 docs/reference/torch_ge.html delete mode 100644 docs/reference/torch_generator.html delete mode 100644 docs/reference/torch_geqrf.html delete mode 100644 docs/reference/torch_ger.html delete mode 100644 docs/reference/torch_gt.html delete mode 100644 docs/reference/torch_hamming_window.html delete mode 100644 docs/reference/torch_hann_window.html delete mode 100644 docs/reference/torch_histc.html delete mode 100644 docs/reference/torch_ifft.html delete mode 100644 docs/reference/torch_imag.html delete mode 100644 docs/reference/torch_index_select.html delete mode 100644 docs/reference/torch_inverse.html delete mode 100644 docs/reference/torch_irfft.html delete mode 100644 docs/reference/torch_is_complex.html delete mode 100644 docs/reference/torch_is_floating_point.html delete mode 100644 docs/reference/torch_isfinite.html delete mode 100644 docs/reference/torch_isinf.html delete mode 100644 docs/reference/torch_isnan.html delete mode 100644 docs/reference/torch_kthvalue.html delete mode 100644 docs/reference/torch_layout.html delete mode 100644 docs/reference/torch_le.html delete mode 100644 docs/reference/torch_lerp.html delete mode 100644 docs/reference/torch_lgamma.html delete mode 100644 docs/reference/torch_linspace.html delete mode 100644 docs/reference/torch_load.html delete mode 100644 docs/reference/torch_log.html delete mode 100644 docs/reference/torch_log10.html delete mode 100644 docs/reference/torch_log1p.html delete mode 100644 docs/reference/torch_log2.html delete mode 100644 docs/reference/torch_logdet.html delete mode 100644 docs/reference/torch_logical_and.html delete mode 100644 docs/reference/torch_logical_not.html delete mode 100644 docs/reference/torch_logical_or.html delete mode 100644 docs/reference/torch_logical_xor.html delete mode 100644 docs/reference/torch_logspace.html delete mode 100644 docs/reference/torch_logsumexp.html delete mode 100644 docs/reference/torch_lstsq.html delete mode 100644 docs/reference/torch_lt.html delete mode 100644 docs/reference/torch_lu.html delete mode 100644 docs/reference/torch_lu_solve.html delete mode 100644 docs/reference/torch_masked_select.html delete mode 100644 docs/reference/torch_matmul.html delete mode 100644 docs/reference/torch_matrix_power.html delete mode 100644 docs/reference/torch_matrix_rank.html delete mode 100644 docs/reference/torch_max.html delete mode 100644 docs/reference/torch_mean.html delete mode 100644 docs/reference/torch_median.html delete mode 100644 docs/reference/torch_memory_format.html delete mode 100644 docs/reference/torch_meshgrid.html delete mode 100644 docs/reference/torch_min.html delete mode 100644 docs/reference/torch_mm.html delete mode 100644 docs/reference/torch_mode.html delete mode 100644 docs/reference/torch_mul.html delete mode 100644 docs/reference/torch_multinomial.html delete mode 100644 docs/reference/torch_mv.html delete mode 100644 docs/reference/torch_mvlgamma.html delete mode 100644 docs/reference/torch_narrow.html delete mode 100644 docs/reference/torch_ne.html delete mode 100644 docs/reference/torch_neg.html delete mode 100644 docs/reference/torch_nonzero.html delete mode 100644 docs/reference/torch_norm.html delete mode 100644 docs/reference/torch_normal.html delete mode 100644 docs/reference/torch_ones.html delete mode 100644 docs/reference/torch_ones_like.html delete mode 100644 docs/reference/torch_orgqr.html delete mode 100644 docs/reference/torch_ormqr.html delete mode 100644 docs/reference/torch_pdist.html delete mode 100644 docs/reference/torch_pinverse.html delete mode 100644 docs/reference/torch_pixel_shuffle.html delete mode 100644 docs/reference/torch_poisson.html delete mode 100644 docs/reference/torch_polygamma.html delete mode 100644 docs/reference/torch_pow.html delete mode 100644 docs/reference/torch_prod.html delete mode 100644 docs/reference/torch_promote_types.html delete mode 100644 docs/reference/torch_qr.html delete mode 100644 docs/reference/torch_qscheme.html delete mode 100644 docs/reference/torch_quantize_per_channel.html delete mode 100644 docs/reference/torch_quantize_per_tensor.html delete mode 100644 docs/reference/torch_rand.html delete mode 100644 docs/reference/torch_rand_like.html delete mode 100644 docs/reference/torch_randint.html delete mode 100644 docs/reference/torch_randint_like.html delete mode 100644 docs/reference/torch_randn.html delete mode 100644 docs/reference/torch_randn_like.html delete mode 100644 docs/reference/torch_randperm.html delete mode 100644 docs/reference/torch_range.html delete mode 100644 docs/reference/torch_real.html delete mode 100644 docs/reference/torch_reciprocal.html delete mode 100644 docs/reference/torch_reduction.html delete mode 100644 docs/reference/torch_relu_.html delete mode 100644 docs/reference/torch_remainder.html delete mode 100644 docs/reference/torch_renorm.html delete mode 100644 docs/reference/torch_repeat_interleave.html delete mode 100644 docs/reference/torch_reshape.html delete mode 100644 docs/reference/torch_result_type.html delete mode 100644 docs/reference/torch_rfft.html delete mode 100644 docs/reference/torch_roll.html delete mode 100644 docs/reference/torch_rot90.html delete mode 100644 docs/reference/torch_round.html delete mode 100644 docs/reference/torch_rrelu_.html delete mode 100644 docs/reference/torch_rsqrt.html delete mode 100644 docs/reference/torch_save.html delete mode 100644 docs/reference/torch_selu_.html delete mode 100644 docs/reference/torch_sigmoid.html delete mode 100644 docs/reference/torch_sign.html delete mode 100644 docs/reference/torch_sin.html delete mode 100644 docs/reference/torch_sinh.html delete mode 100644 docs/reference/torch_slogdet.html delete mode 100644 docs/reference/torch_solve.html delete mode 100644 docs/reference/torch_sort.html delete mode 100644 docs/reference/torch_sparse_coo_tensor.html delete mode 100644 docs/reference/torch_split.html delete mode 100644 docs/reference/torch_sqrt.html delete mode 100644 docs/reference/torch_square.html delete mode 100644 docs/reference/torch_squeeze.html delete mode 100644 docs/reference/torch_stack.html delete mode 100644 docs/reference/torch_std.html delete mode 100644 docs/reference/torch_std_mean.html delete mode 100644 docs/reference/torch_stft.html delete mode 100644 docs/reference/torch_sum.html delete mode 100644 docs/reference/torch_svd.html delete mode 100644 docs/reference/torch_symeig.html delete mode 100644 docs/reference/torch_t.html delete mode 100644 docs/reference/torch_take.html delete mode 100644 docs/reference/torch_tan.html delete mode 100644 docs/reference/torch_tanh.html delete mode 100644 docs/reference/torch_tensor.html delete mode 100644 docs/reference/torch_tensordot.html delete mode 100644 docs/reference/torch_threshold_.html delete mode 100644 docs/reference/torch_topk.html delete mode 100644 docs/reference/torch_trace.html delete mode 100644 docs/reference/torch_transpose.html delete mode 100644 docs/reference/torch_trapz.html delete mode 100644 docs/reference/torch_triangular_solve.html delete mode 100644 docs/reference/torch_tril.html delete mode 100644 docs/reference/torch_tril_indices.html delete mode 100644 docs/reference/torch_triu.html delete mode 100644 docs/reference/torch_triu_indices.html delete mode 100644 docs/reference/torch_true_divide.html delete mode 100644 docs/reference/torch_trunc.html delete mode 100644 docs/reference/torch_unbind.html delete mode 100644 docs/reference/torch_unique_consecutive.html delete mode 100644 docs/reference/torch_unsqueeze.html delete mode 100644 docs/reference/torch_var.html delete mode 100644 docs/reference/torch_var_mean.html delete mode 100644 docs/reference/torch_where.html delete mode 100644 docs/reference/torch_zeros.html delete mode 100644 docs/reference/torch_zeros_like.html delete mode 100644 docs/reference/utils_dataset.html delete mode 100644 docs/reference/utils_dataset_tensor.html delete mode 100644 docs/reference/vision_make_grid.html delete mode 100644 docs/reference/with_enable_grad.html delete mode 100644 docs/reference/with_no_grad.html diff --git a/.gitignore b/.gitignore index b7691041f..ccef4c394 100644 --- a/.gitignore +++ b/.gitignore @@ -17,3 +17,4 @@ test.html lantern/.idea* lantern/cmake-build* check/ +docs/ diff --git a/docs/404.html b/docs/404.html deleted file mode 100644 index c39b2d5ee..000000000 --- a/docs/404.html +++ /dev/null @@ -1,191 +0,0 @@ - - - - - - - - -Page not found (404) • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- - - - -
- -
-
- - -Content not found. Please use links in the navbar. - -
- - - -
- - - -
- - -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - - - diff --git a/docs/CONTRIBUTING.html b/docs/CONTRIBUTING.html deleted file mode 100644 index 3533ada4e..000000000 --- a/docs/CONTRIBUTING.html +++ /dev/null @@ -1,228 +0,0 @@ - - - - - - - - -Contributing to torch • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- - - - -
- -
-
- - -
- -

This outlines how to propose a change to torch. For more detailed info about contributing to this, and other tidyverse packages, please see the development contributing guide.

-
-

-Fixing typos

-

You can fix typos, spelling mistakes, or grammatical errors in the documentation directly using the GitHub web interface, as long as the changes are made in the source file. This generally means you’ll need to edit roxygen2 comments in an .R, not a .Rd file. You can find the .R file that generates the .Rd by reading the comment in the first line.

-

See also the [Documentation] section.

-
-
-

-Filing bugs

-

If you find a bug in torch please open an issue here. Please, provide detailed information on how to reproduce the bug. It would be great to also provide a reprex.

-
-
-

-Feature requests

-

Feel free to open issues here and add the feature-request tag. Try searching if there’s already an open issue for your feature-request, in this case it’s better to comment or upvote it intead of opening a new one.

-
-
-

-Examples

-

We welcome contributed examples. feel free to open a PR with new examples. The should be placed in the vignettes/examples folder.

-

The examples should be an .R file and a .Rmd file with the same name that just renders the code.

-

See mnist-mlp.R and mnist-mlp.Rmd

-

One must be able to run the example without manually downloading any dataset/file. You should also add an entry to the _pkgdown.yaml file.

-
-
-

-Code contributions

-

We have many open issues in the github repo if there’s one item that you want to work on, you can comment on it an ask for directions.

-
-
-

-Documentation

-

We use roxygen2 to generate the documentation. IN order to update the docs, edit the file in the R directory. To regenerate and preview the docs, use the custom tools/document.R script, as we need to patch roxygen2 to avoid running the examples on CRAN.

-
-
- -
- - - -
- - - -
- - -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - - - diff --git a/docs/LICENSE-text.html b/docs/LICENSE-text.html deleted file mode 100644 index 3ec2627dd..000000000 --- a/docs/LICENSE-text.html +++ /dev/null @@ -1,193 +0,0 @@ - - - - - - - - -License • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- - - - -
- -
-
- - -
YEAR: 2020
-COPYRIGHT HOLDER: Daniel Falbel
-
- -
- - - -
- - - -
- - -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - - - diff --git a/docs/LICENSE.html b/docs/LICENSE.html deleted file mode 100644 index 7b6b7b0fc..000000000 --- a/docs/LICENSE.html +++ /dev/null @@ -1,197 +0,0 @@ - - - - - - - - -MIT License • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- - - - -
- -
-
- - -
- -

Copyright (c) 2020 Daniel Falbel

-

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

-

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

-

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

-
- -
- - - -
- - - -
- - -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - - - diff --git a/docs/articles/examples/mnist-cnn.html b/docs/articles/examples/mnist-cnn.html deleted file mode 100644 index bc24e1af7..000000000 --- a/docs/articles/examples/mnist-cnn.html +++ /dev/null @@ -1,215 +0,0 @@ - - - - - - - -mnist-cnn • torch - - - - - - - - - - -
-
- - - - -
-
- - - - -
dir <- "~/Downloads/mnist"
-
-ds <- mnist_dataset(
-  dir,
-  download = TRUE,
-  transform = function(x) {
-    x <- x$to(dtype = torch_float())/256
-    x[newaxis,..]
-  }
-)
-dl <- dataloader(ds, batch_size = 32, shuffle = TRUE)
-
-net <- nn_module(
-  "Net",
-  initialize = function() {
-    self$conv1 <- nn_conv2d(1, 32, 3, 1)
-    self$conv2 <- nn_conv2d(32, 64, 3, 1)
-    self$dropout1 <- nn_dropout2d(0.25)
-    self$dropout2 <- nn_dropout2d(0.5)
-    self$fc1 <- nn_linear(9216, 128)
-    self$fc2 <- nn_linear(128, 10)
-  },
-  forward = function(x) {
-    x <- self$conv1(x)
-    x <- nnf_relu(x)
-    x <- self$conv2(x)
-    x <- nnf_relu(x)
-    x <- nnf_max_pool2d(x, 2)
-    x <- self$dropout1(x)
-    x <- torch_flatten(x, start_dim = 2)
-    x <- self$fc1(x)
-    x <- nnf_relu(x)
-    x <- self$dropout2(x)
-    x <- self$fc2(x)
-    output <- nnf_log_softmax(x, dim=1)
-    output
-  }
-)
-
-model <- net()
-optimizer <- optim_sgd(model$parameters, lr = 0.01)
-
-epochs <- 10
-
-for (epoch in 1:10) {
-
-  pb <- progress::progress_bar$new(
-    total = length(dl),
-    format = "[:bar] :eta Loss: :loss"
-  )
-  l <- c()
-
-  for (b in enumerate(dl)) {
-    optimizer$zero_grad()
-    output <- model(b[[1]])
-    loss <- nnf_nll_loss(output, b[[2]])
-    loss$backward()
-    optimizer$step()
-    l <- c(l, loss$item())
-    pb$tick(tokens = list(loss = mean(l)))
-  }
-
-  cat(sprintf("Loss at epoch %d: %3f\n", epoch, mean(l)))
-}
-
- - - -
- - - -
- -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - diff --git a/docs/articles/examples/mnist-cnn_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/articles/examples/mnist-cnn_files/accessible-code-block-0.0.1/empty-anchor.js deleted file mode 100644 index ca349fd6a..000000000 --- a/docs/articles/examples/mnist-cnn_files/accessible-code-block-0.0.1/empty-anchor.js +++ /dev/null @@ -1,15 +0,0 @@ -// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) --> -// v0.0.1 -// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020. - -document.addEventListener('DOMContentLoaded', function() { - const codeList = document.getElementsByClassName("sourceCode"); - for (var i = 0; i < codeList.length; i++) { - var linkList = codeList[i].getElementsByTagName('a'); - for (var j = 0; j < linkList.length; j++) { - if (linkList[j].innerHTML === "") { - linkList[j].setAttribute('aria-hidden', 'true'); - } - } - } -}); diff --git a/docs/articles/examples/mnist-cnn_files/header-attrs-2.1.1/header-attrs.js b/docs/articles/examples/mnist-cnn_files/header-attrs-2.1.1/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/examples/mnist-cnn_files/header-attrs-2.1.1/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/examples/mnist-cnn_files/header-attrs-2.3/header-attrs.js b/docs/articles/examples/mnist-cnn_files/header-attrs-2.3/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/examples/mnist-cnn_files/header-attrs-2.3/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/examples/mnist-dcgan.html b/docs/articles/examples/mnist-dcgan.html deleted file mode 100644 index ca8f65769..000000000 --- a/docs/articles/examples/mnist-dcgan.html +++ /dev/null @@ -1,296 +0,0 @@ - - - - - - - -mnist-dcgan • torch - - - - - - - - - - -
-
- - - - -
-
- - - - -
library(torch)
-
-dir <- "~/Downloads/mnist"
-
-ds <- mnist_dataset(
-  dir,
-  download = TRUE,
-  transform = function(x) {
-    x <- x$to(dtype = torch_float())/256
-    x <- 2*(x - 0.5)
-    x[newaxis,..]
-  }
-)
-dl <- dataloader(ds, batch_size = 32, shuffle = TRUE)
-
-generator <- nn_module(
-  "generator",
-  initialize = function(latent_dim, out_channels) {
-    self$main <- nn_sequential(
-      nn_conv_transpose2d(latent_dim, 512, kernel_size = 4,
-                          stride = 1, padding = 0, bias = FALSE),
-      nn_batch_norm2d(512),
-      nn_relu(),
-      nn_conv_transpose2d(512, 256, kernel_size = 4,
-                          stride = 2, padding = 1, bias = FALSE),
-      nn_batch_norm2d(256),
-      nn_relu(),
-      nn_conv_transpose2d(256, 128, kernel_size = 4,
-                          stride = 2, padding = 1, bias = FALSE),
-      nn_batch_norm2d(128),
-      nn_relu(),
-      nn_conv_transpose2d(128, out_channels, kernel_size = 4,
-                          stride = 2, padding = 3, bias = FALSE),
-      nn_tanh()
-    )
-  },
-  forward = function(input) {
-    self$main(input)
-  }
-)
-
-discriminator <- nn_module(
-  "discriminator",
-  initialize = function(in_channels) {
-    self$main <- nn_sequential(
-      nn_conv2d(in_channels, 16, kernel_size = 4, stride = 2, padding = 1, bias = FALSE),
-      nn_leaky_relu(0.2, inplace = TRUE),
-      nn_conv2d(16, 32, kernel_size = 4, stride = 2, padding = 1, bias = FALSE),
-      nn_batch_norm2d(32),
-      nn_leaky_relu(0.2, inplace = TRUE),
-      nn_conv2d(32, 64, kernel_size = 4, stride = 2, padding = 1, bias = FALSE),
-      nn_batch_norm2d(64),
-      nn_leaky_relu(0.2, inplace = TRUE),
-      nn_conv2d(64, 128, kernel_size = 4, stride = 2, padding = 1, bias = FALSE),
-      nn_leaky_relu(0.2, inplace = TRUE)
-    )
-    self$linear <- nn_linear(128, 1)
-    self$sigmoid <- nn_sigmoid()
-  },
-  forward = function(input) {
-    x <- self$main(input)
-    x <- torch_flatten(x, start_dim = 2)
-    x <- self$linear(x)
-    self$sigmoid(x)
-  }
-)
-
-plot_gen <- function(noise) {
-  img <- G(noise)
-  img <- img$cpu()
-  img <- img[1,1,,,newaxis]/2 + 0.5
-  img <- torch_stack(list(img, img, img), dim = 2)[..,1]
-  img <- as.raster(as_array(img))
-  plot(img)
-}
-
-device <- torch_device(ifelse(cuda_is_available(),  "cuda", "cpu"))
-
-G <- generator(latent_dim = 100, out_channels = 1)
-D <- discriminator(in_channels = 1)
-
-init_weights <- function(m) {
-  if (grepl("conv", m$.classes[[1]])) {
-    nn_init_normal_(m$weight$data(), 0.0, 0.02)
-  } else if (grepl("batch_norm", m$.classes[[1]])) {
-    nn_init_normal_(m$weight$data(), 1.0, 0.02)
-    nn_init_constant_(m$bias$data(), 0)
-  }
-}
-
-G[[1]]$apply(init_weights)
-D[[1]]$apply(init_weights)
-
-G$to(device = device)
-D$to(device = device)
-
-G_optimizer <- optim_adam(G$parameters, lr = 2 * 1e-4, betas = c(0.5, 0.999))
-D_optimizer <- optim_adam(D$parameters, lr = 2 * 1e-4, betas = c(0.5, 0.999))
-
-fixed_noise <- torch_randn(1, 100, 1, 1, device = device)
-
-loss <- nn_bce_loss()
-
-for (epoch in 1:10) {
-
-  pb <- progress::progress_bar$new(
-    total = length(dl),
-    format = "[:bar] :eta Loss D: :lossd Loss G: :lossg"
-  )
-  lossg <- c()
-  lossd <- c()
-
-  for (b in enumerate(dl)) {
-
-    y_real <- torch_ones(32, device = device)
-    y_fake <- torch_zeros(32, device = device)
-
-    noise <- torch_randn(32, 100, 1, 1, device = device)
-    fake <- G(noise)
-
-    img <- b[[1]]$to(device = device)
-
-    # train the discriminator ---
-    D_loss <- loss(D(img), y_real) + loss(D(fake$detach()), y_fake)
-
-    D_optimizer$zero_grad()
-    D_loss$backward()
-    D_optimizer$step()
-
-    # train the generator ---
-
-    G_loss <- loss(D(fake), y_real)
-
-    G_optimizer$zero_grad()
-    G_loss$backward()
-    G_optimizer$step()
-
-    lossd <- c(lossd, D_loss$item())
-    lossg <- c(lossg, G_loss$item())
-    pb$tick(tokens = list(lossd = mean(lossd), lossg = mean(lossg)))
-  }
-  plot_gen(fixed_noise)
-
-  cat(sprintf("Epoch %d - Loss D: %3f Loss G: %3f\n", epoch, mean(lossd), mean(lossg)))
-}
-
- - - -
- - - -
- -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - diff --git a/docs/articles/examples/mnist-dcgan_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/articles/examples/mnist-dcgan_files/accessible-code-block-0.0.1/empty-anchor.js deleted file mode 100644 index ca349fd6a..000000000 --- a/docs/articles/examples/mnist-dcgan_files/accessible-code-block-0.0.1/empty-anchor.js +++ /dev/null @@ -1,15 +0,0 @@ -// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) --> -// v0.0.1 -// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020. - -document.addEventListener('DOMContentLoaded', function() { - const codeList = document.getElementsByClassName("sourceCode"); - for (var i = 0; i < codeList.length; i++) { - var linkList = codeList[i].getElementsByTagName('a'); - for (var j = 0; j < linkList.length; j++) { - if (linkList[j].innerHTML === "") { - linkList[j].setAttribute('aria-hidden', 'true'); - } - } - } -}); diff --git a/docs/articles/examples/mnist-dcgan_files/header-attrs-2.3/header-attrs.js b/docs/articles/examples/mnist-dcgan_files/header-attrs-2.3/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/examples/mnist-dcgan_files/header-attrs-2.3/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/examples/mnist-mlp.html b/docs/articles/examples/mnist-mlp.html deleted file mode 100644 index db40b8ea6..000000000 --- a/docs/articles/examples/mnist-mlp.html +++ /dev/null @@ -1,203 +0,0 @@ - - - - - - - -mnist-mlp • torch - - - - - - - - - - -
-
- - - - -
-
- - - - -
dir <- "~/Downloads/mnist"
-
-ds <- mnist_dataset(
-  dir,
-  download = TRUE,
-  transform = function(x) {
-    x$to(dtype = torch_float())/256
-  }
-)
-dl <- dataloader(ds, batch_size = 32, shuffle = TRUE)
-
-net <- nn_module(
-  "Net",
-  initialize = function() {
-    self$fc1 <- nn_linear(784, 128)
-    self$fc2 <- nn_linear(128, 10)
-  },
-  forward = function(x) {
-    x %>%
-      torch_flatten(start_dim = 2) %>%
-      self$fc1() %>%
-      nnf_relu() %>%
-      self$fc2() %>%
-      nnf_log_softmax(dim = 1)
-  }
-)
-
-model <- net()
-optimizer <- optim_sgd(model$parameters, lr = 0.01)
-
-epochs <- 10
-
-for (epoch in 1:10) {
-
-  pb <- progress::progress_bar$new(
-    total = length(dl),
-    format = "[:bar] :eta Loss: :loss"
-  )
-  l <- c()
-
-  for (b in enumerate(dl)) {
-    optimizer$zero_grad()
-    output <- model(b[[1]])
-    loss <- nnf_nll_loss(output, b[[2]])
-    loss$backward()
-    optimizer$step()
-    l <- c(l, loss$item())
-    pb$tick(tokens = list(loss = mean(l)))
-  }
-
-  cat(sprintf("Loss at epoch %d: %3f\n", epoch, mean(l)))
-}
-
- - - -
- - - -
- -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - diff --git a/docs/articles/examples/mnist-mlp_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/articles/examples/mnist-mlp_files/accessible-code-block-0.0.1/empty-anchor.js deleted file mode 100644 index ca349fd6a..000000000 --- a/docs/articles/examples/mnist-mlp_files/accessible-code-block-0.0.1/empty-anchor.js +++ /dev/null @@ -1,15 +0,0 @@ -// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) --> -// v0.0.1 -// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020. - -document.addEventListener('DOMContentLoaded', function() { - const codeList = document.getElementsByClassName("sourceCode"); - for (var i = 0; i < codeList.length; i++) { - var linkList = codeList[i].getElementsByTagName('a'); - for (var j = 0; j < linkList.length; j++) { - if (linkList[j].innerHTML === "") { - linkList[j].setAttribute('aria-hidden', 'true'); - } - } - } -}); diff --git a/docs/articles/examples/mnist-mlp_files/header-attrs-2.1.1/header-attrs.js b/docs/articles/examples/mnist-mlp_files/header-attrs-2.1.1/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/examples/mnist-mlp_files/header-attrs-2.1.1/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/examples/mnist-mlp_files/header-attrs-2.3/header-attrs.js b/docs/articles/examples/mnist-mlp_files/header-attrs-2.3/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/examples/mnist-mlp_files/header-attrs-2.3/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/extending-autograd.html b/docs/articles/extending-autograd.html deleted file mode 100644 index 8c27bfa2e..000000000 --- a/docs/articles/extending-autograd.html +++ /dev/null @@ -1,222 +0,0 @@ - - - - - - - -Extending Autograd • torch - - - - - - - - - - -
-
- - - - -
-
- - - - -
library(torch)
-

Adding operations to autograd requires implementing a new autograd_function for each operation. Recall that autograd_functionss are what autograd uses to compute the results and gradients, and encode the operation history. Every new function requires you to implement 2 methods:

-
    -
  • forward() - the code that performs the operation. It can take as many arguments as you want, with some of them being optional, if you specify the default values. All kinds of R objects are accepted here. Tensor arguments that track history (i.e., with requires_grad=TRUE) will be converted to ones that don’t track history before the call, and their use will be registered in the graph. Note that this logic won’t traverse lists or any other data structures and will only consider Tensor’s that are direct arguments to the call. You can return either a single Tensor output, or a list of Tensors if there are multiple outputs. Also, please refer to the docs of autograd_function to find descriptions of useful methods that can be called only from forward().

  • -
  • backward() - gradient formula. It will be given as many Tensor arguments as there were outputs, with each of them representing gradient w.r.t. that output. It should return as many Tensors as there were Tensor's that required gradients in forward, with each of them containing the gradient w.r.t. its corresponding input.

  • -
-
-

-Note

-

It’s the user’s responsibility to use the special functions in the forward’s ctx properly in order to ensure that the new autograd_function works properly with the autograd engine.

-
    -
  • save_for_backward() must be used when saving input or ouput of the forward to be used later in the backward.

  • -
  • mark_dirty() must be used to mark any input that is modified inplace by the forward function.

  • -
  • mark_non_differentiable() must be used to tell the engine if an output is not differentiable.

  • -
-
-
-

-Examples

-

Below you can find code for a linear function:

-
linear <- autograd_function(
-  forward = function(ctx, input, weight, bias = NULL) {
-    ctx$save_for_backward(input = input, weight = weight, bias = bias)
-    output <- input$mm(weight$t())
-    if (!is.null(bias))
-      output <- output + bias$unsqueeze(0)$expand_as(output)
-
-    output
-  },
-  backward = function(ctx, grad_output) {
-
-    s <- ctx$saved_variables
-
-    grads <- list(
-      input = NULL,
-      weight = NULL,
-      bias = NULL
-    )
-
-    if (ctx$needs_input_grad$input)
-      grads$input <- grad_output$mm(s$weight)
-
-    if (ctx$needs_input_grad$weight)
-      grads$weight <- grad_output$t()$mm(s$input)
-
-    if (!is.null(s$bias) && ctx$needs_input_grad$bias)
-      grads$bias <- grad_output$sum(dim = 0)
-
-    grads
-  }
-)
-

Here, we give an additional example of a function that is parametrized by non-Tensor arguments:

-
mul_constant <- autograd_function(
-  forward = function(ctx, tensor, constant) {
-    ctx$save_for_backward(constant = constant)
-    tensor * constant
-  },
-  backward = function(ctx, grad_output) {
-    v <- ctx$saved_variables
-    list(
-      tensor = grad_output * v$constant
-    )
-  }
-)
-
x <- torch_tensor(1, requires_grad = TRUE)
-o <- mul_constant(x, 2)
-o$backward()
-x$grad
-
-
- - - -
- - - -
- -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - diff --git a/docs/articles/extending-autograd_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/articles/extending-autograd_files/accessible-code-block-0.0.1/empty-anchor.js deleted file mode 100644 index ca349fd6a..000000000 --- a/docs/articles/extending-autograd_files/accessible-code-block-0.0.1/empty-anchor.js +++ /dev/null @@ -1,15 +0,0 @@ -// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) --> -// v0.0.1 -// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020. - -document.addEventListener('DOMContentLoaded', function() { - const codeList = document.getElementsByClassName("sourceCode"); - for (var i = 0; i < codeList.length; i++) { - var linkList = codeList[i].getElementsByTagName('a'); - for (var j = 0; j < linkList.length; j++) { - if (linkList[j].innerHTML === "") { - linkList[j].setAttribute('aria-hidden', 'true'); - } - } - } -}); diff --git a/docs/articles/extending-autograd_files/header-attrs-2.1.1/header-attrs.js b/docs/articles/extending-autograd_files/header-attrs-2.1.1/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/extending-autograd_files/header-attrs-2.1.1/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/extending-autograd_files/header-attrs-2.3/header-attrs.js b/docs/articles/extending-autograd_files/header-attrs-2.3/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/extending-autograd_files/header-attrs-2.3/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/index.html b/docs/articles/index.html deleted file mode 100644 index 50afc9ac2..000000000 --- a/docs/articles/index.html +++ /dev/null @@ -1,204 +0,0 @@ - - - - - - - - -Articles • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- - - - -
- -
-
- - - -
-
- - -
- - -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - - - diff --git a/docs/articles/indexing.html b/docs/articles/indexing.html deleted file mode 100644 index 0207c0554..000000000 --- a/docs/articles/indexing.html +++ /dev/null @@ -1,224 +0,0 @@ - - - - - - - -Indexing tensors • torch - - - - - - - - - - -
-
- - - - -
-
- - - - -
library(torch)
-

In this article we describe the indexing operator for torch tensors and how it compares to the R indexing operator for arrays.

-

Torch’s indexing semantics are closer to numpy’s semantics than R’s. You will find a lot of similarities between this article and the numpy indexing article available here.

-
-

-Single element indexing

-

Single element indexing for a 1-D tensors works mostly as expected. Like R, it is 1-based. Unlike R though, it accepts negative indices for indexing from the end of the array. (In R, negative indices are used to remove elements.)

-
x <- torch_tensor(1:10)
-x[1]
-x[-1]
-

You can also subset matrices and higher dimensions arrays using the same syntax:

-
x <- x$reshape(shape = c(2,5))
-x
-x[1,3]
-x[1,-1]
-

Note that if one indexes a multidimensional tensor with fewer indices than dimensions, one gets an error, unlike in R that would flatten the array. For example:

-
x[1]
-
-
-

-Slicing and striding

-

It is possible to slice and stride arrays to extract sub-arrays of the same number of dimensions, but of different sizes than the original. This is best illustrated by a few examples:

-
x <- torch_tensor(1:10)
-x
-x[2:5]
-x[1:(-7)]
-

You can also use the 1:10:2 syntax which means: In the range from 1 to 10, take every second item. For example:

-
x[1:5:2]
-

Another special syntax is the N, meaning the size of the specified dimension.

-
x[5:N]
-
-
-

-Getting the complete dimension

-

Like in R, you can take all elements in a dimension by leaving an index empty.

-

Consider a matrix:

-
x <- torch_randn(2, 3)
-x
-

The following syntax will give you the first row:

-
x[1,]
-

And this would give you the first 2 columns:

-
x[,1:2]
-
-
-

-Dropping dimensions

-

By default, when indexing by a single integer, this dimension will be dropped to avoid the singleton dimension:

-
x <- torch_randn(2, 3)
-x[1,]$shape
-

You can optionally use the drop = FALSE argument to avoid dropping the dimension.

-
x[1,,drop = FALSE]$shape
-
-
-

-Adding a new dimension

-

It’s possible to add a new dimension to a tensor using index-like syntax:

-
x <- torch_tensor(c(10))
-x$shape
-x[, newaxis]$shape
-x[, newaxis, newaxis]$shape
-

You can also use NULL instead of newaxis:

-
x[,NULL]$shape
-
-
-

-Dealing with variable number of indices

-

Sometimes we don’t know how many dimensions a tensor has, but we do know what to do with the last available dimension, or the first one. To subsume all others, we can use ..:

-
z <- torch_tensor(1:125)$reshape(c(5,5,5))
-z[1,..]
-z[..,1]
-
-
- - - -
- - - -
- -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - diff --git a/docs/articles/indexing_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/articles/indexing_files/accessible-code-block-0.0.1/empty-anchor.js deleted file mode 100644 index ca349fd6a..000000000 --- a/docs/articles/indexing_files/accessible-code-block-0.0.1/empty-anchor.js +++ /dev/null @@ -1,15 +0,0 @@ -// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) --> -// v0.0.1 -// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020. - -document.addEventListener('DOMContentLoaded', function() { - const codeList = document.getElementsByClassName("sourceCode"); - for (var i = 0; i < codeList.length; i++) { - var linkList = codeList[i].getElementsByTagName('a'); - for (var j = 0; j < linkList.length; j++) { - if (linkList[j].innerHTML === "") { - linkList[j].setAttribute('aria-hidden', 'true'); - } - } - } -}); diff --git a/docs/articles/indexing_files/header-attrs-2.1.1/header-attrs.js b/docs/articles/indexing_files/header-attrs-2.1.1/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/indexing_files/header-attrs-2.1.1/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/indexing_files/header-attrs-2.3/header-attrs.js b/docs/articles/indexing_files/header-attrs-2.3/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/indexing_files/header-attrs-2.3/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/loading-data.html b/docs/articles/loading-data.html deleted file mode 100644 index 3fd2a41a3..000000000 --- a/docs/articles/loading-data.html +++ /dev/null @@ -1,274 +0,0 @@ - - - - - - - -Loading data • torch - - - - - - - - - - -
-
- - - - -
-
- - - - -
library(torch)
-
-

-Datasets and data loaders

-

Central to data ingestion and preprocessing are datasets and data loaders.

-

torch comes equipped with a bag of datasets related to, mostly, image recognition and natural language processing (e.g., mnist_dataset()), which can be iterated over by means of dataloaders:

-
# ...
-ds <- mnist_dataset(
-  dir, 
-  download = TRUE, 
-  transform = function(x) {
-    x <- x$to(dtype = torch_float())/256
-    x[newaxis,..]
-  }
-)
-
-dl <- dataloader(ds, batch_size = 32, shuffle = TRUE)
-
-for (b in enumerate(dl)) {
-  # ...
-

Cf. vignettes/examples/mnist-cnn.R for a complete example.

-

What if you want to train on a different dataset? In these cases, you subclass Dataset, an abstract container that needs to know how to iterate over the given data. To that purpose, your subclass needs to implement .getitem(), and say what should be returned when the data loader is asking for the next batch.

-

In .getitem(), you can implement whatever preprocessing you require. Additionally, you should implement .length(), so users can find out how many items there are in the dataset.

-

While this may sound complicated, it is not at all. The base logic is straightforward – complexity will, naturally, correlate with how involved your preprocessing is. To provide you with a simple but functional prototype, here we show how to create your own dataset to train on Allison Horst's penguins.

-
-
-

-A custom dataset

-
library(palmerpenguins)
-library(magrittr)
-
-penguins
-

Datasets are R6 classes created using the dataset() constructor. You can pass a name and various member functions. Among those should be initialize(), to create instance variables, .getitem(), to indicate how the data should be returned, and .length(), to say how many items we have.

-

In addition, any number of helper functions can be defined.

-

Here, we assume the penguins have already been loaded, and all preprocessing consists in removing lines with NA values, transforming factors to numbers starting from 0, and converting from R data types to torch tensors.

-

In .getitem, we essentially decide how this data is going to be used: All variables besides species go into x, the predictor, and species will constitute y, the target. Predictor and target are returned in a list, to be accessed as batch[[1]] and batch[[2]] during training.

-
penguins_dataset <- dataset(
-
-  name = "penguins_dataset",
-
-  initialize = function() {
-    self$data <- self$prepare_penguin_data()
-  },
-
-  .getitem = function(index) {
-
-    x <- self$data[index, 2:-1]
-    y <- self$data[index, 1]$to(torch_long())
-
-    list(x, y)
-  },
-
-  .length = function() {
-    self$data$size()[[1]]
-  },
-
-  prepare_penguin_data = function() {
-
-    input <- na.omit(penguins)
-    # conveniently, the categorical data are already factors
-    input$species <- as.numeric(input$species)
-    input$island <- as.numeric(input$island)
-    input$sex <- as.numeric(input$sex)
-
-    input <- as.matrix(input)
-    torch_tensor(input)
-  }
-)
-

Let’s create the dataset , query for it’s length, and look at its first item:

-
tuxes <- penguins_dataset()
-tuxes$.length()
-tuxes$.getitem(1)
-

To be able to iterate over tuxes, we need a data loader (we override the default batch size of 1):

-
dl <-tuxes %>% dataloader(batch_size = 8)
-

Calling .length() on a data loader (as opposed to a dataset) will return the number of batches we have:

-
dl$.length()
-

And we can create an iterator to inspect the first batch:

-
iter <- dl$.iter()
-b <- iter$.next()
-b
-

To train a network, we can use enumerate to iterate over batches.

-
-
-

-Training with data loaders

-

Our example network is very simple. (In reality, we would want to treat island as the categorical variable it is, and either one-hot-encode or embed it.)

-
net <- nn_module(
-  "PenguinNet",
-  initialize = function() {
-    self$fc1 <- nn_linear(6, 32)
-    self$fc2 <- nn_linear(32, 3)
-  },
-  forward = function(x) {
-    x %>%
-      self$fc1() %>%
-      nnf_relu() %>%
-      self$fc2() %>%
-      nnf_log_softmax(dim = 1)
-  }
-)
-
-model <- net()
-

We still need an optimizer:

-
optimizer <- optim_sgd(model$parameters, lr = 0.01)
-

And we’re ready to train:

-
for (epoch in 1:10) {
-
-  l <- c()
-
-  for (b in enumerate(dl)) {
-    optimizer$zero_grad()
-    output <- model(b[[1]])
-    loss <- nnf_nll_loss(output, b[[2]])
-    loss$backward()
-    optimizer$step()
-    l <- c(l, loss$item())
-  }
-
-  cat(sprintf("Loss at epoch %d: %3f\n", epoch, mean(l)))
-}
-
-
- - - -
- - - -
- -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - diff --git a/docs/articles/loading-data_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/articles/loading-data_files/accessible-code-block-0.0.1/empty-anchor.js deleted file mode 100644 index ca349fd6a..000000000 --- a/docs/articles/loading-data_files/accessible-code-block-0.0.1/empty-anchor.js +++ /dev/null @@ -1,15 +0,0 @@ -// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) --> -// v0.0.1 -// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020. - -document.addEventListener('DOMContentLoaded', function() { - const codeList = document.getElementsByClassName("sourceCode"); - for (var i = 0; i < codeList.length; i++) { - var linkList = codeList[i].getElementsByTagName('a'); - for (var j = 0; j < linkList.length; j++) { - if (linkList[j].innerHTML === "") { - linkList[j].setAttribute('aria-hidden', 'true'); - } - } - } -}); diff --git a/docs/articles/loading-data_files/header-attrs-2.3/header-attrs.js b/docs/articles/loading-data_files/header-attrs-2.3/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/loading-data_files/header-attrs-2.3/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/tensor-creation.html b/docs/articles/tensor-creation.html deleted file mode 100644 index 96bc72ff2..000000000 --- a/docs/articles/tensor-creation.html +++ /dev/null @@ -1,231 +0,0 @@ - - - - - - - -Creating tensors • torch - - - - - - - - - - -
-
- - - - -
-
- - - - -
library(torch)
-

In this article we describe various ways of creating torch tensors in R.

-
-

-From R objects

-

You can create tensors from R objects using the torch_tensor function. The torch_tensor function takes an R vector, matrix or array and creates an equivalent torch_tensor.

-

You can see a few examples below:

-
torch_tensor(c(1,2,3))
-
-# conform to row-major indexing used in torch
-torch_tensor(matrix(1:10, ncol = 5, nrow = 2, byrow = TRUE))
-torch_tensor(array(runif(12), dim = c(2, 2, 3)))
-

By default, we will create tensors in the cpu device, converting their R datatype to the corresponding torch dtype.

-
-

Note currently, only numeric and boolean types are supported.

-
-

You can always modify dtype and device when converting an R object to a torch tensor. For example:

-
torch_tensor(1, dtype = torch_long())
-torch_tensor(1, device = "cpu", dtype = torch_float64())
-

Other options available when creating a tensor are:

-
    -
  • -requires_grad: boolean indicating if you want autograd to record operations on them for automatic differentiation.
  • -
  • -pin_memory: – If set, the tensor returned would be allocated in pinned memory. Works only for CPU tensors.
  • -
-

These options are available for all functions that can be used to create new tensors, including the factory functions listed in the next section.

-
-
-

-Using creation functions

-

You can also use the torch_* functions listed below to create torch tensors using some algorithm.

-

For example, the torch_randn function will create tensors using the normal distribution with mean 0 and standard deviation 1. You can use the ... argument to pass the size of the dimensions. For example, the code below will create a normally distributed tensor with shape 5x3.

-
x <- torch_randn(5, 3)
-x
-

Another example is torch_ones, which creates a tensor filled with ones.

-
x <- torch_ones(2, 4, dtype = torch_int64(), device = "cpu")
-x
-

Here is the full list of functions that can be used to bulk-create tensors in torch:

-
    -
  • -torch_arange: Returns a tensor with a sequence of integers,
  • -
  • -torch_empty: Returns a tensor with uninitialized values,
  • -
  • -torch_eye: Returns an identity matrix,
  • -
  • -torch_full: Returns a tensor filled with a single value,
  • -
  • -torch_linspace: Returns a tensor with values linearly spaced in some interval,
  • -
  • -torch_logspace: Returns a tensor with values logarithmically spaced in some interval,
  • -
  • -torch_ones: Returns a tensor filled with all ones,
  • -
  • -torch_rand: Returns a tensor filled with values drawn from a uniform distribution on [0, 1).
  • -
  • -torch_randint: Returns a tensor with integers randomly drawn from an interval,
  • -
  • -torch_randn: Returns a tensor filled with values drawn from a unit normal distribution,
  • -
  • -torch_randperm: Returns a tensor filled with a random permutation of integers in some interval,
  • -
  • -torch_zeros: Returns a tensor filled with all zeros.
  • -
-
-
-

-Conversion

-

Once a tensor exists you can convert between dtypes and move to a different device with to method. For example:

-
x <- torch_tensor(1)
-y <- x$to(dtype = torch_int32())
-x
-y
-

You can also copy a tensor to the GPU using:

-
x <- torch_tensor(1)
-y <- x$cuda())
-
-
- - - -
- - - -
- -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - diff --git a/docs/articles/tensor-creation_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/articles/tensor-creation_files/accessible-code-block-0.0.1/empty-anchor.js deleted file mode 100644 index ca349fd6a..000000000 --- a/docs/articles/tensor-creation_files/accessible-code-block-0.0.1/empty-anchor.js +++ /dev/null @@ -1,15 +0,0 @@ -// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) --> -// v0.0.1 -// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020. - -document.addEventListener('DOMContentLoaded', function() { - const codeList = document.getElementsByClassName("sourceCode"); - for (var i = 0; i < codeList.length; i++) { - var linkList = codeList[i].getElementsByTagName('a'); - for (var j = 0; j < linkList.length; j++) { - if (linkList[j].innerHTML === "") { - linkList[j].setAttribute('aria-hidden', 'true'); - } - } - } -}); diff --git a/docs/articles/tensor-creation_files/header-attrs-2.1.1/header-attrs.js b/docs/articles/tensor-creation_files/header-attrs-2.1.1/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/tensor-creation_files/header-attrs-2.1.1/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/tensor-creation_files/header-attrs-2.3/header-attrs.js b/docs/articles/tensor-creation_files/header-attrs-2.3/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/tensor-creation_files/header-attrs-2.3/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/using-autograd.html b/docs/articles/using-autograd.html deleted file mode 100644 index 9cd634b0c..000000000 --- a/docs/articles/using-autograd.html +++ /dev/null @@ -1,268 +0,0 @@ - - - - - - - -Using autograd • torch - - - - - - - - - - -
-
- - - - -
-
- - - - -
library(torch)
-

So far, all we’ve been using from torch is tensors, but we’ve been performing all calculations ourselves – the computing the predictions, the loss, the gradients (and thus, the necessary updates to the weights), and the new weight values. In this chapter, we’ll make a significant change: Namely, we spare ourselves the cumbersome calculation of gradients, and have torch do it for us.

-

Before we see that in action, let’s get some more background.

-
-

-Automatic differentiation with autograd

-

Torch uses a module called autograd to record operations performed on tensors, and store what has to be done to obtain the respective gradients. These actions are stored as functions, and those functions are applied in order when the gradient of the output (normally, the loss) with respect to those tensors is calculated: starting from the output node and propagating gradients back through the network. This is a form of reverse mode automatic differentiation.

-

As users, we can see a bit of this implementation. As a prerequisite for this “recording” to happen, tensors have to be created with requires_grad = TRUE. E.g.

-
x <- torch_ones(2,2, requires_grad = TRUE)
-

To be clear, this is a tensor with respect to which gradients have to be calculated – normally, a tensor representing a weight or a bias, not the input data 1. If we now perform some operation on that tensor, assigning the result to y

-
y <- x$mean()
-

we find that y now has a non-empty grad_fn that tells torch how to compute the gradient of y with respect to x:

-
y$grad_fn
-

Actual computation of gradients is triggered by calling backward() on the output tensor.

-
y$backward()
-

That executed, x now has a non-empty field grad that stores the gradient of y with respect to x:

-
x$grad
-

With a longer chain of computations, we can peek at how torch builds up a graph of backward operations.

-

Here is a slightly more complex example. We call retain_grad() on y and z just for demonstration purposes; by default, intermediate gradients – while of course they have to be computed – aren’t stored, in order to save memory.

-
x1 <- torch_ones(2,2, requires_grad = TRUE)
-x2 <- torch_tensor(1.1, requires_grad = TRUE)
-y <- x1 * (x2 + 2)
-y$retain_grad()
-z <- y$pow(2) * 3
-z$retain_grad()
-out <- z$mean()
-

Starting from out$grad_fn, we can follow the graph all back to the leaf nodes:

-
# how to compute the gradient for mean, the last operation executed
-out$grad_fn
-# how to compute the gradient for the multiplication by 3 in z = y$pow(2) * 3
-out$grad_fn$next_functions
-# how to compute the gradient for pow in z = y.pow(2) * 3
-out$grad_fn$next_functions[[1]]$next_functions
-# how to compute the gradient for the multiplication in y = x * (x + 2)
-out$grad_fn$next_functions[[1]]$next_functions[[1]]$next_functions
-# how to compute the gradient for the two branches of y = x * (x + 2),
-# where the left branch is a leaf node (AccumulateGrad for x1)
-out$grad_fn$next_functions[[1]]$next_functions[[1]]$next_functions[[1]]$next_functions
-# here we arrive at the other leaf node (AccumulateGrad for x2)
-out$grad_fn$next_functions[[1]]$next_functions[[1]]$next_functions[[1]]$next_functions[[2]]$next_functions
-

After calling out$backward(), all tensors in the graph will have their respective gradients created. Without our calls to retain_grad above, z$grad and y$grad would be empty:

-
out$backward()
-z$grad
-y$grad
-x2$grad
-x1$grad
-

Thus acquainted with autograd, we’re ready to modify our example.

-
-
-

-The simple network, now using autograd

-

For a single new line calling loss$backward(), now a number of lines (that did manual backprop) are gone:

-
### generate training data -----------------------------------------------------
-# input dimensionality (number of input features)
-d_in <- 3
-# output dimensionality (number of predicted features)
-d_out <- 1
-# number of observations in training set
-n <- 100
-# create random data
-x <- torch_randn(n, d_in)
-y <- x[,1]*0.2 - x[..,2]*1.3 - x[..,3]*0.5 + torch_randn(n)
-y <- y$unsqueeze(dim = 1)
-### initialize weights ---------------------------------------------------------
-# dimensionality of hidden layer
-d_hidden <- 32
-# weights connecting input to hidden layer
-w1 <- torch_randn(d_in, d_hidden, requires_grad = TRUE)
-# weights connecting hidden to output layer
-w2 <- torch_randn(d_hidden, d_out, requires_grad = TRUE)
-# hidden layer bias
-b1 <- torch_zeros(1, d_hidden, requires_grad = TRUE)
-# output layer bias
-b2 <- torch_zeros(1, d_out,requires_grad = TRUE)
-### network parameters ---------------------------------------------------------
-learning_rate <- 1e-4
-### training loop --------------------------------------------------------------
-for (t in 1:200) {
-
-    ### -------- Forward pass -------- 
-    y_pred <- x$mm(w1)$add(b1)$clamp(min = 0)$mm(w2)$add(b2)
-    ### -------- compute loss -------- 
-    loss <- (y_pred - y)$pow(2)$mean()
-    if (t %% 10 == 0) cat(t, as_array(loss), "\n")
-    ### -------- Backpropagation -------- 
-    # compute the gradient of loss with respect to all tensors with requires_grad = True.
-    loss$backward()
-
-    ### -------- Update weights -------- 
-
-    # Wrap in torch.no_grad() because this is a part we DON'T want to record for automatic gradient computation
-    with_no_grad({
-
-      w1$sub_(learning_rate * w1$grad)
-      w2$sub_(learning_rate * w2$grad)
-      b1$sub_(learning_rate * b1$grad)
-      b2$sub_(learning_rate * b2$grad)
-
-      # Zero the gradients after every pass, because they'd accumulate otherwise
-      w1$grad$zero_()
-      w2$grad$zero_()
-      b1$grad$zero_()
-      b2$grad$zero_()
-
-    })
-
-}
-

We still manually compute the forward pass, and we still manually update the weights. In the last two chapters of this section, we’ll see how these parts of the logic can be made more modular and reusable, as well.

-
-
-
-
    -
  1. Unless we want to change the data, as in adversarial example generation↩︎

  2. -
-
-
- - - -
- - - -
- -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - diff --git a/docs/articles/using-autograd_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/articles/using-autograd_files/accessible-code-block-0.0.1/empty-anchor.js deleted file mode 100644 index ca349fd6a..000000000 --- a/docs/articles/using-autograd_files/accessible-code-block-0.0.1/empty-anchor.js +++ /dev/null @@ -1,15 +0,0 @@ -// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) --> -// v0.0.1 -// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020. - -document.addEventListener('DOMContentLoaded', function() { - const codeList = document.getElementsByClassName("sourceCode"); - for (var i = 0; i < codeList.length; i++) { - var linkList = codeList[i].getElementsByTagName('a'); - for (var j = 0; j < linkList.length; j++) { - if (linkList[j].innerHTML === "") { - linkList[j].setAttribute('aria-hidden', 'true'); - } - } - } -}); diff --git a/docs/articles/using-autograd_files/header-attrs-2.1.1/header-attrs.js b/docs/articles/using-autograd_files/header-attrs-2.1.1/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/using-autograd_files/header-attrs-2.1.1/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/articles/using-autograd_files/header-attrs-2.3/header-attrs.js b/docs/articles/using-autograd_files/header-attrs-2.3/header-attrs.js deleted file mode 100644 index dd57d92e0..000000000 --- a/docs/articles/using-autograd_files/header-attrs-2.3/header-attrs.js +++ /dev/null @@ -1,12 +0,0 @@ -// Pandoc 2.9 adds attributes on both header and div. We remove the former (to -// be compatible with the behavior of Pandoc < 2.8). -document.addEventListener('DOMContentLoaded', function(e) { - var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); - var i, h, a; - for (i = 0; i < hs.length; i++) { - h = hs[i]; - if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 - a = h.attributes; - while (a.length > 0) h.removeAttribute(a[0].name); - } -}); diff --git a/docs/authors.html b/docs/authors.html deleted file mode 100644 index 5d8ead1a4..000000000 --- a/docs/authors.html +++ /dev/null @@ -1,206 +0,0 @@ - - - - - - - - -Authors • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- - - - -
- -
-
- - -
    -
  • -

    Daniel Falbel. Author, maintainer. -

    -
  • -
  • -

    Javier Luraschi. Author. -

    -
  • -
  • -

    Dmitriy Selivanov. Contributor. -

    -
  • -
  • -

    Athos Damiani. Contributor. -

    -
  • -
  • -

    RStudio. Copyright holder. -

    -
  • -
- -
- -
- - - -
- - -
-

Site built with pkgdown 1.5.1.

-
- -
-
- - - - - - - - diff --git a/docs/bootstrap-toc.css b/docs/bootstrap-toc.css deleted file mode 100644 index 5a859415c..000000000 --- a/docs/bootstrap-toc.css +++ /dev/null @@ -1,60 +0,0 @@ -/*! - * Bootstrap Table of Contents v0.4.1 (http://afeld.github.io/bootstrap-toc/) - * Copyright 2015 Aidan Feldman - * Licensed under MIT (https://github.com/afeld/bootstrap-toc/blob/gh-pages/LICENSE.md) */ - -/* modified from https://github.com/twbs/bootstrap/blob/94b4076dd2efba9af71f0b18d4ee4b163aa9e0dd/docs/assets/css/src/docs.css#L548-L601 */ - -/* All levels of nav */ -nav[data-toggle='toc'] .nav > li > a { - display: block; - padding: 4px 20px; - font-size: 13px; - font-weight: 500; - color: #767676; -} -nav[data-toggle='toc'] .nav > li > a:hover, -nav[data-toggle='toc'] .nav > li > a:focus { - padding-left: 19px; - color: #563d7c; - text-decoration: none; - background-color: transparent; - border-left: 1px solid #563d7c; -} -nav[data-toggle='toc'] .nav > .active > a, -nav[data-toggle='toc'] .nav > .active:hover > a, -nav[data-toggle='toc'] .nav > .active:focus > a { - padding-left: 18px; - font-weight: bold; - color: #563d7c; - background-color: transparent; - border-left: 2px solid #563d7c; -} - -/* Nav: second level (shown on .active) */ -nav[data-toggle='toc'] .nav .nav { - display: none; /* Hide by default, but at >768px, show it */ - padding-bottom: 10px; -} -nav[data-toggle='toc'] .nav .nav > li > a { - padding-top: 1px; - padding-bottom: 1px; - padding-left: 30px; - font-size: 12px; - font-weight: normal; -} -nav[data-toggle='toc'] .nav .nav > li > a:hover, -nav[data-toggle='toc'] .nav .nav > li > a:focus { - padding-left: 29px; -} -nav[data-toggle='toc'] .nav .nav > .active > a, -nav[data-toggle='toc'] .nav .nav > .active:hover > a, -nav[data-toggle='toc'] .nav .nav > .active:focus > a { - padding-left: 28px; - font-weight: 500; -} - -/* from https://github.com/twbs/bootstrap/blob/e38f066d8c203c3e032da0ff23cd2d6098ee2dd6/docs/assets/css/src/docs.css#L631-L634 */ -nav[data-toggle='toc'] .nav > .active > ul { - display: block; -} diff --git a/docs/bootstrap-toc.js b/docs/bootstrap-toc.js deleted file mode 100644 index 1cdd573b2..000000000 --- a/docs/bootstrap-toc.js +++ /dev/null @@ -1,159 +0,0 @@ -/*! - * Bootstrap Table of Contents v0.4.1 (http://afeld.github.io/bootstrap-toc/) - * Copyright 2015 Aidan Feldman - * Licensed under MIT (https://github.com/afeld/bootstrap-toc/blob/gh-pages/LICENSE.md) */ -(function() { - 'use strict'; - - window.Toc = { - helpers: { - // return all matching elements in the set, or their descendants - findOrFilter: function($el, selector) { - // http://danielnouri.org/notes/2011/03/14/a-jquery-find-that-also-finds-the-root-element/ - // http://stackoverflow.com/a/12731439/358804 - var $descendants = $el.find(selector); - return $el.filter(selector).add($descendants).filter(':not([data-toc-skip])'); - }, - - generateUniqueIdBase: function(el) { - var text = $(el).text(); - var anchor = text.trim().toLowerCase().replace(/[^A-Za-z0-9]+/g, '-'); - return anchor || el.tagName.toLowerCase(); - }, - - generateUniqueId: function(el) { - var anchorBase = this.generateUniqueIdBase(el); - for (var i = 0; ; i++) { - var anchor = anchorBase; - if (i > 0) { - // add suffix - anchor += '-' + i; - } - // check if ID already exists - if (!document.getElementById(anchor)) { - return anchor; - } - } - }, - - generateAnchor: function(el) { - if (el.id) { - return el.id; - } else { - var anchor = this.generateUniqueId(el); - el.id = anchor; - return anchor; - } - }, - - createNavList: function() { - return $(''); - }, - - createChildNavList: function($parent) { - var $childList = this.createNavList(); - $parent.append($childList); - return $childList; - }, - - generateNavEl: function(anchor, text) { - var $a = $(''); - $a.attr('href', '#' + anchor); - $a.text(text); - var $li = $('
  • '); - $li.append($a); - return $li; - }, - - generateNavItem: function(headingEl) { - var anchor = this.generateAnchor(headingEl); - var $heading = $(headingEl); - var text = $heading.data('toc-text') || $heading.text(); - return this.generateNavEl(anchor, text); - }, - - // Find the first heading level (`

    `, then `

    `, etc.) that has more than one element. Defaults to 1 (for `

    `). - getTopLevel: function($scope) { - for (var i = 1; i <= 6; i++) { - var $headings = this.findOrFilter($scope, 'h' + i); - if ($headings.length > 1) { - return i; - } - } - - return 1; - }, - - // returns the elements for the top level, and the next below it - getHeadings: function($scope, topLevel) { - var topSelector = 'h' + topLevel; - - var secondaryLevel = topLevel + 1; - var secondarySelector = 'h' + secondaryLevel; - - return this.findOrFilter($scope, topSelector + ',' + secondarySelector); - }, - - getNavLevel: function(el) { - return parseInt(el.tagName.charAt(1), 10); - }, - - populateNav: function($topContext, topLevel, $headings) { - var $context = $topContext; - var $prevNav; - - var helpers = this; - $headings.each(function(i, el) { - var $newNav = helpers.generateNavItem(el); - var navLevel = helpers.getNavLevel(el); - - // determine the proper $context - if (navLevel === topLevel) { - // use top level - $context = $topContext; - } else if ($prevNav && $context === $topContext) { - // create a new level of the tree and switch to it - $context = helpers.createChildNavList($prevNav); - } // else use the current $context - - $context.append($newNav); - - $prevNav = $newNav; - }); - }, - - parseOps: function(arg) { - var opts; - if (arg.jquery) { - opts = { - $nav: arg - }; - } else { - opts = arg; - } - opts.$scope = opts.$scope || $(document.body); - return opts; - } - }, - - // accepts a jQuery object, or an options object - init: function(opts) { - opts = this.helpers.parseOps(opts); - - // ensure that the data attribute is in place for styling - opts.$nav.attr('data-toggle', 'toc'); - - var $topContext = this.helpers.createChildNavList(opts.$nav); - var topLevel = this.helpers.getTopLevel(opts.$scope); - var $headings = this.helpers.getHeadings(opts.$scope, topLevel); - this.helpers.populateNav($topContext, topLevel, $headings); - } - }; - - $(function() { - $('nav[data-toggle="toc"]').each(function(i, el) { - var $nav = $(el); - Toc.init($nav); - }); - }); -})(); diff --git a/docs/docsearch.css b/docs/docsearch.css deleted file mode 100644 index e5f1fe1df..000000000 --- a/docs/docsearch.css +++ /dev/null @@ -1,148 +0,0 @@ -/* Docsearch -------------------------------------------------------------- */ -/* - Source: https://github.com/algolia/docsearch/ - License: MIT -*/ - -.algolia-autocomplete { - display: block; - -webkit-box-flex: 1; - -ms-flex: 1; - flex: 1 -} - -.algolia-autocomplete .ds-dropdown-menu { - width: 100%; - min-width: none; - max-width: none; - padding: .75rem 0; - background-color: #fff; - background-clip: padding-box; - border: 1px solid rgba(0, 0, 0, .1); - box-shadow: 0 .5rem 1rem rgba(0, 0, 0, .175); -} - -@media (min-width:768px) { - .algolia-autocomplete .ds-dropdown-menu { - width: 175% - } -} - -.algolia-autocomplete .ds-dropdown-menu::before { - display: none -} - -.algolia-autocomplete .ds-dropdown-menu [class^=ds-dataset-] { - padding: 0; - background-color: rgb(255,255,255); - border: 0; - max-height: 80vh; -} - -.algolia-autocomplete .ds-dropdown-menu .ds-suggestions { - margin-top: 0 -} - -.algolia-autocomplete .algolia-docsearch-suggestion { - padding: 0; - overflow: visible -} - -.algolia-autocomplete .algolia-docsearch-suggestion--category-header { - padding: .125rem 1rem; - margin-top: 0; - font-size: 1.3em; - font-weight: 500; - color: #00008B; - border-bottom: 0 -} - -.algolia-autocomplete .algolia-docsearch-suggestion--wrapper { - float: none; - padding-top: 0 -} - -.algolia-autocomplete .algolia-docsearch-suggestion--subcategory-column { - float: none; - width: auto; - padding: 0; - text-align: left -} - -.algolia-autocomplete .algolia-docsearch-suggestion--content { - float: none; - width: auto; - padding: 0 -} - -.algolia-autocomplete .algolia-docsearch-suggestion--content::before { - display: none -} - -.algolia-autocomplete .ds-suggestion:not(:first-child) .algolia-docsearch-suggestion--category-header { - padding-top: .75rem; - margin-top: .75rem; - border-top: 1px solid rgba(0, 0, 0, .1) -} - -.algolia-autocomplete .ds-suggestion .algolia-docsearch-suggestion--subcategory-column { - display: block; - padding: .1rem 1rem; - margin-bottom: 0.1; - font-size: 1.0em; - font-weight: 400 - /* display: none */ -} - -.algolia-autocomplete .algolia-docsearch-suggestion--title { - display: block; - padding: .25rem 1rem; - margin-bottom: 0; - font-size: 0.9em; - font-weight: 400 -} - -.algolia-autocomplete .algolia-docsearch-suggestion--text { - padding: 0 1rem .5rem; - margin-top: -.25rem; - font-size: 0.8em; - font-weight: 400; - line-height: 1.25 -} - -.algolia-autocomplete .algolia-docsearch-footer { - width: 110px; - height: 20px; - z-index: 3; - margin-top: 10.66667px; - float: right; - font-size: 0; - line-height: 0; -} - -.algolia-autocomplete .algolia-docsearch-footer--logo { - background-image: url("data:image/svg+xml;utf8,"); - background-repeat: no-repeat; - background-position: 50%; - background-size: 100%; - overflow: hidden; - text-indent: -9000px; - width: 100%; - height: 100%; - display: block; - transform: translate(-8px); -} - -.algolia-autocomplete .algolia-docsearch-suggestion--highlight { - color: #FF8C00; - background: rgba(232, 189, 54, 0.1) -} - - -.algolia-autocomplete .algolia-docsearch-suggestion--text .algolia-docsearch-suggestion--highlight { - box-shadow: inset 0 -2px 0 0 rgba(105, 105, 105, .5) -} - -.algolia-autocomplete .ds-suggestion.ds-cursor .algolia-docsearch-suggestion--content { - background-color: rgba(192, 192, 192, .15) -} diff --git a/docs/docsearch.js b/docs/docsearch.js deleted file mode 100644 index b35504cd3..000000000 --- a/docs/docsearch.js +++ /dev/null @@ -1,85 +0,0 @@ -$(function() { - - // register a handler to move the focus to the search bar - // upon pressing shift + "/" (i.e. "?") - $(document).on('keydown', function(e) { - if (e.shiftKey && e.keyCode == 191) { - e.preventDefault(); - $("#search-input").focus(); - } - }); - - $(document).ready(function() { - // do keyword highlighting - /* modified from https://jsfiddle.net/julmot/bL6bb5oo/ */ - var mark = function() { - - var referrer = document.URL ; - var paramKey = "q" ; - - if (referrer.indexOf("?") !== -1) { - var qs = referrer.substr(referrer.indexOf('?') + 1); - var qs_noanchor = qs.split('#')[0]; - var qsa = qs_noanchor.split('&'); - var keyword = ""; - - for (var i = 0; i < qsa.length; i++) { - var currentParam = qsa[i].split('='); - - if (currentParam.length !== 2) { - continue; - } - - if (currentParam[0] == paramKey) { - keyword = decodeURIComponent(currentParam[1].replace(/\+/g, "%20")); - } - } - - if (keyword !== "") { - $(".contents").unmark({ - done: function() { - $(".contents").mark(keyword); - } - }); - } - } - }; - - mark(); - }); -}); - -/* Search term highlighting ------------------------------*/ - -function matchedWords(hit) { - var words = []; - - var hierarchy = hit._highlightResult.hierarchy; - // loop to fetch from lvl0, lvl1, etc. - for (var idx in hierarchy) { - words = words.concat(hierarchy[idx].matchedWords); - } - - var content = hit._highlightResult.content; - if (content) { - words = words.concat(content.matchedWords); - } - - // return unique words - var words_uniq = [...new Set(words)]; - return words_uniq; -} - -function updateHitURL(hit) { - - var words = matchedWords(hit); - var url = ""; - - if (hit.anchor) { - url = hit.url_without_anchor + '?q=' + escape(words.join(" ")) + '#' + hit.anchor; - } else { - url = hit.url + '?q=' + escape(words.join(" ")); - } - - return url; -} diff --git a/docs/index.html b/docs/index.html deleted file mode 100644 index a36128e29..000000000 --- a/docs/index.html +++ /dev/null @@ -1,272 +0,0 @@ - - - - - - - -Tensors and Neural Networks with GPU Acceleration • torch - - - - - - - - - - -
    -
    - - - - -
    -
    -
    - - -
    -

    -Installation

    -

    Run:

    -
    remotes::install_github("mlverse/torch")
    -

    At the first package load additional software will be installed.

    -
    -
    -

    -Example

    -

    Currently this package is only a proof of concept and you can only create a Torch Tensor from an R object. And then convert back from a torch Tensor to an R object.

    -
    library(torch)
    -x <- array(runif(8), dim = c(2, 2, 2))
    -y <- torch_tensor(x, dtype = torch_float64())
    -y
    -#> torch_tensor 
    -#> (1,.,.) = 
    -#>   0.8687  0.0157
    -#>   0.4237  0.8971
    -#> 
    -#> (2,.,.) = 
    -#>   0.4021  0.5509
    -#>   0.3374  0.9034
    -#> [ CPUDoubleType{2,2,2} ]
    -identical(x, as_array(y))
    -#> [1] TRUE
    -
    -

    -Simple Autograd Example

    -

    In the following snippet we let torch, using the autograd feature, calculate the derivatives:

    -
    x <- torch_tensor(1, requires_grad = TRUE)
    -w <- torch_tensor(2, requires_grad = TRUE)
    -b <- torch_tensor(3, requires_grad = TRUE)
    -y <- w * x + b
    -y$backward()
    -x$grad
    -#> torch_tensor 
    -#>  2
    -#> [ CPUFloatType{1} ]
    -w$grad
    -#> torch_tensor 
    -#>  1
    -#> [ CPUFloatType{1} ]
    -b$grad
    -#> torch_tensor 
    -#>  1
    -#> [ CPUFloatType{1} ]
    -
    -
    -

    -Linear Regression

    -

    In the following example we are going to fit a linear regression from scratch using torch’s Autograd.

    -

    Note all methods that end with _ (eg. sub_), will modify the tensors in place.

    -
    x <- torch_randn(100, 2)
    -y <- 0.1 + 0.5*x[,1] - 0.7*x[,2]
    -
    -w <- torch_randn(2, 1, requires_grad = TRUE)
    -b <- torch_zeros(1, requires_grad = TRUE)
    -
    -lr <- 0.5
    -for (i in 1:100) {
    -  y_hat <- torch_mm(x, w) + b
    -  loss <- torch_mean((y - y_hat$squeeze(1))^2)
    -
    -  loss$backward()
    -
    -  with_no_grad({
    -    w$sub_(w$grad*lr)
    -    b$sub_(b$grad*lr)
    -
    -    w$grad$zero_()
    -    b$grad$zero_()
    -  })
    -}
    -print(w)
    -#> torch_tensor 
    -#>  0.5000
    -#> -0.7000
    -#> [ CPUFloatType{2,1} ]
    -print(b)
    -#> torch_tensor 
    -#> 0.01 *
    -#> 10.0000
    -#> [ CPUFloatType{1} ]
    -
    -
    -
    -

    -Contributing

    -

    No matter your current skills it’s possible to contribute to torch development. See the contributing guide for more information.

    -
    -
    -
    - - -
    - - -
    - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - diff --git a/docs/link.svg b/docs/link.svg deleted file mode 100644 index 88ad82769..000000000 --- a/docs/link.svg +++ /dev/null @@ -1,12 +0,0 @@ - - - - - - diff --git a/docs/pkgdown.css b/docs/pkgdown.css deleted file mode 100644 index c01e5923b..000000000 --- a/docs/pkgdown.css +++ /dev/null @@ -1,367 +0,0 @@ -/* Sticky footer */ - -/** - * Basic idea: https://philipwalton.github.io/solved-by-flexbox/demos/sticky-footer/ - * Details: https://github.com/philipwalton/solved-by-flexbox/blob/master/assets/css/components/site.css - * - * .Site -> body > .container - * .Site-content -> body > .container .row - * .footer -> footer - * - * Key idea seems to be to ensure that .container and __all its parents__ - * have height set to 100% - * - */ - -html, body { - height: 100%; -} - -body { - position: relative; -} - -body > .container { - display: flex; - height: 100%; - flex-direction: column; -} - -body > .container .row { - flex: 1 0 auto; -} - -footer { - margin-top: 45px; - padding: 35px 0 36px; - border-top: 1px solid #e5e5e5; - color: #666; - display: flex; - flex-shrink: 0; -} -footer p { - margin-bottom: 0; -} -footer div { - flex: 1; -} -footer .pkgdown { - text-align: right; -} -footer p { - margin-bottom: 0; -} - -img.icon { - float: right; -} - -img { - max-width: 100%; -} - -/* Fix bug in bootstrap (only seen in firefox) */ -summary { - display: list-item; -} - -/* Typographic tweaking ---------------------------------*/ - -.contents .page-header { - margin-top: calc(-60px + 1em); -} - -dd { - margin-left: 3em; -} - -/* Section anchors ---------------------------------*/ - -a.anchor { - margin-left: -30px; - display:inline-block; - width: 30px; - height: 30px; - visibility: hidden; - - background-image: url(./link.svg); - background-repeat: no-repeat; - background-size: 20px 20px; - background-position: center center; -} - -.hasAnchor:hover a.anchor { - visibility: visible; -} - -@media (max-width: 767px) { - .hasAnchor:hover a.anchor { - visibility: hidden; - } -} - - -/* Fixes for fixed navbar --------------------------*/ - -.contents h1, .contents h2, .contents h3, .contents h4 { - padding-top: 60px; - margin-top: -40px; -} - -/* Navbar submenu --------------------------*/ - -.dropdown-submenu { - position: relative; -} - -.dropdown-submenu>.dropdown-menu { - top: 0; - left: 100%; - margin-top: -6px; - margin-left: -1px; - border-radius: 0 6px 6px 6px; -} - -.dropdown-submenu:hover>.dropdown-menu { - display: block; -} - -.dropdown-submenu>a:after { - display: block; - content: " "; - float: right; - width: 0; - height: 0; - border-color: transparent; - border-style: solid; - border-width: 5px 0 5px 5px; - border-left-color: #cccccc; - margin-top: 5px; - margin-right: -10px; -} - -.dropdown-submenu:hover>a:after { - border-left-color: #ffffff; -} - -.dropdown-submenu.pull-left { - float: none; -} - -.dropdown-submenu.pull-left>.dropdown-menu { - left: -100%; - margin-left: 10px; - border-radius: 6px 0 6px 6px; -} - -/* Sidebar --------------------------*/ - -#pkgdown-sidebar { - margin-top: 30px; - position: -webkit-sticky; - position: sticky; - top: 70px; -} - -#pkgdown-sidebar h2 { - font-size: 1.5em; - margin-top: 1em; -} - -#pkgdown-sidebar h2:first-child { - margin-top: 0; -} - -#pkgdown-sidebar .list-unstyled li { - margin-bottom: 0.5em; -} - -/* bootstrap-toc tweaks ------------------------------------------------------*/ - -/* All levels of nav */ - -nav[data-toggle='toc'] .nav > li > a { - padding: 4px 20px 4px 6px; - font-size: 1.5rem; - font-weight: 400; - color: inherit; -} - -nav[data-toggle='toc'] .nav > li > a:hover, -nav[data-toggle='toc'] .nav > li > a:focus { - padding-left: 5px; - color: inherit; - border-left: 1px solid #878787; -} - -nav[data-toggle='toc'] .nav > .active > a, -nav[data-toggle='toc'] .nav > .active:hover > a, -nav[data-toggle='toc'] .nav > .active:focus > a { - padding-left: 5px; - font-size: 1.5rem; - font-weight: 400; - color: inherit; - border-left: 2px solid #878787; -} - -/* Nav: second level (shown on .active) */ - -nav[data-toggle='toc'] .nav .nav { - display: none; /* Hide by default, but at >768px, show it */ - padding-bottom: 10px; -} - -nav[data-toggle='toc'] .nav .nav > li > a { - padding-left: 16px; - font-size: 1.35rem; -} - -nav[data-toggle='toc'] .nav .nav > li > a:hover, -nav[data-toggle='toc'] .nav .nav > li > a:focus { - padding-left: 15px; -} - -nav[data-toggle='toc'] .nav .nav > .active > a, -nav[data-toggle='toc'] .nav .nav > .active:hover > a, -nav[data-toggle='toc'] .nav .nav > .active:focus > a { - padding-left: 15px; - font-weight: 500; - font-size: 1.35rem; -} - -/* orcid ------------------------------------------------------------------- */ - -.orcid { - font-size: 16px; - color: #A6CE39; - /* margins are required by official ORCID trademark and display guidelines */ - margin-left:4px; - margin-right:4px; - vertical-align: middle; -} - -/* Reference index & topics ----------------------------------------------- */ - -.ref-index th {font-weight: normal;} - -.ref-index td {vertical-align: top;} -.ref-index .icon {width: 40px;} -.ref-index .alias {width: 40%;} -.ref-index-icons .alias {width: calc(40% - 40px);} -.ref-index .title {width: 60%;} - -.ref-arguments th {text-align: right; padding-right: 10px;} -.ref-arguments th, .ref-arguments td {vertical-align: top;} -.ref-arguments .name {width: 20%;} -.ref-arguments .desc {width: 80%;} - -/* Nice scrolling for wide elements --------------------------------------- */ - -table { - display: block; - overflow: auto; -} - -/* Syntax highlighting ---------------------------------------------------- */ - -pre { - word-wrap: normal; - word-break: normal; - border: 1px solid #eee; -} - -pre, code { - background-color: #f8f8f8; - color: #333; -} - -pre code { - overflow: auto; - word-wrap: normal; - white-space: pre; -} - -pre .img { - margin: 5px 0; -} - -pre .img img { - background-color: #fff; - display: block; - height: auto; -} - -code a, pre a { - color: #375f84; -} - -a.sourceLine:hover { - text-decoration: none; -} - -.fl {color: #1514b5;} -.fu {color: #000000;} /* function */ -.ch,.st {color: #036a07;} /* string */ -.kw {color: #264D66;} /* keyword */ -.co {color: #888888;} /* comment */ - -.message { color: black; font-weight: bolder;} -.error { color: orange; font-weight: bolder;} -.warning { color: #6A0366; font-weight: bolder;} - -/* Clipboard --------------------------*/ - -.hasCopyButton { - position: relative; -} - -.btn-copy-ex { - position: absolute; - right: 0; - top: 0; - visibility: hidden; -} - -.hasCopyButton:hover button.btn-copy-ex { - visibility: visible; -} - -/* headroom.js ------------------------ */ - -.headroom { - will-change: transform; - transition: transform 200ms linear; -} -.headroom--pinned { - transform: translateY(0%); -} -.headroom--unpinned { - transform: translateY(-100%); -} - -/* mark.js ----------------------------*/ - -mark { - background-color: rgba(255, 255, 51, 0.5); - border-bottom: 2px solid rgba(255, 153, 51, 0.3); - padding: 1px; -} - -/* vertical spacing after htmlwidgets */ -.html-widget { - margin-bottom: 10px; -} - -/* fontawesome ------------------------ */ - -.fab { - font-family: "Font Awesome 5 Brands" !important; -} - -/* don't display links in code chunks when printing */ -/* source: https://stackoverflow.com/a/10781533 */ -@media print { - code a:link:after, code a:visited:after { - content: ""; - } -} diff --git a/docs/pkgdown.js b/docs/pkgdown.js deleted file mode 100644 index 7e7048fae..000000000 --- a/docs/pkgdown.js +++ /dev/null @@ -1,108 +0,0 @@ -/* http://gregfranko.com/blog/jquery-best-practices/ */ -(function($) { - $(function() { - - $('.navbar-fixed-top').headroom(); - - $('body').css('padding-top', $('.navbar').height() + 10); - $(window).resize(function(){ - $('body').css('padding-top', $('.navbar').height() + 10); - }); - - $('[data-toggle="tooltip"]').tooltip(); - - var cur_path = paths(location.pathname); - var links = $("#navbar ul li a"); - var max_length = -1; - var pos = -1; - for (var i = 0; i < links.length; i++) { - if (links[i].getAttribute("href") === "#") - continue; - // Ignore external links - if (links[i].host !== location.host) - continue; - - var nav_path = paths(links[i].pathname); - - var length = prefix_length(nav_path, cur_path); - if (length > max_length) { - max_length = length; - pos = i; - } - } - - // Add class to parent
  • , and enclosing
  • if in dropdown - if (pos >= 0) { - var menu_anchor = $(links[pos]); - menu_anchor.parent().addClass("active"); - menu_anchor.closest("li.dropdown").addClass("active"); - } - }); - - function paths(pathname) { - var pieces = pathname.split("/"); - pieces.shift(); // always starts with / - - var end = pieces[pieces.length - 1]; - if (end === "index.html" || end === "") - pieces.pop(); - return(pieces); - } - - // Returns -1 if not found - function prefix_length(needle, haystack) { - if (needle.length > haystack.length) - return(-1); - - // Special case for length-0 haystack, since for loop won't run - if (haystack.length === 0) { - return(needle.length === 0 ? 0 : -1); - } - - for (var i = 0; i < haystack.length; i++) { - if (needle[i] != haystack[i]) - return(i); - } - - return(haystack.length); - } - - /* Clipboard --------------------------*/ - - function changeTooltipMessage(element, msg) { - var tooltipOriginalTitle=element.getAttribute('data-original-title'); - element.setAttribute('data-original-title', msg); - $(element).tooltip('show'); - element.setAttribute('data-original-title', tooltipOriginalTitle); - } - - if(ClipboardJS.isSupported()) { - $(document).ready(function() { - var copyButton = ""; - - $(".examples, div.sourceCode").addClass("hasCopyButton"); - - // Insert copy buttons: - $(copyButton).prependTo(".hasCopyButton"); - - // Initialize tooltips: - $('.btn-copy-ex').tooltip({container: 'body'}); - - // Initialize clipboard: - var clipboardBtnCopies = new ClipboardJS('[data-clipboard-copy]', { - text: function(trigger) { - return trigger.parentNode.textContent; - } - }); - - clipboardBtnCopies.on('success', function(e) { - changeTooltipMessage(e.trigger, 'Copied!'); - e.clearSelection(); - }); - - clipboardBtnCopies.on('error', function() { - changeTooltipMessage(e.trigger,'Press Ctrl+C or Command+C to copy'); - }); - }); - } -})(window.jQuery || window.$) diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml deleted file mode 100644 index ffc2acea3..000000000 --- a/docs/pkgdown.yml +++ /dev/null @@ -1,14 +0,0 @@ -pandoc: 2.9.2.1 -pkgdown: 1.5.1 -pkgdown_sha: ~ -articles: - mnist-cnn: examples/mnist-cnn.html - mnist-dcgan: examples/mnist-dcgan.html - mnist-mlp: examples/mnist-mlp.html - extending-autograd: extending-autograd.html - indexing: indexing.html - loading-data: loading-data.html - tensor-creation: tensor-creation.html - using-autograd: using-autograd.html -last_built: 2020-07-22T19:57Z - diff --git a/docs/reference/AutogradContext.html b/docs/reference/AutogradContext.html deleted file mode 100644 index b1fcfa13c..000000000 --- a/docs/reference/AutogradContext.html +++ /dev/null @@ -1,306 +0,0 @@ - - - - - - - - -Class representing the context. — AutogradContext • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Class representing the context.

    -

    Class representing the context.

    -
    - - - -

    Public fields

    - -

    -
    ptr

    (Dev related) pointer to the context c++ object.

    - -

    -

    Active bindings

    - -

    -
    needs_input_grad

    boolean listing arguments of forward and whether they require_grad.

    - -
    saved_variables

    list of objects that were saved for backward via save_for_backward.

    - -

    -

    Methods

    - - -

    Public methods

    - - -


    -

    Method new()

    -

    (Dev related) Initializes the context. Not user related.

    Usage

    -

    AutogradContext$new(
    -  ptr,
    -  env,
    -  argument_names = NULL,
    -  argument_needs_grad = NULL
    -)

    - -

    Arguments

    -

    -
    ptr

    pointer to the c++ object

    - -
    env

    environment that encloses both forward and backward

    - -
    argument_names

    names of forward arguments

    - -
    argument_needs_grad

    whether each argument in forward needs grad.

    - -

    -


    -

    Method save_for_backward()

    -

    Saves given objects for a future call to backward().

    -

    This should be called at most once, and only from inside the forward() -method.

    -

    Later, saved objects can be accessed through the saved_variables attribute. -Before returning them to the user, a check is made to ensure they weren’t used -in any in-place operation that modified their content.

    -

    Arguments can also be any kind of R object.

    Usage

    -

    AutogradContext$save_for_backward(...)

    - -

    Arguments

    -

    -
    ...

    any kind of R object that will be saved for the backward pass. -It's common to pass named arguments.

    - -

    -


    -

    Method mark_non_differentiable()

    -

    Marks outputs as non-differentiable.

    -

    This should be called at most once, only from inside the forward() method, -and all arguments should be outputs.

    -

    This will mark outputs as not requiring gradients, increasing the efficiency -of backward computation. You still need to accept a gradient for each output -in backward(), but it’s always going to be a zero tensor with the same -shape as the shape of a corresponding output.

    -

    This is used e.g. for indices returned from a max Function.

    Usage

    -

    AutogradContext$mark_non_differentiable(...)

    - -

    Arguments

    -

    -
    ...

    non-differentiable outputs.

    - -

    -


    -

    Method mark_dirty()

    -

    Marks given tensors as modified in an in-place operation.

    -

    This should be called at most once, only from inside the forward() method, -and all arguments should be inputs.

    -

    Every tensor that’s been modified in-place in a call to forward() should -be given to this function, to ensure correctness of our checks. It doesn’t -matter whether the function is called before or after modification.

    Usage

    -

    AutogradContext$mark_dirty(...)

    - -

    Arguments

    -

    -
    ...

    tensors that are modified in-place.

    - -

    -


    -

    Method clone()

    -

    The objects of this class are cloneable with this method.

    Usage

    -

    AutogradContext$clone(deep = FALSE)

    - -

    Arguments

    -

    -
    deep

    Whether to make a deep clone.

    - -

    - - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/as_array.html b/docs/reference/as_array.html deleted file mode 100644 index 6e35287d8..000000000 --- a/docs/reference/as_array.html +++ /dev/null @@ -1,205 +0,0 @@ - - - - - - - - -Converts to array — as_array • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Converts to array

    -
    - -
    as_array(x)
    - -

    Arguments

    - - - - - - -
    x

    object to be converted into an array

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/autograd_backward.html b/docs/reference/autograd_backward.html deleted file mode 100644 index 087f1d74c..000000000 --- a/docs/reference/autograd_backward.html +++ /dev/null @@ -1,258 +0,0 @@ - - - - - - - - -Computes the sum of gradients of given tensors w.r.t. graph leaves. — autograd_backward • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    The graph is differentiated using the chain rule. If any of tensors are -non-scalar (i.e. their data has more than one element) and require gradient, -then the Jacobian-vector product would be computed, in this case the function -additionally requires specifying grad_tensors. It should be a sequence of -matching length, that contains the “vector” in the Jacobian-vector product, -usually the gradient of the differentiated function w.r.t. corresponding -tensors (None is an acceptable value for all tensors that don’t need gradient -tensors).

    -
    - -
    autograd_backward(
    -  tensors,
    -  grad_tensors = NULL,
    -  retain_graph = create_graph,
    -  create_graph = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    tensors

    (list of Tensor) – Tensors of which the derivative will -be computed.

    grad_tensors

    (list of (Tensor or NULL)) – The “vector” in the Jacobian-vector product, usually gradients w.r.t. each element of corresponding tensors. NULLvalues can be specified for scalar Tensors or ones that don’t require grad. If aNULL` value would be acceptable for all -grad_tensors, then this argument is optional.

    retain_graph

    (bool, optional) – If FALSE, the graph used to compute -the grad will be freed. Note that in nearly all cases setting this option to -TRUE is not needed and often can be worked around in a much more efficient -way. Defaults to the value of create_graph.

    create_graph

    (bool, optional) – If TRUE, graph of the derivative will -be constructed, allowing to compute higher order derivative products. -Defaults to FALSE.

    - -

    Details

    - -

    This function accumulates gradients in the leaves - you might need to zero -them before calling it.

    - -

    Examples

    -
    # \dontrun{ -x <- torch_tensor(1, requires_grad = TRUE) -y <- 2 * x - -a <- torch_tensor(1, requires_grad = TRUE) -b <- 3 * a - -autograd_backward(list(y, b)) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/autograd_function.html b/docs/reference/autograd_function.html deleted file mode 100644 index f5ca06c73..000000000 --- a/docs/reference/autograd_function.html +++ /dev/null @@ -1,246 +0,0 @@ - - - - - - - - -Records operation history and defines formulas for differentiating ops. — autograd_function • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Every operation performed on Tensor's creates a new function object, that -performs the computation, and records that it happened. The history is -retained in the form of a DAG of functions, with edges denoting data -dependencies (input <- output). Then, when backward is called, the graph is -processed in the topological ordering, by calling backward() methods of each -Function object, and passing returned gradients on to next Function's.

    -
    - -
    autograd_function(forward, backward)
    - -

    Arguments

    - - - - - - - - - - -
    forward

    Performs the operation. It must accept a context ctx as the first argument, -followed by any number of arguments (tensors or other types). The context can be -used to store tensors that can be then retrieved during the backward pass. -See AutogradContext for more information about context methods.

    backward

    Defines a formula for differentiating the operation. It must accept -a context ctx as the first argument, followed by as many outputs did forward() -return, and it should return a named list. Each argument is the gradient w.r.t -the given output, and each element in the returned list should be the gradient -w.r.t. the corresponding input. The context can be used to retrieve tensors saved -during the forward pass. It also has an attribute ctx$needs_input_grad as a -named list of booleans representing whether each input needs gradient. -E.g., backward() will have ctx$needs_input_grad$input = TRUE if the input -argument to forward() needs gradient computated w.r.t. the output. -See AutogradContext for more information about context methods.

    - - -

    Examples

    -
    # \dontrun{ - -exp2 <- autograd_function( - forward = function(ctx, i) { - result <- i$exp() - ctx$save_for_backward(result = result) - result - }, - backward = function(ctx, grad_output) { - list(i = grad_output * ctx$saved_variable$result) - } -) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/autograd_grad.html b/docs/reference/autograd_grad.html deleted file mode 100644 index da8949015..000000000 --- a/docs/reference/autograd_grad.html +++ /dev/null @@ -1,272 +0,0 @@ - - - - - - - - -Computes and returns the sum of gradients of outputs w.r.t. the inputs. — autograd_grad • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    grad_outputs should be a list of length matching output containing the “vector” -in Jacobian-vector product, usually the pre-computed gradients w.r.t. each of -the outputs. If an output doesn’t require_grad, then the gradient can be None).

    -
    - -
    autograd_grad(
    -  outputs,
    -  inputs,
    -  grad_outputs = NULL,
    -  retain_graph = create_graph,
    -  create_graph = FALSE,
    -  allow_unused = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    outputs

    (sequence of Tensor) – outputs of the differentiated function.

    inputs

    (sequence of Tensor) – Inputs w.r.t. which the gradient will be -returned (and not accumulated into .grad).

    grad_outputs

    (sequence of Tensor) – The “vector” in the Jacobian-vector -product. Usually gradients w.r.t. each output. None values can be specified for -scalar Tensors or ones that don’t require grad. If a None value would be acceptable -for all grad_tensors, then this argument is optional. Default: None.

    retain_graph

    (bool, optional) – If FALSE, the graph used to compute the -grad will be freed. Note that in nearly all cases setting this option to TRUE is -not needed and often can be worked around in a much more efficient way. -Defaults to the value of create_graph.

    create_graph

    (bool, optional) – If TRUE, graph of the derivative will be constructed, allowing to compute higher order derivative products. Default: FALSE`.

    allow_unused

    (bool, optional) – If FALSE, specifying inputs that were -not used when computing outputs (and therefore their grad is always zero) is an -error. Defaults to FALSE

    - -

    Details

    - -

    If only_inputs is TRUE, the function will only return a list of gradients w.r.t -the specified inputs. If it’s FALSE, then gradient w.r.t. all remaining leaves -will still be computed, and will be accumulated into their .grad attribute.

    - -

    Examples

    -
    # \dontrun{ -w <- torch_tensor(0.5, requires_grad = TRUE) -b <- torch_tensor(0.9, requires_grad = TRUE) -x <- torch_tensor(runif(100)) -y <- 2 * x + 1 -loss <- (y - (w*x + b))^2 -loss <- loss$mean() - -o <- autograd_grad(loss, list(w, b)) -o
    #> [[1]] -#> torch_tensor -#> -0.9935 -#> [ CPUFloatType{1} ] -#> -#> [[2]] -#> torch_tensor -#> -1.6206 -#> [ CPUFloatType{1} ] -#>
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/autograd_set_grad_mode.html b/docs/reference/autograd_set_grad_mode.html deleted file mode 100644 index f91387ad1..000000000 --- a/docs/reference/autograd_set_grad_mode.html +++ /dev/null @@ -1,205 +0,0 @@ - - - - - - - - -Set grad mode — autograd_set_grad_mode • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Sets or disables gradient history.

    -
    - -
    autograd_set_grad_mode(enabled)
    - -

    Arguments

    - - - - - - -
    enabled

    bool wether to enable or disable the gradient recording.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/cuda_current_device.html b/docs/reference/cuda_current_device.html deleted file mode 100644 index 8a6145c05..000000000 --- a/docs/reference/cuda_current_device.html +++ /dev/null @@ -1,197 +0,0 @@ - - - - - - - - -Returns the index of a currently selected device. — cuda_current_device • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Returns the index of a currently selected device.

    -
    - -
    cuda_current_device()
    - - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/cuda_device_count.html b/docs/reference/cuda_device_count.html deleted file mode 100644 index 4094cfa2d..000000000 --- a/docs/reference/cuda_device_count.html +++ /dev/null @@ -1,197 +0,0 @@ - - - - - - - - -Returns the number of GPUs available. — cuda_device_count • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Returns the number of GPUs available.

    -
    - -
    cuda_device_count()
    - - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/cuda_is_available.html b/docs/reference/cuda_is_available.html deleted file mode 100644 index 0a5dec994..000000000 --- a/docs/reference/cuda_is_available.html +++ /dev/null @@ -1,197 +0,0 @@ - - - - - - - - -Returns a bool indicating if CUDA is currently available. — cuda_is_available • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Returns a bool indicating if CUDA is currently available.

    -
    - -
    cuda_is_available()
    - - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/dataloader.html b/docs/reference/dataloader.html deleted file mode 100644 index 2e3cc18e4..000000000 --- a/docs/reference/dataloader.html +++ /dev/null @@ -1,278 +0,0 @@ - - - - - - - - -Data loader. Combines a dataset and a sampler, and provides -single- or multi-process iterators over the dataset. — dataloader • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Data loader. Combines a dataset and a sampler, and provides -single- or multi-process iterators over the dataset.

    -
    - -
    dataloader(
    -  dataset,
    -  batch_size = 1,
    -  shuffle = FALSE,
    -  sampler = NULL,
    -  batch_sampler = NULL,
    -  num_workers = 0,
    -  collate_fn = NULL,
    -  pin_memory = FALSE,
    -  drop_last = FALSE,
    -  timeout = 0,
    -  worker_init_fn = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    dataset

    (Dataset): dataset from which to load the data.

    batch_size

    (int, optional): how many samples per batch to load -(default: 1).

    shuffle

    (bool, optional): set to TRUE to have the data reshuffled -at every epoch (default: FALSE).

    sampler

    (Sampler, optional): defines the strategy to draw samples from -the dataset. If specified, shuffle must be False.

    batch_sampler

    (Sampler, optional): like sampler, but returns a batch of -indices at a time. Mutually exclusive with batch_size, -shuffle, sampler, and drop_last.

    num_workers

    (int, optional): how many subprocesses to use for data -loading. 0 means that the data will be loaded in the main process. -(default: 0)

    collate_fn

    (callable, optional): merges a list of samples to form a mini-batch.

    pin_memory

    (bool, optional): If TRUE, the data loader will copy tensors -into CUDA pinned memory before returning them. If your data elements -are a custom type, or your collate_fn returns a batch that is a custom type -see the example below.

    drop_last

    (bool, optional): set to TRUE to drop the last incomplete batch, -if the dataset size is not divisible by the batch size. If FALSE and -the size of dataset is not divisible by the batch size, then the last batch -will be smaller. (default: FALSE)

    timeout

    (numeric, optional): if positive, the timeout value for collecting a batch -from workers. Should always be non-negative. (default: 0)

    worker_init_fn

    (callable, optional): If not NULL, this will be called on each -worker subprocess with the worker id (an int in [0, num_workers - 1]) as -input, after seeding and before data loading. (default: NULL)

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/dataloader_make_iter.html b/docs/reference/dataloader_make_iter.html deleted file mode 100644 index 8e3cf682a..000000000 --- a/docs/reference/dataloader_make_iter.html +++ /dev/null @@ -1,205 +0,0 @@ - - - - - - - - -Creates an iterator from a DataLoader — dataloader_make_iter • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates an iterator from a DataLoader

    -
    - -
    dataloader_make_iter(dataloader)
    - -

    Arguments

    - - - - - - -
    dataloader

    a dataloader object.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/dataloader_next.html b/docs/reference/dataloader_next.html deleted file mode 100644 index 0ab5eef50..000000000 --- a/docs/reference/dataloader_next.html +++ /dev/null @@ -1,205 +0,0 @@ - - - - - - - - -Get the next element of a dataloader iterator — dataloader_next • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Get the next element of a dataloader iterator

    -
    - -
    dataloader_next(iter)
    - -

    Arguments

    - - - - - - -
    iter

    a DataLoader iter created with dataloader_make_iter.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/dataset.html b/docs/reference/dataset.html deleted file mode 100644 index 35b359ea3..000000000 --- a/docs/reference/dataset.html +++ /dev/null @@ -1,230 +0,0 @@ - - - - - - - - -An abstract class representing a <code>Dataset</code>. — dataset • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    All datasets that represent a map from keys to data samples should subclass -it. All subclasses should overwrite get_item, supporting fetching a -data sample for a given key. Subclasses could also optionally overwrite -lenght, which is expected to return the size of the dataset by many -~torch.utils.data.Sampler implementations and the default options -of ~torch.utils.data.DataLoader.

    -
    - -
    dataset(name = NULL, inherit = Dataset, ...)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    name

    a name for the dataset. It it's also used as the class -for it.

    inherit

    you can optionally inherit from a dataset when creating a -new dataset.

    ...

    public methods for the dataset class

    - -

    Note

    - -

    ~torch.utils.data.DataLoader by default constructs a index -sampler that yields integral indices. To make it work with a map-style -dataset with non-integral indices/keys, a custom sampler must be provided.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/default_dtype.html b/docs/reference/default_dtype.html deleted file mode 100644 index 5d27dca58..000000000 --- a/docs/reference/default_dtype.html +++ /dev/null @@ -1,208 +0,0 @@ - - - - - - - - -Gets and sets the default floating point dtype. — torch_set_default_dtype • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Gets and sets the default floating point dtype.

    -
    - -
    torch_set_default_dtype(d)
    -
    -torch_get_default_dtype()
    - -

    Arguments

    - - - - - - -
    d

    The default floating point dtype to set. Initially set to -torch_float().

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/enumerate.dataloader.html b/docs/reference/enumerate.dataloader.html deleted file mode 100644 index 9499c94fa..000000000 --- a/docs/reference/enumerate.dataloader.html +++ /dev/null @@ -1,214 +0,0 @@ - - - - - - - - -Enumerate an iterator — enumerate.dataloader • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Enumerate an iterator

    -
    - -
    # S3 method for dataloader
    -enumerate(x, max_len = 1e+06, ...)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    x

    the generator to enumerate.

    max_len

    maximum number of iterations.

    ...

    passed to specific methods.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/enumerate.html b/docs/reference/enumerate.html deleted file mode 100644 index 86deb56d2..000000000 --- a/docs/reference/enumerate.html +++ /dev/null @@ -1,209 +0,0 @@ - - - - - - - - -Enumerate an iterator — enumerate • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Enumerate an iterator

    -
    - -
    enumerate(x, ...)
    - -

    Arguments

    - - - - - - - - - - -
    x

    the generator to enumerate.

    ...

    passed to specific methods.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/figures/torch.png b/docs/reference/figures/torch.png deleted file mode 100644 index 61d24b86074b110f4cf3298f417c4148938c8f05..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1697283 zcmeAS@N?(olHy`uVBq!ia0y~yVEekg&dz0$52&wyjcx zZ-9bxeo?A|sh+8xfs!4Uf=y9MnpKdC8&q>qN}8=wMoCG5mA-y?dAVM>v0i>ry1t>M zrKP@sk-m|UZc$2_ZgFK^Nn(X=Ua>OB2#6Ujsl~}fnFS@8`FRQ;GZT~YOG|8(l(-ZW z6rhHeWTqiZ&nt#{KRG{FA0(r1sAr&$tUR?M6Nhq;42JT8jQo=P;*9(PxCc^8uZ=jNh#qqxMitOUP~;*iRMRQ;gT;{4L0)J(r~AOrJeJ0@{58C5|dMH zl?=fa!ehh=Ea#h_l4`32@foLUIsLAW`YAk_*A3gGy*N=ycYy{%F~QGQBka%u|L z$8g!={Irtt#G+Kk^whi(TP2s&;>`5C)FOqCQz=e1n|MULC2@g$j?>etaxgnUj9Sp? zDT`)4y}MxPX15HJ7jt{hRBF#J2y|3tHgOdVmY+3i)`BH_?+2wFf9}B!)sI!Z* zv;x9ZZC1Q+3#;&{NK##Wdynd!1uBcX52+uLZHo!`aqL<$Yuz@>zz6=bdkZooWJ(X+ zJEGtBH%T=!Y?Z|1ZcTKAefI|7?3B-2|GnZ8`mFK+PrQ*yFP z=;z)0KPRWCginlAZ$Bu+IVt6(KxyQv)k2RKtu_jJ^5)-xj|2{nESW*=^?YQgh-&w%#zCv)1|ZUOCf6_a_D4 z5$r#F+VG0of`44Ao^#v&zWMwG-=Wo?LZ@%o%>B0L-sTUinOoAIpO&{i&%nUIS>O>_ z%)lTn1j3Bz^DhN4Feos1x;TbZ%z1OSa!*Qm?DPNMSKiLHdRe0N(l1}d;e?ykiA8<( zkuhw7Thtnq4FyWv+|!TE_u@FA6gWZkgcwty%-s2ljnxu`Sq=(a5tI#xX<(ToGD*Nd z@yk8W(&dxi`F(#I{rvm!mHD;bSH1Gv<^Of<_0Jy-c7C4|{JiGe%3YNe?`NNXuFVLl z+|Y1?@cI?I!D0tKUd-NpZt9n92e)50vA+BJ)f#q?ctMT850J(KN|&>@hj~`bU2@$c z%J9aYjwR*ZRq2~A-;EE?1*vN|F4rgzV(19%En7X|OOWULNn13FZ-{xWpZeut+Vbdm zD{g_L8IJQq)iLcYdo4LBZ^DP!$tbBRuu}Ywo*; z?$Od9l@E?6ePCu_U}%_pB4O@6`RQNcJfGViTfRT~($z_JXMfd!)D(PDfU0p>e|J~J zrLU9fzF5S+(pQPS`=;c*&AIEKU|_Iewt+l3;?y0<-uBvP4INet1<$lkq z;?0-uRyVEV1gWrKV*#6Mu(ay!wK+@XPyb@(nSM3o*xyO(CVpW*>sP*TnG{GJgEBOP zMP6-q7~>od!C z-Cws`0HnyF^#DJJUgog=Zj|cF(n)d3nXYG__I&PGQtnw54vMUDLy!W4*AP!Ea0A6v zN$VSlyOYz>$kxBDwk=<6@Go8LvrE!AHUb^rae zUEH7mX^3=z#zDmTyH?Scwoa<^>wf-yQ_v-OuU*S-zI+EWO11l`xHs6)s=Z~|Gna&W zR4ra|IZN+(#ZC2>x|8a5-+U>z4r(nc#M**6yw_g-HuSviZMFYdk>8Zvs-UR&zvrD3 z$ee_Y%8>YayyALZ>=LaP)pd8bUU_0XDemfr0*RS zRBTylt@Luc>fWU{U%p!lu{0tFs?zXE_V#Bgf7Ly&ds(f1R3 z-i8Qhge5Pzo@eWR>9?xw)^}0M?u4txUVT$yA78Era^40BsH(+R!1+qgbNcnz)1J@z zRrhYY`Lb>|#1juv+#tbse8u&=wUfTwI{1I>ik)*NUsYap=u)|v^WD?F>~*{3K5K4XB*bwAMv9P7S$rXT`@Dr&bN8iRi#@IMmDO{7 zM%k|I*J3$9rp(cScs2o)33EXC%ktyyD<8wWeldH3a(^t;*2{hIL7-SpXaQ%i^`JPr zYC7FG`x_{S-OnrA)&5!!)T(A!CJM>1DPL}_m7iX+cgg41>r#)^I$yea*6;h}QgJ4b zwU;{}2^3_jlIQ!WUz&DhH$F#=u^DQR$Tzrsk=Y5Cr!H&!*{9AW0&Kl=-G4M z-P_d-a#BO4132Uoo_)Qw*3#2n{biJAcD5e-)%iVV}Tm=+e|JOkxVu2pS+O(kccdgtn?N*JAE7z^?sd2fKJ$vrETBrxq zrNF*yn0YCCyWhkwQJ(83Z&~!L=)(;wjhAyL-Mjmyg#St`56G)?G@#}=t-q_K@^=a- z2gaOz`ryZ}z9rW^emzcG9(@g>QYIgwQfzPB?yn`D<{njPceg%h`BfeI`uE)^NMb6m z5d@dQ5nHO>Ub6zlm;a;h^CLsimd(FsmztYRzNnzJx_?8{E^UR<2 z6W7G22Rt~cpR zoTvVZ-P1BJhC9!{S=zY7Nk5`|y40)dv6oDKZdnp;YJGS2D?JvF_vLgU$yI%8-0rPz zm-0QTT9>GrPB%8qyS?2}{!ZD#GMh~?leW|y-4nO(qhIW1T@dtYYjp9XI=@R>CtbT1bMDHG$`>Ygw`^T%{cWzEr&j2y2_byn>`TAe z?X3w8e?84UB)T^^WBU?wk6-bia`s&k$gl?)kTA4(`Q_HybZ<~PxEgzUi^Y}smyegn zEINO0e_Z?Tf9tD`8hl#4O+WX`*E?ISzdqW$JL;ao{h}JzOQC1|zQ2chua6B9c$3{A zsYT^)$la|z{Z94QtM}OL`fForVQ+pXtn}N?y|q`%g#S#{Dm`{d`PWI_|Eto?-}Cm( zu9TnlWmnqr>Ud}{t3a}&&)&G*rCm#|dsNL`G8GhB?<^~p<=rXj{8zfaQl;)fIN$cL zRV&WF{kFQV;?XMRUo+3fUltDg=9lm_`2B(<YK?=1|T zE@Q=5UU+GTf9Q=r7t@w|ORIn?(3Q~4r1kaI+T|;wmcPGQdfiC(SJn&T-Fg@1zpa|X zC%5ug`K*NXzqZT2{Q1Yu{`=Ol{Dq?4eJ?hZ-oN*Z#+M=al^OyZWmxekG)s z=72=a46VIo*>jg{_xx4)(fafS+23Zbp5=;X{8m0aH{rb9yi1YI=h+&}I6{p0bl9t< z4zE8Od2PMLlIi)of~U{h_P65hrIRbBe6d%Jz5J%6{5m9eN&NW)%8vaY9y?Rw! z_4C>7tz|b4AAkJKFO1)-YV(r&nTTQ!5^q=5A?2aVj{@rb=HIC7{8#n8>g;#!lbx>) z9ax`~Y+YZv@5gE*;crJ*y~wXze1U)c-DTqQ?_T|M?2zI8%St8Fm#m&W_gy+9g&oL& zRBi#Y<93%WT=L!P*T!AhGv!+MZFv6i*W=vhndkr9=_s7D_}qdO+4?q%xc>TFpWn-P z_Mvm?DrRT zYFAIbb8U@<(#yY-?%jG*A`h+QH$#gH&dcCBbj_0O-cixTmcfr7DxdzkFn9W^_uoxI zr@5LmT&{cj`FPc?>@U6V*m|rP-oC#3mEmoqRI~2igWKA=7OhV=dw*S2dY4t{NoDua z{oQx+Jo6`f**|Np-e-SM;Xg+JQfB&f#O?l?6Dk|vzZz03)o*-VQ=4_&(yAgQPhi{9 z^#!0*qJ^Z&-n19yVvVi4x-|sWy6Meh$RO0n`!J{pcu3XRrr_Jv#D_`$h=(fnZ zpzW^K%T;O1e}9LR`3WB(F;Nin_14;AmA%22L`$z5`M#^jXtvw%H7U0`B{ONRoqYp0 zd*!mGg9W1dv{rPtS1!Bu{dBDF;SJ|wPL};@O~1S0(S~(*zLakDyIm&YpQu(70j^fc zp^^Q_6*_qh^Y+DNPq&>?$z=R;!IE;1 zDt|=DASMqfoBLPB?GE**>ReLpZMFPa(XwL;|IM-6xOwURdwc!bfA^+@&$sUj{$%|x zDA{uAn9&Q^`pe);_9dr9Z}b~mo{M$cQb`}_Jy zQ{;}kG`jz_{owpL$)d9HxrT|cFLRCW-#&1jSLE^MV~t4?{Ik{{f7`!XX#SR04RuwY zWv$9n^;gxmO`TL1e`&qB_1(LW*3p9}$Mhe8Js7$EZj{=~>7eH2OHi>b7ZeqR!IsZIw^YgE-wb+%d-%8cj+5XG8 zxM5qxos7jAU(Y=I`)g(I_SaW-I?v2XztlXbF8I=W6YIM_XJv!Zf59YZ#pqM@_S$FF zz5bV4!NsuFm+8CpFDx&cx0u;o>f)>#Gmh2&X7V$9R*YL^zoCT5V*mYfZ|`LD^y#oS z#)od)&o+O~`oj~9)+nr7v}@5@y)WmZWw&RYY|^v-ZTI)YE$gcu_a2_v6%1~|=|hw1 z$#!rP?m*znt~*eaE}0#Z4s^Fz|B@JmpU^^4at+!In{{X4w;)v~p^wNDRTZeKWy^S(}fto8R5 z76IC9k4^qwzpdw3u6w|!>)9F0oEgu{KHuE2t}0gI-PiW?j_lX`ZY8rGznO7g2b->Q+{F{uY^T=4G4z)@<*GH|sMqAA2lYHgk*jC25tv?-3o2W#W(wv?gx% zR~^sy)4zP#1*!}F6`r^J^Pa zB!vmQ+#20K`HP-s_?6hxCO^L&G%k5OZQ8z_|3z9A=f^HS_s95MiL~g9*1aXE1wJ>f zhVwMp{l9K?xmDehcj_zauTPq6wpX8zy{$j(o!pn*{FjgaK7O?Pjr`vwq5Q9xo8Mno z9QMxhn&DwPm6xSw{k~g6i`-q1u9L(oP;vMx)N}pxEt^0E)M4(^Umxb`)-Eic_A6D? z+mwwlW=CB7otNqE@w>9`&NMI(-T!lacYWdK>#w-K-#B;RqTwQG-*0o@_uDP;xhlI} z++tPUe>pDG5RqEj)s_3>HhnakYgL|c@}a-YR>e zFIj>z_Ajk3;k(aYUtTtE^s{ z{;Gn1$!Gnhvx7Q(XDq;pKH(UsowX`z`Fl%Ht+R`N{q?ia`j@^npMLu9l}KA%+G_a+ zy>gwJCpi!P3GaFJ;j??S*_^#sch!W6e%hHhTbA+GhjVF5-6rgk?flueU{dezH^!5K zoA-ntxtRX2RB~4Cw--UP!_K`aH^=F4}`VE}cx{Z~LiVZ7{mp6=8y-k>t@<<~G{+h@PMzjV$OfBpZ>y%o;2yZ1`8 zrPjqqWt~ZtS)*xXxBWgZ&*82A?tK0oAD;c~<^jEWpDfnBAEZ7u1a99Kc(;9Lyzb$1 z$2ZKsSoVFVveVsn$FF=#<$dXXE$<@t`G2#fnf0Ztvz;s#^0oM{^;y62eb1smMf@BG zaP~jI^KxtSc~JMZ`_;PCDv@8yZJ)nTzI{IY{f9YALQ1Ab91plm$Nj6TlIXp`9bTtr25f|u`;J`8k}d#U%L7H24!2*nD^^E-h5s^ca`qD zh@R`Oyst;GG{&vUzmPNc&-Jr~%C>($F8z0_Wm3t(mFy)?m#u#_XKJu*WKiorN580*BAOnOWgS? zdOSrlPkpZSI^(O1FXHU)&EtFj=igC-9BKJaJ0H%jZM}WiqH_BD`d*70n-|-4yQnXY zE?+!hUg@*E*nJPp*3Pn4;W_JFHGj!=Q|r66(AxJ0WVlXjVcc$0^_TWuRlApzf>H+} zk1qb}{>QY1Y47SzuRkq5&rqg2(&H8Xx6sCEy!%$we%fayTa#BYV^`A53g4QN zEZ==Uaz6gJSh4iLm4M41bY2F|UAaL2Pt~Q`rCw{JE?wt7zc2iM+1t5UJv?FQ=kz@H ztG%o@x4!#tM>D8So)ZJ^3^cedyPjw3ed)KV?cR4$%TDgM*%N1;yVv73-?{*+ecihs znEbGcY4kt0`cdA#FI`oWqzhV;Ezj<%S+@B6o9hb>`<^p=x2 z3!=dz8~X#w!2?lp*3kI6n7v(2{pH+AaZ%;Em!JGQy!uOHuI}Ak-+K;<)$d73{!ywb zdc`yE&+|NE#*iDA)2x5ye4n>-(e1fmtu<-Y6@33sX{voNUaVjI_4nMa#qYFbwq;ri z1si7Wx_|zSclo2A59ih2fB523;G@TnF3!Jn`TCoSr_E|z&o2F~Zt>jb=Y%EK&8+Y0 zLJIf?7a?tGzoNZm*-JtF-Mx_h?z7*;zn+{^f307hf8}AF)(oS@$@g!jZZ(qst_%rVxY@XYj=Id0> zlm2S!KieG(7wlfQusVFD_1bN^^C!=%zE)mx^Jc7Wu1?RI>SHn!zVLaz&n(-;4jITg z03B8I3j&R^eVIJzp7P5%vrf;{`oHCSOl`{T$ycoRxUAgz<4@_AKNIxto;0tEmiaQ% z&$wJA!;oY3oy|RQ+2`X_zrK!^`Fd0^>CV#hZQfEl_4oMQnJcl*^Tob2H_cxY* z*?HZgU;FFpQvOVj)cCWh?WI4D<-e%De#iRZ*R*5XL;v=(*hhGCb3QdT+NyoJ)+;}+%H)U3KBo4qcmZuv}onedtKT#EN^ift&gdEQoQ#t~vr zcj@`MkK)&#mA|-YyV5GR^tIX)v@sQ-V-YQIvh zW#{GA|5Tsad?0_rT8)x}tJ=SO^4*^K`BdDtYm#3rLBmpEkfhbe2d*UxgkFLg+j~PV z>1UL9-|(rdNStZ6>u*r)zsAj1^ba>q53>sKDn0o#**f_3?W3=698C`q3D`Ne{#j4r z2J!Da&lc|rnLC-a;N#|w@E4~)uTNZOT;;P|I&azad)@A(T9q}s{&}{|;`=7r`m8JH zeAc@Q{&_omS3l$H-*J8BW%Np8GGzGEk7;jN_R1yklfKNJ^O8{`_4jj??GX_SaQ_%8Nbs&fHx6YQOpay*FQ;yB@<08c8vP6c?J;v$xlUT>7mN z8v@Ffuld(s_l?%SbgfyNE&9;C?KLq|qBzgpO+PpBRYZ6AscfEePs^A8WDKu38uXLF z;GM~wCvk_YI}V?^u!3<(or8E=>D8OTrN{2pEg;`so?ZIeIV=6ve9x*aP=eaOjabZF@&+d;wu{DpanC|8se`VAAFz)-Emj?Q^$G0^c{C@c2+;_hP z?AZ4IUN5m{8yCB@*6DrI&QGnnckBI%z3Wyl?QQ)bvpG91bov^Usf89Ozt7gXTz3MZ){$BMuyFG7hzVhh@OZ;dNj99l=$M(-f7LR|ws#lu6yt6@f z&o177Z$!Hub`>mkOW##}e7*jRt^;rOF5P|4ha+Oe!n&fGv|ZNuSH3^YK3jU{{oAc~ zzpLzd9GL8XcsE~v;k#ssAG}Tb7EP3R8QEH$x?^ual_GoN!kv$1dh@^j)LZ_t`r4hz zd%jC<3%<18^Vj0E<oWiQN2NdRy#9Us_;Za#TiO3wZ#Zx9o##`zyz8u+=k}f{_FeaQ`NNL$ zPOYalTP#tPg(1tB5?Z{f|o^uDRtsU0s)+p6u|6=%_9EMuC%TWYpQY_(yL)Hw|GLBBTeIF3JgQ5- z#jd({-OZPIkU`FbFi3(heX%uKTlMd%CD*;JmOd+5<`&;-SN;FzuOoe+l4*|cAC!tZE}UJjCc_}rXZSU{)V*@q z@wtB2a%adF&suFJdP#GmuIUPsjk*$-C3~NjFz*lf@qEq2=WBmHmwW%G`bMIq#WF57 z?zx}>YVH4JbuZ5BZgY-S^t4)#CG!!~3xf{6Z*Bwk^eq~z-i9f@yzgDrzoa-@FMUnvcE~{YP0Qp*@pW%R@8sDQ_kFSOs^60Cw=eqqHEX>E zTa;}NXBcmHOVs+pef|38WJ`DU{>54)>nFeZ@%j1_ZQ=E~D!UYeZD+jOmn86E=B~Nr zr4sLMK33T+H-FB7yc>I;ueq$g{j>gyd1q?NR5CB0YTi|JS$0>!)xIaivl73r`Xz5% zv*+f^Ngbex4|NVmjnwqz*4p=zzSMcz2bAkxUSeL~m3OadW!}x|HerdWaVb~BEn^O! zU!$D9B)m;KG~?V$m*T@V#d+m>mi#Q2_;=DW?2~)dvtvGC>({RnS@&L?@8Or9h70e$ zvYYPrEWt2@QlpPqhy9=E9K?WgJg-?r7f+ZwEFss8eh@$65@R>7}7yUwk-w=T(G z+h)Uv-REVGN3FeiUE@u9!%DN=u(bfETN+&j@6Y}{XWquN{kCeLJfD^-Eh%An);D*{ z!YOYraPR(l=KD%MD|3Y@+igW-LZ5qFeaAlYr|IWEyT2Zv)pl%c?sWcJj|$GeP3qbG z?bCVnx?d-)nkLQ(%)R)}Fxh(U-;1}Z?`52;;K=@A=knhD!q@8(dzL?akp11x+w-(k z?cW!--oH40{qDl0y{w5V^k4p;{6+e#-}irzQcuhnoF^Yxyxbb?t@?LAsM9v9YV}OL z_&e2ocAMTZ-L0=USuk5(!*lY#U61+>Y+3(x`_J@jo^P|ynOvS4t|8m^RXDaT@kjdZ zyE(__zP;gHe)VVgsjquI6FsI@ZMD93rDi(kW}!!dbHBwD{tz!SU-nC+`NR4QkEc6I z`Mm#EtgJfw;q@6?mFu^S-*2?P7J9F$#%zx1`Q-~2Rc$w(Tf1`Ns&_xn$C#}@ZC(?5 zfA6z-g5NDCe_QqI{e$}avR$7|uY=N%ju)iCTzCPwW==T`>SRTGm)n)BTJpszv#{m~ zdt{hI+06v~t#NUyuAjCK|Iu~jR^7MKmFG5wY?#LVx#;1t-MV-3*FWqtJKO)xhtvA^ zr@7UZD-~Dm6n$TGJLq86BfCTAYkz}_bqv?@^|;H z?3rr6#izaO-yXkce|5s#zA1UvBWyNoD%tis`f$MM_@n1)Q@5V&d$;BIj^`ZKU%i$x zuex%=i#435eyh>={4DIdHPbM!pwC-W}jqj)HGheQG9A2BxWM3U#n4Ws0Gs~@R*Y{8_ zP~rIdjO?$Iyzy609ZNj;Iek(bXjuhhdWa>+YecPTkU5*^();cE7HdpOk`|kbyqEWT9w*4)~l}nt>fBpO39xl<|c>dns zd+Yy5X1}{GD!qS^@w9jTHk)UDO9iia_#Xl8tQF7L@;5)@EHl`m6iy z>@O#pGYf+w2Tn zkZ3+%`rFKRTLSlg5>@Uy$vSEAp_4)Pew@3qt0qX~i)Ku-evOf1!;7}6cN@KI^rin! zYkp_@{cqR%qj%-nD*x^3O#JY={OeDDgR4uUEVFMW#_oIgy6V@gYNPWdX|fZ(lzG0- zg?F(nBq2ps@|Rm{oi6!%RP`@8em(kZ$<4ACC4VnY^DcevyjtX#>Prqi(M?N^C;wvX zym_nO+(fy@nenLF(napOFsQb?L$)OV!UslMUFrAa2&-3P3>F=Y8OYEbJWS+lV zulbyP)ymDw-Ak+v-Z!{l9B&<4n8!Z9%V+!iOO6X7m!IEVbw@Yz+T+jP)T~$^|1R9# z`aN}j*>0xQYeT=MX~fJnv`c?w=~ZX@?Uwl5ZyVO#DOqi%b6+?%``BIWm*J|ldv3m5 zCR7U=7G#Fh6dZfYUTaRer~i^YTQ7B$Ohm-0{=EGm^Q#lqik&L?9N1wsbpZRz4*?zU;_y>v_g?rCt@`iQ;iqEL`(LwN4a&pY`|Ufh(!bt3HO_ z4qwu|wx;0eyi+gl6mPG5{b8mvn`2}k&;GK0-L5vT^pxed|BAO2{<~|k=lNr|vNB({ z|HYTXZJM@zV0s$ko}o8I_VQl~wHtG_mpq@dGuD3NL+z-W7IQ4mpZOK-xjv_C*Y@k+ zTEt*2qo<&IcKB&J1j|`+cDD*N<=NFCHrQJ~Y#`-)H=0tM}Kpp^o16 z9n%j5oRU$`-@Ui&$Ln7CKTj4P-Egg9%JSX!uSwi1fA{W@@eanRyZ^;!{k8p`7o==+ zw{PFY^T|R7jkUOzcjsTYs=n0vyW6~LoUF~~_CM@6x5++c^ZHdPd;Bf$FSk=p>#y#q zyw|$@_`2u_wetes%iF^JN?&Q-xW@l&={ZUJDZTk?_gClido%CYAO1DzU;7es zGwZv*A%i$G%)s%|uoygW+&$@@PNwhKr#@46e*=}mde>^%!&f|H)o`=&IL#Z@vwK|* z$0WIJFYD5eh3-9z+@JdD*5wZo!OL$7wbfj`R*}1}##Sxi4S(GG z^0_}9XG&jt`cBU_&gkyhY45&#w)(oro8|nyp0_;5DsHWA%f8!sy?FlA`2CTaFYKLP zaChI2HUDaVHkL|WnNrQRGC^OYY{9PEF?Adj=T0?Oyh3{K(cFvdv{G={8DN zist9$z1{aG*6RDS(odTI?5f7HA^qCb;$s!RLPKI}-xcOEhwr%J68GrBGm|(!ec=@~Z{^kGD?es+}`QK}Ntor}sedOncbvG)y{o<<<&XlH| z+rL8U^Ur$7{NW5pFLOra-m=%8lh#cx0e9Jy|62aNxvu-m%)8R18Hs)$GmcCNc`^N6 z#p(81wF5?vt$!bWThzDl_o~7Lp$(7c>58B7x%M-C*RDf?{V${3=ilf3Ty*>J`r^md z#ftZzJhpK!{jAz&{4oAv!N0dX&vdwcukjI||D^oO%+D6LKbPKAPhC~SY*#L`oHLc% z^h$WWz|ULn{OjL3n3f zTkEEoh#6g<5jlU-mse@af1icSl|a^*HO#!4y*A~YKo1@QP zXKtUay6gTWXY;#p=G(n>c}~39xH32NLE^P9pWTahOO?|Ibr@yko%ymc@k&MDAaGu;Wl9_r;P=mD#UTn{?Ela9@A;*{#~@ z_ubN;hXe|4d`&<1(x&suuC{l(lb!vyO9yRojJmP#W&eAhxy7Ff&c~gd7k}{k&c0KD zL5XYbmS5X+cvsEk>tDWH{q9$>Z)Rb{rLU9L<(BQ@zY1PG6Tl8mduQgv?Y=tUi@eI; zX-hVPx_~*>CA;$O6s_F%@4`wh<~^sL>~~tyZ{j%5Qi;#`5ua(X&&xgccz1rfTe@$l&&^WpQO%imt6&d$5q_Ox1UO<~%b316}&<>i#^+R3WJ$iUFx z+6it47=zZm*@K!icR>SPd^$Q;k8g`#b>4PEn7fzs$D4s&ZT1h0L?eGZ486fAKJRE- z__pZNyk9`0T{ZvgSlyTH+H&W@CEmWE?6*HJdRvGY@vQE97Or)>cY0Osor`H!DxZ%Z z<9cqo^7)i^*L$r0G;QW<+WT;a-}@Enmz(V8F3-=aZ~7*i zxgx-jBeLtkijwnzS~-RB$?-4yR!#ZyKvQ(vj0_FY6JJ6z^mc5!-<#pQ*C1!h#dyIz zr(_JPrYw<`xmCZ6Y0-zDOXh`Vt=(s`J^8Hc&zV+RBuXBno-f5-Y)GujT7AK7bNU0c3do^2Q78tJTGjd}GyN^4p}F3j%Q(0}&FgY)*ct|e@5 zJ-Ea+|4*c4>B&8Dd;aCwK0mX&>9fP7vyA5ZiC^0xVObHHh~G`;d2=~~M;`neCAx<2fFd9Ay7cL{@VoBiL18_g`Z zv%Pp5ztjsBSs(mUTNpFrwZa+C*1B)I7Q1`2y}mp%_nXbmixbaXcXj^P;rD&r+}~1t zuS(oo(7`rOtyf6wy!KgI2CKeXfyF1@ifJuaNb`q!cKm{l@8LA<*ibJx&!4i?=6`j{H~wnn>N200`#ly4FW*jD zmtD52AF_6|U=O%`lo0r8Yjo?9`4hg#dG>>bus4<0Ew$V6R`b_#+vV&B8|C|#EM?}m z?lKm4x+&Q8P{Z~2Uh7lFa<45{u~jeKp{%pc)V9dP_R;4XP5TNz$=0qsIPIo}u7#fJ z#jR#tX?{ZxIdn>O` zu;Z59*A~|IeYt#M@BYaitXKA(-1Ym<*B@uZ{@b0c+>fUt4aTBk*&+)eRuU!Z017_kK3BltEcj|iQJ9VYT$O> zzJdEfPp{6L?Bm%-j~-09@o+lVghT6&-Pv~MV`6)})rrsh*J~H!w-d0`N!>tR~h}d0T9R1i}Uz4<3pZTkw?Y9rTK01Hp4mtZf z#oBXf{;b|oljnFo{&%iz{ae|nOA!*)e|mnRw4XjifLBW#SOnTbG3kq#=YQ9q-!{xF zIo&+_>%v^|tnUk#CinZ6hCgN6UvVbg>dWWzGHk(#48m-6dG5h?WK&;#uwFK4Z|+Rp z)?fF2H7&GI_+-7|PWnV^=N~?QUcD_1I@VhAF1uOkOjVuQ1ntMqZDo$n$J*rX+LeWKcM4p1e`9m#4twU>{P{QK+3I#C_a8gD z{Ox6L^Sg_9Pk)#BY$>+V7PNok`>eU|Y9QVBe#q>)U)J8T*X|*`?`w)cX|(z8(qAvO zd4Ji?zb16QiDRR5=h4_ADY>by7OXxJ*d@<$^yBR6wvZfgww%Rn*3Yu}`ahl*Xm@(N z`&ZF<#W-i(?f2R0UY1@zG{NAj)%(oZd3z78zVo~A{d%dxFI(0hE}UD}u{^cpl_2=I{`aFL_@69{w_Jn+2`j@38wnj?sVgDDI?>9Z|rT^db z)w;ho{r>U7`H7$=>$j!H%5J^SJt5A1@Ljq}Xm-r!n7~);=kBZ%&)pHKE#0oZ^JC;E zeegD$`dCPh7_z$hfal8VdA6RHN+;>9-aYMQ(2IOI3xE0hh3n*I#lLbHY>$8-tehba5eCXkK`{4EMvJK72ZHsN$Z+9h5kGpd= zJ!@@KuzfbpWDB0d-VNK{QHYDSa%_wKs+vTik`N?Z(HW7#m- zYyDj--%F;G)=k^82Go7N`}_KQ(K#4f;087Il|+^A8D5 zOMD>Sb-aAn-lTWic1Y{IQ}}#-PW=0|AuoHs%sH~+L)x5^hh}+N%N4(0d-Z${w`ixwW=!$^405q98h-o0y=#J`)cM_*FbE;e-B z#eS-#Y@HSZPyFlpr~8y_R&#nC`~G<6a}MkOZ(bkr)3dyPTh69F*G_ubj1BtYLA|%8 zNu8g`pLLAYcxU;MzgERQ7d^^9rs_|9KXLUwji>8wK5yS$S!j|yFY?Yz$@XL07FoEQ zJGyVO#jFIKy?OKNTYk>$xc{)a3{(;w1_;50TcD#Vr#DA>?wbN`t?KH7dZC1PWF3o>m zHHS}kNt4;G-8t&>t-CHq*6Z8#?$`esckALjwFi^0 zKTThs;~ZM~`|aj$)_Rw#5A&U~c(A!T`0lKgc|p(HMD4f#m{)u|H~qc}Wt9n+TEkF%d2ditfdulw8M$Khwbe*IJW{ngLcd6(~WTqt&{4ZQlR?tcg* z7eY3Q%!t}smOUA?Qn&K%R-f6?-*d0AZ=bh5wtd=4MeDeWQujHhzWeD}o_$k6ZEN5B z%FwL2`wWg4-`{<^*m242gX#S~vX9w3-j&&(nOH7X9jSvMS|1+#{4v0-W<3+_)`CeGo?8nOi%uO&a~&s ztr{;G>3PYM^!A6uzWnI>R0E|09ZfcHTa@>u1sZ=l$QUqgTIu zJ?-r4Prl_Zc8A@!ek5c3TFrBPe%Y?ukY1k$cvAkrm6uziwN=2awzaEv&RMzX?}e

    L6&UrfrNQjR z#)IwBL7E%y+fDwFx3*-$lv~fr(tlo`xujd`Yt6CP+x)Bc2+lox;XF&V--MTJ&0O~$ z7hMQVJNHy}^1ADH^5eJNKKJr#@xJr6jNfnme7-F)yk`H($Ng`wUpu+`@1L!||Ge8{ z!Qo=;uzW%U%X`PokuX^$PtsCqzzx-!Vcvrvo#}@Xlmwe-|{d!uhz9M$d?+U(nJr%T$B-D9i;?_y+m253c`~ASQ_mF&Ql+|O~v(;Au3_1Qj zdL6zouhi#+O|7{@nYH`hJg@4#izA=wo#&l%*fw#;^ZopV*VC&+(q-6|t?D>l_RNY& zo&V>d-)CBne%$y?UF(l!S$*7_YpSj*pU>GDs(-Iwb(qPs{!QCl-^Y2bpZ29QZF%*U zd>IA?hJqMKyH)GUt+mTNs^%||Uj?a8u--Nl0u%xi7xxX9^1Wm$@NHYR{v)^uI&B& zTV4L}i<0NO`HCm__B=RWlkdFGDU>~amGB0QJA#v+7To?&Th4qy>EE6kC(KLj6Q|GG z>2+uCvw4^8HkUNairTNAw#)T&!tC2ipRrZ%yRxrh_U)JH%)1O2N_PKzRQ=L@;r)%L zTTkp{uq@{bj{fs%&Q)*mFN-$6zq0xKp6oLdjbG-g?A>(p<-I^~#$^D{G-h4R-hOV% z7ctNOp@~K&kN55TuXA_D*OR;6AJA;pP^Jrq!9d+?_ipvfL7VVnemGXU_^|at~ zuY+u3R@N=H$l%N@yS4%J1=lhQxTl4JRs@1#gtG|h^ zoPYDnufFH=iX8OsR;)f3y|uWhdWL4L=YI8|`t_|Tld#PEIZ zUM=-&j~BENOfN|<)sp`9Guv>N>5|`$XZN1I9mjX?WZUOc1{!|t&MPObSh+wauDUSh z#PrGB#~*Dli%2!oA%p({~Ykw`0KwP-*fsl zJkRj>HP5*0^{3wWORrSf<)7B-SXG1e62CXKzN-u#hHJP9>AncByPjtoe(ATW?M~1V zET@|n=D*+NF*mmV^1{|HQnhs^lejh&O$^eSVKg_y?7+%vxyG^qc@7!Q{Pu5F@A_9H z*#6eS>wEIi(A(BhrhX=-Mi=F`zi{&}oRGTy4V(Y7y2}gW|Ge?>U1)H?tK89zvG?U8 z=`x0C|Li``HJ)`jcK!JhhFyvaBAd^*HEy%pzxrICuW9!8pMq;{-woS)%x?9D-RJ9< zt5u6V{9G{aw8y{F?gieaZ$5O_r(LqwEtJSOKY?GTe_8kWwf5!xD--fV64oTdSNQxp zvyFShL{6r^o7d0K{<`?}yNjQ%-(9xz%!@0M-%LZ3?f&lqx1S86!6U>4hrZle`&lJc z{UvC_L2lmN?UC}gsuq^XMrm2soHt${9sI>GP&=yu0&R^f1G^ zlK#T@V3RrFq1j(=28(ZNQh32_Z&uzf1m_4VDaKg>UV zQBrirvp&!Eb#*6FU-MlrE9vF>)>l{Ze8t!QamaO`C|M9E) z>H5}drswQ(zQ6U?y(ih}cTk#)2GS5O-}!oL?PZl%<(FBWr?d3ZSLN7mi89aK84_Rp z!X$mQe83Hcr4sLa*H)*;C+>Lt;b!hXsaiD=p7TN_Gh7)XB($G0H-A`@H@8q=CRfp= zxph0U+mx+VhdV4wVuh^*I1*c{Sr_msuXKC+bsyIHbB3v?@~k7JH2B9%88^6WS?!z_ZkK%&QY+qRUPkQ3!5j0@z;+h2d4 z`FZEUxOc`6|Mz@-+CJyygZvU-ckS=RGpyA9UVhTH@#pH6#QQ&PT#+4o|wL{qpTuzwZkndHxZ24zS_zGVnsCElbKhqT)fBKB2zzUrM$2 z|L=`oXT87Opv)tBrsI@B&Bxt84_)l4Q+U8`m^Wim)Z+Xr84mGURUF@cet%dla`fv? z#vc1VL%yO@4`$Rb%vg1>CVsBw_HA>d`}{6-PPID1`MS-E_jviN^{Ol1tPVW0a{h}a z+|2gnfA?+J?brEN?ab@kC*iIM;|V~`|hiIi`K38cmD_e)v~ht!DY{V)jqdk zx^;ftS-0Sq7kgivS%2AlU9kRFpWyE{o^xjWUVn5)_>rj|SD!Dlmv}4P_ou}9fvW3D zd7I+ddbbO@!%UvJ$K|u-PXAKnX>M*Eo3?<7f#Jap1<;o21BDl}x9{`6YE^qbx?K12 z(hJY!Di+yod;Ia1d3^8tDUSlqu~fW#ADq7S-^+iDc6RxSl@Am3Hb{y8T52WmH!6sk zGq-$3^%{8z(>d!_S={Ni-gM}l_W%3ucC~)I{%qFDueUBW`ab%1c2`AnpY8tO^)hnF zPP+oKOqScGzg&C#x!v07to|gIf?BDd4%hpbRagSMhuKk?b^=)pgmJbaR&7*GQK4p*0%eXYXjd8}$eINGq z9d@(dQ+T|4*4~{_cda{{Cw*KPAQNzOvH01)%iOA$owKl-a-wv4uUP3b-ko=A4>zxV z&#msJ4O$ww*W}>+g0=gODO}KIE05(n>}W3V<-Vf*k$BF~dvEl~x#fygcHQ!LtxKE2`Q3}#WNXW+E8c%Q*>e7LE!W3= z2e&Eg(Vn~Ymrq7GkJS&K71Oy2*x7l`&#Y=noIbx&{Lt5%T?ajmwcS~_=0o1!i}M~@ zOWU;vzR&*kdNC)fd+C9t?`^iS&ENU`ipGt?zOpIH<9A2DU-397w)WZ9mD$S=9|`&X zUL~}}{`a$Dp?^Kg|4S?UOsw7$J4s6G%iZ)hSG>*YJXcSbkqA8Nb4&kal;?GG>$~od zZS?B);O>}>7IlIL~LDkspKTI;5T_V;TiT3MUFyl`mF8Tn6l->un@uNKp+w^x@Z z^G?C(zsa>$EUV82lzv;fNT&L%#g@+RH?7`I4XSm2DR5EV_GQ_-srT&4>wm-qDO(2L z<~C((j9Hg_X8-j+>%AT4yzKp0l7BNsTl}8L#gDCAQ&a12tPP)5yY$-IZhQN0>+Y_< z)3E+ln!WtD7lDm;JF52X%`>0z+tT=9j;M$H>GcZ|S3Fton6d5H{KgOtiN1F=Uy1~4 zDtb&_N&d3eeK~*q2IKR8E4R$u`%(Mx_hWzGPl%m=KF;!AByYXn-{)`JR=*5fq5Vwk zOH=9h7w*^YF5CHLR+sT>IZ&f_`B}g6m>|%`;uP?J^n)2+Z>{wP?Ze~09(#Jr&r|z+ ze?7Ryz4i5lO$q*b37>w}&-=dn$|2>;kF~kq^M9Ns`|xFZ=gWI~+mDq@eP`Pe>sY8C zwWBP;D#VAq;oIOAehQIo^(xMQ-l?{>BQn^l|0lQVy+G(%f#|6;3eG47Z5igV51dV8w4ym0@I zE!X+47koJ{Sw8<~`G<(MhJ_Y6#jpKXALgaL`&d`;T7Ifk^Y1=!#~tErjqmF075ZLp zNbfj&<4Q+J@w~04XD8JK z&PuSm$8)prg~{D5UxP}&uk~x;Sb5LfUWfDl4Y{&2M`UyICIn`b7)6SI?RyLU27kpmNbhvNt98W9e%k%m6%auoK z?5o?eZ$9VmqWIYYCfDyy-*-NSV+KEa@bi;*%k2{Q4@Z6%eRw|npO@K@Vr%K(|Bo9s zRG+Vr`}5##+p34f1^2t}>QYZ|h&YZ?hrJ{nulwQmw_mmOtu~t-rhT z(#sjtTTy-Zf<^PHM{Ocll&cDBw#cWvqe#Hj;K25dPvx;7y?yo61|FV41%ma$z z2Y!^luCJfM7-GVA#WwzfmAZipTfH)qjqtyj%Pm&%o7C+4clSuP$ghX#F&pd6AMZZ% z>A3Hquvc}{{whCm(C5*1Zw(0gQ9SAQeU+ArzZbv#WUP35Md9kj_ilQwfAF85{g3}n zTP2z6k$dmOG6#F@UH|X@fdy4{SEVLAcG_F`aL@le(?yonJy@e#_3&5pmOX~{AB|@S z+Ir?s`C>n7?z@SQHp9tA@FW{(%jWq|(|w;O?aH31*J}6ufbds!>v=2KpG$xG|6=~{ zqneO|2YMvs`k4I8>*D3to8=YJe{!hYff4XMr`Z|lJ za*yw2|0^vkS^mFPZ_O!Nd37gkDL?V}XOdzMZ8If4RL0gdzkj>^;P+=+&#mw;7g@1C zFJ91g^M-Jp`^wXPy}9xB;cuDy+i!*)^(uTIS*E?ruKQVs#TD+|m%3K0+mL;+tnaBz z^o;4drhnM?M%3+o{;TCT*V~%5U8&U%O7HwFbol#O`(=vOLZ<(A`jodXyY^)Dx!Lv0 z3V%%hl^>b<^%CpejK9~vo_RL+W^&q%>)<^&_R-+3B6Rbp#LDY=bJbs3dFrnL*PzVl zFQ4g7e=(0)Td4Z5eZg_Y`A^(9KFWXpySY`_NV@3yR{y>kocVZOvb`#8|Id5;GCB1zs}`S#vot+sY#()Hf4>2X$#RJ`N7K(e-@D~Y zpJdtBlYc{Q+*qn_9JEp5NY+z>6)W#ut!P>PpXadQhKI7fzfBE9A1t-onYX~oGeDRv zsVw@H+@tG9pL>)W9{ZkdefiFL53MyarEjl%Us-MPTtc+u*yFgvyQdVD=bBED%bsO- zi?{Xf1e3jdDSO1`|I7=Set*aO^D(jg_D>tu-T0GgoA~tHlbz{z=6n6RnzsD+T1biU z1=5WKowee7Nm^yE*QHIMSp|N%$d&wgxi9B`pSQB^<@)7j@BSb4TRZ=0TUy=pIrmGa zzIQEd=Dxf%`AhTr;>Jb4m;cysS^bTe@t?ZQ1|1*WO_#+*TU1|uE!y|`)Tv&Ak-WLMZZ!Thgf=l17z@(=I+PV|5E^G15f zm%9Zk&uu&DY$zRav)EVYN$cw`y|1cd_shj=h4|b}&Z>WP*W3N<%Kvsx9-sMO@mp?I z;oNuGZ#d3>*st<(tHI#{(|7NYQy45#d+J%5On$EBTw=O<_$8M*4SG6zU1(gcuRfY2lbU2cMKQrj6ZPZ#JP&ITMZmao5Qzn zHsbsEX17RxyX@7I(^eVu&G;PjaQa&tZtD|4bLYM*4L-iaX4=Bb6*~{)UrE>cyZ3Ko zaq~7WWv;Vtx1NbS^gMaDWApiShtB&xTyr{H?R)>Lb+YoWp7{uInQuvY*AchjU3AsG zUAM1x%sY7Iw%*IHlk)P)cG-Z2jd;K{Xu^u?d4Hun%{_kI+m$`jZ2Q~WD`szxTM^qn zjepw=zu7SlroY>46z#(zQf72>!MQogJkf^)=M^#}pU-!zTbBLlFq?VLM{WM(=8C)9 z0|Ucs*sjDyU)&cH9=7hczTDXv?|MI3Pi~63`#|sO*4tC3zxq_{-emQA)rRwI#i1vX zu08tf>`-5mzA$j2$HPCD*BuW#vCsV9#KMNjd`ZXmPXD;^UFjuz*23k>ZSTeI&!6;h z?YFBhH%@*m>+2!fRCKk{iCxn0VydiXZhiE?mEPn*Zge-t8;5{<^Ka z-hT1FNYD^*45awr11FMz^>=TrShe{5^4IH9Z@sZ7nFU(X{_aNktk3P=Pcl!8$#_;? z`_xJ6w|m`h_kv=za+aitmXB9VP`vx_`Tv`>lh&;Z5r4E~eP_RSuMAJ~t}79a|8H43 zu9zxuUNiH?)Nr=!_m=D~jt^Gs);k^4yGT*`_>Ryehm`;KohjV8aav)7@ZF0YuiQBA zUk_Zk>SnUDP4rHAzg?zFnG)-dERWuQ*S@nb+j7~e^8U^C@{12$_)+nD^Yni^xep)N zar*lEZ>84uf6v+dzSqu}^{4ii@s!uks!QfhS-j{~;QMCYUx&`;WPg>5-T2WvYIn{1 z8QJHTNUQ#h+I;ygWSiLv@b>ouJfJy$l~~Z}POCxPaG6*77w5m(;WB@3{oZH4U!G9p zI~^n&RyXHidHT=0)*lVc@>Xp7k^S}NyS;TEN*8|Me`dL|s;7Y0vikYU1nD;z<&;8il`lfBg5+SUMt=o^geGOk2msPvZ>D{f`l?#sB8DD06 z!KS~h+2rm?$&iU0!o`hqEtmiH5tW&J>wW)=Go|}~&hNMADLVhSZ0E1@%OBQEkG}sg zJInYZ?B5gze%fU3wbfGD*y8NbMFZg)?~sbt!4^D5 zkrn_tWooa-rP4|B0*WnzmtA-+U(sZ@?Qv&SL7nG@<(JO?VYGSk#`Ejlr^iB0-PS)^ z?@<0@j^k~5e;<5x{TB1@`SEwf`}xnCRx(&?@p#{zEEL~g zwRCU%f8iN&k2AmZPOpCF{(07&${vGF-us<{D#HHHd~P@MTlN2)A-8`Y{=4k-`FYxF zR^H0G_H^^}zUE6Gte)+-vhC!(_QJ&Z`|rzte$^+WH}~<|^Yd2+EWGOd{Oh8x{};W_ zzqj<``|oFdhJza9C)1XnKFr9#FvAd>RX|(Dx2o**zqEfXsHR=Zoc?l|uKzV#cE7+? z=EwhSv=?1)qjbv|`6s!{BPHIPu-q>HqUEkpV)^{tVc}5{CPx-d5NXSQxB74Cy+0cl zy^H*7x=&4Nx9)=a4U zemLOxz4ANTMUQ1CI?Vc|(_56oxWGQj`0KtUyB@tM+wZLZXU&e-x__Tf_RjtCJ|jj# z^xpdV{FlEAzV~+-Up}~8I_75e#_GEl&i1|ZDb?L|-tJ!{_w{$HxBXlk8|=1rx@Ba9 z)yu+%^~dip=$G<+F3!I$^5y>iE7g~-3;S6v&^D`&?2q4B+_WqGT)HY~yt?c)_-GV$ z@Mg^eJukLK`+DY2{L&p%RCoJK73esqf@tsmJD#sO7?oS7@rXT9wERfQuKlNN@BR6B z`(NShJb(6%pL#RhzMX$pDDMB&zub32On;D!SWBXt%)ge`$A3EZ?LHO}vwY{W-+QZF zWIjA~T6XaJOw*rjraQAgiXQxWs!sF)Yxd`*yZ&>XjJ~hG?s$vUOH+AYjtG{<>6}eD z7bY963eS=GUh!G-OnLCn>oQkG#rNxdtz4nSVK4kIJ;P|R)AE?LL4RiQA77b} z`&nG6kKGsFqdUIsD7vvR{eSVDa=XuoKjv|{6epLzJ-@_$-R0Q#`Zm++r|t3~CJ?K!LrR&@5_P%B+Ewl4u7n5qXR~K)#H{5;KEU)~`55AQ< zrfc1K)TZ+=s`%j!Ki1!GuWwtogI`Cs_vzuTD?2=XhdyKxENs8G!f$`f@-VA_0_O=a z?%{u8+8pQZOiu5$EAA=xKX=2ge(t`yueToVYdf_`fB)(8wSEUZyo9Cx{eQE!a!cy< z*!w?izlW|2(TdcH?OkeQ7GXAT-5nm;f(B7GcBwPU3CWgzo5IX(FYMiQ_|T1nI|&@l z3P;YUm2BGeQthB{p0mMWZ<%E#2|1^mcd1q+aOd>A4a(d%%S&(Ss#o*=J-$<0_u20G zG_QT(U+d!6KP`Vh?_B=-&FA+mz5o2rH?hYN>%7yyy!=;bp~1A}Q;pL-d+XOrYy>VZ zIw%(P;`1e&A6FYS`Fbi?qQWOBZ8kY_x$;t%;q#N3r;oe+xVhyM&yfYO{R`)Pu9_WI zx&O!2J?azf{j2m&RtY`v40xX3zv^_wbA@Y-n%nnb;~F5bjqN2%ETg0uG@WUt@JEByS=e%p1H4fSjf>gT_EGcR(x;mQ!Lsa{Ki zR;v4R{t1F`^b*c)PuFMspvIsdvt4)gvfFZYP21(`<=$1jQJQ*rflGpKmBE4H+7r** zua!=^&}RL3?}^14kJeip+#6P^GLMD5=(NMTuI~?`S$cC?f>vs;f9+~?)p36BC+)pm z55&Z?S36iwJo_+yb%Wf&^I^HSZ}!LTP6({I#AJJI>AbdMHnUdGW@MT3!)(K*{ee$H zSiT)|`F*t^LB-Zxc}-64(}oGn2X9#Iyt<~wEsG(G=fI~|4BPaDHh&UwUi(w|V506c z!8y7=Hd_cT@Ui!1iON2I_Cnaa)vg~aZCBqdk4-!DX>ZX)uP2*&{FY4n`OE8k-pl%K zvFoxHt>JQeMfGcLsk8sus=k%`!PU!i@BZJD=L`*yApbt0A4?&e*oIm8=jX9LSkAa7 z=kB(gS?}z=n(TSnC;9Ks!_%(6vLc!p+FC+mclDfmHRt{}oBf@;n!NHJ@%7Bb%x#Vpho^*dvc2& zKVQ$6`?o}w@8_4(>_w~n?DSX6+bh4R|JI_S-n`fk?+*4(x9tdz`_C9t`@r$|J=^u= zj6deRJooPYn%fhg3FpesP^SG*Hn+#;w>OtE?2|uG&U|5Ec6HQpvELuwzprBa_h4Uk zVcAAjg*J_r%QY;^u1>uYeJ4|5Mf797{J8ZDs)m{ZtdH={rvqCS6#$5 zzHpFYj`Xiv_HXLGU$+}>{SH$Il%18?U}Dl-YH4Y{sM29;iAW~T?-Pd>c9`&0WEWKU zSe?K8{b2W_tqdoxJ$)hY;eCbY%!Ec)`Mbv(HQSpCRpL5J7VBEIpZfLbd1LPBb*Y8{ zz0VSuXP7o^zkhXla_p-Y9FCl&W6?3>}+)|5D;*F1K=;)Ej*}>5@Q+qPEmU zVZMwvKTA`}dHd!?*S9P5yqnl!DRl0}O_krNjYjkBZRWn3d%C{qSHg{Fu0Q8hs4U9U z?E3Lo_tfv_N0(=M#9Vq4*&(#*)`^FqAq6wqp53`7C87IBuzFAKrb%zEU94?6;#pMp zVukDNxSo}|UE7VPzW(%g`NvJK{|V{OyJvUdx$R18#yxTeZZEUmUHKys8XUnf@N#J0 zqgnaq_lexKtc~B57j5P%|NqR?iqjj#9|+Ii$s)*GJloC3Py6=Smw=4$e8Y^WSHkhXr3&HT0c%{P_A>N3kXAc70tr z&-tI&yaxUkYfRQWvwVC_Xl^`nbnG1+roJ~4Qtz`+`o2y4>7l^( zH@n$Pr#zo~R!sBWFM}rDI_XU|@24~W{PMH<^jj0t3&P=F&%Mo_RVRI5l3nIDhiF|b zgUjv~n{FGmDzV{Qck4&x9ZJ)S3#T!g?ef1qy<^=KIVZ&g)1ACVtB!46t9|&q zQ#DBk#_f95^0OS9*T-MD4M@@bJIw@1VA&x_xxzVs@K`(Pvc z^u|)RiD_kS)wcsqZIUxvd-9wz_fAc7uf?l_YNfb4%Dk&OZ#19yzF6+42K40SRG&ij{_$wwpF1s}a0Ob4|OLbSe$T&$_S z#_%HzRG>v>o25T4xqaCE!?(xhkH+@LzOg#J^YT86dQ+AusVX89Hnh5Lb!k||rnyJg zcBk$h-brraU)G*}DsX6#?cK0Fyo>ujU0R^kWMLMyLC*W?_s#wH4hx-YbhKf!y}Gly zHcIn6V*kQJuPmQ7r|oc6wV!O~vDEE}Jl5pTXsXIn8?} zz3XL<-E3I-DSwY>mW`RztHO*`%HMvJ?`!+8wym^|d3Rc+^77;R)~N40dhhPWzzITs zDwPyYhWq{Vd8wPm=@MW4Kqap7OW2+Vne%y~?qB{T&9I*J!|ls+W9Oe*25BZNHS%mV0{H%Xh*4hoj%mcz9lJ-<^}HGZryAw>(}WeS3B2k-3lKQi9%k z{hGy-)2e$@YKq)JX9s4ME{#v?7dp1yIW{r=veiG;10T+5UYV~vL-gwBPo?TiAFhYT z9@?#%@+7*+jQ609++Oki+{^Wolb11W78iZlxVQMPzsXM1CHBoJk-N0|?>#C$eE692 zx86=IY3=-+Co)s~o3@3Xa{GO0v-8KvV&6`0ev=aYOY*V6UFJPiclK`n8z#Sg;cwm( z#lIKr`crxJ^MWatU(bo1`sak5-M3FuTQ70lZLQkXvdm`Er03bIE51B&nwo96JEt#P z?k~f-eJ>Q3^!#HuQ0`k^_CM)v+Y)Hdyn-jGtp{i2pI^pM$8z95PeS(DXE{^+bhmww zE?psqe zmU~}*5zwr1dsd5C(QWs+e)o5p#)Sw?ef-$KNNKHoaR0lRy&sBSZTMsND*xuRjwitn z{1+)mDc@YKm%i!D!|28$g=cs9?N%z zVQ_7>e{TPG6|;AuIkVc|JiQ$7X>VoD;^@7rOCRJNJQn8m=i|oJu5XSylvMOAHtqAy zzaBa7`7N<&GCWxi!e0d~nZy3kCS!ZSwqLq`=Oid8{Wz9XusiPP`6j*hdwVvl&-{2b zyq@d!^*Ro5-*YW*-vrKO{gBV_=R!$(`M$hlXy66ygEvKU7d*SYxt8IdI)gn|!mhMp zGauf2#{Xmf{F-b2;Na!oA@fRX-8q^TRqaTgf9`d+%#&EI{(_5w`ZhsnJthU(D<3QE zHQBRZ-^*{gBA0f&wNhTaS7TqSFa@%22r(r%P9{+pI6JK=btb4!ishsO^5t9Y4Q z?#;|Ei;l3a6D;Vn%XT$L=h$-debwx9dROOFAA8=py)@m%JZppgtHT%ee0Y^{akAdQ zHRj5eJJvNvc5|pYd~e)oQ@?)7lI$sOb>JoU-U$|;-jei(H$G_ z1QC__t;5v;8f_kk4cgyw)3(LTi3sBO)NW3 z$ngt_nb(WVT~fW-=l%H)(chLwT0Mz;GB4+pQ;=@mwfM^s8Y|tGm0o@`BYUQS3db)-Hy?A*+AC|g{gXd|_XyZJT(1*ZwD5^BN2SmUA{M2^BF; z{Jc9YdgDo}tCoJBw$;43w8K`;F#51J$l3(Vt1ZLXk9+8>X9e4Ye)N?lWx8EiTo|$_6$!Ddm zXO|ysczs9tg3Sf>&nA7nzZX6(SzJ{XeTj)d_rv=G6Z?V}$4Cc0b1eO`%_HDx=9|xH z$FJUAH#w^J_$+(jOKv|SADP)b+te=;Z5HuBXTu$V>)%9k?uZ}D%I!{{T^D!iv;?=# zug_+tKc2k}kb5sJubvs$%o1hfB57qMc6Jy)V};s^nVdz`|>ucpt+9QahBl~=3c*&-$rZsO2S$z40%2; zSioPY+B50vSF_1-YqTn*KKz_mdns+!Ww~R0uPUYU_?$nzkerm7nv&n>{AcHkhWUTh z43*ZZ?vdsE-?c|qednLta^+su}t^S9q;rH7-zw#WhT^Y+RmvylHrC@q9!7@}CVo z0ZxINOGk7j-M<(SjObB=E^2x{VzcbW2fvH#cesh2H!oDcnaUMN+z zDEzYMo7eWm8?J9tJG6fPdY$vk3-*M{J=~m-yw-iX`xDRZ*A^GtK1~g=csb9+MUG!Q zXG*+@`IE}xuWyB3hkrS^j@A=o_6;IL&c+k?cNR^{XF$I~tsuc6Hll)8(fhD_q?jrMdq_D9iq#iXngg zyEkg0zR)Dr3@`83I(~k8bNT}7ANyW=jd`I$eSGuvlQ4nNnI-l+L0$L_w-fkSNm zx<|IntI_rsTbZu(`_$D)5rtFb48F>VV*l^-MqYOR{IX{6(#2=r|C{e#*7;9j0jv7{ z8tdKvjh2b;)mFQc3xLVl6DVA~b+RT4di*+>%VwoJI zq&Iw7SbFB1>#kX>)q9RlQM+!MTe@=b`NX9kSsJAEcgwH0`NbGhdeM2^-0B$f#n$)V zH^U3Jto4Y}KRxjC+na(6_KXkqM}ms~;BMVLuir`jdvNb{!L1`~6%!p?>sX}Q%|bR? zyn4JtxhPOvyr?ilm}5$Zz$(=~F%_>V*B@B^vur*r(9YZuR&(uQ)xCJTxIeT0{Lz;G z;o4X9?WXN)|GTRXe*Vp{?{B*0{Ppg^YD@)}o_iixoEVmD_mU&9tK`vb#xm1a3>z-p z7kJgvYAX{YRIw@d!k!1U%B$NJ{XBL%c=MJR-{q0sdzWu~a@%8b(7H3e@=}4>yPkG3 z?Opm`>{sCIJ#+4TD%`rlBeMPblyxW1KYOfIyiqi>NbJ?m1@4QQBZYHx8KOdYZmS?Pb#Vr*IBzdar>(+3jOo1x*Hf&saej;x$r0_)n!-J@7ZGU zwO{W)l3xE;KyTKZ!m5qWzrJUv`CpR${amT^BuJ}&YxtA{`jA@V)#e31zrA5-c+d2K znL#ghv!(Phw)eFUia(xveEtyg^6#4J6}Fd_TYOu(`EK{UhYgL&Y?AGdoORDPu4|la z=kDWVxjvQemyXRNze0OAPq!@}*Z#I(xRPplMA>tBEpNNq1<^HcHktofW4p!S@S;|U zC)!Vcl+6`6xn0JW?VH!GyPGDzQHqGZ^Zk-jzF9?JK$T6&llaWQd#6AC?@ZnPMusW3 z&_wxUlS7?cvgbroj)bGN9~xs)mjBl|S?T(%U(%TSYL-HPl3`_DJY!v|jhfo0iQ7Yu zwVqqm&9Exu?a$67*B4&%{H~B7$ll6wJaf;BHFmb|bt`l)+}~eqbgJ;+tq%f=W1Caf zfBlnk`zzP))DqRNo=i^JYp>0)6rX;v)?&|plYLK5=HT@84F4D#<}(%?o^|%7MeU;}BKelzoNE4D^j@GC^?cK}a}ysa z^f+(ui>s7mUF0~wk7whC(@tA0J}qu@U9#0qY|DJc-07_HLP1CRvhK#mY2Vrvxc#J^ zyI_^F%&Si}`svEkC)_vYFjKNzoh zJX9eu_s*gh`>r0J-LGlCdcD~+-8Xv|Sk+|v?K{O#lahGJcD3>q`TYK@>#ZDJ*OmSD ziu2xDa8B!jzy0eyf1H+HXE0l8`+8FQ$5qSg1?CrjnD<~-b(B2&hbV^q#&>V}YR!Tq zyRRyUOgwqX&u?#98S3~BTwiy4n(yUKWA+cL%kOo3KeyiHc9gnhf7NTHB8^4M#nh9x zubMJZ;?hc8#`*V_owurZTE2VZ@;;%@i@rxih+FSZdL5^EN#cS)^PXMjP46-Fd;M5( z)VO4(oTKf$?|pa=)HToIfx9O48nZyE7{r4;4@B zd3O1`_N}0xLq4kw6|(M#%{R5+n;3TL*7M|rmsDmge_{MH#y=!PGSX$j`Xx8s+CF^~ z$$F)?yQL>2dS{o#i^um*-{&~(dE=<^&jW9ste)C8>54AD?bkiLrzQ(lSuF}V7i@ob z-9fvY&9A@i%s6BF@s-H!HEIlTHha1C?Td{0-dg`;$=RLo^*6)5>|L9GPluOzube{Q zgRr01{QQ=~^`M>ck3Pe;YuRVhG8;MX)t)cjP<-C_!%X9&h3jPB%kbQ|p{*;o_^9mJ zPx8C&B*uAt{=8w)2?6~}hx-XuX+!8P-kQ99JJu=TYL;3fUuU`EX(Po>@bTfQXYW7;4tmsth z_WQo+E1mG~j;D6K{RYBSV)ORgk6oh7z9=;{$02&&rwD8NqWm50 zVhmmuD-yG0pIzJ>TdkS+!cwR7RD|!G-wxkSuedG6@V=xVyD@*yxAh;chTm`Ny!=e= zdL+YtsRR7}%bo2fy|H>V&(ATIg&El0lLzu*CTb^}mRx7@z|3CF#%qvnv^$g)3c{;`Mg|0`$ScmKYz_^`{B_`^|~878}{zpSvmXMO7V=AQg= z&)RDXyyL4aCcW?cr#@BwpvX;!zl(Eivb!E$-q~>Smhg(pCzv?3p60Ai7M|%RSW{)= z#aX@g6Hn=U6^~B~=7pcvj$U)=`~`~@s~Gj#{dG_4Usu22E-?GB_s(4}{$(iK=-3t& zCTIKRa_zHhukUl6zh=xkm0|mPQlp%7{u!GC$B+Be+lljDe?D>Uy}zFqBs8;KkF60} zZ&SrRul%L@{DxZbHSgFzG&9s??%G_PcJ~;xYah!2?^l${ncSaO%iCbiIAbj+)7tjO zcWsy3Ex6sTW@bU_sSa7*CnYWZuXjXv+Bs>@-+6hC`&UtR>+_F4ov&N0Va+5iu8jm7UI>q3@W*YjTptXiYEYdO!aiFa+H zHVZCZt^A3@D??*hp~vcK<(zBZwb+ zA7-+wN}2n@-Z+)})6Qp^yOzwkyvN4AxnJq&t8|%5pXCo1ollDYYGo=B6=$LGjY;4D z$A#|`mGf5ARot#{i#WU6y6l^oclR#csp5aO-@DUhy?@U`A*QT=&VP68HZ6<2m3uya@`0)Dh95uwt`YFQp~P0samm(# zRXu*WTSDWyWW}oj5fcvN%luh!aE)R>>hrCvL0=-{Jo6q#zS%AoAh$oBWs%q+quMz2 zv)ns*^|o5F{6055>$8iqM??Ny&Er$fUuF}SSXQFCj*0Q>)b_A>pWaL+XxSw&z_D2+Lo7O7~H;)u{|e ze#O`OqN5HUqGclMRxu_8G-`1S>;620AFW08Y9+@n-z=m(r>c?x{1y8l@Nc!&S{zNcM z=lM6$hF7^OvmdTu*<6;p==F_{edoDkFWsji5RX|ttoG&!@-#9u@*IWb{NZ;VW$&_csg*9F=dgxLc(T^9?>=m_tA z(w);W=kq3W=L>8LHvdveuj*cQ^VOoS4RSZWuKjkgPB?Jc`Q+!nry9ko%zu0L$jjL* zc4AX2jnC{Czf!(aH^XFiNt_7pla+SoO$0U^XxN_e`uh2$-3P8*cq6xI{;em`?xzaB zFA(XqZ7&h@V{ACN>5htw^3OBotNuv*u;lsw=I_#N*%Lgz#e7?rU|Ki-=ZtAaHeTnQ zP7BR_6S?AGyk@%hR2x}U$wqt5=+x>GJ`H*0+55C|WV!Ep>7TB8)m(nh`Bgg0t?1D6 z)qFYiKl1N0{VCsYc{87FPq^$~hIw@#=7}ClJpaO?;W~50ZRF7?4|uyzYUR&wZ@e$e zz5M-A>FrIKR)yaf?iK!V`}4AVanl-4h`-tpw)`8yxat(VQO zUcUC~gTCn-^y=Twv3sfTZQG>FAKJG+&GpV$@Axxr*S4VBq3j{oUgjBdbLu0~H*+Hw5$AqT7XlJy@CX+NCHdh+(PZ6B&_8(AJs6cyI_@aSc1#m%qgk1t$1 zd10FEn(v^loin1DvvL7T9dsg$c~<`UK87FS4Eu7=F3XuCmhoZt_d2_}-|x~N7^iRZ z*(d%mz~$WQW2GI}<}4}Pv*6yZjenl@MfKHZ6}a8@y1wql-ZZT3ZO#ewwE{_wn0B=O-sCERwS2ZVuC`VtISdL?S*UZJ9q3!OnB;eCu-Losi_k#xE}Vhp1#s-iznDYkIs4u@3c24D zp&Wb@OuhJq>nATTR?q(6_cH6<KFX?z28% zXNUofA^YuCUw8O+pDq7!`PY30S1v|GEc^8`rf!!!voa&YQqkpanqt>qc`~u#Yxb+` z>g!+EzrT8A?}JGfmU~}}E`DV+uQ)n>b%O}6^_QC!duB2{4e_5Au>SY%7Yz%9Pr5(< zpnGwGma|~>mezFk`juh_6F9ZJEcJK!^I*Qm+*3Ltc}n;IL~+a)*0?8(G@ZA=aoOKIn8unVz>XJWsA2zsGMGR zNq*VhwZaVlEE~*y%gg-N!pF9J;Z1POr9Z!|Vf^6BP$zbP7d%mR|MB!kx}c#N=l1EE zGOtSSn+7~!Xgn;zcaGs@&a*%VGqw$h*A>`zmAuKilkqrV3G>Z)q8X1bzWLb@u=dA+ z%l!-+3r>WKTnzt|)wTWJWAO}!iM4COb)44Ahi`37zqzh>Q;TqHAX8&Pbk(mDK~DDk zyqEV}c(Cb7K#6?*Ub(Z&P1(L(ed@^gevKRNkAz>(Bg2_%SG%$NT>R!~<_?wl&w~!z zdr!*0s<}AkW!Im+V3!U29$C*tUuBreezdX?yJhxX$3?H|B*QY9_~H!K2~U5PznWa0 zZgcy|iIZQond*M!*#4Y;*jhj8e7ybN&-}+3?CR`){;1M7by&LA>i$YO`^D?MpMG|? zYcI0)=YF@VRJ-rO)x8h=Mf+X8FZkE3x0`>xO_lL7aoZBU+Px3H7J{bItSk3HCvT@9 z0(IHXZ*N#ZvuKcB;LD?SdtSeL{`mX5y?o2X?;Mo2ZZ_4ruv13nhrx;8Vy>f|w*k!KdKlgZJm%>FYhwyoPemUo#y&d+eqK{oXeCbna=Q|(o-A^~L)jYNPXjWSxo}cgeHaGE(#k|wT z;mtMw?kuYgC{lY@;eEnWU{mOKO{TNk$_wM(mbbnN-uc(Jd;QL5!WAz~<&XV4`EtSk z>Ztwf4@@u5y}LhVyCSr>oV^HMaxy%-y;+;#k3mB{*8w@V?aQw|_{(p@{NAFDS%ZR?@ zFqBTcykqU{dBL;Gd>&lsd~%krHf?^Z{lBng-aVEEdQ7>0YPXkFC&;||eIcEHc2#+p zlW?8v&Q$fQvosDwHdi|*CtPpc`1o0`_|0>SLb2{mu}sx0rYlSHxjhfWvDZ$?DRDnl zY>;OAabNL8Z6OiU*RG7yrg2tH46Q4fUp`gwW_s_d*F`pa+b*cAnC1{WzxxHVYi!&3 z!-gw%v}rQ_)G0W9^4GifqQB*jZ;$!^{D*aWzI;ZZ|0|t_|GeP-qI?8=a{M*C7_E-_ z{Pw0D!~MQ@F*CHU=bStCa4ac{5M z>h?unYaE`s2D)wtuD|y4ut7`xw}o<7HT@s3L`QrnnEd=j*pjzmJ5GJ`zH)y?;m2*^ zSE6_)t<$>6{@aOh{{CNo0{CWsiCwg>eDlS5E5q%?txaOCWp82oZ}sVl|K~+*($mgu zzt)$dkoJ{Vq0xvZgqJ5lfoaX;*~Z8Zg>8?^vRU9?R#?_S56n>`cyi3zW>SF zY(L&yOuqaevR&@b>b`qDi`n1vzP)pJm;Bwz)B8>C-n88fA1%AK6qa7Ut$B8P^Ln@K zwa>f3)8|KSGFKe`D0$C%KUexx{b|<9JCi57|6A}sCd*^_{xZ(X-zVL6w3V~I(zz%z z^NL;zn(X>NFU4dATj=3)N&hVS7@jEa_sLdU@cD<$&4%37wv^ z*O!`Jm>kXc>dU${_4ls-Yz;QtHZ58HuoQ1d>FPQcwY$cEAc|u7`2-zWBn;|0%Cp zKdEH?-d%sVcpLP0f3n#3^Tb(;Eu}^q()?eaXV_D(QIuDvAwPCPl zeGm=mW@a|B?Js{{{9$&vJ+u1xH_YY1la%ke#r*t`aO3B?hkg2Tg@;bR)|mXx*!6bA z^3BhuJiVx6*8lzR>TKo73qC#hS~@$BrN3m)XI;Ow$}xxi??v0%^)i+--O^-u;rey! zTc;`4(?5#dSbjX<&~B#Ooy_yDcPiCAx#9VXLzTwHmcZogOM6U~ z&EsF${(xtGb)mKC1w%uIwpX|JT$D6GpA@?DB>WO{tOj)@Q?*HvPTN z%4(io-QM-%Qpoyv_7A&23nSOT8(HUHxj?xPCyOZj^@b};Q96e>DPHgwqw>p(3y+P$H>7V?RrD(?2BoI+Ub*gr)-|>=6oya-NKT- z&#!ygnf`s7v+t^@Yx<{?KhqmU*?In5efw9QeO+6_3byb)Ei%`mvSWmOe&yPDTif+q zmRP-prOstR*xQ*MuWrgEN$+-@`Ze09*PMN>EI zOD*^^iSg!{=ZnAde6+m1AVf~JP&#q`qtf?(|frVG_-Wj@bLfd7oMJ;qL{v~HS|)ecA{|kq3XZ_ zGo`eLHPa?m8y)ID?e@~;lVkE;UOO?XLn#)s0-qPUoLV@MrTK8edGG7fqn!4A+WCIM zomH2&=qdeJAzm^+^*`6Kr=Qa@LRN}a`{!Pn9)5ea`zF!ZV$R0^C9e&?E!JyZDN z%;G3BeWtL9S&OyaPiKAnZ(H*{(IsbZ1-+lSVQagR!pgr^JhE(yogMs_e=OWwntH_` zB7X1Z4;80nW40X7XPPbc&Q+hc;%iA%=Mvd{oBwe$-Md-$Z$@vS_6JL$xyRL?cij`4 zcK)VDlHa-7uDWZB6`l*<-TyB9cz*o1J5IKp#ocHBSSK9!?yqG1P?^3)&wl@lO}`5+ zU;Lg}b@8x= zyXTL;zgsOU7w@Ch7vkWiUg1~%?%VQPMXMb)_?xyDK40}Lu=Z~H0k?ZsQWm!N%y_V^ zVp`9}%lEzf4xO8%w0+`g>qiHFtv!D=>fpHW#esO z_c}^9u&Ke_ZucxPQj8@26&ePrmj?Ox(9& z{k~t1f3#)i9sGAPb4kxV{s-2}t#`}E!JAwD(_oo@mxAg2d9myd)ER1S&+@(LU|R8? z`TT+Zwa;yNdnulHH+9`xD&@c1rahSg^(KXy&@cu%9xqt1a#C^nVz(=LwvOW!7OpXVxxaQi#8 zZc4_CplSIJJ(UlgK4Izh{QgVB2Y;`IvHX>r!hTB0LS=FHlfOO6KaS;I-PN_X;qCTq zvFGz^~o=^wg<|sz7_L%p6#jZ8E50>ZS~DRow@zO z+d9oBR%_QjOt`&{M~ba#|Kv^iAK!Ovo@F($YTcaahA!57Vs1bB@b7ZP&#&7bcJtR? z$=Cmy&j_B4TnC?xEZsL1IvaU~bt!l-Zrxpm-{kHLvLLx=49tSp<%G7fm>(s|2@~Z zY$janUBkcVz3S9_)z`h;>(B4MexPani#c|3do#~VHlN&{YP%y;_U(axFLp}vJAC~% zchC8cE3V~CozUn0c47Yg`ZA@p+rGYxa9t3x?cDhvi#I-e9ell9%Kab9$7!iwmh6kR za>_q5ZLZa?{7o$rwrnlrefO%U%4d)#IBrJZ0#mea9O7$>#og;qK(OO-P>HFkN#YnrC!SW zE2BC^uK!-N8iS5j|Mg94Zx^rJ5xVKSky88p?@VSV1kW*cu-Dr*gf~aZy;++py`nm* z_---BLgk-1DHFx){omYSyn2D>npw5R?L}fYSF!poeP3E~W9k!!Yqxh9cUAN(Qao>K zWMs9T-|xL?#Zv=*g$2izJG#G^%`33Ko>s)N0MBX1kXEHkYSf zyQ42OOulWz^Z(U_^ZD-UjJ~z<<@fA7D{Nf1W$AL8>i%fw%75=~%$Vo8;o5K6shbyn zvKDgv_4Vb}`wCjO7dYP5+hCgc;gNRV!`c0N;rDkt_Wh;bjSC<7Jpb~v;iy$_xA5i;cR!bRagt|) zvOEo30)@oBe0U*soB8F0^^f^A+-rNzs%-cW^HuK8XPLJ)vEF&xx3AK_$aGRF!{GKl z%?sDRO|0F-`mel+t-I`E?&qCog?=JtGeeGD(IXUUp zv~=$NN1NaMv%1m!SxI5(>58AbZ0l>(PJjMVlK&)ZOYh3F3)i$?I6dQI;p~phnoo-# zu4Hq~oyXsw^l`tXL$SXvTy&R;lI<>@M_2J+``5C(_W}oGfCE-x-L?EE^|v? zRk*~lU13#o76pAe%FcTsH$-Rs>gOxi=KZUUWZm%j-sjxV#cOT1)>he_vRu7hVeNZe z0|tNXhDHXjDcf%HU9oN7Dm~jdI{gFh^*WLG%ByQf8OOQx99mOaTFB@yIk=r%ATF$&Fo<($6~kCILf`)Wun!tKO2O1F@2nK zZ-=hV_B$nuoo5*D$l1U0pmgR<=F)lc`^&hk7O#(3rF&(C$D!RT&d12LUD|eRl3+Ub z@%^V zDmzm8sQPmcnS<`()4!*^F*Z*-SM}-H#_;*)-+s(q`zLqP+E+WnPGyJWUw>~jZ=1N) zTxUDY|DGZa>!kLEPi(7l*mLdmmY{8!1%HpuKd9Yb$8p~B%gSG0zb!k*^uv|G-stYl z+64G4!Q5_GT~~D~bD!;PrVnploQvOCboN=!oOjiK1n!m9v_;F=@Hkk{TiYDeBrkv7 zrJ}=GVdkZd5Xsgclf?VB57gIQTU%J5zW!`=`o@W+H?A>qvWwljR=p{dpYLaV?P}W% zPj@WX`+_gmyuD$m+3L%?cg$4YmBW5(`rGrr9@jqNE9PCovEowfqPnV!HdQ>wYo9+p zxc~Dev-8ZHLf59*@U2^6)7$v>{0a-DwR}5YJy;)?6nauah5uuT!G=bD_e>s@J5$cL z-eudm<*X^s;l*)o3Ho{N=fZn+_fC6ayIjQjd1Y2}+g$bM=eP5zU#fBstXdkHU-#>W z=Q-b9=3h(InCj+9{Sd5;i@uj$HIF0Z)z)d#KPtwHuv(>9UeIYYbv(4p|MG;5zw7_i z1o)X;|M6%0%Z+n37G3`$_P4Tj(Jn1mcBgq z?q;d z6n!yC3#jyE-g4)l9Ap1dI$ktanem*w3-!qwbd#>#Np%oVYn! zwy%*d`JhX#Po?JW+6D7`O%*EgqD1{Fzy2|Ne7<$=_kTUw4(q+uBMcjRUR@4MV_2Xp zwe^)?pDFJ{?|rW7hc;~y`YRpUkRyB)kQloQs5Rz*ksyvrO?vv$S9Y~F7vQ&i*m zqc7ZLaDyFJ@v>~B|I)AQ!qJh>2k-A@^N4Z{j5jwjClC%a|8dR_mc zud&+$ik9kLS-|}Ghn1Ym%cJ^pKAb*Pc3SHE_Kat*Z~r?Px#!6${|B$v|5W(qd+tZ> zyWGE$4dMRfW&bnai`0AJo7((2&u&kj&;4LI!=9wG%W{_F)qR**ar~pSL4D1BkM*w0 zeSe*ws9kkKH2&0qnB%L@&V9$K@gw?T=7cAVJvZd`rY>jkzhw4OWxZwS;}yc^7csnO zJ(svucRu&OIrY1yd)SK2Wfwdu?tZnmush& zy-QeYXKgWMT_fwO{kGh`)4J0W?({GGdEj(l_BZRRmoKK@+tWXhZNBs;Yu7?Aiwjp{ z4oDwn%2ncJ{>W$kTT4MJ%DW;?ckVi$>tEd5>aJy0-S*47+LC)-^EcO4-gRxKghOxb zHcEItab9*D|Dw`}x@pm~uBp7fF!kro&P#dHhT7Zp*V^W@e$l-m^D3>USLNA$3Db(_ zd-pta{qwQz$GgcDxnkKrP8k2@n)CVG3uIg zyv?iQ+Ryi(6f`Os3vVVn!}=mwi%sv(lV$p_pQ%E&ff+Pr{^jN5@CRqh_b_aqze9vU z!O?AcQ2DlCua)vUtB>zku=V!U{e0^UuQkTXES>8-S7A!eg9UakPV`NB?EdIPRnczC z_cfY%>8q8NE%{nAJ1EQXTkrR+Pu%?y9o!qfM3=AnbMEKrm_4jKdY^yVJPg+k^s95} zWm}TU?U-r1-(T-aN$70uHQkDHHYC4xO**y9OzSN3ZZofsF;8q=s}o4-zTa{E)RJp zUT>!06?C)n#;(axxd+l+Rw^G4WD=_mo6nx^6(_@Lt@B^9>sVO+?Ux5_yVe^lt z;=-;TQ`d=8J&Y^2MtuzG#4Vd+= z_4&8$dATpwTnV4>_W14DL7tL#mnXK{MW1eNxHRp>{M&L1E+h+Ce6YNdEq)>WXQ9N6 zsV@`c7HYje_vzz?`+KVozrGdugqd;X{hi-l|MxUvTQPN#kx<9=)pNy{rM{0n+a^`> z@Mpr)FEiG#WtrUhyyipNl_QD!q*?2Ew_!qo-8R}jbHiG5?G4SA&73zj ze*QUSbA%hyqWh;dyC?@npZdAaXL+vmPqP}ikcAr`?l?KW+_dFUrsxaNp8ThC4D|ia zOTM4i*BlWzi(O!kT~GepPj8GJ{L|PMR{ZU3T z6^kx7p8ayId#QEZl=~@`&sa~0a4IhG5rI7 zf1SX2yDys8m)WipJFuViL)*)9?_%MDbX*?pQIM54yccS!%NP!nGyQO6@Q>bXDZTvX zOXrHyvc`8lJxF}KV#_%jZqW)kOW&nCHixV}tsSu7cMjt`7LB{+k$#ITx!Jce$605l zo-aM?wlpg62uE+XIn$-<^?s>kM^Ze-C<9(BFGT2|-$oHdi!^+ar7iUb( zkl<|QXw%yuke(2EyjJF>hV1*0N1cDwJ$N@wwS1RbsLt3@(h~i^fMrLL^{K5k0N}mRU$pC!&>hbg7dKSq)xe?bUZav2EF#|HWqN?>A>l zvf9^s2r+m`?+x63G1I2MKm6ytt=ijBX}7$u5<8<{#eT_a=)o+IE&LzRy*@HfvVi+IQFA9CLC!z~1!tw1f`R?aphL z^^;vz?Jara`o8mvD$kRyYddb;`p!E2ZgaRytvuiRdW$W^{I3NW?71F@FSFj=zaBRI zTpbNt>$KMQbn&lkjDK_*($|BAM_(Qlt9$+K`Q!5U)=kIH`#Bw7+EQyOk&znvu_}7! zq}OxLANRfx8DcPP+OB(%b=Ty2bxh4VmCroc@nN5SRm4i!zZ)+b7cDu)aM+uF!7_{e z{ARWtIxiQoh}-UH&T2gO==0pSPp(WC^tz>c?za}>WOI8jzC@KxZ|)qpW)XSdWqkj- zm$v*LzY8*KpY^PE`Zt$vA1{5osq^4c_pwjU6Iec&Y?%1rcoW;|Pdf8X-%Q^nt5>IQ z$?*7F>HXZ0g6-ELZiFixKi5@LmwNAhS>&p3Nex>fm}b7)+?(~dp?~@5Z55K81#iuE z+|$yGp8VCa=Ce}5+i5GLSgvhreo}m@eQCrx+sBQQCcdw)pz9>>KlomSr86 zyBg12q1*6(!t>wYmiW}D>9D4FRQI#no5dM^STe+K&xo|Pxxm3C3 z{)9a@mx{W6k96=j-&Pm)CE};R`nRvII&A%0w{OADcig@ETMqmY?^xgc@!F!lQ7rOm zuKp8ickRu!`pe<8*UoG9;;$8vo43`fGknn4xk0A6$vNnCb>}hdGMDI*Q`*N2^tG1P zUteUUdY8H9^55kjH!1(u-}m9e+rxkF%>EV2uzu#dH+3nncKNMpScCD^=2btxz2Rc8 zXL(@FkOSJ)eR<>L_K(`-djz)6w^$;x;g@{grC6(D50B4X|0HB;Uvjr*MMzv`r}eJV zBc~=P-&*8yZ&iCq%KjzVH>@T;&i#=UaH{{s<^`vj`d7T&asE)_9rq5F=>3+tre~+^ zyni(CPJ`Q4S8b(#Cxomg$=DZ6Q2D(&nf0fwgtgq$Ea#t6Nk<(#y65YgrL8`9H8Ebd zAerOFk)`b$7Rn_{Rz{wC8EuhT(jwoR%3||6{Yd4t%1PPnTN)ecuQ$acn}jXibSI7T zPlf%d9QBS|Q?t8G$v;0G4oH#TYP}^kJ@Ry^Wptd|1ID5^TYglXW{lK6=4&4u*Rq+t zPowu;a~-GhEY-ky|GgjVeY1#BAw#zGRr{sq@276MS6RK)YR?|=zt86^jk@-p>Bk;% z(LI*O_Pf_tO3&M~b^Wzz+a6lB%N^40-^cH+x6gdfF}Z7z4Es4AxG%Hb%@5zORqYNd zRcgab?$66*{87eW&-UOHXdtla%Ny5<=X1>;`M=vQ)VZ>ezRvrCjYSk@4-${R;dYn>n=Bvzzw!6Pj(|v*1OyTIuSHB+c z;1R2RUcCB2ym$IHMuCfRf9BX9DPEBC+jDVtqrc_uvxkyo-+R_xV7S1}d$B(0hs5=3 z+f(=I@_*gRRl@LkeT%bM?TuqEPIk`M;7(WZkma_oDY>zsZdy^%Z&&_DR~LmvGoHyf z?Piz0>yO0w6P0JLcduBJ=esAQr+G|Qm|wZJgmGU@ z70>;WyT1!gUQ2Gieye#GKd9etzubCvI=scs9S@5G+n1mNF}M!QX4sPfUGvud-B$Yj zuGf+lg=z8g-&y}qQF?7xeKGV!a9aTD(h7mZhjG{Q9FIq92b#NHJE-;c;7kzc`ZMj9qRQE3 z%7*iodZh2MN%v9GUMF?uif(r4OBpYh?}6LbI>t?rUn%$3NG#{4fxG*&X|Jy+&r30x zXrAr=f~ei zep&LP{^t$P7wnVIo0has4^NL)Z@*pUrqKWVWzi#6-fvEA;-V5uIzPTyyk)Vj=i7Yo z^NZ*4&p*EWw#20G(JMde-L-0-9`{|a=IGSzvw}^785(Xw=Esk}hHjI+(z+JbSDI&n zItXA_^eAf2*S_bEFRSxwY+uT1Zn%c&cife4xjqrQSnKyWM_4DXENiS3oOU7n{kzZIFC#3N+5W21_8HS>?)bZjVZGr0^^138 z6&z=;Ha+m<=A$n+RzAL)8|!|^E3cV-^Ov8+o9e$s)z$HayZr4+TrmCd)+_W7)qi<({(-2weZzB^UnO6ysw4KZfky)T;j`u9@X2zk_u$F$3fqS3 zj5{hoV~Ed|>mLN2moSZeeZae1rqXK*pYPnk`0~yYqbFN7b9A~3os5!N_c6ME|0md5 zfS{-PmVbA}yuHDueSZ79F9kEUU!A?rF5my~zDYusb8DAtG=18q6l2WxZsV5+G5eOi zobx|-_lwh0|9vd}X>%mpE_1`__5OdSeSI=xtJ2v+Y1LN~9UeCJiit@q{{P1HSmVtj ziLTdY-SsQ2DT!inJ(d2d`KZ7y*^W;^$qsx|XBr4xPEve#vL)B_<=nk){{C;id}nNK zS@L-4^L^&?WL|7tWpmu-qS)FZ-p1tmm*V^Ln12c#(6Z2FIuIwap~kV{Si)BgyX@Aw zSII9PtrakuzhGy~=Hu&nZEmg4dHQnhSM$Wzz5IP|%>O;=+Pki;o%PPiO8Y-|tg{Un z^bc9xvb%YE-Q|WuU5lOvKJRC2jN3I`-u2^EhI!lfmcCv8&OiLW&b}9)et-P*`hN4_ z-|{Q_PRm_Qei7GJ{kSCk`$gD5-(cESo_wgSL1b2;Aq^4M}ljdNAak%*{=6Ei+pPK~Z?ntI{0 zbnUv{XEM8e-@SVDeg7J98-Hfc>ipezSiLuXH_uzRZ&SgBhs+vwa+}udSu};M*5sK? zN%i^GdG=GcI^Rj&>$~c^5YzeTwK`^1*Vi%5y%e73-ub7yz#_hWjq9&_r|L3F?ye6% zonalke$Mvm>$k4WnjULwRla^nWpw$g^Q+?Q>)Ez_-?HESV}$$p)Gv4X>Q6SVi@qju zZ(aDg?UVDLd)4o)lbgYyzw=k}k6o+nJ8CBzFV4A>Y{mAVnsHC^uFcVlzdMRDV0lP{()xJbrM6UA~5`?(2`uh5sM_cHPx3AeFIvO_v-2H|9msy;VpqRy~jM7x#VW5r#IS&pPBDo_1aH5(J3(0 zxnUVw?4Rm&i_h#)4`UMG^|3g#A)uu>mwRR9m&Nt^H6F?H3uQ$kpn@&0L-dEC}A6K{F+E<&Gc9&y5#u{Yh%BD9{cYb-;>gpM5V}| zUmoYOzqQo$V%@H@v(|?6yN3vWcwAW$%6nzEW!+KN)w}}FIN%%;C98Y#oix!o_p9xC=2_uin*R>z5Z3vW%^_HqDlp? zZ8iIpFYl=RrT^YL-IwRjACu1GC12vq<+vH0fByHrz+Uovg|CRiS{cb#bnw#7xm9u(PqWCWJPPdlcP4wy$6Jv zY}P7fgx~snEoS|^efxA*Kj(-&I632M>eO9&=cAMV8cn>U z8$F#-cx(72t>ay+W)F7zpYQNk3Y8P+uZCNmj&t0(~l{CdUI`_ zoyhfK7q=gkn;V!9P5M8_ng7wU#qSSK?0(Oid+%@-;~%32bD#3E_i?awmGgFaEsuc= zBotq&sV)<2c+c|TJcCUxs4|eVtro0%drtD-kAJHRwykYk=_hqNqg}qd`xFOn@7X6i zbEh0$T$Ew$|8wV+nHuSHx6Zut&gPZ>^o{dV_a`&li1Z2c{j{4^=1QK(*~JT|_poW- zUpv|8hxUW`%&JR=_k>yWygcJ_YgTdQ@l7$E&kkQ|Jad|1;^G@t-&VHuO?zA#_Se55 zbOGD;iPn>q7d&B(tE{j5zh?1mw{161Xup=|Z;%Sx_$L} zGh5F}Rq@!qzZI0Ld%piz<(cB=i~YW=wpDQCjjw;R;#Rtw)7QMO%WC98)i3YwOiZ1#@||SQSbcoi4y<9 zD#~Ks?o7UDk)6KJKF##Oqq&aDw%7D*+qC50afR|2mD@9_-!ks|xVG~AhAqC#uJe@M ztGj-^`a9~ko!ue*pvJ^|mbESSQ>644Z)cijx>r(f`}(aDt~jU5z0gmX;Ql?c@?yj# zuU(65qz&s7mBLKUXFYAZy)mG3(fVCKA3vSS@i5}zor%f5|MeG&EuDVtN9^>}8#4+f z9Dm&&czNn)=Tg}Nb>+WQ_I*Bapi$TM^v~KFojvE5u2Zj?soux+W!>5J2OrMWd;j(F zt)+{1el5@Bys6MwbT)3m(WTMpAA7I=W!?AaRCM6{_tjzbybnwn{w2ef5oC$Nb`_a| z)*gRm{3FxwKkM$coJDq3kEB48+mCOYY;K(Fw<}Zkk<#~VB^M$;Ub<$e=h(kzSDSf_ zwcf5>M+N51zPtH!an|Rx=XM+p&$}-+_oLeFX@P?OzSgFjF0H)X`?64zchw8w_jlCU zzkOYN!TrNVjs5o)Ogp7F_o!-D%c;qacV?>m=~9@~Bcc8G>SM?69iMD2n2PzF*p^!& z->4&f_So~>X0i0dhw*Pzz8_ENxhrOU@#~&+g{-qof0OLzN^728sK0uC%FjEmG<5G? zm$Ra_r9}%0LzUYR~)aSQLJ_%laxkp!St@*QeuXmm*e&a3kt+MOc&h6{IZ*I&#%lRXF z?YYkhbMEciyeH$J@)x%`7mpubSo3b}+w1SDSndk5zYF^|>tE!QxVag&R|Ts!lI%vz1@23M6uiDsSU?+u5&K9Ul)A9N?mHn z_G!&_7p}F6oe@-deP`K|nCa0Q3KJB!CrHn#kCQ*{-M5y7?^jlcm%G%|klnp9`AgXf z*1lSh%`;_Vszrws(}S<-JAcdDPxp8G^78XWuh{(VYb*Af_ExI>khvmQqZ*sdH0$Y7 zx%G+1C*O{n*D5s8{WZhZi!(lcbaZ3sEL9O+x=pJ$D`5ZESzAxtI`s7F=Vwb=A4z>U zSvU2q+2d)_4ZZ8_^Gp0wXKe}oV`O^zZO7edIlcelGA@Ll>Rf9zxA5D6x#eN^FZ`^n zy6yLG?%A~lR_kJSOsw5xzPfS0VZiRNuz9P~mA{=>6&0d=b*b6Tl3GdD)2Dg=uhaR^ zI{kik{@#E7g+Kqfvz>b9IhXN6H$z>@uFbz6?CSLdN5s~fuu5F(N=@}P)(7)?5yoHZ9@&uKKlWs{P_uFDY7XxZbtzr^MOJ zk`wDQbFZCCJRg`d_uwAccL#E&i~V};R(Vn6R;Q-pbD?vY$5XaUjX4{+a(kz9WBrT9 z_``O^7uYKToEBMde*O{hV?lerLcc}x3&*$f{|Cm~vTRtDWO2jdd-4g#eNiUz56+wZ zyizdX`Pu5Y>(b8`z6i?lbaTrLxV4DceAn90#upWpAG-PjMOe>l&z$RUPKeXZX3won zv$zfWo~|n5eJohL)Mo4Y^Ky@CS2c5RJDc3lUix~Xm+4L8?+S0W7V|84Yms`SST}05 zy*jT!vfa0nTc>^4qj89T)3qY*txorqOZq4 zl!n(c{8mdp&VS_I#af1Y3=jU#diUlT12{6K7QvdZQ&#`{_C}j=59fjUjo@+8st?5< zRv(|={9Eq+`Iwj@ZohXjQzLjzUwZOodVmg7gP2?7jbN{GzMp!r^R16YtF+I5-?G~B zz0HLc**B^tUJlt7d%NmPdsT>eU)~3q#UCRB_!v_C9@|~&Z{GW~{Qa91c0v;la`9hk zym@Nz{}uoD*vywVDVw)?-!=WL+f978{dn(B3E_0JxY2PS;_bX?vqJpbjQTd~w^`l^ z+NJ#M&dN*MIaX9PT$K;M8^*($Ba$9+%x&-0qmA?KL|vV?Q{#9;j{e26suJ-F-*;WP zq&+XkRPMCKB+vP4pFj6pu>5=EcafKI?D{fAV{=ho@|J50J?_KY5fe$UVhc{-;;O9Am z)-RlA`4G&I7qwk?_6lpi*gkXl*$)%NrO~wOn16y97O6q9|YN zGJW&UQ(^OKMHCLmyqOm~KmK^%%${uz1rErsuZr*bVzxfv`t_AHyB#?EV>?{I8GYUD@+2us2R*;<^5Ji|0SL{I<97<2BZQ zdux`>d^Pv|)4d%J`j_@bJpHRTzw}C=%I>$Bk?CTqVwk0b<62wdVIx}=X>WoUjM(Qu6Xtv%W1!)o)(86%Ts@28-FXRUi*0! z|K9ry@1^F~zjWU5^2Pi|yO_VPyYO$`C2Pi-_a*7yC&P!4p1}_L)nqtOQ(eY!;5FkO zz5_==b;FmLn}2^iXC2>Rzwdw6oZR-g>x2#zvP)a~FAbg|6Z_=DmhE z>+DSj(;tU_=O4(w^V7$sC~f}a=yJx>`9hZhX65wGiIZA?GCS&fX5p==Q`n4x-0Ru1 z4?3~l-)NuGoO5;2lwbDti(lBiKJ(y$ESFPDtA#G`ST28DcYK1gyTZ$wFW0Y33@S}1eb@K#R?n09x_2I)7dt;$ zFyh~x?}Dv+%5N=tx88R4ga`f`wU|PZO&rA~H4n}yz3}?u!e5396cxN53m-hq`orpy zqy4PoaV%My#}ip1AG!xk-6V90QLHG)lGD|uv{vkMDUmXP_^vRuUk^E;ko0!k9_toE#Ap|o08_J?4&-oPw2rpkMo>4 zirz~!POT3+>^@cO)yF@1t9N|bJLfw~*t(amt8};P2wmuJ`SMno;}E06_nj^_SsriB z3uWDxU#|EdiaGPvNtv%_`t39;r=*?ll2YgWn8d#Ah^*MZiFW_%N>u-H=8T%iIrWPWq(;_QhNU< z6V5L+9t#({FWr-VaQ1JT^G$(2o1CVwM>M1#ui3gb=cml3@MoW|MXznIlhr9$^#8fo z*R5x!&6&FO*zJEiYV>klqU*j*e-^E39qm;$vGESeHouqY*;70AeipnKzRvq|r9{io zguef?otTSk_b*Cca8LffjKl5up%3KOKR)ay^?EV8|AS?(@As$6T5SvZUG4GSwS3=w zU3mFa1zRa=yW;1!H&G1sd=K_J|EoUmqVY2O$7_$xA35{O#4W2}ICo#JcX9uxyH@|Y zPqg~=?F>5Z?((Ehb%)ydd5@Obn(ML47(H4RGu@r*$B*TFl@}v`%RftA z-`YQqHDF_O^~~kUZdbm|`DL?DuQT`k%@5Y6kDY0(zhn108)vKX|-s@!v0!C7*h%?wPgEy!5G%@3Yjd31+9VKc$;CwSN0~P4}hxgil{>r~)YP-X(j_W3r=C*1ysaA*7dJ!M~S zyL<~i=jZ1=T_v&ib_@M{zE(cr>x;Mx z-i*8Y@BO-Tl;e6scmBq*7tuEsJ=`A3QffQ*wsD|%ZwvcJl`|6==D2hIdLFm!bm7f@q z?sW#`n_<^Vsuni?e^;rnLGEmNxW&&y7iOe4JzMvEPJd(Vt~(J5t1t8Ui2azg`af5E z^;gi0e%Xgz)dBp>KLQ#4XYJbj`v=ik1p0VQGtg|;gYF`{Y zfADs{z4Ukceex48pSJq8_4gTOy}&i|N@x6fXK`2U|C_x(`6ndLkGCxQaq(LHVLtnr ztA87P@%N6~{Op7F^9Ww+KY#Wlrl&rSSeLJ^b?$?(uDijNJjRt1J7gG({ssSMi z>8bO&7kqYY-855Rk9H=5_j7R>hDwGX+vdExHZP4~*RQ`4Q{LKm|5cp&dZTG~|I-^D z`xX|-o%#GJYf|y_cdc!;-&z}QNp9s^VEQz}uWu^5VYu)2YqqnGA8&Xk%Mep}@iFM2 z)nnayzgJ%@dvEyHwBfo>dD;KNu!E4kKGBAr<14=7+3n5G7c$qz?+5iBj{C><#an)3 zs(CW;w1A`VdDb@%S$Ti$nIxhcJo!%8>$jIa-?X);Z+=7V-o=tk3|V(BTboYrdwTCsYPFcnMT-n~ zwXK=kvt_0KKJY%z&p+#A-N_XyuNt4{d~2A$b-}h;+3l;%zOQI=@!Z49|1OaC-Yphk zohlCDtq%^maON^396S*G){fUzFtX$9@x#qkG7khjHb4JasU5EUNwr~H@}&fcCxxa9 za_wv{D4q6tknx<8y~Qx*^}egyE!Lb~xBu`{uY6sG@7Jw%U(MExR{E7S;l#cah1|Y4 zpAYkNe|MV}t=W@dqp#of=JHRjdzINN@!5MnxjF}y?YU!d~&r}gWP_w$OQ7r%pAu`{!m zF)+Mm`*7>!xp(f@VW%m=!9}g=ko{yf9 zeJW!`ap{k%zm8mDc@VwKoOidH${pq^hvRc!vb?+TV!N)|*_NfH4f%(ZJS`L$_ovzK z6O33i<T7r`KRkZCe7>ne-p!K-=gG2LFRF3TSo-p} zPjTdVGybF(pNyo8`fg3uH_xc9xS64S_?FLw#R~3+Zuf<`y*T-qQMcgH=Z$<*Z`I`_ zdwW~kB>Aro{bL<_UCFj^s$EuohMSAq$I@v_86Q8GXEpge!{$>v>zwubGh749S3B5O zswpr1c|Lo(_IZ2N7vk49KbD`rJ^c6gV-X53Rx!>;RZF_e*Z1aKX zzV^LuAp^2g-`-`mVtx?M_~YWsbMKmAOYpAzgspz^AJJ~|UN|CzN(H?uht+cz0&KF-`qPURG7F1?jOcPjN|>uwcVpL_WH=A)ah z>nBfalj4i2DcvViC-o$L1Jxj%!?eGCCb)L zp?}W3F#ISx*V!*R|65hT;X@3spY)y=|Ge+IL*CtMKRQ1@FXpZJW!v(3ZnJe$ph^0V zIjRQAvLA}NV{PU3#N_&PZH*I&&(&G9f771-Z``%dF$w1+Zj@=~{9?B5m*l%^%g_Bv zyV)du(>yTw>ZY=vQszu1JEi6cul77AwRi2Jn9C_DQ`kS)c)lo*@O1%e@ruW-7%g-1o&(mV3cGgIJ z6pvP4X4@;N%JLy?QER%q zX@C8?ShTcDH6S}_kKLE^hW5+#Z_NtcD@WPFr}cX6_qe%1X;<%8=IbsI&w2f> zhk-$X!PCVtMDNvqwH1sutFBM2{&mp3@bcI9$Dhmo`m&<%M)NMw1E7=l>Nn*%2Z7sO zbLF9f>aUnU$L{$s*mFLZ`g&Wc@Ye?~n=5XAl>XSruE)+`awF+nkk#!|>{9c%Z@Ojv zJm>cA#V3PVIpNJJ{AGbs4$+^FJ}-9F%hijEa(2s|S!VWHL*w?h50P%SHeO%%D5g&xzWhx`i zYCmQSj9XsTZ@uTrQa=~n+v%L#Poe^U1x58fY-|&ma&GSLuW$KI%JHY&_#MeCd&?@S z+cqMYo#WHZ37?w}7ydi*qjpR9n|D`|I2WdDsc1POJ@r()T*E#y_R?oNqn4RYe)>zy zT? zw|-!~`;W&Cx0=UWUr*31yZbp;%Q_+4VIGV1mbLOrKff-x@x1nX%#o76EA}Ut9dWp< zRn)a8|75vJU-6HZcAD&E@>`isd|pve{K`-3dD;6fV%H~q=r4-$`S5@9_jMPi#fDct z*zUjATkGVmpqGK0bf@N=blcU#$1>?1L!v=}&;fJa8x6ewE-!S>xp~ZtE%}gk3j^~T z9*&n!{Fh%gG27v3@I~Tb5(mGu%1sk5hUq&m9Bbe`Hc9v7u1%+=t?~+*d)NNk%=CTN z?|q-PqKTeFI!IWOZ@nC>2LbSo$48#Cp^k?C(0}|7S+$c`r~K+Hp45A8(QtOVi&1a z1jrS|+?bc&E2;nNXZ2n#dFl7TM|dpRH$R{G{mz&ss&aP)>49Ht)$@w>FooLen z!M9Ei^Jm^U&RS+Py{FqFjHAo;#EKf*az8<_$A-2oKQ_zd?)%1b+UJ6_@V76e-gEk2 z89Z5V{kg^*@6#>+^CI7`(ck)9`6l0Vzh_oQCdo6qERH`u{k_?j9{E{kKTdiqe=uBb zzx40)t=*{&n;Ghu4&1(Gwp}iEt6{6t!T=4CvUZ_ATp(rzTT*rMUgi&64EgLI?ugFb ztp1Um-(LLvuJ5fC5AGnt>9m`R-N^^f!?>1YrpI<@6h${Ry6B5wK1;N zcFBeGw`W(_`wFnLd=T2#_hw>J>Y*7bUs)E}PG0Z(qnA7W;9pk8yQQ-8uZrJ!e!Ake z=c;a5!KYd49@Z-xBlm5DVQ2MU=``p7)_51zX{~itBr9QW~ zcl+}mfwMwkKQ^2wZS4G%DQ73#tC@E6AXET_a9s(k+`U zb2iKDe|5NR+K2Sw=sW%AZcSG0<7~L*t$%BsF*pCVk1}hzTKD+exEy9*d3)Kd`-L%Y zw_2SQ(@t<*^fd2yee{phb|*S-m95$^|LFC%>(b}d@Xq}7=9F2gV8Fia7wQMAx5k%# zFs%98x%=bK>9r|K)^v;2H$QYf^nc5?om(fnt_si);c7i3=fGJ9iV+Q)!yEQ){I}h3 z&gJi_tGA`5duF&iHJG-(MEYky>heIqJ;*{A=2gZ2R`x z+w?x#oIEl=amhuq<(I0PkMi7IziVlkeqPFidEQoY5?dYY)1G{N=lLzBrtU4O;N+~%6QPxp=43~SlPl1tR@i+qrnCfD#uxy}3A{Dabd_gbIJ-#wP?xA)MQ z9Jwz`CYw)L)2<&oKUj>rB1K(c@7$cu$I0`5X$b9VtkAi=^HRUm`^u$zqpcIG-|e)# zlilliVE#k%C)#^kD*vP!nI%N$8<6;dsFTU z#O7#n**;q|G3)t?9KKWY4o;hJ-D8Ki8Uby7fdgpVeXmVN>H> z@m$T5Os?F^`FNrGNaMGeu^xvOzy0fS+bun4=H}&V%;T?@p1!fG-uB`x{ZEn4E*dsk zG@nbCYe|$`xA)kV4w0{G&n#69-73JDHS>g8vdi=JnU6vy-MY1^aQ*CUwm~&7UG#4( zKX1Qynn7OR>3Jc`D;=tHFV3u;nQ-9Y$Df6j)hYK@v%K6Y9vl6;(r)qdd-EPwmfVlr z^Xu6C!`=FOHf7o3; z)GHsnPe$JS^>f8(a^ku#)#T@Iba=S-;Ob$u zOZ9KMhqf57Z8@P>86WSRv9Qru<*aCR!-?N>y;ioG%9{NDLJ21bYSC7+#pF0GhCv-;D)c0JF6;?RzBB#leRGAxnYnlVo6uIw4 zX;1cw^*-P8?{QqO;G%CQ4lS)vWtEBKuVtH-v)cRH+@s&`f0`X(ed4&m-l~@mmlt1p z9`Gq*;l{aN160;jE~>v3u{p^xY|;FsZzCpcE4=^8K>yFFUlAMih3YH&uH36E^LxzC z`bc-$U*QDXQ%iFMI}PF(UTyp^=k;3knJeBG@rgP;G-^I}N2;^Q$XDf`>htfZO}qBa z`!px@;cn4iZ)R*uop3Wp$`LQyav&6{fmUQI{*F`a6`n%kvdyVDg3onj8iCMKSdQ0eozuUJYXmVxkW=l-j_JJYU-$Y7X z4_v-Sv zjXlb5r%pR7z{#SM@?utGV9Tdo+mgk`r!8!<-fKFQtEojOp6@QL{O`V5?RxIEjPDtF z*?+IfvlpEEq&3TWY3xP`iSFdWV%DbEXB*QGr%E{;KCCY^DaU4NsDWAPoytdwvpcJb zYEFLo@?%=MNmhT_rc-?zBi=ACvU|Aa?ad8k`}z(|YL8P-lKL0b3?KF=&p&+HzlK3w|EKiyT?`CAI2ztZ z+`dzFeig4KIQj$@v+M_#q2Cm?nO}?Nd7#c%^L173&F&v(9=m_|3_7Ux|H9`C6I$l0 z%C*-U^P72b3skloeILQIu_?~QE6b?IyXz^B16NJZz65WLGBt)&r+(FIR^pFdPZzF> zljynCe*XQbPfG&S{EYeSCBvsl);!JM_JO5J$2LMnvUln7_$%hKY_69kAKEFtSE;i$ zx6toMx=Nl3N7P3}?(IzNY7VuxW@z-g-jum~)WN$gU1@&K=@&E4u?TgD%oY5AD-3!Av?$7&j#(cSC{Yeobbu2{Pz2qJJMVE zyx)D^o3rl3Gaaww*6k7(Ewew0&5Qc-Szi8!p{9LWhuhjeFB)$#C~UlPT4;Kk9q7r$%l|@lKwpO>?IH zsPTST_VjsJeM*9>)6bq)lK$%zZyD{J`bpgGd2q$ePV0i4|IeF#i8B0=YA|1)n^#+L zwGAA50T(n5t_K&Pwk>aazdld6vFr0~#y9aBEvxzb&wNk(+$jFg_IrH)=I7~(xy(<# z?CcX3Ui;}^%tQ}C&g|_U&v0J#6ZCRX@jA3$_@O|e!N=ro|cJ*bm8m0@~P4uMJ7W2 z(Yc$99na45PVanSxKZoVj!i68(Qmru9q_1mvTf2!la1Vh$1GhQ?NU3rbj5Vx=bPI0 zO~0M;-9qQ1JU7Qq1?SR5I};_gPjgvbG5x)L_ig`stdZq1+Opodf`cR+T8i- z7HdV=HEg8pqhxM&N+{``OfQkt7RoNEyeZN7_Un0`v!YdVeg*CMarC?5qZfwHTs>y4 z-lm>m|9awfn|A-}=AT>S@>p+Me%H~dYIHrrpJbh~YyX*~Lw_7AT^EJDuHyOT%=LP% z*6|*Zw`jr(ZzwTal*zcCZde&dc(zEMo>XJY9ygq$>&h%dO*CzA! z->JG@=W-x>joUu87r(=%UPS_=uC?zu1BOQMd2> zI*C4iShQ;YU z^(waxojjyhxi7@L`IA+rM>fM2QFYGx)AzsG-4H%rWpK%M*CdriGOmY$()a!o{Tl3j zWy?$BzzbCiUhFa9)Nyrq`OwX<{PX=rk0~=IEn~GcO5N?Q`&hHsFLUp|HG3yEhzmcw z_@adz%by={ZjaQPP6w^&eJ=8LA#=>O|2ld5KkD5nIoX_8$58NlWq4PiLv%8px4oL;?ndsQjT`^0IxGo8QA-!go5HT~^levy>BZ{Nt&R~*Q0 z6iH6kYZI4Xbg<7Ziv953aa+iW53Bj+9lbvHNB)mLr|pEU>}Ght$Z((i!T*@sceGNs zfHR&btN;z`dE5JSKmUW}jDOaK-rgi$_XJodM%)>P3vrEK3#KiKFnN|!Imu+| z?c%h`8!}4#oNw2x7_V{$o}@G z$+uO-&L8`IZPKUY=gRL=))ZE#SZ!VR_RlpTPo=~y?A0u{pS#u_5nQXf^T&bD;rI2= zmBrS5G5GWD_s<8J%k5ew6wm&l;Z*tK<yJ8^@%d@%ys%&*PofAE%JU*^?qZ(Qfhls~ZBzEb+$@0Y6! z_H9?1J9Wv7y7HunKSZl}Jd?tfT~M4-zom7#sQg+M$3oeS+MhNgB}8B7X%Wmcz0RrS z_wVYyb;T}oP73(zoqBy|vQqU|o)bGy%=Q<0H1Yc>4#u^uvc6Z0E7#vH+n2LmtTnsU z@4j+w#Kjc#L$h?6|3@*pb16kElloqC`cc}qo6ApLx36=1D|}=3t}pARru1zyO-qvw z)lGXEZR+;$@~e4{dGhW_^Y6^M+&%f%&1YLCwv@d5x4GhL@B8Ctr`J?nnRI7oMmteRZSnna$fotF3y1MuBF+n;!QU-%|bY_2l|sn|6kMxfS<5YW`vO5GwMW zmT$31{`U99Rl<)xb8Y>*>)-EPmixY(+JEeNOtm`Sc{%S}Zx$V|XZmnAdv>&Z{8mLs zMD@U`z~z#+rC+-<)|fYJXR_FnRQyfBYR~tBlYcz*pL^ux@s|?Lo-=}VI6ht5cPXRk ztgz?A0-?&}EuXhMiqdg3j zS`nt_CQbVKrA@LZ`q{-s=+FytC%?95D-CzlAS3xv*nBtK{34 z%UjcRK7W{3v(}K;NBBU^{99HZf)~8^R=Rd;&C7&yC%Jv2_DqvAl{r6OH;pwQ^8U2& zp6?SbE-6?oTVhigx4c#4|C^ir#uHD+Y@IE_tbe;+?0)s>{0Elo=TuTN_B^|yJ?*ha ze{H06{k3o#IfX~A>7U=ST>NqB(B_Z)!tZ|1(Rudo>>>7#@p(_@L^8P)FPq9O<0@FZs9pVej>}t^YIMIv@PY)L;xA|GJJe{uSc` zk4Dbh(ywJ3!Wk;08=kMdF~_#kzW#~Up2zc|KVI*j#3$7m)bxgjWuuS50`0%0Zof^Aj?$!!uGL#td=h)OTz6_}kKlfz{K%-=&F75?P z;zscEFRV+p?Y*!0-adBU-BTBYkA|&yHR)T=uWTQl9s%LLUpjWa58RyCrx})cG4$Vb zyRc|J?^exa7ZwSA)p1{uSAMQ|na%Yz>~qDgw3WPl`*ur!J)8EskDJ#W-uprRt4Z(; zL&@5o|2FUV`y|$)vgFsbqHBlwFC@Efcg>mly=2ptzf*LrOS!&PY)Q5j`@MtDY+XG2 z8uh9Ack_;BE@gQ8FnjGqCYI|fir*f#{Bj`4``n7R7SGKl?G!x0YQJ-8p?&+Owq>uM zik+y6*}~$GyMJ5eF7ZfdlV?@R3*4hKgLi(~C$qaUc1gio-4hen##hE3YuUTvZ}iW= zI}fd_CL7E;{$belL5`N_zU~!ecG_ z3vJ$?c>aM`{a(Mc{?8+QmttLhNHgR!ewcsVY`d4FE~x$aFcUsP#(U#l#D6EA=U-}H zf_e`XKRzn|*jatO@O%2a=6%zZ=BX9fyv*90sIg47t>eRM(XUT3cl9huJ!QUl%BD>} zw(A56b(`gIqzmaUno?W4RX}L+EIZj;XZP@(9Vwi}o=j069i~m-Zd{b>IfGeY`=^kH zW~JLTcF)&u-IKB9$P??MGgtnanC{;_v1_IGT>I&kQ#tyM?tLM-U{`9iqmYvSHg)!y zGSA;mJ(TtQ*4DdbVK$P#j^!`cp06*rxp-=~=&voJGuxAOnEDQHb7!Bo{KVq^Y_Y46 z_m+N}ow)5r)uzL@8r?tsn*Hv;*LL}P6H|jeTvqB7=V&X?Zb`|Q`0A}i-E8~X@Y_j8 zZ=bmK;{AlYjKkkP8+@7e=fUCg_it7`PIazT|Hg9V>yv)*NoKuvc?OT}eagA?BAG** zYu09;rL{BJZ|1q|y<73e^~AYTxxFtV0w$Gqo<94mM`PKRfOhw!Tjvy6cb`~1>F{!n zuxoDeVzna9AJo$etWjc~!6+xpZ()qe%$?6-_LZ)qQWsc81jga3YR`oHu? z%hB3Oy*YBlhEH#({VA!BJZ;p|?KN?`+--U8=$odkygy?*1a2&oRfBo}ezgL<5x70-i zcGFMx2mIN#E@agkSADUY7J<9wE>!)smF11bHqrkjJ7m{?Qf7YHBC6*?cKR@vX^I6nVh#PM^xxA89e*Ktj0=ilEqes`T!&gj-91z&+GfYRTMP(S#U8CZS+j2zT#Kap4anc7yjSLtQ69fG^^z4`m>%Y z-HEOiz8WWMbRUX$*I(j#`*vDAv)<{c)5;ev$ULvOMP>5;MR8H8o?8tC^{l_2>hic) znPDi&CFr&!Q%&THgLyPZ*{xLvC+F*JoAvnZyCu`-i~O7R{;e#B^L-oBTUgc<E6d48>ZR*R&hLAv`k0Qng7A3zv&-uO)h_QZ1L^g8{~KV zy`s&yAv|AahD(qbXLeA>h1?gdO+E}=tU0#qAKMu(T28xWeEpVI>%ojU$C+GGR_Ae^ zntgonceN#Rj$fO-?1xa!_nFc+D+Bd+Zc_^S;@G}NPWW?_gz(M9MePRq?<%V+=3Fe@ zBD=ZwwIHXn!N8d;8qgUpJR*`nhh;Hq9@;r;7Y| z^j+7s-NVuU_~rM$`=-6EJN2uk>q5KAzT=_n=O3i1zdM#Y{cmN({)Wp8|5O|5w{P3| z^#-&T`0!>MZ1!i;#=RT=nKIOI9nb|&HB5f4ci7slQ2XDL&Bq^j7U-TxInpbdsKc7? z8QJyvqSBvFH@@7ScINw|%|EtGzgZ!fT$mI&p~F^ES}V=^{fv~J?cCDY(VaaGtW&<< zZ+a8gRqgarI;^|)mp_s*DqU2X3#qlx+7ljggWsmWh;=+k-adHVBQ z@%zmib?V}`{nx4carFJchqe9hZ+&w7uz1f}^FGn5RyXD~dGMCj%k0{>mot5%nRW3- z)s7n_0+u&^@g+aCSt4N(dZlX~!z|^T8QI$tw0%qUZy(z{_1u!>Yb~7>FL%`Kii>lR z%FgfBu=%uP?#@E}+zW5h?8_vgt8b*;ySMr6N~?Wx$2#V{kGq>c|8q90-QKTXLq3*n zPttk1=JnxgFU)6MyQ5cs((+Dzx6bt_hpr!+;)0(GYyaS_yj6bkjj!fE>8m>P<|qHy z-o|GeSM$bk&zmE2cl^5WWpkLmQ4Pz1@-?}6d()xAE+2B7U^7FWH||B$8#c^m`EV5+ zU1w_S@BKX){c#`r`lG_$`(lJl4IkRZWCyynovip2_a}6(`X7&$ZWe{;w(l(ppX_fb zou79(ozpkcdjHqgQMIiM(6s=Ia=JBIMXXD6BCq#2bjLI5&dfOcsK)4%jxgtjFE5y_ zb{PMjG-vJHS8w+1JHBSNZtW4Jg&nW1=>Ff-AvtlYQC&=Yx6YhPJ$L($@O!FNPt+FL zpp&`Z+R1c%zRLNdTNmEnc|mqN+uYFQE1#XXE%@Qd4xaA4kxD(b>Ju+W=3YEqo68zy zeg4Svey{gYdVe=Dr+>I5{r=Y0boqy-%i|bdroK6Uy+>77w*HUIk-5&(SMQB{`*}vE z($04EP9G!N?;-ndIE3cgYW_dlS-;;e;7#7krQ12S$5kson#&zr8hdB@^Lbj_e?PBh zIlQj8a%hrgp=B_TgH~C{!vYCjF`W027|50+)Gb_Yv zV~kw`wu%+b&8`2u=iJ)`M}zd7ulJr>DwI=sc((xetF=|HzAv&|66@?3H_m?izV459&DX8v4?nD#b5m#!`+?cl&9?u`fk!5+5fcL%0-ewNfSq9vLpB-Rtr=A(ekV)1^G6`TXTP{}p?ultfjY&r7d($g*epi$@j>`6oMgwkoZX zJ3Dj1y4y2WB=6t*Sirs8dZxwR-(`u4@`>|rR7~2kP2S+etV?E_3s3)4e|oC9A5`=hy13iMX+PN}bOM z^&537gz{7E)Rq*^n7=va@3CLIzuKjpmi~RZaIJh5OXRPOfBTak-wOUAf8FokH-AQk z4=fG!+z;A8{e?K_e7Vi!jko_VgjRdW)ycK;4f(7e7Blp%2lW{CS3J@B^Tu}jqxJH( zDo%Ud<8{=IuGgGd9{v8&i#;Z$%AKjR_n+zRw9{Af3~b-E#b@z-7Dn+iIic z^&BqU^EJ7zLqv{yGL!t#jY{+V)*qj*Yk6C)u%q~AqjAM$-~G+6`R2>5JZ*BP?$vDZ zpV{l>ws}P<9M*HWF?qwI&b-YLAs5rTssuA`oGO*O*S%-<9@k6T-t62~T)59~>$UZ+ z|87p3_szym+CBB^YlDrc>NmCDdv45svsnCQ-4btK(OMFZ&GlkdL#ZNic6>nuz zb#DXD_2ioLaE;=>GpR zO~33_y{qELS8+*Z!WN-}r>uiol7*%vMfL0Z2fKE#$iIwSzEUMSHq3uUg^{0IYova| zT!Fd_S(39J} z2d;0>75c5D*!fz~hbL>_=6<$iH)s6amYQ`iyg!ud>y8PPmF1bsD?Sx+-n{kbw`$z{ zpOGIwE8YM6NcQg8Q_uV3Q@G-ae?-;)aQQs;1Q^|B56Rp)Gf+!8K-aO0o*r&V!xeke2K$K1ZNs~A>X`Zz=D zzBdfFrC*sO)r zwe9yeaZOTD{}lCn*~8Aui6W8yXZRXae0OdO_A1*It`+ZsQA=yKg1Z z`Q^0Lcr1%&J0_^w;ZF>d@GrtnNHx^&g=nahg}#3$XIc|G#= z;@)e;LTkDA)z!@9ES>2ge)FW!$vZ7Sx2lQ#T64qdIL~hb_FQG(!Uvx|pU*boTDG;= z`@`jY`HdH{im#PLAMAP5v(=WnF6z(aze(F;o>do#Z1$~tH|;$`8GFmh*UR?iaTb?7 zZ^`LRy8X$hVWZJgE}x({{dZ?4TOQlz>Nc;w?2F7?+s5fJpVNPIJuXjfD@ybJz|C-P z*S4KsKZZ&Nffu?Mvs(X+F9J{EimPrjzt+!G!3`Qj+muxNP37N*FPwW`&xz4O@er6t(=+6GJa(#cNq zRi`IMm)882R$6!Wmw=<)#;ukQ&GmRp1SZ}+_B!>NXQ1N!e}T8({+@r^t?J)_C9=wj z%Q1<8$4#O1F6de`I4@Be#Cr#~9oCC`ve$k8^v<60LZjz8Ahut-p8X zv(hn127AT_Z?k7di`Om41xMfcqA3r;L2>HD3?4bHY@COwGp()n)?XcwX0nd@D!EqX>= z@~L9~&IJLBpPQ`ye8r%?UjD}78{c|)Hb5G&Xk8e5E=}#BiPgXMB zW0GWlEaI71-us<9wxv(&%enjVZLE#(Uzshv=_cVWpV^kq*K+B#^}qRN%JJ*-qQ1rK z`%$y=gz(+x&WXuMvEECzTn}!!lry*2ZH~y}Cx32kyLrwrhU@l(yY9-lHs7|ENSx0q z{JUu`|1p;xCvHbYop?Xt(jg1|c;Ua%*F3ytL{0b{SF>s9)7^=$ZzepvkoWs$x5XxQ zYX<1TCg$V(wlkj9PJH}W!fxN6qg&6e{o|+)9$-^Ce(qm;ASgl)xq@bR^$!&I-Jibp z*0jAH#-IQGSn7YT?YmutjQ^SMoz{XUl{rf}y`OnJDVe+^bBntB9$t-*D9;y1cfMYK z^XdH#waG{9yP1+%HlI7nT^keS^CPo5;n9}(k4lLfeE<0=|B<B~;-g%u#QHfVK>JjJ7#O+aU@7A6>du;KY zMQ?332Tn_TzKQ+#i9PObHBvW8B+<#GH80Gm_m@0c^zQm!!SzNLH}8=7ICtgz-xnB9TlU+9MErZ#>pp{L z^3SM;0#*N}NqmmVR_qq;47}Xxus3z1=r4;qw>Al%FWl{#DxKUkpGUrEyS(|6!l!>V z&gT4VZ2tQ9R2lb$r5|Rcxw`$^(DGdNrRF{T%Sn;?-`;IKRQl&x>h{R9N38NV|MO)$ z7qZ;%lJ9nnZGYLZY_q0<=wPXCv%Y%k2^qOBZ?0<9yYKyZN_juu@7>^ej6>nE)#7~T z<%-Qj7#PZvEbhPW56krc=i6#Q)gR!-Y{G`U8|zFP@a_Nnpts`ta=%Ak z9{;|e7H`A4`YD6PFW2Qg=1xsrXBW+1n*8|2t)?Hd1m;RBduq)*B>eE->1r{)KhtJy z6j_qne?o6p`gWI|^Absi{DsOVUAgizi-qOKrP=u`2WQsGF4*(;#P591p61`~x6ik{ zk|{3Mk_uk4X`STNWv_3)VwGI)TGZE=CDNIGv8-&A-5@a`dn)+!Dq#j6E9s;Jkx(Yo3Bc%{quTjiN2eEzFGe@;H`u;-M^`CieDEni>mNqcTH zQOl}7f98CR>OhF6|W4D{_X>>%|=TMa=Cqiqg zWY^?2)Y%z3R(74pdYzx!@3w6H`mH8Hmr{MSlX(l1PM&IWe>>B*RYcn>|MJc6i+vcj ztZweLcYSdBT2AiXnrxY%vUjt>t#~_Am$o#{eq2@pGnzp?y%U{)3gQuu$9)luP;J|CfKimw{ z!BZOhE52y$c`Q7?eSg)L0-?jgF}GH;Jt$tMA#=fH+R{x*r+6-~cx-E(s+#pg*7Jv_ zVt!>J2;4jWJ6SL1vB;LzgYHD~UxljgX` z_hjl$fxkzt&2zR<<68T@ar(3+e|^6Hu5z0a7gd7OM)S?49oM=H;~5 z_hkwlxczs5Jj zGHXvd%N=&-a{jx{;)BM%-_PzJ6J?+GE4gz^`~5tD^Ls5b^#!|YMb5EQJA*4ls>We%$uCUH`7Z0#6}A-`+p9K{jXW2wA|07 zf3&RDeSdz(n{5}2=f$m`et7G*bKNeEdUv~~?wgylZz6-$3Hxiof%}6uRGia%9NHf} z_i|PLVZ}Ah{ht#)hCWMQ|5nO#g0-njadWNH=C2yRdLLN1ZQ0&@=B%COVd=Tk7FegZ z^Ix3yBwzAd+?GoxdhLE6m?kHiXHzAmzx$uwoq{L#(*Eiv&0+hX&-iEe*0XDiI>9Rx z8O6WZ?*sQ&=9z+~JfuK3QBDKR_ka8#3|cUCr|tg#Gomkk`#3PnQ0RA9V(${;sVlfq z_56j)sXQ#bcY?HjN5xKVu=;QI@cBs{?Kq~m6*8~Zaw_hAyHJH|?~f;Yxt{F5_WHoJ z^THE8#m)Yp{K+({+2O|GO;fL*l6fJPo3!_vkKgJ0UL0pUwsw^Ca0F&2x5da^_+HMG z8|;1K(~|V`U*{&@omS9i<8zF&PJds@*E^P9y_&YzUhX@sbg@7C&GF55zFpbQ$lZ4H z&IHbBhEXnCYM$lj?PTB*7W0(5_U$pdef#x!d$_OLw%)Gr;*qOsDQt9g;@)0ds{YEp z%Q<@2xwF$&+?=uO+qS|8hHa(~LU!s1eBJ(2I@fW{rUkzngg!A9`gfJ-+rp#Y)-D1C7TvvD6ixu~Ze81K{e7^F{PDcUtuKovB)AkirD_2-Q>BxDyX6=H1 zcV6zgAEo{Ec5Hu*cEG%=Yj&Kd449+8?~z>1+tTt!m;TPby>YEL=RY3s0N&qQ(3$?k zt2chm_63)`=aq8u*X-vw;Lr497AP7E_sxG8F293y_IF$U^z-g=`Hx*<{T{odU##$F zdf)39KF3Yyl~q`npASdrGq3LWOUi;D9>ufxM{GO)dg7Cv-_-7OzPQdN+;&e)d&jnD zt##=ROW1e*oD+S-jGJqwhslwtEo-(Yt-3Bzru;APU69DeTCLOlM|5MiXC~bfN#uS| z_UXLm94j$Ci*)S?mGx|5*%2Q;ew~_HINRrI*r~+lI zpY^fAU*??M>G-8xtbpPE;^fC?&u2St5dW|AQNwC^epkZN`Ro7u+;Bciq<)RhPQNXm zzC}kA`P`oO>CTRdvlp&yd*8p`+2!Fx2C1)(*Y53__w(~3`#Bp|%U>})zx^wjT-du{p7o_j1G_c^iV=*QiL(s#H0T6DD9fTLbM z5<2(4hD-dD{R>EL+<4<&#D19r{7es5!VH@)C{xoxiUi9IJ2vL<&%8pXYi%;c=P zCwKq-#@=hnSL_&n&7A&yt@_G&+Z7(Azn$LQ6!`n-*PQLU{~vI??%n48T;x`^J-5RZ zMIqIvGuuMe-#a=@e#4J`u1%ZUbAP+OcKPC`o_p?IMV0XJYvo-o>7O5ec#-R=v{~zx z`@-mdrz@-8TWbpQ?Qaw7d~&fO?bddi#pm~}-S9&q_xa84Pa1yha?hu~pX2;%HUGSW z*JJC=^K8F~C(ai6zyccaS%1xJ`@DOt+rUezY#Z(xKvv<{ByZfiaUcHyd&UpR(4js5 zxw}Q)?@5=fulZ$E;n~o!V8(~bErKpGp79l0W@6G`Wc7a*{OQ=#e}S`Ke%Z-2Z#Vf( zn(=7YM%EySO)c}=#C}(WN(HBGX1#k||JBt`VKdk*dn(;e{xad%k;nFB+K=rjJJ#M^ z^iSoHB-0+@L@mGPYqwnLTJAA(%G7&K``k9Ijb6W3GWEpwoo5%9nAslR9<7-6SNQ16 zwE6nhZY~FsenvkR`pWQI-o<6h)NNbcmwjRQ{QXIA4lDoP9>10KVt(iCy6XgarG-CL z$@~hNWVrk2v!(wsnH#eC=O2rX`w$ni>3>Yn{N;RA-sgEF9p(E!Ka9Uw9@Vl@-mr%= zbfT%j(%JY)H*$EMz`(S`koCatxd9#`{M=Gx-(+kC%lJRZ`&PxJfQ zj`iDnpFH>BDoltcu>BMfE{!5ne(@v%j*A@xB`(2e5m9oLD zJI#5=|B%&tXMN_Fw=kZgSj2Ddn%vVac0%7$bpEnw-v7FVV^99ZS+}ZQY?s`5t<3xV zfkc*b9~ULx1}|y-bD?bUF>zBlh7Wrg>e6zHU;lwkhP^y=?%pDB0;pgE?FTq*Q1kI8 zWK8f*jeXtA;O!5$+trHBoAI7`vh6gRUKbVrl%pk6?nYe{-ck9ghha<5f-O4VxF*JV zGe0rE7nakhGx4_PFAFilgKuwNzMuYRoomW1qeT@P&0EhYs=o4I2&td>Dn@ zi^fFr_#J@hivTagw^zo%NX^-ZFS=ygUFN%mv z(%(N*VCvTsXO6JybtbbE@A=h{D0quEDaQSCB#ZWolOL8o)cLY=XXT-rwTT;hH*TA~ zQRDNLdpTBp-@a{*F7wj2)0WuA>Tuxu>~&Xv+*$g3&Y9WgZ;33O{&r#d(Hy=-k&e|D zpMH+~Jy&&me0M{U+NAeJRdW~bXsCBfiTh+X>9ygP6Rq}@_P-5$;!Yd1)k$AoE_rGH zVVOnlTUzFuCK;aPstlC7_;TUi4gIc8V$VD{?rg7U-uP0*jC+*m;JK`H>B1Xd^i<) zdz1Oahvo8n1mFL=(p&N4V`IuCl&AZ&q#NJQs0em%&2~ZhwwL9v_%FTbM82 zWjwW6f01JCeveD`N>=S58ylp)9ta6Ce!Vfr+j-aVLysqLS8u7Dba(#Q7o4|zuAJ() z%Bg24|Dihk2lN>xBY9ocbqyh>Bkz+TKjM3wrn`>_{AnbGpMQO z+3`P%I}JZ-2#PD^Ki&A&QoW;G_hZ#fKJJNzLW`r$JA3Qo-%NJhHCN%4d9=P{bazsb zY`@L)x7E(u7P)VbzkB3$^_PQ=Is3o*oyooQ*6*{zdQY>xaqFL03vNFv5Z}EtC}0cI z{C^6HRdPRSQyXlW&tIQ=x%lR`bq%z;X{@z&(X0l?Z0hZpmfoi zjIfDG^VhkqKef#7bu8VYvepOObn%1{u&f?;xo#&_c>c0@p)r>#hGJnaWlG-oZLZ?MN z6spSbckur4@{{gVm6u9y6NNi#b1!-c_1~&CdZk~z_k{7MxR<|w)a_dPykI@^p6&BD zPmS)}^IfT5%WtV|S;_oY+d4U8XaDxQAawJFotCTcr#kNQZ{D}wPI=#J?<}*~w`cP6 z(BC!Y-gmN%<{QLr$q+m(sgyL!MycwC-RES#XA4^GX3SZ5s75yB{yNzj5&IvDzCXC| zrnB>FMV0|aU10RDomN)Wf&HD9YYxah?ONg@tH1cp%Tv{_vlK6^la3Q&tZGT`Py0Oc z=B&#HTXuho%z2#oTD<%8PaYnxNeX+fo$KUBbSo<{o z&D-Vn%ANBTt;j36tDnqUS)%0E&u1=IE1|#t-`|RV6RRhS?S4_n20DNGdiLz-{&lxz zK$>G*Z`!_shOL|u{gc7lS$i4o@jdtnZkT-$ZvVKh`ufLe{@BKS+vDpde>gg&?fyK? zWs7V&MT0;5+y3>);YoaoSuR04d`cr`UBBc$Z`)_F=u2MLFW*`Sc8bFB>2kG=0XG;A{;X|^dHekIm%EQ*R_|P4UEL`dse97w zewUTXs`jZlPj*b(8T88IMwh$D&C|74Ru}j^v|YH2yY^?ssn^S*J6?L^`FkpOGtOH3 zINhbID(cVV6w}=OTHEV;Za+CGZ248@Xqnf0rOf4`A8$VHpYI_jZG54!=3dymCAPiH;e7r`a^v$ij2q;QO78YNn(**0Y%Rc1E9>K_x2tX$|Iv`&>8E=r>g@%g zwI$WOhvxJ2U*o#{O>oh^eiqlg+k70=czza&-oE-N?|R{*(o1>1Qfn_;$xgp+wc79Y zy8Bus9qaUuU#!(TzV%B-@25#Wx8Cl5d@J|n({nt5|B7;R7KYY+i@VZYzxnH&sLjQh zsWU`RE1f@ZZp)IbhTrGPB)yM5^WxW)s93xGt$f-S_8pzE*j!@Mq*ITKnZM?H>DQmG zN-do#*K%o{WL3>W(eIC5uiwo){Z0Jb@Sk$Wj~mvA{OZo09sQ9d5|kzm8H-r|onN*v zKtqJ9TI#m+>-dI;bN1;+gC>!R&wQBoJO9}FJKtmGSlUMiF-JX6PEiT}{qd&>; zYX0&#>Lo`#vR1m#-jVg&FVEFmF57y^bxv;XAeIesJ=ZR`zX=apy{Y)eyv_Fvzs>tD za`B$-ME0(A`_}~D%g?QjKEGD%wZgx%tfKZ-Uv_4Fw79CW&5qeeDX)D^+s&|5+w!Iz z>FcPFmRIxLc2~XiQ}OfL$L%H`zWbWbzGeHpKhfIX-zeWO{_|z#xCPRZ``}FPUb*A(~spVzUm%f_m6L%zx%t` zo%(MJ7Hl@Es$LLevuFAJ5D&*=-bUB>JUa{=pRMHGA!D>_UVSvbSR{Moe#Q96X?cpT zebZkb-gw-`OzFw@rBf2OrzP*Uy*e-U_7CL^a{32?9x#6iE4#GXb=%FFhfl??pX2iU zHT`~^-?sWW={h<$1JzqM_UL`dO|zZ5L|kM+tJ1E01}R@NzV6%-{%rAlS8aK(h5er{ zgcx3)6C`jZVJ}bV$(vhSRkx(xEOf-Y}L0yxi5QePkVglr{%MotuK>SJ)X*L z-)+A4L3zQ|gXc|Oefn~!`Um5zv~5fZj(w$aj}QMivCVbL%CCRSx$Spw9I>7_@AKAA z-Eq;2ruv3&PyU$yP*!5zRrkV|QB~TfEze!Kxy@Pam-~r#=}xOx&-!@j^P^q0-`Zxx zbbaxeXSM#ok@-?`H|^hDb^m_iQATX;+Kq4d`To=hobS<{{p0?L==J3vmv&_3etLSV zoI7{%_N*GctsSp&-`}>pas0H`wSOP(Ip=!3W_8ni_fqh#zPr`Y#rH3LpHc00PdZG` zDtkS1^&Q5!t5()OzVc{kEaRRPD_$!uwXW2){k@_tMDFIr&Wf_^pqEoUZcjdU;qfcy z^bcFr-yM4{`}_2Qa4v~iAM6=^{M&kVEqhq54>%i(cX6l6fYu-eL}+d^zs3)`9JQYD z!6(r11%>x_CRZG{-TtuOU!J-8kViyQ&G(l1%guB2W__8IQJLYIGHIW(=e~%4lgqZX zG|gC%B^ZBcS;v*`r_4%WOBW>VJz|v4=Kt^Aln0Y~OHeXSx`>kZUuKx;|pgS`TPr8s({95Y5 zd4>PySgfzdpT6L?)whmMv6EZJghzMvUYV~F*Y4@>lV!6Cz9qgr^v@f<@*8?xHyINW zuU(6oKJBd3waNP5ro8%aNBMTeVPDYv_-04H)y*P*)*Q&){<){+&BAn{{B1`!`RY>CpPBi7ha1X8g9P>1tmBr4m=KJFcX2W0!IDyXfMBUn-kU zO+OT;^C|MZ?X2Y78D}k{>(?3_{hqQ*_O=*qVz)5BN3 zSl=RY#Uj>5_(I22?HTvkCI_diO-SFUV;?PMki%Y8w^NVzyQWWFP*S@1rh`?^$Lx+p zS!}UeZnF8b+0M5&mVf+u{eI(WKD!pDj&{aB0uA;1x9$A;qbnD@hb{5?jDKoz;F4YL z@V8^X!Wn;UNS7t{{+VW-t{}~+|w5@&Pv#FNbtI5 z^Va*57IJz@=T@3GJ)K#rR};wpcw@Tf-;O8Ke!w4`PcV*vum{5$EYW(Izc~{xzQ6dU{Lh2MKb~*@6E1W2d&FY7)d$}$-xt|?k@3psD!E15 zm`m2D6bD}^o_47(wf)zq;(D-?QLT=GxcqPhM@gwLxUHM&G~d&tBaZ*gJpybf=T6 zdu=`$?PmD4Y_i#n$op}d1JwS@Udq;Ym|Ldyrt{PJJxrU=D}R~2tUh_tUhC`|sqTOO ztvfzF_Ge(t*RAi5AB@b5;xC0$zdvZ0Yt}qXpX2(_aHnMF^qC4O8#5$@zMK&&lieWl z>&eWT)5gD!*zO2ZPnr^SH2Bu9=t`Z-M{ITKqZbKj`2@F3RPWAZzPz9gm6VE>|HNV%X&2MKEbp7gsZ^8E$9s9;$8}{}F+n#`w z)I}$ZPxWv0V3<5*pWnjj3vKGjI#&Jq!e1wS@ClgwR&ZKjuX&%OWG zJpaVJikjkzFJ+D|8+XXQ6_!wpdcXNgncmbBzc20gy(u?2e^yw<;)sYGTTA202*n9+ zABxRly>?P))A_Ssrp-$Uf70r1>lmF{wEAQI>#y!&-nUD7E42gl_)l-}kZIkt)p`4t zDu(&iC!}*ui*>V{IL&X<)|+kDp&xhKsahxY%8yWn{J7h9ew~2U?TP9)-u^!U8I-vN zs@p9a*1kIv*-)yrB|{L9h5nzSOgU(PsudB+5~&ssCPdak5Y>3n+7yx~sOy40i# zBIjjip0ckl)7et*E@FLoN^QaQXocge?p>Rhb#3LhiEoW$4L{!NGoHr(S8iUR_LrL> z5zC&eRp0z=a;63U&ExlWfBSWK{=w+Hf4VZWYz>3juRh$mJnreUIUXCNTFz&zj>>v& znRY|{*@_C$PM6t+iS0TEjnXBreVXEXq)Sh1-P&H~FByH=)z@$CDS5fE!1U?Oi%(yD z?L9WXPk(!-jMI*@Z_Eys$gB18)>j#n{_EK*+-|*V-pwBq-WwIwo_*%Mo9*{k`%SIR zpSMfyk2|%;>WF;e#r*$_)3!&iFTUq@SMQqL&v~lJnf#k_o_-QqF8Y(>rr69&i{e_U z1q1eHMy?E*X1`_C^sKe*3-cAVSw78Xn!5b$y9wNlIn`f|W$jgZsoUzj*L?n#K(5+N zwWZOU11jZ=@05H=-1Fww_s5m)?@G(W7#RAQe`GS)Z`!u=>j&sSTq4)Jf9Aiy{kgJ^ zx4mC$8UBfbE>(PWHEOf@$D8VWk7K{Dd(6xqt5`Bivx(`JTK`szda---lGBdcD_yr-lu zSyB*vhgHlwYr^Zhy61m=a#_88{nt}D-(&UH9lPXmE&Y7UmJ{F9xn*aj&);q)Y+T0V zzkSouf12H9?4QrisZGnV|7m=3M@z(yJsW---yIkondUHB`@zyMt&->>pm&}p1Q}@=lt-Q8)Xa14h zsdJC+tk#lYs5Wzt+grEh_RiQvstG6mlv~-m95TNDIc~Yx)_7$l$1C5S-1wta9l^bG z;@^h&<4LG3Wm;tJkK{&lkU)@Hz8Zk~)&FL0)P7ZvzwJZNl>CJy_F^LK@lPx@+R`PHE z^T$MKpZNET-&U^=roUG$)VZ7gdxLX(rTy_Wx3}kTFFSQ2n_p?I*t|6xE_^GIX;uj^ z?mV>Y!jhfe-6q*FO){7svPpeGakXuxZEMQ(+@qRrjF%QqC_C=IW#2cYs2@tH?@iRakKQNbt6e3(VQxoj>?by3ek|eE);J78cg~7uSR} z-uAEMX0U!sEp-XG9T{`{!EUc5Va0*#pKn@Pn6}3An zE}J(q!u07)IpIT#f7bS$;Pzj>F#cY$fAySKpY}$mwA#J4yy3P@?bS}J)%jm$Uy5Wb ze*Q@Q=KQmZk^p~>r|(Cvj6Y(O`985lU2WFaqgLWxlyJ4xtrt4uFdx2 zDy=$v@x^2zO`Dg07Jizkx!R-Pa_Wim+JAEN9=mMak{`IK?^i6F-u{Dr_r4WJENt8I ztt4Wn>2n*=_@BCm>idMA`{zrU`F!);o^kr-qn{h+)or_L)kkNxpk+ z()xk9ME}W>bU&r-8lS};K7YOO&+W4pKJ^4{ym~Winf$MxkKWit*Kf05G^1wcweZ}Y zP1)RuhEXmXcyfg=UwYIrr~h~E_iZ=7eNLR?v`vsZWzM9>C+{!_F@F7Qd1M3Ary57i zpxB*%rmdLS`%o-LYS+87rovx+{znNqUYmJ1>b%1Aq*lqd+l&5Oc>ZCU_&>3}xAxXS z^Y?;c-gr%gH0R61I+k0GpXvD0a_-M2c~_V7GhR*3Gi<+6dA2TNLkIWk-Z^y>6j=6o zT=CxacFQ-{$I-`f6W=tqcDpx=0*!oquacZ>db_LG0vQ;s)FL?I7J94+;zmNPhxH{8&ShO7z=?gEd_?&Ci2oxuXU6!e`ncnP6d&5JLF47ptWhHgJ@8i*ZL zx~O<6)+>6}me2bt=ZG(z&stdO6U}zKS7YJ1B^#9HZ@WEh*-F{jpG6Mot6Qhq#V7^Z zO>Cd{<;95(KkvL-I&J#rmo}txmfU)l7rA(!`0YB-rIcmt3a{>Wul@8zvNj~#_t~p` zlRI9i99Ddne&W`#X@>LGZEbxnu~GiH{%QH$+Y)ExTur%`Q}`}QZgp|tmKTEgH&@yQ zf8DFeQ^M4KmFz5#0P6`DOSjBX^%16zwKJz#^;vR>=Nmr@ZdeEv|Uqalh8c`t5Nq-H+$v`fn-+yUr`rF>@`{SSqsX zk^1fDx_=*fo_N)(yY}WGt_tVVWm@8y>H1!Z6T9EsQ{VIcNwlVLQE{=Y9Fl4pr{h%D>KIy(?qs+vu)*GjM=6JhNDc(F<=#k2+iQD7y z4`oK%oSOdnL3HO4JKvV$$;~fK{LM0@iqsd)5}*F$XYwS!&)=VJ{r=_V%d^~{5juFdE3V+JN{nTzT~glCzq1@b$bMt%D(e@W&3II z#>H2cP5XHEPpa+bJIA?|=6!tgdc%ibn{SJ{e{8Be-nR9~+Bb0~{i%<89(~^W?Z(!m zdH1Io&yHTS&8@)R?TTDr?6M=Do#NiOWq*U9dbU_Vsr9rTEHav0=<_XD(a2=*z_ai$$LPxMRb&{N9wW z)67cO-HSN((&vw5#@5e==Dg+n+1dRr_3yu|^RFIno3k?4;pvJQy1CD-CR(^ZG?}$j z!o76Two?WU+;tJtjyEl5vFDA^*JLZY#n-;ea^I65?jJ+L>lxV7`xgs5dMsfVR{QdTICC>nW+TKg{-; z<)_ZJxQOTE(`_$uI%{RFF?wB4UO!`caff%afn7?AI~>cA)2Uj_@us8?{Hey^_5)vuF9)KT@Bsac;%h6=!Sr8U^hW zJszFPdi+Gy?df;+|J%8>>9c^Dajn!znLz8PiAtXiJ+k82KfnBm;+?ureldj)E-txO zEnej9zhH0EkDnLndlDa4GkPw+e7&>b;koD0UlxcwS6aU>uKvxX(p$#nub$7X4{#8B zX<~G~#xAGdRI)#XS$3N3+WkgOVStmb>zg&xRP)F=UUS3E*s{j(LEw!n)AdYZb}I; zFy6m>>vZ4mhOpe9*HY$NoeHnJ=ft#Xj;4lxMH&m|{+jXe7YWrlscTh&^B+?c8TVe|YQ zqVly*G#LEIgY)zJCn?a()X`g96k0K^@ZMa|H-F4!*tf&1XiQZSKog4Tz z{t)J5zvZ3LH0K$|e!ja!(JtC18&*8^pV-L}>REIu*V?pEo7d#gJnQ$Tx@%SLysXKw za^Pxaj=ZP8{pFHx6XYD8xE>3d`*q5Nzh^_F^6zWqewA~)cz;E^lEd*y|RkyJFzW-=VIc#j4j{)%y_zd^1IV(tyAYr+n~-_`0jY+3^n)F{(p+kce7>wz`>5Ggqt`guUH-`IxDWTz=cLOYtoo7qclG>DJ`Pgr zzQ)Mf3g0QW75nV@Wa9H}-?w}}8eh%t@PzTiZIRRbQpfg&CM#x19Xn#PJMP4%BIzY( z%c|3N%eftzxK%M)|F6_m>4?J1_hf~QYpYYTonow%U)leC$hrK3Q1F#1xl3|(@|WwM z2;7{rHv2$?{jo%zSvOPowyD*Lerj5{eMzvPvi8#B3%&?!QJ&+q;aldx!j9~}W;d-^ zp8j~=6qI4;vu=ZP|5>p^^L#YlDm(Vq-QM<4J?z=x;*>9zv(LGA7k`R-a#8*9>FsYH z+U0)nef}p=@zL4oFHaT;$yQeghFs%h$g}trx#!QX-5>5K&v#KgB6Fag;RAE_>}dWq zkjcK7IX7>C+FYYELF{(voe?VCdw<=C(r0*P)G02!*TH3f>fT!0wG9bxv%F1n5A}CM zz6_jNX;;uU?L+sgCvQtr_TJpK`E{DkmsFRXpQmj6dTq;$ZAQ!ftgySnW+S#noPELZ z4q4GnJ%uUhNjEK=*ZEYqCx!ckUH&XyS@z@7twr@$>GifeUuDXTzxZ- zwAk$7`PePtOZ%T6J*>a)k?@b>*YCD^f3yF*=k9zpo1TaNcmA)-EnfZ233Nipq03#F z|D(Z!#1B0WL57Ak8T7%&LxN}e;ydDZ{@-cw`G_5ZC99}+*ff_-&u<$#%5^90xj5<1 zrMuiF*Z5?U4(~Ep>ZVp%>Rsp{l(To`^&8s0J`*Y#6_lQA+Ox$%rZOFx%q6F z>2u1}<}p54`{u>VDOwc_MOWKh4~#%eZ0hA)fD%Pc}aM_V(QUWa*SSC#9-+0`dY2nM~^yk`bm6IVe z%iXqbiRCiew5Cw#O!O>H{#h9^i;q2dKZ9fHqv`HGuhdKf=NZh|{@VQUM|YOpS*xGK z>|b}e?1W%~?)2!mQ+2&Zu6Xc$`MRJm_jtjz!(j;<7JF5lE{INbab4f1unQ^R*kz`zmy*CPjanUDNioY?sf&SGQchUP$uQX?ya2X6L-a ze21^iyY<>oSgCDe!QF-DA6Do8ES0Hf%X_T(aaZvApvCU?>n~1T>aL~WZlF+|aML~L zNOAF1C0}uy_>_?Zo66Y_==CkcuZ~yUk#l?;N zizXxqL$>1AK&BWT-t52o@BID%P-_!(uEKtq1K*h|lpC1At48(}Pk%J``<=Gn<@&}U z;adW{^S5`b_;&l!$MT(a&pkpU4(SFyf7mEKoNYAK zJpM>pl&;cBP2J}@w~h1muQ)f+G_d-@jcw7D+kPDt+Pc&I%()4H4PTjVe5&34$XtF0TmO06ry{}$VlE<~J<9Nq#8azh`}Y z_QCv`znPUP+mGzI>#+WKl+E_1sY=Vw7B-wwulHws^XriRo-Mks{(s!ovy}gxwD!M~ zJNEvx-PW49rR-^$n_Qmck_lIIgEuy)9NzmpexCXHEoT2M*88YU|HhNQZtkl2UvFI2 zF8U&N{9bdBh-agJcgwbL>xtg#^BnZKKU?`_Ze`#U%wx6P$;)er_wjxU?)c64 zrvr>g2!P41Y`-_V3M#{-$Pi=j#RDALqZ%JL25` zo`1#M9tGt?6ZTwt@?S9e`5i{X%+!;|zhyH9+Xz~UPM+Spb>jjB&lI({Z~s@PR!(U; zI%m$k^xY9W8@^8XxaNbRt7N^L%yqugTQ=p?ip^4UPnGg#%D!!SFwfI9I=xG)qrkCA ze{D?FKiw6E>Ktibl((yI_e|NUlCu0ju!rtNo#y*dA@%wGg*7i{9az5M%l2!< zqQM6y9r(6#M&FysJ8a^fa(c<^n{CDT^JdK^vrqX?8gn$`Jog5@U9xu5u}w?-E-bK` zQ|FoQZ^_m+@#wt;X3rJRCEWhpm-G0m`QLY&k8SS%uq$|dR8FRrt$oG6W{$_tofa9s zZ@*W=w$@_e_M+v-^VDu_wK-p=U2yu#T9cUt^EvyCR3nd+o!lz<>Yv}g+jid!9aUJ| z4r$ze`u?TWP1AGd3%1q0)%D)GM);(`zP~lGPi%h&IQMQ?p-)858^D7pXqf8{gN=POixoW6}|=^kjGRJrD2@jsT2E3_GYFf-&w z+`jYc0JKrDnS1xo_k`(5-p(Tww9O{id=n zjtA>VJ$bv>In�f9vu)w=P%x+}iPdT6<4lI_J+EmVVoVkNtP#2L68Isd%gFQq+ep zrKdUm?9nqib1kyFF^uP#&6}E(;_32+7sMJK$4w1kzrE;}|pW(uDpWoqi9r zMeA|o)0^%Ucayx&zc_h1Rn>Yr>&7QLYZK?sl$$i~cye@QTk%wJ#=Td+S)MnU zU*@Ji&AlxavdvDt-)-)f7n9T99<60OuywkucGQ8(Kg*To<(O-!-kSAw&xh`Ltf_Yj zzL@O$_-l8;qZ7*mJU;3%S8L~c~jfZXTPh9%*`ZDUwJv<)4Sw$n!A*Q1t$pSE)>ss zxN_UWo;~SrBqNHf_vmH4Jom*vXRa8#X{7AQhTKV0ygJrwd^A_&Yt_VQr#HscZQR}^ zc6gCpR_pKdfN0&eV&zxole~y<~>wjX#Y;aX^Tes zdH>u6TbHWGGB?~Ux>50ErNyypC#-eF*Gr0Py>b1h{4o2D+3V>kdyg%uO#8mg?d8d^ z-?zCQ-^%0rxb0S{!*$Jn9qOwli$AMA@oif+zhYGI+OwbLT$sj?abNw|t9egv?%T#R zPuFu^v-tEUwl7kmc1nF$vd^CU_sSafD>n;8)Q&FWaORGVUMj<$ntyHeCYEYb=K0%? zFZ}yyo{hf$uVp`lZX^pdSbopnmSehi>CznES~dCY+_w)h&G|PWTg`?wI^Q*A@xPko z@%Jt#>1^-K;a|1=`|_!o8`t==+bv%&{MPBO{_W|Pg70ebPEEHJ{r~Qk?TsDZ{9-o! z4-|2-;d*eK@z3k6XV)69hTJi6KIhH1`v2gLM*?^~GB0R7avNxUn&EMt{bm2TKgPeS z*ORMFV)MQJJpOdH%MWat`YP_amvd~k zKG^%)r14a0fK9x3w7U1+Oz$-c3*Wom6PXyX(9=(7rq0_%wqhDjCzY@#De@=e?|tZW zR5@_{>o+q?BpX-0?K`*W)c(NfUpx0-EiawTl@Ytw~NdFR{3|6xBTIWed+IKI;;Hn`BOgW-;0CtVlM)7Zs*P1 z_jKd*xhK=@T|5N(zgG0+b>0zIs@d-1rhn_C(A(qk8?UdO@4W2xPT`O1Ma_R(9J+S# z7thAC7fo9)dQ5zp-54Kzb@sPK_jPKY8bx0z3zFOXI_LG>?xMbDw$jJ{ox2#-`ZQnD z_^kV-gQ`pYmkZ>hR}&Q%-9anQ1M3dq?O}Sr+pro1Se?-}uBX-7dpfb}?A(sHfFq z|69(Lo*ok?J$ftr@#){%8LR6yCHvpHUnRY1+ifGp2Or+p{JUsc-=%N;@BZAgt*ZZ| z4!dvJzh&Fb(B2SG8zVNc{Qqlk|J1erZSU9rjE6020xz7FbkH2Kf9-Liyp zjl{D=*2ypSUw0AnI;g)(%|~@%(nhyQIZs?4zYV`q==6Q!+v16bE-@RiNBZkWZF?p5 z^ckz=uPn>YBHh1ERSWohUv{eV^9+lpQap#^w#CY+M&608_~1E7xVAsiJw!5Lsl5d#&NJ>UD4|1A@EW$F6*w)3>Ky}n<5mV~{?;$+;J8ho^2&3&capRKQ*KeWB)`(1_e zTjf4)nBwtZ!uL)5+Q?{uVR82RuaA%J`4c(C zsrwttD~3B2UoQXX6W{Yaa%b=IBO8{cyBwdrA+PPs;t1~YZVREc#=kBI%)Ju1=$B-l zi-zPqr!P6t(wq2gjH06-7OlDYHu>{cZSmes{61w|bNSCR>rT|4ymZ-_=@-B4yZ9zE zTA@C=^Iq$TyqBlhUg(}vymV7{^V{|yfsc#7uFPF{ydp+(g~$4pJ_0K1jc>VK%v`j6bE;GdtWC(fTYv;Eq$9lyo$mG^d@5Bv3RTG@G*Dxs+< zGq3FqyruKl>5q2qf=@ZWH|{v8UAcXW@A}tw@_yAlk#&E$WNVppkmc?-%(>eo&nn!h zH|o`io~CFkxOKygZ?7)rpNqPn;(zjQ_xGuCI$`Gwj$ds*_u%RE|ND3RywtyN!lQDA zJ(;=1udhI>7GwV4`(fZk5ey8FQSbE(HPV0XO=M;GZeONZ_fB~GqvqxM;s2k03kh^d z@OU93?ol}RYXhtQw66Q-7VBp)-}<(0{^zoJ*Se3z{C@x4*lOb2leb*H&yz9V zrB}yubI!6Yu`X?w=Wa8XpZw0Yq`&NJ$>R^XN4NQ&*3XJQ=llHS%m3%D=r(;(niJ*z zdrx{{jwH)Z9=F?~Og>xvHut`p{Gah+Yt)x1#k}9wo^j@uO*x%#`|R{P{q<#!V|SGN z-?>cpJlmdcS5{9lTmJJ<)i=eTb9=s?SbRS3uI6DW3E_9ji4{8M3hX}#oXhQKEuOc3 zkHxg>r@5{LpX0mByXdQa{NXjdQ5w^k=AUbRt~AYLk=^9tf{^n6a!SXg`z`X)?YaK` zP`P=kzQy6=)7?Q^pA8)VQOLmCw zRlOj)yLM^K;l&m@zs~q%zbO0sa%;KV_3P)XY&LBTm+cOnlBf6RWUkdyE|wR?Oe@!9 zv|j!A=5m62#QrUw+XSylFPgJPH}kgt&E>j=>xF-wu-U4iWzZtnEE{nO{~5Du65!^5TcjNxB7gZ+kWJHNgRl@11#8R>jwhl@aq z-5)A}+8c}v>sdcIGtAo@mHkca+}ZCB|L=T%^v7BDbw?k6?l_@bl=DNEbCZmVhikM% zk=?9$iGl@MrSD&gaP@NdbKFjL^zC+HeyMhHXUB)lPV<*+GhtOeoD&o6zOG-DeJOjW zU&`hHf$HfQQaa*>QB&dr*4>g?&%WzuSm!j8_#?4Gsoe%bOlz0Vc$0k7ZByJe?x5?Y zpBa|^(HEKbsrzxj+bus*Z||%1i=XmbLs`@tSd&=k0x8f2{rVO@=MsIrrz0UaL##NsQ6R&wH~&YoVTsnHZ$qe#5K`w zT>YD_|M6P>`oy*q+gD_iPBD8cti52atcF=a!zdP-ScgYfP3jXmzfhiu6GuB)=Y`(vAr?*{519##sAmL z(0m`g-sSa5EACf%;m?}yR@VId*#AgA=5O_X`|9^nIniNLIqS0LS5K~CFt?oPxv%1c zx15~l?yW4=y8@zIpDt*+nz)s9MXYRF=u2s3uC-ZjH?6wTrE%q(d-nJFdPlA;QoeQU zm2_@)^zXa%{I+U2i_Q14b5@j{VJ=>^!mD$g-OtZ9QQHkA9|@(HhP^Hi z_+++ZO~>A-U1z!Mr%zZpDe91=)S^$Zf+6C~zSjgz9|}x86t#ZljEKGZ@7@-B@0%LR zB-r%2Tt{8=cKgAX!pfnGy4Y8o3R`Qw#n*M^<|4ZZT;iQw8Bf35Jf;7{e#+aAL3i9X zzJ6u8wc@1etyc#vQ*AdHPpe+~sk_w3zv;=Zn^$H(yBBFQ)peuXLGA+Wgsb!SCHr(8 zs%ekc=@y*W)A@7mokhQjtF|8zUjIX-?n&nVkAk)7^B+ySDqFX3U)1;aXU_yYjjd%k z_1Hf8h=P51VWG*D^RKM>a_jnDT((^PO}Kwgin-eNW#4DNd!GEEV`cI!8?FCuE4S!1 z=bk#A)c087P_dfS@*8(;*V&!nKYwzUE=Nc4Q=87!Mdwc5ITbxM{Dk$l!|zw!+%!o~ z$o-Gs`*oMaZ2q2lucI?rQ_WL*?TpiVn4VmnckqN+U-;!`HM90R2Ca+g-?@@??kR($ zUGaPlJLLOoce&mUIF)m)zR(u^p zJ(lUGZ9Jl4j(h#nOicgynP-LjEWQV3Gdk^9g)0pG_eB{yeL3?gep>kZFOTQUx30F2 zD|$Ttk^Sypu^qY#n?L0F9IyHJ&6E4m#fuj&7VawiC^e%G1l(=-zJH&`_~1FioB3OG zmW#gM|Gu!|?c4JQtLgD<4XbO^+WIiYw5w^pX>#`$EekrgD(H6ShE?mLRN`F) z44!drSS7#h4nt^JHlJmb7ptHCSkV==WAlo3m|6 zLEBgDDK@BIJ8?y7;?ak;`f}XD#?}3MneTsQt?$@;cxmFzbOY}F3m)nBe{}g_%fsFC zSn!pUWTuYx3EO{r`5wK~y~Nc~yWKYaOuzMU*~wG(Jl-vDyKkqm&E43}w0im9Uyq)# zFMb%cByG3Ms+-2sVrA~vsD*y5y`ynx)2nBKzRO*wWLducakQL?|515l%jS<>kLM|K z_P4*v+da)xc7J-5$-TA95-a~6O^)fAf6`!re(b?s#d$AlPw!f{sV2F)*zS-~`^TyC z^RG&91@SqyNnFdcQhU}@v#Mi%9^Wm5KgdA&QZ{l`nKqmS5%Zc7A_- z_|W>WO`%@vR><^j+-IfK5&|b`w=KkfA_^?Eq|KqCV|KF*)e`7qL`@X`G;gxb$V|dgr z!KkpRKYsUD->wQiWOK3Hrs&5GY2Igozvs*O&whUDv0&Ko=|?ZkC|-TF?ik7u}pV-KSyZf3cM_)*dMG)a*=mxqi;dw)=RezTK`%k0RRU@MX{J z)!4K{C;VIZ=M^dP*CTTyXJ+5~l(R|u;PmvfKHozBN5yUF|L}X-9-aGqQ^mKde_nk= zVRE<6q)nmo<@RR2lnJ~MVXxO5`MFS5J}|ELMGuSSigihUx)YCt$JAQK6q!|C3_yOQ-5?>ob6Z3T)XL?kDOY?RGz)^@Pt1M7dM>`wO-eA{>Yh_oJg?+N`+ai z_vc9Y>h3F&+gy~#5G40y#sM+I#t(LC@oiieJwx3gVr|6JL&+PzB=2=O zy64*D-<^xS!oF3%Shf9#$s(DmnsxU?XC%-6;M)Jw;NQc^|36H!IyO16CEijk%q9Ny zi?hDvUve!L33nvtxhietSk=Xoe{?rzrA^ArsN|<2LfP}J-W!(GbZ_an=B#bM)|dNs zPR$B)zAfgCPb&9sowVZF+>E>CESBvm{<8IJ(x2!DLWBy^)1y5)1 zRIb$Thc~XCCOCcW$wTja+(NIFHpso5dHI6enQIL-{j$$nby;-vYkV?Pwii`Pt?1Kw zG~sslQ&(NqNWJp8{fFzcA1)8D&$*j^B+=C=+t$#M%{qHG<`mvDMUY29(b?!?BYx0>{yRUFw7#9Ab)!6%y^M@yQYu3dF{$415I(9l(3-StN{%YPQEc^`bQ!ZYfd zq}rkW-ya%oE%HCM;+3AAqia~`d-JcCecV#F9LnkLN_cYr-FhXKy?>i>>2szDHg8mM+oX_u$=_RX za%W)Lw%GOA7t{MAq;_pe?lx1`UOwZ?JEza-smUu&Xsas!JZJlkGwbNF%4@q{?Wi%m ztHt+i@%O(gt*0OTViS4Nm1%SB5%uM3!}?(dbSn06p_pgSpzh_uqsHzx7HI z>$a!Yy|t!2+}3qvRqGbfpo{ZuU0J_>kr927)qD71QcZE@_E#IP-n(kGO!U;>?Wa-> zq?}~uOn=AxGx+DKWC!!-`L{nk`1HIcB{asnR{DN;>EuqfKJ}T7a_oOJ&j~UO9Yw z>GI?%SC^vbuJ1oy&X`ht(D`d;?AL|g)TUU7XH~wMk@>J#@|fi0yKY7Oe{HYF?TvaU z+P?3qz^}YKxjto&Salh`qq}#V(|Y-+dV9y}I_U~-Z<(3KKbIf3c-6IOQfkEUr$NP< z8?H+IE=@X?yk&Wph|#ADpT*z5y=+jHKQB^oll)pmwTDS>-Mn|7nsniC^*w7c-Ou^+>|w1GKK`@UJ-}toVZQd?)!__30vXn`6+GqaF4p>Z;1f^X<8|o| zx4+*f_gz1B=ZvXo!q2X}US+cCs_C1<_T5)^tq;=*6DzoU--GRGh*nkm!B6KdvO8B9 zJr&WGkDVIw{!+iu5u;GaMYjx}wTo`P9Z|nyYe4Ani_7<2w-#f!SlIr8?Lg?Yl41%f&rU+8ywe&=ptf*fS-n>!O$9t)L@$%-*}LGCgk3`WYN#7QHif z^19ZupRNaKCGv4ztXubMrckxs`76H`?`^y8nU`#6<7IzaNKMbyd-ape-~HE3mWZ1l zqPG8d|NDE%Q=f_4>wmtbCdwu_LajQ+(eh zEKJ(}nc3zut!I-Rw-#!A6F#lHJ~yj!*^HT5tDfDI@C#n8W6k(>{nv_+qY-;&$Ir|$ zF5emy=&g63>7l#xt7#m5TSc$md9P*8rglk<>0IAe8RnhGc5d45X7=)L?bVHoWSS?< zQj-=gD$O?A@5k`VciU;vlh1$NnfU3+mS>&%^R6p>;qdvKow{sVg--v`6-&gAr!JYl zJ<0$4qeq{@9|c@KF|DWW`y-}(kt?j&!csroGB|WCJbCKV#g3gG(+%ScE;RiL?>>A@ zwnb*2QnY@w%tO}e|4jG&`5~KvXYXLm?n$9v<2Ye zN3h}W-@S|nwu3e?&#O7~XigAM#bxz*9rfkUgA0BfkX&&{zwSwxNboYTRTG4x+$++U z)^F>O_WmEJyELdOYFSrc_CBqAOZh*R_Umd3JzY(^m3gJ{$8VbU9w7j+C;0J`guW1v*lOaduhDC|5bqAWZ&bA{_p&EJQDt) ze*TB-9LZl>%^C#iuHH!6|F*WYCp|l+>B{#VI`>uUFD-w5T>g8p%9(#Y-Y@)2DNgJ;caId|r|?7H_?DslM|h3)eN56qlu|L*Thk2Bdde?P4VI~;XQ_fp?& z-Ra?1|LxQfTWxTa>*yW%>TisDo*c73I6d~S_>^Y8gTD=P-~H{q`a>O^u!mRi6J4({ixx@RPXNE$fK)GazwzjjIYt2G>9*`d?ebX)Jw zIaIoNYs>zXQ+uTr3O1}ZsA+k=Z1D#j5!v^d@88U`Tf2GXmaTH3H}8b)dj9ElTIUYl zr<-{fomyWyebMRzW|6rIZkEB-h_r2cot4JpIyNE@Gd={daz{;g*IS2A}a?=$zs zI*C)eeV&DWZrq=&;&*o2CcTE2> z`*d{plQJGv;eB3JnkIJhjcxbK?4N3=!P8(WnDO!IZMN5+B0J`IPn=o3Z0cE7oei7i ziWjNIyXtM)qa(hZOIp+<|IW9oe?i@4{oOyq?vxyjb$wa3=0i0@UBUN12XobRJ;0UE zb9V8?Q(uCU$&7~u_3xt?{xco;t}u`H=Eg&N-TM!%zyC95&&LAs#}>7}KCP8lwr!QJ zP{_;m-@kuU*U`TDGkDjgvfDljQY!yEw$@rc<;jJL(1YQce=Jxh%+~r4;&`f3-g!kv zsKoc5S#NYQW5vGehv^xwOv=;UbpG&_t{YKJYifA8zP-|0Q(B-mUE(nl^R&lBK^yu{ zf4w;G=L(l%qGrju!^2_VPe*Ru-b9?ct=(T^Y zCbn%ob5rZ$pWR;tzki;=e%^iUh5jWTzyBTLv17XNyD--N)wA5hh^4QS9o7W~@7|;{ zZNAOFEfYI^ypOtZsAuocS@cx&xWS{y{+-F9w`pP+X%3fLjd}i=|z0#ZQGt-}$%?o+D zji>TrVejLjqG`VaU7vi6iTUcmfBe(YJKIlb=64y`@8L_@p7mv>vuU}j zo-|P|wJ_iKCA-^JFZ3%v&xy5K(bKLLZ97&qp=V-FvQTe0Yn{#V?H+2kzpS%R{XXYS zr*`taZOjhun7({E_g&PDdt=t=+4r2;U0&O3=Wkskt!bujYhPCUZtnBelLsTXy{fj} zZaHmp!dg$+?oqLO+5?MCzM3EZR_ik9O|RC8o;G`}m3iw!s|~;Z_~`vJO4zxDHCsw% z|K81YKmXjl{qd3X{SNK&U!2o;br}EXGyMB~_cOb^b!H-{sIju!e&bm-v_af;`0w7$ z4F3!p{xcr9s;+(Z8uLG7vZS!;q$_}Blu9G1z`vSH00roUyL z0(Q+)PXw4w5LWg&v2m4x)*m*nxhJ{L1-to*h5k&rKlRhbQ`tW0BKv=?+;*{hO5^IM zJ9?s~iHJVaU9Bcx_dWD3lf|}|rKRCw?t8hWPk9}2|GxW1(Un(UR?l6zYva->xtg1_ zLw)AXk6@o#vuZ>5(SJgrwt4Jlr|-LJ`~FRSu%yrX9Wt?!bJl)-wIg)eES^ryZ5|E2 z*Yu|f#ik~Yj~W(Rb0_(K zJy_!vo)Y)9F0N@7$DJwfBBn5Y_mpR5)4Xh>7m}P7GkME3mf~W+>b#YILzMlp?Y`U$ z=)bpygHNtCL{EF?AGKvmHy6~cfA?;YyI$5g8`ikik5bp}?EKayx-;qfxucO6RT3Aq z-W7Wt<6q8EHOsK>{A{`6SMMtS&J1Um)n9WxL8Yh9U`?m3wx@3P=2=fBUDr*Ik<*#{ z^X|b8?kmN6&e-I8-MMLP7Zkkq>#8j?eiT>M{7aYA;W=^k)QdB#Vy3xTt&KbG-aX58 z{>1Wcb?nMh{%p2by+tb|MdNwn-;GD*w=dK#>-*4qeZO#g>D&2dmX&rsmSeEzd@#N2 zy!@BeAkc7(vWWQqsgR-FRfRkDfB!n8?|scT&(lRwg$3^)e_UN|!(D!-{N}B*A);G9 zsVQk4)=vvEJ-SG+=Jcaj-^~jqX z-%YMk#`W(lFD>@HaQ$!2fewA^a&Yo_HLaF+&HE3x3)Jr)c-*(6HQDB7P{D~Mf6Q2} zm}N|?`xV!@@6|u|-t{{dE}me0x^U0T{c5Vk6{-hb@ASCbzv)Uj|F6xr&K%hiy6W1U zu(du#>ppiF^|Dy@Y3Z~Fe*b1M|GKa8-?@Lbakgo#SvukGk@U6g68_m!u3p?=rE~qn zWR2iZ^W-1d`yA|U?9z>TscDrvo|C@F1NSynNh5!A>Ri@MTK2-MG zDY7Z_&J<>~#ac>d=k44xH=rvu?LoPeeOO*vt$8|Q`X=ejvV{}+*S?++61?f$rN>2u zO=jD|W4A_BU6q}zRb5(lfN3I2%FHsCd9o5S=bm1mr7d@~r1Ws~tcY9E`v0T%ym_|$ zL1y?~d0F2-tPS$FZ0kQ*!)hz%e)j*Y*T9njs|t4P|IWj(p7Fz^$|;#EB-1Ly*Xr+#s4*HrljV6NdM?@eyZvGz39x%U&n&ZxhI^9ymMwUXW+bBt6GCs zd+oaVe$W5v^=aO&ud_eO9r7*8chA~(dS_mLV5{WRzsf&1ev`SnaL(fuDXTetdelY9 zO_SJoK;h@-ZKrE}`lE7WZ%00q?Ej~+@4x2$_RZaO>G9mz-1ZDhpUN@Vy}H~dpx6J$ z=j;8v$GT46lL98Dy*l@PRpI^HQLif^mbJc#$oD?|tM&gg!*#c=EO@%b*Ye571#&B+ z!d{rwWohlolbp=o;UCL=cC9T>R^^+O$N#*LXi@T+vgvKT+|^%goKkD*+{>eRKb;WW zUJ}w0_jL|uuO^>z;fyO6r$*;(ef;a4o$l`!XcQdoS_AS>Fu40>Z^H2D+<|s2A>CP%I@V(JS(=>%TSEeqxEnB)| z_4On}ejBHvdHa6casRm1e4k+d?l+TPWIVdh44x7AK5vTxcm$YVR_~qnYH)|?3aE{< zk>Q_agFIWox0a)pQ!5g7Hs9azI`YTc-RqAtd*7eTy~9g=lF+&jv-@5rv&w5XFFK@O zzwFiXRdSoJ&+1clyckrv^@PLpJnN@fA@?FPYTx_sdB0;{wR&4>C|48H)>ENA=clgt z_j?D|2zkr@+3b1$uN)zZp*^U+uD>W%5Txv$T% zU9~Yvx3viO6TLO9U50=16s@^^6@|8k!Y;23NG`}f`*rp+q4N`0Kh_qldu{nl`}p(o zy02}{iB5KX6MyhpU{>PMx+x+(su@os&gxG5QD}6Qb7BQ|>Yb*CMs7jAYhNugowu#y zh4_qjEyb2LE-|&PPRo@0J~RA# z`tE15|6J(I0lyr-+hR!l#8t3k|8|BCa~bN`4t!PDIk)oY?Dv&QarMtHfBg9Syn@y# zpR1;Sw?}BpZn(uCt9@%~!>LpHf1k{;I~o1`x@(Gkt2;%3Ds*?ZgmSex{>?&%-in1YeI9&>Q+X`GiI0GTgN`R`|j;0 zVM|%o{hIMiQR~F!MG=oror+wy_h{FSP31YVM?Qv4>t2;o|Dw~cdE3>%JHC6Ly}xlu zefkp3*2j#+!Ic&#udA6Q{eJM>=Y>mj&nmmuySdnVDxNL2?~0!Ht9tI6+f3WPYd0>b1QR_`u6=% zW^$gN_gvCqpE|$z*~eS&E%HCyh>uo2HtA8}zO6DQ*en?4Y6ISzJ-|COItmpN9zf-N+5GA?xcvWcE_Z3-5t+Ma?d%fJlb1YLI z)M;lkhrL_*>m;YWdTq?lwg>eb`^^Q-i?4L9&V6KCp4&QKPFmu0TWZ%dpQ$kupPX@- z@BKz=X=T#U)crS91J)X?&C+30R(<2aa?|0-qMiJKGkJQng$f+PlKg*0u9@nyYKzRp ztiaDt16pSWpSr%bgVTF!-RccfL=ImeYfB02m{Kekm_rvyv~7E4HP zeKtd3U42_ysfduR)QKIix5$k2(|%{Wi)Vk`^WuWn4^1QbB5h?k z*F-r+tbDX+smSj&ApzfBuJp1Fo1ZN;$4^b!=4j5+(22>f(kDlqd$ew9QO?2#`-}HY zoVU33=!~Si)xTGnD{NoUu(jyH{WodvqU>@S8xtFA<}7cI`ycna`G>0H;o68rZOPdV zYAn}FpQ&ze+45<#xnX~ub3jP*SBYlzR{6yK1OivWZJ`Y{m>lW_T#BvjVCtUUUW5Hb`9U{Fw1qd7eY7aw$9%>f6aHL zll>3sH;0DhUKC0FUf2F$-e=RBOCqWxc$D|Oxzqk3*1xKF`x|SvyvpOJ|GGbZan2>> ztjz0`H+%|GUA!av<8O!iN|_%kSaEB=l(SOh4$j+Kf0oJT_2-K2G@I|W`g>Sv%D>vY z8Jn+sF;rO3Z1Hx_w8Ed;BU3{vXG-r^Tk$nwkFdT_{>?0Xp(O1mmEKPmf0FO@7F+C+*w*urh9`bgiP0wTx%)@0d3E zcK`jf?5ArBw{t|iGxVBJbUJ_S1&evgDT^-XivO+E`Tlanxl@ZacqN}>pFH=E=%Sw? z1vfX?-;FX5@86l8eNAKc_QsWdWo?4-KX>pyJZgTgOS}Bt?2~s@`{P+Zyt@0Dy?hR| z!F1f&TNqmJ74Fzy&e{;3XqET)6leiOQYYj7;_sI~w(XwRQLVqhNL@>G^VS1qCY@2g zLpr=(Nlbp5{MG;BtHUM2w_fd&NLJxZ{%0mABa>gVdR^Yy3K`RQYun%p9}fBnFG>wv z8`E3;F56XaGSAb$wF{p`pEo?V^|t|oa^xo7Yv*Ph$=23&bC~kJmC0^PaPY-lr&cUI zbmh5kYVh@EG2LfRg$B!P-a2zx`aUy3=V$BLc87n;+@G<1@0t&NSp}1e4>;srIeaDM zlbLs(?tWh_``Y!X2mTtZ(zI>!V2ab(arVistkthpeJq!*Ihp+aK>hb8_D62IZhvFV z2TC%56U#H5kL=*NcD$`>^2xGf?&Ir|ckf^QEYsinabUUX#Z9W30pB;iy>;Iv@|cPL zyxpJPUlW|K@bk?~_vJZTm+yRN>HeJMZa~oVcJEi8_uadD{BPOLswj_|In%G5TI#fy zYvs1sGrO-}3JFV?xZ!fpD$WC1ylQc)lJ)kgCBF?ZJ?7%$lm6@U@fJQ6@#QO*#vNUI z)zm@f^ix)3`G&tD&bK85+5aJJ;hXwWd3?Gab{<9qrpR>kfx%m4%-#=E|l|6st z?e|zV1!2`d!)`35pr`qdRuGhT3bZOUGucx7rwj20Wzux-z ztX?~*DS5>e_ca1>VtHO0RwP9(Eerp=J!0wW60YM13!gH#gb2!Zc6j+3#yd&!en044 z7<2#ZbFB?tUn7^k+0^%GiD@oZQRts*n>Je+EDbXUYD1V!HJ=Zy9d;csAvJO!f`Atdq?_rN@qQ_@BS?f0fy?pMe!` zHlBBz`Dc53clm^~Te($P*cr~>{`>!ftpAV4c{j@iIozv~LicMI`5*UmGo7~WR;g(F zuj`9DP2XwVjS{mJGuxK+Z9A{mr{ZNXCTrI6XGK1)u&!UTwx4s&t8<$+y`PxUA?*{> zcIs7C%<+RoH*ebnf8H^v(?HhoPH(+-(w(X+i<;J+*kfany6x4e)%&@8f}R$0d^!;q z`7817k^H2yHz!WZx@)2obs^McTIBtkfwQuD&DRvmbxP=SuZf+>@aTJ5XGQ|&TM7TI zryk9`+_87z3GU~UKc8n=EEF6U_K_o4|F&Yw=92cSv%4OI6a_p@OzOS3>->b%lb_Ch zr4hYo6OWYs^6YnarmeQoSZSs-d4=f16~-&JT@{;o>UeXMMRaONVdkExtn!C`@5tM# zY&BhR`o2wDwtU^*?^L+wLSQE2gI}lri|OzFdA8zKsCwr{`tdB%cki5r@B2CZ57 z$!JwajH9J};U*!UsY%N^o`?K=*5%se={eu0`HIo@OqTyo!k;o+%iHH4@wCh}LG8QE zS`R5#(crMzh5JhKt)FXptv)ipt^d@SsHfq(D^qG>(i!(LzqWYaF!kvfkCX*Z&9$aY zZIXO=+-29Mn6)26&OSQf5+C+H#dX~YJr_RVSh?;=Nz=A}n_If^&+V7jYa{L##;v+? z>--&dlXzye(<*8UEw6fHU0rhUXyet)D6>@!<(wsFE|zU<*tV4?^yBQ?OfxqWZd$PF zxYs+bTWq#h8JXvOox%Tj+VVekWmY%K19v>#7T)sBBFW|TxqVr6EAKqNclB|})v_d; zXXj&H8#>9S%% zHQZXvWtWR2uD`d5Rdtcf`nohTS}rNN^LSC%wWO)6F|J3-9S>E&)&lr`jo!+xZg#fl zLZ4(PQ=a2{oppsz^CMcnOBzm|zSh*|>b4zyU+s>GRg`Ryy#C2#f!dEVMTHA&BJM@% zO}+ex;b`*P`h2?f(`xXn`zuT}v=X6SEUE1caJP+ni`6YQz?OTMJ+QAtgRzB&RmMnVm zVV2|fP|ZIPA1$3ic>*7XM>15*`_cPMb(N~+bD285X)6|e64=FVubsL1(6&uHnS!Fs zN;8*p`8k}lvlsKfx=A~H_woJ|xg|?BmGVrVBjh>t(bR`e=byAbXMg;7Wom0}*rT*V zcRTlWWt`o)^3&x*X-5mct_z$0%C0Qjx6i9UvgS4iBlR@>rETI6%HNgvH+2M3I>_b56Z(wy?_4)1SK9RNlaZf9kB-;$2gd?2b!unjSdWubES~{B~bS zt9fs`Uy|Wh1Fx7lQm2>fG`Q5Zc9T~2N{!?=#Tho0%jQ1X{H4}p-n*P=`jw0KaIZM7Xtok2zGc>pHv`2q>N>Ka4@^8JX~$xh_>CHjEuEL);-oMH?ml1hWEq-Rn>NVeH zZzW(!_>IuB&92T9d!OnjFQsDaVVZ2qYd#51nzne?zPGuzcV$JZW<2#P zO}N(3`9|7c-5vIXzkB>5@2%WA|MdBl$E( z`LolnU5}9~TDfx9jpQ}as`3vri=HLh-@F@IcTLay`Px@oXXh=>T=}PH_rp2cs=`C7 zruDCR_kB}B{kloaGdMcmuJ?+)%jjEZsPpkovHYQO`wV=$gIYL-yALx3xEYjjQezIXTaV@2AemjYlR)&i+?CtM0kP^nFVs z1pVFQ3M9Vm-h3--+gq=$=y}spQdN&;ZZ@6&{BZHXx~pAltX6Hxiky0M&UvA%r_U>+ z8q9lB4t0EfIW1a`eR7hF^B(lda2?^5R%=&U&`_oLjixoe3lR1yPxyRSwJVy zWRCyudJS$t%>fNiz6Qav-olhT%kE;CAs2|Rc|?7QowjH>nDKYe`ny7AK? zE~jZmQF0ZTSB+MtTzs`=uTP+Bj`zn?Sudb$ea^IQ3`jYUD8T%v;{xdz7yKq`jq0jTODd~Lw z*M2tV+HdpthDGSvO{I2QdN!Hft=YNtSB+`^)!J#rL4uAG-#qYTuVj7ja7tX~V#nOC z@#`l(E0(|fB)+uMufF|>|H5mfi;rY}l$g0NTJVbh>a#0+bj}N$I-Bmj`B#wBkv_q# z8*Gw_@07h+bnxPZ?rNQ01yBHqF-H1}; zEqJ}VN;__=(+892_coYgOWxnj~m-1UDORKbT zioQ&{@Yu>SW@*71Pg#X}3GGrtmU!LNCts$o+`1wlXXUd+s`qz%JO8A$PHy!f{pZQ= zlI@=_Te_h2M^6-zpUe+`^^&C+z<#!MShR3Xdd3Bv|Sh3O1~p)Y~$7 z^8SeDb33O`EV{7iTky`E`?lIdb)5274SO!KFYs!KjM2iN%MrhH3fI|hZOqszeQxI8 zASUPjS1FOVjt8f0`FtLSsgQ9 zdhzYY=h9Ya)$7SmlO|E_K)+bjNoWJvJ zwx{T}S4FE$_0{7%BUXi(dB5}y-M97Xt1#nr_S+5xYdh%K&z4M{DfQEM>O-a0z6VvC zt&B5oJo1g+Dd^>OO;2O3^2D>B_Nvrh4P4zeZR>51)XfXFl&R#|J^IA-skXr_?&I9D z7<;Yw?5PPUH~6;l>cyX(f9$c!ttU};+n29))8*GouRXumExY%S_Qg}biVjHpiu?L> z>Bm(uZP)JB$s9XXtaNqxmt|(Q4>lzp34c?^alhp8+8s$BXDWT|6a8n~5dL^gv*jDIYvnc{I=|r5X~(1$QwruuFIQURJt%xzEl+zi#-gJLqK?vvuN|WlQ3DdyDy)eddO5{k`M*y^zqEKdjCb&YQ|pI=g^# z@vF)Q^1Ga{#dG49#@bq0! z;mQrS%(Zs0=@_o--22q(zV2@6ciFnHwYB$moq23@;%(%|rO)$@f4BJ=rqj0TeyNOn zO}l(R|4iMUg>R2qhCGk%y?^iM$JKUi*4rm)9Q}A_@qAyG_;at7PMoZqHQn~OZ2n@V zE&fNUOaI2+x$@*QYm-djna9h0mKMr~MnUYy` zhl+;FtzPu>iol&4S$b{r50uZ@cv~W9)}z=p+h%VJl?bku;f}UXd^@e*%Cz$4qTH_A zueX#QS$6MX`Vy|`uRV&KQ@)CRy`tBvvh|lKx9;2CeMu6AB1P5@U!=>sY*H86;CHEF zpO(|5Q*++m4-Q(d^wZ~>vc=5hZ@+hZdhnLvC_4fEMQtS>t+U-N27>&q7}UhD|j*!ykyV$h}@ z#bXcu-D5hS&G?6>LE0~3PH=bm-QN{|PRYi1+;%L9{=lwayeGcqcGjF}& zj_O&(UUAdn*DBtz^_qM#Ms@P5-3!9rzm3~h%A{>yW%B&R5nrW$Y{4!(5o(o5KQ~Aj zJyV}Px1D**zT2r1pWmJLYt~$OB`j`p(k#wxXP-EBOJuL!pjFv+DZO=%VWezIPMv zyWBkwZtXu*UwirX#>=|D<$^+5?jKE(USu%&@l1v@EeqQ3sW{46oBVxyYyY$5O5dX_ zb5^f^e&v&Hz0UJV^CG`_#DqPTcz$}qXG8Pw57kShR#pGI^)c*8OzORFCc)hBf_%p9D!a?>;4QFy*S?s@pNKe)Z>z#U@A8EqShy$ScM!(5a+ve0SHQ z_d4e8Cfphqm%7Y6xk@FvG)Gl_cIL{elT|y5V}E-cUMu|5&rUyiyGh8RGk<2>;i?Xw z>i#r*?Td=7@q(SRFRi<@QSy?`iyKlGQewSsc(|QkzPR%04lQom-s5hWTR&a4dGWVm zfla~s{>ow<4VSH3`z~J!y|3|c#?s}{xzChsk008GwxV z&G)nV?|s$$BIA)VLmkh7^>60czv$ixsuIr|>;2PS4^BUeKnn+I81{2KIPD)b?Q&PY zeSvCR`SIcp+p5nop71jN_a}~J>hUMH|5+WJ{!&ntZxQ$J6VFF0Q406zs(F&zd&6mU zwMg`-WYy!_TzwCPO}Z*pYdAkLbIRkDF&2D!-wkc_n{HheeRsS0c=t4(w?-$jwycOc zz1GQ`H{{i8t!W-5Aw^p}KZR9anPOodx$LOHBX9X?>wga?-@kHl-+9J;@3)1Uz24!< zVlNR?z)`DyeYw!FiGOC_xv~A*P2ZF_)AeT}e{B8y`t$0j2QS}*^?ywMa9Vour?wed zYu_wa`@YKV#Hy<0vA2@_tNl)X_UAdy;;;Q|)tAaN_NUkG8+RTF>iKg0sqrP>;>fji zbFOrcFYm3Xy0c>WrWXOhMc>$U#czK=GVCe<#I+VU;O(y@01RAbRpBnKdoA^?>P^M z&;PBl@9Q%2M|W=S*K{gb^Wiu{UBdT22cw}aEpJZo|E$+RJ-|X8nRoB+@;pdq-17&t z5d^fX!2HfvpFh`*=NSdgJC z*1&_`KXBe${(i=X=;`x*E}rrBo}KDXEz#VN?5fHuPac{*h`Rn~6^o|%>wQa)*BJd2 zeVV=XuJ5MI`rCJuzsf#8k|W=+;>mZz!+&SLx^}{Ln*BC&z5Y4-eU@AidcI)~`~1*& zt9=F4>=9SZRJPwR|9Zpk?ap7({YEL-I;!UuN6X!PCV2YA`?$|>HNVg1zdl}3*9RIs z@TlF|wC%s|iQ1#j@7Da;HYrk$`~2O~*|+4bE)$%#_0#Lje688r-u$y(?-{}tHZ`2< zpUmuE8DCAKOI@N?+i6)W-*R_O{O^l}sYRQE9!FaCZ<_Gw!H3`uj~`FBXfG;g2y}V8 zD`u6{iXtJ;i8JigBp>~)&oRBB#jMVFe5&h2x%rZvtl6ew{L_=SoqBwAqi~eZx0yB5 zPBmS-CUx(G#mbp4k53TKS92m|u3& zJg4loIyL3?RC!Zr-OsC31zl9u{{+B zx4u7k-R|F7i_JS4`qb(~53DXfFMp>HGD;Q0W%2KNFnA1fW5JI7<(3WMj6Vt)!a?mS z&^Q8T#oxL9hmXIr7rqnua89V}#~qg2o;~I~r^B$h$u8LM-?2LJB>_Kj&dxvnCpy$^ zp7wIDMO90b8n!7{ESeJdFkMUbcggnqmHOEs&r(|*qJLWXt86({WW9xB|0#d%wvOZz zi>}o@k$W|9&A&g_Cf+*Ntb4q{=f%dFEZ#?!D>^UlS`+ck=Io#{^tYqng8y6PCMn|-SyUu<%XsM|;51ASArPEppJ ze6s)AjANf>b8Xvo`u&d^lG7^wz5D&)t@(c5^j)d( z4%O(|kbdC%f6I#}(gS^pTo`D%($Ok19PXc>eJ2*-tMXI-1+8{CD-X>&gvxPuq1*zw<-=$ED); z=U6W%{xE^f%h(lPIt1$e*-R?@82=1BEVbF<&V6ZyJt7CP8EOum^eV3UxbXM7WBd0$ zj{I@DdVSPx&6VQsH%Xr4ukT1rjaKuI%F_P3X7!X$Q(NyhRB7FvcR|WUDAXqH)1tol zQyVSk&twSV?pjmRtHRv=RDIg|MI2dQ~u+%knLf zyN>feNt;&R?fBjHd70#AbB~!@mSk;RX?ZBsIy7fp@>abP(}2}yw3q%%le}_&*`FsD zLTj!~yE{ui>gUJ5^Ri~1u$-l?^2}qxHM?&*t5*fw&N5kZKXjU-+ndZYK0g$X97_Cr zvD+};%Pqs__LJqYV&`wy%E$d{v3~_BlRnmN-@B*gXASwE+LUw&)W##_5sGU`vKELr)z zbZx*_-;U@r;njU}{=6`pAh&4Sv!sGf%UXklrN?D=A2$$cchrC52fkw=UXv zYklCS_20RTJfE_(pMF%?nfc-Jj=t+B^{17(yOnNDH@3gJw>E9l*(Vo$d=X)`%;J*<_Yd*Mm*s2u6y_;N9F&%eX*E%$%_ zFpXF@?N@G5zTd+c_PcJJotnOCPI~M7RZkm!9gyKOZ~9(wYx&|;F}N(_^Tu z_jG&Y%icgw?w*MIZ{6Li)~QZNwx22?)2Xv1M#pg7_mjoEo41IuPd}Mfw3hX(^=jeA z6Xyi3oZ0{SO3B~&u%)p+wNK}*(w+8s($rn+g3e{Vc^SK>IbYMTkY6U~-?ANxrau0- z;K=;dOZVi5JU#Nbds?WBp~F70f=l^~Vf%jtE~|=3*E@afZ{}p_${4p;10M7`ShDR=RET`I4xD>`P!|8Y>Fd=lDiUTsHf_ z+C7u>r)943+`TZ5%Z3bCvqKM~}^p%J}uGKNVcK z_0@**wPpuz-z+nD#3YveY36>FsFnpnr(()=H%9yBB{TQy z+OZw|wx{_tEy1ucKi7J z=jzMMw@!K1+q;{bUA$B*FyH6F)4xZ(9`rhW^G*6yJp0{)?@`ZvbV9dIpSr&|^;X=e z(A=onC%<2r^hDKdytL1^Ve6&5@5grO=drDh_dWak)s4cnzgTwgB}MGtt{*MAwa;X4 z#gmOp1+Sbxuha6^of~-Xnb5lGSd}+g6&*Q0kF&&;>TK|mp0B&^sKKMt>;EzA``nrT zviw`^yaO%sh2m!~kj}rM+sCgPRFU^*)%@ot+-mPDz0vKTd1Ade<5rHhx0KF5d1~?K zMeo-ChAkIvn)T28oVvKOJF#KSv%KDoYk!?Ah<|LAZuouXip1CIeCOXUQc30rZkG+p z{J3p$)i=rOAD<{2CQIo}KCkwV`;yQjorjhiLuJ?hv*F!#DY%I%L5NeaR(0K;-pZT3 zB7N`QC7W;EksRdQfAvbTqoi)P< zSZ15mv!Iiy)oK6lOxrPcMh$mQMS^e1wI?FcS2AyYe7|sFTDQT|ZL`AX$}K+_rlvMs z>HhTNMNigi_#M8rWvk%5sHLk*`nBbMyvg0GCoZx-((Lu(JN%1dKH53z-Lzo)D8mp_ z`iw(=*T3^0|78C&+48=xLA4>C?St^{=lphc&}uN~LxPDIxEj<3P0k#3`SiD#q2D^O z&`HE?jQ?2K9f`$&XT;syTb_wZgZ&fqjyFFj}>Y}3)`&WEE|C6(LyWfgK`8;_) z7u)Pw5oN#Y+AD{z2VWlFRLHt?`PuoqX1TrAI~29^z^jNbasF2R=~5xy&-RBs%PX26 zexs^N^5~}H9DBv2+^dZwEqJcV6|nrD+UpR)^1P_{>(Xbrc|WhMGAz5en^`&W@RRwI znr2VDy!vj`!&h;)!~Pr(JE|D-EHEkQ>!Q^QlxDtsT3oZG?{m+pb&Z!+R)w7Ttg!LO zuN9}#*DZbVce$wLBmLT`RLHgkpBx&xcS z>Q?l}lf=il%Z3Og{YSNadAV z*B|@d+~xnceTVUlej#Pioe_e;)AF|^un4zxn`=5iYlf^)LoE|^y>%N!-st!v8_`ZMN$9MVT-1C;8rFMMs zJDBzt9T$I?`+ZKc_Q8tuf6uI&{!Cc3q9e_8R{J^m(vO|?E5B}@Vt+ZLaQ^$4n{6E@ zx%PK0>X<(Uz{6rF8#BzQsy5tNtwFDxR!*S7wp?I`-V}U#+*Moh;o{ z`%Cv~u(gPA*|e&>pBrUr*UY$AWosZf;d82?O#hSBZnLLV`Tl3k>G`;C!EvT)9*1*( zckl&X_dad4%Jko>8xz-Vlk0i-Ys%)iiJi~i@8hrk|7`o$WE=bQ8FwEpU!n8-*8AuE z^Uj`syQQzY>rVG)kKZ#sSj3<0-N;e5`tbzisfRa(mEeNk4mp+%A`CJN-WWWpm_l&5zHH^a@9cItm`Q zRM)sEbgt8Rc6(1q=h}0JJ{Qi?<<^d^H8eb)DwzJiPs_|QR{WJ$lzVWZJrEtAqI)@}`jMuRe!-UbHZTH9$LSwNyvt9XCtK$GH=$MMGjIrC$G``8G0p zpXf&S@~?~$_m7JAeP=P?$x$>-WDJ|U!PI*V>sfE_+{-~+`R-L=T=BZ<@60dmTDx!a zy0r)9`S14H@5`_vC$#&4U0Ujqw*?$o8uj1)May5U{Ils^nt#2wZu&#>>E~`}v|GM7 z#<|X3wK$@8_TgDPKTlk?@C(a2(zAZ&H`^c8=6m->f1AtjjAQ?+6MnV#XBj8mUh!Nj zzkK$wMho*TCysr4HX(OSIO99%o16I0T0{utJs16GXQwgmwI3Tijzs!+#YSrCU#oL8+$ED`daR|dw?S-Q z)YHaCj6XL?@xVRDSvXV=lW~5^;LgXEPtx{{%tyfpG>#h+>6m#qUA~T`?){}{g ztHQU7Yx_@D+-3N3xy#(9^n`g6pP!Sw;W90hy);}~LN<0soTYy8;>$&`*MjH1x?3Z* z|D@P+xoOthd=Hmge;{zmGo62R@iqaQ&0Nb%j~t(VOLl^q`Tuj3bD!+XN$(Vo`5m|C z!>;X*&McDNboPNc%G;MC(&lltqKz5ehNwBGqLQ}n8D;9KL?Y|TGfOn#!@rl~!UpE}1YdgI$q zyC>yUx5j%vl@G1cojUh2V_@Zrr;JBxH-_$6wP0<=;yKGRrY;M3nj5D4pYysIsuWNSS#B?D?ilMKAHXg<71hMNsxu_6NUc0^T5)RVnzNNm1rD*wu7V<6 zzdfoVXKg(H^xrk5`>&@3uAaJS{wb-p&(_N&Rt23{d-BthYfHU@=I2$*FPzr7oa;*E z=K9s&mQULKrpmc z-T3(a4zm+Kdms0Ido$;E_xsto_Ey3-G7NU|JvuM?X3d>*x9csYaptg|I8~;4fMJ5D z`~y?rwWlrKWnDWZ6me>zfzi!nU)rwb`_C^vTz;&w^IBn%w3Oiko@Lc(GX*Xi1!m5i zkR-X-^r4D=K=ez)#*EF2etu2g-e)X%GiieEE1Umv*Bdf)(<_;e9(9k1s{K^G?)a(R z(;exbSH{gL*t|!YG4)zzsLeK^9StYF3i~uJ|H|0AeG8-d0j<|2yxH$fcurd>ZJ(HR z^~9zd)ms@tyREiyT{-+O^jp`N?8pbMlV(5t{CyhtUc*|IdLJ$$%i~Wo5`FpXjiz4i zc_}G)=4~R!+bavV?|yB#icMX8ukB~sxz}x88CQJd%|AYUPPMt!tR3(jru?~2bHdK(z36?G9qsywZRw}38=D_nH%`>~yT|V?|75SwS%$W`&Nqz& zSESmy$z9v{p|JR!)X8fR+b(kDO?K_srp>$fX~0uoPYwO2H`Y7Wna;m+J!ziO&6kzy zzn!>#q#^3n7K7zNU$!i-n40svZo=ys(Q{9&`0MVy^ONx7z|b9XQ)~W|ZRccm`y;;l z{o(r0E%vXb)v9;A?f;UKEA`>5xzCE%e{01SZToY1%Pp1^*JE3Mxt2XITr+9?)O~pu zGxuKJ?sF<%ihZZf;x+HgFWcqTSIW(Mf85GFRjJ+muh*(9Ymd-w(U;~d_nSS8ci#S6 z^(?LYb7-N~#}zG;E3 z<&1XB(wA_Zw#Vp%Hk)-;NcjHB&`JDnFE;%0gY2$)tW;>tTe0;ytm@%a8ZFFcv z+}em=yAGun_5AMmm42z)P(e7?r_a!kqu}?tJ4!pxrY=iSJH1}JzIXcL%?8ho9sghS z$4lZ^uHVPb#AMd|-bbIF*=%!*)7!k<{+DpYOW*CF#SCul!t#tCvKZFiwynQV-cwpq zQj*ii{-5B-*rq0$e#KmM0@9=paAC|>a|PPt-o5krmcJ3G`{+M zuhpM+{IPs9|AN;OgRcT7cg{%j-QZ@lD0SxrrD?a823(C*l@!qVd+oe)W%~V+DbG_j zK4)5c>vX_Llatc#HNN!!ei<7klC$1S)iCYeQ?dJ5*@06n_l9m?<#)@yy2^UyWdFab zSFL^9d{^?$yO4WtPXDnyxohqo-Oi}w_SMtoM5Ml4{A;yuLB{)4MWL--PX&KxtCU_n zv@6v7>&Lmpf7ib?OX$qs@h|qq{(tAKZOc5iwu)(Amo$j4rIz3hq3Y&zqcdjzd6A z)KZ_T`~IhcnY#PSgvt??|-33olNH;)STf$&^k;Q~kx^jg#}!|rO^se$T#^;J zYDq|T+mrP?@8Wm*x;ssIyz<0Wue@*BsSC=*-kqpee7rhK_T`D7+SrD9m8DBuR-HN< zmVfKe+FH%X^hy)$J*Q6Px!;nFHro`vMdM8Lf>r;HM;z$?cg1e`W6gf%oYLwviH}pS z*9hD%IlOj9&BvQYbNLt!$TR*pc=t1Vz9r;bCO_+K7b`$*`)GXI&(cFp@)r&)S8PJ2_q zW#4Q3{J`f|r>?6W4XLg2-?w;?{r!WYr>(V2HosC2Hi}8Vt(9+Eawb1FP|Ulr_P6zu z?}r(be-#~KJ`uAVDYb_HfD~bTg}yX@sDrk*F~%U_G9e%kbTjRPkQqso6|?) zU2My@cCM;gcjL*l>ugh1lctJ$$KO5v#rl%REdF=X?eyJFb)L=>sJ!)5@bl5f?oanG z5;Z$3ELY4EIN3>eQ%5JqW`}N-NWRHy-?WwbG`A$IHdCG8kZFAL2ur}0eaV-+`yYLo z_Vijya>wz{Z+=QJ?g|d*T)E=Gc7q!I1>2me_eVVMO+8{YC+e1F=do#pantf_PaKi? z-P2e3U^D5Nm?f<=e%IQ9)^~{jnHPG$I%SFW(KLibIRU83r z)hc4JXL@j)QRaWnDQ}kd`@UQ4`PP^I$oac1S8i*3?-~i?@~s*(?55`U7yfw>mOb-_ z;_DT8dsm#8dTnp0!ylGDuKiZ|I#-Ws{<*Pi!QY3^kHq`-<*u9VV|HcZkv}`PtSgy& z-a9&Twfv_wA?r?gFV*_AQ|Zg0&kB>)-|<;i7_+X!HoTc>qstnsfBca^GCV)s0t#SVPu%RUMsitLTc#n>lCXHkF-Ud+b)Q%1<$`?Y{hqKk*M{=hv`5 z(=o8JtKVS#r{T_f#`o1<3vW&4FR#w9Q{LKp{`B^{6*sprgza8^a_usqRX^R_Yd@!d zEU>7*_S0eM+zVD-J3i$Heb{mNn1azq4Xc2fteK0J1jiKePT9R9FW|LkH$TJFI+Zmh z`(?K8?Js}hdMHDWfA)%0*|UpWFA6;Ae{!4Y@U7+1?C%t!ZmisTOXKOmr)eE3%eM2X zF5a={?Owr2bNW5??uQ){>(tT~uATZ+R{nh@%l_}{MEzN_*?-DyyHPenXWpkLVvSeV z9Ci=-6gV&EW%@tSoR7!9OJ?2Uu@ zex={dx=R1q?sq=1S?=~pmP8$W`K`IFDW%pyHhH42iZmDIYTGG9dG}3`SLd`XzuF=B zH_TZ2`@{%4x$rp?bKYz!R6DjTQCa7owElmSxT?>yKU`UD7xLp(#KX%Bby5e;zny3Q z;|ydya^bBH7iw05Do-1yf*t$K87eeEO8}cDPkr{~(T7Iu54)`Qan#qGPd><1c6ggt z*7x&XZvQO0uW3d;yyo`DrF&)Sr3JfoGM}jSOJ22VM$i1Y$3uUlYI$5fsb$bt>=(J> z`l)pJRiD0>+%>*UHau}6=YcWmeJg{P0>2$${`|s1= zTEBlk_s_A#AGXD3ZCJ1;q}E`1bo4{>19?T83_?$)CB=r;>4t2~ zyq~r;(I-^Z&RFJQ>-E2?`<}Lymz>@g-12_^TkFd+tkYjk@7(dY=kRf7*DqUBLLzm2 z_H_0hUw`dR=u+w9LG_DY_wU;N>d*PQ?e}jOK96fXpPYZ%t1~=8RC4LRnJ(F1>n7~i zSh@1fTniKKO;4jj*L~c%D`x69=9)XJJ?tk><}}}*ey-^7>QjYtEi`FO6X?W0uc z>BEU{>o?Y=6(uoDQk}Z4&7xk0eR{Ua{-l@23qu5#`<&zbq9=F4nr*+2+oz3lBa7y~ zoFigve{q`4_KjT}iIO*qCiGwYa@BJE(Z?qiJc){Bw^NReeK~Q7S9|!)dwTO$ z|9$O~%QMruw^yy6ESR0c${V}@ye#d#a+|8@^__AE%GFU$2&E~mR)4o~W3A?+|>fGJMt5(hW z_2qNO=LyN(mx^>|2H5l+%C|0^Kgo0Plx)`}DMH7V^mkpJkv6qzZB@t4ujW&Q%Mbl3jc4)U{76k_>g6X7;VN(NTH6$|yC|Lr?v@ zb7=f=_Une)D-<_vE`9jSY{%T7U9z|SZmG(aP0qRa%Vy2zLvN2CUfuPn;_1#RWb=(_9p7DNSvP#~d;jM2&YrA`j~AOd9WB@2^G^Tc_q?j#u3KOA zotK^Qf%%nX<-BVrAOC)K*7kOP{#Q4FWx5t&a*tp6s`v7kXxU|S<<#YFfUz;cPM*M!b=V;BU9Jjh1 zrneZ@@t>PMZFW@P&Z&zhr{vsCfBDJdknxhJla=}>k~^+0Uv@UEVw(I~<+IJg2Dw2K zJ*}s1pDKTB&ePbb=5^bwzfM`Oz2a*`(CgBVFK)cKC#Cwse0fES$27iQ~ zA^%d*e&=)L|9E%gJm-k7eOvwU(Cd3m#@)&#CLiZB{JHS%XR|%@m`p$BU*#3N+^yUtm>NbHL3 zeXfP`cV|^z-qg0*?v<8nT_UZ)Rv3Wa?U9& z4*Rg`PjX<})=9z#O1{fQzgsDKzw3u|+sZ$^Pd+Q#zqVTWX`=U)&MBwN5_cD^`7ty4O_P5tzqt0})*R&1CVUYltjKDBgBdxW%GT9MDQ?yJ{I|Mj`^ zWW}$#Q|Ytu{?!#B{p>k&k378~Wxo0Avi1U|4Oi1c%FfN+6}~m%`kQkbj+n>&_p5pQ z`2J1Z-+qceJp3JgH*AxZGk=!0^zFjh^`^(SaP0A&F<Z*W6y1k>ic;nZU4@;(1Yg^qdxjx^Q!wEJEelldZGk(r}e6H zwI-jdzpqj2VM%nYINf#n?`PiS6HSa~GVE*DpUi*pme!=Wm|tG5&%MIFzLy7y!5#4vZEY2l1+QwrXO6oszlRZYI}swXh=Tx6Axz($)tv-=-E zDSEO)XMUB8x^TVEqXPd&o7P=BTD)KT)6RK+)kDO2H;774_cXnoHGjtBiI=Nb87{CqaI_S5Mnve!Q9T>qY|XYlCItG7;1Hq=L^sm=SE zcZR#;ww7tl=}Q-1b=_7Ko@-MV_O?IW;QeX4eKDU`oPRJo|A+9Kxxc+jOg6H7@Mfq3 zoezH8KWYYOkYe(YqxBoXRplAbUS~Gpli!0G0= zPc1X!d~r%9e9OkHWA+nX@7*>#;DY^^V=)!;w?0#UcX-Z{wVnsgnlTH6dv~woH2JjR z)cI?U4y(3Z{$mi)`RYWa2)~iz^es^}gek*cSGFVP|<>b?gtQK9?{kKIlt+mXz zVe2c$-`%UWguJz!Z~gCS%XInUCySzA>OXK<{&(H2>uE}xPw{I%yUPFno?CC&){86n zp6z>Kxb4K=JLk{rm;HM3pKVR4Pf_U)vDFTit-iU}U#F)_d~C}8$92E#@@?yzBEe&MqtRyvbe)S8zcHICdfy&z(Le&n%U*SaXNycoBzx}4hZ z$UI&V_2tW1CY(FLtn@QIPljJuKgRr3nvqoGRLmrnJ+~*^o_tz5{M*%w`+s)3-}ao_ zpZiXE&55Hkf@Ff@m#vHXzusU~n-q#b?Z;1Vv``uoy`iDh8 zUg)2#mQQm%lY5SvcKwO}@xuSXQuF&=ujNb2jjzl8U}>1o@Zt3C=lpumQ|Z+kyDvI` zQ{5ZT$!A+<^u7PH2wZ38_n&+8Rld%w?)~HI4>F$AE;BvJ9MWapz}dZL@;%*YIx%~i z)mOdHE|myd_{!gx`{=dWZ+-USivNxu+UsXM*>3g;f$rsDZ*Fg%KKa-puA^Rs@}aqM z^7pvBTl8Q~7nr_eXWTy!H0SwY;74l4hU#8O}Ok)ndV#V@4*Xv$kzN`Tbkl z&Eu!lljEK~pLFeety z)st(NOH6K+KY#M7#F-sGKCX8C;JdN!r0?D6CAB5#Q?qKsIbH8pJWk$rFHP)agU!5f zZGkxLjQja3|3-g&@%vPN--LhW%R};S-i(Yqy22&x>JhFtCqJbz&fB=LZoRv}t~Wk$ z1-}~lpG`dQd4JWJq|)_r6F4>0vyym^EEZC~o?)4Gt##wOkTP|}KR5ikn@^Wdsua9u z6gjrdFM+sqgt93C|-^!*$v#hs?ioP2un{oHZuQEw3ZhOD&a)qC@ zLJx1$sr>Bn@6w~l9lKtiKh^s5tA)D`+k?vMH4OJF4$D9KbToakk8JiH;RF2d=Gp(~ zhn$pl{JFIF>PFD%uN4uG3hLiyGQ=@Ii1v$`cDd*N-ygvr>uY{^{+UX#*Ij-7 z&33=7uYyBsLT^95Kd1jjdy#bKzPrAhO!c4YlAi|N4cxvmH?;Ehx7fM<(@v)(TONB7 zpM3W3k=p!z3%M-m4fFQ%O0M{N`rW;GGYV|2Wgcd)tL6uH2{yf-^7wcDZ$E}x?;i*5 zZ`ii{<=LZan4_MQoX)@cecR0$0?$|eXiNSyaoMEPrbMYp{= zZh1^6aqr&~2h1*hyLLT(&)pM`la`jcnyrlSDo9Red0*=zsBizl~VwQY)Hi#UB^#hM>$&S`1yJ|)%vIBQ~& z&y1c&^TRvU+)GzKkW{@TXwoKIOYK+<*fxfysX{rmv znKneHc8VXad|mMK_0@TMA4kr*y?)&Zi~5iMtkmE7ByGDG=EUE7UpYiAzEaXNb;*?8 z6;(XX6+RkleDijV(h}X{6L~^cUzwP)dJU8Km%h`PEt7MuhPi0#+nI&@t$dlLH0AYq zf&TxY-p5|de;lqf@%Vw&=VA_+-zjK#{{EljE!~~W2c#MPya3(5Vh0&Pvx~R*H$573 zyyIbk_TSb0j2|8|)Ug~$1s|HV+rCyeuKKt5BhdK9pPz;g7l!``eG==d`=oYKZ2r7rsm$ZEM>4}a zws~;5{Yl9e^fElM=T>XrRQ3a5H90rKpPQ``IaYWiX~wDSPQkJrYi!evEP^x*pG`aU z_0jZLuT4HH3#8YsE!n1gAS(6#EA>Ctzp}L#8ZSJRSzLYkE!zo~s6DM2cI$VtUMas5 zIwSmN<(ZB5i)UZon4+X!l5go`G5zeXS(7Bg@{+aKkDKMb+wsYph?maIL{lEIUfKFtH^7Wnl9~o_eHgw$-IX}}Q`RMlsE9KwvQU3@-%AjW+cr<$>(bUs7t{T&Us~s3{m%QAxO?a3t&<)JI(wSRHL`oQr`K=h+gwv{ zJHhGV?LGG;D;p2Z%(;4<^>oz2tyK?;GVgM(c$)U}@$at{HkURgaIX1m$A$b@r!cY)R#XOuT|38bZGr4|34;cp4>3ozc&8r^5h!x zCCh)9)&KgaZhZW9P+`bEfG9t zx8`?WZ+Dsf=kt!${&{s~svB2vnN5GVtwYGod!OPF>-7=x&HpRC_j$2(E1wSe+Ns5| z{I=inrJqh~g{j*l?_*d}w6mgUXVA&advl#ugv?td)yris&3#+h`_Aumt8RIf9^150 z<@UYZ&xE$U?>SRZqw4U;Ou{duFZN#u#d%l5g3$nDcmQ zz2zO1K%Ubt!&+tu*4SL$(4!+Col+>}c4lYOT+f4?R|{u&l{}qwPWSks-B0-^&#L*d z=Xda?b0<#cG=^?B(wkiI{C?8kdG)jNcQ0PIDQL}t@0_#Zb&a=Lr5G&CdLQ{s)*|z? zio#^K^bEC?uMUJi@R6zZe;8*}{(au0faHhgZftpV;e&FL^)u^FA=d;=IU~OQxgnPv zC%$^yi6ybxx?8V37Hsc)tU6Vpee=|&dmcGP^CI`o*N)GP-xX9?|L*>;t|-x2ELW!; z-T63E^4fK!httE~RTcaas(Vs+dRA%6cYd|tw;joGzP!C#9`!u0)s^$NIeIW`wa3q^ zYg?7)Rez2BF>UrghJMRpeXChN3>w0je_Xx$nZ5Y=&GM3x5}P#}Js)4bc=6)L4M!jT zyBE&%!pH!zw9@=ddDd@da%b4L|o?SJcA?MHZu=h~;!rpJc2-Wll=}48t%(hvkJL8akGI(t z`crY|_AI0Aj~-9mt-f{4oU2aWlIx~v&55qg-!et>y1KVwc-?E?&c#cP-%kB8x6d%ocUwy& z+p4ECCfWE*h`bZkq^7@~=M2C0FJ(`OY^{5`7Ph>OWt%@mvSc5QX!}^M^RiQ>!{w&Z z4nxi3UzZ)1+;%LE|M}~qN2~N^#%LW{@7nTYQ)g;o;_3qCq?xxS&dU0EJoU)e^~Msr zpYQ65XL9q4+VgAPWqIlMT9Ub6b3Z2DmHVW-Z%gub-NKbn2zq_G<(7tbcO8C1&lrtLv9%in?2BEd zeA{}XebfDEC5Bh7bpOrs=R5f}|KB{jy!4Bo0zZd5-*~FKPyXAy;w=LAuL&)R;oo+x zRM^$`+jh6bxeH2n_v+khYfJ2$e(%Tfiicb4Z|eS*OY3NnzmR9X^;aCHO0$?^rIY+2hPRR|V(#=vV|c9NI7cRdVgoJv>^HHCy^r7plzKY4r1G zosVB%@YT1^4!OU(nXmo*|NOn>yxVjwPciS`dVcTUpz_t0Ys2=hxhA}_x`d;9!^Q?q z1CMPJ54)c|oS1fqt*7-PkFgmq8~ftK4-K|vYD_sZIwX(x{P)l>F=T8`cZ&Hh8J%%R zXwrqlW^0+bSSC5FkQe%L@ps|xdz-KSiLef@`+e*5i`u%%X!EK~ zt3It>bLrMK4cBL({ncw2%-N09EY%V&o>Ueoj=tdG();7~;TfNTY&9liSV=!n;Ca2F z>p-x;^wexu^=uD^@7sQR%*^5vD4!OPVrtvh0UVP)`gzw}vs z{QT=cd&}!&4jB8*oNMgOAG=3#{qGm`ZQtvkwVj=OO7UsJnLIxG(tzjpgV#-dt+=bG z#2{(8y?&yWy43&Jw}DT~-3n)hJzb~zVe=cO$3GeqKi&@f^kIE8pHuV=!+@+Md~T%^ zw>~{#6Uuiw!j0uq(ySfp_ZP`)y*Q*d(d$|3|EC=16FYtu{W4@|+`=;b{T|(H+l+IO z>t4p5Zj5<8Rr9;;X>+E8JMY&#E4s%Ou}${v?G;bEI*W9-{*T&p>y^*>>AB~Goi9Fp z{zq@;pQI4^?|yF`cjt65M6BDPd1&XQT|En`maO`}=*Ql<+FK>=@SW#Z|IvN^pX{Hh zx8>g?+@CyQmGz%}A*cRcep}t=z54Bn)~qIBk{J z$$IziKh_y{#;#y`WAZ6SH)tD!eQAVo{4Bes{CRG3&qi(b-n^CLTcx()^KWur;%wNt zcc%8vRu>a|-uHhM>ycyzWsl?M=OnYU^QIK+^O1YXd|=M8cQKnwyrfpI`*mf7-GPJq zW72x2Jl?Z*-Ohg&N`=4P8vNwkGuP$Awb!AQX&3S{*+O#V12&wkNN|{x9%lLIa>XYj zw@Xv=dOuIJiC!vZ!TRKcE%Q?m3)7n$C!T(HH+kj`oww03dZ(AVPo5R`HX`&)<VKbA5S^t7BZ|7{yEsd;|llX1cU-I}*=o@{jMK|{!Zu7sa{r{V?{o=hQ zk>58Q>(2YbvhVG?_~V<`|4lB*y7Zjkk1)gkr2mI5iu=!=={MJ^v`XnkXY9w)S65bE z*1YiX;X#H6w+&*C{P`1{_WaDH=lY;qQdzU@>KAJ>Lwd(7Bdu!sF{d;Sr z>lgpw`}58v)H}R<=GToc>}LPFv~LUVo!ieYthekDv_n7+b+aC0~|MJu5!c}G4yziS< zuKvDCd;5Ea58>~B`Byy6eZPN^*u9r;Cb<7#d~3Go{Pg3EVh3d329&Oz9L18qJ(zoK z|F3KLJli(zXMAV9cBAyenML#d%T4^#_X~2t5(G| zrOVRiUp*F6)>mKOGv{^<|Gh7G~T9N_GQ)b z;^@@i>x$3gb<6O(2Cawe8%O^$d}abZ_x%jXB*WONgeuccR$1TcdmSczaiym`+XrQafAjxxyWeiR4@!krm#P|I=%S&C{nG{1{Wej6Ff4a+Ri> z{_eH5tL&nFef(EnS1Q@QUH+l|op1l-Zhlu;#`)p)QMacX7i@A|`z?1rqnvoonZ$s7 zQsP;+g-@S&`6FKT_Z`(!v*T>$PM#;SV2`2ws^d#{y7_V)d3$N|70tQIo@$?xADV1x z`Pu82yt%6I$d{lZo%$(xu~QCT%-XZGd+`+>hb_Nt@flv$NaiBxN08iSf%+ zeqegl--b{4llkXI7hMfwU%%U(C9?LDsiftswN{%he|jQm5d2#Dnfxc&XeGN(B@^CH zE$@?ge8PnFzfOL(d{utTQDgTlFV95X4l+$n{#V($LFD7Iz?ysa+jri%x~xxR5A!F( zsWJDZ-Y(zPRk>O>ZBFm;s{wEH*F2UoIRE%&*5RM2YtkNE3|lAa&XuI?kx})eIB!|H zSfcfkJr+^n>8CI9x%@TS@j`iW-;}zNPrlFf9_ru!Xt$^4zqw#^iTXlw<{u0Ha=W`P zKkKpFZ?09WZftM)is0pbbN%M_@$=`geh6l$WBB=GlArXix#w-U*Z+Uf{c)mx414Km zm#w+QTJK+dI9=|)ky}MC{?RAy2dcSm9m?C|o?1yvNR@dpcPD!ZWBBPQvCn2M{&A;1 z)UW@KcP!JH#a7BU6<;uL+naB9(DjxT6#XpoVm8N~9A@1R?VmfZ-F)^xk(K@BoA1m1 zwv^AhD{!yXWB<>4`=%WZP5xRlf8X}Q6-Sh;moL8kFl$+0DECDX!5g36zuI)WG-qwn z$%F4I(@&LNW7=@_?GdZK-#ez??W!rsVO5Ej)ctyF+Ub0kExl7^JNI6C_kN4blNECVt$v*&J?HA&rUeu7 zl^#4QefP)zPsoCKS64pGJa8@b()6Y&F>3YuS-ivB6T_`m&db!lB)3GlY+tiuZi>Bn(dNMrw^6_WHp2JN3I^L@5YhSmY=4+JyfA9Tk>vj&g!Y{LWKis(%DSzjg zq{J4R#dA9@mhh~&Y0hT$+ABCbvG6bx^KWOZ_S;sM1)lUhSUB(OgP-eyx5zQ)r5S(u zEgG}G^vlO8yS6L8jBl@ewTI(fD9@dj9gobeMj!PmGLU{zWq8`IrT+cSf0uXsUw8k& z=XoF7UtC#Y+ECB=K>l64g_T`ynpNqmD=)oXz6w*EYgPKH#H*yHqJZx}J?{f~#vfha z3R+!1wm-h+huxmn!rOD^-PpA5miq6d!DT_$874NdO$%Ds^kzx)qF2YbX&@i{$ItkA~|{{e9Qq$?EhW{Nl=+&sMSdD@TMfnx6K1pn26}|Jk*(=I#`n zlF_K=YI*oU`Flx!=POAC*?q4iKS)2>{@LwDfsDK*1u-5^i}0!5mnRPo>KZ=ws6(ES8+3v zgSCFLd&O^m?8z@_QrPahwD}aPrO2-puMS+&->F!9yX!tvmT)8E^Y+s}`gYd|->-Ph zUX^k`xZ#h-`NDVk!n)^Kx4FOH`v2bCS07c*D}Je*WBg;YS%zHw=RX-I^*+7Vx_>I{ z$V9j8!dn-`zKQ*Fy(ms<`QmvdO>0$8O6=QS#j!Yja{e`&=Gtk;=QTud3Fx^ur1t$? z(~-68WaVt;JB`fO!(fzQTflW{%oyyyes0Y zDbp|Q(>7b*CjL8X^&qt4-`WMTUEjTpb*h(@Ux~CfDLDB_=D^aB)za^8mwj2WtTWna z@wFVcpyqE`_B<)FlYDYYXX?LQF4k)?&2mHUk(hg_j|!LUNqT>6-n%8KVVmnuTu-ig z{q?M|etfHYwbg~<>$zL3H_FIIZ^{2KP5i!s(Ee>No=&eldi=vH>-$}^&()f}TzJ{% zIKw~1hX1+$4_$nEIc*uJ{3~0k9oq?R8Lqte@!>&j#y?CA)90D#r%%;eA6{`;ey_y; zXOGJtJnGcvo?B75bi28Z_082UY#`bz$Jd8*lior_QneShYDd=IxFvn~HY+)GiHBTDl^2mF$7I@6H}) z11l|^R>t?7%a~N$SzJSx#XdQ6(Ppal#(&dJfBAN( zbV;t_wxzq&kL}m~aQkj__6FYErR#4+y|zgGtJXa8B3o#?Q><~%k7>92KTOa6zjl#m zNtIDhX?wir#pQ1|R;9l${S$wSL-6r2lmCwM_$Q@tXx^E(W?`9^_u99KuRrYViYjLM zz0B0_*u)!8AFS9U_2sm}?GUl^eV;g%+$wGVyz9s8pN}LbxE-u)@h!`#mNPu%%4ql7 zo;g1)_4rSYpvRMylXra4((MluV_f-t-^cAWA?c={lNtKzUmM$Tm2k#v{`8f@W8L$b zH>)NyHLThn(f53jdvw#2lseN`)BUmn2Tg19K4nP$*<+QpSt@?j^QtFLIoqae+vR`$ zgu|T4J9U5cT)lML`tkl-dCBKv%ly;7Z+>}`;okI5hVy)?_AHN5dlvcAU~WbIjC~~w zDrTI%u-5TjxvkKI?Fo@TYeY1jZ#ZPZoXfC1J8u4w^qY%z$<9pqsuA+eKKqn&zizJ> zmw`a|`-9yHWig5yUANC(`nc=*+upnt4@%USzcX)3OpE^cyW&kcn@Dn9U~^9WTK`S9 zW*;V;mSBw8Ufz^nb&dVQ+3kC|pNFZxxU%Fv(}x59S{IwoH&X_cgj=|;uAU5THaeHo zRD5t^u;+eo+i&*t%|7pcUb$QG_^|!~`BKf_`6=EL+-hZ}+m!#k+M_)^k+tX6?57$#PF&V={IXw0)kjucBo3$pr6; zxOv*wFHT%r6%;;WUw$xKrcJ-9f&TsE>t$=QJ97oj{qK9X^+&YqqM!fQ9A6W?UYp%+ z?VFktg7v|{Pfvy938tifUwu>Po#c%Bk^cg>-#qy4{8?3#q$6Cbo%pmhPe~rkf1Q2L zPeS7AmYKq9CF{3cdABBBVr`q?{mSpVKk#m^GuYDQ=bvYEU_H~%vW2M*`rGpVUg}I# zV&7dk+5c(O*L;h*MAr9v-!1B2cc+G>?C#{P_jhR9?2nh4ee+=N%*z~?HZIxvRCfC_ zLDQ4xVh%7!usR*z$)jMsc=cP^IPZ@de)GQiMx8Ufo0q$GUdies7R=QRvf;DR>$ukJ ztl|3>d4%iytv55>Hg4>@DWz>;9`tXSJS#(Gweb0-pL3Zi|J>QK@W|%OYulF@X1V^> zWVkUa_fwDme#4)VYf>6~9gXysn|i&Dl$lm87yj96X{pYNy!05R^V8NasmRN%EnU6j z^MPFDPd6{MZs(n6=z4om`LB&vmq_ZfIqW<7$INZb)$bo9{~Q)C>MQ<`$aF$vgho>}kS^*Vh{KA2(O_EDnBhKIN0L?cWvtSDTl9 z4obG&?enp2|Ehg=>q0j_YrN-vGeYi!@wLyo*X{a#zpvqstNP4-A#>utdC70* z4Rcn_=KeER_tYoD65Zpr*0-{^&-`@S`}d9`-=F%I{n)yQe-#HSd&d;xR*Oxm1Lta9 zEZutcZbFIb#p!W&6J8&QT^=d+&**=epeMCimK~znfhD?R&cJ$)2-r1yQ9x4eOm3_D1NPUSW3l$-IV?;-+KY zjVGTita{h%dhZz^H$~R&a0|2_v%{0?|u7M*YiBMC#fZV$+fh; zYr8pGuKzW^-JP}M%f>0cowjLOJqo*`wYq9sNl&_KxE)`?k}lWi5X-1rS=|$@iWkqG zHupf~msxXu%Uw)6AQio5#l(es9``MNDWbDw|62|J-O}CtpHc$y7R0!@Jm0%C{NI|K z$A{mqo%Jc;!}&|r21yMePl6kTAGb5^Jgvh0Y*Sn0_KEL#(s;P{d@5e=-+iVq&LSvq zf8ot({hxAdlY`GXU*8k<|ZwYTh8I2yRH!ZlhDdF7VaM#-hydK~Eav^Gc;r-29oF}Y|dwaw(o^7jz z{&Ph)w(tj8SI$nk*2mNOVcD+K+e-yc?0Ix1u$QMWDvwL8&-g@o?e&U_8uv1$zu9Sj zTRHkf8LvdT!_~&B=l2~#u5J7pzB#{g$*0}FmepLl)Yemff5(CQv-H;JT+?Q5vWebS z9$$IcaNpl`+aKP%{?E|L^kpG~J^O?C@8T_9JzrS%>dH%>OYi2b0u`FSj6k(H*MV}z zAL$J5Y*Ne4>C`6H^8J5)`1_;()o;w^^f2shRokTM?YedGt5-60dt}a?GcMJ?(w+G% zp8pi%rr>v8DZ$}0KZ{LY_{(Oua#xC(z*4P&T0KTc2n!)Rv(HbZ@3wLFuQut;Q!lA$=mcd>abt6iT`JQO4d~7ckmq3 zU$2f?SZu%8$+UV+@V1*}Au9_H9nfc(BklL0bbB4k{i5Ty3-7*4TFht7Siy3jpRwZc zzt+V|KYz6bb#hMog};t`ab;!ja(h85JDUp2W!1mp>Td0slUnsT`TX(qHos(QUR{#Y zy<9Pq^9gfA(v(wWn_8pGen@WIe2Zb}t-IzyzqUzFC_c9**Bx#4+hlHuv8u_-^x-+nkP6`o#y)cSwgE!hbhdBSEa{=sxS zH0ol6#i`;M{jXbGzVu2kGP3MciLT;b`YdA8QnQ^;4n(NkJ)Bp1=y-+S%cytJQ(kVH z8fCpoaNg0{W3TpfzLWkpN%iBFx&I-SIbCt8O(vt$v%;yT9ss^~d?|>o>T6 zvvqyx#bAH;fuZf`1EsuNMlaUQc5S<`s&X;c3;pfNA9p?t{=WK@UH_M3IVUb1oAvEX z%I)8GZoB<5k6v9N9_4rZmRasmjU{Kg?E{aSpWpv#<}I&J-)%no&cAq)?^j)G&HJg@ zDpnV3+qSshH+U}<8{uk_Iq%GB%h#4&$9}NCT5POatNrNoLB;ZY#u^-6;@i8fE_ldr z;%+wI7DIhDsj$kXluNp5QD)cIHz_AiIQg|uQZ7^Cc81E{(A#M*%eK$`%YR9K`RaY? zmozMGw@u_f_>4pC?BP#lGkGhX=C6)pDzGki(DyntF|}7=%L#|yYE2$-&-n_TKK9ey z+n5|9|B=IAnQg{iwypc34{Uwe_Pgt2o`dq|6Av=pY>qM4tzMg7p(}pSx^LZ<{G|W# zP4m|9ZvOkg`n}Qz(Svc?_kSdws| z5BM|xn0NWvQ=QA~cIDb}-!FK7V4uH#+eVk9539R!PF|lKzEfx7&Z13+`{$O3eZ3T? zVZAkhMdbX?+SmUMz6e69v8W~4}B&)w;kk$%NlTVhI1gOMjKL+gTsFndGL)8`BvW`X=D{3So9b8IL1>%uXermt@%>a!u>% zP5G^_&bv)Ky(4fzqN~mE-v=)E+`g1@w0oQ3w1X>3-Q(DblrC(2`{Vr5=c0xViK&(= z9zKnFpZw3gKqPF5mmQm{&o))P&pY1c20I4Exfa%6D%Pq{J!&jhYu1>;)$n|3)2maT zBo4g2a5^#e98LypNd?xMsyyC;@AJ>-eWj??6;o=utJl3;+xb>IY zy?>4wxGQw!`j@#@rBbgqFSFaG7IfleE*(y%_bhxkMoYbVYpuXyW;1myq0SlYv)9tjumfg z5DHb%8nUGM4SxUnzQ;m#~y?E^U6;zm42OQz2W+z z+`czu=dT1s{k?H}-s!cQQuvHk?6Ef7vAuhD|NITyyR4pVnx>y^cP;R1kGYG^^Rx#) zv%Iae+aEjbsO_E9mMnMee1Aef?Td5sUoi zv|pAt_e4&Nj!U1&z+^vXp7IW#^E#isPWAjcS+C9Oz{Do`rYOCxXGzy{wj(B?Dhofy z2d~yMt@jT8$g{;g?QHzl^{F?i-(I~|t-Rym`JeL~<9K4s z%h|xPJw=5A5?}I|QuWR&g!-OYeJbyK&XezDMte>7eX(=A{&))W`fWbqX(t``TW0lr z4vmX0|5rJ`f5HBG`!i-L)3%FQ8(t94Q?`};?%%(}*udLeK5ubdNYbeP2K)SSIhT_n$LZG z{hIEDbjClz4EFo$AHL{be%5EX-`sioN>t;ff|{9ChhF^nkihU^?F>Dex`UdVi_>1F z#60ws|L^r@cK`iO{W%*hyD%=^QM2y-hCufa={F}CoNIfg@6`MAjrsK9X^HRdeNgSw z^ZUtN`XIdgmae;I*t=an&IQj1HmqA{wf6H$*}9LNy1SLnuf6S3w%ajTa*6Tsdu9!- zswXSA&pGJ*{ua;r3GbdfzFt#*UoA-g?sIj)`ofocL=KAIJ+zj*ik`_?B{>~j8Q>iqB9 z^!fLVCXp{Ie#JgH5)*bY_fb%2uD|JNvn27Xmq)(5IlkIx=DGEewteCEKPto(-e$jW zaNlyfzkAvDn{RzOt+zk7t-AMcSf1+k$xKyqivJybmu;7l8@+!;j^mrFJHM=wZ>sZu z`Dwc3gY06_boX7n?z&3ncbUBMbT6us5i zL>Y_pNA>LVU2vppQQ?+-IX#`_X&(*er71rZQAzf4Npx<~FRcmVGyTISrzVzbqZ5uC| zWmG49IQP1Kip(R~vN`^&r?ThCXs$WFGiq;!&4P8ya#gmJ{1nT|4qli1@4lJZ2A{)i zhYQcihfG@jxaP6AAHZ(nTJ_8E?2ANIB=i+!?M5J?zK&K zR|YTFw|@J|7u?QN@9E>`=VSO|(-00C(wuqk^UK{Ij{dLd zZnMWfZ`nG-NvSJqq60#`pU)_-{j)jQ)Ro%$a% zuX2CBs{b?Vq9dsr&P<(hYVE#6^T&E`HLO!V=WCu`^ff5#@@LK$i>sEsu={V zm+8#mDM_~O?i%Yis{4qonv`qquvvHdzq^y7=kK)k+iz5KuJ~;B`%PwIvUQcsE!%9$ z6P~ZI{=0ixt@YJh{eAOau-yMUr~F~|cl#~D>)(HQviy~Ye?leCgLIy(&)4rfZ&R8d zmj6_Lm3d5^t)1@8wA0GzW#o4`^BoFrpbmXp?+J7=X|3{x)-&+%tRT;81 z4}ZEZY!{NxlNGw>_ZstUve$Z_nmW91?Y{ppU)O&-zt)K*4iT@L7!=%|9JT(vsMS!; za@YCa%m1&wSgxjSc3<(t$k_s-k3OH6v$*k=-@52` zua%#getdbc+>Nho7F=EvaXJ(Ed$d=I^yk<4Y@pmoFFp`n7hs-`ssUB{dZr_#Z51_`}e!7d(1& zSUmsGYr87>y5Gj;P1F4xO3ay`$y`fa#?-iWY0i>uhtJQg7JSm3a#|-|>K&IHV{Um% z?fPo@f01pTwf^KqmshizU#b4OdbWGi#F@HD6BL_6;_7(WHGWK2 zUT<+XC_FyS8t<6TYQBLOSMcg8#BP(;Ls;ePUF-;C#q7!JXk7bQ8C$zL3t( z^{(+vP``gw{I&n(XBqoqHNGvp_P2(I@7f->>GSK1UBAU1ir@X({=w^S_8nI*yvm$A zFYAbV71K`pqMV~&PTwxfxqRcv;@l~>t@`7?>23RHvwfrf^$V3A@4Tn(U6-TyIkb0< z_g}l_O1D=5{on0e)y?hGd3RjCv!nZ#lZX80zKQbhD$*9DtNdf=cL-+CJO8{*azV;+ z3+A{t0_>0GMxL7(?J+<3=f~2>dYxh$rSm0+Hbt*{b0LoPx>eJiWwVQC9AIWExv?_W z%7EcPO4+L2a>fRkn{L=%6Xs`ov*GdF{yA$Htk<=3upOylec8O2X?57y=mjMySASk- z=wEdC_xBm$_41BMYyoR@8J)HGr^Jg^ZadWB9dWin-{clw6 z`n($f6VCQ0^ya!8+{CeOrJ7=@Mf;wh1j)N;RaSY?GPS2FH~oEVc=%Pg`IHc8o%Z}+#2k7oNxTQPpnXZ+LuTfDCivW&>q_J#LHJ@8zSA9R+I^?^L& z4SU$=(*7?eYAZg=+jGC3*vL5lTKa^OXDYUe>@&KcWX-VM@=r}+d~?>R#$D@IHCN48 zwPN2}KKuWn&9!Sg)=%5_NT_te`{k;ObsG)!jUwC6EPwYfjw#7#<&xbeAHDTZK09TV z#%8G<5)a)=!}zYuO0KtA&~=Y{lXpmb$q(My*It}=s0lY;U{P`OQ@`W2HX~z5R zpza_>AUrU;-)nq!f_M^qQIjh6g zhwNS5cX-PdOZQ7bM(kF!Yf8Rlm-)KdL0o_B>PO51H;QC(m>-xW!ZjN0SBl^0AbS*Ff**5Ax%6HjogPmJY_=L^;}?m8pg{6ucz zi=Ra<$yb=2VmHqV(|+*!d%gVnU5~F9zI|0#l6A=twEJ-X`*@38HMh=`yt?vorEmD7 zov%P6OWMmGA8rn3_`%A+zWnUz$YtjC-)#PzTKxUN<>}uRoc5m|@L4X1?MF%Gj=P;p zm-xMUJ5lppSM*`!-$pf$R9z~k&FQ|~a3I3%+*HO>CmMAllSJa5g{9uPdo)t_ySDk! zFE*df*SJ(_{rj=@f8YDn(hZ-2Zi(gp@^S3W&CNPpy>D`Uok;(kkly!?W~ByPVpM;o z`Klwf%3mbYCDbnH3ZuS4b6jX`$kHpi>z{slT(jkTO75m>JO8`a?!0_7W%GBPV%7BD z8s|@m&B(p%ynWMS_3aYbu96ReH5+!t`kqr^GfSQ&rZ8K1!Hs2nD{jXe^^M(c=(K&3 z?{AyyzrXzdc~!OMd-1(i`{L8`2_9ANzl1E8ulbOFwqCpAd~Ue;nH$Fc*0~x^b2UHk zV|(Fe*K?}*3r@b*Q7=3HEdATJamdZ5iy4M~1bLKAFUehj;eWB5cRl-7R($eqcfA*fXW0AYsxKHHg zu}#`HmfwFqBZz&IgiO-i8?kZI^zJ_u?Z1(dG_$wlo3!#8rOZg1tf;s>sx7iVf6e=U zt>%qnvua)Y%=-M?xs5#gj`L5F|Ns82#i!)2M;9lQ-aCHDxZ2KZU(~-V=S4YE8U!|6 zJ6zj%`}vXTE$TY6o2qAgF3796cH(|^T=l29%brGRxGyyP_$IPnd$J zv~XHRWh58#(kaQT-+khb%|4l(Ah-PaH$lZC6)f7>3g;(nI=f+iDQoKAovcw|f2Y2k zdG3S7r@XFJ&u+f9$d_8NXnUp3$D7YQb`{)yHnAt~cEoh;S1T*8JbiJ+V%vxR=WWUb z?-w2a{o(ny`{5Z2g)a&=u!Ac8ThNMM@2YYoXw^||Cuk;<2|SbO51Pr8|8ZySkE88z zP5ib0q$-y5_hq`7Gj+vl-`;U| zmiw1`I=Nh+Z-s2#&8KOaS9VI?4?Um!PVVgTr#r4_N$*y$`L(i4s_$(1)MuODOtoJ1 z$jGYb=XSa4VW&5pES6~4__QR~I(+%=Un_W+m@H?VH(h?fdy41cO+|m7>^*ea@8KJv z$ha+0eLNHLuJ8W5ULhj%`t2V9w%enYTyb6Td&aFCx18oTJ9>{FzV`Q|Yeo)a(iO*Tp5r3>R6C|^;$%k_vNblzvgB4yiV!O4paZ} z&HBIazdxJp3S3PuzFg_d^JC`QGY9T`2|F${f9{iieG?|duAC=+m^W+w-1%HGSGL97 zv{o(KSS+{pqv7*)=Xb1m@u2re-`yCgeE&{myZ=k03&RYKua$3ox$a$I-=_x`&;96W z;QX982Rb7UP=??80X`ZQCvxTb!ublI9uuL_T|; z)v{nlOIFUCFV{WLJuQ|#<7VVKn~X0D>aI&MPD|68)816;!1nZuwBGK}X(zceYrstbs+0>kKJ{Cq=xC>%u+=UU_Bo?Q`O_=JQ_5xBTQgJn@sm zXY0#z&)uk1DYyHqCKOO7CusT9(yMMJ`?cyjWk65-#)JXm!>&;2UzmDpO zpYJUVIekXeQ2uR=*3L~nH+vs#3Of+r7C3dk;toc|m!dD$-j;m6i{*mO*8PH)3+HG5 z*f^hotwGCPJnLaN{Eq?cn)mz{$$Id^h^NLwy?9;=ej&9ynvFNw&&!_uL zzV_~TU0vkGTbvyk7$j&Ooj({HXQqY@AK;) zucGZfv26X|=kIojW53P$58J(Xrad<)+%2^HxuIu$_0F{WtG`buu}XKCSU2VUDwCO7 z8=8tcj29Tzq}FS8OjiB$+@UY3+wX-$uQ}KM z;j`dsFX_ekN`*JIe+bULB^+h^no;nEw5I@wxgEZ{7aWTdbaV*vL8l zlzk%o{N(SnDW?yv483s5;PqXl?`wKPwE3<+?^wbAc;Z1v`!bX5d$s0IV|}zQw??zW zM#b-~+&&JOl}{g+r7Fx|4ts5RSL*N`Gl?gw8hp-Y&v^eMWRuNJy@LIZ?sFYUn{f6w zkNe$cy#hM7Ene#~72HYlVGrDW?6~KOTKlrerJO(hE)8_&OG>{Tc)j^!Ez|qw_u`V{ zFaO_ZzoRx~uJnGvJH3J@?|qZddHO3!;acg7;!lEC%-A0I-~Yt%ZvW@CJ3iideqp7j zIO89ghWYpQ7ks%1S4Q1LAD#wlf6zV)^~YTKzkY;2I&}Q~ z5pn-Jo~xgn?&LUgb5r`PfbipwBWJzkTla$Ni{)8p(K=yWZk^bm?BK#F>1CPd|PJ)n2Tv{WiPQs_*sL&7J(W?@NE5Ql!1c@lM(6 z@V()CvZAk)FSaQ>u=H9Zv!0h_+v01nylo%vpDsG8?-PD5oMoM(rf5pg^!d$a+n8zA!@APj5p#&`di**>)8dDFSmc;+rRDY#TipyMz$1H{7ZW5|8&BWiPPP;Z>zoI z=UtoJY2%x{=DEyQ?J~Chl|I|F?!3OsxOQU6GoAjh8}7FM;uw#tNWAN`CCA%jRdYH6 zo7k^2{<1fM?PRX9_kF0?)|BCN0g2K&b)hf#@qJgPdpMI8?6(#ej$=? zdwkoZM-w-P&hGxXd7k0v09WVeJ}K83i=RoH*?cQ?_pt?{E9CB^t$DWn%yX&cExTu! zoqES$5bec&&9-Qgxy=pht+L4;?@Q+#Jbmih&b-ZMPaM~;UQ+tzcwTaGNadFImp{M$ zuJ?F${_og7KhyV1YtLB_JXwzMLo&m?9rX`aaP4{rZo@9hUA+i2x_Zm&csslP@e=?0 zr@_sI_kX|4t$6ILf8@B{JobQ{d6lo$xtG717a4Ht)|BlBj)X;>pE%uFa>b+csobj; zoml#={93B{ETh7_i(6OpNnO=@ev{4f%FoEcgQu_GNUt%z!DD}7#K++2Nz4p>?~i{l-JP+F^^1qYryW1f^0}8y zE_xl2#l0%C?%A$u%CE8(^cSBvZgXok&zfhuZaiCaw#M!6=4j`wQq%uiUKjnN;a|R8 zqkhKI`>ZSOh~By5dM~TLIG5W^f@9yjpXI(E^7RkCjeF+t+jm>{x0v^ZcY2jhyz*bY z?YP7C-G3t7-Bu?a`EK+4?T_O4kH4)yU3|IHN9p+5{ZvOJJVzP9>%|3nfxQ~#)s|m=DvGov(4tl zs@cxdlyj8ch%w4C-}6~kEdAV8{`Rps8y;WNU3}a2nQ)`~_05+gygr?nRv|L?_4OZe z<~30+{mn}ZquQg_d<=HgmDFdpm4A>RaXKgS^$F$v6NY;wGnQTSS;xHox9z1i_tUNh zL5sid5dV;+*u2l9()DLW}ToP`1r!TlzA>FJJb4_Ai;$?fK{EhKN zdwW>pV>VYuJQiA}9HE~qnv%p&v}AqQp@X5_w&b(gYT_K zDB69tIQr4wGv>A-2W-C2TRKsPX~CN5Ih$j|;}$J_ylHJphYk-z*lI)Bsxuh>aFXY`s=$3@B8kb{^gS91#82*@4v6RoVFx*xu1XD zt!IVcjc;nQ@^W`LA1r75a~3?03LfaPuhQ?cD^9Kw7w6uklcvx!H`ZZq4BM+zcI$Vq z?*H+Ttt(r7aLa)L0}W=^oljmIOUnGbH~QwrDi74UTWPnoCISJ`*#l`uY8 z!Y=nRX!WF-??q29DSE4!&M;9=1 zZP$rX`KKl`wf1K36Fsjp`I{T7pk+PV;c4%lGJjd&*>~*G@7H_o&pF`k{`=gbVka>@r4GFJZdzZHeLl7SS<352Zv(>>syj9Z|4VaVQIgCl`5X3RSE)j4 z`fok??d9_VkMGu1PD#G6Tp)L_dK>?Y-@C4^mF1M_zq6&v{9o~s^wRXKJCjmkK3>y( zciQGuNbUUGp4(n_R@dKpvB<_gZ(h=SeC4x$Pi@v8{N8P}VgA*m>g&MlxJver zX&T{wF3sVt30eG9;`5UlNB>U~TW;1GEWdYWy?Jv(S^oT`(rfNaeD_j%*<$Orzaxte z*QCpT=Xq||l6``^r+T3)s5;{ECm)#V#3znMSz z9<=|&W3}BYZl`A5PZa;TE$+^#<)+)N1@bw6JR4E-`u{KEYhJSEXKPkmzJ4l5UC({% zljPSw>g==+9&qyJzcR7=*@vgq|B`m`u)#2nwhVaxlSI(FNFWglF76n(KNtncaB{gPX@3i_Njm3;JV!#AI!Ro<^p z__LWOJxR)2Dkx(t(C9wZB3NFP|GD)yUAC$j?-@V-v(>x3=+~5dkGg60rw_hme=yTg zCpKK=&$X1NHEmmsc6_y zUYUz)mj$QBPGc_Qyj7&P_@^J^KCTb5=VhzRe|GMA1^=OHZ@y`}qQrVWHm~ygYo5m!Tqa*~-uNFaDhObKRV!6SK-wp2n;>RdVx-ozdx|jMCAYR&od4 zC#7rov%=V$EgtuIwWYyJA)o!RxEL~z2~IsSRq z&#l*c{CnPSGnqSo3?7|(<>z1i>mYkPvxoKfk9Nm+65g@jF{}J?CvE+n=Y^6Jqdw1E zy0f*9|Azfbz*=@ZP>y=%p8O_ctp%3S-(M6Sz- zEy5*sis@&`?H3I;&XM`JJadupjnqWms_dv{*%v%3co|$L_ddKW6Z+WnuwUirX4#w0 zin7)_e%|ocKHb6S@cZ_=Z@YUqIwEdX&Cz6TRTICzJUsH{it6hdEzgF}c-MD%*LACh z)9kn2-}UZ7#d(_>_kZneDl&6^WHPnp*PR1~`#$&0|M+p%9X*DAv&Uk)gzSE-Vc3_? zAH>!iHqFh^ufGR;xIowF`PRt z>F)km@yqdrTLs^?KTUqQI#OY>ZNJ03*WtR8ni|Ef9%InT?pw?($*^`&+3H`NdsgYD z{|HF$Wn=M6z4a!h^z;MS18b$=`}w0L&t<9=IMB~fars~C;&m(h=32dV34b;9<&~9}FHh;?=a1uh z@SO2aE4b=Q`GbXAICYxtom@hh9GacUR<}MEWoruzwYf%bM}o=#`cA#iApP?+w!! zCVYRg{jTyviK-Mnt#D6PgQt6xLLKsX9kzPh57(VB`MA}l{cb%BcW)lAl74x^@3l6U z`sW~qqQr$d; z+pRO6PqGo!58tfTYh_Y?=8L$z%`@B3T(Rww8JVxGkk!+!dajqY?tF&%)zHg!>!#jc zc{i%F?r-llW4-flt608m^;>s)cgy~=>(w8&{+7RW>z9@7-xCb>TNha!OP@V~ak9;^ zW0Hri<}xsRG<)}<{NJUuk1hW1j+x}P-zR=%^R1$dCYJ>#)}`Ds*x$co+R6ScXZEaX zYFqyQX6ET@y{FS3dGMUKzc$fc+Br^)^Z0=|yYByeu_t1k`*TZ!l?xcQZ}=s*j$>0{ z<+r_!vOGR7G}fFed)C<57^_#^o7m@)czk;!Q})k$Uyi*!IKR58uR$u^w#h+fo$7T* z(_P^g!_=0q6XWrE@Z9H))t3|Ad5k>E+~yf+9J)A*XH`_?E&bIR_5oIp*;OV#Jv^~t z@t*#PwHKvA0~@{5dw<-mxxAa_Rnhq(hP9%x8TG~TRR8o-rIb$wl3cHW3RhRQ{C~KAzOUX+;{9fdct zE8^J;DvKLFN1r`WA(m0q`5<-6>^l7w^64_aC*DquTY7u8>Bkzr*E`qV-hS-4g8$y0 zjMI$y^X+DTUEIG{-+i~}afN-H^v-Cyz< z|9tq@y7<0TuA5cqtCDXke=}K?zS`n(yq*0wLmk%veumFKd*-&-mHxEa^Kjws59j>v zH5K-Fd-rK1e_FY|Da~-vvEbuNy-T{PqV7u_^muk|R~(;%!X71dx zIcAwM>%X-%Tg}z}KQ*bVh`+K{_h&*`Z^+Y+PPtsS9kv~uaeB+ItD@rD_4~G6`{;RG z=bic)eRoOs54o;y)tatc>tplz{xNpmefPQ2^SPewy!Tgso&5C1@Oy82C6w9LusulK zZqpQg|7X~pig(2?t}GE|_^;hC|IYq`EBa1vuB;56yzZX#HPG4z6Ipq=Im{o*8U7?Q z{9b=l?>^2R72Xl_*AuJMEgH&*(A9mA-rjuY;Jz8`>N(DN}j3xZoWso|No-dQU(*W zXB<>5EzM!xIpcDnJ97}~R0YwuoTlsT8zHLC9P zgL^@DqvtHXZ8q)uuf5(s);-@NtY7_1e$i8w_g6BzJ{Ujxw{|1z#@zJX2RH0qF8{P! zzju|P|8Ms<#UC?eG)^kd7wwe_r#jz6^umhXw&SCc<= zqU@&l#`JIAb02dh{J7X1>Gu1c66@!M|Gws|e$@Or`0MHV@bf(q0=K#UxZQL2v_A2l zOW~8@berIGyB)E=-fWRlU29wTJCm_;WB%=rbB?)}%BX+N&%EmPCf8z5&sClU8W)b& zp1W0;_c~7b8k^;Qt{Z6!;_rv=ag#p0Ki4&3Vp$<;*Ub8D#<$A$)Y!c~Q1SHJ(`~1f z7j2y$rWnISX(c7d)+p7wocJG zR||W?Ki`=q5wI`sy;0o9H~bHz^Q-y63(0KR9;h??S^byWeL7^t!(7`crLg3=R;5*4 zpzSo;41bs!n!&A!YWrIDdp|C8f7sal{CQ@T>nn}o4;|AZt~M&_W=)+edoyYtQ}~;< z56rd}Ntp}gyqW#<;Nr3$AH%)<-bx+G*!_Fj!TBpZi!Z;3d(F}EA!+ZUqAKaT{5xgh zMYdjcUAyYA`tG8(pR>bQ;;lEGdUCNWYPw;u365js@r-?;PcH%zNsm4jeFkD@Aq1}FXXjR&Nt)Z%GQ=|xz^e(xj4();r_bd z7pwAaTdiWay5ptd^@BejvfQsdZ~ZYn|L0%X%2!`XmTDgA|1I5rfiK^9epCG z`!DaN{#NM)<=@sc8BN)wdcyB<*%W#E$M??r`INrkKhnLdxrV=LRjO};%bvwIl-{qg zDLp2o|81@1`OtlVryl)Yt<`X5&Tj2X4EwvQ)-YO>Yo-64f1&)9K$`kis}sIr)$5KQ zkBsVX_+livVzaU_FGIxnoz{i{n|ehQu0%F`JYuxP%{?z!&wr2ig|E_|S!y4bPHWti zRei?c<(u-W-ft_HiubNNt>DsE(PMOU)2hfNOc^##Q8%mR&);@_)tsunnc1suE#pl2 zYyI@j8}aS6evw;`>J&fm)>XQHis#418QDI$_i}ufc3OOXX#Fr}UP?o%&7#YTKN@|= zsN9t+`{J+1{U2`ZlMh$)9(X1t)0tLzv}|tfy7LjXn{NJiw!+#w+kIQuYR~&kQH|Nm zImb9E?myVIB3$J0o$`{)o%3`bnd$bKg|e*tmd++J*ElEVk;v8b+(eF-du{UB&Ej_a zS;wy*neF^G?9LTK+lRg)-_CL==k5L0ZL#O|-5u|j@h`fpw3q(?^KbFKd(h#EoQv!3 zb%7>BcwhYZ@Zcvyo!Ei$IcEClGv#(xD98Q3u(#s=@_eR*?$*p#r>yVyZhJ5O{OQL@ zle=G@lD%MfDVssRbJ_RRGk+VN*c{E7+b-{+S1Ot!x83#QQ`H^IAE?f$-~Yr!rfZ5$ z^DgBdx4Aen?%qwe`T5E1zRvFUm{k>vk4k(x5$LyX&U)FEk}Q2&o@}`LWIH44Pl@w0 z=NE1^P?>Py-qYJgGm4*|{jvVwvW-8Y?nZBuS@-QGbL6rx`JC&m*G`r-_@6$nw_?@b zEAhww9++d~z4%w(Q~j-qWt+DgxSF~uX40MhE0U%r*$3Ble%{@E)nsSU|Jz?X;uK!z zRd-%=T^f`TRewHjqJ;ayO)>k+Iq(0!Q{O-R&KJX!>p{!?Ch~k>zOl}4|C{@Fgl~ww zShnyKTSk7))~~terya}vH&u4))YpNFb>F--X_tQXd;XQ1=VCMi9!p*Pabnl^PbU&H zC2NZ145q(2Uwbd@!NR7(S2leN@pISxf+xqnu74cFaxrXk zPR#tOBXexi6$0EPiaX-l&hvcn@az5eXwOy8v-iW-UVl30Q+MvA*O!#_UkhHm6k&Ju zi7T5O20ejyT|+0f1)?ncjr9GIGFWr;r^XI+SyDSlkb<-@;;1ydTd{6+~ZSC zx--7>|DD#qdFy(Ms=_5ERV`{ycDmgv+WB$au|zgq%fAs*&QEf0xcB6Oh9%ql#n-m* z7tX)B@1^M@e@PMJ*(bN1O)2_tAy?yjDD%BL^Q!(os8Rl&J5w^^>b-~B4Lg=j%{A2U z-BvkodEu(B$F|-2@$l2y^S8ZHTDH0No#_55p8jK5weR!fgIzj}`9g&&eb|>hkNAFX zo6g#obB}vx%U?}n&$av|p5OK0qoUj7V|AtX&-Oq3XMMjdJ@&T$`a4elr4IDJi?{go z0kU3Vv*YfnOsmpYUqnEQd88Tlh#lx>*zs-3P0P(+TEANU`K0{)(S6%8ZNF=EM^aB8 z&GMf8#%sg&oTk;%rmw0wiu`Ui%HDr1bYZS4K9a~)ZdJ9z?D@Jx-d z+xuPU>cP8A`hW7DxliBDytE_6DC4kRGgrr5Hs>uVDd$Az%&E&3Y1Nl-Kk_)t*KNJ` z|5(Q4HMX^EEuUWK?fXzZf%Bi;ibS8|rBN#P51jYv^?CB3@`-Wtv#oy)2`u8)4z>%r zIIsA2_u3Upf8Sks_w=I4TG^{pi?ue~$v$+KcUt%I=XK9Br>A@}+g9T8W?TBPuMHeW zisU~EY2VasI=???=Vl(g+X5+N?PopCC;iNgs#^ce_jX9CdCza24~2I@Df$1?yYG+9 z|J%hMU&#ID%acCS=*V}|w?`4zRRbLRD3@cBC9^|kG(m;b(g z_5I5lslce3qcs-4&VDXcU-~yG!0({^+3wi4JX>Z8-;&v+JoW6ktY^C~mGs?;Zj`-P zc}`LmaCVvWx7kNesUPZ}x6T|N0UA|(E4#k2Pj;#S__ z6Q=FIuIyvFXo91;^{IOGS4gcdt@7R($@G~AAxrI&l(wZE|P^5q$Q{QO}I|EwD3GZtLe z+*}MDTl)hZTeD@*Wni0K{_XbiyO)oIt#9pL`Pf%{_ua{V^F6u#r@B{t`Ybb3@@}7Ky`aq1 zs?&XL>ZOs47tc=o8npXIQAxbs%24@JkAv=i*ne}b(Db{(a<7yw&AE}barf>?%I=ej ze(v^@&o<|2?%lfk%x{;ghZSvBsI88h@>ZF7@4RK_R&G;_`xP{6)w;!cl1su5>|^@L z_~6egmiq5M^ACpK`>~NNey&w2Xhco;*P(A=>&jenr`mUKb39(I+q<&p>aX37|870I zlUlySQlwIB%Kl!#iZh|6{tw>YU_IrY9ws#VX`k}+^Otm_7I%FLmb^XDrS8YmA||AWWR{*&tm*| z&)Q?xud>%Q_Dh=bZs`@5+%tH7GSH=_C*}0455{(r3~x>1*tAmT)OOp=`?3Ci(n1jXlf1@?6_}CN8-qCSyy<8sYPo zKW&U$Ca3yxmz;Coo$?;xJ~z21)z5CHKbi6M@Ft$kZUUd4{bpd?JUvgmq?zruSOUlW zNZU_>bMLfA#-HK79m8Dr_T9luWv6+n$E%zyE?wT4-5c?-T6=!_9UcAa>$Vzh6Xhy% z_ji$VzruFw{YQk6C{gyGmL=Ok}WUd(it^yl>Yc ztJ11jL8q%Pt_)tj+(K4fu7EU39L#1qEoO0Ko0{kYIRn4%UoO_x zhU(rZemu4RKy1Hy1aGyYdF17F(gAie-(R~Q_)jME*!jIZOJA(|QC{-XGJSVb@>-L~ zwii=m5~4cu&i^p|9?!b#k?pioyYs|$OfpUOlkXQ`S!CPuZqEZSjKR#L{ zzV$!ea_z?PyrY6!OS5_n*M1c3y)XRo;v}z&O77`O0hUf{b>5}^o0Be?_42chqFwSl z35m-Z-4WaVo5?M{eD!~P7e|urrgvJa`o8ykXFj&V*1pOAee!8{$xp`9Lg(*Ze0%Pr zbMZY#k{t?JbLKoUymsP~$-W(WQ43}Vt$rF7IQQyL*)^fht~ao-iCNh8o6XsN&dhS{ zwDXm3C-&8rlpg=Hp)x%oiuD}BM~}c>hA&ndXZ{mtIOw&kA}9Vz^H$d1ef>PLPS%~3 zpKbFaukE;XNbN7n8vmVh6wcKwV!JWVWr9wVj$QYLEjitL?khYIPcOc?C~Qf2;<56{ zTX@{6S~hI2y*%-2?epNpe;%cAT+?Q*`?qi2(f1Q;H{R^cFDv*L!*=FnOx$+eZ}%2G zk@*vS_Ni;c#UH)fOizoxT`%~W?US!*m#ctrpZ7-(|L6B#wH|K~j`;HV%htTphyP6d z{`#f$we@*cAGT%L%#5pSZgPDidE(Tyz}rIC=gybBa_iNsH}R(1M$M09-toNc z{G;gib=LEW{~ms^#pC^flKuC0`_G=}H`l86=gQxlpyUkd+|32uCjH(vHSC;8?W<3v z6^EVm4_ez-a$j3)ee~)_t{s!-Okc!R6Jb@V`qOC2^p*SeS3+l6=CktslytK5TKhc6{xDbYm$-*LvTYyw-oKV^;C*0z;p1Fp*H4Af8LyZ^<$_^nk`7v3Ixr-0IbzBla5#o%25LkhH8&FY%YsJMQiK%QLNS=PX#Z^-`_O!}KhD zE$egj@tdO_|DOLlOyevviZzaQyI4xvqha{jBE6_ znVcN3m`TFY{@LYQ-dmdzF8Chg^|rnc{xwYV`s91EC$yE~1T$jY@4C#pJx%A+={;fE zTN+PoHS$rLEdPN+mCZ(S%a%V97ns;yso$9=_$h6|MTg@YPb98ibo-H$tY8^)h)ZNu zrR=j!l7FO_`|s5)Q&yjQKI3n)^~0O$-&O0<%}OtAUV9{YcCx`l$3W$Np}tQ=@hP`+ zOY#Yde)?#40hOBfQqVgY2h<+O{Wqqf{rWYac_+Kqn#JdwZy1!Uf8s+ zg6!`W$A;|nt@?g1v-ZI2p78RE_l|3%H{4$NG2!Woy`TR*7rdAFMuM&8t1kcJtL6K6 z&s%)AEQwljow4HWzt+X>uw?!sYfso*tI{f=OCKK|+{#eLao|70gJa;WM<;h2YPGKt ztoxc={-|5MGXKj|i=&I1ePV;H=JuX0j$L&$f7+>-i!5_u6|c(0u^E4gJF>7MZt9Ew zuZ#9Rvh;ttxa`V9+5MmN%hcn9o~bUHDl|RdT)&>9)=eXil&8BkE7v`|6?#2;cK!2x zZ2yw1SI2lZG*`_wIxJgz$?fG`o@cFlw0I}=nK#TY&Yf8MNA&;eU8|~i>V8*h`n=;IAeN$k5 zc8-1bSqp=I(XxyL#G7uCJeI2Ja0)vbusl|N$h*rU|vRbSD4 zUi0_f;~&=NtF_~59v@!-It;RGA-mikI|c^%#5D=!@9s0#Cj0NmXWn`Cv+>p!xz=m1 z9d&z_`R7LMoAU}&ypPGax|hERDE0ouF z==su_8gkrhR-eGWuF6}R9sh+bUni%#(mh7X@JITslm&&+k#pQjQ#2;OEO6PgzPIvf z^_?AUya6Weo6mh%^Y6QX(1qqH{QuV)yY_~hPUmx}+wm=j<@t-8Au-L;Addt$g3tlxODct&G8n^0| zdp6c?w6bcve_S&Bw%xW6hNa)uul###_nV5+RgY&~k7Y>?RnMxv**2HMzrp>#RmQu( zt9k2{{H?S;c}=}+kzV-Z?EU1rd$T^SV~E*Y-V|>4yZi(1_Py#1tLF;UiXE_L`@sEM zyiaeQnekk!(qEI8-wg*Xm#Yc_C2xiYb)Z9WT0w)%%l`j(Y5k$CJ+8xDf8K4M?Aof8 zYi+rU zCmZ6got^Z=iSftcbcScjHed5kPkr|`Id0Xj56zW3)+JYmcW(Y%sWUG}y!V>gw^cmsou~ii znC6>uZtaV2&ner#;$8ERKhX#8&f2!sRQu+e)O!a4cmCP2cca?!k7=#h;r)+yzpqr^ z_iLv7&7iX7ez{c-4qiVnx1@62!LqjJEEk`pML!9-x#e!|y?`(JXBj)Dxo$tOfq8DD zM)mTE)n}&KUOwR<+i1aGej@#Ox~cmWWv@`P`uLZYr!zCZaQL2ntx_QG9<}du7RS@R z&)@mDTt1vlVKkbN_G^3jf-TBZQ#XZ8EQ(5F{de^7N0}ALGk5AmC0y=&l6!<9LezHg z%c#W<800?gh<%o9>3BZL`n<8#>iePwuS=HH^b|k4|2ldhN8bNHxxQbgkJnd)%&lF2 zvGLpfyssz!rYg*w5w348r!Ter3&Y#8W7`fKkjz#OzFjzBU#ho+g_MD7!BOUyk2&&< zB;%F;e%m!ONOHxozc-$+%SR8ef8za zGVPB~KueE2-9T$WSwHAA{5c99fmRlu-+0}=ME>6Qm$MIjR$cyml60C!@Kx2QD*5Th zb~7~OJ~%%2Z{f<9-dk_APLYk>x8-AMNSXJ7KV7oFbv?BnBy~=naY!a_UicdKXcIs0 zl&3PTQu^xC@xSi=5`J}eui~7t7Z82Jh=Yhjnhj+(8)T$IY5+Qm&a;B(2#?xOD``2jq@7Vla*Zx31ugQmtrQ$11CvWj^ zp04k1E9Gz4r7ib5{Yd#2!ygA6RGJG+Egml3+kDbao8`*Q^EQ6>C1#wo*_68CNA69- zb@I9PaqU&&OXZhl?kTiqdKr9hEzg4A|4l8-f}~HDwWpuvJK%cZ?2p2~Rt=J>9h(!` zPUM({-VA#8JZzuqzqeKAT6^(pO%yuRMBa>w~h))|#G`QSVojUcPL( z=6R9jT=`(GA3irvugVd0-w^fIdPAiAQma$u%VztWGheS}AwT)=zS;7Jx8M6}_9p&w zr_pjhb?_ax&j_fDIeFq40N+wt0kbMA-K)#P_?5PLr> zD3gFfCOJ=xnpVB(S*PQ3?fDhsa`r=;ZNBBreUg8Ai|@Z5y>9O+W3zfIZ{XF@J*DJK>h!48_gdK@k;|+8tgM=4b@`{Plb)bM za=K3a@xH>|L(I16?Rxi5rY|wvc~1PbYTq}>H{J0c6HhMK?_;Mee&RusmBrmvN2)(B z%fIdZxG*==J=JP{Sh~&YnfpQ}O!z6o^xx8U|MSI9_q@Bqd498BU);v;xBMREth}~( zZ+bvt*T1f4eYYpuR!w=W+}HJN$M)p^C2pr}({ybLRpbxsHF8_D>)j0foLi+V>wNgL zc|wjGTAfcx__yk@k!V5ignJ&14$mgJAK);{crthUWD~>=nt!eJ zE;p>-T=;|1dqT-g;eRtkZI}xePzz8U8%^ z*SffGLfNY?B8%Tyzqs;J)8%+O`*VgG`(>YZ=G&&0oio|{bmQ|!)8%XR>?%)+72mwL zOZH25p7#8lV=p#ZtXwB^cF&77r#k)KNja?i5w^W$+QHMCY(29>?!Gu!RDAChUjkoJ zi2qZI&Udy7pXa4^a`P;>lxp+g*mw2x>GJMrtD={#+db{^@%!%Pji;9yrFq7fvu?279F@^nF-!>CF7RTX!G4lYf3sto+=5>zOqh=QqlhEv>j8#rC^q=lyjP zSMh%QG)2~IH{<`)TSE9lqXUuxGJY-lwVU;e>-NAc;-#5&e^ho0uIJ%NIbKwDz<)|? z-Bh!r=m#EqczzXriF;Ng9vvaL+j`o{Qj?rLC%yisPnUUr|J(lcv9ZVMe>ZJ^;ClYY z557NTueQvs`*3i7D`WMFnDm?9Zv7YRT9GRqaNDYO-rPl@HGd+O^}k=0AyAihQT^+* z*(+5_)i!^9{ORY8y@q>EPOHq6F?zo9x%_1#i-ahX=Ns-XoGQCy)^zLKN|}!DHb-YJ z`TNxBaZQZ9AjbobrK{}jT%5DmNp0q%7l%HjtyECnyt{REvZduJJ$e5datmk3v)zlz zw47e(T~)T=_1?&1!E;tV`(%=Dd+Or9YZtS#-V2`De9=&DvgOiqn;)$x@7pIWa9hv) zTknSx4$Ni^9C91v<}m+1ed=+X@Z}U)hkKd@&!Sh?s4kh{n)f+$ZjU3|zTNy^cHf#K z@bmN4Ngq!fk7qi(%7XnAW%{{SKld^ok}N6OnLNM$?U@P&+jNC<^Q&k6eDUyx+f4py`Nd|ji@7F+ zX4|t~OpY#%TeJV=kMNVm2Y%0OdcJX~#ZU8HQXQM4F6UmEeEONTZhzXhYPaOu-}OVZ z?{HbH{eQHKogvSvo^$=K$ButyuD9^oRLb>5qG3M6hxOm|Wnv*mk$*XI;cC@J(8{A@ zFMfP@FdK9n^m;4MB@KV?J^%i3SN}c<`G0@DZgJ^!|M~OcbitYxcPyNLx&^;{S1GdJ zcE8w;=TCiqhAYUwzt-xAc?j!u88z1|0?&!l$n{n9uvDr4WABdh_PnukM_jw|U-`pKG6|f7qM! z?ni&+C!VDi8~+p~9EudeSg z3Hn!~@`5Xy>HXtYHW|@$n~eWPwLBj*%=?2LO_gvzx-)H$++#1+E6-PNTUyqU8>gc< zd3(P_beDV6u9{=U@)sl4o|*CHZ`C!~{0(a^&C(s^JQz(@y1HyKKGT#jFzv zb3Y6H7H7`-Sb(eeI0gHCr>ctvnZemHknc z!nU|={5(lfKhsvfsb*7;o-MKFp3SQX*R{9KeKO_iwv_LCZdiQ%lU~CG+RFN8vz&{t?M=zYuiR$8e}B~4?xW9| zeAAf6*|GE3!m}TmYpqd;Sp%GJLhY;Laa9`X>U(R z`LvU(+r2Vhan$ULn>qVMPszP)uXW{)u>8DT*)!2?t!n1k#^Sk+XMTJ&+Ar#H@cj1X zI`7itJ>lLutBfuCF896ivAk?sE7(wYujb{xCn7Wc1%>2Bp! zckcXsowrZo?DDrN+vjF*E7woGef)IpiBiEw&7v#Em^6RMXuYAotgMAx7V$*+y85gXx(SAIgHN?`UH96^zN@` z+0lHd;>3d~rw{JG8sw+I>;85p&zlQrazCT>FK-P!%e80OqRIE}t$0(_v#hE0+tbuF z1#;OxVgm(#bnpLb9Z+>y{&Tw3x)b|WmqgYcelYj!y=fVlCdNtbyFZ>XE_=T9+3F%a z_j$!pa|`>v+`DCLy>a!-{!{BKU!S?KZ*$ed$0m|C1_9^$g?ct`saT_NUgnX{xyzOR zpPaC_i<;sX{&?o^1$hToGi1%x>^tKAPXDUl%$Q|`2c^oR7hUTKpR{Ld0fURWT;%Ef ziQyNYh739VPZHa(Z)f^~?cKilh^Vh6UZ zk9=;vwYbfj+Z$|U$KPz3u(w#6;l@0k3wLUtbZut6ClNTeb+OsW*V@}d{oe2D{*)D$ zWAA=sv14h<%=CZEAFghzRE%S~t;o3hNy*iDwdFFJD48{-R@Z*xAi&3W}a$mMTJ343m?cE*nbq{A3e*ZfE#w~8E(p^DS4-W3{Uhyq;JkUAGG{K)HCyo zk#GF&>{arg*8cMj^Y!VI-AlIKR_R|L^*8;zpMdQD#WkysH+(9dC%R=p!Bb1CZLjmS z1DHS5ZQ{1CJo5Fq)#C?$bkFbk8u0qkd}{&2mzQqMyDEQQJHzPMW1HfAHOKF87H0l@ zb#Vc+630msCdE}I-!@7JzF4iuuBjyOuJV>`U(Nryx7A`TEB`-M&YSE0x_{eEg$cpr&kw%c8t3Y! zaD89NUf*9U(jKjuES8bBa!&uta+Zfm1zG1SWzy^BUjK3D7We=22a>LCQz(l3TXb_5 zS7`O=*`C*ySj)+;yB+;l^n9KDzK7esxBa`IdC}F!k=1^0{lgW?OXgbHa<2R>WK~)< z2{bFi@F1Vzha^M!TqEoBS^pj{e}6z)u1--?#s+?V+lNhtEa?{|9yok zxMaoO^-FIS>%|`2tI>UZ<4c34$Lp5!m~5}o+pQUu`T6q+?#~uW_J4gX{Y~!p{XNg$ z{#Z3zUhCA0D=)p5vxDYhvvRWf6HZ@n+U8ui$AtY+729^3={tH`9677=r>Pg2o!b9z z%G$ln+HW>|nX~Hgn-aBSez|&6(;0bGK7E{7sNHZ|XnXNF`RI2wCCNV1x5_HdS2!P< z$L43z<#F=Vx@{|UCN}kat>m9*aaQ9`X#A?j^}qO}1GMC#@((~1hn#uM5ee&(%uFdBU@b-(v z9$vJ#XGVT*Kabz~mHr{c2~UqYl<0Nd7Gu^I)R7Zj@qUimhO=KEF--lMx?cI-xuXpM zOY?J$|Eam(Ec$=SA!cjkq4S;v8r|kvGwgKi`(n1)ypetvU*oQPo%Q|v2>bMuKkHobm$g@!lyI&&zj^NSUEkAVRyA(8x3BW@ zkq*v^XC5hfGjGqjxnt{-mkJqEIvKa0+E<|6J6p?UZEg0`&(9hpHa>sbWO_uq>UY|l z%5#FxYu;>p*-@HZ8NJ@V@tgVP?ZLlpulvgsS9^W;$4Rs8Kr8$O8swQj)W3ya)GZ)70v7KvGYNZT19maIVyO+Orfk*g`>)q?P{{R1*y|o|mu7}EfoAdqqZuv`7 zQ(nG0yw9jl<@7d#y$hY4(!FA%_7$FGU4FS_*;}7iTD!>bKu( z*Xz72Po2B;;`@Ei=ltDx?N;^r&EKoO-Flw9{+PT?mF?ZqV)4o6Su`&(PFUb-)wM+= zUSs)Zow;{k89a`eJ^iNbhVz%V_-zlIr+4yYjJ0mngTM*9jixl~oc;d&)%$~=G&o)? zNZ9?xW8EInC_g24?v`Eewr_Wi-FNC}xM_#g)0K@A>!QCOXgurSd)3oMAqTiy6fLItURwOwB~BS()p(jUS{sUnK((r^UL~yHQ*@8bfFr~*OgwwSHuh_|%=%Fcp^cjR-aE(y z?@N@)a6MeVzHgok-@3xugVOH&pQJDJKV-hO!b#z_(SZ{h?mti5+``;(wR+NV|NJG- ztV@>|u}z%1IBQY;s~t1v9o;VU^X=3HzJ0S^wBK5Gbxy?pPk|FAs{b-{|Lz(RcY~Gf zQt`FrAAoeE;fgs-~7}N{_yuz_M?X-8RjI{PpscCZ(n4`=9f~ zh0IfkW88Wm{)OqgjXXKiH7JoAHvX;7L=5OnDnrmIZ`)<$B zlnku<^ggNd&hqb!YXk3A%__=x7q;ix<2>uF>)iUEyne0qIbK%b+O^2*m$&iuPrSw| zw)9KvQ#(B)cX^Ljf%bcMnS5HO|G7EbUO~sL=$3Lm=T!Il&9XOGz8M}6FTc4q&hyUu z`q^tjuWsJTx>|YB>T(~O^3}yj|2=Cy LxBKJca9gIdSue9*^uGTswplyRT5EcI zcI!M%shleoJTpyS88a|V_;|+Q^wm#yA07|8b~^a^GP&21ewDpDJk@O`Bq%WVFfMEL zkvnUCb!DLG)Wha=izm-xoPF)q%Qemi=SX>QcXjkK_(nW0%#U`7XALl7^{?5JdhT45 z+-jp$WzW)?MdrL_%$cLUPBuc~P35`nE$92D?b~i@a7%U0t&g|E6_Nv|osavwhHKw+ zhkG0Loqt++BrbIS{)a*9Czemr_;TL8Ax%%WSpL^slZM6D{zNy|u)GP8YUYr6IK@Hg zeB!aM`whby9rsBdFY`2)RZ%#XT$efP(f&-~P3|9FH6GmfBfMYm+*wxd4=)k|_HS+F z;aPR()_0~oU#^Pv@4uq1kv{FvW1-dGVwCpJedXTYrh8=79*yY!D zyE?t4X|4@_g7l{S5+7$p+xM)m`}qFBi$_Ljw><1wALP%oseUKie)fcq@!2gi)Ak?o zF^)Z4^6$*cWQKbj5AqpzJe+WIXIdu9huhEp%ltcf{QaSH{rAZ&{<%{>?XWOyeA737 zUH0|8dKb07*PdT{*89n=%rISXt)TXDz2sFd_wRaDVKu+|OqkvC>e<{2CzV_8%wD&4 z`}0j*fB3eAzCHf*`KD{%gZzVb&G!0wa~HpRg}ztaWzp>pyI3nNO=DNC-dt8+b#q^j z^qcbd^x#R1Ra>5O*~H3!_Ux{;`Zf9I^}73d9={WWT*OW1U$reiIJIf*=j;&G?FrL< ze_8xnE3Rb8#**7!8M+srEIMho^JT+EmOndMe75p(ym9>y_Re>E*D2xe(eGt{?!FbU zaBrDoneORpy}Va#b5Gx@`kveA-nMJb%t^<;Z;@2#SDRaRy?Ui``JQ?rq7E+yy7zTDU6E78cApa0t9^hF)MADO!Uwq5_# zbja}Bxl8|Uo6gx$$#bva9kn;GxJkEd^Hp8cNx1cyW2JL3;8b}Rq*UHWm!)yiv^&#h$s zaznXtrnbKRyiJ?$r#`SVP`YjPO7_h>X649dU(63opAlGmi=n#c&4z!|cWj#FThS76 zLU>bnk^A2}=Or7WL`tjva<0i<5_971k;g6D^Iz=Yl4rWNeaf(J2%oGI{Do7l`>>U7&H|1NZnq6hSMTX5+JDvjy3pI} z-{Q9yN_x&+{ei{T@#igHCWhNrw-o+6=Vf=b>sRr%yF7kbCQ007l~#4;MZ1fvjRjW3 zERFsCT{wU9+CFWzRmxqrJ?#Bw|2koG`?J}PNZvEY_KM5y?76=0$=)B`+y6*U%vshZ z$NZt0q3+3(o5lWeX2!;6O@e)A+c+4XHMy*K@s)M$eU1mZ4DW1H%GPE6dT=!Q!#4JJ zhv&!HurWxablvOsc(_>a^3PjLId89+dR;!;FXZ#e^7N-V(W9Z(Z`fBH-dz+Nnjm(4 z`^gKtqy1FR6qT^oF8i3ir=h%k?zOA_cc*Rjei9Td?{54prc-DB^@DF0{<>PW%H-~@ zSr(+m2PG(gvB<+j2L_UU|E{e|l)+*M0U;YbRJu+%q@tPQB3m!t?nL zQ?J)oX|scpcK}n}&v%#a`%LwHu>DtAHe=O01|OTx+t)Isy{fp&^2$Kn&im2xH!gkq z-$kS)Y?$QAXk6OUe<<}7$CJR$mHb-;nWxGIweczKuW#=A`egH^CxI)w4kge1D9lz~ z^UTs||K)30K3|`ee*D~%a@y>RGJkB|wOmofO`Ys@*;|f3%-rWOJ@>fZ%R1T8xm*FC zeKy>xdi?h0B&L_Q@|SD(GvuVFRINSmG~?~$O`mxTy-s!PX8FEq`x3DSvC06m2QpXL>7lS&p@&O;1r0cXVyb`gzY6ILu@! z+qEcow&2^SNM^PhLRY+MH}pQb~K`{Z{9UQo6p!pI&(@vM#?MO7Hge z=dQH^kw)A5*ZaQTbFiLY*?>Lk}r@P&2b{bo&|Jb_QdwP=A{RHpTIuoZmFL*8WW_9KBUlC~sOrv&x zo$*{}D{I;v(is)St+#j5f4)lRd2xLmOPTjpg`3;V?(~Z9i$5K+weapY zE%Ez>x4zk2&YgU@y5i31r8RG_$z0ptBwu#?oSUaI}QRGUUaM1)0?=|x+3zloo zW?2y8Hm&`*=PQL{txWPi%}vjIXWR1jEW^I0Y^!?}*987f$o}+V>5Km-tGQhcr93*Z z=|b_j^P78C{x4!NY_5+~s#iCB_xs~!QGMNXuCU+7_)K)8>qN8!^gexk6Yp`}`05(v#p>TDEC`#jd&#FukDR_7x>&rgv+>~3HI|NM|L&>T zum7YqtN85H;{4ltz3x5H%_^|)xcnh_-NNS` z{Yx)**sR)eO=tS;ZLv?aB;W3n-*rVU^3{Sx*JpAo#93|4ea;}fJh5Q$UHRKtTkp^J zST1&wo$2Q_&Bqz%OTX>;b}gw=O*ibFPHArjcevgxT_cXIdDC}1t39|@TkFeN<;3fn z7uMN)Pkpg<-lvDZR+(#Pq~DsKrLbYw`^UGB*WXz`Z+EtEhw9GVk7J|XrggBqz43JV z*DXdHq}Q^YS>4OAd)v&@=hrSYTed2?c>7n^&g<`OTi@4S)qi|#@n+`4WzVNY9pKM! zUvr=NO4&1ME7=<1$|=4sk1I^vxLtfpx8zR>{B-Q%Y#yD0Ep8U~WbdqO=r}oZ(vYG&5CU0^NHofMR&-WJxPn_?|{>L^W zx|Xfcs8*U&f-kiE*>?AJPX!muQ9spN#A4Zw}$x zXYQCx{FdR8r*gvZQs0z4i_b?Kd(inbW%lcfK{=C`dHD9d@!tDk858U5ZJ=j=F%hozb zZ{KrEoc%_E>e7F;(b)_OuBLHaD{DyR$Z`Rt{gb;j!z zJo6W1b-sOQF!6S*#a9#aoiE;U-g(k;jYBN%+GpFRmec$>C++l^owa6~{M9XcY9 z_*GtI-dXZ-S>I>hK9ln+^A4DuO5dqxzgSG$A^+F*x9m6ltIqv-qWW)>^nyM;?t7~v znhF-L*cWy3`k#{<=e`S5s{0XL`!QvzfB&;HcQ)jI+j{>iw>#tR#K03Q75~@9?hfr= z)Di5sDE9z?D@QVKlbIv{awZPjeFIcFK^d)=x$slyO8h0%X=IAUgtL@&eisQc4DU4 zp~H6{ypwxo$sr$m{Hw+WVH>su$3#+}Y%Z8nbwy~_ryr3~d%oqqY*?_phq;+A&TTKV z&>7CkN0HKjOD4Kjg|%&y-M&)(c=*SulT;fXoQrk1Zxv@Y{q(Pr_O;Rfv)oSaj}+gP z>w38_L@fAeMc=ju`Khke;qJXgKaL4{6;A){UV5x;y^~Gu6zSaM^~SoV=ilFaIq+HX z&R6ppn7ePr@%<~1Ph1e8eDzWFl*7NQ(pi3n=CsMSE%UpYZd%;^T1w+YvaVyMq+PJ} z;Xhe>*OaoZxzc61aqo$$pzE{r4{o&x+RA!Pp(?Oq#_uZ{7uQ5p_dVSZ9@X{j?uGoV z7abY@_}pK2Ao%?n@on{7?|%K(ek!3WyIu44Y{p+}{pIo_mWMv*emi|z!LpV2MZbQW zubY}(u|(^(u-tsh!`C@ZH+~9{7PRs5`|Y~>Wus-!pR3Eb_dfgHHtqQ~>lDfGnpnqk z>K5s&HyAZcXXSso!rcG%;-x!ve}wkEyz>6xRP(wW8o6qV{F#5$G1%9Adb6`Rw=*4- zw)^L;GY5^fRI$DIGxKsh=L31>ACC?{dm6RO->#DR-mi_nKiqTAkGOlWvxdp<)tz*8 z-TU8NsZGBwIHJGyngQah~D7+s^CL&R0dOdHQhq%d(5M`)4~& zST*gR>Fb5-ugBHClDqNsMr{10W3~&f3$uF%>zf(7i%zxaDhqC3JNxk5pzy`{>i0j- zDm#9>D3zJ%#Otf)cFJ5?y}!H5>DaBf7~9Z%=B>PY*IVUEt-jjU&d8j1qn;^$$9MA& zmmbfrWUH8;xoq|FUmpGo(lnyd)G5;^_&wqY9FWF^N~FM>+09t)mCf6 zk3M(!Y2#!tw}WTS5`3|7O+UGouW7FQ<-07W{ofjopR+D$YwUF2v#I#D^2Iw7-$YM5HZ@1^rPyY- z@~-4qcN_m3OXe@DTAj7?-HN_+Mzys4C#!>{a@$`BhffH!+_THG_FBF}{W13weG*c& zZc+`(Z#S)Dt$CxmlgfDd!!z&P$TowLvsV$*;_9joLuKK@vM|7_vGIRe{*)7zt3M{Fr{(EwC5ZD zoL-P|Cv@KBeeHgg#*D9R`-4j)tjrZFrsTacSj=iErN1Omq35Shbxf{Hp+iB{p@}Q_ z>a0G9{|wSUY5dxB@sBO`q1hL*9y^`r{knDEPSdQ*=jUGhw6m{fyOx23zf+&>!;sup z4Y&OGPQ0(O(y(&)xw7O<>T`?dXIbYQyFXp8vieTm67L70Z%vpVe82l8bI-qX<&U0R zwCu>`-phYL+JBzy_ix~##kdt;d@8&_Mf>U{pVR&BGe2l&_>rbsbN5$ftJdH0zWLa1`j$%n=|A5+%8)e+eX}VVM`Ln@= zxBM5bWXShk8aD00-Nrd$HtVKU=SJ%Gp6J+r_5D}n$!+^@UT6I3)WyoQ!}Gguf$%!h z(#KoYzItc&_PlLwJnvDby}jN6l`n!KmeKHp=r~YvI zw7sn9bJ(W0exZBXr-@%HVmQ9+$)dZC1+v0*_ft9KHt20F694`-r9LG6^pD@kr$Q~S zZRszZSEFrUVf}PZ=6}wb-?r}$#9p`GQ|fZw;~!1aFDO6-1Lbzf?$X;|UlySw|*~)2q;{2XocxK}$xA)N3@Xh>n$HK496tVgzap9BUbcI&t+BS8o1t!Tk39DVt|SXGyN&-=3NIyE-*{|B15x z?=#(Gx9#mtEwBBRBlP;ypB;YZn@goz>b|eB+upzC@5a@Wx5Yg>ZXRE8q{MWY*b?<^ zz4!P<&xFoCQB^Fx>*TkMwP#JZei>GrFS)QJJGXj|{>{9QD#ixoZo&T#bLEd+zwt(Ck=JScmX3lfAs(ZKe|v;#B2PZ)o_Ln8 zfK~n0;_XS2Hy20jYti{zdv4+_e%()hk1GaS-Cu2Wr*>JMeR=tgcUei>B_E_#n+R-o zUh-TF|Ic(~Wu+pvfPhoamH1MA2IfvZtp7>9U{l?YZc_Ib9|P*G@mk zcSbDa>RSmPnY&YC_$TSl`Dc}XEi7TfqF%OHmp*TQP*r2Zzc=}g1VduM`MGc2wLH!D zv8-&7y)M6$?Zpb?%H9)al;3^gJ!72WJHJ%>$JFC>RvAZkB|O@+!~d7WYK4LR)W2G{e=P8$ci(A{AV=Q2@^yDt)E8Vq=Pr05r75sF?(dkRxUfL1&i#N5>s`Kp2 zZA@WWGf$s7-5&MsrG9hU+eNM33E#z=<&{e;kB02jnbRKiNoq-F`W}|c%lQOe?BBQL z<<8n$a=Rv46zMPe!`2iL?q0nvJA$!p&2}00oi4rE{Rv6alTSruC$m4h_`W*E&Gy+( ztKy8krW?+!TOns(8M`w)QoQcIx%QDCa;Y+Tm;ARheXcQma$sM7y~1(9*M_e$kMrM_ zdOAgR@?ov*yVP&L$XRFqCV$IDxzCZoSL=2!EtFfutGf4ld+@$;wmG17P2JP=kFG85 zk1x$WYjWAx_bN zcZLB1dki-mW{`V5q2Ktkhx>Z_Q>k%AYu!>Q3SWiD^(5POLUT?(*1Br9C2%*R#ny>cHuG+-tN4=hVZQOi zqfygXl!Nnm+CFnlYTWcEY`L3Y_-5Z{D{a|A_cu>3+aQ~MNB&l%@3a$tSvyX+-n}6h zIGyKMRvSAUz` zj?*)Ll~{fE)6(=0KPqJl`}<9vnbg$0VtiV>`?>M!H|uk&zc!d(`1?YcOXk(@L*|JF z`8Mk!{STg>di7Q3*KJ$=>?{xq8%ldw=_4?WS&+l!u zV|#Fxq3+$2o5i=qazMl9&pkH32Nn3KpaOq7(~m%g__7;&Vora#F*W(eO!oJOcgyW$ zJ$*o(E4{$x;>(B$R_V!-NB3XOoqJzlHDC6LEqnH?Q_8Qn6=VITT7kvh|9Sn1gL%u( zoc}F8lUcW3nCHOd@Oig(NiSq#`?6hs`JJEZPcO_(a69`n;g6QYi{Rf^rpqmR^mTLh zhEnG$t=P0>vnM+;UhQtGYG{&JDHu1;=!W4bap-0|(Em#*J)Us?Z6 zfBReI_oi2i|6VUWEA8pFt87={f6toNclY;(H(_`Q#@ZF$Md2O9gH-~V&{MZcgz z%>NpdrMDbx|E*{0cx3K=cEiytdz$a0x94(8CA~GUcX+L_zVA+orA3yWOn-yC>B?IN zW=+qkzUr`aiO-CywF|y|Ho2BD1FtfuB4AKrFpHs0o%GuzEaa4~yG+LzXQ)knTw?)&@F zN;&v;#^Y%vTf_1t9()hKCVGEvx5z#H8OI$zy|$UOm*-vKgMBjg{*? zt&xjuAAfxCtIu%KY_l&bvc8}DvD0DYRh{W?*_d;$cFlcjd7x<7IyTMSQmzr(;6*zVaxc9^(e0j0oZDan^2lE8)8{c>)w`2~N zLXc*$r_ch1?I$%-uU2*anv_0O`BwUdn6GmC*PNYRc~1I%X^*PDO3I`-vy1 z#vk`;d38D-y=VUUj^XQ6*Omurk7lY(pKLXE-gZHct)FMzUN3%hxv^v3ZpTFvnwGn| z*OfXv%HDQW7dKW%EvCwl&IdIsnJPTA00 zdVbf_FEz_IMdtio{4VQH^QnyIxo^*GWm31Sow76M)JdDSVY0II^I&TM9&FRs&Xn&n zl>EAJZHM85J3l4DE!i&ed)SNiAGF^e9V)z*cV(CZk6iH*gWIoO?wfYlC@)%jL+$!s zo3^umma_S=Z1StWhj#UUumAR6Ff_VyH;X>|H=W<78eV@}_aHm&k9)=0-1m+7i)MOe zuzUz(sQ>)rW^r-G6CYz+?ky*yLBsR5yr9D0kRhMt!(WCx8_+Cj)%(Tz$8OtwE2?>P za&dIfE0ZmyJ+C`|{tdbk`Fd&ft`cd(4NuZGKM#3#Ro*X!RZ{#y^1o@XRgWf_{)}07 zId!e_RIXi@|J{3I@I144YtPJO`*x;WaBcH@GIe$rdujdF(y*^TLgMGYoHF}hbC&0^ zE727i;rs5CG+5peRthei`~6PumFTRmKRVo*CC+HqukU+3C(n2P@vG*4Lw>E)EAuXx zojN6F?}fLMcXdXUyX2pIX*J{0>rMM|n`bq@eH(Q8(#2{`-rWhy>P2OG?{2faHnUyM zo-ZqJ(!yz{kMG>w5K=yKm8_th)s}Z_)^0t`SMl79kNw-FqeuU)@0$7Y>&kg=D(6aj z?&yuO)E3y8yZxGD;pKm-HMec|_g1f~-*NalxZMBvK%(x~;`m1Usy9mm%9nqy==F#c z`)jl4+pQI|#5C^M85Ns^^1b{OaY4+Ar~Q7y)^83QCnT=dln;`#{$}Zv=_1WI;UfQ; z`LAYtc9Wg_?$Sqzm!fN)?2nX_H?(Bnl?b=A`JA!kn&z9ne_s57eb&w9XE{RjY=!#o zd+b@O=U`>OuJ3ip>vv^4m~@=#WmH%6CEFhJ|Gl+IPv?0<;aTp9p*O+&fItF z-K0sbv)gMzx2V6KyLhrhOLk-QeD9S1Toa5Iw--J67?Bcv;9{|5mRi)LlD9TW!NvCe zl3VrqGQ927fi?ZK5YTXhqgf7D%hldzh3 zbJouiv*Tt{kE`CE^x|>m$_>v7hJM4t}xy@7jr-9YplKA`Sd?I z^~;TJhw>OC^}kAp-sf&qAX_f8zvcS;U$%Q59pg`4*84@GVL$r=chKn0lSE_V%Rck{ zL(U6;#x_?kyITJ1976?nL%0lR(7yK5N#Tmy$M*@;e|W(w9rRLU?!is-jJFjn_-q%Z zKX-ZRTIt)%r@edEVEf*4VP9Tp??)q}OZrRF?l0z^e0`^1&~&HMnx`)?sjj^eGyOgP zH&u)07g8VPSv?MsdwBd)!6_+?3rmwuEy{hEyWo#?#Dtey{>t2W_{B6qU{eUgg6u_y z4|DA~ovoX$vO)ioe_&1Smlu<6c~1Z7{qTJ0dcE7Rw{}QP-1+6o{ll}^-%s5w^LVGE z!t37LeCzA`J}u5u>TA6)>CwK|r;oSq;;F9D-VnRnF~%=8Y_;}{uL7AiVN9uf`{NmF zX64_ko%Xlq>AU{Mu3H*M_sM?$&fa`m>u{Nr;iGBF(?6KMtF+$tV3&K@DdWpN=hbYt z-Z}1H|3&*ld;h(?`;ISODSk10qW$_c686l0)&`tE67ZydIp^{1e*bL#%%c8%lUcbr}_67q@TwnPZ-M-6M=GXU?6I=W#>;q#IA7qkU(_b_}9zxK50-Ev#5xW^jN z@2c0_XSoox?V4BBmHba@tT<*WPdcBz)#h{OwjP_uUe_3&YHcV~s5=}cyQV5--s%k* zIc(=wPg^p(@!ipgAX%Q?JDhdZyI-3BXV{v1C%SZw)(x4;N3+r=o>p2b-zvF(wZ?O+ zCjA{5Z>4TKo}V~znbgGVx8L3T=DW0_u7UA)gxCD?4HGW6^_E{Sc^h4AqW)TM@$}^) z;TtAAwzwO%S*QANM|0uT@^-<;Grl!fCVe6@ zpAv&T&x6-|pq9|Qn0F7w?JDK#{w|CztUOb@UU!Ay_s8L{_mp?N{F7w*^`2Pk!Tl9C zP42E;HfzrsiMR0%%U|t1+!Q4DEP8SFCynz{vL|HUJATeIe|eS`&kII{aQBt0v7c1^ zMHRN(oO!uOru)Gv{SP6tr`K-yRpS}8`=4dM{&MBNPPew_edlUf*Jzi&lXtDu#hTul zDbp7JZeV-kZGNSrgW-&R!WQp5_9_%-j^E_sGq{gKON{a@}}d%bhn$Mme~m}NS?>)WULFiLH2h@WP8H+g!7 zsN-9)bE!p{H)8{DK3kRZF8tPX_18Dpd$j%Bd?wcBR~^lN(3jj_=eO4Uvd?*zSSyRJ z`cDt9KRT~>PqCPDE7LAs&38xR`&y#b)P>$Z&wS~Vp~eP>y5stN7m^Gbm2+mW-!(gU zrm&dOWkr#AC`!cXqaVMy6laxCG*vW8EVe{eBg;FI>K5 z=f7hoH?f5T#%S3$bJQJC`h4{1jy$d9m8RTj8`^JMzv_xC6D>TEDRv<__2#YO*9@fcbokOm8*J` zUn*s3X*53U*yr0>xyG>LctT%(v5ZE!Xz#J)BjKG@D)C>|T0~9%?QWg7m|xYww%78X zT%22UmWk5$8(bT%d+f3?DsFsPUC_|1W2v`et;Cm^w-R@Dy~#?Z zi@jn-drkQUy;m6~|K5IE8a4GpwfgI;yyD!e?B8x)_hjd~9nThP++64XEpfBX&$tWu z*F()Ba+$8}Stcugt<3b&p^Ada9dj-S-jZI4E0~GUQuTe!IiYH+$mDw5olV-}KMOTz0y-Q9J$p~C)STM6)ja5*ok3{tT)VA#_sjlhdTd*=+f?54#;t32;+1|$ zq>H;&O9)^1w(`M*<4g=k68(ZrX39U>+IfGuv)1g_`YCJNLQKyUC$5jbmUO^ByS!li zt$>3vAzMSYWbVAXE3YbWG0&}6cK;)8EVnI6dY6Bzp6PzsdFyA%HtD<6UR*jD_~#At zf5Cg-Z|-Jnd2F!uddd1t;jeu1w!eOHMq$oVtFF@BKCEhN0z2Ff9Ms6%w58(lvfzNl zFK*0?KKoIGCpe>3Ikici;r0ERFX^{-G2~^XE5Fw7HxH40K0Al;-!cDCe~a^$vs6B3 zZ{c_MDVRA?jZyom$n*GHwRysIag8${rtr&|eLN~??|sTVAZ~u-Zn@@ujr>Q7m&0z~ zx}`DE=e*#I!u7MPjri9r4*c|L#Y6LH`+4sM%J>!5F3!3V&15!9?X=g01+~VnCC(N~ z+ytxnjU=Mw#k&8r=v z=DAMz96$fy4>q=W!CBECBvJzQ#~y9HV;SbWJ~%Q|B){P5t%GHA57vaP4rg;`e<8U0 z@vnN;D-rr{m+{3~vNFv2Rw>}S;myM01+u%dl(+QEIOry8IPEgu6E*fc_i1yVCSKUz z7j>rY@ZJN*%?{Wu@z*h*E}F`GYtx^+^{2YzPS(zT>tCvp`by{a`Nd3@N*kEIJEW#m zzk0_0?DEqh$r){lM~Y-z!uJ-LP34{3>A3G&ng8(?xt`41JLm3Pw`$+)ew)_y_Fv;_ zPM&>#{F&T`rsd2G_G}N>{pQ)4%g;2r?BhRqo@V|fALG3XKvTcf4Esb6@H6fB3Z5Wv zo}PCsT7Cz={GNgu?^E+ux5b9={J7fS{B~cufaZ!@x1a8;)qEFXpM7wzm_pb4FT4_O zDtCvRTzW)J;P73O=D)A?R^D6ro%zt#yR+L?WiNhicJh;2z~SkaZq@CZzQ5Ex?6eTO z{O{bQ>sl_p+k7tiubM{i)|b!hCV2ba7oVMbu}N$0(o-84!j2dAG5nCO{j=Wf&Dx^l z+kYE0R?F>Ove@;mzVgW%uU0eF#j5WM3H1%FZFkfxcMmym`YL0}?CNs6xBC3;&$Qm0 z-Vzhi+v_UDrWgF|ZpzA%XV>2(-B|KFX5Hq~>n2Ukov__$r@(f**xZgATQU=-7p^Vh zxe^|7{ax3CUT(q5!kJs%J=s@v{>XdjZ}Sh_|9R*?_w~22_YOSwF}5}T^5hdo-53A; zjQlaX*3MqW`uUZ{qAIqF&r;J@Ti?04iFJXHf|UEh4ZC-h&D(f6&~fvV1ZzWyg9^ON z@|Mn*H|{I@(YTm(Qu;OJ=bt47}0E z>M&d1{`$FxZl3w}6*kJNzwC*5?UbJAbH+Nmq_ZRM)R(=<5B~VRwvBX5FP*h}-yV7Q zSx>g>&VR3}FsIVi$kp91)a#!dW7obQiNZ^ht@elpocqQzFXA}gqn}zz>35ymjo&K= z`}KZt78aGP`IIjwEceuS>dgDQu82Bj8NB7{-yLIX__OSoC%dI}*xik16zpyl$!hRM zP3X}vzW!4C`W420bJ@lFiW2>1+&?(aa)o46W_ac;?Ym(=D$)#eKUJt0oEHA1+xWHo z$DM!0{~wDU^mwXyAR;(FrufR@^~)mFwx#50@3?Q2KhNw{^4v|luVfWpnjLv9r*r-u z7tdp>#tWf+-?Pfze*Nj?)L4JkyzztcVfC&ewiS9&(zo&$Q)?MlF|)lAV`2N0b-eTR z%1b>nN-8U366BTn7~ZTu_3aBI%ceb<(?vt}zCN<}hj;lt>E-KwyBxggFlk9{kI>T1X+<9`N#GgKiwSTwj-0j%V%`^Mh-uut%9{kR| z`|@%1=dCRZ_PK4zU*c2KaqYqvW?A7l@BXSyn;uX2edoeM-QUx9wF`Zjz0PE>^+JXR z&y@WitiS)a>`v|9<>nu3FZ-P5jkU07oB#7g_ygwt+JjkNHb0Iy9>)LVbNb%&nd zNBucrGw)?aPRX9Vmzj(f9B)|QF1hq@<&-TlhBJ(J_Gp}0;c~aH+0?vBB>jqYt+n>z zf2&R`C|Drx5m$Szbm>2%CKu)Us0FH@tX52L$jZLD>Za(6NGq4ylA7)xKL%FvB^0s9 z?oX}C*X=V&R5$gQmL(niwXID3!?x{SHO$@0KF9oiohpoW<#@Gm#Z9|Ewfk8tZhaI8 zR9!e*V>gr5V{>Mwljk@5TYZ21>Yxu1XaBu6Q~q({rpuGLubwGOm4;4zx;f9%EA*gV zpUUNps~=QjkT?{%*+!SMe_iwOzT5pPjDNR( z`}o8B*Y^#2H*@=#X7SwEdgWgD?MZ)URX*Cd$k^k3`aIwWDhd{V?c zu#e+H=EhUg8Gd;@-LyAtrmXMF++MaVx-oXojO#uxYhKY`DQ*5FU2kW8=(pLgdE~?; z8X2<<@{X|FI%<0T@Xv((oBIS0HwXoMdF*%DZ`D4Ag#3s{-g!SQ;=WHRfB5Tf_l!*C zz2cC?5`Eys67&4GoLmjc9N_hyd7!%!_2rGUubb!^KA0|7Wm)%ep>^R$E`P({>pphg zNxW_KNwVgG{)r=>V=jfBpWIz`bB@iC+WAgdoNGm1`INC2-+3-$Bg!Kl_F3JFYs{;PJ2Cm}yI+n$Zkh{c-!pQYet;{XV0Xc*vPy~l z)e4sy7&m^eH-51sVcu@zY~D2{o4X!e{_Uf(zW#DP?=M}0bxMrgQY(0JZ(k^5jmlaw zRe$Xs-m30baz7_o9XzJBD_{D+{b_HFzRxrK`sS*dX2}s2|2L~v{pxvl^gi!~dpgYe zhgWmh`#yhs$5S^o_wo-7|Eb!_&lvLdTTSwN|MpV9+474kK5X-ieUzx{{mpoLdCcpR zi^V@ItFC9>E>~N_J>U53mp7M}HZT5hvcHDc?#BAcTs z$;vbT$~r3=|K`0fynp)jDa+ZHRBj05NA@>8jFM1!E@|QZr11VnQO_^D_EOud`1GIl znCHr+TDk`K=I`k6>)m8KX^Qd|rYCYQesNg@^_ni8=)BnWxrXhGdrG}bUMrn@CFW-N z9hl&F?n3NbeTKakcwcMm+d2LI7wI?A$tOd3|ZNeCB^KSfh@B41{h&wFoOFG+; z+nc_`E?iv}%WHV!_;tPK9XZ8y?ki)Zy>APCwUW5beDThD zm2TY4E_>Y1wtCh3;}-&NZ{w@$yYM|^AOGza_6w$Ful=5Q#6m0Fb}s*k$IaIjo@xF6 zk}u0C``=1nMk?Qqy!_7f)gOO&^e7Q`_FQ zJ$iY=hP&^p`SVqCo;&Pv*|8@k?`X)(*Kc-OR{iB$a{1!B%70Tzqa#;N&N>;fbK$K? zY76o*_Xi7`GCRM@oH}puZ?yycb9v8rKH-_GUcZy2(yC#KK6~xLNZFMyPM19^nqabb z*LuBE{5P(JZ(90k=W`Bospa9n7g=4azbv|q`@r(Y3D;W_mc74vGXB(BbUlDWf@$0gT{d$wXRd(8(+FtejPRSFYdmldCKeF=i z{GDEsX|rC=T;9!o{DZ&!pRYeQcW=Ke);!B3Yenz9*LyA9JQoXay59+X9CBap&4Sf^ zS1$)j^8G3i*?zJ901OY|G0L-`rf?5rIs%a@Y(k(ow3Sl&@Ww}kmTYkJ0Z06 z^^?H7n{8ifmx(oaNL@R>^{?`Mxut0i%J&<8+ANm(G2`;I`?;Hg_n9x4n(yEerR5PV zd+=DQ^QEHrYtQ-8wi~muE(pG)>B@Rw>7SY-Pp4dF^xpTZ?xbLX87>)t@q7)Yj*$XOKB*xbek#8DqWhBS)abMBzGD^&5ah8=Rx}|!*<9w9y4Ip zzv2?7NxA-k;+x(ZfDZcs^|QX+G;Wn_g769Q3(&V}h;M+rZS>4V()u zt}yTa@VT(>>&Cv&7NhI4%PUh)8y9cwoM>M3rm^&~>e2mX)v>a!k_+Nb%uC3=^=aPr zBlnd9w=<{m?fID1f4i#X*4ZcV#|73aS)6y+WY9lH?aL1LBBT6WcQrn5s9DF$p6c%7 zUVm)+-x|>~RgV_C@7xo7T>s(hcYk8@qYE{WmR@_@AvzGd+6bsw*7}>7> z@y^nYExWlu>c_nEzQ0!7(czIOnEk=z=JLCHj~3jv|CE;zy8d-hqNS*YN8CogVEL;r z?}U_o*nD+wBI~gu<-e}=AG^B!&#_6reaxOpFNn(DI$_h2*~Y)ycExY>d%ZN*?$G4B zzHjAjdM%ey7YGVTE*HOb$A8tNTZRw*hNNca2EXphNWIN^Cr8%ys_otT*0(-i6J7bv zy*BFRVupWWSL*nd8Ol2+e}4UMUvx>bt>4$V6MxB^J-7Wq+>}+h*O@2m{5IKL|IzLD zmDX`pHUIkl__X^^=j(g4-2T_pivP*_(f40l{dvKAtiiw3)-2gq_Q<;W?Fi% z$^(^fCMli`2ARJW?tIVZx9rskhkl>O$xrWeo_R9O=1EGzf;!=}s=2uuKSEr8{4DH0 zxY@n!#TmojJ|_|K3qnwwPCOoyw-vTo0G?sf3l zx47T;>&u8QlESCMT)%%cE2@y(yTvA~H0&%x!h74P=e6%Xk7zm(c2j!W_nh!mCt~9! z9y;}`zH;lP%B{A7{p@<%kIOIEroV2d9Q#8h-RZ9vR9@lsdTji2!|apW?UKD2Q+{vC z`zhU=cUbwofzPM7g^SH+{+WBMwCAV>cG&8&NA z8^7h#-m>_pX!|Ai1nnH>|2zFyKD)jA{J}LwJiP5*?{0io?evS=n=10{QL1XrulF)P zYIS#B-{rH%<#e|Fg67w&U!50|JzcXldDYa*sjFX|t()$D=jtUr&)as_wmE2v>sGWM zeI-3ZN8qH-`8GwF373n@#MfBHF}ALff4Y&)#_YS3Z!qKU-2pmj+6g*eV%)#v=}-Up z*ifvL?})AY`>nOA)fU&D7Ts^My`Jn9efL^f!gs+d)zgxjE*tBgWL&=fpk8iw>`K|VRyLld@2){+!en4-+tJvng3imw12hq z5}Ur7TPp3Bm;J8Jp0{0g>$2SAslVQ|E}kxv@xpa8!|eMh@8+Stu@^*OoSC))nHrAO>Veurw^jLY5$~dq$1~rv zZZC-2CPa z`(?goHjQtCcSkO|cWZYt(q2^Mv?=`Sum!ay$3*-#ySEcXZ4AyPj|Cu0IXi>M~dD3@2C0$_=ak zoYi~xHZaBZ-0G)&cK&^rcAmLovHpytu)mkGzx2W9zh^hs?3#b)V<>mbx1yBUIxou4 zw=U9ST${h(Wv=vH@tw6NAK%LS?)S>+$m?}WXFplF=*+Y!tEV-ukG>?f?w7KGL*KV4 zZ>sDY_IB=Z^rp?|Zh@AXZOEw9tQZ+!Mk z&gE9^;~y{Ae-r(&y}$P0tG+0a@;Cn9Zz!%+ZjgP&7x&XNEcLj4S(2gd0td&4nLQ1X zYu3~-Z#?QH;NiG?g1Qpp&yIZ)=J&sRlFagRMZkisZj3LMPTq9))?vPk(zw;Z_xJ_a zK2A92-|w7uyvCII+ln>c=5SrjynW9!VD?kP`D+$Gm|ptKujsk%*I7@075Ce5|J=K- z;`P_Qy~VZ}Ey1#dk0(0VZrE6Lxxl)xKGx&aHA^{%TOE!K&i?ZiESYcq%H3&J|Lt<( z)$2QL=Iwl@cvti0l4M(}i@zB zH_dnRc^sBrTef;{C?}^B|Lac`p{I_oXp{RYU9HLAyr;(hXHNPp#s})_XTSNWP+7D_ zE#p|j%=1pgV#_}-STXyc)?Cf)Ps)P6&e`+n&E>`ii4ujWXMCk~f2@$%(090OgWil} zx#tZ{Da<8rLd)JT$ZTBIkba9rHdOAe?8Txzl`5ywAL##hDrx`yvqjw&t96%-i@jE2 zFw{T4_~DJb&uiv1Zi!P-ejTv=@zzpSUBiU=4$;$V8{9biLd>>DFX6Q_SnxAX{_=^Z z>-JrI{&zc*g0}5$I}6`+=Wcz9n7>`7QfR#`cu-c}A%D(UmV}^l{)|8NO-?^w`)I?= znVHM7Th|>sZF1RX{&rAnDw*LP!-IUr8zp*Ax#zvxUt(PMsxkbbzg|rHzQfy|%k{sk zm0o($sy+FUyzpWvo#v-(YRmQXd5aRCII#K4%j#tFUkqIJUOVDIJJ(9#Ig4Y8DzCre zzPd8&X&)svaJ{;Rs;?P$a z_P}|+wOEnC{NSCTPr{zXCpFgU6tdQ}%-rVPkjM9BG!bg|F zx0_xqYksNOyxNBOlZU0+``M0>@lB`q9b9nt*s|!`3Yo<=*OQfh$}wndpZm4-u4nG@ zzdf&OnF1p0cd1>9GqvLW!Oh>+uURht^v1pQeZo)668=f9S-)b|({`J6_0Q}M9B(d+XfE6PX>~`<`gEOl zjJrA)Y!{vR_E^c@SDUp3E`DbHaC%$s{p|AjKXl^ipYJYwwab5+(b+A_jx+p;Ww5XM z^k!$}L9@%;^XBdQp1N$N9e>8xx%-S6?lCi{P znk}ancfLw>D-C%*iO=QH-X&9$7p;oypLqLN@Uu@RWS_4tdyxK1%XdeC&=Hy0CAwc@ zEZ$98*{8a;baBy^i>X$k&r)+>#A$ll?`+@{L8z)qecF;CC?k4&wuxYuUcB z(>JaUFPDBYaZ<3KUDBqvzuzd`xzijuZ=UD}kyGWN&Z(kbD&6*MJ$>vH>!e*Xf^wwZ zJ6gRf&40Tk#^+uo=gYFZB~`(TVzz95yy^P)jpt@Ad5}77zjdMg)qRfy>*`$6pX5K5 zepImL?h13SJi8*n`yW5uKQ#CF^Y@u&N`8F#G4=6}&fojRDkYFGFwAtkGD&S{Di(3z5BY~H|TjEPi$!W<*QdJRpg?0`uMr+ zflu<4|Jc}fZF%!S`udy=?>6U^bs0xYXmI~@L@;_~w@TgWmZLoCR{Jw;sy4VYtGQR! zR8J^$O?JHulko(mba?;81j@gI?7Ze5(=kba8qL&1O6 zAJ)A&(ly)WBsVzrPW<<@x~61lzi_;#?gp0n&661)Ug&iT>kWJ6kh}UkUzn}q*41yP zCP)AF{~(mRzu^!Y*P8T`InLU%1%FAtu{z;czpnqb>T|PI_a`VGV6$Vpls=_qnrlGm zH6G@vfo$$uQ|&MCYMlxH^8etImA`@-I_vD;M$VU+BEPWK>=ajn&u^z}{RsX<{T+L& z0t@6gZ^wsjy;$_?+__)X#|y%=S^X|Q-Wc^W^mdo{;STM`3W4os{_l8KY;#P}Xyczc zzl#~y*R4MF?Dc2O@b@duchv-+yd`IP|KH_ax2vB|m@`QnPvi~ybZWzsM2U~@?|w4e z^Xki zf8MU(QV6*|`SbgWW^XLspAFR7&hCF(`+MsvdvD2bA8&C8U9YXbNih8)$O%9&F`xJU;q7AZgH~tW4)p` z>A%G8JlWImdi$&Pt3RG?e5Dr@S9M*QqiD_Mo_T3Z|C9FD$Mj$6UX^TiTVwxAJ$K{$ zW%HihwhQ?h%Fbcw=KlGY#k#k#887>i`yb}-`D0%A`{MEP37}Q;vAZe?c(Y#~T{Z-C-p0bph@{}8nGJO00@F`5cVg2lK|LHFtLR)9N zQYmAPnj&ix_H|b=|BC**XKu<`m!5p6F1CD9`lefgd$+$ld-Ch2z#@lzs&m9|e4eLl za_Y?5(#ZJtXIZpY--IY3? zd3-@>Czk*Gb^QM}<2@R?WoL7iykP6TvguXR;?GXUf0{?PFaBBc=je`ShDXgj8yCJ@ z&-C%m{$r(b&kp`>`Yc}a!n)No;_T;=r7vtg&G>RPr1bu88~5j~KcnJz@9q0~xli6? z*T>&{$3B{CnXiqL`0z>DaJ4Ug@I97mbNty)o5|W*@@V%R<5W0Z?!r{Pc5B9BslDf4 zWUb*h`qpvV_;!{d|6!P` zH*2MH{f`@OD{dc;>tvsQqh0U(&Cn~#Wx_j)cbKm|`?QLC1@EWXi9CMWBg`{H@2l0- zN}UQ$ieGho@@lyY=Du%?X6awv5|z@v=hK^Ak2H6^*JQbsx@?z{ndKCPmD+QEn(W=T zJkOwfdtu2O{p6aJ0lJkpLLb>!zhC?3ROPpoc00nqAK!Lu2YW{w^AY2y`u_gD=SMEI zYsOyt)Ar~~c&z8!O_g_B>-+j$f{p@Gb z&DY@3dL_ptr{ldly&R?gnF zdHIfc|E`{p@t76(uS%q&Z$su8c8}w?rz_oB#;UMtyTcyeitMm!NAowx@p>%3<@9gu zn}<7|&7WKFW=ir+%Pfz|c@^Bpce&eIosSD&QhZ?%yV$a{D}9zXBtk5IR;q=bty}fU z#*4Wl*>!ozn~1V`vHItnKX7i@WAxuP&N6q(!Gse>=DUS`ad63VpZjw6AI6%B5}674 zKUe;j3y_t}G+9%6__4vO@K{w2yOK*Tk~M46ZNH}#wi>D zTK%^y{>th6t6HnB9cP?y|7*(18)~u%R@cIQ-)oqoy6lYH-s7KIc^|!BbMRH~6uWH| zX3uvO%|4`kvSU_?t?Gigrq&X7ZlyofWC)Qvys=QB!EWBdzL0X4Wkow3nz}jNQdj@h znt9vdZO6JlwQi^Wc2!$8PmbEPe|nAC`fmm&!h3(NyLfeDQ)lq2dmNvoHm~0mr}i$A zKkxO8WmPv1UcYCcbinMc-*lr-TW<$!-@iuudF&I;3!My`?u1PGIY(#>lY@i!XOlH4 zU3HJ|Gpq^Yv|HY>g?n}LPX<}_T^k;|&UEuR-XHcfL}WqYlVpdyox99k-@M!&+RXkx zZT|l9o%MN(rpxT_$gg?%{^330@A;lTo0e-c)bSkPpJP*S!Jgy6Hs`eGvzGbWmfGI?b)fdgU-$f|yC+|!%D-8C$9nb(^Sw_+-b9>F z4Y?B>VW8Hx_H^9qM7!5jQ-7V8Rp8pU>~)rZ@oe?)?a!M^tkt(_pIvr&TG8iwJL9+u z&PIwc&zH#!vHtn0YR})wl~24+pZ&8fYTc#PEoY3EXMUG;UZ;Iw`;F7-cS8OOyr`YN zzUxi&_uBt;@=nz^YMntbTJ;nLYVwl1FOzx3VCF6E#=*(9CX^T&L@ zM>TAIwtVWs$65|=^&U#J?OOk4(lOnr)bi%d(fx4;w%`B!4Rj6qI?i1MPc82Ky14$3 zynWsBJL|VyULpD=GI~c%4h)PI_N z*F87pTgs1P){Aarz8CzXQt-6j&p>-?_2BO@;XH!gqnSGyG~zz zTzp%@PvLmRoyQzY=HzR2NZm?hm{1vf!TPw~ZCN&r$G03;{*g;_WB+Xa)hUi$Q@G*u z31@`^8;?evo1m)9-MA|KSGi^6^pAHBTu7ZF&5&D@ZqV24J8$Zw`-Nv$Gxx9jx##hM zxGj?3W7(NDv&7cwdivWPOSpb@)lVaVsNmB7t+0DfNd`Aw? zYYhJPtYo)LNUq$(UEvJTSNHv~E0I1K*vf3g)c0I!9s7G_+n+yU->mkkch9~X%*hzX z=CDh%$jHH7FTJ*Z-{eBZLS--Dpd|$n9nN0Qm?8eCQr4|!Hr{63%+i=$+O6ux! zE2a&~^`9OZiWV-_y{RWsYZ3vo#k7X?h7f4+|k>-`^0rQh9ws}5=GS`qa<%$d^mB}yG0V# z-xF2y7OxULw5)2rWZ+l%8Fqhc54{zt7u_-U(>$AB7W>}si$C`9=u_Dr^D>vEPuGjF z?Au=RVfKd)!R9BUL)@kN-Yk(|mA@dJk!!=@t))M%E|?`3x+1VgX5(Y`)@|qf?_Is$#JuYM*^9Eu zCS3X}rtY*&6FHH;b|;^foCJ?Vqp8HfhVJO^Gj1L&XPW^491_%~m3(&f@^$FKMw7mc?$ccskb=gt2~rJ-jP8G3tC9+e%BdiSLLc6;hG zGf%%;8zqX4o2}6?{cj{+Xp{ZN&Y`dT-G62W!O6GSbdtK}MU73K!kAK!|H+p_^&8_R#!VJ#m`OmTWzin;S zWr-tIbBgQ}BqRK;Po93hYVCo;uWS!wS}Zy{|M>oUeutyldb&O*>(2bnn6c=>m2cWN zM0b5N>;3pRweVKWdZ85=?wL$c=J|hax}3Gpf3mJ*;r%O@cLw*I^o^V98@*=ka@&lb zSFP(GWp)Vb~F4DX!!qUL*>qCnJgdPx$k4J{|#DNTO`x@(tC33*;f6lzcWp|RK>RB+Quav z_4NBwG&88#aQ4#|`kf5-*Wc?lI=ST`S9HVOqMiS z{aZK9)9b3?yk0(5nIl%Y*Gv**rc1PybuKu~c6HG=feW>7r?0JPl`)#8ymxvm^H0Co z2am?tufNrNJLu=?Un{RIN)7w7W6$3V^XKzpCHWrgp0nrAx$NGv9=9#m)w73NwP{)I zT<XLlnX~Y{7UD`SjqDwwA}l<<6PIRwYjDiSL%-I-G6nbS$KiO zwa3?f=f5y3Dw=s``Lq+)xMJToZk;zFLhkHIX^u~~=RDq3!ulz4yWGW{Eq!Mkvv}^^ zE?oGxbVA+pWXIzPS@ZTEKT+B)`$SpCHc0>W(!M>t?|;7yjP1Uf|IaM_*0rkNYUjgN zpLn7*%kr4O^~jsa)9$8+{8{VTJLPg{_NSGlJN$OsmA&(++~u2+?(FdPy!;z_JO4e> zW7fQF7WQFw=jqj9;+l_L_@dhWIQ*48{_mCB+w%$ESBDloE46jlXCHo+cT?|XpL5cI zt<`fE8!XOk-eLbf_{*%@OFe=cllYo;>ApQ%xM%;Hzb?IpbxrkZ>rm+pdW+BG zE>Nx(SQP&@(sE8;YRu__$5*batCp1Etw@P@#7P@sC^f&cC_&$FX>Z`m&VtClSpOkA)5&c&h5p_s8JD(S+2d>9c>_ zPGi3{Z|<(-+HJdDG(HRWkI6f6|Jv)?ozwh+bzSlqq(n=;%@%h)|1R_>RE63n?nMh-Fnzw z(864}Mg97$Z7Ewmh4tyaC|vMzPx6PQrEb+BL9Fk#^0~0uOH6q1JVxyFgNYSyK191~ zOfXHUwCv4_|0;W)*(3R0Kn!z@N&f(oaLL`r20x$&-Q7q8##T=U+R^=I4F_<2*qE_T(_WPg~i z%5uN*{M@hizL)qd|2}H@|6%lY z!!sL|Cnh=3w>-kwU2jdjlCY=n-nMp!dE1P>y-sc@^SplN^471lxASh~c>LS)`;J*w zw%dw%JLhlJ?wJyFJZRa&PsuT?{|)C!X7s!;zxLFwG0yIAjGNE#rJU^dw0C7wV8U-{mZk7lm47rzg@@b!BHE3tL*L5`dIBJ^1rT`Isd+R zjN6C%(Sh%Z`cvOlw$CYxXWcFx)@0E%^XGwGXRgkevch+>A@i&kC%V+@zU#IL>hJy+ z_-DC(t$19~pM|nZY8@{NGyD^5s4w~SW+!+1*)u-IwwJeb@132w>^bjT$XOl{{C?L`TIVTH?QP-@pCi+n^_xH0Rts*mtgba{4=^~NID7uqEN#D4PcyuQ)`s7G z%(1U5ZldW+tf z9pd+>o^(;0k7;A@tkW+e=P>Zx;0ke=XDt?K&bM!+@U}j!FW(A&pSsv3S9^F%E}P)5 zoZEJtb1yLRty+9@`=hO?6(+Lx`?qI{ZoPEtUdf8hITPiloj)yk?P-R8OajyQA06j1 zx*v4*r_1QnTSw>KSFcl9uzbZYhw5XFO$Qymo!9!M^6I39S-rFBi*pJ*`%iB1?|;2d z{(N*S-=~}<_t_%?x|WC?x%}}^rq%)dzUy;tY5huL3chIH?ELSWs{8BSDP~_R6@FD0 zh0G1U@M(69_Ja9u#lKg!3J5mTUeI018n*FL@vYq_B+YyrA)do6Y1IR|(edQ(VZzJ@d}CCwre9Jb&Ot@BJ?J*oE63@3Gn> z;!$~1?5*R^qNLxCYz%&G?4M}<^YfR><^QK8ON+h`ESY+iHTLtziI@DuD#c2Vw)MO` zE&BD2_1n4EPA<5Ps~1dR<-vg*CnS#^zBSt z!2a)No1l8^c~*Y!nwPrrhqL|na$kRId-0^@r$hV4y?B+;s1Bu|6b>D{-Ue^-Rrk9^DivZbe}fayM1X)x@PV2 zAM5yv60zX4dkbJSKb+xmEA{GW%IBulM^fX-nx8Yk|wtHBLP)`%t@3Pgvmc zbE$^p>k7>cSMBagDZKKnc`b7JeZ;J7dLnu&*-tsW+wN`e|5A@_pSi9+ugv8~;`E?fHxIq^`2R*yQGYS10+lebn^$FWV%T-=y6+%Xj5` zu+&~Zxht}dY!_Xcdwu27ZMCVlFU}Qxe~)dd-rrrNYeU{iy}cb=%gu8kqTkDHnx}c< zk=m!Hi|gJ!DNQ@gbEMtv$4|Nc1%ID?|FJA)&rQd>i*pV)1|PTY&fouBcE{Tn$>(Rp z7@z%8^77Es$3NojKbiix&^n#rg1K=(WKZE=^9-gFVk_1by`A!W)0ND7R$GjV*4zG? zEIU79`j#RVrF3_>)I-rcH!c~LOKqH7#A-O<0K>xlOPk!EA5M2ZxZnCUTZp@K-=dGc zo0*o)Q2Z%ar&T$jBR?0m7T^rS>X`wbM2kK|A3wNz$NZmH6y=S5_N{v^XQj-$F7Hk~ zllnLPhfgjZFZg>e*kW4+*LIn`4Sy3mXZPFm?LE3_Vxpzqhnc6%6D;|DT$ybC=+h?- zJsFw9pp^k1g3TX&)IM(L;JBwWgnO^x4E6bj+b1?xy<_~&Ubc4I$1h$Ry#gAn8RtrL zJAB*tZHE86xu2!`7nj8TK2y9+Wc&2*k6DXs#k8lD?QKxAZT@>OSWfiy@t(fcnv=n9 zf$L=6MI;1XIk$S6&+5&~x43&sg&s?1@d>QHs9&PAM&^cCOONUejK0 zerRU2f%W?ziAcTR{+~IYKW*F_JXcw^{MMw~hr-fVD;Kk`Q9iTi%wEw4CVinNga7?i z+SE7yGh5>m%f+J2HCr!zn>aO&Gw0RB=b;WImkf0#;yJJKMbGE{_v-VIwi}CWvE1yLX;vzr?!Py~pIU}`(c<~{Jf6$# zm(8z!5NGq@h+vf4*3&k7@9*k}lF|s*n|bHxql>ihUM4rpHgej6L9eb=&fO&6WDKkG3zrt{=B$)5_|`_xVNdcf5`b!zJVknb(e2tSi~+Wz8e1 zV6w(CwVYox%tNfE@AZ{iv;21JDDKF6XKlA{dQtrGGkFb>q5h@zw+p3Le)iz+zx;2* zNw#YYmAUJG8Rbkq%^&fp=y2(!Q*pXa9-GVGzj=%`+%=7p8vO{&_gdi zUq|c3%9q-fS8f%sya_q9)?NS6@Atp=7v>Z$eNwt?<~(oEK-s^4`~RNaQD7ju`Q60Q zyk4yWjsW-F&%2+$@#%lv!y{$h_n>4>@1f)mCTmVJF1=W^^Be=u6!SHu28*VyoI7=; zvGu1HZ=C18viU~It!KBV%`dwD$m1MiWb^(+t=jQ zY?1SSq41rt%2+x7f1z%)%)^&vhDExDvdg8D?=)`d`Q;s{bSms%=+n;h(^lHayYHNu za&cbH{+iOM3W-bg<*w&UUTv8&MgB>Hq`RT>rLCK9HGV3*qIFwmn(OZk=QBlPtQBHk zpIY80^Jaa;cHw;KZ@eZ~*%kY zbx-!i<@DfRKiFjNd&@;T=v>;G>+}BG)EJw8i}ctSX5Mc-`RdaqpRel|K0H~0=yQ463UZgVwdwGZZ`quM$4&AKSmZ?oDXL`Skpz z-5e#qf^{3`R=k=NEYDg~5hZ@Eu=msI{#lnf_{wj%W$x=qb+29Wsdjg5d4*~2wU;yX zkB1zKna7&1dqd*qozx@e-gtetFQ?Gm?Ecjm6eCR zPyD;Ii1k^Pp2hm-4}bH0SgEpmpA>g2=K=GizqxiN&6Z{={e2O~RQEN=@Oa2+_Usgw zQx;Qp-BOFc+O9Qy{x;FqTgvy!s;qu>yY>FtzhWV?qWH=We~Rd{wpsT2bu44@)y`e| zH_Mj1zVKand-a3OEn*^<=giq=yRX>mwR;8As)JsBa?fX9`f@Aucg5Fz96M_cbNtWE zZN0?tVB6yU$JTNGqANabbhloaHtXfi#mCphw9nu1KfCb%QR`DTodQxFXC6}e@UimI zhiJ`Qj{NblNtkN(IqbpxhLUUT&9`4C@9jIWn0xh1v*wPE)}K@(j5s1DGC17- zd3KZAD$wS~m$U74je`?-*>95x1!S$yW2{l4s46M{j>Tc)a|> zfu*;Xr3a*^e~_y^_q%;tZIgeYPKLmFp-P*gD7J%&rO$V3oIZ0?vfjMAaYDu6&oj6a zEG~Vzap~r~ZS`NcL-XCcPo$E(86@}#WROTJe+ILcWw|2;XHHG>uRhvp}x+XfF z`t$m&z?`drb&+iMyQOyOE{<<}l6qUvVX^!5WpT^)?CW~!v3u#q!xyKWip^?m)VMe8 znR~~loT<0Fs*lKJ9%S6hRq}Y#DrL2~{`LFW`LEvDI%)T#!v}Tz55ISl6+RjLKJL`? zzkQ1@Tzl-b=+`AVnHha^u1|c&>mXcu;$ro@?cdirDli`O2$!{#O6_mBVmYHnG?XF# z>bBQE*&FL#mwz$18vSwmwi!p-?tymov21Di>|?J~w^$ zneEvJUzctOkL6msY%332=&QdwcQg3gE~;6b|G_sQZhxudhsXJ!dS9=wKVd3xF_I_3 zC|tDT+P58H_wF8Z(%vY4!1(Uf!uRe^tm;ks??GoIhui2k< zf6=;$^S<9QeK+6gU*w*jQ}+>^dm&wK{sH@+7hZq3Fxk9O*5wsjwrq%~1cyq7 zSZYOH>6Yvz9NX?luQ*m%J2%iP(7c&@&(a3vh%396+_u;kDYnVr#xaIDb&Iv;zkK&U z@vL}r&KmEsJMG)F4ICB+f7xzzBlP+`yE}R@=N+!^j__w|SY_^ZMkMikjkNopw3$kO znUwQvia3||**9Ik^NaD1wR!E92X6{q3j5z_y8rV_?T-V=`iIl?;`^Hm^RLe1s$#ZW z-M4S^f{Pcs)q3|WWC&lkN~ufx>*@#b+y$?DT7Fkwk+@j;GuP`~yrk~*1@q7GiGOnY zQc?HT+S{8y<@e_woptlf4lo|8nfI&bmnoCp(vx*3R`1wxD%mOeK*&$t+vc{t+hh+M znB4SX&nB*W;w+VF4AWzb*lS9%KRnR(U#A@IlC@Z(AkDg@^#_Z^Dg9G^))Q-$ZukB! z`5VYu%U{5fuvhD}Q6xLx3s(EQ{#*UlJg<`{{$7v}B*(tG_-;g|OLfIeKb{Q3{h>$Z z{*Rt`yXd~igP*b;YxYeIU&{V;qp& z7g}!c-so;>*4%$pEwinPEu);p**@kjyLL6c(Z2THx@rHt7D+{{o_jyiU(bEJu5iuy zMcWzwzmuK!uv_Vs$rJL|osQ@WJZ_2!$p z^HLSTEvHxaamZ<|Wb9x4@vP`$FZ+ns%h?{@ezAY`#-*#oWt-RbUJ6|QCx5%J4ci^j z8Jq5xePOy+@jm~-wZ;AKH4gh2+g5*h@$~h_{WU+f{`euRem(!h5AKZjPnWMf{NsQ6 zd*5c=-Rq1F=HLHqH1$+SnwNjGsYLds7U@Zf49eEn=yQ1krP ztMruXG(T;z*`0O5LG9Xl$cC=)P4BPV z+War?qOtYwj|XOUe>~{^Px{aG<8e*KclTXzE8XED&wnkx%C_Qv;)RazC|#{d*BLiw zI6N~H>pxmKf5R-1jC0qDdG4fSU$(mQB8TT{LM~9uN zjpBE8cPcEh|N6D>w1Ip3+l{&vY%fdq*nW6d&U>v|`?3Oa{kQ0Y-j_XdxS4x$&sgk8 zd0Df4^;*H_WwNVxWj*}I&LAC;FgvWAujr>&%t2e$r#teEDyDB`U;oar^6cy2=RFbo zDtGKu*Zv&Q{`<;ZrOzSnbKb6mwXZcT)E&-xUHy2G$=O)p>hs4DeOtRf-d|K1 znXr8JQn|UGFEJi+j}iX1U+-SM*!rEHlz$xRw%@g6StnbSd4qY*Jd2;@yU(6*5nk(E zU3=H=q6=Qq5OmFk%1xj#B-Z@tDd=R&)8KPY&`AT^k1CJEYp@xzAs=Y z5|B6j>Z{#x!7Ec%{EV9|@<#iV;f5Dtd)XB}p2=L~!^5?aE&9*8M_ac}eI#O>G2c+G zXo02t@6x%Yuifv3e_sD!?(Auw|7918oK8?X!xo!_1=dFT%?%B+Aa5c{*p>`u*aO>*~y&Y?Mn+`a7+_Q-9wF!#~~9|5)73 z=0#5a->LTN%*Dsg`5xt#?-MGwFOK}t#duMGg~5;|eU9uSuA|q=KFY4BncwrQg@QtS!CK%=diPO^HdHoxe=_^7D?3ukwlGn?$Z8@HZRBQLyHC}-Jw za_N26-hSpQRSDTn6ZiMVGar+PxSZUbReAB}wD28spCsF+7MnJEN}TRK^0e=-)y44c z5caQri~jGg`dfH2>^@)BhKZ@23w7GRdP*HKI=Azc->A#fAih`dca>Mv zvaJ(8+A`%d+eIaYNghb%`^wOAQo^}W`3iGF#^t;(0w(Vd^R&EWyuEIh{spJ{xbhF2 zd*03Z{`eI0`TP0*id}9q)G;3D&!1=U^G2Sr@kN)_88>U}FS_jZi$30emhq22!#~xA z(`7T~+WPvxeRDkjPPy^D?WHFR95?0L-k2iA`>E#G`mIkR%zRUB`x)Ojrr?x%Pdn_w?C^}c5~a;qx;ymoVyWq>xcEW^tig& z?ppSrUoi)8&9=I*Tys;T%zWPE>vkW#Wc_!`(yJ_g-UM!IeAIhS>B{xM`iw@4Y3o9w z-&#%GAAK$U)5K}H_jJGV$9-t;?f^?7%MlUil=xswO} z{aDBL&u;2I5$EQ#x66uU&xgEq=HNP@XRWYkr~cjlCjYk2zTesW`K4A{XW9IDclHU` zm)vgB+Z{1`*fjOU# z4~~khcC_|B-mu_Y=^5|5Gv}YY$P5$vaeR86$oi^_?ga^TW5rT@U1SYY&GXdrXS>%+zyAE&L3eMv$CYiXY)|Ym)?{(Y!E4JLK$G|eHkG(_+9<7-<2;vq)xxn93KC*F2=%s?kSUt9{kKd z1R3^ks(ke195~PDM*TCLk+CRt$=b)q_lX@i&-i1}-Dj!#mzh}K*S)a%b54Ezq083A zPt*j=qPF*}G2Ht9YQE?v)m6{B9(biGJX>orJ8;XhzI(@2dF?M7x6Cn~eQz2g*G!wO z7w7xNcPF0AxNYiv^mgIxV^>W#9i091oKM}yKZ!QcGEXm7C1vi~dj3a*@5JQ0b(__4 z80GeM6zyERFO+#}i{zS@LC5z+yjHl}zC5z*+-BRb20jhv`iwjG!%y+VZfB_e*}GHv zK|KFA#x?t849@z5SxJjLDOxk>>hUd1F0UKzRZ7`P&)%N;WTCIldan?d@Q*X?AMTqh z+jinfM{-u5)P>-=pJp%`oKxJmKh2IsFa4P1`L(&laaW4X)P4*7sHyw5&sOZyzNHOX z32Q~4H|xCFe0tXRtvAlum{-hO&1ci~e&@gQ%M9iTzvZk-`t7vm?YZzr@_w=N&I!#F zcQ82@sr7sPdcGXB$2UD!#vi`2P{%Ug?c?7~zxML6JJ~#0*7kkNmTB<^C-KY)ey?+F z@=_xOS4Ux10pkEw=ExaQa`kJ9ndPJ6S@o2EFWOvq|IoLuKR&U@Y&Gyino>~H?Jp65;c0r%-&Uvs=lo%8d@gHXRaYb$=HnOtA+XTc}m z@@dy!J+@0*sAl|N^MC1uyiwK))70b~3f{ezZF#=IluO7mhkRr*RJp@ zSnqVr;84vYh1s9a{d!;{yLa=>(_snI_#YU`m;c)1U9$J+zhe(3R>pjcS#Wxq=} zHy_Wqef-I#u#INV%J0Zm+lR`vSAioma3r#mi7{kV4hX5z(}>Hh=x8*?QqG8Bz|N^TG47C7s0a-+Ui zy`deK0aGo{4@S!u$7?pYFL_m)Gkw#6rbD$+zYBjZsJZiQ6Hk+=J8v6M8~3zJx;_|Ly7%zNmOch9dsWhP$fZpHfM^V_D)cid$3`)RfLvg?~C zYfaAOn(1%1x?>s7M03_VpK8{qvdUyNS8hvrth)Kry?bUe0`E_oYgjr(bC$^U-zpl< zW3r}9Og+q4IO#XB#tSMIGDTw`9$fy0(snc~wnm z#SuR9n`eA|abibMWUQXFIKz4Ezrm(=rz`f(R!f#n|12|`|F%f_`lnX;r_U(F+kKxI zlhyQ1=-NudbDKBL;X7c;E_YlyzsmgE`EAlhJ|-87-TUY5=CH5+ZT_h9EjJ^B&1Q`i zOE>pQ{j}kgwqtL;%dqSx$K~~TIv06#i8ey3=-?2W7`-)_36i%b9b{=LTZ-|NTMla|l!-BqyO>V3bP z>#ga>W!7_XCE0KPx1X2)%YL4iYt@>2-(|F%<2irp`>U&Y?0+xKS}yfDJN3g1u`ucPC;n;6BazX{NMh&Ng(sna^<9qVkGS~cul(y6(qkHo+MQ(RIx0Z`$ z=IuQ4=4Y@5bD`}_2~6(-*duPJk6ysmU)P;OkeOT5sGp-gt^ z#;p?>o1d+m*%*JPK2rRxZITT~OH*Kc?%gYk^X8mBo%G;zz5cF9kFz08m2vC`-cFPE z`?SERW)1^$#|_p8=NWDo*|@)SYn^iG`L?nhuMS+UxNBP9_?rLj)hmZxl>eGFnCH&3 z_{k6M>KN+&SMoKvSnLsfykC~-!?K6}*}<(g{<*dt_0{js{y2TSe?hJYd&TTP{n9Hv zQv$PJo=qv8ofv+3vu2C=`8}~63+?7Q$DPt!;i9d4Tdkt==gl1&^}4;%hhH~%_{rI* zzgn?1BYyd_n%%6G)ABo`q;1>yD`ra9r$3G8idg^LIY{i#=Zbko#z(JTaC+9@%_Ppg-#bC_f-bk~38SKYiAT>qwE4Nuj-jTpJP39 zYul-8o76OMyWcX$zh^0wN~Zog>n8j}GJmU)?6qX2SyLYWxw7bM%IT8TYU-xOGwZw` z?4M>eFaP|LHI;0Cda`rnI^=f5dC4v+o!S@neXi7v$6|5XO z|Jbi~eqZM|7Tdaa3iqmxuP%81(mOS5U9W{i-Nv0~84OxP3f(SDJRv7G_sN6b8x(e) z{cwzdO}KeVjnutUiTav$RmXlV<`K;KGIhfFF18wt0}NirYc_(h)?=XBRTXj~`tH{SLeyUg8kuKPu2**{$Bes`R8b1|=` zU3KR2*$?lf>m9Xz_xJdY=QF(-ugER7-T8CNf^U<){5$s3hDGI=dLhp%uU5vHmRmKe zCp}%Q$o|NyVwt;5@?4v|2)nqaA1n%Ef5a@5+w^xg$2sc_k3Tzbrk-tcW(idLUCzw? zsiga%M<|<}+|ys5H%c7bQ?>7Dz@l@@`!)HeN*}l1-d?pUvm*9e#p!FNs(Z@$(n8|I z$|i?Lt*x;6;}@R3OZ&mkmgh#Xj%7h*WsOYVnJ?_NkxBi(kCi3Lw(7a`a{1#g82+Rl zZ}i=N(=hRBB>RN)Qu(lp@8r%f1fJOJbMA~&V1wX|$NOeB=F05byk39VdjUs7{!rPU z*>}s+|1j9T$c*b<`-MlQs{WPGdAm&l9nWv~IQX)CsQ7;Puhr)pI?5HH0c-xgjAZX9 zpCc!CV*lUGMm^X2_B~%*_c-d%CH>v*6DkvG3+pbYSM6v%aOGl_DMJ^JjN63u(v0r& z*qML0|B3v|@PXA`{z&%veWLE)Yy(f41TMJDP{(z^KX0BzW!CnYGc%MFw)29rj#u>Y zeo==1B7a$aK8j6C_rJXJsLcC{2TLoiJBL4bvncls+bh>1>Ab*G)7Gs%vpzENOrv!D z=9tn`85??UPu!8)l|IAx-pqJ&t=sEw6(8UJOr}DsZCi1r@!2)=A~s(s)Si}W8{!_> z`*YJSyY;733+A7+{JJSCnR)reho8k;VQT^YUA*OVRmSN3&bGgv+!wO1Z(em)`RYA? z?_<49)l5Hn=hc?z-{L;<*r)LH+FJeh`KPzdK4rbVmN(}*!~ClUeqFEIzUTUU z`GBzVOff;Lr%TIoePCj{@L5+?r}>rh`Q-Jl(r?~bb-q+C_%hG=T#mo}zFsraeg$QH z4!rjMZT|Ge~nvOMcr-g05 z^-Ry`=}8VhtXZ~F@itFXjM?>*a<->?9fT zf=8u_$8lb-+mQ=q6Wu50hl%a@`Jwj5wAJ<<-piZ?EH>Y0FR%UN{qdoD{(+TqnGN(! zzGr;SH<7-4_X5|83dSAluP>0U-eqX<-17IOoU4c89b*5N9$C(qZspe#&b&op!@7g2 zExRqPuauV-?PQx}5V5MbdHL72FJH53kX7|7NkW`HW=l&R1q*|J~th>4> zuHN{U_+jh)i+gV`kv^{BeXe-J$@95UE6(gt`XajK+}~ZFF78yc-W3%u67c%a*8{Z| z@1MWe?6~Xq<1ecoi!2e0Q^@R%XM0)FK5Z>;^wZ7T7o1$Ud)A-dduEkP%|CyvPT7I$ z|2YQ-HFksS^|s7;Io7wB=5aCbJXEnfvv}(1$D4VcZvMWc*K+bvr%a=GwmToor|$i} zW3EYy`iehQ*DrLYC+JMijH|p{IWsci`VOa)zXRH3bms8OEvr?MpFj7*!?!PFzBoin zJ~g__nEGLxa;5ivw_A$&wgIuyOXvSTJDdN*gk{NBn1$}VlHQ*kJ7;#|je5Q__^Ph8O+je2!FLN&btUInY>qX>JP!~w#uWfDo*4umD zl>U0KIQ+5syZv(gbG9yBsVkPVJ7Bh9R#5TAS$*MwCRZggHTLYddewOI*QWK)&WOc) zyb~JJwDsJhsZYvtIo^4nIT!J1Tb)@!;<2SK4qj2clfE^5PG;}V`>R*nm%CEBh4-)E zmV$ZFs|Ecfx9|FD>33TydgniDef#y%)$QLnJFZPUv1DG_>jq!L-ffGrn&(XsdjFa` zVg6p{zcEYRAFldjwz1>g*8P#ypJLN@tvy+luzD-^)azBx8Y*o*-))ugdCgpVOxZp= zcjxWJny>%g>;H6d#iljS$|HB}a!>ypBx}%jcK@B}Z$%32!e^S~9qTR*n{v_j_B#1* z;U^f6SLG-#>7I9YS?2rMXAT=NT+06Z@7=*;x29~(Vt>%ZJ@3%}UzhG5f7tu-(a+AZ z`EvH<0{>sVkMBNyE|$fC_wdE+{$77OZJuNEKK@{mF4-#+ZQ8qVJ=+4kX>T_-N`6@z zqx?VV$vnoiBU^S^zFD?b#3Cf=d@%34Bi4V}lvPg(hS%;pWGd+scJ}c1XPPe-Es&T# zH&FaX@8<0F`)%Y{?%x+@oN949eYIwF`uo4-JeN<_0id9dBSCplr>_emRb7#4h5!*gxz)WdJrC}>{KT~e-= zW|d$Yv*|xi-p*I+Kd`$0UzfGMQ>)6p;r)G^!cT`mjX3?7sNAcwG8Ua@$d$GKro@oX z_Ca>WuZKaqUe8?oV`_E&p+Q^qtE}@&9g39aMU-F z$79RNX-#LfH~yIyHuqz+-_}NJse`|T#2@dD`uFWny{L@f(x<7lCa;eO&7FKkW6IW* zO>(EEPCuC5W4Zt71>>0)pNMZ4+co!7*(STl;xnf+o?2!tyxVW|vu00J$+lVx2G$dmHCgAs z->kR1kZx4C&SL&AW3#twy;q%nx;bfXI@|904OjJd_E+!LV-rqwlWlm-Z`bsG*Sqrt zCHIY=tDbieu2p-nvAF%i>GFL{-|dPuZ!}E${*H%ZgZ{?)jf)s}&Fg+N{WR}+v%@dN z1vgkOl|G!6RO5ADZNmUerp|r8Y*Xajv?HufJMVdYeZzn1c2wxv-@GAqTn(%B?i_j@U!!gJ z{7}2LtpAnE!MDX9+28pt`s4NS^+y-Y?msViW<_|%zj!(8udlS_ZX4y#(y3Wo`;*}v zb8Xk$h0AVUP`<(NHvY5Z)mKY5v7hHl3%&m|vUTsb9}bTH`|_tedvAYif2p3aWrV&> zyuo%W_Ln=#XFlSXarpiHJCe_M*dABDne}|$c2}Rn$tQMPwd~)^{#iCU=4ZpJw7thg z6{>$comaYX-Jc&40?+w8;^u}&IY^#9QoNy$Rd@dV>4kM`pPPPV`ttqT+!d!!zuIhM zEKnl(GjG{7(dCRhcMN5}pU+M({WSCA`XhfAsGOfFu6z8DZyDo-R}D^YeHr|oC0cH? zzFR-zxeo=zU($yd>1&Y=ic?_|Gf$=t!SFl)X6O_=IH(n51{kDfAKVQJ7bG zs&L1}jeeX9PsUAqMtf&+`an#_*8beLoVJcnLlVV)TMkra+1A#_RP+>ijul%b34_3 znPk5HvGFg%KK=v!Oct9?zj>2cm6b04?{2O6!@bed6PKU1saZ6!ow0jbdT`!>bK5pd z%xc~-+b*l_SJ4ldE&A@Se&y~CWtV;U`JUeL+50xX)V_Rvxm%d~l`W?i-?P|rG*xnw zgJDq`*F~Mlxo=+`jW}1lWXHtwr&g3cIUUPBW6_dh#SwYQk`aOP*O&H%bXz7YOl$sA zJ2!5AHiPoLXCHP}Uh~a9b8&_wgTuEw($l|-Jeury&}fTIkpnv;G%a zYqoYh-L&;xPWj0_Rka)MpMBWCbY8cnLLqvhQ9$ZXqX(y6XR+u2wv~Civ-RT^3D3x%QEuMmyKY_mA^z2TUtL~<*Y!je=c}tPKKpF2 zUu9mwx85`R`*I)6ZJcJVE)e)#>D&7o^P83@{ol6YLxIC-n;SpYIq|;CTxg}slge+R zd!e)@VB@v^iA*()`_?fW-dp$0&w1%Aoi~*k_nPmNDb~Jh5ZqC6BY3ZnL5nq{FtXH_vOHs`z#V@{C)PN9&467qY}V;^UcCH&-P3^{^jS18MW<6{plG8Q`a7R zl$v{CqTHe@3{7k9ox2|MLu23bU-m~;e=pm8N&QxB)tfttd%pICKm2!jHp7tz?7R1$ z<6V`r;Mv5O_1kKAtQ0N;M*6J%xw2=cb>%hbNptt-=pKkSX8q&CruzBCW9#*s4CYM> zcVy#TzOwxO$5XzS(~M2`-)^kGd*epdCZ@fL)zVwH&ts~WUGzMjO>C3my}kU|8w_^u zKF_m>9saS(+rEoC?YYz?|0P!zK1lYDYrenl_v(*NzO@!ixD`HY zm-ma$ksPt?n|Us+;`zQs`H>;Rsms%!pWpF6V&<*$itp!6=dg?N{}f$RTlT3ibp5xA zz6Y^=%_^qmYz(iwmfw4Mb4P#iqVvW#1-))tX8x)OXnMY^LOgS?@YgDzcnMoJ-|5d} zCHUP^Hm{UVd9c&rG@HZY?emPI+yzVHwrrXECs#Xw`{+sq*~>E5*miC={Jb#t%EH>? za!({rr$2oyGxKTw(&xK>9NVzxiQ%-92ahzI)`;J+IoHxY(sFOlM+a}V4IlF&f37|y zy?1lcj3D;Ezk_~GIC-O-``V<&S;W9o;|2l*Dek6>`wyUMC|f`}etrug8B3tU0>0 zUi4au@X``#$RdMtpkZrqwzZp5d`&Jc_l-W@zn91M!uMBqpQWz9eBY*2vhM3V>4Nt! zxhHMkR%-B>Ki_bXp=Dlv$?P3DGk58^Dre_LtbZT3DRo8BrPlhZ3TL9vo_W#zMD{|| zx#MpaTz|au)@BKpRrQY*R(+aVD6sXArUm=+OPgoxJA3J9Y4%20Mm>+dr*m|**Kggs z@^<_7DAWDRPVRfMXa6dI(~O+2>oypjn88?o_;XO& zlwjYTI^B(m+%JBl&2`=RYUAwf?s~hK;=`KG8%u5oZ{K_7b=>qQO#tYSVN)R%3T)MR)4oeXMs%ldds+HCzz#(xlvOweIY{ zpKQ4H=)cyU6PDfk_4sm!_SgJ&J)i+Nb;tl*#WRh%hr-(*d@OE1Hu2o%$$_@nS2q{E zbw0}$XJm9Se93`E7Uj?XB6~h7NdGGV0UhnW!=L?5-AKeyk^RM6G716(~bdKFm-BWG&`NG35 zsy}%dey88AxEm^eC_K*U?&i-cFUk7v=lK8b-TH%%)Agl}vp+cYKyueXZk=ymnLbZC zS|M}t5_8>s)d#C}RsNnkVD*ll=TYQbwiQQ}ov(#gK1(>in?odW{~ftgW(BvaX7tMb z`*nO{6!YaZ!rt#4GVRXo=+o)-45lb{{)`K*8y-_^)>YG-}P%k6+E)R{iyp z?|Yt@Pph_`cyA%Ug>i3A_?cqv^)|ljsV_F$yk~wl^|^K6zrHJS&1?K?!|SyTdRpZc zJbLebx|_dXL*LgUpNeiie%Ptl|8h}jVB56A_4>P?_ocoIxPSIp(GNwwzt8$J-OjIh zDss>)-rGRpNbWgP%?T-qo?qk4&q`m@QNCbOqpaGJ%ErRDkzYd~?Wy>st*!fGO18R* zSS0J4uwVPNrsIC$U9vA<`t&} z`(yU^J3aer{uos343(Zyym@)9Q# z-j-VR`bBC^3Xq5K2Q1n zxXiPV#kKO!%-&mkGJmo}b=i$%148=#ST@}|qpm+|!Iw2Q*Uz&pkeC!^x$?N}_ht>z z=RHrqFrNG+v^9UtJO7`%OMm8^zxq@B%3r6@?DbQ{K6?JO!4)(P{>H(f1lto(U&s%BfItj1#T1zTNY+O6n#teBgTebMvU>gEH>bIwFp+TKY2U3P2n1fEwXpUbtZbN}j+QyF*6tat%e z!Uz6ZEk^ZRJrgzK1KiG4an+?E_ixb+7Y;9cTm)X64q58A<`=N`wa$X*<|Gaxz zOxXQT)r)8Ji|zmV^UE&T3hrx{qNP_{eA}N_yJg89br%B-yZ*0?k@q8cTZ-2H&7U5* zcgBp%Yv%5W`C545z`n43yXI7JZ{DT9y=5NbtF7z{M4|)Azf?a^x9R@%-q9%`Os7G( z_)uKQEg_z+Pr;Y>+IMbRtGxW10{il;eLco&&6n4_+5U_De8TBpng3VY@hk|s8rL1z zb|Zbt^JzL0qn4$--Ci1Td(Zz(Wl^_3PTLc8kH^lgc<<-k61#TTw(H93U$UNl_imQz zPsgsNqXleHTc7{TcAos|#nN`U1Lg7m`!E2DTsJiS@4 zprS10zUH6H;`{mMSO2&dqAonw-nQUZ(x3h1f45hB_!7uq`$G2j$p?Xoe|?Xavh&}M zs<%|W!MxX*L#X7KdJ+w1e#V+)I8dG5WgTC2P+S^DbJ zqx&BxHs!2M*?)F+&+qVUm!JH(xhk%F$<6l_0S9mEKi>TQyWyOSy~Vwowv-)?%KKk_ zkgZXLt%*@;nIJ+E=^eS z?fV1GYv+SGlCK^sy(9VTY1$r%zr}FqhF+kNjo@h2vC?b*~N z$Miv&;oiQ=M^DbJIwI^_Vt3`&JU^3*%Uz<6_t)|^%xC^^bobfQam)Gb%0%lP?|c2> z#7)Z|#`$UUJPL2Fd?pjuRW_;Wr@{K^3#y*!e+mfZ+xA3cyLHZ~i>aphi;d!@=dw?` zdY|d*8IHUE&-;dbU9`*p^sU@n&W5VfH&x#snzTnTx<>42!Q5-n$L;cO%Y>a4v331g zW3b)(*z&l^a@C6YD?(PS`5LKqzu`&wiLJll|K&y6PkOtJsiF1BMeDy_ikZ31bGHV^ z`}1sPcT(i0Us(w|>QCL9 zf6qPZ!uGYvb2TgS9&hI|E@4===Yi*+_vZiQzMWn6_oB;g|NgnwE&o3!-*39y{rBg3uNS4AFkc3YY>jqMAbh0pV4 zXM3iVu*uNwyZ)Jdo0{M6{206A+k@up({>lDzMQyuxZ-r~{g%t!wHFGd_TS(OczJ52 z|5}FqPmA71YR^61`L)qf%-JL0-pYu&keZ_#CpV`3Yt{Ym`^lPn|7PCzJh5H%`oiMJ zR)>2|A6x(NL3Xs=7J=}r8Uw|?l=(|HiQcJM(ZBQKoL$O~4WHJ$kkAX6HeK-c^ziB$ zb@}h?dDWA9-}9xO-D*>>`$g?_TlM0m{#}cb`HxMsXA&wodg}cq+u2QxJPI4{ncD7m z{$cx~V^0UqmdmnfXWlQ^eAU*!L3DCqGQ$hA6>{7QZ@hmmaO()ea-AuQDx===9N@YB zI#KrbFPV(PD}GN4UwCb!#Gd_SFYayK=J&XKM}5$-O2hGJ83!bh0&yJmL9H zdG3;Kxh91NCmff&xo7csqPr<`Y*gE`i$>Z3+e;c4*NVtpsVk3-kuRJ*W6eExgHvse z>@vHq*oFu?SozrtFSvN9r0=oEq0+uwh1!|?(T%SqPAy#Evamj){#(G(gkX1u0^PNL z&Fr2n{qL9a&b~W5{%81)rp3WePMN+?W~fW}eB|W!cV^1MwcjqRdVktQc&%&n@%~uu z2g@1u)Pa}xTsLaTs{e`C`N(JZdd|2gn`=}I8PBX)v+||>k=^6{TxS5KkSY^-t zlO(^wH{gzZR+8Kw&)E93Z;xVLe>G&)Ot#c(t!9ptKKkzt6Te7I#QbSXo?n===N9X+ zbg^xdpFSyj@j}nuShK`)*NyT$sWsfsex8fJb|yv0cH=9Dv^B3?zgEwUR{tc~6+Gob z$<3SvFHP9+;H*8Vr9{w@py%i+lh2;sQHqo_`J|PhNIx4oqHrCA-J1zDL!_0(chs<&q%RWGJKoU1_tDSE zRx9b{P2n@2KPYakPGnt6`umuLYtvpl-0c40b@@NxJM~q@U+S`rr588! z@q82bEI9A2!k>F?(#Os8vJT8WZ5qUHA^rc&-}KZ94^Me^hd-yZU(Pw)5V_4f`M|t` z25c7>ovXRmeV{@ywj$%U><+ufd>d+?7%{EeYO_nc>vh1q)ir0fh57EOzO;jX=CO*S zH?{|^ss5s*bTiGsAv5fwy?le(v*6cPcD7{ln0pl^J zhVqE`I+@^a^ZMVEb+jA2*|{{F|G)N9Gd*7ul{ff!g7*r>>ZBE@A z`LB>Ca7MuD>F&QH)GMo`cFcXL@cZ_Ul=aSU4=WqotgN58(7*VxYyU(2^3StiYXP=~ z*E8r_eF)Hc@6uQ&eL&jWf6kul?UFNJ{Ph3HV|>vi`_i?K$?S}O3>wTCEjEB!d7$C# zy3hM&f1J10SI6o<$M+-8;+5m39eaLrQorw#)s6eAJmqZb-&jh|ejIl4b;&=;H5XVj zvnQUCspvZ6-Lw6wF28Ze`KuvEQl5t_ZrrP9sy8{;P%irT{g-dKa=0$+kNuaoG$w6X zu)=|q?gsaJ`**DQ#WQY&sB-fkZG-qiBdt?b@iXSl9q#BX1I@y*KjpZ_iS zA9d;B`=^GE0)3wulOxVYq@NFTJgD?=b>7=q>v>Az?2eWGIW}Q#ZQi5mH^GHE`pn-K z_1(UGA?En$GfbuaFRBy1`1LF^staR2_MAN|t!DeB7k7^APri3+O1$^EMz;s-X?Gadju(_D)i(+VqDAGs&gARAcie5A+1_(y_N3nSYwvdiUA!CNU$cGQUmbYG~ zt#^EE|M|${D2JbpRwthoevM*T)V@Gg&frn`>$Wd3=}%YOSJXRhbLUOD82_;^o7VVw z$o;+UU~~Ds+oQAFcv@aRT~RI`qt86Om}!~O`|Ug)iL2h!58v4@kp3}mY1OCQOuB2d zn`dm)mF3xD(p=YWHC1AVOr!N9|$$NglCv9O+NY&!8`CWAfagXL!a zb8NQWKI8M{&(dQb=4UK=x~23_1mlOd40Tcmy31$Iwe{r|`Sb7a^+)CJ_OtoF-5|K5 z^cepG)g0c6AJ@FUL&3e_dn0<=JW;mAs|> zOO~xZks5t0DsEo*qdURhGtK9H{9R#j!1vwiU#E9X*_!`H?rQyK^OO4}t=P9eOIc_6 zCzNZ~x#usk^=d@!mmijY{NdP^$T=C`Ghe@P{c+U)PE-4Nxn+g2|AP*29r&?3VAZvp zkY>iO({F^e8u}#o^QD|UHlcyxSi!{BQ)_MC*tE#E_^%7z%W?Md`Mp=pXxx+gy)$v2 z*|O{z0nB%zj7!*LcD+m9ck6hy!H{>p57tjA^!s`!yOS0=LWlyWh-)2!KQd88?=6v_nt7Quo+X+AK z=Cg~d*qT;*>HoD)x$0NYP>;r+xm3X>7#2w~6nP z{2oVq6j~c{jk$lO?8BS$&c2*^uY8B|u7C#Qn^J%_gh6Wsy`M2aP zxiHV?*z%@@6TUsQOWI|-V`K07{g3iLe)9gm%W8pXplkW!@-;u#o)uPCPxURi_vK|o zvszUnsIG};dJxb2V-;+8TeI%%Jn6#kFaK`2o2lAc-qYwM-ajLb zSXC7dD=DKL-UR$^h*`2Sh@D}tphRlr#>sydXTiqZE~dNr%Js%#%m1rr*9SC z6p?v)`QApGdh4Zm0go>kyw>058`2Q<^s4Th@8V{hC#ESst&{Y)&BXP>MrP5U$X~nS z*xpCgt`^-_eC33|zRBCWO0}QO4tu(uEiXFyr%(Hw%MOxH7xKPHpI5jsOiuo_jKPVj z_a=9Im%fy(vEsUE+;@88 z?;}6*44+-x%Pjlk!_J-h%J)o{KeYavXE1r@L0{7P%LK7M_{(1}_wVuF zcsq$aPKyQqPAl8jJ!f;)YK-VE+{3tW?O!{q*}^;KXY6P3S~359!K0~83-3?6ecUD9 z>i;v*sq0_WZe8WDuP?H0-NWKipNM%JQEms?Y(H>4J%4QRR8|cIdH2~(KXx6yC@WO` zjqzv9L2K2$^5;)!zHly2`+hmo!#|sS+VX(Ns4|wy*I$>m&SzOP@m_f0tvcJYoGwX{ zk$m2#i#D>~<6G3%yC!7cWc_t@?0Z=ijNW~kUa6nQ!Eo%Ub-iFkRLR!xHNEqH-LtsP z%$z;(z2pASi1Q0`I2X=(dEipE#2Fot#p|}aU+}VFF79_#cB`rWLFq-UY&i>>G`bh^ZQS} z;9cP$aoXyf^OS3^dWu_K@H4mt6kCK$-NJue*4B3K(yPuzc2$mxxXQDRZ0fIMoB8~T z-Lr$@=^6pQT_63{*S$ZLecrL`_5TFc*_*hoi)qett>1sYy?pk>&Ux`)Rz~ert6~IY zqi}`_mD1!o}U_5jm;k1s^`{qy{4$A{a9_D z>)Cn7KQG_Pxc9)`XOEPOKgmzuv8OfV-@Lu+jzzQEZO?mO@mk#cx#`pMTUqW+duitL zI&-STS%-=HqyE?CulhQpG4+<&MjbW*tLQE>)${Xyi`_ldk>+;d{>C|F_Gf?H-Slt9 zpWTN{zscC?jO;<>*V$AXNzw7CsnV%+O%nT z?TsMme7*izE3R=qycu|Nb(-;8^TKm0O9fwF{g%Mj5X1b{M*jH@rIihQ;c^vB`Fmd8 zwJ@-re!}3Q%X!`0xqCV6i+`IxemVE=;hr<`uYXM4{Qp)y+lN=mO4H8uuKSgGL0PdT zeZkrsh6`H9pNaC#6zBbV@$w25y+_y64PLcW%`xYDdXizr(_XpebM|ess`BSa8Jzx_ zxXI;T<+Mi^D$CmE-P@XeWV6ik(@fLTAM!-U=b6=PPq2(LEc^03V}kdq9X0cKHb%O2l28j;8O-!yNAJ~P|e^-(7c zQ`cO+T=GSHz3+}bJJ$X}w(DnBPYi!%b+5v1_35&t_q%1Mw29PoIFzr5JI7Qgm$vuA z9>H+Ae?5oWjWk!J)x5B6Tzge~{WH@!YUf$m+)Ae$d*)*OT(6E4Z9^6 zLp%P7o_PB6PD2!P0ONPDlG<-eYd#+3e>83Ny?*82^A2Dv@tG%IVs~wQXWW76SQbyZuFUt)}VoIyAsxOdQolH?!0&vEga3!bK3ZdqHX2s?L0NnvH4FL z#2a^p2mC*0Hh)*>*0bKc$1W5V`-u8_yLuT$)oq_E^+oi`qmqg8ckgXvz!Y>kZ~#Gj-TnH~tH0Z;rK_pE_$( z>^mNF`Ca_?OYi* ze`a2v*Vypv@8yGsnAZJja@ia4OUz;U6S=z8`-6Y&ljU~|pZHgwU7PpLgMihgk;Ww! zTMF6!KRR~*u&B7rz7Tfd+Gj6j&i(u2sdZduwO_2A&Bv)N{j2xo?)`6RaHBr-tns!M z!&7^;m{;e>XkW-pn19}uW9diRsn^scL!uAZRyAhKxwp_Ra=rMT`}zm=-n*RU|9WaE z&+F5P&avxla}OUbxW#wob>Lo&?Xe!Gi-q=Y4Ham=c6F!iY~jl9>?wu;G1IDQt{1zD z@rity$Im9>>-}K%Q^u+V>Foy@SGgbN(l(5Lm7DQL^TW~7;+ziIFL7;=FCO*0sh(0P zc`bADT_>Sw!KW`YTZyeIQQL3MlyRk(^+@%ZJJ~tQXSbTgm9{7B*?<1_(Oc&Zf7Cj@ zqG5~NoW%3i>=$nQ&U(ZD$oE=vs`07Ct7mxdNJQHw@rG618!?7_#)8jzpEq59d0u`u*Z#u$ zTPuFNv8!6;U8Ydi_4|HpS5EPf+gfG}I2 zCo|iY#?D*ba%bcIEh#Hkn(1G8u2TD3?z0Ya))xJ>Y-J%)leCY0%1F_7oW|F&oA;OX z{ghP`FC5Q*(pmYYc$L0;^gdA|mb^up=4|<|pVac+SkH7JYhTE@9e=aFM?a5v&c>>_ zIX$j!irr+@>8nlm<=7NRF~2JK};p0oDF8Isw_|DcijVBTFu8aI` zpLRSm=Gq$GSmw2}jB~HP-z&S$`Ugkdhhz404psPVQGd~BEdDq>@4wre=p2)N)|dIS zdC%NF$5XuTS4O?zCL4xhyMJ_DIq80!VfM;15^ok-zLi~I+%)~6cKf{Vbz(XTeOmUE z)-BWNQLC@bXsKX%@ZZ@+B)`=!KVo;{bYnz8TrUon5Hz`Sez zqAEvb*ng|6%d3yBXEA7NNY%HT?f=Q}+2e!n)-k{OxNNt#|K;hqijr&R%}v?!$!212 zd&T-WCtrPb6JuvjcyQ|3MZG1LH@%IVX!PvEhn@*r)@7^5{=5})V7Gv_a8O=*P2Pjb z`0JgoWUo)ZzdTDeKW5+NZ$%<&p44#vILLjqc4AG8`gGCccUQ!C?(%9fOuZX^e9Ie+ z`BxujaxQqq@Ne77f4Qk=;_`fI*57Jk5L~_7`+x6&5O($>T#ePs+9fw_nDu4vgo4>K z%VV#I+RRz@!N^0JA?B~$O!0YFC$?TNNoqKIz&=2V?cJsaR=3o+Ze;$Ft+uz*SAKBh z`@fgAeaiyADZH7qi>Dxk;cD@e1Huo!M#sGi{>r#<;gpN7`3}|`jH~C_XSiXR!jg|C zb5j(}7C(>8v1Z$5tbe$0t#Q@wsRi?um|Nzw|315>#A4Tboxb?5i8cQ&_9rfyin1zb zulMPFlZE#-fL5SRXZ#V#u>NLl+&8Pcf6pZD`Fn5n$8vvJm%TmLQVpJzr=8lsyJ%M7 zCf8kh{TF}Cy_)HttP{r?ln>F#n+9u>{_}$`pg;oH>^v9TwW@lSbbi3`$oU_=BX3zec89d>-6ajCVwYQ zi8e4_d-Tt)qbI*ky_y}P|KDfj^02j@zS~n?ho==TPgr{CZf)T6jqBFEHqicCnQM0V z*Nupl`xBpkzB}o<$nl)D$G4Toe_0me`ubJO^Eny!V%_KM>d9GWbKh=quvm_+ae2Yr zGu^ZG7oFTI*Y8!hrEraiUFWZAfwK~) zE&8o?f4tEAW8Ld}-Q8w>>YG5@u)L$w`5*uPc_jP8iJQs~3YWyQ?0bLi-OF2z()(+~ z&bT!TuV=ejyrSNW`TpGFBF=YyYOQvibL>@W@Up9?Q=9J1beEC7v3WOVZ2T(w|7-8n zNq+1(`_tGr?P;Wy9h-6dq0Q4~*9z`x6u->6J+F>E;z|A7^_h$xKApY&;jR9@trLqD zJ)dRw)A5*^$(#yvESF7s?$~nPSsv_T;##4 zBfBqm?$`d-xA#&BUr0mo-@6Y!%#}Q_-jXqDmH%&RrtlYy>=p?}lY^cbIb8hr>_act zKBJ1OOpKBHWp)KQ%jxa9slnWS|I6-=S^W;*ZW+&&NDvFV?ztm?jmg(tM(=XPmZHe@ zy8i2LB^#V`V^b2XSmBvq;WMSh%=FTRZ6L%aTHi)E$L zPI+ae#rCt`zvhy>j!{~2hnTrU)|;of0msVqocF56=7|J3@0_dqRd>z)-~|eg6|!f} zu*y4G@e7eoeG_*14m*Ht8%5W!QP{!q=D+PyRYT zXFY%Tb4X2mb8hL&=gRrl!WGUZ-TfOccWSeq?)B=md#nCEv(dM%vETQ5*LR=$SqndT~eU|_gq0=0m*)<=y zeERo`R9;g&_fF>9<)1GvOB_i2^g+;+FE!(*@BTUd;lcO(Us>s{l{4R&Q72_zaJl}_ z(%ns&-I0J`q%W==+{5t%0Dl1j;!9sn7oB~mUA4E`zkL4bu#H?A8)d5Y&z76fS%3Wf=30LrxxY#0SH7`W zH~sZoM$HAz?(@P~S2WnJ-Tf|Kb&Bn)iU(`;lilR1Jq}8pJ)LM0xt}Y*sNmQi;~PhR zxjfGnd)$AY(e=OyyT36GI_zuz*fu=y%&_^ix67FE{EvJ4X5P_F|9X3G{hOU9;tFPN zk79YU=9^RMtQtN2`=6J;owAgfwYhyH>w_^QCF~ z7B_5uBD?DQ&yDZioI8-WVRhaatD2wB?p7R~Du1By=1iAcogLd4|71hf1c|(^T{O`y zR{Ms_d{t0Zk~vTg8hSV#u2S!KnTfUj!-uUE$Nz>uUMbr*FK>!2iR z&)J`kYU3xEZ2YFT=kmW-33?C8zXe))TKMl?-Jjf0aQ3ln-QA=w-@2a(UoZWV@v3wB z|BpRu<}vVZ?Yeel&H~-n48FYgDkLRuY}Yb*|MQ~NXTI6uuPpV>$=1%iwtZT=Qf#=` z)%k3#pDH!y%PT#P%x1{Bl{Hy9tmwh{(<}MicI-L*tLxekk>l%@J$|0^Z@uqK%a?N! zOkc?eJbg1iw)TPHp9|jq6LxLRUu5gpKgYIb`=7tBKV13NnDs3%Inzx44Ey;x_fEWJ zJ8qRSe|qF}iS)|qQ{}mq0Vg&m*}GqPXgXJZ!MCQ<4Awk0qAu@c)}8NodVSNExl>PH zQEWSL$M47G39V6WOM{y=C$F=s4BgdhR3-bCr#@YQB`gir6?HejDk)C%4lI@%(e(YFqK7ZS$E&5xZKmWe3NaCREEc>MX@AKxb6&5jI zdUavaukGg;&NRRC7x{3x{A=Ldsz0;jcBILk=i0Q zq2X6Q%g2H9jXzA8y1w*^_Pbw2jla6hZ8RBn?dk7J?K^P7Ku@dS+}5iy4I5Y+@NAUKPxbs@w5GBo z-JLS+WNqWSwTtV{BwF~Em%a%8{!y;fzxM9W(sdFwvU_b;e`+s{`A{Ka;oW%b#ylQ9 z=C87?Vuvojf4%x^#x9xtiH|0pl&cp%xBcTO?f+u&8-EI3+5E@FiJ$R@AVdCro5CV1 zL+gu|z8-SX7r13r_a>X+k4%I9Jy3hD_RC7|kKd~E4%}U?ACdfUu5SI@D+gvvKDV5! z|Ks=mEaeYYOHSvlR%E`g=T9lm%c^6>UI+Kzl-_i~dViH&b^LYlz5X-WckxBX>AI** zmR)hy=~?XJPcPg`_pX(gJ+sKU;!6BkTm8h+;*-(8qr^)!Jl{F*;XTW=uHn;%c&>mI zPrh!`|CaUkzv=tG_jj77oejUczWCqkZ<@YwD)|I~8JZ49$xN_t+K-TtwyX7%d}zruRi&*j$_)_>`t2f zykYjQ+LpJbdpB=6H}mXsE~9O}W|jJHe)G+KE87x!_ei={_qoZZ&p4d(rl z^XtuG2{TS#K7UNc&LrA5CH1pUR=mfv*{Sa<-!$&8oUrj*!=v(3-m+#FUSHh3T4}Ny`@#o%Ik;L{}zSV*ngVyVl`KQ?4GQ( zhvVF4=ITBEG^4+&=DM|8oZ+X4;&?B+72>wvEdKL7eI0N-#??&=d!1g;|C%8nHg$cntVZ&SD^8_t0`s}t1RX4= zMYHWK{kvn9cz@D@P0=&X2I{L;8D#wknLN?a--CkQu`exoT(0$*WLSS6l;LcP-Z}mGwb%Tiy?t3qjo5Vdn?Wi`pX}aZXKj`LMvwEl zOKzT&)@40Xar*eZg38R*b=n@H=R@tS<=k?&vB~PS=Wd$*wlv zcB-8FP4?FEnpw^H9>o&%4sr%}3HL$! z_$-PI|GmGxpVPYgrbU%<9RNqV&ZRi z`shQ)n+&=8c5+8e{#31f`Jk=*Mj5^>R%iV_ZO)s){&fE7BnAUzW?!){v-{h=6h+j= z>9>Eq{7EO?Z1OIjKiiuP!{*EJztoWboE5Ll$Ghr*L;H`fh78TMs{4Mol|NqA{m#GC zO`E4~ zGkVAUp3P*2kFi2S4iCdN8-B?(h6fVbE569CsaH12w_`oC$?DiY_k>)T+p+;{wZa<7 z4f85Z4KD=0K2w_TQ`97=fxCd=q?67jznC_owwO0JN}iMF*o^xtX6dC&F}rLAB>D0{Jti}WO7{YQO}iU+Z!U5&Az)m;I~G* z`rF?bEMKZ>cV1ui@m%eU>$-1vkEcpy#+xxr|7uV*ODtda`sXB`>ynJmS+^d}ky*ZK z_q5|{m-oJXV6w)x{ol*%qmGvv+mqep51Gf*YWL;%EIfOC!F{F=%gzd`FTWt59}sok z$@pTrXs)b%nZSYB41Ww7n0KE!H*Z;Sw`AS-M(M&w3$+W%61z{FIdRLVfjQ6Qu4LUu zOV9r`(h3WXedZ9jGQUneHth4}p64_4j2CPctdRUUNn1+)PpsG#73E zOyGX^hNmy@|J?e0ri@-+YqP@j{vp_XBf>P{3%+~?Y%`SP2+wD1IzhSm>PV)#Bu=I_<9TeZc0 zlce!Iht7n)8>~>>RtSqxA|mh>iL=ft9W!ypZqNSS>ACa zhev9yRdxBlC23PLiau6KF{B;Y_{!qF{Jd#TdyB7s+P8a+|9tzEeLHKeCbRuvTpPFj z%of4t*51D>+ut8AkE?zya;$ift>b)~TEn`R=fWRO+}zH%!hD*vyGRN1-ua1w4Lkq& zPMq^M-puID-mBMJt>*Hto9uYdspf_uv)*ZkB^BjzlKM}}|AzK0NtoNz6BEbIZt(fL zZDE9u@AB0N*XA=$+51oF$MJjif#*No2tFp>-1X~dul50sdmqFL&HkN^o3`(j_J<37 zGP5q8`g7`R|HJ6`KmWYSh2QG#dV4ba!#C^wbquC9KeozobR=xwZhBxfANz^5Jl|5f z+j%RVzASG0_FCf6^l*c(T-%!0*YT8mFM8yqGF!f6kHpq*f^`ZC|9aglMZHErzrPyWlaTc_ z`{V50m7a#~ooa27VDhf=$YlTb4>t=eDOA@{Tp>NLGAi!b$+V}b3UlqQ8||p^J-s{h zYs)L!3v1E>cCvinmCKH-@cQ~I``X+W(;BB`U7z>i-u7r8<8S->N}nb0F~?go`58Sp zZnd#0CZ3r+mXRlA$se8&Ba0Ps|C9sRdVal`I{mHcirx#BJM1gkGNsQP+x>FFJ4+~@09P=iFzRoxnfA7u>otPhGohj01U|GN?Tqxbi^ zqleSKFTC%uVJ2Hfe&h|71@((RM*A-H%Q3j%pRxO2YUZE&zkHT|4wbGJpK-A=)AYx+ zXL+q%5$0h{`QfoqQx9%E!1l$gW2vIf-7QB?t6vTHw*J(_`CDbSJFVo2a_ZhB^!m;o zUN?`#gc+GyuU1apv?D%kUWa5oSDZ`c*GRry6@R1R!s6XdGs?bv|8Sq(B>#6GKVO); zDJSjx{-mhl3+I1)i4wKY@2FjMRcz}N(~3F0v3$&t)rA}F?i7~`)~)wH{Yf2VHw`aTdI>OvGegE~z&Oc+O-h2Kg)StGr?$U8{=epLwHkOk;N8DxQo);- z&guR78t-rSjo0LMqjYCdhtGen>vebkO?|dl{_C3;Z2K*mu5buFPnu_Wrg?+iBf;Jc zZ!RuBzT(a5v?ufWBrZ#2#?Db^W|>-jEqZ0i^vO>P{TJ@j+2_ArwD0^GKQ68{ardum zHdt?F*;{qDMB`yc>*-UO$uHf%+xD8@`66F%@z~3yyJlp3e|aZ~IsfmG)dkmAYEROS z|HJ3L;e6tA4ma^B7q;uh9mt6Z)HuNO<-k2QvBx_$iCnvGc_n>L^Ne^o=8xj-w@Vi6 zjuS4hihJv#Z+-9Nj~R3OKL_o*^<=71fAwU|+fNz3N_-QITXHS#VoDjqwdY6Uw)q_^ zt`=RQt-{T?E6_$H<8_A4`NUoAPfYeiU7lL~O?Sh-360&?+Be@Y*!g{G+sda!i|#$D zxy7(Ug=I-wmrMBjNs>3R?mC}%`uT1~fHa5>KlIt@jYp-%b$ zKcmGi&^p&$&%Y%8S#90_(BAfklFer0#jXzTABIZ5*qrO}&0Mg)-|J{j_ulyb z*wdmIJ7!(~okH7OPL;>%&vyH=D{KAT%C6b!_pQV<_4CYo*8BLIy6f)z@n@&>3R#{R zy>o6fot@@(bN?N!xO|fx(q{!qSG?U6)s|{|^3~bfHrc1=6h&@&yHHwhvlZ80{mF~j zoRaQ;wG&*b)2RRS=I7M+5qbI>r*` zr7lNnYpq}Xzn&*Ha#hsggL`^@nkO7f`WrND$rPb2CdrV&N&42cEc74CTO;vjGwD}qO7x(BCB-HWM|NZgRL~M7V z&5RX%WSq)nr2kJ;16)QnUj}b;CDDp z&suFx<>3;IMKnTXZBcgJ*GMg=yO7wUsY^eqQFf(8AofWQOSc_vxx~ z5{{B#b5&n0tCK=*ux+(DP%#-P8-@tKi3P8Z5dH~RDX44ePSg*Bi5 zY_@8e=RUJnli|(7sDP8f8vgGEU)-O~v`aidT`YTjp4qpPN4Ykf|F!kyw&&>|xKbk7 z4wRWOEWDLg8vpF$f#Qz;f6shl`*-^B{N~+$vEA8xc1_OGlbLS|S#dpxX8bc*e&5fo z{y$H0`Rj_dOU`;>?BA&6u-A`4(H$dAN1#>^6aag>oz^P z|7&HSPw0O3JuTOEN}CzD7ytS>QE#d8{;xapdAAs3Pg{0=k@y__hC7>EgKzJD_3_3e zrCC9X(r4$1i*8^#dF4{icIUhMs%|swe_Zt?CbBWt{nQE8>k-qhw{DWLxmq;+>*=cE z6IRW8Lg%J0h}2#F@s^bMt>vFTz0Lg+usB!h>)bW@DK&iOOGQt+OJ#;H+GOzl?u7L` zyS3lCZ>(JtE7KEcn|3?Fceab)j(wl5=sM)z-8JL9-#qQL>itc<-*l!uQP?;?J^%E? z>66c%KDE5}qDJ`I;JH7&qNM&`+i7}A?)eW^U5GY*}ylsAgSpX4<2`T5X3l z#c69M)~6OR#8-Tgt2w^){cM}xYPW<-p0CvYu+2KIQ@xyTLBRg7#cS4P{hI2?f99uk z{N_ZT@D)8dHW3}RzeV|jDy!JpB|aqk%YI$=cyXB2yLHN%KO@9GuPs`+J#Jz7f=#_f z@9lnXdT(;-QNgsBG_%>C-^`s@{rJdK&Gj!fU1-*EH|w_4NT``QVVU`Y&Fldt_w*+> zS0DR#)9hZw=l|_z|6YzYJ+J=jX#ak;a+}(x7p_0vJM-Fno)=L(nKh;Nj)xdZC^3j9 z%k{_=+}_~LWwS+Py+f(*#9rlj>LuF~KDV8Y!a+yb$UTqEG zTcLg2j{ifo?Brwa+prgPn;HGOa9?fJE+Z{IV2DDr=wjGB4-y!N>eT z@$FV~GWRx>&ddE4HX&dyS9RR4zzxO~2?s0Weq7(M@bTYDhBLGCBO@-qxo5n4`}wFH z)6c(u_ju>w5{t>Z|MHjw@|&&SzWz|j(feDO?wifNK6UTRzzUDLjieTb?O%EL(rLGFsrp)Az^zg?=&(zP%|t`rnSUdzMTbae064 zU3Yz3m~9oscBAk`+&l9%!R)IS@AKiiy1Pm|ZC=&1yyde4Gp_2LxOMA((f(~4&9r6z zU3?b%rU-J8E)UWKnzije8 zCN(JgufA8L``BuJOWUJHWE7P z*>P@G+tHnsA64UOpUFzNnYI4xnbm3Idef%2S^KAit-M2tq~(k!yB-$Gyw+As-&>o1 zJ?QktRbM3y9)G-fIcHAuqnfN}&GX^RA@i*ar{_F-`tN+2%53q-X(w1`bNt-E8+wPCava&e3!|$8BG~)Y$Ody*|R^ zp6OhpFKZ=ZFW23Ds{ZlT zYP*)sdGRH`Cx<`IE#Je$^Yr{h-UoLUy;^McitF#Aedm)`F~6^?+EjUr!Hk)?*uZ9; z)X#JKZ*1S|Ztd{Sn7#jgZUu**@?+amPm^uCO%FT{IKHB9dsV8~{FgJfF8hUNtreInS*UTe>iE7KSHIK)@84x#Yt|@cKXEr+u;ta~k}vTg@87<2 z&g0Hyo_5?>uj-#f)8*F;228Er`YwO@bJ@I6D|JKu9igDT#|+yWWDf3bd}#M2YyHKK z|15YCPQEA%t+y7PA$@Sw!+d7V$nR>|Kl*qNOl~ZH{LYnO&qljTYun;VCrq&Xy3bty z?~20eUehe)9iH$)(mW!u|_Pl5jRsW@P4np zzW8+7=hZJ;882?My%2gptet7={b}(}AA}`TMl&pA?0@qxQ(5uznayQ#UtNqo{r<+ynX-o=@#YB-90zQrZrZ|yIuHs;h0(6$3^>(o;LqK>(q=D zj{Xck3K{lqsC@L~=H0ZkMd|aWtxZ;|ng?3JyPcteyJ2?u?CE>`d)*1c%{LOcJO{w+O+rKo{Zm+Jnw$A<) z%c7|o!Kafwex{vEvRqYMcg|*egDs2i_Jey;|E_2Iv+3i7N&FA)_O!lQ5*{bvk*ytC%{-(6dNhX4DGsxJlma&}+(9>o6q z?3TH#B2nx6Q*5?9x$s@^&G}cW8m~kw`u{dT&OSIlOV3h2(>5vN;5>r~>uNo1ck0%9 zU-OB+bAQd>Pk%PX*Ic}~`-AN^xU&G#MvNn(JE}6PkAvAmWn>{kBm%7_-RX)S4DfeI8e0J&PxjPLOdhvTVRD9pTlVR|{&2it(Dd~Uu z?lml7{>rl1%slo(@$^kS4Ir|4kX=i5CgyADkq%$ou}5XZ6O{b3gDe<}uWjzIBx$ zcZ*-P)&IiPZ5QTAojCSo=d4#t!*kjruexW|ioUqCwk`2devehx?dhp%`)6$TJ6pS$ z_r|ub0+-VnLV17aK90PvslUxp=G3zp@`w3S!hRXwP|&yEFKzVAa`nO62JHT?;--H+ zlu>sfV0od;>T|L;5-%r-P1_zCKl@YF^u13-toHx#2+FW;6r@nVc_i zUdvtc?jidJ+w1$&KfRfq;eR1^x!!U8nnz-DVsjV_^m%!=&pzuG`&Bg7Y;x8MFTd5t zn{vdqTS*8cc=6VKDcxRG&Q_3+ZV{ANlhQC-a?6b!sWws(C$z=b%uRVjuLsN57TvV` z+xO?(m%|JSr(Y|2N4kII$vB_vp);8=S(4|ITf^b~tG<2YcmPo2?keTJCY z2Z4Vc`2H`Pr9FT77j^zR#d}{*>dP{wyh}Gb9uXfA@c)6`?A8lg{uJ-H&iP%P{bs|C zs=mj!s_ecyub%DvuxhT2ab%YHmtU`ptN71NzR%F#yHDrarsTLQ{Z`%k7s-_zd+!$6 zGcV%U^mUse^zI41J#hF_+MkTQv)X<(Ke_rt=-c+z+gEcA z-RP^`8HQzz3OsAJykg%qq3xjWwQ&B3AI5BPyi<$?l38w8P1?lpVo#~WhmD^kT^@dI ze0Amh>EZ)jjF%ofl>Bn%|Mg27%4aeevPsNbwy9w0H9g56mpkKrSXLVr)$&#bufM8I@BVPRF|FSw;KjV%8_N}#$_wvqbYQd! z$(7&nD&VW(cdezR^Llp%ma*scR>Zza%-id}b&t~8vuBF0r9@4;SCW$Z+g04YBYNE~ z(RTBBhg`H@&VA9i|8^N@`-yDS^)9oEa-d^j`j~zMGTi4+03WMVl4p4MyMw@sh;G~sg~Z~vBr1G6@%T1ijo{t(a}5MsC2#hhcc zT9)iph4|WOo6p_77j@+R)`gKfzwVd(k}dgGx71JSh30Q_ul-$If6bc~YiSlA`@8b! z?tN#^y<1hObz90^c2lKpU$=}zdETPPD-O*(TQaw1N(y-_3Cil z>)+?5>O@Xjn!PvIvre(O_@Ki<#opXG*UXN{%)ZFy!Qm;bu&{ngkCUW8P?Q%3C$Hk- zV{BH37;@s8zb}{&S6(v3fg?fM-XI~qLpO3;ifxbluBr(B*RSU6{dN4-e$)EmbvySL zs|3wo{5n7D#k{|7_kN2iKKpf6_P=j)R-gHL@rUkV&qtq@Rs0qF5&Suq`}ND;lV+LN z6xe$m&YE)i`10;Fp84%@)%oj~&QETt^>>-(ovFk>`}tBc>0bv*-mnXrd{y4_CHkH3#KeDO4>N#t3ZN`T7sTG`k^UwDf&tSj#LUx6S zt%#DrjZ=AUx1~OvaVjcnmf!Uu;$_{y&f6!w4kHSZdwO82~za1_M{dLz(#((Sb{$r8S>2-g8 zKR>$n{y#T|HQ(;!%AIQb5_q}up-pI?%CpFajpb_(`(3yEYb<|g%FmzsXNoUuQ@Xa9 zWBT5cOh1gCFP1BP%y*eN;Fnyb>V)N`iB`;E?hJvc^QIpDwfj$6gR8yYh1e&%nse{n z?t6c{_y>da;}G8etPY9^&NruUg~ZxVTf@b*Cv?Gr>cyHLnuMMRZtM76`YfA`XH|n| z>b~{&Vt*f;tozyQijhdpt6VE)=`S{qe`|l-(LJxK*POq{)u8vO=>oU6c3a!m^=vvE zv(C%&eAt!zl$+%~e*3n6{Tkp9^4`|sbFfI&caeiW%aUdUhI}b1U9;52*}h`K9;Fwl z3~Lz|ab=|?B>Z2IH0`vN&E`wTei@pm{(ts)=UHZ+$XAW}lN+z~JaAy&>H}K~uzj2A z?@%7ex38HLK4jOt;Jf#_!z%5<>okRhO%uM=?Y>m7oJ%WBL9^74+uZiNGLyxovt?nT z@pV_%R{Wg${?IwIU1uD(us`5s*!Ta*OJjZ+Q{(7gr!O89Tcax*ZMC~Pi}!&v;~$2G z)qOMOCi~Y{{4f3SvpVmH`uVvG(~Xv%O}MnFGu@=)_2!EE`*)w5VEb%ppwIKh28l;! zXS-auoHB)x^-kEY+=(+M?rHCuc2opXH7civJhZ5{`ChVr=i^X|LLy<%zm^kwbS{aG=kcGE3CMaS%&o%?(~ zhwjr(yJsbL+@(^bpD#K5dE)o%Z>`I!^v_OH{W4XfSM`GCthv)GtYh|WIvcj_?8z!8 z<#{KMKVKYa_e}Qe)5z*0^R{eZ)A_ovaBtV^#`CE>?6aS4`}5F!+fnIi*57Bk=NGc? z`?zd-(sGyJU(>dInYsM7+&(e;e-GCmczn5UO^{jJ-<@IGRvp{?%BUd!RKX*l|kA1fOpS`O7yU$dJrU$5=h@$2We-ZQtFneDrB;r#t$t1DS9N-RCUMlMY4ry|GZ z{-)J>6$1Y+KmRAS?aP&A@q0fnt+-x0-}t+;{eF!HZUJ5Ce`Y@0xTQGRBT;twwabgA z$1iLBw2tXf;O7f+Rsr>?Xgm~%w<)B$BydybGJHn)s-Txc^~lJe!9vaiOwGnS`Js!mus zMBR%0-Epep?ZM|cn{$poex*@saH{q7dZyeOcl&FJyT4ksZI~iiAYQ-u|ALU^`~l~a zBp>@7pZ?HMlRNp<@4Fm3E_&^<_;q`J zclG(X1>S5AdZ*vn_G4*vNUx#I_uGpLwa@=v{qM@Qq6uI2Y+Gun9=g<)f9w6lj@zet z3!k1bd4IYz|Ng*BL6vt?EL8nhKFXGTR2n8DeI{NF-j@WB+G`3&NSn%}5 z-HNAsyCdG8IPaJ+|GEAwaiw@;ch_6KCI=q*D}1-)yuohrpulDoAM+ge zAI&g+9`^re#>72)(-*bv-eS0m=bLWpwkuJ(?WR|EM(h{;@-=j3_!JZ0Fu%t4iMQmm z-0L`{epMV=|F?JZroW~IS5Iv$JwID8nIq^#^lH7|O9eGc^$XwSTt8p^>-a}r^L@G8 z-*R6@TsSUY%~tp6Tlm8}B}^vUUayKyP1#<$^Y1&w<0(_MB@TxjGk!K>`>$5xdgE!c zFQ#05u8?o?Ncs!ImGjjc-`1wbPro|H{O7H58_5d?YQhhl=K4AP+r{i{gc#5_tom7b2+A6(DvARBlJQ3)zplJCr^Ggtj)Wq zkYSwj)<&`*=jqBnKfb$8zuT#6`}Jkz^gpiiwcl)(=HIhEaN{JyyB^Q^4^-`MysCZW z-hbl_Sy$a#&L(c_-WX@Sv*^OVN%2_RD!?k`v6|#jUwJ>*7A!_~|-k z&D-5xRF>Tp_I(z7;B!};+gpYijI7tDZT)4mJnENO_wAKjRdoxS6V9w>7TkM=GkZa^ zPEnpn z`JK$IydZHN^G*d{o0nrB8$YA%kHrD0t0%dNcV|Yg zZk<-V=i6b?tQo-;)6e}XFq9L0qn!VJ?rs75^5gM`{cC@e{y35xp5!h4Qp;q`!@23@ z{(HZyn0fQkd8_o6_ly_;5^ zDvxP%d!)1?x;=yEBJ25W>RCD8@4K#k9yPH(d8gMd*Gp1IbfdSKeyr5Eu}I;P%ARQf zeWzADeZ;)&NA7c#_eXx;DLR%PJ~dl@)%vIBayQl$^J^a7p7lE{_H>_ISD;^EwB+_` zwcT^F<;5nfTxsLF;PmV}N|Ex?)pPkZCEq{IJy+H9)7@?n%dy>ObgSai4({J%_~78a zd-GCxL%z*kqxX1+^@p1>%O=mOncHr))8z5aY@WSsTjaF1N4$Gsy`l5_4gSZ$@@&Rc zCtpTf`((L~&pmSf_v^|3FKi5|ir--OerIQ~CyS!(gK%fL*{NG%roZ`jNhYs2`_0S1 zeKW5c{*?2+de-;oiQ|bGnd=^z-d10y{_!#6IT4mMH@BJPnS1)zS1N@3n|A5A0YlBn zr}D?@iyzk58oe znM(b-dSSZ52fxd!#1nZ~qn^fp*}}RiQ8MD`)(c!E&ec3qkDEyTziBgZe$%O_UgH^U zqB%9cFU+3uJ;>qNiRJ9)_t@p9t@&1S_iJ#r^RnoLN%?X8A~zPtnC?I09(7y%;k=U> za{_s~Io!%ez@BN>Br{=;xSyNALU$MO&xi!@R7d)zi zZOr*Mgj&t3d|B@NHoo_A(&JveTKM}R1H3joBF3x@8@_Dy{B*Ub+Fo#`$b#w@E2m30EL=Bp z&!X%18OqLn|I@eg?qYE%tvBC!+FbhGRX@jZKh$ZA1{fx`&IQ1$^Oa-t@-^@ zvUqje^GCK$-RxeKXLkmkS51*RS2^?g(!M=!*4SOsKiA6k@$A-#0<*tt`5ZO3SNZFb zm`gX4enebdzG=&=z}0UTf4#oFq^@6T#WcgSaqEA_&P(<#yRhkoj9BCOGruI(`fQYY z)6JD7rEu%gT#es9E~VdV4Uhe77PG^uU02p)Kg)yNe)H@;Ph6aq;@!Ty(Dl}(jY~G~ zUarUXVJ^cy?gOswXU=V0#`R#kU8Qo}*Tv_LHUCb#^Tc>r*KJ{bryjL=hb6O&C$|-` zt@wFe+IQwEwzwbf98=xxYG-bI!m;B*Oww#?ex|IuQJiT_fd@|JKQ5Uqk}7a;YO3&! z9c!N7vspFkMr2~3uH~5{;=xDE&b~T6iA#iQqx##}wTs!EOqMcv--)Q8}y(7uoH7AdM zyl?-$d>bgY&CzPGmfy)`|7qd+Lys@t`g*zR5s#GMm1I7at~c3fzisP`lAkgOthdRR zyLd6`K*6kI?EhCSocHo;r1_i%MaHY%=cH$51Y9@%RMK<&`y-hJPs1w|3RvaSiiKC2 zE&ZAG^WKFet2@m9f0#G-tm(ehBF-h#^rE>HkDC0MJNMwSO^I=F)-vfay4;`m&daY} z@#EkAPux2y{@!Rbx^wB{a{0dx^xoAxId$*Zuf&GBYZCVEUl^>OOIsTY8z`@C>%01; zp=#o!GZ8Z7hibgbEpM&wJ#Ml6$Dh)=?)R^5bk1VDfAPXRL6)U!80`N`^2b?s)};Kp zd+BENw#8o$sD2LAJ-w&w@0~@@UrXw<%{vmb_}KH5Yql@7UTkH)A+yHj_?~I6q#O^v zOI2l1V>4PKM7IG8wH37FTZM;eF}Jzg??g;Z@dkd1CVl=jpOck+wJJoYwT{RTGn>xSWo0 zLdsL8?yMij&n17Xy}AA84(kAepw~Y4u049IzV^|l&zlYu%v-?J%k}L@;j*7EEvr>* znfqS;WsjcyYxn%wYkj@;N9jIEe-O&};%w9m{rku6uzhwub!xu>a3gYhQNS?s+xK_{XKm z?@NvD1$p%|{cvQkFZuLkrhDJ4nYyw*r#D}n*2g;cu5Bp8A6*7}mIrOhY0qz5{w;6U zX@38!&7F@gS_3|>*88G-VA->~hJRO7xqott+FvVmcIjevk;+SN9nSne$rBpPBYGp+ zh(mv6XV`0|wccrmKBV=X_`YnHuVFl;wvs0eB6s+N~bU$qRR5mqqa%jUEo(fu)3x~)Aj1T=jqE1x_PUo1>6hX&*s*;^2Gi^mEO13&sLYlvq>cF zKjqM`s!c3r`P=35vuI$U(2=achCQLe_pChUwv&|vi3`N z!&}~4T`q~o*RlV*Eq$*~`1aw8+e>&}^trD)Hf!`7nci8I6vjrx+;NVQ+*rneVuctI_=lg zSl;hXv@aLr&i(K+bDyZdgS0CWaTPCPe>{8sZ@=f;ZC^r`{QvP_GiZM8(pToD^6H30 zcRT&Ze2TB5cirB2cUkZ66_Q7cKYt7OC87MYCbxX?AB`31?|&41k-hq9nu8txzM1LS zjo(*=<{HZ98<}@*pFZ#8@?`C*D@O}gzI=3JiB8G8&{HO_JfhmFR(|{!rz`toyXC3u z4Tkcoy?1-BcR!WPwBfR|TAzaS{oZ@k4fgs0&tH|Y|8#p0RD9x^io$oL7^YW0>};=b z6x@hReeAWsVQQIwF&FD9pvbfWVmtO z;LV?(+fA3Gvux(LplQ%Kv;1qrsRJ7${N;@{f2m7-zC|))X=%rE7OnM>Gj+7v9)}cM zI(@cz!?TM!ZffgSwQd!8>~YOly!Q7kzLP)lmCHV4tuAoTT+*UB(V0!pt=6C^!P|)K z*o^?Qb!*~3%id=*To$q+N|hmV?(r3jIaTxKU!DDWVPtg4-idXQ#|@u0Ce%JV_;t;@ z$9xMOM2g$CT#x(DccgT$!n%Vramb%V=>riTCR_)JhmM?DilzuEX`c`{$wM$@;@`~xrTa#mted~HV zhw*;$Tr<6R*Co-}%nY~rC2piYy>|2V`HEB9-*`Wmw$!>|{ltp_=PuoOeE(y^jF}Ph zbX>n$NgG<-&a{5b@%gW6AOEUbyL@LJ`uo!JTJzGhb zO>=%@#6D~1JdeGb|7AWtzTMx1zv$kbIo1=leiq_qIK{SLg28c5$}WN7dU=tS}OB| zZJ4=p@7W)$WowHis%(GwwO0On<9&CHO@4(`uYT{N>$f8%G?~&(?*!*B<1k~0I~~*| zWvseX&MtUTyHt7B3H_?)SO3+S{Fpg$?n{$glONghAI5%4j;o#){^f=9dVlTjv*&+~ z{;}t+WZiS#x7S7Yy+8k-&u(x1qVwjtHa>i3F79)5xRCH8#`wz4o^p;qp;Nx>-D-2a z();*Kdy9khIUBazj=gl@>%Odb!J1&n3F_x2*X@b0GvwDTw%_BNbeG%UOtPf@gx5yx z%P&`L&E}6;(Y9=%MyT0Fzru5x7c6%QK3_FM{lUSVT->2A4l6x#V02!h_p&W=hgVbl z#=KWskChZo+p?vy^Y5Pha(-LRJfC+nvM{H9Zu{Kh^Bc-oxFf|MufFQZ==5siMP_a8 zmp8smE0#=*Rd5hw3}!zd5-s~;qT9bn?WXE4HQkE(${d?q&M3c2OXl$Ux@}dlb10{J z=BKS?kxXSX&9)VPN&1q1rZ&#uROs}^liR+26tuYdYfH@;;gVLfyc>KUqaQH6cRVF0 z&BWIE$7kNLY6;~H{BuJ5PdA*?aK7rj*+g&dmCNh7SnYgPJaw8`;N!=%A}dxz;%ln% z+WqV=&op29vdQSmg{mQVxu6)9tP_@AM+h6eS`x`ZjbAJ8L;~!_ezSrel zE_Y}e-;(?6AJ(e-&;R)t)Rwf&-ISX9vg5^@cPm#j{wZeoFL2xJmPfz8_Mc&jg0XRj{Ob1-BIZDE!|o3HtjkRldEi;*WS4Ce?aY- z%07qNmx|+_*ZO}p6-YInks2=N(X%x~?zo+l?fGL>sRs(o{yq9J>-4412Nx}ibKZBd zxT$_)URspt&Z>f-ou^Yw`jYQ1($8NUx{4+6?`PkJ9hV;3$#m?=dnbG=eNFCkUb|m< z$Ma=)MbBpI1^v-@_+g6)U&F;3k>BYpYSXWG{;;mPRhi&#Zf|PyTxJ2o^GmaeZftyL z`ThQl<6Eris~GB3OHVY`zZI?gxm<6z^#2FT?jL7eZJU$n?d~gI{ibNo$L8G?8UHi? z&a1k^_-E6t!+)MtrYoHP@serfjxU9LhKKv^1}?a0cT)0jA(Ppmut|I?I+W!bdT#uQ zGr7ksQFnavk1cvyn>osk?b3gm|9&lf#Zr>WgR4^rT@bi<@r@s%zbe%Z%>%yt8ynhqi94((Jww=8)*Ol}8 z=As`ysv9_`d|EL7i|0A{x#u_9YrNc9Q>gQ@lx6XvvS}wHUT=KA=i(x_g`o zSU4xW=8oFh(0zJw8|HoZq;20ZJ^rWOn(Y&__!e=2_Eww+Wv(NE#+z0By|e#K>uWgo zZr(121NKZG_A=;MCzbWt?)}`D{js?GevAJc>x-dB&iq-ijQ8z_(0^yI#?Srt_u4_9 zd3Le?_Hxa4IlS`Y!>cC#fj?mou09Lec+v2AHPeSIeITFc*6a>K8Fc;Gr#V;HZMPGZnA8x z@&4oYG_F6pe*aWc?(5cZ$#U~g`PZ?uQuM|tiO|POXQl78 zJ}0`b{<*{6_sVh_r(YR<vS!cC-O2O4b7VCa_Tw-{tGkLXU@x!k9lFkhmyY;G8Z`>33 zf9syb$K`&89ljWK>8-V#?E~?jR|1-P-Q(TnD2DFtN@rYkELCd8^){0|TJ_ojs~a4* z86BS)lzv;H&_QeMg!$FAmy(E6}Y{p)0L?eN2ytF}k+Z1?z( zqk1p=nDr51zID1v6Wr>oZx|Xc-7mW3QDs)E&6F_nY4sN(YaFIlRr))gidTJd?Y&A% zD!X91Ky#v9+uS$xv~&OzUq#hrUMretzx1o_)8(*Ur_M z|LmYy>rTt_n@`G|n?3obW<$p36v=!2OCCslcI+%(@pRSGD%;J=GTjt{j%n^$w^M$P zaBiQu?AGs%2HRb3PMY7;HCf!I?Rw1r<3ILz=X<7ZP<7{L_+iIjU-s$C%wqSmXQoL# zU0m)xztC!T^{afQ3fl&8IaB@PbKljy5!&pNou;iu}gNA-zSNA z2_I)Z^C~T$bU)ei-hz4)FQv1+gURt$+c6bxcbVg`evaSjP^5f_F73tpI==+ z#j7m$>y0b>Hp*x#&hm4wD~Xw~c;DQq<8x*w8nReY^Y5f)gJ zeLmv*)3}7&^Y+yK{C9TxAJ%T~nb#9-Ef?~B79^=^OrXk+H`@7JCh^v5jc zz4l$X&hxobeg6UZ&kuUeeHT$U-4i%%^-|@8?M|iNORv0sZa*_^)oKIHst=k6B$)Nx z9S&B@{jxD#viwwH)2Sn;?WNKmosv(ln0t4(q1}|z+d7srx^HkgeR^IsZ+7J5uC{$U zq*k^a3o12hUGn$5-hYLC?~dKKE)czQDY*My-TUW{uD}16{r8RAd)|X}x7S^D_OpL@ z=Ft6Den0I8}1x+&N!}G`uwfaKOWf}pPsE7@HTJi zlKw3szk=sa{?26bfkSLvko}Sq2dn*e%1xbo&Uo+KGzD))&jSZ~mwtZ#Xr1EcOU4^6 z1no9eWmv+c7Z!2i+>dok?JWC#?Xj7D-O-|{)~Ni_>h9dLLPh!WX3f!@UVZap-JI*D zu`CZm#MUTQ25(5*-_CR9bH}{ajeDnjiP@t%A@#}mbH+UPcYnLKaF0~~YQ7gQcg~FQ z{krp$)1|vvY;r4ga?QG|rsjX=;BdQO_{xRLDq6x@yE!5H`qQd=95n}~9<7SrYtL2<$u#E8U$yC*Ra|MRSV+w|)$fm2udCNy zx9h__m#k>6FN_TLLHX+c^A(aeFQvt%de3JB<*PK41@BGW&z>$^?!HX+&m-IU&G&bH z@3Kr`3l%XHb6LDZ%E7p~_mWz0=f87TMD^y}`IYjD<<}?n(*10(wEz>P{rR0|RyI6& z-~UW&y-M0LZR1rTYZfSQivGy>!CE3|X7#5sWU)+S+_v7WRef45SC!XGP7=Aeau21wi>2&zXEqN&be2#Yu5|gdApY{xDn;^VA4i(} z@kv~F|H<9ul^f>$Hb}@b{onU9-|lI#!eg87c#zZn|->!miywYH8OXc+s zeHpLT@trb0RIIDty>d~a%ygUICNgTzD?UFucUp13ca-X(+Ix?G&-wq=#&+7Y%=KP^ z9G5E7<~F#TX_o70nE%}BMbLB0(sRuR9KU$zY(8`4cHe{3Ce;&XwkpT_ZR!pb*jon$@8o>iy!l>|-OYKuj~BIUnOrep zUe)l-$+VhO8UU`PI!4ws7B^|7FX@zH9A|cJ|K+=Gc{a|MG^J zQ!;Jt@7lFV=e1`|3+pSo`nQx8-hI{aD+2-gA3i-A|j08&BIp^Daw;Uvzfc z9^HM{fK{uDUK9{+ZtvHY%`mW7es zb^py?n$IqZJ38!}I_LTGy<3jeWvNOR%=~`z;+}E?!*cs+wfnrgw4ToR9j7yW>Dwuq zpOYgi^}H`Fl6mxJ@zd9qbCPBG+;8fz_S~O${lM`__3eF3^FMPv`zyKk*CxAnJ98?Z zJKPrz-Olr)_x7Zx{}wKom&d|;;o467YngMx|Cq&P-%Foo^zi8PyPf$vUaq}uFfZDw zXca?V?Te~EPu{LSwlmZAd*%LHj0N9+N*gqP_-7NpayfT>xOo~w?8_O`rT&;4N%_5~ zj%VXZ{Uy2A=IlCtXWx>L2Zgd0Hg^S-C$IIsb z*~@?V%$Gg(Z?8)&Z>U`S{IMz1*N7fPol>25hnfFyl%Cx4;mT#-%eUX@Tz+$F|8LK_ zpL!?fW&Swt^E$Ee_01LQ9cE>{3Vdws!F{DlrtOpQ=bDVe)AD`KAHF^1y4K2QoASQD zr{`Zz|J0w*Gxu)juJ0;KeC}V?Hp(}hY-n{rtn!4-n=8TE%d%4=^H*F7h}Bo(!c`x!~MHr_qH>&2b`mt{O3 zEvteLwz`^f_E_`UCCmLf^XuWK3@P14@l?~-2bzm~B^xj~+x;Hu!};x{ju`R5;*{jN$bul@^@ z`PRuI43~zVHTKQHDky)2z{VcLo4@TnXB++DKF?D4Kj@l{f0)0V#V{})8C!H%P59ux;NSo;Mv0YoCg~7hf4XCHr4)-L>qRIytu0MfTS$n12~Pxa=0q){wSP zeY08Tk>0?U>7QQuxfgGcv29pcs=eX!tq1d>{N_pDUzTkBDx>SKuGfrQ>u;>$mZ|C}t>E8VU4 zgj^e{Shmf#&}Cfyap&}hD*mVMROj4zDRtn!w|wmn-O2a8c5XIG|8+?_@A&<_58qk@ zZeyR7|MJDlKKFIU`s;sOt*H2)`B#q7##Dr%jxAhQbN+oP4t9wfW(((T4Gpvk@OW>{ zR90x#Z5(WJXp7}Z9<_p(XRTGUN+mm%eE+d;-||o)UwXWlHX%P0x(0et-P?zUJZj z$FsQK`#;^Xbh+8yf78|e1hIrq)|bUv1I(nsdrsdp}a@|mW~-qbFcF!k*gPp%0Q^PdJjFK&toX4oeZ(Y??h z+cjVM>%QO*uBj&HjSn&y|G9xrZihh-gIA+{+g%g= z6P30;PS#ofL*5_aD3f}Sp}c=myU)6%Ojm6-?DA7kka%!j=eD@Qq|~c?Ie}tUyXKbN zPxZF^_F>ggcasla`)*Cj|GmcECD!4$tmE1skr0{tSN|>f%4(w_cH8TByjbs%_wC1O zmrOOE_x^eML&NqPb%G15IBu+-R6cQgvh}1ZtNY$p#BGs#93^!5>wN)kC?CVbcE zT=ClNbwJ}<=~?sZR3cvewwEU(mu&m81T+*movDJkLEkPbuFv}J_aB!(7?;=c-7EZ` z`k<}0DK~UcS*g1@efFm;&TxmbhbD>rD41Ks z-@sIN<(18a#I-5WTJ~XU@1072^MCg3f;qL*enn3CUNLX(w1t(w_L*KfxaZi$&7P%k zLCZN${Ql=T;hvou!x!cjb@#=4-t7CdqIg>$|L?go=ZA{1{fpY2&AG3H_3pH%PdaVV zzMjmIa4zqwJ@l)$>B=nj-+wGV8_M4;J7!YY_xNsCS1IGaSEBNVuG{{WjXu9mSC;$N zXZHL9v)@;!p1Zm=!!2!Er(neXLfbIY@mD z^tYeO-uUQH%A(W7*W8@v#!7g}eK%rG<8hU^-6^ikRI^u(Wx?N{g{vGhBDtn%?O0vf z`8tcmAhi7kOT;lzuiKH1PdRk5D#f&dKAYJwvebEHgnN581eS6<^**S})P74Xvc7jy zU&Ex6JP$M$98c}Wo}yztYfKif~+$@443vtB^qP5O@+Uhik{NWHLnrQ*Hd ziO>zH+g7K$jWR#y#)y}k%l&_>n9=+xZ^h45=BZB%KV`js$Z_uIrXAZ{{awHPKis;? zw9nJfWaZxA506gUcdg&`j=$jKxx?IZay?(zGVJ^Me6X~3OBa&-f;O>yJ~ga#w)F6O_OHsVt65@$8PU&)BNHS?e&wN zE&U#nCMWT!@@LqGAer}RZ>^Snx&A9oZ?536*hgxo@4wp78U5I*Y3 zgqpKIce`rXHfc*t$?9qMuiw(?-}+Qf6n7=`j1Nf@W=ae^QIm@ zaaw3*W@x4Dj88ugKNI}Ae8t~5?Ssts9^beTvh3Q+1rv?>jBhg?*WDSrp6R^g0qdrz zvn%@5R%v~IbZ3*vI>kRdMhm9Tp8s(3h7(qNH9H;(CY;Ui{3eTg4{9ao`_s`aQy!!6%Kd0XvtN%Xd|AvZbho)`&GIL3_U9FIP&Fk#Kb@MnjJO5eY z+BvV{isv7X=harPEKkogpZ}CqGGE7<`_P(u4HxD2&#j+2-#GN)-lG@ZS2us+s=K4D zF{A#|qn}}YO8=LL&SJlGu15ddtgJbmihoS{&&<|q;|TSaIFLQ-$wW3eCRx{c6WP7x zf456*ERmC8?mZr=n|1Y~vFFb(KUbeT6LhcOPKRj)kL z6os?{E?y3Jwq$8FLyX0VLwh2Qzj~jZ{_Sek>R_JslfP0L!daxZ*uAUS=f#(jH|O%Y z>K|u>w$-HC`EU4Q{4Yym_xg09WyYWPojx=r=wFokvz3XCU;lEr9V?g32zNiP`}IS*$+ylgY`->N$reOj-T&NdGRA z-hZDyZTwj#yfVfnAafeWQ+XwBrj@mOTB|bdZ`gV7%kc=i;B}L}Z>lPv*(86h_v_iU zv%G=g%0BV=&);UBUz`|M**E7{RR4ih`&c#JPb9JXnUab3gL{1%CDQNOZ=;js?!9C4yeU z+V{8k^StSo4vHLq<(PR&!I*#DrhIv|`^~3Lr^>l|zINsDIsW_Y_I-zcGpMYc-@Cc$ z=*603NhCHyZ+pzEL=PQw!oFX!}?b|-}#MRZE ziRAR&^elRE&)z~&$=gdlTSZ5`sboFHrEmR{vF7dOdvn{4+`Kf+?(&y({(Bws|DMqP zaHFJAI(3z0!MDK0ld}BpHW=++URlyC|K`o!r&I5L3TAFS7j*CUvdSk@cYgVDN3cTQ zR$;d98HS`|0;|iXxtmlyWjt8>%cA}XLu|G8;T1tqtTPTLy{b&E$^Y^q`@!=Hw#a3g zpYvG+1utnB?3fg@$LIF?7cWB+8k8=-mh63z`S!2u#QZ0bnXR1q`~H;uxhq|7Ub$=O z=f->gA8h`(>~{Rk`t18%t24!J@%-KXE$X!QafdsGFHDa!K5(?>E>5eQB%UQU;m@@X zpB+_LO{X8K`y@5V%r5+&;Jo9p6Z(EHy}NR6cEfBY3-*c2KFd`W$Ysnjd#AR_hJ8X+ zx#N?yKYbJ$QWfURQ$F!!EBCSvp3SjRPYu3qnE&P6;hY!YKQ;7izbw8kB3y9(N5pvr zSAA}VEQZf1yO%SB=g7BhOsPE)-CFhP=FZ%kJ4@sqd=d!yvm$qLc_Ldu<_sSuwOM`# zJ)SN6ZW8j`Z|0jnXXo|5OXqc1bM@BcC!4$&jlUiX{^|bVqKWeUO>P?kOZ9ADPk1ZP zc+{f*=x4^8?p;r2H=0SjtNb_P-29_4u`e!*X0dB4JFKW&yx*3om0=Eh${gjD`UU5D z8FW%7yo|}3x!L$@*Xqr^;#WhwE2=YdSH81izRU3Kx8R#I4R_x0%49A6+FRQF^y%B% zbvN7N=GpV|u1+Y7iQcPv^~;&RA7bqFq~Eel`!-X&PHOk{zk+cUFWEOPWqujR@L%Wv z|6H5eXBQWzJ*!#TymgkYZKBog>QxLsqChLUj)7Nn-R+NUGQazkY0l3pml-R9S4vq` zirY@LGw+hFNtiQZde70ydlzFSO<$xY-!f&UVX5(i1(h#?EZQnRe~*Z=+w#|JcgRr9yPaaLjS_I-c1mA$Mzd-7M2o%2V(3H_^sOEbUxlQ>o^ zta~;jdDV&kEu6{kPaNy|7rOrFjps`KlJh^x9nYPzdw%>e%dAYbZ;uOK-W2j!`T5qe zZC`h$nVkE{_2b!Unb)(w^Ljsi-ZbO%jl7euqHeXl<<{FRe81%J`}~9ZbY(3=Meh8% zQ2OH}|9-CitHOWn&R<`>VZ$6&u`uJjcegFVFQ~nep4qrO_M^G&w~}oq&prBVcW7EX z&%u?74w8$C<+bM=xWc&k#ZLFbC->R(zf^k?SLxk0FQa3%;@Xev9n`D-eR+5Jd6r41 z1H;zKfz#r$yEiZWX!c3q>AIgsLpPtv{JLkq)TjQ3-+H|5{~Ik?k$LHHF>C$x6%{w9 z*7seH{m%!g10i+u>DO!yQXk~jugYB6J|}C#ub92@jQ8Uo=bwu=oacCD#;uq|*89bZ z%-VLHIp)4ESiU?i@^9q!8UAAXCT;oha^-#1UilE0WV8CqoBcn_IP#wkEl+=v&Gg>HEZT6s`oh__3UZZ#2GJ*t zr_QeGF+7vbleqFZw_AgMog~R+i>dB^T+OxAGTac52cX|MI2=GXJj-u0PX z>#*49@`sy+HLF^KPHQgAyV++cx9Q6t?{~*vulvs&Q~B`b7QX1BFM=lOE90#zfBD>d z5nXku#NzrKUD;WXMO^T7aKb1=r z?&6a9Pk6ZBe-PU*s-vg7^J41Wy$@wCmPWQjcPOpj7V>0H_P?;n6Sce~4xR1qT(;uJ zTA$tKte#??*<2ItOe-t$B~2&)2zrzI_~<;pPbF8^&)9b03g>#Ziqszeztb$XZJkwL z(k;7v@y30=tqYH=2}`a`iVcnXck0AxJ<%v_hz3BmADu3 zz=5%eL+*9ymxTqHt7iQwS-e#0@2S=|C5d*Eg>OE7aXIYc%be=&C1Ps!-#qs7e%P6J z$#={7jQT5k*7#Q)xN_Q*xx|el+gSeb*9!A%S+o8J`~BF{k&|R`rtr_R2RCmx3%)yA zDCwEXb|dEAr?}Rchp#(b?|d}xXhO}lwHw}_x;^LhzW028v@_55yqbRX;OWgy&r55k z|5>}lOief5{{HJVZ`b5Z_O9Q3rubRT%3tT#?-2d};Mo1!O|{WhVkM`YuRlIp{%5*H zxc`~G+j@7_USz+u^=!C`sfCZmri0fDQ;umpTU2?`V!;EcU)5ssCTCXt*k&2e{4(o# zaJrkZ!-tw#oP|ewZaKUDYuzg4`z>I@_2&Z0UmY%6O?n}?-0hvxri+qQuZm0`Tn-EV zdZSxvdg0Tp=IaGt8b26gyx0TH2G-OEuT}G}SyS4Ym5Ps3Adf9)IlWnbZC=-g|JCV~^O>Spoyn4Zrn=Qu+BIA~J2>fU|FRFUt~pU#|< z8YB9;_*6Q3R+nwy-PH|`?=qZNYJ4L}`^u~LqG#UfY<8V_xZB8AOw2gyvchK1?B}(+R_{N>@8v(a_~f*` zN4I2#&wupQ>}iDVylt1S**&`dSx>^%B8wq?&U)SaSI_p<%y;`e`F;1cxL@0zN-ZwA z?L7T4@Ah|(bmjjR*_g!|T&eQz%VYVV%~1FK&AXNQHd$%s%x_s{v7HkKO%iG`{AW5~ z?_xGRcV#f^huh!pHN^jV@%6`*dwhEYuPsWved*FYt;6}VCvC1?#a8jTahAxj-{0n> zaqge8+H2{lx|uuIy_;9o`sSAQg{rr_|1Tbhy8HKH1&=!Sv@2$+T8lqQt0c^-d>(IH z`{S0@|C_eklqhF~;j9~` z9e25}%eVGqQC6e<<@FV=xA*+D`99Iz-mGF;^pi8&L(dhv-QvovsSLQ@e@fM$WXe?` z`K)Irs#YF!ziGUC`xn`{=1#wVT76o6AXvt}QsR{0hATTGZf{gMul9Y}Hs9Tg(vzlM z>dNMS`}pH;+q>U>SoJF>%NTCdeRSu+;qqVm9#r-w+HTD&oOgYzM`n?cxzu|Py{WTb zbH?Qp5cmi@2Zrag$2w!a(E7-}(l z{nD=YFHe{mw6}3eU$kCvL;9L%zQ+UWSBf`yxODHDthpHHz35}2{4>w#f_@CUfsy2GPGCd|nR3rSaNmpv{HXJXn+2OZ;b(fsPuEU+l ziy3T17G3kX|33Y~!m2|}%bvUE0n6{nZS`+9Ils(3W3V8q?EKCafeEhPZ*ztH zsOGA1eP#XOi1(>u3)Tr3PYBBqU-;6xMrl({?VhXE{(JWRs?fex#&%_!)wd6mS#8TF z`%9ktl|1+R(Z_nH<|M56Cj40aU6k&9yZ*C(J@(!>Vf@UJSusE4+RCYyY2qZ)M2btIe>r=kv=|D_WE6k|UhvM#cUq{qpD3xsBbqz6lrIH8xbeh|irpBYrLG zREGNh;pJb=#IAOm-oE&$_ult~aZjd|ubG&6_DryS_q@;Ab$R`XX0{P4CZwmyZV6bh zXZfeZ=odRuqK|J2lJEc|?xKIi`Z*Dmb3GBGr$I{4siyGr4E)&DntT$O#V zUElJjo%(TI-Y-QA?=5#%zfx!TqYqvDR$_O-B029R=f#_MgT)zsh%wyfejo|jq_mvh zriS%i$@R~Lzn@rnnlmscFnGE+hAjT*&Az?1!Tk0M+x&B10w0$~w>+$?xgYXU$3|x7 zCuyC>SLdz%wD|nqgZuRE#4p;h;n;+Rv~RJe^4IiAmVf=Nzjpb0=K7U2k2HDMuPU+i zT58zdKFvHcD(YyWSNtm5*9Y|HC)F<6m0I&N|C!Cry+U;}UuM4CyM~81;c4h?p?}A2 zZOZ=KAE`s!(#a=-gCaz ziJ_Mwt!G(Xs9(L1Y0@^O`AZF-7)b4su$uDZaAw%|IGfM8s^`yYUvR4VG*imz$GkXg z*JMAQom-k1qrFzCO17{*4DHd9*ju3Ra?wWh$Nu3QXN}vKLhm&Q>IBRyf3__l!!LgS zs}!!vaK^45J)64Ki(l)^&SYjO5aF7au&Zs|25p}o+h+gQT~~k0?9b(&Uf<{K7O^jS zo&E8|Kh_IZ?=fGw`Ey#Y&f2q*tA0l6Z{D{wxlH$Z&GB}juMf{9Sp>dsH9VKj{xVAH zT)63;A9}|#T|eKu95Bu5zQy0QXV{W{Sh`*oDCqvWwJ22h(Y(XW<#J1s?mgbKN$f+< zr;RfNC2XEV-McI!bh++xjTP_5$biNswijnAOB*&Z7jNr*RrE6b#M#e&y0%-?_j251 z|Egnowm(7ea*F%vV7sb!^SA>oPixNOK9SDhFtyF)ZMM69^tZJ|@8&+umaC28yX{(O z&~Uk8Is3e8Giwh!tkrt{cvHw`tdcx#q;hjn8UOf+WLgNFwzP_|kc$S+P z7Vse7FYw~|w8bUg(?9fPPwQQu^mk>@zqswEeyIEx^y#URe0uxGmS5kC*_M8NY+11@ zEOW`mVzxTv#U43G@|MTZ3V^(k4GV$@!n(6a&8T;SN z{&h1)G(HPEqAG zSN_LaukV*NkE!uL^l}=LEyIKPOg}bGUVh%D?#LdSrJ2%~KI=QCm;2YMHhgFLaepK0 zZ?j8(`|Wx2cl`bQaqsrJIQHK*J1%(me%rPobUNFoZ8Kl{`Wh$~$E+*uJ|J_oVU@Q- zspecK%{#Z2%~ic2c6j;b{TE+YP09-_u{QtoX#Y2p$QPR|>IAb+M+x5R)xInDX}ezU zsq;a$Cr+#UOxN|$v&q;n>wovw?N)Lw-qHSd=PCLMPcMj{zqDl5^slWa@?Fmu?prB0 zx9;Rp&!8-H@oeWm+m+jXXkKQ}wq z_&DRjTi&*^OJ9zy%}e>SM#kUm;=Uyf^_=J3y6*q@D979vvSMY%pK0eh7R1_dzkU7Yk9fDgeRSu_xi{TzN(-z$^xE1nzq>YLPI~z1^-XCpe_!3av~|ns z){<=p%@??zzFws8(@!I5!UfCATOxS{ce%a2US}%l9JKP`Jb#XF7k|5^@7!CtEYiDo z=JGbBEt0#w6kWI+JWbh9WZ|d9M#+{uotzQ{+f2A4Iqa*``M33NxS{xXkB8mN{gsa^ z??yV$%Zi`zYsna#*F5D5Vz%Ezz62#_y!<0s*c0-7_l|1WC!D4F4WIW(nkLS#YQ1&PZd$6f zcT2S{|5vSf7aF*A7c*xsjGMFktJ^s$l`C?mGLmX;ThbHPp@xzx&FWA%CLz|6f-x9%}N_kPFaTwL0)# z7@Kro>Kpz!nU=@q);0uJ|D9RSqiDIU`>b-q*`rS;EPQr6V9vE{r5RbND}D2)Y+OHm zulVJ(DKBMQU)?|MIe+4!-UB7t=UUgWUT3R5uj99CnWV*w)HjTYudc1ie#IW@{nfZu zq=9>4?tbs}Yp+cdxxRYtlJ)DC@VhMta=frxzSipB+1&Mq*5CapT9NVoWp_Ey-{~5Xi)lWhQj@DSyTPvbHBaj+W+(8^9SbkWxRH_M{~P_IR9^Z zS@cSHkMG<#$!pthU;SYlsAKqP;z#38PfweF_Lv%?Z1M8y^pEqFJ>Gp!`&?bMz=3sp z%O{-o?RD7t+`ubvdu5ovv9Ye?#_7uiR{8ytPP<#RGV1E99a26zsSh$Hi}Y^Fub9#O zx9_c0z9>UTIG<(bJ-=i1ziq3ohD^8mv~SM(Z{D@po7W5NTAG|z>`T0FKkXUE-CMnXHidk9y++T< zp7CRKPVRAzs{XwJuNT}exbu34G> zW8Ru%`*lJs1M)gOBAC0qUw=H>BDuCsq~y6Us{bFQXo zX1}wnbp7{tZM%7Ci`?V(pFKA2&R$=Nu2}v2%zoU)cx~R5zMM80XRc@3VPC!l`kr!H zv#K*MCiAhDvq1P(-lnc8z1tp^-}zJjXxCfIy63vJS?`tpoLIYi$N!JsG4K0pPd0xO z&7N_5b^p$!S!XYuQ#dDhaf0ODyCpIe^Gy7IM>Kv;=y82yfAv$M{nYan``f;28?+qi zQB+c1A1lYSIKIi=P@`a<2QAFT7>>gm6|mFc*R8dwYHV{te*|Ei|#&U`kE*6JxPn( z_H*H^*AsKHpYP$>lJbv5>SgY(C99LKdu-2?xJvc4fz^>4 z=S7CJSmdW$xrg=begE^(pTk8VuMFc^f33RHZFJ%LBE46p#rdLFzMlT_W|mu9#H!*e z+R5=N4El?7=Vwm)^2Xz)wbpLm_mT4E{MFZfHC4RMzF8BOOFcC{GA#(yla^%I$9~{H!-FH>xud&~xg)olH-=qZ!pkIO75$HK?rq@= zH8(YT`|I=eN77;QmY;D+@@^{}k(AdUPuDK17O&noXZzUgIw895P*N zQHk;cbG@}?_P6^YZ|hZ;rj}m%9&zr{w5!+4gWsJ#vMWz3`;2bg#BLFKacI0>HaCY_*3etQ+s#vJ+?S;>xqHZg*k5J$D)=q{Q5X&U&Z<9vDJG; ztg;tc+e(<^$sRLg+4=bORL`=7bqnS!5|;|SFTo}JuI}9VOM51L@4sQq<8f-IYlT#C zR4&WcKQbv_&o^9EwJehByT2fPb2i_<)Xhf{pQ|q0DzkRl>Ez!9kN-UglypqYe-wA{ znpLg!Zu4jJPv6-#=i6P?%YS=U+co_Ewafk%cp&V{KK8sr=kMR-+h^|FKmYC(h9l=A z1m;cj>F!L3Q@$Fo!t|)ZnOS@d+P;pqUu@23Bq~nWb5N=6!4qpXi?w&ut!ms9CdF&& zONKKr&rW)=RMoj-?eehnYs%Kw{nJ05u~<}jIoR+t^CW-mau(rYhw~;sIV9Fq-MV#N zQpdqQ`=ZJ1W3AiPSN&hfww&!*hD>+%TQ1>mhrCW*&1~)Z|MA)VJ4|)Y4Q;oS3)X$P z7JKJ5qy6lIW{tUf(&k^aOM4t$YWl6RdR=ipf8=xf=3c}6Gu)Dz^S!Lvr%vd9yC5pg z+IWU(*730WTbD5MFeo2AUq1aukQURnncG6=ywNHOm{_W!u%dW#)Av>8y@}SVKOa&K z;4oQ`=bOLE>*v(QGV|F5DFcmH^2PLkBQ?a3$nd3Se;s4Q`x%k6E|Y$KS{`#|+{-+``s$_?A~6_m0~ z*X1P7{1t8QxP)&}qJ=3>(zY_;jME1KC(mr!9J$wRU#;Ao^1~+uF05eO`u((q`qEh^ zTCKY4#4L-f>h8TgCc5VSs(TNQH_lC+A^3X>zo+!mlXWKV*8h$ymRRf9OaiWo4WebN{QcF@~iKgm&~30t0v*o<0{GD zjr;s%!|cyolA6r!@$2K`X&Zev&og<|KJDF;*8arryUHK8PQN#8&(5U|{md224fUYx z$KE$<=5ns5n{Q8(nS0lEE87QNhB}4=SKUva{kXhZuG;Ee$#w1z`}}QX(}H>$`g9rJ zPS+AqHVAb*yf@tb(UDpHTV_fsEem38D?hgKwshaxJnyCM&RJ|mGA^@i{!HU}y>^dv*KPsjf8x%1{_Z?Bs0Z;+V(>)xbQ67`#P7kNE@`pEIX zjorqke+{<0+#9I%Ge+d0(dwgK&lZ@8uRf!^;(N-^u%9o(%)RGt&ooQlGST>)W2C=) zShLD-tpcKhBuY5%x= z{?~K466e8lNPFHl&i+s=U&$)B-rD$vtA(5C3AQ_L&%aLj^5k*xy!qGmtUps8X1im? zyzjYkU)mD0^tj#_+&BGmLz35J!uDfU+7sLs9n`Q^SCtC=^K!#Ik4wCpH4b0@H*xul z{5g_~KenBJENLOg5qyD3(f@K@&+!+L%isU>e`I5@uy`v|r6EfO3*S_)itC@Gp5Mr* z36-4r?ag)muPwj6&8|=8{xSFXmkak?D;|R@N3m1h$Cu3gexpOK_RdlUu_o~gmfU~$ zwe8b2STFeZhGJ9KuHDN1zslwR-LbvvYV13IwwS}F71KY|+s@C|O+UfN=B4}E(5?OM z%ujnyq`&lk=oIR9-t4bH^Ml9dcuWK%HWz<*_Wxz(^F6%kZ$AFnuJtQ%`oR}RkMA*< z9>^kbr84UJ3=W%ZHCgr38f9);mT#OlC9UyHK2uJXRQ}tKd)BaKC~|CP+2pG4xVD=) zI8cV+#(Qo9$8eQzWN`pQJQ(Dc!Tf#@Y)>B zLoSc6)-Ms#tokZ6`8D^hs7daR+-tnE>aX~_xI6RHEBAl6wE4!~e`_nAvEDA8 z!|y214m*8r?Z!t8RY}u+pLYUPflC?gaXwH7_e>XGmdfAvy7kAo@AZuLzOU?lzB^>` z*)tPXvM<(pZ+>a%^Mxx*R$e+8a`|Xx>B%DuM;18V`w;bfPH9ztT&0PMbo{-Bm|sE@ zCfjEJlTqd{ZEFec>~mPj)Ua!zVO{dwue&S%Kg)3IyEFaE`u%#bd25!hH=gcse_N!d zo})y{H!liaT+-z)X*;69-u)33=b{cqMY zF;Bj7!R>}nKA`l>YY3ID|U6!!{>>Q4_uqiv1o0=U)8G6XAO({ zgzq1p&+&6-Z)N2?-R~#&hNs6ZztU@Eao|3n}5v~%QyPOwxo1^;9j*A^^5l%5AAX@f6e}k^QdIq zr0m$2i=L%vKe%)+!TUM4t=-y>6|vT9XC$ZW|6a~~lc7)W^O}f*dunD~f4RbT<+ep_ zRo@P4_Dp@jxLV}5=K8NSHkU%YpPznu@ItTR{wUYgtF6knTqx&?2}+LljPqIj*_mCc z>#X4Fq++YaNpaKVstV`jKb={1@THAQ-SwjlbIRnRz4wdx@BS;vpkfis_~vRTyTw-< zt9kFk9yl5{b*_1TW&MfXiPyFV9drJ1`O&LY3%!zGT)NhNBuP2iEVfdO5PM(XRjeXGh(+dnTWs z*~>ip5j1bA{lCzF3+I^U{9fO(H|M$Yv<=IyzuTL!Rr9miu8&9dY?*&#s`vk2*~-<& z)R!`E{_>6G*v>;w!+qp~>KLV)_dK)K_FP-KLAJYIu5^ddp2eRRTvy1MtM@KeHhqot z&#wv-CsrwHO-Q}w`}FqngIhkYsOH*K%z=?|LUNm@oU`%%>~rmhW-d zYjnybRqS?r<@_g=Ta;GlXzo4H+cafk{|1?Bs(tF0&-HAYur?};M|4fiHro?6&v$I9 z`P)@}{_@)SyO`{2PV4=9-@h$GE&7&6_~Jz4_cpt$U#*unH9kIf+wN{wP>yF~u;+O2 zUIx@T)oQrE?>pO{PwwjvH&hQo({;kJ$+Pwnc2S$_2HkC)l>a;fx=O&lz6V zSR5F7=GUJ~JHAA3wwM>Z%vma!{rFC|=ro<{S(`f-vG7gWxIS~)5jX$yTHnu3KGPg; zW#60dF0tbK_uMt9_ov^s@t9m`Ru}EH-}PD8*;|_(n*X@!9h32FpWUit9``SKe~03% zNc;L#t?RSrc-#EH=`mw{+lQS>(|_LF%C+js6pjP9Pm?R&S|AAYrZp1D;)MCy~M$kYls-^V)UpO4H= z^PRC^($dJCHQDFg9oPDZf8M-aN~6Rqm|yW<*kc>sD6zhho7#PQR=TTP)?LrGSk1jF z&NHk{|2$8{ubB^btm-cmifF&MK-gJklm45;r~BIa(}M1rZm6Hdv+8m4Jg)m+=G3=~ z$Cjll&DEXDU-EvZ_s3(=@!kIK;~yLoN_d>lbKCNmwqwPz+RN|de4{TsSKYJt=fw3! zpM~}^KK{|G=&`sk`taMehj$m+Fm-;PJIB@iK}-6Tk2SkjOno_LwN&Asy<3!%?iKdE zsXuyIN9y_MKX;nD?0lA=3+@PKT5`8{%WjqBo~53cOoaX#`;|J78TbOFqADp6-9f{M_oQblZ5}hmk!o z3v(A`hsFG#Vy-W)-7Z&qb7t+v-cY8vvbUZx|7XhdvNP*X->dH)YxSDjYx=u453gR| z#~)vFbmo$0(Oxga8UH+BHd< ze9LY56|0T&sKg)#K@@v1OaDbq3y6 zy#9-)$lr`@-JGX!hgZM)u`&Dqyl;InTfR(+{knb8AKo>+HF;by!oQbYI`}t)k^Qvc zDVdv3Z-93-O6q~-RdbR#RwC{Gy zHODQkop^kyT|oK3?2lVBWg}Nzw|M<)GDlK@wfF*d*INpwD}z_A+5GkQjor%c&8$Fe z;SXQW|2zD4W-WMQn%$odraw0F?_E}ZHBUO(zWJ%`uGp1|+R==R(r0tO+*D6rHFaC$ z31&yOEf+bG*=AdOQxlnU;EFTX(VCaDsiaj5znL4N4(}*{!-zy=Jd>X z-_kVq=gxWUNk4z=+LZR&SYp}cDwCFg)k`<3Fm(n>U%lG2XO*}}_KV*wcQ0Cq`JDc= zXNiwnO}_iB&bQ0nu6=8~nFS*_QjHzYCW`pN~fbGru|`qk9>GsU`c!X~eo$~Pvx z{BP$P&#uK5FzM4-hlPL7wQuc}XH-4A_-eiC!`NspUh`Sa{>OG-b4kA4+IzuHE#rI`_Wt zh^y?h?|iF-?+4l`>?w$SY8zXxG(W2T!0Gl)A9n42xm!{qqjY6nZ2GM9_%8x+zt`9w z*{r{dJ=$u59ODOl#y_t?(>hgG&d8{rI(9o<6?}|c4R1p|?*qu9$G_F$kJ8`OG2W}Y zpKA11D>co%T1Z@&->kPMmjK(pJV> zAY!iZ&u00F$SM1#Z)Y-_=pS@PP4DEnVml`1xVv3!Rs2(XV`SDn@o0a3do^#B`R%f5 zzN=dnmwr!qb<^mD%e=4aR;iuxlzg&8t4fAH^8MH3OFsGgcvdZc{WH^KV_NO5GuB&r zz8~0H_0F?u-c@&fd;aggtJW^bPhH!pkl&a4Ea9j7r&aHM^qM;Eec`z3dflC83X{Jr z^esMe>083iWtI0&dT+QW@3=oAe73y#%D1bhgKrQ_}wTyHsC)JI%cMbpFwu)J;)lWd{bu(>PnG9$=dI84*I9@EW37L<}cG7O_}@nwr$#KQ~K;|Z|E=U*|UF6HU8PF$mTioTIR7? zU3)9Vt{4B*ky(*xq4k=J#ozk;{H$dRDa+FK@Ma$t)%sRtrF`#uoNw7SsnZ)aXRg_M zQ!MJd#{czuzS&khy;|R;J9qvU@%j6h>}y_!C(p80JML=oD{eZXa8xAYMJxpDXJuk04^~cfC)ZajNx%44!8H?);k=n~S zUbM|zUuyCC+$%Nt) zK~sE6ng;`PEx>|loYAYlTYK!DRFuX4QqsBGspwO-&x^~8wy$uDcfS3tP-RnK?);?{ z>kZBZ?>+u}Yw#Y4m%e8%Y*}oUa;?Qj{L;RM2NELcTRw=d^?l54P#FKTROec{{fPso z%VfSkURNgRVH|si*(0idjm)H`gg~)d%fBYCP`$U=$Y`!-qwOixR|_|;dt!WSUf^E6 z$vfXkdpwfd>iZ>X2j&x}6Jzg3I+R+`) z@t~aX57)MY`);?^YybImd|r3{@6YH`?38a*dm6m|z0D4r>Q~bXP3Iin%y;`U=Pjd~UoU;0IDhJg*H;94{vKEz^(J%Q z93R%id$(?j%sG2~>PCCX{-5TaXHMp}S7)AzpQ`rXaPq(TGP0+ne~0lJeOMcPS2}Ll>_)Nuwwd`F5ib}G zJ^smTpY=Z|a`DTuPVstK#+d!KkM_(8p7=j3uP*HUCZ^f-C2C&+zt+w?mHf@;@NcJg z;u;Tfm9K8w|MV@a z^y88_GiA20@7NV?YJHqv;7`PzNXGiVGv)7qM}$qTHhs4%5UzW9ZhF%FN;QSO^AbK6 zS>MiM&6}3{?Ax)6+m_wv$lQER;+1)wAn(b1r-OEH&e-R-Y&3S~`jR6!yZ3GJ>Zkgj zq)((OB$}kGd0zD8y~qz1i_f#ZEi_HN$5pcO;k}fJ*%#(~{URe~9qr?2p1-bhK2zxQ z>E<&G=Sw`wG+E?kaQJlv>(+LU#aF(k#(qj)ZxXQn&%~K5sr-IhFi*^{(M@0ju#m_s7cBs#;4juiO6?@`v z%>6D!*{2KUwb=Nt%YMQ1XRR0OVRyf+3HyJ2{(nY$<5Tl_)5EJ?IM4Qc;Gn~LL}S0L zE&uxVA6tG+-&uFY|MFGI3TE5KEG;Jaj%VabHd`vL;{M<0#cji@amo&UMZSCRj0@LEPTp}=kbEK8^L*stYh48Qtxh495B!PC8hyaJcL{+b>$|FYGp zdrQB`u3x&+&GglgDb4>lC zDS62n{-K%fmzNX@+HSS+h)YPA$9Ch>gWqWZKKD0TC+`+fXn9joZ>+V6^WC29lc$`h zSL4@>UpR5;HyfFsf#S7lQ>HK7d}H2>_Lw!^X2wySf<3YGGBwVNeo@gmTb{|YV$Y^u zRb9nA?{h!>yb+VnDrch@W?$ht9;r}J$%J0rsxXqBC={-O5*Jbv3&GYwv7QHb)?DNjbtOE<41^xC2bmmGo zNnmN7#dv4lOP_=TiOTnqe-^$u8mVG@N#iD0zLcuf`4={o4yR2XDt+yI9MUWL%JQ%g zC)2Fs{`1n!4|Ok_Q2FzSL8w*nvAGPUGbOZEEvY=RS$J(*L*;kF_nc`TJ}2l@et$Tv z#Ld*QYJpj{`~JF=Sz^EMYNShDS`_x|dcb{kh6g+S|4Zz9`ZNFFv~&Jd-)rYL$M5^R zRIevb%t?o->el?w?i(Uc<}Z1yn2{E{XU%_^$# z;-Q%7o%EXc)8`Hq7~QvcpLdIyxz6t8X2+S&#Xp8@zIk}M{PC?!eZOj0th3U0u@zj% z&N3Ddd3Ank%R`0Q9j7Yw)@p~(YvYXlUi>@dyR;3z;r(F$_nCZaV~y|_ztX(%>D<$qXM5Mq`L@L)j!mrZ)0)z&dj;0Ub~A_O`itBW+17me(6m=p2PUjN zx8Z(j=BJCL$#2x7;-l}I^uFTyIP>H==ICqZkITwB?aHVf43-tS(!~r-)55tX-2IecD(2%ctvqt_IsrOAU|ve=}zK4rAH#|2CJU z*6yiU+vBtRiq*%cuX4ZFX6pLyn>}}@#O>(HxWntS7eBwNA-;EcY0qENs?F*5Dt=Y2 zpSD^cN^G(F^XI0ktPfj$dj0zGYnipYl``v>?wPe`{k{)@HAhR|ALQ2Gn|pY6^sG## z55f%lo&DO1&b^yw#rPna;ZHEbd5fsLKKr|$Z(RPkYR|CvLeNsUv`jo&jXRriG--tAhH;obW8TGdgb$DwHRLWR<`^X_iXZ+DY$p)LYwrr7cX7doN?&Ndd^o*erC-J ze9Giz%>O?qZssoQZz3(v9}Cr1T$(s>>XOnv)3ZOSlTy=H{kmjkBR^TW-#c05)Sg9i zABO+^%<;i+&GIAB9~ZCt_F>+h>%aPPFV?&YyLRc%#LqPmTwj^5zWpP!tkrKRZ0-_3y2< z1&cnP$&j;~Vb*)br|+LE|Azk5S6NFf_14a0pPc*3e@a()%-6a-?{3+@Y@4o|`*OvK zMGx+Nx0T;tbN%$L?@sGXR}?y@7aR8#vaEj=>Ev9cCwXGV{HA){ezRK=d?LmB7+kEg zE4LcIZaR4WW7hnLBNyg;pIcO@C+8_5Z8u{uWR>x&H2Fp*>$G>%aP|{`-r5Q-f95%r*zfdgh-uZnAJ3n=pG~ z$)6QvW>uGN?cqt_d$^aOL$a=Lv@@@4DJG7|r>;{Ji(f_a|?bZv0c>e^93>w>FOZp_!;f zayCO@oD=(|Z>%4J`)%6xvLwV6PR;F|=XU=6<>yhGw#}@1`qKLD=?&)(Ug|22k6?c= z@oS=mx9gZY2Pa~ZA={(7*!h+F-$uWygbgvr(+{7yHES@~;UADO#%-TRMgcFr(Y(SPl4 z#P`(h;M|I9AA}xAJzbKj&p3VQa_P@Yb#z#4=A6m$IKJt%(=3l=*4338|4A-bZgce0 z-m5E@l_p#G?4SKLjOUcyDV53npX8oSeXFX}@gi5#ZFY+I+NCq!&D}fyr0(VL>8JD< z^7ehv+4t(#_J=dY=fpn9^LF~a_@UkZ<0mht%h@Nz***Re`TS~G+4n2qOcnYK*CAVm zmYdf7dN=!{?EC*Ud)^06KcIiJN_Os=zh-;?uKjDJw|q{~>gw%h-aCA{B(iEoWY@=; zpH9m7KJ7SGC^hBw)VX|V!g-z*tKQ|>NoGzCywLo4PTw_l-CBSFWcpi)^{F{dw48zO0KJYo$GVt}z@E zieUZ~k+5XzqZ>y&>yFrWBny7v5_sIQb;H5FgU59A4;4-56k*~xlcJ~7X27b*d4b_l z?#hcgmnOIEyIZn2Z|kq$_fGW}m%UB5-}-vb{kLKF9jnUM@4H`pZe{S+?C`7WVt=oU zUH)xT?`f$s_f@%V+~lTwxpB@e*Z$kjn-==J!w*?-?O_u*dHn6ggLcmvO#{B2xwYU> z^^J^zvFzDY;e?vtKoaa z@7El*E=#!IcaHm4H+%k(^Y=cQK9TsUELeHbUjI*e_$fKF)9>$1G)!!Eo^kl*_JkvX zul-am-$-kXtUKfEm>byiO)l!+#~%-PpPm)dx0ZKXa^8H=`R^|J1$S>Y9zTC^-Q7UZ z^eLDAh3z^XrCR(=WX2x}mV&jX669aZyl%QqL!u!;bA!$2n`duNJGfhH;T4lY-tRtY zAN8+qZXl^v^&?Ui*w3yZm?x6V2O5|*_xbr;hr;d*_)e+xwkkn6Cd1I z6fXYZ#A5c+tz810*VYP8+r#6N^kHqgtxayU=w-vHYL|aD_Fw;TcCW<2=Qc;o3~pT! z>bowuv>Gr@lgDxB2I| z+kq>t5A?{Pg%e z-=ZCJ?lf&k)_Go){`rgJ+!ZyG`2$X|wLZD<%J=J*U3ssB6vOuN@8Es>t^M@5gLdDA z7A{@iP(OcS)dIIeRourHFRS&_IW4%iu106Of4y4g^V47NU6AOWz5G#{T3xo?B%4

    w{y}Y6J(f8+NCzOOPe$w^j%ULfe;Vz|lqnG!BnXF>%^*-nM0nGh- zKAt{kx!hJu{hRiCZs|#0|FuueNj+r}Xm$GjsZ@siN!i!z|LFZ+zodA2-^?GkFB|^X zQGUOfb-R6qXx*2+>yPB$`DzqC}JMEm=O4l!u-pjxH z-{E=?&s_0z=d-6Z%efwuzu(K5zvK7HAFG??N?vwez2sATgu~x^PEaiGGKa_ac&n9z ztKPU>-1IoE*K}U?kJpwTYwH%h|B^rN=Y&&d7*@|bt@`QVCaLSk{_WB!@n1Y``?;mF ztv}ZFOh{z7P+2xTdP1$DW9I;y{W zd-XTo{Ty%3W-dFltiti0d&s=0pQ?3|O?CDkviM;4H1D8>efHA2H?JhlojN@~^KQ@N z#d|L97eD#)tdhvyC2{O)^)q{}@h#i*JhH{`^i=QHsVk1NTc5YBzq5RM|6$Wp$NJ9I z*3Rx%+NwC`Tke7VE#?0jJX7b|T06(p-Oa7|x%K_6+Rgdy&sq0A{j&DQPwV)O!@Jsd zeA%j99F>!?P<|~>>4pu#eae3;(hAjGmu`CYJZI~IsV~CZ=VboAd0jTRR#Mbhp`_v7 z$`cQSKA%4SHM-1AsxZUdKhsM0_^UL&rM@ec-<@CD?e^VpZRYpbO@gG76n`NkvDjIO_u z+jleUvBk5;7QZ{3w;z<6pfs_aHg9d=xr;BXPAjk5G{=lP zKSuuFKiTF5-}ZgF<6!kT^I_;>{$6&y$)2T4uOEy$@LYVpd9Li@;^Hk+n-AA_9?5pl zauqsOHC6J?YGa489WK00L6ZG4rR=l1-^?5-LK#h1Bu z{hwE?Tlwjax{mvQvE9$6%HG;L@vgz?81HV=lHCgD&fY2i`K0kpOHpy0`T~KH(=`Yin{x)gT^`9wE8rM#8 z-|~8q?6jL}i*MEJ-gfi&w>+_vnS0KbeyUW+JMt=ZL2k-V#=v_v%V+v*-e;zCJ^kO^ zgPJF2UyiH`m#G%1fBmcc;pugIcpqQ8CwS45;eO$tCo8|t&2~G-*1LAcc_FL4^^Z<6 z>=Qqb%@DIi_2+Y&z3&$;f3UUOMpnM+MbH;-w#62#8#U#wZgH05l89Kfa%F_};!D-( zmmI6F+Sge}zjFEdPBX{q#In;Djk2WY{|xe(yQ{%7X%4e{%FnH{wmQ^BT=H;B*Q&H* zILWwQbH?U->&|?iIdxTVD%+=(Eu}kU8aD?{3128uW6mydjmMgGer~(1{6Y)4Xv_RN z)?2^76iTnXV`MPfRr>3Kd$R;5&YT{%ud#Ni&x+FKvMK6Qg&pj?Z@)UY^~*Ks*FAMA zPmE3~UD%TL(YnJ{;aOU2*&g-FWe56GPu3L8P1RTW$bJG=UL9L{dJ;u+VNd_ za<#9FnLf)^zWD!3=8@{L#|_mJbRQQ>ukHQx_I$NLgyZ8I{+|MGGyl4oHesLN=dW=$ zA7rnql8-BW99<5oeJyjd4(9UP@vi@WqWfdUUGBxr&xN|}(~h^Di<`#h;BEc7O|Isl zWFzCe!$*@eL*$kx3S6AGlbOF)m~HWnnqoJJ3&-7y(~b*-p42a{`S#%HoVq2wY73^W z56do*nE7RKaXX`y_G^ZJYxPU_&gSVcXEk1PE^Dq^_qzG6S35Vk&zi_+!PYwU#>A}X z6Km>j7N+UwmhC9Wzc#xk8gExjGN3QWq?ln#dq=y|90u;PE{XmV5SZ zZ1fC??-RO}(78pa;LQHX=Hd|z40jj}|Ch0(e~b!Uz}U#6BKqSy!&kfW=2bfCug%%E zbN#Yo+OhBPFX@c-X~Ik!p1e&f?MVoIExc8yXyx18?H^D0FI~}{zVA1To5VKZ)}I`qp4=7pk0tN?xaVBzuDULxC}wSuh)@R2 zX_A#&wfml&eN;*IJ^t`8;(&bmoQjB6J*RDQWkx?rm$iiIH6Wy}) z?)GgbpRD?mqA*A3cA#2v-@DTcH?2I5m&$If-Xi(d`lf2`{G8}Iwc^;R;+5&!cFStW z_7Z|fX+_vh}nFMgWwdwtcr zd1XK2lm8zxf4uDUJ3p1p$_w2M-T(gG{8-)JwqV`NN+nHc_4%SDRsWB$JlN0rftg{Q z?eRBrzL)$zs9N!N?)C@1-)(1xi0@`RChW@>vT^6pRsNxGeBPXR;(2Lj!1B#jCe`b< zwA4rj9-8_|;%sYfWuHg(6V-1QHJ&v@*#FR6z4uoGdWMbJ@s}EU)hF8Ip53s-j{j1xlB%6bZ3j- zoaFQ6_hlGr;(Cwh5s<%LQuVb~emi4Jq z$5tO>$hf=x>(4W1uBYF$P>VFN{Hk!@BL1AdarN~d4&}1H*H7DcZF|XMx4I?knS2U` zk9Yi^_$NaBV{o5D+2`q{CijCcRjoNM?RsgQ>+e+6bz2vnZ+3n4vU|FWkLk(V%Nl&x zP4iA|=}|tn_j&dIU*(Tdcc0iNJ6HY7@$YxL=I?&o`f$bC$m{M8&MSRskVrg!PVwKd zS&{O5497MKZ)LQ!HQcIk$kW8#wd98@?=^R(Tg7bGZtQxn>&5#Yc0#W&RBD8@S*4uW zwc-8A#(Sp6qZ!}ll(oxi*iV}-Uu(6k&G(;-=yo-IR`oS=e2k-xOo)`(7#pMaCgRoh z&cfKW?_HKp+%;j@gA5s*E4gtTWl}nw4^;eyL-dE`QtcPp$Q7{dtCt(p(&8y6+#E z-5+m~(BpVR>#K92?UBmDd7?{Qjj~!&au>|Jy1JxBGj(FuEVI14j?bc>Pvxd)XJ2ky zSesiHt+X?Tb=CdrkMrMebbHz>!IyAWH@Wuo{@vlzUi&itZJ5>6!q&CzQ?z6p|AFVz zd4e*E6&dsY#C>1QI49%lhs9C7>P+SbYb*9#bbo!oB+L6;{99qa>Gz8zdl%i_>cc!i zXtqNzjr}aIWy63@*FaJ8lnSKZ}*f+}F*zVO{dPu+S z3-`xa<@VzFd){-+dhmFQ@Kv(|S$cjC_bn+mzJ7nj>H4LA=Ux7}{nDGdC6k^!wmG^< zx&GAlYrHcavYhyw!B#nQ)!G(PWQvM5Wtvho$XIIFi8B^cquk}B@an7wDAwPCr z*gs9*TS33I|7dUR#M>6n;ymKc$a?p@clDTl`q8fM2Wr?_#LgVZ*4e+{z&_?{RT-%Z zRwTvk)crlNOSfd&AMKMH^fCjZc7<(M-E@8{qrh#&zEu7Dzh=Lbo2LJ|CnEfOxy#m* z$zT3)1e`nlspj#I>q`SB{@?m8a^Ags%bo=MMdwu=Rb351czMrV}EGpxz&eODqXPzI(>8YN-c8Rd> z?wj`?J>KZ1?)ik*!YuU9+U)$>jkVTR`WeB?S>ODA#rDlmAnAVgO!qnRk1eg$p1pSd zQO!4PWALJYd2$!c_D{ADoW93cU5vRzddJ*UKH2V5kBk_uA8BtCXH&5K8uvIho%)uKG!fE;ccOt7OytSj!I2@ zd51Absv@mn@mHaLdOb^L|Mt88e+~Z>h2@ui^_)EZMB=x1q)fxb%A=JVdSp7jR^~B% z=yYG_;Jb9gV(yvms(w_wZg1B(`|-F~%h%P(j2)5lMCBJtpHbWLs<-oB(LFKGLt+x^ zmw6f1DxSafeMir94zC;L%s+Qcjh$}jf1ichES~L{&ik9+w|(Q9ZWjOh`@1xO)b$bq zEl;b2eA^DB+>aaQh566^&Ev3| z<=0jl?bo}#&TGG4$x|#XzxUT$;l1durm0^H2LN|!IRCeyO$W97G*VD zw2@uKcVC|9`P|)+r_y3AruufT$-e(O`c;B^$ES{>%8L23R_u@Z`|RK2RMx+-w*K9d zOl}|8?|kxg!gSZiOMj@TtZrYrX`j&EGfPh^=jnX15>fcl&i1bD<1>TaYKw}cGuJX_ zS1*ni{1kX(>(r&U8-258*+p~xV@tD^telpexg+8v6_L+cAG^Hpk!HW*YnG=_cKi$p?x~JEXpTe2xE% z-nN=I>pw=WU^#6qXB&N6s;Tn1&25|gPfmYZ>?-S4aPRjy#fI(o%bDwb?7iP(|K~@z z(|*={i~H8Geu!eIFRJ=~g!`PSu|G>~*jf$0_w#pf9{A7pV86}vJuw_#wz01}`ug1- zN%`6%c82z=4gb#-^zZ&_T>t8HRoUttf{%p_c7NIIY2r5Z$2^(m>>tz?{%vJ|t_65G zL;c#C>fa%U`mRZ=WZJN+T=ewmPl1v;^GhcyG_e%Q^L{o^%I!Rn9`}8wa#>El^3Oh} zce_5?n#b&84hftm+4HzGp-Zr^P=56+kp;gB_WEqgN}8e~|F8Q=<(l2In{2-<+^h0T z;P$PG@7vyMp3k4n^83=x`-Q(Z)|BL&`F=yRKqNA7=39&Nk1p0ZL@zC9k!Seg{?|&K z>)5J|+x#L=8${mQqprPL{6U`c_1ts8InnnfZ!=qVd~cfc{YdWu>+gG~{LUBaG_zVZ z<+ZV1ZOHtJTwDF=iSwP;c&~ZQwyQ8jr1ng*-u%M8b&rd6&-}8PcHZcYjz5=9)7Fy8 z#e37ge$n3YxX`_!!u6>3I_uWIum9J)K5^q>-#NCukN@c(@&8+2zqxjE{xXYIqA!xw z53SLBqkXZPnSYn_jsL0KSCkkVB|?ubzNE|Bx2IDuO8BK1^PDw0#W{?%Aq(7>SJvt< z`EOl*O`1X0{%Os*r)Q4;|M>mInZ`{E_x$KExcfGjkH=el@uRf9O&-T4iXK}M*!-=o z%tayFvu{hHWdw_0$MbvV3KuML*t+BN)PASlOKEY+8fOA0Uu$c<^lHt+J5Q@_RcuYR zonLd&`G@-XKbA#Y?_W4A?`oR==fd^J-`MBh`nCA$4XL`%)0WS?7M8hZ67$p36AS0G zuU*79@%hZP3wF$TGb{Y~I_^hZGy9is$^Ud!#lGx9ksaHH+*c}M~I%k#W#{|R~TW4m$l`{x<=ZM*7DD>3o<^sbh^@3-!A z!?x`zY8m7lulo3ZNT;P<>8`%CAU-@dZg|GD|PeNPhK z-2Y&9=hshpi77jj7tUw<5PRHz-mb?n#-C;`I=*W4d2LW9*@)r4#DQ|=9e-pt7vH-a z+i$~ZUwPd4!#VcQkTuh;%w6C;QEt!U6U}EFBc1lWvRI+G)oOC}hTOSI62jBP1T&a@ z563hWK3X^DxZ5i+$-Cu|$7-MdeCU=f+z~(1bK!pX%c*92pMKqze?juR;o9b76VKn< zBjH`Twk>SBXOQ~@{cX?xtj>R4qttJcF+Vin$m!R;uG9a{X=3y-lRoCYqc7T3EcD3q zzwaDRT9`eyV2yoURHLH%(wz6iZJu}63-n*LZ{4_P>91uh>$mTlJ@Z}v)SSY}%h9$0zWLPp5Gb2|?B)&D8){gN zFSh-A+5&h%Qu$0 z?M>^F3f(&0>ZDF<VG|oKVmxlk7(JKn~v?JhxYIK8*1_Q#bkyjeo4x**?V=( zx8)sfYhsN_j=FvCb1| z+ZYKvch3}C5VByGTgdH|vfDf3uA2t*GU%}Go>ixRap9R_*3YJ&9~=)c`oC??r$5X2 z=B(DZyPd^1q4#^#tT$86?0T|ur_TE=R&6yGPHmFms=BaF|8OOn62l?mSQ+j#$;)@* z*53EKp*?%)8=-yv7TY_mzU+K|>&~I#SDP|BUI`vFh+{rd)6cZ-#h$Y^Gv_W??HH># z?O6G?NpEtet*M#1H|SWiz4U9G=+l)=2%GZ}(*z5a4c0X@Mz2u9Hb=%r~i~dwR=}$fSRHC0JEK+~V+1%{= z5j~%t)hzzIwrq)ULR1205k=`V4@d$mMVRe0b$@<{= zeP`v$tBz@|FaJ~2nPv4w^VhDF(Yj- zjxQ2ZrK*=MUlVfw$F-_>sj02U(*MQ1dCX^JkhTxZ_J7M3_wJr`qVV6{*SCAlzqyrq=ybFy+e77e zDgW0sS_XGsFWkp}#8==oTkf69H_r1HK6(E6n2nQ7lm6u0&qYtCPT&4K?W>ir)K|^x zPbKB=wEy@SxbV!qE%DxaPHf5BU@ls7_v-eCv-5r!=R}vh$#C~K$;~>rTW*Ks`v0e= z>m%K+nnjD^le(lP9_f%xwW<$To-;kf9$L)&vsP8 z;mnssjnmbpUt9O(tlPTm%jL~~L|$y-IKX^c=E@WE{CTF4$97%{m&g%Z(buc3b^X}I z$T%mFrSkn*fy*8Jgj*yP4BH!%UGwvIiIw$jzQB9I_HA;Rt<_J**HI4?NyS}zP^z|=(n;H+tjk_P95GD z^l{H>yQcNK-<{o2Q6*x1%S-;COvpEGP#u{dtCgL-{_`xq_wy_G8tS`s`glR(`rCz2(g0=E)!TO`o(q^vwCh$r%U8s54>g+dH(vu zYs`mSE3Q_})?EBo@6-XtyFIIoUz_JelwIKV7+!^&JGU90@h78!lepWgl2e*a~6jdkDq7Ym%1&FRawzjEjG zq1bidF_XXkjqbmA#ymY`$=@5(yes!#;IO~^cG>3ihN9{#>G%5rrL5SJ;&$$v#r470 zd=In!&R@3R(JApS?ceRV_g7s1e5)|W>)Pkag*N&%=5MQO&1RWu8CdDnsO-8{t}Y}z z{rG}ex@#==-#Yd5d$q$U2i1UkG4{V}cVxVnSnQtsFMIXsvq%YOVPLXG2af#+{O7(BJ}y$+vi^`uwF6K zo|$uPePneypJZM5^G}swHyff=o$eL?o9@H@V_*7T9=%z7LMPw8a9SL{<1y=x$(Oeu z3cKpXrgKBEz>F`c<>Q_C6-&*T{6$(We+@JHW^`$4vV?FmhYj=g8R852V@`j%aKid= zVpPhKOx^oETzfCOewuhkZIbQvUR`}wIo<-EO{+L6naWr+UtVE2G4)-oNc>%c6{S0# zEdI)9V;kVq5`U)pV%5>Lrw%Xem3p!L%T{Nmo40<)2t7^RH6`0*R`K46Kcj~fKduS?0!I3oTz=lwB`Z723$yIs+_`pgXT)7p;>yMJA-al6;Q zX4`6x;tJmc?s@a8{Nc{Np#MkpX z=I_|8+rOr>^iAcv<=^k*Fu7G9+Z;D(Yx{QH>EgeeclWQla{2ywrEZ($f%9j+Hk|k5 z^S%79C*D1MyHd?($qm2TXLjrUwVxyY`04aZ^2?__wW@!7{`kK7{+G+XdCxDJC9H_d|9Yuf z$NhbE>#J7{kztc|?J@h3WAaX`=4VD##a_E}$#(H>Gu>?s?%Q*{IR2n;e{Ea(m21~e zKS}OAcGvZ(fd0;JWpCoYr(18xcYi*I?{&-ed;fX<+>wp%ZGI(K{+Y>U^V=&{#@=cB zjIE*y_kBB|8U5h(#sv%Z6rEmKUh}eW0jqn#58dxSXV*$*Jm1t&y4C3F!|i5^uDeL_CQ)Zs8C1Z1YTav-?9gHDmB^f<@ zvx@^8PA}R!>&=rB-rXNQE6aYBE?7D>ctxE|YkKJeE2b9?W^6zH+%7J(OW1HBC40fF z=EZv5d@(xf=HHG9Irv*+dezyT(O+()d72l$+LUc&_S0p@nH$Ia zxbX(x@kH}xvJylr7q;kH*Z?^}~3(0$zg z`E#Le?NvRSe4Vq49%k#SPdh0m!y4*-ziD=WbF9Ux)n0X64J+3!{No;H%e(%~PB&>0 znZwI+_a)t4u_&K=f&IOh&(X6tOHO!pR_b=&LITJ+<0Rz36uTA?F)%b`Cbrru;nDchbb*{HaStR}W7(nLPQ=*Fw>!EAMk} zu`!zY;l>q{o7O&N=hU*er?P)nUcmEt)Az0Qn)P?~SN7bk`PuxVP5OS*Y`xvpOIu`h zw=jNq&-mx^V|D-7fMY*r*_Op!eEC;cobiVl!+rJ#n$M@r{ybmKVh79m-Jd0YEdIUD z!NmUN&KZGa^QWs6o;%M9 zKYc=zUBK;UdQ5+PI@iAE`rfj>lCx)p+?(iLAJ3?_{MO#BCLeU#wbFn^nGdopeZ8^EVGW zw!naZ*UM}#f3%S{tGgladhHM2%@OJU0q0 zPSQM?l34UP^_@q(Wye-A@r|+bB;T* z-xZQN*Zs`?EjB*dKVwVmp2CN>>gAV|S4G#E%}Xx1&vQv+fu-w}ozE*>7>eZH8qZi< zYLuJO5PgMjuUNwCD?4UMMVMrKd=7T;#21KQs>x$IUm>bIsDE(r_T0c zhkA;bm)$s?WU{6=QMzAx zO4*z=hSdyG!h!W4j2{=5#H4wCDznRGnC10xuXvXV=n9pJjmnsq-bg%!q!vFE%zQuDY zXNpbOXky^qxc|+(+V6hPUE+8nTV{PcdjHbq=VAG^+w<2;RosnsxU*wR&)+5Ne-`N; zJf1h}YTR_A2FVbcFtbl*?OTi-u4g~!u9|i2S=zJWDch3Rk}VE(@6DMf{{QrHu?nf} z?tQz0y1q?YnkxCi>qN&_W_SJ7a}TDR?}~}O9~{tDx|Atk*>j6ct6F{=^8bA&f7@zS zT=>qsqY)`vZ!gVhR(x`Do70-&{N&zL^H=@1+;Z4w-P_z7ku(4K>(b>r?T?)eKV?3d zDdAR`;;vciR>!<{(_fI!K3DneUY?XSlg{l`zBB9JzUCA6+^76!dTYG#{muBkbu3BM zpG~JHr}pMlZ99Hb`cTpNQ?mj--qC)4?DYD2V?FzCo^LX=@Agaf|Jn%3mjcfhz0374 zdiV0nzs~85KSUYsb3M3JeCAxGZ@b2isr_||bx#hTKfo?O&vhx^$G3d7q0v&D3-^1U zFm`)!_KLsb#fkEjDKl0Eyo<|w?{ihPbEZx33GdI_%Y#&APXzYSXXZ`{eo( z5(|2-nz^^0RSh@T?l8ske$ZZ<60H+H*K?Q6+jrWgXW5Sv#{cI}yx0HrTjq`BcT9!v z{CpgCI{3G+_T|fKW*>T!bm?Ep{;mGsYbRTF$E>QU?mRYWPPXaRu9&B51xlNlxRWh^ zm$IH}shqmS=6c5dX>(7uE&j3Sa$kJs<16(yjpJ@f{@n38+iFq9qfPr#Hf+1_dFAiB z)2-ze-s-!v?N{^UH6z_R)D;=ZMxGH=0-NG+q%dtdy~@JHKhgneAV_YUa|d* zMSGL2OXMu$16~QIBTuK#iH0O`l|P9e_U|BzV+Xsy>b1zufO_TN&R*v%z4hVaNTOvsAD(9RJQHo{qX4D ziqxoo!G^N0lHCv5H5}K7vSNSRv)zj!GDb4=!`?&rJIpi;U!9w#FzwhIMfNT)X7j)~ z-JTU2tO`Y6P0G`nYFsjNYDE6z&>pebmyI%xU+3H8YAGRkBICfKr!S9B)%)JHePwO; z`lyg6pXOb?ek*x%!-9GGnKy;fqv!G7*7w_7v+v*!=2vsv8MEdtic$TvF7r0i2Xm?K zT&K5f`)E>s{KEU)e^T`Hx4m0Zx#q`=nU42Xo@~yZ9{FVsfB(e2Pxh_jdaSjkE!|h| z8oywa(v#aM3CR{8(*B;ltrC`L{_e=z-1F#nO!#I|UWYr*{7g-!PF?4@=zZdwsLI~&k59z^ zDN2|VY^nQsU7XY1XXig{*itN##qw0bVtct##+#>E)dfqkC8w<1AF5Se|LXI{Yrpf3 z#_bd_kFE2+;BEctMG%8N`-fNWcYVF}{qO1Tb#IuT&svyka%tvs*17lWKe{s1NgObr zmmR0aQuUkp`h(K)dp*15EzM@|RWHwYdxdE=pa0d_CJrI;pKFWFqF4Qlc1v65{#4TP zwRg9_5kp(7g;nobO|9q0EPMT~OKdcKwoX4g#JZg8b0f#)B(sbu0{d6~yf)$7owHV7 z4dktSGiBYrR|QQzxg_IjQMl_KdEZ+(TBmMlvpxL%Z=>mj^Y62|cJw68+Z*?+;re^k zPt|AQZF-~6t~A~GeSfIbnc(~U6`IDUrvLo5alJx`fA-(FC995CoHErHYLx1G`(@*W z@2<7S_S(O%#rkH(dF#=o;o}a?at@1?SI2bGVV5QTp)xOU7cA z1+KF`S3K6R-G7Y7L^rkUc=RGB)mL*WuBb;{nQ_iTY9V`u$=yZCuh#tivf_l~8|RK~ z*;Xs8{-+bvlAG4}lpUXT;y}jKYZLCRUtGGEGq7luS=6V`w+b$PJGy`A zs#MA4R_RUaBI8#duDYvy(7kwC*s4=zlc%rq%hI(7`}O{(oZffaTY9$yvUGbI4pf}c zzwN$Q+30#|;%X`8$Q?Fc4_NSXFX;RCqrg_mc=OY1UxL2;IkIKfqbKjxq9y<69&oDs z`Tf_IJ4sd>cIdz0q-n#)-YlzHw)B=uST9^h|T}?4BKOy$%^~mlfC>p=12` zwpT*znbMTmy_IQoi}xrM*8Qx^_-p)5xqZs+tKuhq2W-)to6gET(|m5evC+S8FKl)B zKh1s}BzXG9v&e@xo6IFX+(^DxAyZ&m`8O$hJ}=k0y-$KGj`HRoT|58(LC4;5l`pFq z_I>_wGWhvhzP*9>ZI^?VKZ!Ez6F;z>dB+Rzc&}~04d?p3pT++CWS-8PARI9L^vzE< z>R#7|=6?LkA@ytTn*uhocn0pR?`3x~&L)zPnFmrdYJz`Kyir~2=QcTWq~ zY4(1c|K;Z2bK>dl&y!^9?v?%3T3UWg!DfE_$KB`aPPKoGw|)ElQh8a)zsoE4?~=6tI#GQ4 z>pOLy)3;UKm^SbCT6fjo5pTjj{M=?*+GBhmeNRvLc8puzmtGdX>C9u5|cE!^K`_T9bo$uxF>L+qSZfp^<84oXdTo8up* z_WvBC{uV2fe_p)1(%HVhscxCgwyaQkX3d}59ZMT$mpxHyF3ZS`KeXwb;|ZYyfoz_# zDJ3%{`)_TYteUKTo2OyRaxN#y`%6!&PGYPJ`^I8@Yii?dsbkY_f2xg6WsuHixutWw z{Zrs<$@X2lHd*qN*lU|J|J3Q%viZEKH+98vjdhhKo2Hgu^aAbGhgOUvc2iX09_04G`HsV#MOy5+rIzWx3FQ}((`Zh z*RA$e?Y>iNUGgt)-pz$M)}Op~-Y+<46dX6RpI7O?smdGA^w{_P-ewqg$1YuS#oW8M zx2x`4{+4Hh?~B})C$`?RYyTTsHyLl6d|uP$e%o1*kof7P`!e<8zq-sclo#E&K5M4* zLuL8wz`XdHqqR5oKkT)r`&fJ9Vpx^Pf&Gjh&iBu^`Fdbynp>vD+Iieod+U>!KHO*c z!N_oZZgk$c`d?Sl`15x>fBEBVzx?sU-isW`x6E>x1D~d3#b5qX$ouZYoKTMXyDj&_ zUM;q{7IM#G`Wcm^4QDIfe7>^l<7Z=OJ+2o!i*Lm6p4sTXxAx`UlYxh8=e;Z4xx#yE z#B|dKtPD0xhSmZHpU&_%x?}F3dF*N7$%{v)%$=|{Sn9j;bmmobQ?|*w_>>J@Kexy{lG}gph=)(VQ*AcmA1}=nTUP0& z&f0%9eW!?#O7_y%A8(xdc`{|<*Z)3owg05n9^a*So$*`u@9E!9zVSG@r{?eMtC?4} zZ(bc?zWV;3D}Cpm{N18@C;s`=%EwFN=dYW-P;YHaxQ*Ch<)*xi{VTZV_DA2fyPkXb zb9V01fdtS_cylCf_H?vD#eb~%u zHvM3qU_xJwP1}nPoBv!{nN(`VK1()q=3B4rU!*EuTzga_x;=Hr;iGHPSwFd1FNiJM z+j^{0V*fLrhwt}G9C-fq`L8Ph%R8SbWG6pv*#6e{gL1-Jp7J#n(pST}7|&kJHD*e9 zJMU@kd7hdl`9C9ny;x)Dd9=oN+O>MU+rLfXKD+MU)%|HV!^;Kl9v;8{pX<)Y4_DvL z`@UQ0`!T-#XWA|(o7_CPdbLACn9e@3TLzmVE2^cnODFP&vNNP9W#euuaxfd z(s_<{|NG`KPvg_Od8bM2Vw$_tqD8ggeNP{~x2TUg-g!Wi`RJP!K5BLTl@Fe0P2Akq z>F{jRmP3!Ws0OUMCd9BZp;IX0=-b7sMRI5J6uf@FbDMeHPwPgr*EuhK*Gg8*y!-gQ z?5esee>Q&TK2+>~C*$Juxd&@wHeY&rF;^h!!0TIkg>zd1?^X3{GSAZCz0J=flKQRZ z?sw5hK896)52aiTuAOJAuxvr%`StDsSt*e@i#b+g#OB(~|JglT%;pxi_sB_xFE$QgQc0YWk*hITPLH+{KH(+)O@NlV!&HccXKXR&DyiuJ>JQt)?GVsaSiXz{+}=TIgA2q zO|!CD59a=n>56gx>+yTx#FG_T(l-BB^*>O(zL!hBMN#QqwD#s0Bj zo?!Gfz5K)vrOStc&QIi7`ZrXe>8`cy`Ca*nkAo|plmr&NTO;rP$*xpG-|Lyj{gUs` zY&K_B|6AQ4fBjU^$=e>4&$e$WJMF_g*Xi@Dvpa932r`CD>)jf^zy1p2eV#v;%>wv- znZ<{PSN_iA(%ZZL{AoQ_w>|s6RbQ>%toJzbY;7@Pns>9sp+B|O(>}h)z5bf%{d~z6 zcNq={9G(8M*U)f9`0F&wTbHX+4=&3yn0oWcnypD%drTfgxp;ora?C$1?d9JYYI$5U z=D)ny7gxmgspoUt^R?@pO>}&%tNx$+@vbrMvHkC+(^B>`_2l+HH|nZw{krzrB=651 ze$xzJ2d;arw(_#a;{I1B&i~%^U9i^lPWNx6+C9D@_jyY6JKnzBe9z<~PoMqofw1}q?ehAm7LAM37%qt2-hBAz+$$W($Lr31f9!NGUGH+i zoVqQGubt9!uu2m#d2(~s>EhGJz6$M6KG&KPl6JdR;>G4)E7=SZPRr=%L~pZr_Dgxs z+{p8RW|kKYgfTroy?OD|^gb0ft_HhX`Tb8$e|=S+ZTidtvqt=8Y!aogn-w&j-YDl+E&c-4HbVEoSC)9$mnm)q2s z*8O4DKYsApjRo>&mPDJ}wY(XecC^4m`nzJ;zf`gGELrjQyV=WF6d4QlU3#y3@l8a4 z?s}b6jT33_x9`$jFiX~Z<^2_(HEj2N+w=B!{>F20Va)t1?@e1S|GFcrpCfG6-LR%N zmWwtD1z0rA_)+2iIP~;+vo#xfBx6iJ=*rmcJh3QV@UxBZ&&yl*ejF{gaN5AQ?#d;u zIffhk);p}wfAHX}NBk#S_Q0EJ39>Su*^=&G-ooXw%I4V%d;5Qr4{F8he>wNl)Ka@) zS<#m7rn9&{6h8g))cv>PrHyNJ-ggC7AMvQYmKwI~bVDN_`*n*={yzi#n&TpWScv>g z{hIRo=+nb*Ext*t@H@BYwU6I|=UM6>|9aio*qdJb=Y-wm>N#f7FSFursce;T-5gn6 zJo8Q-*MYCmmDTgyFV>WOYF+9$$uHM&>-w3~ee5LHn{B(9)))A6UOgMvFRMejuXL<} z_U1;)Gd(@JZM$porgTB2=|0zPX9&qz@=vYa^8azf|2^GuM^CS-7N1xBG&lXk!RI=A zc@NlI)qT1$`<$urfr$5WO+gbuYM?tk@7sdc6#i?U*E4^|z(1pgp&R#H%xuK^;o%I?a6z3a;7Ifo&V~fQ@TWWhug`& zZ(f|!i)7R&%GbLf_NZ{ZGV_0%XIE<%I840%xa`as`P|ym{ZF60{90$v7IEz3?!0Mr zb2kOrU29q#lD#)%?&M#D)L zpUM^53`x~6~~6;=j$JgHh%SUUw!PJ@{ar+-{$_UvP7?3`&L-?zEN=6{*z(KOd)Jq)pKv|ai5i3a{1n;n;LH4 zTz^*BF4DP}vNZR|+oHRw^{v-yF0OyDsPnOSS;@Z3>+k%u+4J&VI@{^Pw{9tY*M|a+v$9MHSzjcZ<9J-6Tx8t8d^DWzxS!oxFRG#D z$g-vhQnuSCDr;DFO*+WOHhD*#PBrWCJx^`&`+g-~IQ{d*{p?&ert*nfeqWN?!`OUq z|Cag?mIo8Vi(O9@X?|&#nD_K){_VnhTuC!y-dNYB$-j_!_vg8d!OB{}e(9cEtItnT zzkQD4`&F=aNA9LQO?ihTE^Md_I>_QH{M&KAt?bF_nSWDWN=#U7Fnjf)1=oA)^!ph? z=1DG*oLg~VlcBC9Q}i_rruM?%si*93xh(lE=onOeY|qPW?{$IT2WR$jHz4qV@JS?#^&yiyR7Fo+V6VLwd3V8lOh}Kj;Yp8Q-AEV z+WGsW^)su_&nEK8?7i^(Uh(2!hi}&}O>B-OWb7YMWlwuz%fD z@l6(NzI(?l5RNb-miaSl+$wO zWiAWMd%Qj7__PJ*|J2RTSDW7BKhJv8u9tTHa{KRm|DC#h=j*L0%)czy%gcBFT=%Je zw%iW6+h2FMz5TkswCr+GZOW^yuRdIyBRfs&m#oi%-QQnH-|rHSFRl*SF8lVyo6ED` z)vAGJjP#OslnXH0iPe1H!(7eQapSjHcIXemZnh7ZHS3?B`<1Hv^XSaG>8{KZfBkr2 z*Jsfe*Bi9?{U=HPvc1nf1iQzvO}ge7nZ5fvZ^YwjE}czmXV1+xY-g6Ax%8ZH{?eJ^ ztRKy~W&YeayP{fqYU20JpEW-H+@n_`bs=oJQF>pW?)kO8In$E75C1+;)4u=yicLj3 zT^5}0lSoaUY$>5WiMO9~+U`gPJ@0vr$to}Z@z!^N);E=vBwmP@k7=v__wGN_1iK|i z_THYm_~OIos~35Q@n-y;*T@+w*>~zpPGH@-`}ZH0YjGq@d~7St&%MD+l|j8_XWHv$uMa4ByGMs}!ED)|Cu~f#r#b95GuFxEW}L+JK=Qua-1c{t%?+$FmD{Im zo3cs9g7yERp%IG$#j`f7ktKX#Y#smd)<=_CFr-tNyshi7=Nxcl%g(s@7$@ z|F6jw@kRH1ran1w{&AM-sRMQC3RC6ou1wupw%qc@@us-qUWqv$Dq}By-c#-IS#bTX zP0D8OHEE>@_afQs-XGC8o^y5P%Wfb0)a;nK?7r@jh6hs5@4RDS|EbcuHe}j5pRIfw zkGmFJ{qe{n*l+sH>^b3Ql=CDmuie2m&och=ewmralpPOV(TR%5HQjgok4(}$^BZ}W zZ9?N>%-2m`cCqa0wuFCQDreUVld@_sqw-`-s|^B>+k;OyW`Id=gyQe zl`jGf@+=V4Kr?1*^UFix?_I8|0Y^KHt>)@3h!iWX_)(XMZfMUU$@a zwqb$D-1ap~-29^bFRuPJL;JA$n|TaXM`f2s$Azu`eDwE>>tgD*{k4@Df84G+`u;qr zq~*4%He}w+<-78=W-(mk2~J)(ea=jyf6@=iirlyBNgkir=e}^?-bK4ldky^l8#kY0a zysUj)_t~yYe7MZuz~8JGue@pcG7>wEzvOJVu-H1cG^*k03cu3!qebbFQxzifx-WgK znDX)DY5v%%mG87wZtEoZOkWb&QkbTcn)-6@3HSfo`kc#M-G3U$%zG{4zdE`2NOc&$ znPBq%@VoC$i}Y`Pcw+C{tIXE{n`Fr7->xBi@4%ciQ+s!Yu@5BE3jtUFfDF0E1P`C}97FGe-1 zNt?D`nHUotS=F;DDpuy>u|DR@%ebT}?){sS-kO{4dBr3*_q$9-@9sqx|9&#(c~i`t z+wA+Gsk-m^Bhzo+Hg0?T{?HGeZJB~gc&@p~dZmoT>+W9%Mdbw*KANuu; zjrDqbmHfYly6S~5@4b`OdTyPYb+CTVID3)X^h@yX=pXgJ49mjQ=Xo1`M)f-XN&RPqg=hmPtR+JW>XTYm@@xr%t2%Q#qsLa z9pSgPztcItO#0Nat5d_3A4=E1)xQ-6E;~^W*P4Z)PY3e zvz~mlRQ6A*Y_`9I!Ri-prKTyauls5F{P5GG+qUet4OsC_g1Oo8|D}A^M-yU(@=gb|yCw5<4U9VpH%8fnWOf|uDzg>BQujBsLmplJ|yR+7$w9Ad7 zdFRP9^GxM#UP(?~)ME6D^WyTm8xO~vmi##Jqtwq^&kWA>oQYw2ck9LS_h(!l{3%NR z-Jx_Lbr179o_-}Q`k6P$M^J?MFmk#Rzb)|32d zeV3xxsJol4K`Z9-wJQSpuw#bq)+ zv0W3>&brmik>64OAdzK)x0a$&d+xUoOM}7 zTl!7>f4`c)Ter(@OtZdqQP{n`^pO1geWLdD*SP~$yFNKSaT9y_3t5%hRzGfNFmS)v z$jSZHxnj$Ht3MSN^RKs?Jd!xGF}wfP<`s_Y%*Sv0UHJ6SV|PwjoV$yOePi{=Ig3sD{NO`&b(N(B~s67LdEPU#~b>; zR4x^{xGUheMRSSZj@eOvd*bJn?pPape)@+yui`t!S&OcE9;>}MH@MZIaJ}^P@9*#b z*=_Oh$$p=djf+2bzWe({^vA~Uwajuhdqjk*3Vcp7?5sKc+UJeKmTcQ|+rA!Jy2rLF z;qoUVflKok9oEWCO%RNC+ZFU;`?YCoc8M#uKi~SogXz|f8NUC*=0A<_sGGCj?bA#1 zFIy75A9~U-BZkdy- zb$`{#WV^}5+rqA{eHC+Wgj}ragUle24qZ569M=aa-N|eAl^tn`0fvd34TIq*l+r z&J&a8_GjP6fR}R14J&WnNZ-)&Tjs*|lT8`SQBtf$Gp7r7tYgrb&VFQDc*BfT7O(ea zRs3HzuGwT{;Ia7Yo_CYlKc14l*A;E|-}&ThYp)mI8TUNKOhryq0z>XL&HseO}A|g6FzFHnZz3-fiabTkZAq+cj%1AI*5UXRWqHgy6v@Ew9Dr zj|V;Ndv>NYF<*A>_6#QD^ldEZ>4pt`^C#AXlxF2#J$v+-(2HC5J9d80HRoLav9~AQ zEVj>RPtrPNh34BjOm%y<6gRX)pGiIUa!T{PFP-kCRXZ=Hbkw9@Z~fOB9KyQm*R9(# zTYi;4lDHstsqXe{Q69aN)B7`RRKEh)7=-F z{=3O?W?ISSozEZq;V_uHeodXQ+v!x<<2N5xZR|N7w*T$-Ek4zDx}{%vrDs;}ysp3c zbN)<&Ut!NS7Io||zC8ay<#GECqX{?r%1X>$Znygu^XHiR{+>BEEJrIR4Z|u3g^!&Byx_ zi!<0_w0T4fUU%;Im#Ca+DqCNE^wkM>M#K598XiU(o)b{B&u1@_x@ldda&^UDU0rt} z7r7E&p-RWehNtgaK0o1D{$pzE_DFYQjoiS7X}h<_@7LAO>%UpD$Dp6fO^jjsTid4h zJHAf;_@ukcU1RR~FZH!QRCl~>Tt4yfjo;h1ewK@EH_S~4{lv4OW9Cme`OT3}XU)CF z@*Vo=##jjPfCn{xTQ#AwAk5I2zuBcCs^LK7tu|_b!+&GH$f$`0# z5=r;+$a!muZ%v%uz2L{r!eb6Mcsj22&5u+|1|*B@TP53H*)YxU3)xwm95ypLpye!OTBPAe53!5IY;gvNIUgxvD5h}Nmp*q ziK=9`?Pu8WeD>Fs|E~1yo1a!(@3=OTY+En? zv>kocwb$R(o)n#b!2He!wV29}e{Wn2yT$P1JHx-1A15!j`{*KWwoS#388m(C%CL|3 zz<0)qQ^Jwg(wS{H&HS+W`< z-Pb*R@+?p%QucX_5wn)9|39_^uR=nnf0k5V91$0GEF$&$tH7%tH1_|T$&~r0>{{Kt z*?W&`*=7gNlbc}Ee`Wj9yZyiSY~Hu5@0&(vSHxsX*OE5o7t1Q&b*GChJY4hSEkn<( z9ACcT+?zYf<+44lKY#zYiC^$U#kcZ^A~pSJyDtorp9$X9+7|t0|6jX*Ps^GAEYVAy z)&J^AxyGXPOb^SK<$A4Nd3siTbme?woKTl=%kCS z^l5WB%jX)mZ>+n0U@y;uHpYu<75fwA{3 zdo$h}n_uh5?w>39UPpCp{=TCNlGy%h1#s!<^(X!RWq;gz-OjzeGi2Ysh`H!^_pp53 zqsSjytM@UnmzG_>QU0w)@3M#JbvqmHU%MBtHQsZ$tgnvg!hsoQA}zAl-%C7pKYjMs zGa1@WoKh#|eXKqgzh#;H`orgyWvc`9Hrqr>hn;GFI>(Yx>*@MGFZ&9f?Kat2X&1(} z;F_P!xf7Q*r%KD#St%b)Hhx?fvr%vBUHyl5b+RU|4P^VqGviy;uESPV9o6hM+vhV? zaXs6(X5x~Q4u0JwTX*e$a;yB2==J@))>if}uf*T&ng8oVH)F@yZ48y!tC`-NRpt(N zw7$kWQ+eH?MMq=w)5Aix^z_D;JdkSmR}oO@e_6ZY#PQCw)UCg^noDy=QcY1|Ge?ZH1qkZmrS{-7`FVPVCT)> z)AmnYt>HJbr_xL=t-bc>eA#=L9^8I^vgZ|2}_t`q;eIGe? zR7-MwS#j_Awy=V0^}lNp9E98rS3SR&BAHvfmGSrDAY0!rpQQL>>~*hyO5Io6EY%dV zV}C~c*^3# z7cRT)v9@Sd&$ZXrPp^F+Jnho5j;2jJzL)HmDK=Rbofr1BHsJLlg}{Gqb=&XP$3~zbxz3<+A zc%1(w_tyO#8sTqkq9j*bb`^i}iiPP|pNdMVsEe-5*1~nOtCzP5$IpH$R37r(dh5>E zn?Dci37e#}1GW}`F(a_^V@H5p{o&keJ1%{^XRTPy^1b%TtqZB=Hk{AomVVxGRQI<7ki-0%v}4%Wx{d> z4eklsuQLXy?m3)#B-yyQJzjeI+Z#SC6ZDurg_wsVSO#4=ep@DYhs?_zPcrjUFV>wE z5}8oEK8HylHL!$rs;|ZZmwgg0o0Gk`SJhYZ7dAIF))z-gUwIncT-Lw%;~L*yecNY~ z8;{I?ql#eW{rP>((O`IY4@{w!mL!gnc24%a%KCtdrUH*+=nVejXQkM51x@?FPY z+I-@4jyW$inZm-@t{nMzSKc}+b5GvCeXcy|5B!$yj}(#Y=Z*XN(yQ~i$~OIo`jp&d z4g!<5?CrHEUK9A~T>Sj`OlI@?-9@rOrdL@{VP{+L<4Cj8rUyndm*3cD7(Z<;Q_bFV zoo)Rm54i1Fm$K7u*TnAB=es6;p0RXAvak6}#xwEn4JEe9e>a~#H9p(Ev}>E<_VNqw zk2v2yzWDF-O3P;-Mf%sCKQCIe_n>-RfqdcYf;(mocN!9F&t~6YK67fjo7FXi?>ClD z5s#Dqa!+pmweOp^vRxJxx9yr9_ubFt`>Aqu%XbyY7H>~Tm{l3rCc)Bl3&!@sIu}%9-I!;fD zU^kzxwEvv1PCm=JO_9r!XHM6(balut`N2~BI8}@P@%0tF8QvNEv0FnPmfNL;uHSL; zVSc*JsvhIZm**W>tZ?^en85ApzvnJJ&1m#E`EA{@@EzMMk8Vr9Fzx55Zw$wpulALF zSvqUauKDNZ9p78E(ako(HmWA2O1+Q$uK(_{cfzKBjrxD~tIg}IxAI)y49}nWzDD~r zQ_|~CnRScj_j{y?U2W%@!YS_0Uh$Q;zU#UCe}`Xpr^vp2k#i|=?uXm*)p~WGlh5b+ z1;t)r)8g;$Qb=j`(mKzXG2MUM=3kyJcc_pKaYRppZ9O}j+9%Cb@$%;8{MW7w*(=XZ+J9;bV~F=fF;0p1m2=gZL?r)g zvNHX-{jsC^FF8e5_VDQIN0e=QB^pdVe7NxJ`lD2zqgxleo*38nCw3px^Qomv@~uwv zS3gmaHV0M`jgX!}{pZBeADxP_>IQ#m=X@7m>{>*8N^-kaB zn0q~@KVyC2?hWpVBAqiUdrFS>Jh9#SSl4$;%OCyQA8ziRqyIv7^Zv$+|C{E{=%|{;++F?U;>_P1w~kpcSRR<~YTNhAQ!O~)X2Yw#y1fj$%I2k?+OzRi z+8W`V`;TtC>7IVC=4bPb{U6Wn__(Qh!(!!&^-Le;f<~qPryE_~s9MmEr=$D}Rq+h$|HJZ=c$JG8IUn-UF8PA2!B{%B?l*72+7{mr^s@j+rU#++H zXV4e_R3pjb^uY3+eL&skmnW_+ZI*vi@%6iRINS5-D2_w<-}QcFy6$j!eet?mX0x8} z^?Ph&jh5S@?Z`B`9 zch7J4E!91BZt|Ih$N9wei_bsLeT?JKN5gJ6o6|dm*OYrPU3{4S{+!M4b+xR&x6HBR zW!iC+Prml}t98~VOr3nb+PSl)ZRWJLk9=HpGh@%Ktx*?)J<{D3ZwjsyGdp%3irrB=BYk#%zGGdp=DeHTMw$1VHJ^LIM?LbFmDF8mx2u%>*U!Jl=EWYJSt?PH z4N>g3HP-xlDqR;@C;D^yKL+-fJOWQN?9}?&Rwppzu+>^Hh3*fW?kZ}=-LJ&(x8iu5 zl<|d-rVpDQt4rE!USV^f|ENrD^f}!EHhyl`oiA#=rgHUorO1x+*S&u2`+F_JwD-&Q->;@>6s+gj&S4*X_rd2Hn{yYQ zeY(gIsBrR4M^{F0#+T4*$yeG^6dLL{nzsvKA-?8{N`ls}tn4k7KX#bX3&H3-O2h(FK#pBBU&Mx@5@vixb zeusXhALb1IZh}s=_~VmOQKDV!u>8Bf55vD~278VNyN;i|m~JV%=)sfYdB^l?zew4X zSgigjCoyBagwLzFi(jl$KDzSErdH`6wLEB)SDbZh!Ge^b?;Z!fnsPvKkETYOPnPoFj5Z`{=FXCqE5S?>7m zW}@W9J>7qcVt((~^JHa|quR6W?5Vc*o$@o}j+_+oH0k@d$j;Thv?wJ$e(|lo&nc46 z8r1vyb@ZPpzP_*ZeR1&ntj+Q6Gue_WlMMtKu9*KnoxkzrweN!0j2RBixO?n(GIP^b zyI;HYTVHR>6+7AYk!6Q$4FA#UD7pV~-`fK#=d6F(eKBTr{*NS;S8ti#s>gUOyT~OG zvA@FV!2P{1b$@he+bc=sxLaHO-m;Q)|G$g+$KTidu@qrk_&8tf^1Fi%ub=Js*Ju5> zM)0NPDJF)m3+6oKKBarR^mL!@{e`EJFT17gUvU1@h78xZ3q`gwe3Wg&+V8hm8eN#{ zadFv${WBl0+4BEx=aSt;+*4nl<7j<2BY(^CH$68O8`)$n=${qRD=X`pH_>N>MTSw| z@z|ec`*$p!{d4})^!rnLf}Y!GJd-Td%&g19pi#M0bSO3@kIGsOM_?Wx`-~LS&e_oZXUc;DB zpf2^`?-WOqKBg<#j~NB_I^Gv4sl6tD`ML7J1FLt*q`$nMxZ1lmEn&l!75cx!;^Ood z=r|~K%-_^d^6hrt#GKNV#lAnH8&f;ISR4e??=cn237&fJ@ji1cpUAnIbIP;&ANJ%5 zGG44GS$_I(UHi6$D;)fU`);>12i{a;zEIn@>$b_wk5RVk0v_*KYqhH1F6nhC58t_! zk}Vs*{Lyu-FJIRCVdBT9JG*68zRAfkd~y8m?N^hVn*y&T?QGw8)@IY=>fC>3KX1hx zGHZ6beS_y<@$#+n7-c3{6=WM65P6>bZ(3fw88hQK@AZ!z&TB{HANju1_xrS{)Z<&C zZXOfA%_dVgzcEJnUh=)YXOE^Ditg|=dUXC(UQLALs^V*@Vh5#8A7<3Pew0guO;+s5 z#r&wGIMIxdfF9e1tn#m=Pv_)$dohw_&{W=}uH{91Wy*Jh2a6MHJ>HGfF3 zk<0$;ryN(y%W$&0F@a6fyNLHlvP0Qg7^Rl6%k zY~@}2*ZTjyoc99y`@WUgynj``#q?fZ*h@Kv`^*o%f-3G9rrT-7>n^?gD}0_Ew5amY z$0wh6I@NzWaP`MY>-lZF<#%?3Jf3Ol$j5Z`p>5selgt0d_v95*%V(%Lyaan83n zZm;6Am;F7OY7w9MdtudLMQzi#Y{`k`+M)BGe(DU`GR4aG*tbi6KHn*+`FQEXFOlzG z@5MZjN~_)GpZqi{ij{eD$>WdjDx>o<-mI06X4tN>yTLc3Qg+em-On}Utpyv_-)ISuT)((iG5y@` ziSK5Hez?0MwKy-Ud~F)visvG)ug0i$R3EC)kB==&$VxD z@2+sn;`YB#YircaXcGTp<7Hi|&pdx#l&@H4{YS*$@zHg9vz8x=elPQR#ikbymR*PQ zl`C&^JeN%05@Gf{)G@}UIP%Qv6OpVdoRv;>%jyM||K2@qzW#^WkNK6W4xj&&xHF|_ zi_wjVM%i~Y&$>Hay{UNcV$ru=_buB?+_!I+@lIl6)r~rr^6HN(rziva6tR=mGta%- zUhit{wpQNW>P+gs_FYrn8Z6rS`0Mn0?fJW(UN5|PZ~5d)Hu(Lxx_cj2{?6|+ z8LHavZwx97xVvhm*n%_1WaX118^ltdySw}|IzQJ%y;=>hRg+5*3I8pcY@Pot{-|Qz*C9$`E@AZ4SqB^cr{!r?%^c^C<-Zr?$ z&#HUh|F)CkiR*+5&qJ?2y~z0PvEl6Wowifz&k1+@EdJ>gS^fF@i5}(N24ktUTh{FT zQ}IP^3d>$=&t03&B;P43R26TO==~H_-JCjUsl2N~d;_DJFHJq`u9fqAgxl z4PWGo-iuB@nmi}`_O0^A-@hg8yw$(;-nV^GKlW^USe7(F@3r?gzSoL+liy}-fAPn1 z{rZUXqrLt64*DHTSQ{<&^rY$2PYpG9TxQF8&rQC4+(z-w>l-U~JOj^F-S3LFdw=-G z#fdN0GW@&vaq{weeth7c4I`>!V9Nl+g z_NP?8TBo^8%~^7JT#}Dn4)t2BR;cf}%w|^D@h2ya zbpQNn6q_AAReSo>r}wjWU6iizf1UpQi}kFVZOuJ>Y!RDQu6S&;ZSkkIrDrQ2Op>Vi ztg81t_IZxf6QR>@Ur#<;`fnZ6el72}!p0S6mzB>~zJJv&{*;M)b9QDa&$OoG)aL#F zS@Vxfw|%O-dhOQ5vU7EReXZUnv;XVH=VhCf1jG-^`9Aed^FG|b)8A<)w0=uWCF7~< ze7A0XKetE6nn_D<$c#Lx8_aHJM+@~HBXCW&H|BL z&x>akYAd~-b4Dr2;o=Vlr2zSAgF|)>eQSalR`w=Z9=gn6Kiw(Qn~(kH1qN4L|NUQ& zA6RU^**985(P_a$ozp9sf85%0d0(^p*O(_u_b?QmoDxy5+jKtrZhjNTTcIx!QVUL; zH`j2ydEBhHHdCy;^|i~p?65w!ZCk%(Y`QIQf3IDN?cQa^#_>*5jVyDo)mL7<{`ul{ z`Kk~k+PyCfsrn=7q6e)#JVl%Vd3k9jF-2Xa;NQmI^F8A`#0t& zNkN9oFI-hBKfIUR@O8`2u;BX)TgA>Tx)_v`FDZYM%kc5lcbfVP?pbaQZJ#&p;kl4} zbE7ZUuCUz&%$u+N@^zO=<#sq`dRE>$a<5%~sod6$x0=+Lx5i%OyLx}|3;olVzqD?f zcrEm8c;B}zyj5&fKljRgxb*M9;}tDNXVtoGk1tAy+?Ex7{N8g*u`d&gXRayTJg<80 zrxX5tpY8W0In7YR-tb@Yz|-`o8_%Ucvs-P|^ZM@p`Em6}$=4H% z()*^qV_|Kc$J-ExLwm#5uLzB+N{ADcP3jPj=wi%;A?@nf@k#(Rc!9LlLSeHFp? zHfQf%t>8Sh%D_G9o0NWznfruBU;nAzI{HQOmkVB6UHv+7M&YmC>iHreJ-J7=Zr${I z*NoSPG7h!uVco<2{j~Tq`}tXq_ZnVU{^_D!`q$3A0t@eHHSZJ8WLf%g$$QSQc&eoi^^wW#mlin{?IA1hndA#@$4dpCu=HFkW>rU^LI4SzO@XbRru4>tB z>rP+UVym_Bj)=&c&ul^~uVrOn&^#0|$^56Qd-To~+cmIrIL8mrlOHQ8d zH~-l7J3q?yJXpoAP;B)k!##bn+}i3NZ~N`U|DQiTpE-p62H!&V%Iq&uyqP6DUuRug z>#bbAA$50*Zm-^z(y*I$Z6X0@?j^f#2(&+Tc9-VdoEuG{4EnPTxr&ajKAo?2&-Yxy znz!Gc=JOi*zhX&TeYoNT!@d>l)vqsC7T2D+Hs{@?XR;@2cwN$`)(N|(b6R^JSo|gH zxk_+%ujb{ChFL}D=J%%=KQOW~+jG_O)rC*#4`zPe7TJ+5z_#qC^^_c4(UZx|P2sj* zeSb)Y|2=wbW}W-|$X%ZwuKsX~f1e1yY@E=$*Ibc{AN6dD?7vyPX8RjC=6cb8y>{JP zEJ_|37h9C~eYssFCOBhha=|&JmtIVFwytohQfDY{J+`hP$MDtpX-aygc48r&j5gb@ z{JFpH?u*<@p9BB>$+3H6^4~6DpOu(F&%ejmPIP-V3WzI`Bevo$~bAH{(A45!tJgE!|~Sr2p(W zL+G}J2R?oH8u)*X@{}3=th^O_ZtmGN(Pqs($sdO%hTQBF{&VMN^rFnb6?z-(H~MVK zaNTBTDSKOFX77pAlzaQnL<{b1xOZ)V&5di1%06$3^a~W@S+z-qhsAip*&j(8F5XMt zxASgpb?|0_>u3MkGLLu>5x(*%RPS2ueV{z zDe(to-?s%F&|_Y0sx|fZif>cb&pU%0FK8Qeoni zz7{#A56ld8KYpAHo^SQa+dWEt&OQ4;h8pe$d8QBZZN=W%O<%$EqxpBQM*Z31KPji@=5(&R z98xoVT6pX|!Gr+QX)7NIx_*^a?&0z}zWKEBtc_|b*DRfKe(?tzxl=r8AGdy6yXL>h znfpIa?|YdZ)R9)Z?a9VJJNP1hSM^Pt%p=pAH{JAtnlz_rrJQ%{_C3 zk>&HSw(MAe9M_SbJdy`x{9aEBE@3e|abo}1A9J1d{4ngU+plweO-|{LRE9_ChaMiE zRrA(D_C#%I!iPojpZxfqxwacH7eBUmb1(9orn!bi8!w;1RvVcEZ|0s=E52t`)X|ij zTjo?fUG>np{xc7!HyQ|^d1$_MljBRbzwNKjoil!I|0mWfZ+%^~Zx35fU(CGHXF>Wm zt402Qm==Gybo#x1*}1Y+KRzV=`N1C7SZ!CD`g@+N!S?TpHkXonuZ8(AM2XCs$XHmb zvT}L8dwp2^)6gpU(_hm((;vuBk9@FT_V?Gfl+If0TJOs3k)kxc|LNT(sRM?#`!*-A zo!_Bzz*miZw-l?n8Kl~QtmtU2i)Bfp{Roniz*Q5Vuo&8pvR>oU({nV*NTSR6UKRB;6TS?#U zeCp@rS=D!07JoMS{NOmlrlphImwtJ___4T#2N%iON^ zv|IHe^~}Wb3F(3dUiL3|QlxymIDUrm@4s8vSzoT&bNcTb^KAvOT)$Rip2)wevh;88 z<>Hxp3{NV*E9v==W_aoHjQu~;Ue=nv{u)~Cd)uh*B?reX)8}W8l+FA9%}}V+?T*Q^ zmpl3{8ecjeJ9Dj-RoN$rso6Ht@iHq{{W^DVYyPW`5|WKk%Z@I(Q`KNRJu~Kg3PbFb zcYFPw{Y$UqzVL5m?t;xld*o9DH(fLLm6Q3Hk-U7q`ktI;uBClTQ)Le*s6*vHjC*-vh9aD#W)+?|_Vc~|ft2YdXE_3vNpVrslP^Q6)GmN(}{`cKKb){1puzlhWoExo;}HtmO*D8r8D z)6zdKzyCr1!!K)j`5%Qd>xwULJ|6w?uKds1A6L)stD52O!*^|MAj9oDcN!Moj7f>J z(vwYSw$1-mfBzMeioHz}{{exE?!PX~?ya3ZwbUA&Gw5Y=6+#GOWW4``Dm`f^2aeE zp`Wt;ZeM4&cb|-U@)pti=ZlJ`&X%5@@z|@(T7D1j)}BcD?GI+(PP9vp+A>pmrd31m z!qpL5qUe6VNw(e0uCJ$2TS^D+BH>)$Ule|Xpb&Su}XozBLW=lm_z zcf1?E(a!Smjr;dx>X)C8pMUjNY|Urgc#a(%4-eTmF81>LbgBE`St3;x)_sJwQXk^_Da5g zy?5rEfRB=qCQGE=9SPIdurP(PCrhKH~F{OUXQKs+||mw zHD_O~3Od)g^iBHL_ZH53&s2%Lym8+=EBIT?tc#zk_k|mpGxYqHSly$np5jfG z>%CEx$#<%b?i2657q@_YLb$A^SB&nK1uNejS+|;Z?E;mZ;Z}ckMc;PWS)aUNU%%&1 zjheLhUxD-f#aX=jZd4_?`cb^IRhh`e1%Uy_e+qK1%X!@(ylMNY&3BHUeEq&grv6)_ z{IR>?dB3L2KmEmWS#bW3dbvMod%mAEUt60MSo-yLRp~nB8;%CkCx4yc`)}Uf_YDiL z-`uu|@ksgSX=P6DPd~VG=V@4T-eIL5b^pAYuwuUVp_W)Kz5GFAUMgZ{IHvcZ}5@7|yOX`db4{^O~`^PHo{3MU0dT)JJu zA0YkxXM^CIRW`QQmtRd=ap3Tobsx*Gypw6>>r>&F949xezG2bM8|&+8DzElmJvQrR z=;q5RceZ`ncIDen-GI{%F7M*AOZV?Jle}DEqnW!*_}ER8&54FP-KF@J%CqpC40~*? z=bWZ)H9`Hk!|`p?r|yyUKKU>I>B~30zwG{po%di}{Ii~7Bv+oBo%s51O#Zm6#J zK3UDVL|N+I*B5_()XV=AvZ=iyaDD%rC7YF1ry2{3dWm*FKOm)lJhayuUOg>q+7ipC+fx|Y?|F26 z%{B=;Kb!M$$L@*NXEJ4cr_9_Lohi3+&dkMcb{D?6R<>mJtC;;)?belcZ`!O7|F=&5 z{o-@AOqIOL7rtAed8R`!#W(o*Ba?4cd(GXp7R~uxv0_;`tGDadN~v=*mo2U-6fbYz zcV8>2MqfL2S`^#aXTQ##KRN4M@847U_J@Km*&g4uE?t`I+|r%zW-XO|*&darC+luG z!@Du--K1IFE6RD}Pw$kRm2WHa@%g)Y^Lu6Ij~m{9R4`NTGWT?=hWbwztUs)m`+rJy zN^+F=>czs^;-$8qy!$r(De<}{a_;#gbYT#imBydHDXR#b29q8?DwI zYV5VM@o$f}s+eQ8y~l6Ijfd{@c5Xf*n{jp0_fN+cZ-(I4F!TSmCC&NoCS3ge^1@NGX|q4J?f<#f>xM+e3BxxFRJjZ+5I~uuXz9eNWR|` z|Kkd?fgRoXgBJa?d9~i{24jbZMN?w+&f9{sL`||36qcnw-*-0r`3m{qmx5_O z-`ZX*>p79nBbYgl<{>1gb z@>G`DmzO?XR z=d_Dzm0#8{J=DCsCx6fRId!(_*{Q)yp6N@^Ha@zTJvo_K;`g7JRo_Bm9nZa4e=%Dz z!24VL?b}A(HEaI9|Fv4#|KJ6-6{hPCT)Qaz`pW!h-rqKJE6r}UP5o!K)OC~No#z#W z0zIkW_g3;ve=oY=@G)cAsW11;JemDHWmoPV2J4Eq+g|C-zj*4$;W)3{moJ(n_WB#& zeVpA8>9TP7O*O^(?cWq{KPbKW@x|X)_uJO&n(}A=+kzwS|4xcOW*zr&U!rgM%w;b< z8UEWg?617P+pgfOJkRG3o#p%9Rx|uLt}l?N|LRNe{C`P*?)KX^w9ntK>LPb`+bXx~ zAy>`V|Hy2Z$y_5MboWS(ZglCD6+7m%U5)tq>3B6C*P&PYca&EB|MNa*CSJ?8S zo0|JduWPQaRn(5EjwUSk8_13VLtApOT@$J{zxSF}D#6|g+$J;O8Ga652J`yZi(w$$$vvZLrr`kHz zD<>wfOl1ASD5KvcCi3EKat`aX)uvVJ&drfBeKkC~Bi^!(LsIeXgNa6Z4QM(#6L-M`wF+d3^Oyq&?Rc6Weo^6bD@HqW_N zewu4^KlezDnf;ficu;;Qur`}!BTKjzzgSz7Uef-rgp*tEyn?60_wiW_A9H zn*2P*b^95!OrDXMd?g&5o_!-EcW?-RdWWI(io(R%I=j6*g~`=JmxT@Abb%eN$bp9eZY@ z#M8$~$F6SP?;7_ruEM-xRc6oJwu$yX^NJkaN*_G6XZgp8zxQfp|43U^zdkw5&&tF~{|8;Zh)MuQw6OSujI5OSrL&Jl!mdz_qwGAhM z`P%O9wHI&XK6@D<c2tn!jyqmY<^4x>vcZ zEatQNYj5tKyZpuG+;d-_>|g%(z@%RP8^4-ruWaA9hvUxepE zBle<9Rrl$GRXZxTZ1VdS-dA~bHs7CJldSyRuUdO9UdP{h{I|uOio@?`?XpYZzs?)s z@X1R%eCy=O8*%&MPd_ltm0y1Qw8ZPPKX=_Io<4i(GP|E=3l|p7{&xK04#$;N%zt11 zuvz$R(LUYS^tt`6pPIf!uqM>lTr~SMORQwcUA0|5{haytnyouB`SIhE;*tkFhBhwR z_Sd?pA}?;|jM4}Cp{Fw@B~&Y4)`|BE?t1&GB44%L+HLN;IUg1oYZgt6&Me#&+0VUL zXKrO$-*rj$FLIY%e|tw&8ufn*_-iwVe`0?-&sL|}f2*Z_CuHqB`Mg%G&}#AZ%AlXh z=CeKr_I*6HHZ`2HBmL#4!pYsbp#|IDO|1Jj&$T@B%xRy1vrSL-+})?M^2(-bH|Gdw zJScbnY?$77>Eyk_$!e2l8~ier{$8r{`mdnN$9=0FygKtHPa#44`Rj@--VE-j>};1y zW&PLB9sgT-syX{Qb{!>C(d&Msn3hE}Wv+90*+qD0k z*D=reDh=lEq}RN>^CRh#YF6yGou0m{j@5*Dtha4nPV&WkEDZz|b+To;IJzu?hon^g! zD$0&SFxr0if#$^ zUAvMm8y+=P?#AyEFCRQ>%=s)Mvg*_19;E(b$3A1rL)WUR zZEBZ4-iR#kH(DjGAp7*+9_K)-tH&11lR7xHWEQu~874hLV|%MvZck(RbQLz!Xm zz8Px^WM-^L;OFWWTWnsb8@J=nHQBB?nXOVL zmaXSrz%|FY^KyObr{-K2EJ?g?uI+7B$o#ZxzTd-N3D0a-);^xqZu4RDgdLh34p$t# zPUxP!yQTH@N|{@7_X}#DE0@`A>UsRF&7JjE&9b|0vtG67vCrOge#)IT(Tbhl#2G{6 zCp+}-@q7QG^~k?ER-5xT3#+z^N8fsTUFP{b=i-9gsSXK@{Zni?`@D{ayuS8SX|bg# z+om{npSjZO*tf(^-XpMmPX4NXnM~{ZwQ&`DFIhi&s9*O>^hdn?5BHCU=l@WPv5uW- z{Kv@mvg(6!;g!rkHmb)r|NkVuU+n((7qvUKNq^1T6k>R?y7v6;e`oWJGreBbS}7dg zwC7CRyS4etJ2%-CmwT$MWZUHwS|k?DJ_gELs{*4&0xWZD@M+TV1K~HQ6)SpA^1+-Sy62@};%!yYrVV0}@y~ zHg11vlDYgy$=k!-qPJ(Q`o(zXjN^w#i?*#$zjWfHSwhj%V-=x`vi-unOEUw`hMTYV ztF|rm3BNw$@)nVR)SQ<)&0}+4{}p7I)BE_XT>sNKS02j0EI9QoX!otx#aqt(2=n@| zbLO#?{fD(mZRSpnoR^mSER@MM&V1$k#x0+%+)n+;ded09EmUvkPR|sU(yMK=y^H5Q zKL4ypapgzV0NItILAle;|GxFSQGcgt-EH0{cY7!GZ``%g;rrF=S9$fdI8-&HB9`vt zJ2Pu@E~hBdtyyc!^E2K5oV@ zN&f}sjy2r+Zj*IqFS)=InUwZq-P0@QqLyU`?z1dd7`ydq;G@2d)M%yOd@=I__c_cv zYkH~p?h;|)mFHwH&0Nl8^KZA@(<$x~&y@%7o@47W`~1ywI?-=a>n|imY;V3;W%K+= z$*wKRJC9eNdB|Ot+gTrl-q3Z{^fTw#uCt z@Gi%%de!@h={CP63)a<{JYSjprnG*2@_#*<3k{xMZZDi$@M@MV%L%JljSaU?yp>9? zE>V*Dbxi#KwfX9Mwm` zwfbd597DA2tmr4lS8A`i8!qs~bUo)GJ;n{5(=S$)9ak$3Dwn;Lna{ky(!TrBdg|1cWk6J&GeVKNbFQh`Q zJf!+>UOB_0412^|1#{mxM1p{B_rQ zucE7u%-C+fNUe}vGSkZH>x@&M%fB0Dz7N-4HvP{Q-96v;`e)hl*(^J%y1{Yh?{m?v zDkp^=>fa1gUVk^OaDnuR-h|BQRo$-Qzh}HXC%NU{v)@b3E_VERX8-*+4l}k-z5XQf zxYWw6Z%VV~B(9JC`{u#q^Zgg?d{@uh^XkOEmESfp*q!UVGJV#3%kO*FbNo8dt))3_ z*XCPOz4D4z&%g9oU2=X=^MZZ1yWhxfdy(+fYWbfPA(uk7M_rzG{m+3o{+9>mncsdg zFZH?R^^iFI;~uA^PNw_!6z3Yl7I*60PV2loA9(Y*t=5%4I4)Oh z{O=X}e&+Y}uTD1xoll*$-21?LwwKQ5?=}DbcE6VQ-!1od$AzzFvBlHRJA|b*KTXwyWiIot!`Y$JE ze%;S~JQu@G%Otw{e7gGNZRxx(iqpUI%O3mFHuV^5nSpQl-G=-L!S{b|u)CW1*_`Rv zojbw{Y))^MIItkSd+VL6d9gAU_g`DAe!S^g;Af_r*ON29&J3B?FMi;+`tu7tOy~UW zr#~?*>2c`39P>H(&~6#!pj6Skv->{OCY!UZd%gEpeGuD$z871}zF5ht%>Hq9pXis% z#^>~VS^C|Av(qjeV=S6;a`moP5ycxio^E`1^xtwDTi5tLk!u?(=84IdhfX?|ny^;a zJKo!hRsHY!`BwJq|MFBWd)=R1bF%Q+y2n4y%=sE(YCrd#+@D9)QO_pM|LQQM@^)J8 zC7E^aciXHzaG&#)rpPZ&hN}15emt$Johz=Ge2b~_^Ob40r)U4@&i@lw^H;p~iO+1k z%c)flFKyKSaj(73yza-w?flcG%P-&g?nLajnLY{v7nFn^yjiez^6rkATXu*=+?dE` zaBf@4hBfa$+)CfiY{19l>An2$!P9SkTi?=LBl}&``}H@SYmbjtZCktdkKKiXx2E#h ze|((sfA`__?_QO^J@@_9`^kIl7tgQcyY{U3iWLv!57qDE0;@!%Y8U`=HYY$x!-3ObGjbRtlo6v@5QpS zA7>%)ROr(_emP@wsi)J7;AG+P>gB&%8f>du;lYm}L$2+dQ@} z4ZSY?O=Cx`O4RI{$P2TcsO&fOSn%$GA6v<`zc+lh9=|>8wr*P2 zJ?YPLn3K2O3%WfsZ11~?$F4qGC^y--uH;4f{}r{D4FAph)wWIGcKr4J*SC%5sydkE zva@@OXX1!C)LKb>FpO`p-oS9U$B&1ayg}RGN`}r?pKLlcJFUoW42o7Y$o|~QtmXf z-PWt#y_wIZ*1Wy8ZIyGa?*yaIDc@iJI=1)^ zOVDdu`G@z``^WAU1&y6I?EkvZzR%z0w^q!u?#rqV%GGM0RdE0N-oID$|5^6?UHo>n z(Uq^#)LbJrFMqs#=HlD3OS1d2uBFVKW%uv)`_PRKm3ThhUcT~yp}FhTb2+`I*0k-( znyI=kkWpBiQ*VK$S;nsudwgGspPrw8UUO#f^e-Q_A6d;XTliT1XUp1GXT8F|ZJNEt zB=%CPvw2AF)f0v0mt8;eq=+}@a@uL&QqIsyYzlm_a>P+pZ7`MHQD-1 zX1a04=DNUTGf!GH4M;pw72?t**KIWxDP z-fGU-j~&J%GDO0@by{3)i=9Kcc1z2{%v7OJ( zwCYo`C1=~*UqZW%RW7dc2$-~KK~=Pt{m**~r>Gia*S-(97yqU%%kh3jaKGxD%Yo)v zYpTqZgHtYkcZyuMZuZ5aMXU4HSY2u4zPEhc6E^An?{{_0E{Hk5aT!<5tB&_y@3Ys0ZXf-9s+6I=`pZAfd#+m)zixe_Qoe8g=bj~VC!}^=m)&eTtD1o8~5y4_E%NPbRTEUsckDu)|YT?Ik{_nv}9HO-~CMjEcFrMJzm=@BldlI zxK?Rv&vxCtcI=e?I->Jg?c^$(!?-9>vS=-|$;q`~LIAHhz}#@1FZ$bgAsp ze!e|LYpnlUvZX%GikXm!Co_0K|I>m77iCy`sn9nDyFV1;8@2ma&ufH^$=PX<0|HJP0q36rjACHl8&4eA$-Xz4f7ZztZ1cMJO;j@Hih5Eu^~D0;Svl*>vd*6UcdpL5;X>~xvHz(*HTKUH&)ji7 z%KNkOLyi0An{4H;x*U6T_VtQApXSNF40`bCM!!k8hxVJgX;ZUoPDd=tdEW48sc`%q ze_(ri4l{ZiQw-ie)$b5Nev8*KLF?{w}CE4^1c{4HmG3Co*1 zIlWZ!RqBZp|I1t1`ENU1e?F^d&C7M(yCU~L;ZZtY#1=YZc9H4tyRT(p>pTz7`KM!l z|7)eL@U8cgNP8KzTa|wdS{<5zv0U+>*Eefs&-r{~JH?PmF^aWHu2JJtSZnJ0zY%kNfA z4!iW|rudznW7ZE$8lvZ|n^L<&TlVz1%KM2rothsGG)5dMUF7^_b!_c#y9D`T8v7Mb zRy}zoaN+f|S@g{2ueY_+lC8U>SywXc^R6hDoXzKD->;ryZM98PH#+Nc z+dc6=57hVZ)xSPm|Kihab@3(d>t9HJa=DqOJ2tVoJh^`Fb+n4) zVrI?kTHd!4%ca(k45rmfJ6*y+=w^X0{%tMwbN9mqdac<1ND1#&Z|`<>V}{h)0V z%PEPK;`deVyh^#Pbv8$u(fICdrNZj&KeEaU&)=3Q2xTbiN-yWE_{DW}f8+~oH?N+f z2hOsXt(A|?ntp|`izU?aYM=Yg{!9N#vbF~aedS8!dfId?_p0w{vvn8q=4IJeO8%KH zt=l*4vhwrn%6mbVidw$>K3MmBg}2^LyRSP>+&5h`f76xyvt1XwG0-&sDt21t^~q0{ zyMHt4DoH?BwP+-A`HmFYmYD zPoGW7H>WeX?96&zE@r!v=Tt$nsintLhlx>7jd!=7_1*dO>z9Q#HzY1@SM-!!UmU9# zJ@K`W+O6|^r!HNadUyAwYY#5YuuQt4baT?8i?7qFgX)$Y-|BpE;hEQ;eUA5h?s&BC z{N^{}%lkeZdb;d|*auCinaAHooILPzj^E!|d#n~cyl?X}>d)2qf5M>I!}5n!Pq|HF znd+w1{WFg5+5gEqzWIIKi>npSDmW$@FyAYQPf9-6WZHG=Y|ET7QHF!_R^RjfI_bMj ze(3wsr~reVmg1D+cY&pC1Y{k)< zl?qiI8`HiAC4PBpZ#AK^w?g=->_`3SY`-@h{FENTW6&gStiF48wMq7?k8?$BGCmki z+-ohJtGO>$bkh9LR*S7?y%b_|Gybl4lwQl45qIca=v4o!XJooUyytP*On9j>wJI)G z#r|*Ix1y{7YDFIO+V zDcLbI%6+>1ceyV%lRPK6TJ5|1S@=iveXTt+PA%osf82N3pzns+ot2-rooi>&PXBss zqmlpSZ6E&eOu263<@|n+%=e6ERW@07zdZV?@_%Q9<<0ndv+RETOxvF?ys82+vVOlP zRj_?6|L@2D?e2X( z63zG{OzdcE=-I_f*Qgv__4B&rNsBdn>={d#e@xHc#k{fZ{UPN&4CnsD1PS#7Wfi)z zw_3Yg-&G=_IahR_^xXGW@>(2`jz$+-|Nh+gq(JxCMdp3MyR81y9E^QE+xpKO_e{&s z)7x)O1O=$xnc^+VtZ<@-t>7r z`A_ugvyaol=gnUeQ{M4kPBkS;2ynb0XjWTBD>1%oa*_to2(OB~SXXC!w#r_iuZKhq} zmk6A4cUxyl_IX34FSq<=_Zhj`Bu75yvr^YOjvm)-wnwzj;ys?7FsQ~NwV zUDZQeal5wOnsCV})kw;~@=d{frNoNua;n$YTxIdd`c(L4+Mk0z4sGxHHD#`!TK!74weQz1c(`fGe$lnTKOb%R!4=Z^bcgf(%9ll^?^*SB=GN}yHPhAe2-sIvZ zWw**2%%r|?)=I5@)yZ}>(m#e#<^0x}2CqfrRa0xuDp=}rUo$re`u=0amruntFQohR zqSq^%&kd72TytKI|3_o{exd)j_y6wy@Nl{Ofz%+WXK#ex*W9*e|G;j?zoq8hrN!az z58SW&;9K#2`TJQmb5{n%W#;EMsfyfQSM_y!U3A7Wx6S)jy-ItUG$}tWthsyZoFCe* zXV---e=qcQ_TEy#zYg#8->LSicfLBcc+K){e~(>>IphB?>Gp9uUt!P6RfSIO zy9@W6=qdhp-OyAz(A;`gOxd#^*WN!_z1-5kdVR8*eA?gl`B(1$n^w&F^k>hyC$E2g zEHG5{+i%8_B3-he?=_3t*TVVfYj<7>d%ya9EdM>9Nf+yk@60>9bfb$d+c94LueE<~ zecsCU>7if`Yy;M@1(k2mOTt4h=EuDRu9`)}&aujiVC z`_jX>@@`Ie%=^+{!nXxW53g|gJB|7J@s+2RJLg4xCSu`Skd> z)|KPcOl5ojM)ECCzM_?X_vho}OP@bm^=B)`7x(OFKABnhd++`>`+v9QADJ6IZ@0(p zy-O}%y)3%t_r~={_-#M!X6UFdohSIiYC4BU>1+T0_u_pSf0(>E9`x>hTej_iWgox) zn!D@hy@O$5ljZLm{8*ZyE-QG;q^|PJ=fv)9$+mTKOJ2xs+rRDojp@8EqRScrixe1- zrmlDY|Eu;AQ%=JJzxwUUAxD49MyxGby*Zvm>(k87r^1)5{ZPM5n!z&IJvM1;3Cmh* zeuga-=~v9xWoJFwarJXyY2?dPrM-HWv%VOn*7+L$^_2D5X&h}`zNDrkGAvi<{*J?C zVZYorxCGXQ9zXYKM^3rqfpVEW&Xx1`*M5EGetYM<&t@{;zIoOMv#Zu`lDq!;Kut_V zWZb^nc~9oLJ6$V$k}&hO_`3B!@0>o}@$=TN?n=!lR;Q9J3v17@uJ5h2a$9xw%>l9V zMS4FXKKf?ftb0Cx`it4iEcouc``pX6;r^D_X=0JLO8DlU(^>!LsMQ_4V(Xqg%o)z< zFQ;&-Z~43Pw9WRdiC-)4Tl$yYS(@>Mx9XfTyK(7~_b)ce*ycXBT)5F*UVGBNN`L7u zRa?@pM_;(%yK};yc{k_jwP!ZRw41U2YTH{}wzOZ@UQ;=`-}XJ@xy?_)&z}F5eVM%{ zEvL49?fWnLzU!V&{{M5%BNIRAA=mDPi4yN?WY4>tZTSUX49UQe}l<+j4r$ z7nT1xIo0{&;NYgKXt!o29wN$ubWclojG$T?%%b#6<$HA=fw=Z+Lq6J zc4yY--);-8)D%0Iu5!P%yfW%#_gUi$x69V=D?*U|M>2Te69IodgaeO`=W#0-DlUv zq))3lE*rk?;r@!l{jqM}Vwc?)dwEOj=67TN+Lva{MGyIQ*sgvoa{cIgsmkL!PaIvw zY~#h05%Ekg_x4kp%`&FTYXbdu-D%ulce!c$mN17)jWe@mewewO>)M&^3zsUVJv%Zt zvM^6}WA4?1TnyJYzBxYIs#aE_>{rw?7{i98PhJm-DM^AMB>pcXwkX)_*k^1&64F;zm>F15VG&M@Vv7* zNA_0kyU(4Kk!-S2f3__+X8L^gr;z2r-wd~1`}HIKXXIQh8S^IpfLoom*MHBiVvw)> zHMQcnb{*&aU#H>^h)4Ze>c3yk{zvEfqsr&+?q*KUn|UP0K;d20d1FTogRR#Z*KK@z z|KIJ?cVAzW33?KB{L%*IZkb}yH_`vO-UNTS9kocle&_z(ZRxxT^O=)-*xp#nhb839 z|H^B9q2h+J!tZ-*{dbs!KE%9cG;uO5uKc6kplkGD3-bb*quz)8ZXa|wpdGy>>AupR zvIh%YIG9SNZL*oKXnFjr?*U)6oCC_Ae|jDN{qn~2wRf(pRg{gIsNSEdp9sQY%AYIqx*lJ*T@`? zo%d-%(Cwe^lT}g|zA2if+_&rL(+AP#u8Te0UGw;c?OPiUO9j~{4qHDh>l3oQdhW}K zJ8yQ+3QxZFl<9a^{j!7CP4?Z~lz)C*bbM9x^7axcy(R znh(bHJoo>cia)x2->39~)SYemSH7@v{wQU5U-#+i4|e{&V*W9^kG{KBV|-biHKOZF zSldSHpPO5X&;4b&vTD}qwL2`VF0fkn^s(}qRyBYB^{slzj(@XLcdZhsUHgZ%=zL1< z`3UdrWnl}Z{5dOj{`8q?A(#8VR{Y;tRaUS~Zt~2vf&Y8+X0G~oIY+{`t!l2G@zzAK zk5B&g#R{HyU^%z&!S5Y1-;bX4Nq@e$;<|a2&G#Ii-nN)sY>Zl=vEA?9{4Qz!5w|2O ztzv)0%$wJ|7RE$pov)eq>qhGSiq~`Za~FB4g-(rG{dLY{-qK8lE!);K+}oy%lND{|Z@gQSA(qwCd*Dy+r5Wn{4vZN_FSTw*K4@|hv?N&+{qu1>yeUhgrxQ15Dq)UCrGA6$Q) zvHoDEV5#`v1+u^@sg!e=a@j6OlSm-}mW`1&ej(vfWVHUS#-Y(mpF~i{x7O zVmZ#mk;h#3T66M!^P6f{rQhffQ5!coTkDAJ*5)m7h72p4Z1^q(ky z-74qQ6O0RGKQwq7PMsQUKWW}B*7KE&aYJy zl|tFWUpt3g%Vhsmv1GY*`lYjTw^=wkX7-;y`cVDf3fFfZgwO7bp39fGbpz971FzMS zC*3JXw>x+^OZ10L$=lnEHid8X{yaDw-#)+o72}_S;rsdHtG+u|t6cRqoLhBReco<< z`+q;eAMEwt7x_6Q`I_A#DYge|^50M1&TgG1bbybG&uDpW-{!X&KK*XrKA9d846N38 zYMQ{jlWRq~^1BN~Q;%ynHI?jMye~7vz^U+N!|A^j=l0&4D8|(EM=sI5Tf?b8?s4Iw z>*XKvAJ3k?e|Biv!rTP8`SRu)igOo#Ox9KnKb8AjSV6!rEss(Bw%xz$ua};@$x-ce zD^jfT-O6ac>07SkF5jE0XF2J5_55bO8~gUVS3djnZ_C}{(|1k>{hictReC`$$C9~K zis81Kb=w=v)D2`$Z`N8rM}1Q6q!PKOj~$v{x2yh8Sa-ep$yTL{dwdu}ewuIp{M-1Y z!gbDBt84E6JpS#P=le1GjVbAijbIdV^}{=YJNbc%Vo>))j-G~c^#53l+6%kZsK z^`ePZcTfAzK3Ki|ctq>RDIv!F8B)2Nr~dw_ySHOz_uH^3OLU~ZD|bD!=`;Fr+Hd`> zM<@H)%MxC8Y-u)5+WhwKjER#UJv{Sz`M+x(4~@^|{%=c*{cT>IZrgPA>Hf4i4jRv6 zZ|w?ozxuEE{mTA~OHYr#TfS$t+@*c4PuA}D&)C6tPWS!wFD{e$Q3qG=E&{f3M&E&#d`}Z^!*R z?R>vZafy~-+$Z;{x*s>IKh)d(aI5+7^7b}s&93ym%J5bpVZIr>IW67OXMVou`gm5f zn)5Zw;N!+pf$w@RDwS63-VyH;ll7>_Mq>RcP1D6oFIn$f-f{SrcxZyU>dE_An_{M< zy+2_(Y1!O$;pe*Ix4PH~=We~bX7l`=)7MG5a9Y}(XKW~XwEXZL+0T#m#6OQ%tDN_S zbN{-NjL*$>J}zD`ZSt2T3g@L_Tq`SQ?rvItFHAqUx;O7iR(^Ao`_2c~mGjg7n#rGk z{MD~f_B3b70^I{UGnU+J*X8-sef!!Yme0q^lA9hQ$BzH{Y19> zny1#Q>F*2HHVCd?by&Y~!_2cw)UC|YxA3l3ZmK=<`_I04$M}yYNBs~z^P+ktU&&I} zK-oEd(<`R%C97R}_+>li`tZ2i14q~W{$*EIVQ)Hpj`_Xgma~p-m7BtJbJkZY$ICmn zec5#B;qsjh?0xx$pY80o2*(v47yc2vzTP~p^0xPTjwRX4nfHA^n15*h-!Ff6RP7QH zJN&aUz;Uao?Cxg)TPybRr%mI#Q0{Q?^u7JpuUlPsN_ade>c_8~%J-cKG|Ae#d>g-8Sevm2Ts-OOec8C7rKwcxn6R6Z;D{_fNmPb`ICR z9ecyJr|&va6n!kWA*%g$x5M3rDGsaDbH7cxcPisjUghVCvVHH5Pt|L6a}7Fsy)w4;KKq8_{F!R2<4kTb$T;(T3Hg10 zuWn{^MJ|(2`gw-l$W!NL#T#Yh?f2dmf5$Gu?*H}YCB0ft1gF}}Y^lt6o$8+PLqBIh`lPko=|oc8tHE|Jq8j~Y(SJsDGa z$Jl+YvEOZpt-TB1SZ2%(DcWOYFV(>Q?w82DpSS9J!|(pnh&z;NajAHNaonng`{{k# zAMBQ|GOqj5IX$+5@BgeK!!y=;vrHbOPqgrQ_u}Zkb+g0QtkpaG^<73&rdDWZ@87&@ zjHmBD2;QZ2aO0X&vkliDX^Ed}oXXmBC4Jo%t>xLT&jnjtvX<)joW6CLRuAhUU2BJx z<{NEix*kb+J*C|Dv7_trd+X1Y?zcZZn?3HzrzvTEpDv~xf3p3*?D6wEt5TV+*j5?0 z&Z}3w_PceboA@P*dzbb+zk4y|lu<3uIY$Ng+2V{L=6>dnY+Yire_xyv>B6kEh+ptw z`24G%O#AMztT-@JdWv%H=Wlm>tQq6K{jy#DUTH)6yjL@Jc%-SGul=)jzsvgLxpy-D z)aE^YIA_hOr=Rbg(LHOMoauEw>uY-Gy^vp%)%NLr`29>te6#Oot8|53v#({In#Y`S zKKo3h|5USM>_vV%J{R!*zxldeD8K%vdw$lH*kz}`M9-XOf4Av<{SWC6!u~au7cMJ0 zwBLSrriEF*=-Ab@@eDfexuz|-ocQJjdXbxpcAl{DoLDz;UvR-u#-Cd}R+}y`cS|si zP0pUTzUrs@2h;EWwD!G8<$rkXsa4#Xmsh0izP-`@_}PCi=lkkUy%paoZri=L(E2mm zq34!&_ga^J*jfN~p|ZAL5^-K}&+Hc-HUIzW;%u8Hqx;eC<+p3>FumFFmg7QyUcTYbn|GkMVmXTAY z>bKTgozu^Aqn_={3$)*{?gKBor0FE7M=}zj?~D6FYaf+-IazIb_LQfm*(HrxD#5SJ z_HI2Z$5~=$Ib+6yyAm%gHt(OjOmM;+*Ows-tCjbPoUKzgk7-l;YnS%t?yAW}b9$s% zk7aBxEOq<)cw*SqxF-dF!j{gZ9o5hQTlS?>4Kd0 zdjE*;9^LMVKQm@uWq-1Rk!9I7&$#ZJLJ#6Y7UGYbeeqS$cSdp~)=Kj1#7ISA#+P*R+ zf;}{2m*c0o6ZM~Gdmr5U{^RX=KT1C-@^AIHs>8LX-*!@-nOWBCiuW>aLq)?1w3M?? z%$)f;@9yfD=Bw#Ww=VlMgg>~s*faFgnt0(BztXwS{7sEbjXqUPJDq+f$^W@R@!z+P z@4c1?<-T9^c}f1d`MbU^VG{kh=AYlKpq1B!B<@~kOnEZ@-aCd1)>7d=ruE-{ecCeh zsq?b-{+G9|XNIZ2<(rZ=$w%voSXV~TkGLfh%b)j8wweBG=KWRQ?|9^#DD>DI@}+9$ z&2tx*SijwQ?()mW3D?}@Kim0-&c8J!`Rv!mB^JkXWc{_aNB?{^+w6(-?ShM?{E`oA zZJJ)|iLdsPJwD6lbfDeanwyJL)or%zEWKTHB);Nt|3mNhyZ)rzPyO|0d2s#@b^gEA z73YQXw;Imn^J>g}eW&EO4CAcQ#?o7BSR1up&O6t^%|5{@EMdLdY}tY?$BXlnv)g@Tt9cNdf8caprBwYFQ~U1i z_dXlm*(7suS?Ql|Ua|)^%6~Xf{Qc4Vx<9f%UKp?M*|w`z|Ma!K@5aWr90j)YhBJTI zs@AI)e^t3X3m#&{( z+q7ac|JTahk?K!%c0Ny6$_$B|pRKYHHUIFdQ`Q@Rv3 zDaUgq$B$(eH>|I!O)q`1$z%4;Cx$DNH&?y7qj%X&gRxAb{_Z(1?Ne`GWgTA{Qy^C@ zpP9SJEQn2h`*ZF~_X>8GNZz{khU>x(aoyu9&Ohx^Vv=2QI#TuL%!X%CyPhok-u(UU z4Sn}D4wK~ty*8}xn?3pB)8ZMnFA~=6X?&d4`{wnk;v0Ss(&ty`)_n}FXWIYWyN>hz zhpz9fwts_s*50eobp5gS|K{%x-`o9Qv-u&j|8lus?@xo1iLDYxj4z*#j5y0P)!HiZ z{N$uA@J-Qh}}l4x~ta#^^x(DvF}mo{GewPxG=@2e!ELJdM44tqrF|NPamY2u{r zOFuP48`)ofjY!+Jtf|&(>T=KeP}8aQn@jff<~`dWE523#eXsJ>_p58nW&h^hF#h-L z^{)S^HJ@#KAHP_oc1A)rn(=F-_W3}?$yLYLuNl5mUX?m`_4)h$k_JpWA~(NZyE9NW za^V_w_RrrYZBO@(E|aoJOXfT9^u#*v_VcNFaSlJWyp!6w)%>yAlP7O%*Pk!GHt%fV ztjGH9sivC8ie7JelCQf4+5H_gb09rE`AmGt@W!z3}m#J-@&9 zOtkv8_sr){QKsjfl+I1pdoPu?;ODPduXbfu%GH14weQ=$@6E#dQzq8W)VrLo5^EcK z@Vm{Avp;tF@8#UPyZQKB>7rRbjn2z9h6exCSz+xSxvg0=PJi|Xg}(eLUcw*N8f{q_5X@%jVR z^J}>4-o6ZfIPv-WUS*xjT+Fj%7oXhX^R6_Zf0r`Dw*K7iPsuYIl-|Xp3Ef~iw!*wA z!PuaXLH_OT3YHJMF6vobt7_=s_>%v1XK`XzffBgLQ#kzFi{`a#L{&1X* zYHQBk^e8xf*XPOa!(*qceyYQ5ZC{i+ag)Wz`|LpxDb}>)se_!kUdwNX*lD6Bw$=|=cC-iTq+m3mUcK?|h z81(i1iRg=0)ZeaEzVP$L`Mz}fR)yjvyelSM)$5-T5-YXa?p)CSY`z~mGQ;?OFPL7< z=M|c8>#dFc>EjmjdnQg?yryVY`hs&&epPE_@2of5c020KaD$1=Z(=L&qn=(}F>mK3yXnVH%-Z*Nwwg}$ zx=Zi!_@1Ym3T@t-vv|dc81awZ=e2h%zcfkgt@*0Og(gLtj{mKDd;4eH_gDW;)qP17 zjb3DFe6FjIbL#v4$9AGhFQ3J_W>d(-d>SD!wrWO%d4WkUwb`t$`W-);Z&R=f|+@B96Fk>730uy&UwOYI$xt}R!X{Pm}l=hN;m z{dlSJZ5)>uP3MzfubC0kW;OTS9Oc?B+l#w(UhfJF7k_qjV`OrF?5fpw{o=EFenppV zt97hwINsyYbf&>M%IxIiiTC%Mo|jbrbX{zYjZgKnIg1zXb2k^%y>awj;qwED&zZk= zh~2lbns#pCldYfMY;k`$_s!n4$9>0Bi^>hY?Z35O*PXd?chR-u`K1ykoGz~NcUW{T zbH!?rYty2(TK)NQX6xe}aw7hBK0Xtyw9}h=UVV4H(>cehbN$xzm3U>PF0H!BcP_e# z-#=!rGzh=1f7QF=ZGq_hg8SH4gUvGchxw`!E zVgLPH?`uEl{y0+nechisjk*rUvzJ}o_T5NM{r=_T`?9+&7u*%$uew(MEyMiD$2ohq zpS8Ju=G$WPncwn%Iw~xb=hPBd$Nl8?E5(5JwJo9nIo2PhFIMQk_9SrT^0zwz?I(%6 zu)g7LAk2I0^~J!GW^+#b?lsSjE_!<0s4`@Ef9-)M1>z5G=2jkjvHx*&>yS|6} zzRADg2v(Duxywy&oyl*RRoDJEnHp{0USd;jqI+B6XMxuKyB}?%uP#%$nPM}&yqdq7 z@5Xz{fC+JHcL{y6nWAmwm%DG$YVGAy-rtjpSM50vG_{t+Q_Erdls&wf$vbZ?T73WX zo2BQ{e*Tg0zVuGWcbCEKb5jJXIE^eWXjdQk?Ob}j*UETS%^KZrb+0&XxM_d%mpjN( zXm!k^U~TPPw;8uZ-dUG!NGVzO+rmG3IseWhs_!?a)+;rf>$fhioh5xxi($dcxAPpY z8m?PXd#A#>q3!jFeJ86qttL!=_f(Yq`tK|IS$M5QW|sHGZ($d0y|aDagry<2I=6N_ zPl!DgSD6>R=lN@{tJCIX=T^Kh<*>dL&14F+} zIs3nJ?REV7KFvG+p*{YyaK+EH^N)G!^8WgLROVs%*OCMFbx#=oY(D<(@Yc&`OcE~@ z%(diSJ#z_TEbr%42ZH9N?OT=hI^;pg1g2Tb12g+_FW*x!*A+LJP)}9SZAH__EVFlEIXrpYtFOCdFSV* z-75}Wb#(K@XOSz7E$3UUIyK`;Y|ZS-nm6ao*M!tYOb@Lof75STs8}HQJ}7TR{~gh# zAunz}5B~J~++ou{;rag*_q^*<&#zhn9-o=I?kn@ZfA01C_x`VB_u(qOlg+5Jc8Tj= zu}gFQzusN6{t4f$S+ByTay9&Ly8pg-V(i04DNg3!Z@V}56r6UA-@M7{PUOt6T4yV+ zKeMxHmOEO{xqHcSx#gW-ix*#!wJu#=(ChzwZNY&%50BUUdpm8{>N}?&egFLG)X{QP z>-noE%U%$wobq6E;g)BgK4r@ns&-*|*B{ao|Gs7duoVP&whg$D!Z2Hab{x#V5>#6*~*Y9iIZ2vR6p5N{>SIvjb>kse$d*$`VnXk(q z&3wK6VV3=WO6e}kO}Zzbp*8^djtO&-*Pe zivInQo@2f3yI^krv&TE+mEXj)$yXnqT6XbRe_+|Je=DnUro~(f-B&rUd!6Uyrowl> z=X?)6v@_)Erq>G!?Rra6A~Q38ub4k|_AkF*7Z)$NGcU6svgfSf`YGEwPuV$K{PMNJ znqAjM>15>%@14JG^l}eQ^AGHj$~KOD6_`-!8vb-Jf5uIKr`jC&Q4AG|KLcHh+u z$(sV3CWqMFK2gQrdQW&mJ$FxyNJu{yEfAiMK$6RmK%M{10Kfml} z&8KS?<)+tb*RrgzKd-v&24lhVs8@_z&nsWF4BKn-{oD?9^;G{)js7vqDzan0?Rc~L zwP|I2@VCC=hky2zO4}SyJH;^dQo+)>AAHyU5!m;2s(rKe>8;#5{@u3PYoh$eszJW~ z)72lp`SVd}Cqpx=~^S?-45q4O!Ri~}$wQcP7 zMR6JL=IHoKYQ5x*@MzO%fj_5w?aP}H)joTs_s;mwl{eSg*qRHc zcZ<#6Zuk4nk%N+U`WejU_xv?3eff9Js(6uamkxc_wQA*(Zj|ete@lOg^wlXv1$)nQ z{y2BTBk;ZY0^L>HmnO#Fo&RW^8*AI{(5P2(ZQmX=WiKu^Vte-3^AJ@f+p zo;w^`^Zf7ogYS1d_KaC}`pZwh^Yil#+SmS&Hs9bc=()LL9~-0WyFVXYZ)=I0J^%Qx zFZ<{#jm+x0c!o_!J_h7R-uYT5clI)q&f=EKO@66Ao9e$MemASk?|l$tBCdK-D^d8z z?8xq%`mH@be9mu{)#Hpc>e7GtXXT}R^VU9i`?==lxlPvBu4LaW`>*z2xWt-uLa3wB zz4COO1BRPVC4DN=Tx*&1_uS&|ml(6R+-F>VR&lnN?c_Onw@yYY2S%RHTwl$y&cFKo z@2|cu=-tlU-5z^_-d# zhU2~AcIQ^H#&7?1@YDOptMz}J`Fi`~%-7o=Z+spPTBI9&@fPR$9d9pJynXBcXkWB_ zv;MBHn|J&^RlMW*DdUJ+oaM2Vd<+Gri;m1~fBt=&UGW~?>;A99-^{bV+qC+4^oK8n zy1zGHe|JDQJig6+-fr=JyL$b3w)dn0^M8MTuXAaQ^Tn*izjGgZTHY(_{ULqOtTsNq zwz|LRwbiTQeug^@=5ANs{=Kr@?)9Q&ri>-O_uPJw@JMiS!_&J`4iobJ-(}sT`*w?b z^vtl@`>)v+tgzdnYp=xXcX#i*C#uK)U%bVeEnj)MNJ7^m@5App?f18?nct4zch%MW z^cQJO?O%S2!+JHDv#m|luP5~v>X)usFLzY^q{G^+L3KY(=U(BPcjn&5^3dZo#U1C< zueX~2TlQc^&EeA$D{bU9>b~CBdSw0V$YY}3SIh5RGUPh;R%(6o{!(3Or%(Q0o)u1B z`$1{$qjk4$K4+2g6n-=Fw)7PlV@VgQIpQZz2ewUS%a`^po1p#N_R+5tnU&iZPrr|t zdt_6oig%{-&gT24eRm%CZu04p-X*U|?loDh%Rb$?Rvf^Ru}#qJi*}aBYTM_E2PYQR zO^WJe+}2yX<=f`{v&~knQT@;N*<%0dwHv2}`Op4fIeYf3Ukr6ygSIKXDdM^K$wKOU zO?QWmyd0z6y!mf58)FRyI|gDOTF1Ao-cpq z{%!3w3%SJS2WEesXJftKwvBvhh?~Qz|LM}ZZj@(NYya@P`D~uyx4qZAOebF6w`^C^ z(+)m)!C(Y`|6Ck(cy7ri<0^WCpaQ8z5j&#U+TTXk64 zYTZ{>`%f>TKYaGzCs+T%)V_ax%}@Qi3-*Y+S6yVTldt=h`r|hLKEeHezPvSCnrF85 zu=64py-O^wR~39ybaG$(ZPA+g+W+Ty7JSN{I(z@>S?k|tTm2H5Y%o0|a*^FiqkLzp zi@}-KP43OVsQuC8-s)4AVim5+cpWrrQvF)q95Q?V{J%TiICZMRq6;k`4piUf7# zJg+>LIJtABe0Q0MxW9(}u2=leS1GR=NP9e(>(>))s7I*#?b z{|dd??KA&>$t&LbpC5phAMDM%ocD(-d-Kf8W$AZbotQW|-dmNOb#?BBCMBzH#^Re+ zYF0C7E$2D5x+I%mtOsy zum^%uwn!CEugbN*{QT7i;klvGJFe;e6eIO>(UM?3(J>zSg?;$}+=E#~h#ZaUD_H!DG>2=63Z> zm_z)B8^zxrZG8Uj?tAO|+V_u5ZGNR>vCVzWw!YWQ8`8?E=SK&f)#}`NZn42{t{a)Q z8zO^h*Bb9%dA--pbyukMji+ZXO>l3?EB$3SZTY^l+pm>RC}cG@5C8qG&;9yOM){(! zRnLp>8Q$s>o4#-Lc6a6|Y5&42>9-rqr#=^~}vvaY{)2iec&vRi{&aF=?SNYyxxT@=T*Slht#hY)x7M>gWewSZpr0lz! zuYUjCrRehW@4i#T?Hl)qytG-jU}k>uS6@>(!AE8+!shuYE)Z~6I%d*Mf(&C)ivQ?~qv>u4@N3PQF?!d&xiU+aHxing4Qe4h+5%XEG_>2=~+cD*AQJdZn!ok33)gW|vgq zjBksNO}y6dO7zv!#Zv>#ZJz$Qm~|sp-BbE$wyON|d9QEhy$@Y*!adt<@7dgdZR(6= z_Tlb}=ZH6@7%ZQ%e_o7 z>ehV^&)Tyn?=J3PxIFRetbC@G+4b3VyLF%ca?ZVUqj2|he<`6E%v&y={(bs+gse16 z?o6W~WB<;Ax$mqRt(<0CUEyy~Dp}oouukG>js70Vw+S~7+^Mx*&Te&~n<^Q_b6kLz~c<%Z>_Vv5|2JV@0`Hc6kMIPs6)<0NZ|K{|E z`1%j!Qa8T8&OT?QV0u+GXhzM96g`IBk;R8JKkZDuA$vRSb;h(Szn*56$3^|G#F$T%GheSaqIsbCBi9=U%UO z_&D_Z3u%q?yIudZ;^RMmhRM$!&R~%|6DytU{p-WF%WB0-f}Z40tbZMTG3pMp!2ai@ zsg_di|K6q8_}eL6GV^zQ{Akx|d6%P>GoNT}P(IsH@{`f{W?7(A<8Gb%zA8-{?Uua^ z$z8hde#f37^W1yi3tuZwsd7x-IP1(J)3c|ZT&`?5|2k=v;5OdOLlygf{994;I&I1F zGv~f$P2tu288)H#=I>MAHREG~wf$GW$&cQd70+(IZi(6JGF$JHU*Gu3-~U;?cyali z+NYI&ezM=|y&l(8JN@N$$EtrN-2WaPuj9Y>{fhL#qrKMFHEFtrzf?u9vA$g;-2eO1 zx~WB0BDx+Q@^$;&O)PIb@6-R^HrqO-YG&m-jU*S@(-Nwy(=_^Pls;VP(L2xXp|vUY zmZTQvb%hIOWjSku#4aC97EbeVUtsNBbY+G3?B3I2Pphl{=3Za) zX7|;H}sG zPLX9(FD&Ny*!nm4xYUM5n`zhAmcF~BChN2N@vfETeyaXkC8U1wJ+a(SvG=w`=Au7$ zPW?AwWR;w_eSN_;8+PWeQVrVCKmYubIsNhV-Al$BHcTzLvEk^8)VKs0?;Edu90b1o zwfU6sl=;z(i*5VdPrd!T%$kLV*`T^+v!8qWFRAO{T-pLJE>_gce`*;Y^!&iPud++l ztYyD5dBINK%7szas`pw*Er6{Bm@|Fd&WLAr-*4~eTf6Dd`}BQtl+TH~DgBzWNcc)) z_e6EA_<~lw*2z?MC19 zz4=oFV=dnmaqrH*^|4YdV506Gv0{72{dW$nmz*WIG{^mZe{ITJ&!yR7*yXOm!3BB~adH1{FBbzlv>!#kf z^Pl!0_1Qz)sZ+l#iSF3@XWgYZfwd_Un|pa#F)p54b$pf_oIvPXB$jhSVi0%P8qowSViUX@edpR9CyV(m&^WhrKd zS9F*Es*L;fma*}=h>SW9R*Fvtk{+oIue`(BAPtm~nzrT1MPnq%Uo14{vPIuKvDjt5?w7v6Ho!|2#L~ z-|wz@AM3bmhh(Sdp(}~5B1B450(9RvwBv1*7pDBD&Ouu z-)I%G_w$pYBmcv;a=p1d?XAabJ7&hWx{Z^yidlaDo%xcJ*mYvbipLdhQ~Ny&XMQ?je)Wlu=U%1WDMj1-E06x1 zl6U!<*qzF!Qvd$^wQtj}zv-N=x!-5{%T}-JzZviU{#gDXeSVd(MU%hb?3qtuzQ|7K z_WXI-EWGw3^ADz;T}|C9FUQ5(rm3Z#sOoP>y1ialVhQt<>znfzpYXIO@4dw7!1-`@ z)9R^f%0uS8S6McBNzta;)s_0wZ+HLo@Als_ZRx@n+fIEp{rN81va(_>!}@GPy^7SU zOAeox{cdAad{v|}V=r^?o7XW~{R>oIN0e7-JN3N(u)aB({l$rZ@(UZ!y6gNFzBu_? z6EnlkzKPE3_Fez>ZMFDa#YqX9=ala|edGC=%yP*!Kkqy|{;$YxLYZY+Y(aa#V9O1qCL$FKa7`}V@RsjX+%+lhgF#EK@di}0>N5214`gQSo z!J^v-O{cG4mz}1~!+81joJ`B^7d5%l=7;P!Jn{Ohi?*N4Rv*?)o_dk{?2VU=ThE4b zJXz&_^Zbhv*%Q@M`S(rpyUBk=bc&bQ+Ii`6Zx!r*lp9#KUB92KWc$zO*ZSO|IiC_@ ziUaH>iMdW$I_Kf%$$KBaZT{H$G;G58_to)1&wdL|zIc4M+KSn^GF~Un+HtPQlG(NQ zpszQJkBal{du9JhH<+YP4|Ctte5bRYVa|=Rm+hwER+og=yqnf9*zk2m!Kt)Y>Mxf} z*}9K)+FK=ke{1`aDN6Uh@J2H|-@{}7*z<8)oSgl;x$jFdHZvT5c5+^5f?a9XJgbhG zW__;<-0pr~VCcQ%j)%dIEyeXqPyW7q`;-bpKf{+_Uv^y9nQ-d)BSESDyu}u^tB!9^ zes1x-a-FY<)K=LZhwKYG!lP$Toq9j;T2)J~jpO5er#2tGw?<(~_5U0CEZg_Kx73@v z{LgEX_n-H!cAKxBw>dL;LBr2mVbh&CnV!XObv&@^G%I^@Y#-y@48~36zvJvH*HpIa zZg=of{r>OD*0`zvuLe(DvF38h*}3~Q{q7`0%$!YOCpzIrfc@qZZ& zi}IN8UGC-1r3%&-J9#c^hWgCA`a0>(=Weh3yBTez2^qzrUv_z!=XO_LeRI}U;`7r- zYu-QquJSJ8+nV(i^(>4VgI|X9YF+RR%fG7g>*=3}ncFopS1sN0LwBClf74Adz0W59 z(Y`u4|J*aNZ`D>y93PjkLW+od<}$fml5 zu9T=-ZW$lE*WQr-XY9s%iW8EmuSi{xs=A+br*8GV+>)~XiYpc3*PpNz&$60Ryj9;g z-|q9b57YJQh2BJJdPsf!zUPhX>q1G@RoXvZ6d$|&OxH^Ez-+;7PbOA8YZv^nV^zt# z#d}Y!+gkQ_X-(oyBkz=ZyIvj*di~?<@1k-&$Ny)S&ORA^{P@xL8NnOEBdZ1{%kj>WbyzFY2E*O;yq|vMe2i3q8l_hGWJg81L751;SxYrn54 zcJk$i>_UIO{Zqa4PKlZ>t~py#$nE!mbyvUi|7rIG6w`z%a;M)Bk%`~;d4?uqg6ors z=4Vg6bB^r^3GKe~@cHAe+K11Fu}Fk$+yK|TaU*Zxs~GXAC$XzeAAqFwLS0epY)Dc9$BYf&B{OB zHY&f|$!drDu8GIfcKJl_?`*eyG~s}pLqNXn?1>d!25+ie?*FUrl`{G1A@%8ZV{O0I zm%;~+uQlp?y7W78v7og4)_+l%mmA|vfjCV>H%`fG2e7E5= z5#Zkwy7K)iHIXJBCYGDqYT`d%c2s14q#>P9Z~JuHk)2;pSDt!owD)i6y5H7(Wksor z&gxgiua=k^WPT{X&9dT&Rj7R93OS2yv6Z5}%J+7~slQcUb6jHcoNk64EC&*np6vTD z>rNlzlbSMX=iBQ_a#qdL{&nW`shLl7FQ3}*EpqGkJ>|!*Jz+0QD|Tz>`r&=6wwP@} zXzH!7P24Mui+5+bSqC{?H9Yt`O46%s*}hlS{^fiovA@+M<>h6HSC+393z0oJ@#3=7 z*u32qSAzDYaZmcad85MbBHu0PtIr3b7Lzj_0p1uQN{kUbH5C|8C!- zz4>2%&)T;z=jqp}({|lw49P8;8drSp^UUi74)?Fyt@|769;*2($xA=!fPbc#rO~oE zR=cjZ+q~Qr@&3uB^$XpkUX-ueSvp~v(IW^`qyR~&8zq4s1$FP(z*L@t>(drS-2=w5KO| zcF4K!Kc2=-SY!OY|IhT_M&7BtYi(Wz#xsR%*v+Z4`t8j7?lZUU+xltF^l#O_C)H+~ zh+VsXY8PY6ix;(_o!+M}#vjbBe^sQ+`0Li|&2rL~llEMX)0RE+sA$qpmvmOP=LfFz znB_m*b619WA1Bka`>#dUfAa8V3Rc#Le>vx4*Qcau{c39}mOWW^Z_~x8(K4T^mzw-d zfBdmVK5k8R`lsr&q%U*h`5vwH&)9c$@3MQvr|s;le<>Uf-R|baFK4B?EP7YUUD@{4 zKaAJco8K#VuD*QnYtU)~Bis62toMIku>RmZzs{C{vGR}aTCSe%sOf3zS~vU;6LMJb zbh+4voxBc#S&{PZh39xmE@4$&x}CxB?WWudi|)NFUZ8(_!@siSzRU+D-dtLy_O54d zQtHkrUtO!NTCAHHxn2K95l03?kd?gZ*D~^v_@+z z%YTJ{)tmE}FaG*wbHF}DY3{#y%g^@29WPE^Ij1-}nn$6>s8?-y^K}++&*xkXPiri1 zb-MitF<*S<&+o3^+c_T=?b@QOas4V^k;$6-7hZQLJKxk|SE|jkmN;c*wCTc5zkvL` zm$&Et&-}Oke)gH(b4#u$>jz!y_1ksrj^v7+iwaj=Jl^45fB*T6)AiS8AO943`cCS` zKCdsKZgb1spX?~M)a7?OWpwIBY2M-!X;aTyzAx_DbmH{7i8(d<|Am@N6FO*hX`RPJ zv65x652~`H`K@&?xy#ia{Jyt-)#{mkannCumCIZzuQ7S)caf!s%T~wj^^VKFt@6!k zukStfe{UT>MwiE2TfXdEc|cLf-UH<~%u9QIy2*c9EqC_i=Hp*;z=;<4v}a>IlGm8KTm zg(n`#au_HbEITB9MAc}bjJny4yxSZ}Z;mYc9kc82n#esXey;zY-?M6~zxgEp^zCJ~ zx6VgppPLoB*sV9ZH*oQ?{_>LkS<(BSUn&dOX1i+bw9HM9`(97l|8ozMB5&^MWncE? zel{$UJ9%zns?@1(8;`%+`0mH4=+eiG^6I$;`(IiepZWH<-ES4O^IvY;ZmGOqb7*IV z;K#7fZaYgCM;&9iKhs0kS39;yVbS@s4Kj;=*q=V9ZE!22y7J!Ee~QmK%5!Hun00q>MyWu=3dPnk}dUccCl0Cg!}xjlx95@d@r^7O~$3J z<32xD%Ihers`DV&eVuy9X{`%~}07 zEB)F**bOEE051FY^Ti)w7#|GwBg-g?h^H^bH>}RE%(rF zGc4v-T)X+kg>c?u&(eLnvt>`ProH_tnjE-(%dJaZfs6fGPySzhHmB!ZTjf(fzkRsYWZF~LqsG3I zyt+;PvB}R(Z98f&ci3uksm!eQScbf#pYzteO6xhJ-sG69B>#Pd$m@a|(ZC zkT@!=>wO}>;#c#J@_qmJch-Np{QtVqyz8H$>|T9ZcK?yO{eS0=_J0q*pU>U5QR3sp z&Zq{>gmUKvYoF~mHugRjnfmBxX?tnSm-I9Hl($T+HqV%K zQ|R)=j;-rAJ0#7rzu=eSHedYJnY=BR7foG$^WTrBvWI`xDy(~47yX5u&;IbyZ#!#y zOZ!$7&nZ{kytZRU-+ANnSEqKon0vde#3#D{&528!uP)qQe8495;C$wT+spon)s*j@ zt|zg^c->X^(tqi{k8W~}tXs3XXQ!Cq{k39@e-1l7X?U>X|B}T<)n{^yuc?aoznvpl za!%z7mz$%(-sb$YnTp1NjdqX17?+Fv<+`zTN@_*${<{Z5rine?aj}e5#MN1O$F+5Z zPxngTJZt1_2<+TYsA^t0-`e2Qa3xT}1f-ue%D*C#I7(q%h;HS;*lhlKQTQ$OU>SY@6PC(UrtzbKlojuxw>Y_l9Us5R}&*GUrL`Z?7Q*a zuyAtpn*F7|x!v(A`7?tvidp;1Y`tzTl4WhKex?0*uE}X%%PR?$b~PnQE&Y1i`=Xk4 zwa!g2>3daOm7ig)CU>hwK4;rEqxi6xx0{-4?ryj-?d%t?s3e2NYk~Kg+-BtqFE9Bb zzq$0RyR(5&+IrsasmcNWpZ!zjU~ZlkCwu$fqn=Y~3->BV?6F+Y9M6+^c2kPteCvc< zyC)Y{GjYqo#W)`nhZj(dOOU-0en9HmKT z0#Dv63^sTx{Ln0Ysnuq~+tXx?)&$io;WhKWF8E+leD*Y@k5>}2(`Rq~WRYktXZ=cA zjlE-M=xrHu=BW=YbG`S^%s1{k5x;H8%J!rFToT^LILu#pR!z0Y$k0E%XvW(Me2Vir z-YQ?MsC>%G{^t$Plc`bZrtGVBM8993xN+;VUFP25zrV%JKC)SOYs>2C_jg_|J!$dk z+ZUfuN9#*xj}`3m{wjW3YRz`}(|qqkt{!5oUYmI18_&LssJDqRFO^p-J3smUME2nu z!EJ6DteOsZs4G>t=_kZjuvHKOAyA zXmxMRy5nc3`bR#ih>~+(b@Tdy`2HD@4bR#9gYHh#+im;4<>f}374Ns5p8q78?UA;u zMa46Qa^0!Z%0uSA4m6u@p#Lk#eD_(2FG}+7Hr?}J*Oux3kh#LxA%zd6#@ zw{`E2w;9`iT#1hFv;S{fuf6Z9-om4 z*t3Rp?cvNjS2Nq=yW6VW=Ulc7xc%hNjPHAeZ>H)mES`4hp4FLO_UT45_Rn9GuQFwR z@I$`h%-OqUJy|I3&AUMT zrd6sLNm&!ytazgCioZFL_06XH+3LgVw>Z5v)^RV}kLY#k z7E^dv9Eh3C=yO2q@I&+G`{b2{*GZ;(x^0``USY=aMQN+O!eZvKPkyIod$`$)-@Bss zr03RTo|!gxjn-$yJQ1{;oxxe+CZVJK^2c3vZLOZNpkr&i*L&EiO*e|$e^u`PsyfkH ziF2WP>F&j?x0kY69Q~|Y5|hujAl1@$-uFL2=R$17Quo~1A^db^l*a2FQO~v|-ao5t z$ELXAxB7Zk<66hr6ThY(zwzpG(*eJ{*EM+>LB6+mxH4w$vz@-=_?=C+!!NSU^16TL zgQMk%pXmwxOXp=QsI*WDE^7HY?~Azk<{8(jv#tkl_4W9_EK769x|43PBSSjvsdm0g z(YAYi=X{ipO?^ArChF|&R|Udixpwx?9i(mjO80Hrlk;Q#ukFiwD`!c+ev>obHKgWw znB^|9zqewND?|70J|@fTb@OxTpM>IbrT*I%G0*2=*i~UH(_DY^^I=}zCX0Np2RRX8 zuZ^qI%ZjcSyX;J_nRz@@z4M-ggpyw6k^RrLPm5k%oU2}AaAwMNBe~9}tM|61XC+_R zUCw5ad``14QKR_6rdLfmOEaaV%<{Mdb>F`5sqJvvTiLrq;ryrA^)nA^Uf0?9XLeDn z$;fdy!-EsotHsLIYL~xy z-ysy%}`uI3E6ny)ke&E-e~kz;daPOG~tQqV6_ef7xN-^s=~ zQ_G&rJ2lgAcj5O38#nQBNj;10SdwO0b)@vZ{>ORWZ>AZy`x$&+v~BaDFP~p`gxS2% zdOh2Hsh8H@wHt)j*{Y^$2CSURc)TX}>1(MusSX|Qj!oTfJoV|N#j);XZZ0Kz>hr4v zsv^ynEq18pd@0j#=sqvM;byP3w()BVt{=XA=bx6o+{vXphv%h#Ykhk|AR+#Bg;C41 z2Wp+HAIQvnAmG8=O{trvUj_v;5@YHo$zwydhTe4#1COi8caMk1%&z@BF z=DUu6rQ`mn>Q$%LEW9gb;1z!8T#l~Zy_sj1=6LF{ZB{w2e1<#eu}|&OyK6<|Z$3QE z`ch)Oq3FT8zpjbp^!J_k-71;dAa(xcMY9)YykGQPEP9wCUy_vd zK67K`l*Kn69*VCyP{p%CcJn;b(l}ntife@}k^X-#TI&0{?g?4@?;+p*HHyk5A#aP1 zYA?RsqVYZ{efO3=`P4&8M1_pb<{d2OnRx#MxE_qf5__f_ZbDFuJlXMHQ>^G@JeXlyG$@zbY9u7)m!#%<+qKq_wIZCVb8B8)&HmbOy6a))>>i4?UUE;=T&*NXvY>J8;2@UrFKyuTQW%iSW>#68h-1b;6g=*MFz&o?HFszWLJm zx3)dFX!~mOncw$VE+{?LecbIAe?K_>yMq7o?-7-JJ0>3g)%DA5%E4sm^Befi{EGhY zVcy4sZw#*r%U^r!s(F?5`MSFY-pgz_`K|u!jtzeeQnIE_E?L3d{-qZmtGS)a{fi%c3!i;*M^NqQXQs1Vub2L6e30^6=TLR&n_&4#^S5?!Kj=Q#uR<0&X``EY|<4+I?(M(86A$V=+svXD9d`J*an@ZC;h*uW7X#7H`+- zU$8s*ZpicVhS#^J^@PcF{=B_6^H@%DadXJF-s?L>?e-{6DtgKh#9}(tzc64oPeCfz zxow+nKa|)Mdn0Mi9EZAO+pULkp6fVneq%1Ta`VmEiEm&2y0z@XsR#9Q`;TujeJv_> z@;wLpw@rNVpB4AI${Fz7G`nv6>4u^8bfedrIr16HcCekc-FxO!6La0~P3Ko6oK%aN zKRJH0M@GXY(d)}*u6!C%+He1S$vXkZcas+jOsUb`c|&8i^^rsQ0e)a>^? z#P%d*Pp`=ve01 zeVeoUO}Z(Z-cYR9$f*6&wnhXv~g8(BKnILD;_ym;unii-Txjc=Y!+WY!e)!&cD zq+Xr66MuE_>Yf`fD-Q>lPx_&=vGKdVeXW4~zjNo0me)U$Kbl>s8~^&#!M|&Ntls}m z`D1zA|ILOk%0C?W%T;J_!S$WR`lUO|_gsrz62)@*;q#uphkHJJz9ba&$LO-}Qr9|m z50-wN==-V0^ESFH4DQH%UDsc>xBYx>;m0>;^uH!9=W3oc$s}e?(5ja|W$v8(a6<5q z@^zl8!F$eK79V$ z#Z@Pt{#bgr{~FK775nDAeDRMpyX=SS%7=A7|LyHM9yf1=)C@-XY>)KQyfT%0(leFW zSFMSZ-+Q}d%E8Av!4K@VnxE3$`#CqZ`iI3Sn{A6@!*bhw_LQBNZ>*4ZgY&jvEepf$ z&6SH39XRhCE$wYwen;gvY%PEV>o1P(1iAG$-x&vFiYIQ{W2w%}|9r{jwO23KK1uK2 zRMRoT@$@bC(jLp`puNdo3v8?QYSqY<&r)5VnRtlJ?nR6w>ahJUl}TL?{y=#!Y) zVL3sU?~Kv>f%+&vbNnfy`A=zeOpv|NAQf-8AeaL z^=2u`1|5#IXL643`dYc2Y4P1;nW}%adzRjQAb9dz-0A54`5$7s`y3YCdMPYkl=Ho_ zU1mutL+h7?3wnQSVU%0fVe(E!<>VFJJMx@)>{2g%yEf!LyZ_66yQ9r)Hjn0W_ja|W zZZ_w?$Y;jeal2xZ%bEK#gT9{LmTJd&c#_`d*&mK7AM*5m5__)k|E8FA-xja4;&7~a z+7Nhn>x|r#N}ssT@w07`&p*ggK5;nnw(0dmwS=RrZzpPZhW;Z|~WLt+h3}|6_&k z=S{~0uCvbje1`Q(_BHEkm)Yl;&5LzE?-7?;X#eF@=*HaG! z6c;YCxAnhw?Zt{<-PKW(G*{pKRCKDF??+<&oju#E5;osls($;=nkC8;=b!cbH$Smp z!|`(`q-^d?KmOi%k*5h$FwZ^%JKyI;d@(Evr`BE8SiCOcHv9Kgm9uUu$5=`ns;b>N z$#-AWyu_B=)mzaAyO$j)8_pSefBOh@@?VGsmISSXx;Z;`CQA+Iw3OFW%02-zH5fI zO{UUEcWqxB_%Q#;%`SE8ccDGP%kDIvKKC^Ic*@NUm#c2(e0ibs_3gUc*6Dv#O5^=? z*F3)PeOC41>Y4I?{SMd|ovXKtsMNLA&99x2x$Dt}b5EDg+b2^0u()3P-p{uCmD|pP zhKag9E&aUq$NB%~?Pd3WX+7Wab&h!BuV95WL0jH+zCLsC=UyejbEkybSNNtmZRFME zlDu$PDf>Cg+4qGD%{E?JI#q$4tNfPH?R9y}S6!OlcY4ju<6on9olEakPENmLDZHj~ zyHWFuIm%HB+<*3LIP5R<(XxI1+D&s0`@i3j&B%~%ldwn?7o#dvHbV$zdWm-#g=qXWtpZepm5UbS(dqXTkooFYVUc_wSvb&2RG6 z%qU~!>@RcsV%C59P56Z(76<<=^=H3}UU?Kaf2ALH3fs4v?~Y^!2b|t=H~EYIaz*Cu zSF;b^UOe~l+`1j-bR6uCFIe)*ch`ExGpTk<>_5HgcTL_Cd%R80%AxUq+uH4iw5wus z?*+d2uvkW|PJLdw?0)ab(ym9G?AxS> z%uia-*;>^dw*TJU<@c}sjGPx@IpOP-hPl@zElx#QoQ{gS9HX%!T=wv_=_Oyh`2_gC zoym~1=$8wR{rPM`f6C&NDa@hE)U5mOexH3pGV73VbI|uI*~`k;9lK&z7`XkS(C%OL z@BhBI{BD8WwKJLlD|fCt9wz^EyO~2~^5i++Y%SDRPwz2{VQ;bCr?Bt)Y_FvsoS-@GrQp*DKb z?~||IuK2UBtwLwEvCOjVbI!h2s<|(fn{qqr>NCNRRl#qC?-JMcPRPb)<>FT_bLP)xJ7N4S%k)cV z>h6aD(u*7qD$h*t&5|;$>vgRTjeg~vn{oG`FJ~lM+D74tz{@ASIy{C44{TpmzD#7q%v%DBbN^Gk01;38%k3Ng6tT~pv>g`4`-2njGFu}nVm4f64D5e8@tTOs*9`SE(O0VsUd}yr zY)(P&bLYno@4TOLa+kZ+W5I-NDsMlCuQ~I?Kwg6H@!2h_HeL!0U8|Axd&YU2xc-@G zzps|(g&Sx!924!j9q-+mJfHFL*QImz2u?KORIVvmw&`hKfZ4qM?J8%QK4<*3I>b}3 zouu4MHcsp_dGuDxJGU*i%l|{+2ccJ_sYMlxUhKc<2vcR zRdx%6cV%!bXj>oJ&uVL0`SrfRva87l9w?@EZqCu==mzR=TJ4c}rf0E@SSTcX<}; zjf>MVdVjn5hi@t2x+G3pc{iy@Lt+NOT)6So-=wEQG7>my+qjKm@S@B3i_MpPkVJ`=j+c= z-EqfW_7=|Eeyz7}iSs2^b1osRmy&lMN4#FflP6ZQ@~JEPAElhWw2w2-PTI3XW`4<$ z%Ow%U{8d?tH+hM5{)?IWSTt>u`dQ}hnnC8?JchH~-JXAc`r>#-f5t)Q*wT)F7kl92ulE5w#2=#*51 zFS6v~vA(8sXE#HD?V-*0)a8mM=yGqUUHQe$BD+98X}|k~WW_s`%Q#Qw>9oyUwtn5E ztuxPN&f5B<=Cl8~FcY2KW;Wa9(>TOG6+zyJJz8T7O;`q|gu?cX2k*LH|btAT7J@SVcBt~THP3*o170_|4Y_=?-Ps9j}>a*epth^!hW;KtCySE-h2|9 zUD|l!{ghKz9Ya(lj4x#UuWq0JaH8qYs}_HDJP^;}da}wkayQSht*hg><)=Q|wz@a> z*2a{#oaJ|FwRbIH_WYr8?~gS*2gmaRys~v$EPcFVwq&niKPH=T`Mat8;=Qk0mK|Qt zdjF=zRHc300SkWzDzjj*7Ld%Kuzzx2Ua9CF67TZ-EPw4(FyV5tTT;_cNErwlD7v z<;>mw^1<$S$1NY@_L|+E_hH&&+s{!QlI0J?dpcbu+ijEBgfd@#c{g*8-}bcao1U+J zcw6E&0(Y7V)V|@3p4v z?NxCmZm%z&n*7A=jHAt|4OuViwm#C;zL|B+G4LJdy*Y_9m^n9A+9_FoyeS?ob!Ur% zr0b~-b0SLDK3&|;HYIN#vp-MNleevHt54ZnYE5v44Td|Ej0+5>GzPFl1VCCg?iH$n0D+&I;X^I;Y~XY`EmS>8sA?tX^+*_>bxxue8E9lOE2JU(3DY!`m4RgHkG$7d6&5EbG6&N z>&9m%8W(3tDm6N;jD2tRwsiZh;#U&$v~8ytx>Q|GHw&%x-E#UT_m$r4C6eoW46A2c zuMO#6u&puVWsbU(^}N$xuQ_a#sePi^yK~p;D`w(rcm9=%P?G(%>nyju_l%#m)84zTe_fyqP<3#%p8!el4 zb?WNxk84CO6koU`@gUB1r+0Dw-Yrv)PwVe2^*=Vpa)<@%G!`SFS7lS9kImr`J~eW)j~XdHB{t_d9a4%WT*Eujkv(^;=T; zZ~z~}qkRkCaqg<(dVf;(i@}%4FU|{@vH#2{Oi8zzn{>1A#kRLgZe=oWbG~(Q%H)@A z=R&q_JuPCo_PC7YZ8QFDEyqi9=DGIkzh`=0^X|Ifugz}B4zt5{trhzmdR%>TKvkvR z{^u4^^WVQ#zQfh?!hB&*$IpFw`?A-%#<-_c=|!=~)EPbuy}0|1%!S2|Ez;WN8ZmU{ zUSw{rQU1}q;Pce2?!P)aDlYT0OYHu*^qW+{f(O@X#N*`8_aqw?Z!k$>VZXWjgU$Wk z>#{bd-=8g(lq?clJNL6h&?%9N_iO&`I`qcw?t3Zif+ahtm+v?I@JN|+>HjPHe&m+^s5E)x zf64ge8=dQ$ryuYuy7gXn&&NZHmDaznaCn4 zf7*CY@(&ODcj~Y0wqCoO&z7K+@wlR|U&6gSs%^Gjr|zlAvosgm`6u{%)ykdtDe0T{ zZoSvZuL>VNzGkGCxtxn_Ud{z|nOr%+oPDN$1S_2b_MZM&wAI_%?duLruN{hhnTrGM z0=AWW@!)>cVY8j5BD^MLXV&@7TPMv7Yh!LQPkpxSsc)84|Bu@ilJ|XPZqbbrIIKHG zH2v0|hxZy1|Gc!i-|4x#t;+w0f?s~%%W1_k5>LI4$;rGI(mq>d$IMeR_NPRiu4+B+ z{)Ays$*Hxee?n(3TR!nv&hb63&Wf~Ly}4`C#XDZpq$>}16^eGptlsstV`HZG^{5o9 zTdY%5I3;d;sgBa0YwKUJVBMBIYkn!N=h{@Wg!kpIW$J4+Zwlqsed0Cd-7j~Fo9{W=xzXvxX=7qi7c<9qr(T7iWTzOZ?s=e})Wpwp&OW)gF>9ed;Yxj1LD+}e95<$2~5)SbDwMB-3ndPe%A^x}hG&J}LU&7Q(})n~=x zXU5icJEmNy_;@^YtLys^_qJu<<mon4*(z3F0JJ0I-+FSa+e|W0yG8N-n&%IBxc{?T5#{=o%^cQx59o! z^tU}3vwnPed-q4U{rBRJXY=a~<4$M)jGF%aoqYHIFQ4sY_Wx;p-&3uz`mo6w?W;TY zOutsfv!bm$-1x*~W_ztOWfNE;5>KA%Rg^vd<($aDM`fB@H$PpZ^t>YL=@=l;kwmqWTTeAkD`b7z&-{F9k*WpPSL`u0y9U+(tF9GtRt`rO0%|JU)^Tc2BV zyzTJ&IiKIT?ths0ySjb;u_~RfYb1SVH>Dn^XuHQdQ~ZKugp}at+Fl#KkmLo2^UpkO ztlVh)U+mhoCH9H_=LA{xJF}xSm#C*XbE&a%m?T+QeW`g+`Ebq_*X}KkSIH{OOJ|?4 zda7UDGUJXP_aY}ohTYj+Xv!3G{qMX)`-|aI%-nX1pZ}(#edG9()j}Rpjauwq=1rKm zydi;MS=hX*%QxR~TRX+@#v#etaQVE)S(9frSQG^pyiu8UZ~pb{X*Z|xt|8 zx+&kk_WsI?yqUulx9Pg!ImX*_-OIlf*6)k|@Mz}ZowoANU;dJ+=j{u03qE&(`_r=7 zK`-yT7xZ2ru-Io$xpt#f^vv2v+Ky8Ld}0qomTy>X^=H-Qk33FCKDzxn^PYF}88bh* zUbE?|{?F)K{A<$5N%d8JjCq+4tL~@l34T z?ZtXq==z6Pt7%3EHmqF+3OQ+x)R2cXEjJX-B#3#~0ZDUOMM&WXzMD21XoOvYWo&=*%kGzbNyR`%9_bzG9tI zt7gmGoSkv`;OA_axmPULecrnv=6~R`V%vbtp~?5Y?@FG2@6cAG=QDoIu&6%?nyz1! zDK?RpWI z%5j@(OxTXswq4t1R4kO}?exEv9DPK1s=(EVqwkaF++@7}Jpa)W_xXOQqSiC7hvmLo zq2~V3z+uY9bYm0e9~Kg8rY&ufy;0n6W%gO){QIiSlb&Z7|N9|6@$7-;M*hZYXY5Lu zl_ujJVimc*x+iem+=V~8Q}TLti@e==)#tF;@@v-13}&t0wXMr7k9WhFioWxoFAM4} zl6|aya%t>K<$&uk%Uyf2=dx)f>|VG1+M|r^mhzR!4hw9(_FPqo-~T-BI>XAJ`k&cT zSH{*EzTd!iEcjMz;)*~2I;PD#T>5tNh4!tSRk{56ts>oZW=Y?Ev*o_!>JQi{T6gZl+Do@)Mz5Bc@MO>7 zuxCnk`nsEq71mj2-Jj-Awn*~dLx#ZWV>#Otb_7f{n{wG-YJ&BL*1K09iu23Vi55>= z5m%7j9zX5UTdB#qRcHH|a|%=cJuQ!x$t+p?f0{z4lY6N4X~TLIiy3D%CEiZSTKG6e z`HXT?^>RtmYCA0hwZ6x*j#qCv`ccU{Z2#+xX}SMWqiWxLSbc5jkNz!FW$Ubc!z%OA zYcubCF@JivU6^y*8_`z6zNG_@KwXYM(#5ZiBdJMUt8L-2Xm zj(_VPL>q@a)85Wp)AI59VogbrH@4P|U-#`b{HH9t_SMc4@2XiDHYb+++4vid0)EsodBcY zh}j}#Ruj(~&QSQb*sm%?$9>P%sPiX&dRIT3b3Wpc+|pi8_6aMmEDl}v_Sn%km6xPm ze=T^X@{~6`FF(oFzGZdNOX;}9F=5toPA4*Z%orZ(SfnJYI< zhNI)=`et6{ZOcEjE%`X_z6{T5$&{Jo%*K@Poj+y!0M9z7(><#Vz($kN5UpsV4&-}c_3k_*s|2HY> z(Pt!E_@=nb&|6dNyS&s}H`VOpwC9ccZ=W#<4w$_|zUu3t$9H}>@%QBHotMJ<@II?+ z^0$Y*kxg-p8)iH%dE3!_t@@a&OaJXF6W1M2_V~PP@yGqo_UL7h3QGe^62MzIhS3gF{&YP*Y$#T0@ZuWzuEjwNtAHN>C``z4Aiyr+noN%|cpXGEz zGwb$gvx?lRpHy~E{(nAsi{$qG$DfMd?p?7+y}tZ5U))9At!y#Hm1nZ}CQRI_ZQJvo z{oCf9v8}V#FI}qU;&RXad&L>aW9y&X%4j^u&tCLfsVL)LV9CXdt`k|Cx(qKpnfUJc zyiYr_1Wtb5@mT%a(nzak-#ezhDzkaHRN{D|#*RNq*Hb?mI?uE0`5p4@^U}RaThHwh zJW!%*^{Vig#j4M{?&)#7S?O`JqIQnF$lBibo1bpe6aQTrt9(*gO6hMOXZpOYbMHh} zMqIzuTvf{U&C&3(@$EcrzS`+VYTrHU)(5QA|I}QkUHz>iIqvKigD875qdM_7XCDi$ zsg{#pdg=Dg+O(&=Je{w<8nInF71?PSq51N}Kh5=9uV<-GF5l}LF7)f1P4M%@Srf7j z6t!)CydvEpH0P__{U6uZKjzoIzu$4b=8=3}LY?mVr;Byv@7(YE|04W<%%8dU|Hr(k zh~s`X>uM>#taA>##9Wa{|LpjV`pLe_NNey(ef~mbf3n?qf5+9XGU6+9?*-n@`+Qcl zR9<%GBiGx>%e7RO9?Nc55nnh>-gHLdi%#jA{yXyz@6)@NX`A_nr)}GU!|Ts8tdy;L zySm^&~w}w5_?vcF*qJRzLEdZhx?3bL`vt9f!}GIN3cC z6Tdk3U7;O|`e_;VzRpFa_OD|YRa3WL^jvIcW4ix);Q9MWE3UnXFx?Wvx%AEPd2?@O zx<#Kk5VgS1B_=ZS-pAVaML%L|zn9HCvn49le9`m=k}sH#XKpL&)7ktiSz~JE4dt36 zk)Mk{@2#GGvTjT9Tiru@VQT@tnTNOMvYeFg*2Ge=~?9v%}olfK@@Z=LM_+no15nirVgYB=ownD5h7 z*3AXXH9NQNcy;099PY%D>OIfX=N12mTozsThUr7urCs)~mT8i*UCrSlcGOm8+^<~5D9UDF$yZCIQ?BwPNX9BLY^;PXz@M==J%`>Sp zUoAu?JW^A7&FlTLdimKa0p~v-+>YMznu>ZsFhQ{(w{F{&Z=+9C=9R9NOlNQHo zG23^t1yetEx9>Q%h-bY?2=l``FAi4rJ&5@>;cOL4bM=GEc{?XxuWmHc$bK1W)PKIx z*Pt@@Ri)hb^M0{2ZqNJ>Q`Yk)LiEz=tZL=>cj3i_58|d4t}gvpbn3d}f&NF%N7EWw zZv~`>aVu$GTW&aUxvBoyyUSiZOJHyA3OTwq=C;1ir_Zl6ttYb{?tEJ7U7meIQup8ag$ z?1qx}SHx`8E5nXGKUH=!=H#m52RA-$vbr2H_wg#e&wH-z-7Cp#-E}ASbmGiV0Xx16 z9obpe;#xcQeC1FIy0YV(}i4;+VhpZt1$IU1D8$@1l8p zK;g4{K@1z5qzkts+s(FI_?Yw1m4dS-u5~9Dua#KyJ?s3j4G+(LGWTA2irrQ#?)t{- z)!P5le}vU-|8q?-agp(*6n?fh zpKtE>-w^xCvH5Rb`d9OL-JHQLOMYL`kdl|Z5_2K&(}vo}KAr~`SHAeQ zGoVWL>8-|XFJ~-J`4Y!FSbycjp||vL9cceE95_bXFwSMt{m%j-qGM>3&;^$e3heF@qD|kh-JaMmEV1i?|y5`7@-t)y#Gan~jFs{ok6Y~9|c(~u>cGLTL%=6EcKi#T&`|Zn9 z8y1`H)xO+#Pokyx{<#&q*L~MnuI3tdJnqxZx~uO6IU?lj{(U(mbH$obbWO6`gO>f$ zT`zNH8yr5A`S|@czZ5$ylj4v6w$@mzFX!53bgaYofYHaS&B>p+8o2H$|GLUj+Oct# zk%=jvhwxuZhlwj+w0&G+*qVB}n(-w4GfvAyrqrp{2Yynzx^$hRI^}*2 z%N0&bR$kluce3$IrsT6`1qPMfE$PVUQ_5iVNzCWV z$_MrL%)V}#w=eqwqiXL(_fNAPl}pF=MQ&gI@yh!->vv@uG5qG(HnZL0^CU-^+g<19 zW%xZ#wl?45yME(3&i((^Y?;ygWZQBZx5}8D?I+&7ZA}ZGdGuSF{M}z&Q69;wD>nW; z@^P(n`ij*?wo=n}Udx>me6pm!waRzPFZRDP{z}B1@;)E=?Sr)NvC01X6z%t3`BWs9o;US>Ip1aBx*xS*rWHkoW(lHM2kV3KNbrd{V$8 zE|fjt@ZW0*K}%*e8cK`JF01|L|DrSh`@H6Sljv`)kuzJSb4&L(p8oD}zdGfZ`J57^ z4!;v}QR{+xUjNE+np!*kfTGn@NzyJ+k4 zP1CDO^;X7I{d)VL<<)i;!S8vJMvwYLj%K%M7T~&#`NgZzqiRJK`u4|jzxT2H-tpnv@ARSr4(}^ouaKWusx$XUVQpCUI=v+lKN2%n%w8KG zm13Lm*PwWHmfYQ7H+Q}XQCaD80>o0aJs+>RRrdVD>Sh#^SuB_=YWU zSC%nN=1sO&f1}OgK4-J;*Tb%+vP~sFOs{NAeRwnc!vslI8Gi9Aa`QJTsmHr8_Zk~7 zjLLs4bFF9As|D%z3ws^+EHIorZ^z^qlYqAcvER@AS@ZOzL;bmj>2Z@k-+XWX`A@oZ1Lnf_iexI+jC|)&#lV0O@%t{Rlh3yrb*w6 zH2*2>o}p#2w6Hjb>(a*cM<0qmwhjGW_v3DDIP+hwDV7d1nVr|pt?Q55Qkk;iSMs$3 z4L>N)?PP(sv+rg8J^LX1 z{O9?pM~{44;(nH^@L6T&$?MgBuLVUP2>a3^`^v=n!25~0aj*8=nfALX&wJjSSA1e= zmGNK0O23_ADr?ACdUOw$^i!Sh633?KD4rLpORq2J3!6JLmyw-wM_{8x;I{6BM-wMR zE{}G*mAGp*_vx)MZrWC92J2mX9>+wk;LTlQD6&lYd+HqniK)gbUOYMbORYWerSix8 z!YiGI*L>!1oC?dE(rH=OJN12L&m}JA^^x0Ccb@k(JYrE9*J$^Wv68=x(eIP>$8CL^ zPE4*m+sJb+o$rw4kF&k0R~qwlPcPeLw3JtHVr7?Ei`lM;%YJ{lX|POGE$^4$-Pik? ze?F7_6rsJpQmeJ^P*2CkpDEueKjwY6?dvvLeDuVb;0Y~~zCP(0;nv5Qs+SlBGYfpb z8rRh@=e1>q$V1UTzQtJkG0Q@L(pymY-fvY&D-s9Oz-O-pVrj$OTUVj=Y9IjXXIuwL8G|%lTq~BpZBufy-zf4 z`&N+NUhF$Zbjz=tiwa@7X;QB?^>ax_uTS$5RpvS>Q^;amY*W`a;eGF`ALk4Ma{7OU zRX(v(x^uNuR#^VG&jOC!bNZTQ+wdQ2xbmKF(yB7sS@`$=Ek5Agv`KyXEY9pR4OZn>BQ~vGm59@kkyTaei z6}s!6X2;&!U9VI3>a)Gb{-5{cdG&tm3^>=fVvm5hc$VX*XRE5a_av<0Gl@D}l(r#5 zQ1{%bgVyhg_AsA|o^!G(pjJ$-dfD$SN_#p~Z5G>1?UmSDW5w{~+p1vqu&FAu#NL}S zFMd2rN7*~;)@93%BXbwU^lbk*SB!W1?ZpL!S<6pWm|6cR`k>>Tp82!qua)@CmoK6$ zFQl_C)?GaBLsX{k7ttRf(M!(E@|^JeRLM-)8;@ryTQ&8DKA+Hc$4|Td$od!Vdj;}R zTSD69%L9x(7VYz#T{16S;>CyJ-^+ZX1t(<^JQ>_Tr%bZ>wF!Y>yeHGo>6_%GA!|5oBfkoA0s9wuEj5p1a8& zMGMX*8_hj?TOh<#z3X!N25!gwg?ltt>aVj*SG#w_`yZ1T2g{d_Ulj<(1ecinGN^+ta@BFnwGapa>9DAR0 zdPSUcSYGOq&@|Vd^P1P$UAkPPA)oCdsmAkbZ)M!X^til}6X$H+mSpExyNu!5Y)iH* zU+=86*bA2(f44_k3G#8I%_=$FwkA>e!i#)&_MNP+owl9iQNGNcdRF6J#-ab!i*j%E z99w1l$?DkYo*iMolw)N0!^0kNr#%h-y)Z4I>gk!ApZ;u()c@Q#FMoEmwWLz!u{Qy1 z;a}%er73J?eQt7_OX~fV^2EP-64?(v2bSfu?#w&2I{8Xz6|2ktUuT0Qr_6M_@x`+5 z{h8~n$HgXYx+S6!xUG&$Yw`=_^Q_E$kB;wZ%sRU%$J@GP;*J$@+12-Xuj@&u&t3WN zs+(Dn`Yb&vXAi&Xumy;uV%U3k~3?n0`9Y) ziCaGB@2!H65BCDvKgA_qw>|a7q4r>%zD4bno#EzR1O5Aw6P0`CCRZ=nf8_NM&eF-( z<7S@seY{DlXkxBXWR=LCJ>VA7;tM&S{|ElsbIxGO`>v;1lgjqZug?B)?ZP)NBWuyn z#5nKc>3qQ<88*8fez9G6E%V6L2Z5ZrE~PX1D)Z#;py*V<;yj=NLc4{p2@ z*WFe)_asZFQC+-nPtVujua`xN7WhTPGy97!^Dvb#I9>2!-|I^yvrqrH*;KV-3hF75wQ&v*CTGc)a%U4L(RKaD!PIDzN(T9fTgx4GAG_?jKg`Ly%;o^%8D z)1U0^A6GuT@$E)T=DzZ6q9+e!Rm9)Fm{oB7tu5b+;JDPzPg4uxmp!%;+v;I;dP_w0 zsy#cLJ|z})%wH|DRyTaz_cJFYO4#COe?ME^^mS*$lX+$36^mzX-SzcG_&(u@mGgh3 z2>5=z#`EZ^&Q;;OlcnE2=e)DLv{y@7S8|X4r^-J+J43Y!3&T>%7Qe}PHv9GG+4t-8 z|Gl;Uc>n10eGkj!zWoKYheGXk>=(8F`BT0t{?8%#Xq7{LQr*eNlz#E(hOF6pCb6i> z__y|YMnf+&8;eu63N`c!}OKI;?FAKTgeF%Hdy`HvLPkVI$tmH^NCwZ zIae!}?puBM;aO3=q}f*&YW;ZmVe!*lmwUF^zy532?|JGP5H#(0%zD;ibG)5*Z;iNBx#o<~V&T&3@6H*XZ8&DzCzNpd zS8{nDzwD|;tI)8mC$=d5+hS87e~I(dq43(*4W+J&>^9B&c6*m;@b?0PrEIG^gr`bJ zy?#1#MzZ;LuCmm-Pw&55%@(lcwoE}-TF{wk9?4Vwhu$y#dayyK|4^`OU*~F}M-$#& za9gzIS#`^An_DxrYhJ}aR?3%AYA=l0#JFm$qR#65t4_Dpzw+t*IjyQVx=QVGkpGR1 z;>X`>*`;Z3WB^jOv_|)OPr0M@rtd4XuP6V#EBxW=mYJ!t>iwU^ zWON^0>TH|xt*2l?_V%(r7Zd>7j6 z52ah)UB7Yeiu>Z#FEd`JO**w-s{B~<$BRui<^_g+Mh`arY}@JnH2Cx^xpPm#cAq<9 zVjDjDz?NOF0@FUtGwchyYMrjCEcNRBzD%CVv`aooHD9x~%H~9OhH1QiwON1bo(~Q8 z^H$A2-Kuc%sl%0t)4slGJm+hhd3pM|`tF@;gf{PpVRbkC9HnIFJc+sI=f8x2S*oul zp1xrv^!L`p64m^^`PY9Px%i`W*)8qW*LVN6yK{Z#PJPjNA0Molr2Hzd<|?P2;5oCL zpm_oxMFOp-?rOI_JpK3Gz5RvzP0Vc#Vv;*7!z<^vt&e^x*md>J!~^S2PdVfIRrAn9 zX2H@sJMDHJGL49DQ@DC*-Hf(t3A3Y@y)ZlfE_0LZitXG|_VES#1N&lP`B|cel?vdEf7Soz?X8Kexcs>iaS2yjHx@Rrb%GE61$8{(V!v`t0zZURic#TTgzz zDsr->;?R_eBggx>pGMVAD_Y`p>Eqhz*HkZu*L{B0CZltOtwZ?w^))GJNmV-|zaGtc z7BcU|CNuV$mFk~AYm3QwUzWW;v%T!|XW#sK0sD{V&L7*p?{DkVd)bw`@}-sU|84xC zz5iSKTYqX;yRW>bsBu!U z-FjnyJ$(Xw@i9+x~lP>2zwO=zjIqSgW7hip4ivP$Jmw6c+SiS$HkLE7du#SX`40l%v z>*nJ9mt@zr-nm!s!#3({i2L4ODFKuGPDE#jPMYgkBJjQ}@bbzf|H`M`5j^F_o$@+1 z_sgRi7lsKH7d9@my#3+lr2DDcxf8Z=uGlPWe6PPlG9_5S&vA=M+iQRKs8c_u-!EOU zeD~a%&lN%Ts~03pO?ep+n96Drz29nH@LR0}3#Qg%CwSb)cTN~>yqB=S>eOb# z+Y!xKldPvGPIV8HQ;q+9a+avT#L5O~t#b-yF*A6N9JAvSDl0W?UyyM`UsgLbmZToiDO^VIu zTD9KP`k!|SPkP>*P`B)?jymhA4EFgKpMB*x?|sz#>zWT`{cQ}h-u_M9U2wXlT1@7t zZ(W^VRbZ*9-zT@DCofn=rd`-pae002ui&}yjUp@$P8=8H`Y`*ro59&^iNo%{TgnoS zJ^ppKblI7Ayg$rJi*4G3e|^tte?L9?qxk2QncIEtY&EgJ_d&$?hidecuUD=IPu@D` z?E%Sx-kj>=rSI!*8dzR%Un%->cEz_g$4UDmr%RqW)A4xOWcOb++bdoE9QN%Mj!%54 zdE-{iwS(uTo->+%HMroD)S|5C$9MfvohmN(A^GGZYw4oZ8_sL#SgUNlJcVoh+4Hf_ zoR}?VZQ1m5!p#W*7xygS`fhvpq@BgLn9FayW8W0GRjm4vB>39pLWJc1;*GQSZ(J+0 z;P%G<;ir5m*R83txL^5h@A+7!#1xlxx?y*MQ;I_(W!^4~G0fZ1AJo3=TvvCO;Y_bR zNtZi5pGvr|Jkk5#1}OpEw=b06hpxWPyLDya+pD^3^z7Ltu0Huwbv+`R?|0`@8e^{d`;gSl#aX{p00zf4)E3x@X$@(#rq;%KoJ9|9Sq{^ZUQI zX*yq;XxTddZH}z#dzDo)D;s}ZeR#Y~CP09J)iO?p0v$+Aq#Ao5Z(9uboq>oz8Hqrr(c;ZAs`9-Q%(s7iqq|a^2>t4sV}o zbm+~8#~&28{>>=5BgLO{{a{M$d(J$uDD4uCPnO@-D$TgBFk{7Q+oZG|Tc0&-Ogs~H z&ppYiqb#SX$N8=GgKJVvt!I~g5wsKf?DE0?Z|Lcwv@2g73@%ZRs0 zW7*u)c_o<>7pmBPXR=RyQ1YWSGv>?uaF+h-^S2kdZ}@XydA;_&k88`P7Y6>T-g z;cuze+~*(J=XqUdV`bCZeD6eZ<&&cqpHG~3vdlC!^2~d#ZB<(*q*k5VV>mVS@1(EU z{?}QXn~q%Ccx35{)yFvsyyCq3PDNijRODA{dEn;sjc!|}EX}AhHVs@aCDeaNd)d^u zHS6yPHMca~-F))w4&C05J==0}gm|nJ8zL($E6z5obzd>F#%aB2w!xv|mzSlF6>s5? z=~x|i>SF&JzuvcUxqZH7`RA@o$$hNQ_hQAo6vtbao~_`x-Pht+;?TbT!|utfQ$pu0 z%~Fl~yFF+6rL>oVnfuM2#=p-_2r^@N%9eOR;<(}Iw$ejP7NRPz7V7+6{WeWvc@FPs z-BVX)xt^Zm`fz(*UH9sK=?_X#Pku8>wj@pHlDm=>|IXAncf0n45Py-5oWqtjZo5u@ ziur5*@WrdWwHh_YHkrrIUd-lWr`uRCp>OrtV>_=4PUopueW!Y=x6JYqpKIK&7FMlX zv-?xcgnEeyF~*hGediu(yk&8EYjjH7h2>4<+n?pW*{2_~mD8QU?4sC5)t!~IcbvMn z;m^ExGwv^E$qsz>{^@jaxeuGY7I(-o9bcDfWmkLjS*qI2JBRdsJhHOft+X!wCZ|`# z)%Y?7W9g?xH=Wb=^_uTWF`f2GZDY4>(BB!!FS&gJkA)xi`nF7S=KQTcUO8^-TzWqC zzU`+Nw<|w8KCIbz{_EZBwO7{fH98Y`SmCC}srMRdHU#gfkvOwkEF;X5v2wla%6C4i zz6Y+n-%PvcKy@EY5ecO}9SRESNVZF*`PDgiXNrqd*kAmpJ!hHlY{jXx*n}@OzU}t9QK;FnGUX{nd^0Wha|P2s~uCRnb=b?3*9UGm$@+%O6HA-8$#@ zdUfqTraQbM4>(*o)71S&;LC5u+MH0ACFM^iUR%9pw#}W*KC4PB=LQ&m_HERCw5%`7 zF#)y~Aoa5KuTmM!m|G{dDZkTU7Bx#QJg4 zz5T~{tR(mU-Sfox?^y+#)3uF;kNj&--|v?H{pS3!_&>t`OKToquI^4Qx+=MQdu{Y7 zi{E|H-ka?DKG_~}k1Y1ll?i#car#Vijfb~d8mr!mMe0{GHx~MwZ!_l)wR|R-o;K%+ zfjM`jvhVEoPfzc<@#~JXIM3tSZSO+!wi)V3_VBWE=tjTR>Xx496Fo23qT%C`gl&Hx zi`CZG>}FQ8dTFf76EVLjR2{;S+E z&u4s_^lrQ48^yn|wdU7XJ6e4VY|~_SjnrW7lQ?Le*Rk_^VQ;(VUDo{FKg4!vZ)Lr6 zvFWViu8YTS$}TXnPoG)od|QgUIjPD`I`R|SQXlS@d#_8pKk)QrFvFqQ^4kC1E`;s+ z(D!EdEJ?NBTW>ANagvEnhGp+Vn|EpI}lbNYAn6>O|MwJP+V zQ{EOs{U@9ItaPqy7p&Z;tdu&>&wF*`x25U7kMi&JjheJ3i7nA(*+Dt39P2NSiQP}Bj$bToa)I_5AKL7*uW;0eRJa_ zt$F3S2GOoR5;iQHr4n){dxrN9>r-1-mE}xZ7jdrk+m-(r-!*nv>Z$MSde8k#Mxicd zmE&w5fdls!ADSgPxz|bhNU4kD?4Q$Ka;x$u&pWfJaZbX$%Nu7!ElZjA$Y^qL%+pVDWqr}PA1AP#*7)wg=ejHFR@KMD?2%CM(hFQ+>rKdE-w3JE*<0A z+Iege^W3+KtlvAQF~kI%I=JGZ)#9@zd*9vo{_3sAhT~WFz1e@tJ9nFMu1fk8Q<+K= z@!J`1UquISygpV@^n>x$n-AP9WuLv8{lus3GMez%^Xt3oyPwV|UH16+l!a>T^35$z zWcxK6)}I#I(Rcbu;LMi$5(x}vujdu?oV%K~dy}pD9dW-a?x!QQN@QN%t-4%zYwpKo z$$EcnA7!M=^qNh-SAYHa#Tmb(kGJ%F|E&4C>Ak$jd`%Da8_QVR-t4kbZ+bbWbVlt8 z28HH=BhR;_%r@4{I$5+{eTP&*e$)d0C1-zMZ4NO0STx_#VmsT4sGm!8PSzyNyzYJb z8t1f%mP#4XTS}7-pXYP^{?)(sv;Oh^n&bET7JvQm zzS^XC{hD2;@ME91sXdo6V~r1XZ0^v}ezjZBa{1ajtN&hG{KZ1<7W*>!tvOXjF}bG_ zAFXz6cRTS~?o}dN=j)S9$)8(5ai79?qB_`OCjt>!iFDJbG(6zNkYuM-7wZ8tvXV1=({OHc?{Yj7X z)M}P2vgup-f8BfI6O)f^%rjf4tFrT0o$#N(JIpRVX_#Whs9Lcrwf||xe8+7E_MU0J zAUmCR$suLS->v)Qe%?LSvUuwIH^m1kKDq@*D{I&t?=9QOsFp8hTwAPL+U#pqx%}|8 zT^UCmEAnsMmNj2hrgp!qKfd-}^;Yh63~`&|63R@NkHqM^-{_N;+;WY7d)jJ8naO77 zzTBC2%yqq8;nA%hy!GP68SRB-jvD*2?@jJ_=Dx%#>m|qRUFR*Aowb|FaOas_bK2=k zvp>pwUVklOv%J*0_1#-@vTWG<*L{pDyW1ysn`xs$7Pn4i<-xLRN*>yg>s}?S6<+9| zJl%$?Z&m5GDZ=fX2lM8Y%-#I4LMGebB76B4OSauVi`XV43agkc(qJpESoJK-rEUK2 zvTMtE?@N6#VPD(WK?xQq_u_3c-vuz7pErNx)^54usQ0^$-cdBZarLnd|p`D@0)vT zA}dRdZ?~Q^u`P1)r#TzKb~QXKJ!p~A@M=w?zx>kI$)2yDhllZ)KR@!j`n*sHX|8GTA+4h9v-_O4(~|q2x!y0@;QuT1*QpCncP4HKDz`ANYqB`A<;1R* zuhIAZCH>ib|9||^?=_Fg%{S}^H^{)dU4C5u_w&b7{hDx>p6{;<+c!6dM)uiFGU2=Z zrT4JD{-$EJYaE*{96W9InyJlCBhBSPV`a?za}yqXjyog1cKRHZrfBXxuZ}#JHZ@hS z)9jv$_suZDDQmBJm9SjYJh+Wz`@VEf^LZ6dwyfjpGTza=Mg4T!-_-W_vRAXi&Z$}- zowo1znyTDld#Bw=y#E_c@09#%A!8kReY0NPMB{C51-2yDZFO2P`?e^@)57{~lUjYx z9-f_X;?3mEQ58mcofGGZU9S1`LO;rh%b;rYr1bcbu#bVy=lxAv{#B!7MQFSH^YrZ& z=S%h-`jGa{==%+k3Bo;ZcdgHU*>NVK|7XgE3CF|U&Wqiw#q|Eb=?%i)w;Wi$=GD%> zn*Sw^Xcx$Z8|2A!-V}QC_-68>Q#0!;P1iF>&zH5ZO}D-rw9Cl&-3gJ9`$aZYewzMg zrSI`~?9%YF#WkK5v#lyGh>z^Gjk@*p+yYm-Yx?`2`xY!U6p0e4 z_nKzB5B(&}76LLMsbg*>x)*WtNB3?@LcKn!p|I_!!?)!h&_iXPs zFP6Fgwex;&{pa8RPybNP-)~(xt;)kB*u3LHmZ)4MPvX*Qwqq=}Cj`D~c9+>aZ)4ug zx%~-iH=X!#*5a8O*UN=AtLLd7JZ#9eFL=GN#InbGi`zJ5KX0>DI;JLWwS2Yj!?Oyj zc@HV@^o!Or<<0r~xUztIv5o4i`1`p!v5vn4&POcYvU0ler{7;#x*wh^3tYN;RkFmI zuAugF?>IgS%HxPS++nTZ(LW{oxH8Ox4zcO{LkExW$^jhucDSk?_OCX zv2wX2@Aggqb?%H&-uA11FMc^^c5b$!27gG^kH2ek9QQa{y8a83zs#1K_gm~Q*QY1J zHbV91c;$21Of){TycgvAG?V|Yd!*5ucAGZI7Cq@Om1fZyYfZd=8y|Yj$bRkE`|9(> zM+H61x|a2|@iO1wIO4p8!~5^zJGKtOM|7S_Gw&$=QhV30_Cc`w>{HVe*S;v<7F=Zg zF8xN4|JyUgO~L}3&d#vh{`l7wR@?Lsnk#0!*y&z*{C&pDYoFZMUYTDCIoiFp`eYyX zzITQJubvcs{o;Fk_3tNa`BD$u_E(9lxc!z>>hR;=Pj(j1+&euquHeA>{Cy`w3MU*t z*sV3qb;aYjdB^(FL-RMBNml>hC%by>Tr0Kc=T*%|&a@RheWrR~-E>ol15&SLyKD|^ z;9e1_`b6+bSoqpGq2G&3d%thpcT7!Yt$R|G>5ZdK9p??Q`!Bp}+;;Q+szcwe%TJd% zA-w0+<+n2DH#|5ev*p(6-$@+yqJ^a|?5mdbtz$db6J7i6S*P)oY9;w+Vz$P)|L&cy zmAm_6-I-;7B~C~hTFyvb8DJ%``|)Snz3<)r%G_VPHLRDxO1Q6E*nRKRPpc*_INVtN zY{9K{YW}k93#;??-&wb=aQif^#PY`YYp-A4%De2~J^!n9v{7lM=c9&Sev{re*WNk4 zOJ3PmM)Y0p5@}0k9m#3NKa4^I4Y#lB(f+ODefO+%EJt!~t$zF6&l`X0ot*V?V{vZr zwIYx6;Z;{=-Z_{wEA{U7zUn_ep4aKw{rs{Ny3nBZ^T!|lb${n~->-Oo`%zut7mIDd zHk10@V`S^xpXgY%|Nf&Zux6w2I=Q8;t0yuZ{<_1?`cufOM{Wltta6o#7@Utsn;p(rn<|fCj>NfGi)t6Dt8#k>@J!vG7_`J6J zjX~J7l@F{QJ8Zbr7y7YPW_|yf{D)VMXJ36=f6d9Z$YA%Qu+mkfGmNv=UhFist!Dr8 z>+!m$9d9gVMeR;Z|FJ~D@=wcphIv<>bL8D!w=GR9{-Ch&eYyV2k2$V9{jQwExvMnh zy`Zr~**CGmw@vwig4f?=TgGlaJFTDl>WvoZ-eATfi|2+vi!F{1zdxC8SE6my{F!y` z*0m?xnw7WiOz*8cwX!VkpsnSKV>(L{7Tnr>Pgi4=pZ145E3Ok8bRPR2*ZN*}MA(Q! zRh=cfNM_OQFYop}>s5c`e>(BxLY>T#`JaolHw4}@wGqzf-*nK(^z>TgtJh7VCs?00 zwT}5cy$Ihqc($I7l8Q=TdG)ZCU+)_C*jI@NQpwDwHTE;_T?HLqmBz1N8q+28j3Dw&|% z?_LoY7Pa8`@(J^#?ic@iyP}eN|LM0bvmdq3<(po&;LJmrBEKgY=V!{=EemqwxBXtS zRV8BO{M_d~+Nau9A9Q=o`&ubA=$A!S)~i#;XX-7BQu zt>%4)cU1K){`XN|-{Qgald-E>CE0D4RIR@B>HDshZ^30T?_*9&@_oB_dj9QutO2ho zRu~m`mn{q48uln&_R5>Jy5ZMtk5?6SWj#=mW{mNwPLV9uKE0+Q(tdKpyfrtrpFb8d z)5b1f<}67!r>6}I7OtvpT5(QuRe8ySNzK8}Tlv#}R4(IKm>%@ub!>#>JcrwJyl1a? zJ?ZX*wa?Z*TWRdvnhEDR18QH+7f^7j>vyuCS{! zpZ4DLgKmax@gvRD{EI58AwTZEwpq14YWMjw`%I%}_@{^N44UHpdB>XX-xzlWZa;PP ztH8F7GxhyTk8mAMmb>47u*8E;_R2w9*S4PwcE0ncZqxcUZ}R`rHzm(6P7yv^G$)e( zs=}>?>kscFADsL!H~8JvrRlBTwe^=U>m`TXyRfV+)ZMiwK{b8v*)k)s@V#5(0=ef` zz4rbne*dTR$5{FQd)H_Atbe-oPvVsC>ymBizuwK~XA=^clRV+vual_-7b4=GI)qKt zU#Fh;_|cl8NwRD09<6G&mn=(ZP*b`zG4jsA_YZu_WL9frWOh34&3b*=(bU`BbJ}v( z|Lz$NwbCQ}uZOR7J)L12wfdHFQ{n@suTM4VW(Dc#^ZfO*-gaoM_q0+QwbOj3UVV@b z&Q z*Y=Zh9)7nAtte@A^gcB2ey7BY?V;SS%#Q~eD}=b`7PMYa+Wvau4X202?iL0sem&MO z{Jij#ZQsmJw^{X04bN*Hd{{kgde^b=?R;9h*S5}$`TQ%V^?kMWkI9?Yc!z0B@CpCQ z>fA3W(|zIl8B^248{`(h{AhATa_`;WhWBI3+cw`@cK70!6#um!{#J1roZ_qrSstgJ z%e2ieM&@&6@8s2sQ#{Mx`R>|u#U)tJH zS~^GeO>JG!`n$pBj|KB`d|3CzdD~O%Ep3a}H7VI9*R9y{PksN>_s8e|J@;QV_1o1? zcjy1O`(wKO_v?=*`^%rvS#ojNQ>NpJ^VUnJ9bx8qk*X=Zvi1_|+?DAmb7wNg?JW4r z@LVS?R<8YKI@|si&ILj1wE_ayuYR}Aqt5uW`!`3v>d5^rC*&TjYK~I4&2?<*?Lhg) z=dSD}O!ltZw*R14%2hD8e9H< zHT{=Y#j79lN|#h7uuN3hAA7pu{Ph{B@`-Zm=E;0sThd=BxzKW1EUV-_<2cviOS5@6 zw3M@7l^qCmKlk9Fa8r2bF|7~Uu~Bb%UV9u~XjlHJFz4RJn8j}=K0kNGH+s&di0i*i z=b0AszJL8%S$k7o;QZ~^F7KX_t9;5q-u;23dnV`+QQ@*;m zd}9cgZb&{I=6@}IYWdOC#*6jVln1da+^KuB`(&P8Rs~zX6BUk;p z@%QbOvNl8Z53l^Bxwji{`M-Pl?%Ygcv+&Ier=NBBzHe4<E!ynCI-lcJ#YSKVbV@2kj@@tG7^bWCz8pGEVT7@J8q?%6-w zxn%b1!$!*`-mF-=Uh%!mv^9^|;wI{A94QSbelq9T^UxPB|sJJ}aJuN(VrUN3j^ z&-yL9zD+*+h-22|qdm<- zr6$h{b)GGLY<*3}odd58Uss$_|5doGXlnP8M&&Z2&xI#~IDO9=N87`b_^XSx zk1ToWWcsjJVaKIUHTP4$RJ`7C+`r~s`r~T*pSR<@%0Z_aHw-@dhIN|;W&#D&7$dG!v@cKdVi?R-CP zljRQMnT>~~mZWTC?(gG&e_{F7GqJymblBdxM-;6&F1^#v_(PePrEJ~TSoga0dCbO( zeb24<@K}3oO|aX;hNHz5yBAC{UH@~_;rA}qk~{AJ|B6UX;d*_~Ux zKKb7BkHJmujE~I^zG-B$vFtb=SDop;L-1?ZX&WV>xgXDQ%=^7thWlz`M*IBZ8@C&U ztyQk@oX+EP;nB|H#~yC~5V&<;?DX>&Ps%>j&3}|^otDft!9#xg>gx|b81uOAzNb3P z=yMU9M@;UyHQV0#^qKDsnk-vq>=Dto%t}vv#=Um;<0|*7g~RV|me+h>TG;Nh?~47s zz!}UF+BzHE_qnfczb$=JH2l8!8bQP3#k-Auf4QCf@b_1fywjnq8tU!J+RLo6)vrCV z(Ao60j`i1ZK&M&R>h;9>r8m?oeE2$M9uB?G=Z=t7gBHO;ES- zD7$;uz2Vu^8Lw5_@9)v8beVUy;NQ#q-$#EG-~VZ^zv0cP?=_#cKaT%(=lrqg@Pr8; zyxKO(rb#?|z1pttM5AcpYn|(+e%qY)y3So;7yoX*sEs5-}(C;r_rY*|LfTfJJ=MDNOMIM3U`z)&zyU{WBUni z%N_pKt4?+5OqM#f_td37<}X(#e)f&O?e`-m((S|Dq$g|V?0xm~sf5n%+S-MMxni8` zyI1Q>>vgDZs>z7UX-jtJzXmukte7)4t}lZ!FO=k3s?RB^Sv8UANbs}{KG~8qdoHGI+k@$B=WO1`^zXm& z=@E0CZS8Wd_t!;d$w$UqQjDAXSoZ%W&H44|qKAThzh3%IYQ~4)%JAYc%l^kNB!rfn z+V1&}!^rOPY126I?pMTWwYW3B7LMmiJCMeJID|Iw5`n@P7biL%KE$z(ZWl6=R>x$R!Tc@)~=1HF=`^0_M z7esgey~8(a*{Y2@*6Z0{wNw^j`OA1GyFTvTSN0DxxBcmP=3?@cXXTw^Ue~h=Siasi z+~W16vL@Z-L2RwwD{WHx%iH+}4?re)Gb5Z>6uU#yRCj zo)p_`T0Y(VRZXt?Zj-5dXTHu{slw4YU(2~nHU9oZ!S|_quGY>ni!ZxvbSJLt`G%`@ zswb3VIE1&B*4O8~yD7)aU$nStzrpK|wkxw&xAt+XyxFanDfCWXZqn6%owsNIxPI^F z&L3~g|Ge8Q@(r{eH1Hm%i@5Uq|A0T|rtddQ@;Wy6@cS8eeEGr~+!<%f{j4~*C;G1S z+5GF9O)VrGPo7}CruFjGq3W#)QJfzNpYJklEYGh#aw~VwyGL=U30qzF6kq4I>eD{; zndjSu$Wsi9kDX5FStHoDKPs`s|C(p4Xo$Ma@#5VoOU0+V|FG~qSg%)*wmSNTob7tP z{jVf=0v2TUb!YVEKd5wAlJM!k;A& z+^J37x;Htk=Oth0oHaAqAos~XNtJJ#pRq@=o}2RHlx*G4xMh#;R`nU|IHzj=EO2`G zUAwZ^#mB!F=!mw<8~u58YLWXAhU*)AZ*O&uGg~vi_Qi+G8zF)9kvC>sV=j1hs@-^lT^d&i|262Y@22tYw$trppIkGo!oN`)BAqr@YP&u ze0w0f?9j2)XCG>ti?^C==9(eNQ`w!6R~j2OGkb>4VVMc9R_14|KGn(d=zGcBTCe46 z``+frhF5$x{nULt^KXL0=Sth6oYyn$zv|ZO*ZsI%pLp(K`&2Q(`9F`mKhj_OE&cK1 z?fS_)ukSzEF7aM7_Tx0>YANTZ#aFYRR^N-tk~x)lR&?d>v#V9*xNihk-+H68YrEZ< z+eMmd%WpFqzkP91XL0nQ&}GlQ{x~}=>e&w?--^TB(ZK@CePaXrb5F0HaC%?X%w@0Q zx5;jLcRfbKIo4JqAyU)-k5aX_!AkjWr7eAeQ}c}ZqMj)9eJSDPlUZ^5qW=Qf>cCaL zjysI!_dO0<``^Ouyc3KuQ zSG#qr+IQamfW8g$GG{E-TK?{$+MYT+_Sw}(N_&c*1wWd0eluTcXH(oA4;8)@l7E*h z%}KN>(Abj_lfol=(DH`3tmR6F3FcxhR-p-3)*5}hq^UVU^LFW$^4$r~cC~!U*_X_J zKJ&_^#4D?wJk;C!sBNP$!`f|Os~@h4Hu_NVe@4M?^IVr(v$uVG6FN8df%S0%`}KaA z`~|^IORcZoefdCcp7Ph~{eIpvq7ptmwES4smTTXaelYudRq@v!jO&YecHULly=(rY znx_?et4{6uyL6hk+=t1h76jjWwv$O`rc1^oixm%bX1#f_edn%sH}7>v9^P7a{#k-v z?M|)Dt!XXCru5$1<}iu#^UvKo`EJhmYSee!{PE1(^lz(_UJ9PJIdt6e<38(U=bm}! z`+w(5jtweik(v8&HKT@TSLL}guRct>8TEc;M&^ol(f3oGqa}QI!Kpsi;eGhp1AA0 z()*5({=Chy`qv8Ir{>C~mfG){drE&2fA)kw7yoSkWdHHz2i}76@BcsEo((zk*T3e~ z|9e}&E7haHB@_Su{(8l_pWXMT?no*9;koY_!_5sAQBgBWV#0mpUp{K+5jVFCUd|S- zv`J;bWV3p{_W5g0M(Jj-~=yV~A|@>R^u z*C+aiZ|Ltc{%V|HtN!)+knoPK_ut^4`7 zkCWg3IJzVI`q|0+%j;j>u2cVa>-(SeAMbqBdF>eA^J(?JC4Qmq))|M@e=n%p6mNQq zWY>n+T0%|e=>jfLgwLv#L3?$?wtGN{znx@uP4W!Db-#t=-(*m@YZIFV`axSt^cv} zYGOjYL^}@WY>)oCGI;i9&9~}XwcpMye7MW1>C>`_O;+owx9Bj}9zEeE|JXA)-15nu z-j8o47W~uc%Tzh593<=cbH$yOy>9uk&+~6hWbrX+@=%^4Fb)UTsgl zbmv*|s@tz>`ZLzD6wc16I+3haDf{K_`JY|Iy*&%>iS633bNQ=T_rl|}K5U(OBhv2J ztXHl%r#f#g%l@9+U+g#0?&wN325HCdd7Gzg3ss)IyGF}*g=+5WZLcDHzuj~HIq&t{ zpEjQs?hlpIdNJ+#>4_V6|5p5dsZ7h{*=MFFuL3_#ea3NX;tKE6E>q^8>zxyOBK*YT zt^OrTdrm)jt+F)F?Zh^(`s|j)jNdNLyHq-(PyX(n6*lSj7p-g6?bos`I^aLI&+5*q ziBcO^UCKLOyyM-RzjnUA>K6T~P2ab&r$>uyv3I`>OTIrZmM0dWufKUZ_IP@(?Ei;etQyzsZeI+1t#ReikAwG=e|2`dri-3>_HkZ%dkuq~ z<)NpJ%C}z0?L2i`Rz55GM|JPB%S$GkAFpQ((AN0!HTbFK>sxmp#=dpmZ?5u=W2$w5 z9#{GPk0I`9OYa_U)R*Vq>1Me)KV@Oa%8#46=fyaFG`)LCXhiCyd_Sjf(6gbaRxEetinR&K zYsJ=1=H3^3^VNltgj2zHbGx&x4$lob?i~GT#oZIlb3+$h>->K8RYcNn_So>sZQk~> z58anDt_gNu<5aZ8uJWpEo$i;p)%UzUZ1SwkQVr*xVS9=>J#v2&>n%2>3tQ_e)@ad|-{HFdoQ&3mMX=D1$N}nk8x6Er6%N{zhYu@{-7t7yk+6q?G zD=hl^rMAiGa>{}9CyZrY`ez!}NPG38%FJJ%qS#rtqyZW_Cbx+>b z*Js|ASK0gLj`*YH`#w9LZ0Be)On)i*_i)5<+by2Ai%!WuGn@N6x7YmHx4O@3{F=$j@evS8`|jjGtLNcqTgK?Wdl~{jVCPozJS(-L+Mp zi7)@!^0(K5Wwy-U`u;p$WZ>CSw3K&(Eg6+EsxJm0YP)|7f+rT z{X292l}BIArjyV8RBg7f?}}4Dar^|w`qi$p3pm#wwCvFoKmYSfpy=s5j;sFDwukSI z+xN^((rf>0&d{?9_nrRJvNBwZ6?Ji6p~Ly_LRp@_UCdjp&IFe8 zGZ`~p&0l=22=mhG?aZJ9Nt+&Vbv`o6h47bZ{H)U)))uJxQt?=Cuh{QIizkn$Hrb-D{% zzb(Gs?st68f?s!|Bfie>KPh_V{z;Z;rg>aJ_J-RWOPRhN-&eA<{eb@OhFuq;Un`;U*Oy@3qN{B^ z5(i~Y-*kMqtowuS=f|40>lNqi><+G2k^9QHsK{nF?U_9=YbjL5|^Ic zE_rbw`vuXbE6*e~t`D@|puqpz@1E8SxrYfHVO)8sn`O4Ll+3Yt@*$YpCL?FWQm~`*+NF`Z(^~W9}VCpMNdyS9>t~^1<>qzOfS*#CWSK zG8_{Wy?j~4Lwo(gzcxXWCw5iosJ#rlAn@hug2ku%K2GX5G>;+S$LE{rpZ+;t3}etP z@w%N%ebT=6_y4_rZNC3;=8v1@bq4e7 z=c($>(AGb>Jaqnp7x6B2n!OpHV>7M@AD`W1#kEbQ)xGN9WVi4ZTj!llSD3#j>sDT$ z{$S;H{Y73P;gPyu4Z}AjmRz6A=)f){yJiN@iTxSa|kZ<`-Mrj@K9K zwseMU65X;y_n2AIX3k$ce|wF}e@T4{l89H%4j1sx_2{`M+p%0#@lrsp(cPG^=beRj zU&>xgT+;kA!Yt3nMmHjL@r<}nnGd_en^!W{`%GC;c z=1#e2QNH^4q|{S$;_g|tpIFTG=8Y52tuysLaZ7761gkXqKMOYO663oOb4zmiGqZxN zb7yY<+z~Q!{f9MG0jp}66gb~+T5Z$Ku~~Bqf5`IJKQ8{hnr3xtm9~Ip`ti)NTT+4+ z*J4TnZ#SQ_y;lB6_TV0Imp{{=FSx(eSCa8wh}vn6>A^Bu`Q;b$J2IpNmsvGe+`c;P zVu$4`ex|OTmgdsz#{ovTb!r{#WH!F|ShR{rPq7mBnYKxi@KrK6sM) z@a4ZHv$EovSZ*FLrG=dKFh6 zoFh_X(IU0{VByQHSE89;m93k*tFiN0aOBy8)+H?Oi!QmWvblKa+}U*Ve@B+Zhs#~u zbH#d$LY8W?%Wc=S^jKbV%!ZE&lndwE92H zTOYJQZQJFylRS^M#j{*4J-O%g+YP(zOfz53y5d{pm8W|!b%E3F1()30`>vM0=~*q; zD|WhgO1#z|D_(b(%m3!qWVT02n@mz)VQzoE&THPuyOMX!m+OG<`zzM_3mB@j zuD=$EKCbp-jhg=L_=CAm^%+jAU#~t@`&aeU31Od#dir-;DZb9II;#^{%dq3h@jHAU z_LkN!$ubHtexXs**%FOzih-A6QZHrf=IazwSxl zx5M1mZ}Z&Rck1n*Irp~Kzu#>q^Z(au``wz4HEow(H~;(j_w&c=>t7vzyg9zkGJOG~ z2SbozhWJCjsjn6++|obMrG372)k~Wq0srm0u09rBEgZ3a_2KgeRr{QlN`GPeu);xk zYp;HfNW;YvPOFJue_k~;7LQr@;6YYl^K;P&jUK~0+>_e**QdPCl3gI@ zCiRN1a=UN;l)o=+W=t`9)fgRrWs~FnLdSEDUmaL0$Krc2zy0drnNKvn?3&6Mx9+uC z>Ar`-se!UREQzKcr#BS|mQ0H0UdwO!XG4?Iyw&^8FSWR|$l{lY)_XqpEVkdp+ugb% z_4@dmH?MG4xlr15*?De&u99rnON}>*ehw!Rx0gS8YM6XBT!rDF$*T9a_}}@x*S%%) z$Y}n|<0V^%JSjo`%h)tApoy}su6si#=?i`w&(+1E}>Ixqeaq8`3ny>HK+>2=p@q(oOlU)w0S zEHCYl%u<^j{BF&QTe82IF}nF$>Fvl`F!#{Uxy6dF3#v~a7jWlM`8lO5WCGvX$Gg8M zy>_+BQ@pOB-KQN;_m(fuaMPrOM|^KqKc1(qvBo{OKDqOoe{bDN&(uw?X4R}a%Hn$C zeMNfI)&jRBm$I&}T)TX)NydTSZ=>YAEnlhYE1q5#uD0UZH@^>Y|7w!EZb^QTS+zFG ze7i=(@*1XoQ?5vy()z&g-5QQx1R7R$pYgTwe>x}rOZDA7&Iz+V^;f?L zzp~ohW7~}5tEXLNYSU$wB zpK<9$9((h?G2hQ)JUt=(`?v2;M4zmwiV!uBUmo(sMo1+0AsZvp47OwJzqUWWacs}D z^Q!$C??dBlk9|48xPRge!It=%l@XVBg*=}7bza=>X3H(%pBGF!V0%A(+u_hR^Wx^d z$lP(&EO5*BMNwCmO4*z``S3@q<3cX8##wp$Uv00w6j#!|w<&ARq=MW7Jndij@1-pg zo~Qp&`9)Fr=Cq~3-idqpb|^g0+;b`TisZ%OCzDI0e;kUgjD70hGr?*5v&hC3rYk=> zO+6u(Hv8vFty_-YIKJ(Xa(#SRookz1s?}ew!pZ+-FI|d1!&(^|U43KngS||lRlJs_ z_1C7xwZE#%`8Lna_I!p!J-2L*O zB`R}E%ddV9t@>Z_cj~&hch(EU8$UKp4==X7{&wFh_Vxd#z592pq^f21^QyI%RvPhZ z+OJt>6*fayx#{Vm>tAb^3EsP(xb)qNKI!i!rkcUWoy2$Ea`)6?-&IgQ*F5%gh5XgZ z;+lO6V;?V%`yEkpKiaM|c((1*c`IS{{PgxUZw80c7CVqhq76#wVC+TS)ZAMt?ql0e2V8u!?~cV*YCxLes+2mv+cUYrQ)JxN6)26 z-@hPd(SMSC%cMI_@n57hIEUUl;G*7lD#l|NZ1m-@WS`<-pCL) zIh8%<4*&ipU>dRZv)G>Y?@U?~+V<@5f3Vj5eLLeE+tcqkPbkLDDhe;(yZ*7$+$pD= z-(4z~78zt)Pkh9e;?j>d$EFNW#(Frsl`(@J-*MppI!3yUeKei$@fd;Is+y& zT`5v-oIdBgne17X*R|g+TK%wj&VK5L>gQsgwbRP|Yx!rbU-)!kS%Kfqbmg>dAyS$$JeoN8+wddT!3+#V*YZpJgAN6oyj19M~ zle*e7WxINLJ^k3K$9gXm8>U=}ek$z{vhPFW^ZW}dKL0%T>w0hSM4OTYLE%kRTuk=m z1=(kQ|GAQ`rCt*}jfu&2gVL(cWp7Iv0`{$ve!6&niE)Qp1=9gF{aI&|6K#@imiKPC zeDGXv@~Pe}^Hr3V)h(L8F19hiZhf*yE~It-)4#NPA12lO_&Dp)&Fs0QT1$4lnQeV`-umG3DX(|m*V%9N z^?Iu0-5pm8q`u28xqUr$^0h#5%e(6YRaUX{^F04CbJ>d%OY>H)TDAIi&XQ=yy;{z3 z`cInIGR~KH>9RN`af)2}N#|1sPG3CzZ_4#|UmUe|#9Sx~J^Ahas#9OJdQRTDUT42% z?E~gxTuWG$CtOzSZ@t63XX4W}R~~Kl+WUR)rERNTP5aMr>_OM*-+pmV%2!`L;r34b z#q#J0v+f=?oWCn@p(O7r+Y{mI&)?@LsZMUTFZNCk*#EBY?HyUy-OJ|s74R;z%%AGC zDn`2Bvu=je^2S6vehm))Tjf?i!Y$6W{9u|E(qdL`UvgYiH zRl62{m-%AZ@z(CsPpPf$zxITGxaT4Jo69kK_p7!x+YPH?vXXPQtlX^5@o!&vovPi3 zQ~!5XegikZYG3~Q`9r_%Yx<+>`@dwZ2=)=Tp786m%u&ITI|pvIdpMN7`EfBow^97b z&hE>n%2&4~b3g5SpWc@zb904zc<;pPV(s&%Re0V~dcC$UoXL5$>ru(hrK=XZq}%vj z$a%%FI&6DZ9IKSAegB3>n^!k?%sQvJavJltLcui;H#R=ee6IavrrfTTQKGd)bN8C9 z*-^Z$^Y8VhzP-kGp53te^XSau(;=^SAMXFM^+HCMRsQxfwf3nmJLaA}^P(mBlzlj_ zPP1%z8i1@{g86OH<(*^-qT?EA8iISJYWJEZ?WaAbD$ryLs!A zhNp|(pX|OlZ-U15KzYV&R(Zx-rI!1Qmp%5spX~l&Lx0BJb9HVdGViwEJkRxn@s5qk zrT&K5*4BmbsV)+P4Z`YErkFfIw6`@X`h^gwmo&!;~+ zuiNcu*z#ZLa&_Flia!rd?@wBN!|}dHrAu5(fSd2z$1`eI9zT@GSE|s#5YY0?_&4)X zrjR82ouA)Nuu^{gCV2n0vw;)#EmG?^QK`{XTQdF2qP4oOkNjcVC1|+3cygXz(T1+C zS9!g^?sMb2_EYk{&-BRZlZiQfOby4QN{>D+3p}$e{;B2D+2=wxtl#3B_jyCi8Q!e= z2S2mb^S{={-`w_Wb7B9944W@kt@5Iq!l$}DiM7r1IkCR-_2v`Dul31TeP_ONDbnlU z-n`U|zd6+{Ol?>GN@$LfH)k`)vxTqc zEEaV+QY*uIHd#DU?6a@Kvad`lzO{zi7)@NTg2_ySy*AF=SMij;@T&j?PWMS}N5rOd zJ*Z~UwpY>+?I`H}U|7U*@BZ@Tt}eG2PL*GAy(Qzax>(fl*t{*pdyl%zPW`m`W918e z_T-uGomD!ney{2J#*3a@G@AN5 zH+Vna)>(P+>Ku>Hha04894u^+zd!l;spRuh<)-w{Q{CwtzkYqEZoB0B1M=%LV>1G~ zl`HlvxYYGN_Eg%=RhPmdlUAvzzIeKi=XsJu{N6uycO&x-UH$VybNc5~(zB(UET1m3 zDmGu){q%C~v+w;&O+M|L`g+A$?{#7GJ{5i1to{D^`)#LJPfzQV-0Xid@3VE^&z2Z> zfrOikC$g=}9{*6ZytpYOEqiA~o#2FT$*SK^#?G()`|z~HmB%6(_qg^o$@Qh3FXmpc zMp`E9=X%fSpR=~D*tT$WUx8tfY~hoCF6&dL+Vpw7IutAa_QlSrzdr4iJLtu*@0DuM z$^}~UFZU|dwclEB=&JRL&F*YOY=$>w7t31y*T}p$SKeTI^`bj_c4^VejJ2C{{keADcr<5`Ap3$yM)N(@ zCmMOTuKzek-G%+0XY_`M-5${|8`NGbabJ`1({!EO+q?OZ2V(cF=D2=GcKNL>zW=QK z6DnU6M)EZ??dYwEJAJhJ8^@C(M4tRj%~i)VS9peO-#J! z%kA?v^`!ssQ;%o;@?hg;K^7%FLz!Hy`LnKcuAE=;V<*q*&~?`DE?1pKxeVjGzojumc7E#8 zl*gMsP5QaxSE#hq`6^20_}wKv#`6Ok zs^%7-5N>MW602I3ZS-lfk+bHNT_q(ea~Gz1%j7F?O)fe+^^0pspq#qIl=vz9xq=T? zzBn5EqbVlS++^p`;a70|s&MM+&wFp$8|GB(ow~ks^W?sXvKy|Z{p4cEvfFyNY@6S->rL(l z{AMS)7^LaW{4Vr{xo0t#gI?~{jSJq+uM|3RdYkXfw|o3!pSqu0CzfFG~^HMK^ z;P%wNhD+UffAA(>sib{pv@7g+RMrqaBXPLEO_NfI+f<2bA z+k$g0{YJn03D>U?T&A0)wZEV@NYQ7srJ^#s8YvmL{1_w|VQk zs*wFa`>v0r`7@+b&vENtmAzOn@Ao~kS#i5yA2XGZd?MqU1iY+2Oj; z^w-}sG8F#!vDX(khAOv}h*#++uW#2c`XV{S^qw$>HxnPT)iIGZtD<-M?Y!6GSHr&4 zJt5uxe(&>c>#g#UWvq{?F6?S+Wjm0bzVWJk)Z{$J*1OO1pH9Dh@Xp-3O@9~JEC_9m zayLnTtAFX(&J(E~vUR(Dls+gwA+_Mh39DGAWTxg_yB=(e$#Li3)9U~7(qoICI%~~b zKE0eaw{%;UTfFV7^=`|b_Wjl=-g@i+`D?>s*H`By{ZzPvD~RhOUC zierME&K8zIo9-GyTispiJ_tdh@cW?px(9gdZ16kv?BE?_itsv*Xsk|GCOPuGEgbB`II= zRr%xc`+sI$aa|xkJKCwv{grN$>er4VI?>1Xod|c6XgxLKwaqlmgo=m1*X3`xwD_{v z=Myik|6X7tbm7SFHypPZ6RuQFFFx4EcK^nr)ggD^Y_a|~Y0~+RTo(kt>t9?e=cVzy z`i$oCt(G-5PyZL?Ec@_ItBUDB6pMM##IkKA45m}QZPT1x+CwYJbeO6Xl{OJ5iejDRwe@{;LJFns=ccIs8#&ppyG7bTg zEzkd6kt&;7H@i~!$LupF{;^E3IGw9Fv3_pCqEih_ldP^O`rmY$x!ixFcS+3K1{;;9 z2Nn0oy%o6aGSB|h<_^ELp1(J{wQTTkD*U zWMBVVe`c-7+mK}6?e9b9WwOlm+pXPj+01nN)Bk_1*PjWQ@xAXr&@ZuE>svS7+iUHY z#(DKxGp#t~_cQKy$XT8D&VTo$o_SEEeSVkqzEe?eg=31%>z`J$^z-Qawl#Yj^y}BR zS>HsKZv1v~-__86;SJT(^9nZjdsX$nNO#GuDZjtxy43Q6*ZMdZYI{#}FZaI9{LjJN z;OCFa8>6cqO;C_1{ULAnxADi^ z_4}4)tenWO?7`hy2EQv4OE}$pEe#x(_ciDElrO6Pv4+_+OINFQ^|b|?%dVcQTbi{` zti&$s$f3DY%GGZ@IfVlg%H{X)pfY=~rJsiCuB&dj=~Lx(;~nkZzQ4

    EGzt7G;y8P2QnYuukx)s3;M~*(czFbC+Z@=c|S2o5G$}w-`VBuJ={*jyzIxqC#)lECuY$;zh1Go9#dHHs%vvPacCo{Wa z%8!NH>)(`izqwqJnf~WY`G2QBtMh-oG1~uP&M`@uZI1j?HC|XZspx*yGZ$KE_bg5D z)b9zCsxMwx()>&Kxb)}BTKo97*Ug@DH)T|?2{v<`C}MrhFexvpv*0hkrn1IO-}_1L z6dRtcPB_|KHFf$APM-#(rw%Pisfb$RiZw$1YILsoBTf0FGuS8R3-%j)D;UpcO-UAS+RpSeH$ zw&%}PpEX}xEZ?^B?)C_C-8Xk@Znme+3$YT=<+szkuyDb#iyRs+GFf2l;kWR(*(#pQB~qW> zuG4=1?ug#SDYYvZ5*OD*n8cU=a=(B0(`+O2+-aMiTz;|V%O-=r$EPqdt-HXy;_}%8h*R67$YUd!ke6ia8a{m_}r)FG?ESk5J)mrOlDK7gH|$zh2v{xPPu& zy}sg7kIAR_8d|1(37#gvxp-nj$sge>sXL?E-*H}EnPO_3eY;G-(0ATeJzv|f%EgQS zpRr+yK2bjFar&189^udm-E!a1t=c!X7Jn?Q&RQxNyq76r>;H&2Q}xwnHhg9HJ1atC z?|jS0UnIib&xm>LwEJw$uj9L`7sS2VSNQ$g)%G9Fzt^6SsVwGZiSlLB?>DKI{wsY} zn6)CXtN-IGjT}ujr)x>Ff!{cN3jP#_e_-&R5ay9y`onbxv;RT1UYR5LQ@V?`{MjWO z=csYzWKp@Xz)K~DXM8rc(uv=5mKK|Pzq!ZUT=Y@;R^VErL!J}QYu6vJzpzSB$hU&C zJ-$1S&)(up!Ce{qptfjJ+uzPFUFK`$msJT@Mt|7byW?>AoyPXd56vxGGsN>19TWfE zSKXAmeBsRVKi}?}*Ra{T@M1qpV67wXt&erucGrEr{X8!FVOQ4074s(S`Y@L-;frGQ z${LyDcLJ|%(KY?$rd)C1T8BrwyKmm%58LH;9+~nf{(y4nkF6agSJv>^vrp8L=y-qK zChYW6ku8$Gk94e`=~XhM3)+^KEkBZ~aw?HeVamjF+vSR{|D9R#?Dub_PZb&svt(>H zhf6m;VQktOd4G*BgH7o*4TW=$ZKJIm*4j+;ZCG#ke(uS`mgm$Gu0Jo%wK`hT)05sm zrLcd)Ji7+AzYe_59U}Y%uDvk+EB2}9HS?6s@sBHaZMAgy%J4-(^bs-&?--$L^En_bndn(|D_V zw%=FqR5M2&*TQ*C;fXQFt?w$`V4omxJ=e;=FMWNa-gB1=JD6J}WzYHA?qgfHHbC}* z@4SmA%4)=UC!Ak;kH=PM;#vlQmC>OF&u0C3C^Ewkn| zDtODV^@^vR%u_8{52?R)CCsPyPyV^lJtbxGx%XR~fBc?Pnx!J@Xm;hak;dnLpL!Ty zw5ay93c7~mWTg+-jmfW+e`PXbos58 z_Ek*BlGLXC8PYF~rk@IVt#t`R;A+s`dv_;W|BC*(_VE5^7sNI$ z3GJ!jSo!j?Nmzp8%WvOXUb-;e6Eujf{>Jld_sa7Ru9RutmAg_pbD=^!tKvMf|7F$X`o zuTNj&C{GVqR^k6z>1o}G-qWqy7B)>k@%C|MoO4Og`<_p;-7B}LnSRk+?E9MM+4cLE z+V1XlzrJ*x@AZd&mj_GLZNIQ$vi2@x24kiwcpA_f8CXD^}^}vF8i{pIXm{f^1Z75`^mGDv)(VXTp1VrI?+3%+4S{P z<)!Q!eQ&v!szv_1wV2=G&I!5Xx3cH|$NkxA|Mg(S!%tgdAJ4xOTy^)-`}_L^{=c>V z^YX|3eSd;ncr>p){`jQ3fKguhGazDtkIyZY05r-F9I z|D{is+I*1k?{S?f+#|b9dy}Z>ne0!yy(4whb>h2EJQg&SQc$`hS$X(jd*Nl}PdC;C ze|mZ6dexR$m)cBZGTfUgHP|1_-fQpvJhyLF=@US@Fqx$`Gn`SfZ3Ngof6T_Y=r*3%_HUEA9d-U1_ z6`>5(^%|RBB)<*cY9GM#gY&|jg?_o5_8-q&xL*3^xA2a(#S0npTw7#2JC0~5+?cs( zpKxr=77ttYT^Ga7>`!M9`DDp$5?3u@uPd~}JbUYY@6xHOmlz(()Z4SCH0DXDgY34# ztA|gtKepUzd!m?2BJAab!wU*j%x`ha75_`9+mr75Gsv7bbMEz>KcB91DG#$wo1$y> zS4Up3V69+?bSZ}bZ?way5WAGQn+lgT)oJYTXISZJ9k6X$<-~uh-5UCM?B+Yqxc~f}lB8RIi!Jx}EF1RdO?vXb&#ITapEr9= zR-fCnmGfivG0eGf{ngtKw$iWbBuqJ9edu2?=fh$aMz*zgF4?8tlk4zVbY$(?6}F|f z=NuH`x?DVUTG*+`tCPPk4T@JxnVmMxC`RqOp8c#nyQi(b6SycmPN7goVfy!5ff-5C z`OUUdB-wvu33YwAw=c=ktoPGv6P;gsmKO#$+_@s#==@+#_v(#p@ulluXgwD+IeIte z(8ObWJFM@2nOnSLnd+77C&5!^@4c63`^&qxHLGFw>B9$$uL|0%yLtDKPyGAu9unD8 zxvsoWle%-n^zJ(DzaGEB{|1)U%lKDsI=eTj+W=M$HM_52^sKIfBOH?Oee`^0al zOA}&N%r^LOMEiWb=D*AKKg%EW`X}5E{w22j{{DK!f6LGB(cf3{|IeO9?=72^Q+Ak& zgalsbsFG!1l&y=Y3HVnYShGvE=^B@;f9UIMmiW_!T}BI1E#B`cUL&1wV-w%GClcoi zek7Ge>ar{|u9>sgroZ8F>GnBSH%XY>@jtit+^deub3X~*O=I}b|8%lDOSXGoAb;`I zstflQJkFJFBRytowoMF}8aoB&wn$7EP2~UsYzo*$@w#NGV&BaqT zZhLZ7`RtXCR`aCq>|s+@ubn1wfBm8MjuX>9Sid&7pc&R)K0V#3A~1c{)Gm*xFaIP~ zCqC_Y(HOYMjbG#b`HmN_KD?GwUATEIQ(;YhV0pWIg({!D&3=nNF54sx-5;D^v(}B9 zKUKalqi3Fjgwn4y=hjV&_Ez_w{e42)+t*^+%9pt$ZXLh+aKqxgUhXfh#QR?FS-tl% z(}Jb>e9m9w4*0meFMU{PtHitC(rl{Q(#AfYr{yh8s)AQ`rduZY^sAO~&)-@wr@+`T z_T|byt7?RQyknaY^132@<>f=UvtK8sT8Sn~QCjxWNPQ z%=)#9P8{B@x3}PD)Sut)|J?p~sW|>j_N{WkD_a?EnI!65vkZTp0K%pd{;uCC_eMk z;$3&cjy>yp68t=Vnr4;s*F}9?aVu;E4G*sG__@y@pP51OX`ssuw#nD-q&c5`eurmD z$&<}*;u-8`FSa&A7=4JPIY)Y%S*kN$?cGH3kxqQhr;?mtE&0+I@77M%I65LRlrny$1 zTj>MO@%UF_e{3$*3LDOR?EY)Y#8p?HP5*dH@}yW$Sj&WKGBUoqcPZAV)J^fe89QqS zt9j+E=KI|N1v7KQWJMl6u5$TcS$}|iZyC!QO|`k*B|SGbZg?ndE)lo*;-{@w`_*l; z4)hBz*!6Yid);TIrXFPzWw$TZ6xs9Gw9ab7lC(k&-#y1{s=g=|tzPi{&Z5=T$L~Jg ze(S*(r<&W7+EuMtW9@2x-MqRq*ywX{|K?fjvpCEQ<4qao+F6~+>$#hOG&o`s(e!o&|Syo=#T3e{XY6@aErp>LMz&Px!og z6*TehlSy^nVc#C-=}Z3eZS?#XY(Br=a_Pp%*V?vLtnW2u=DxYKsqf_a)RuT@ai#mW z#S4~g`E#z&e;;!~VC;da>rd9**l|(s?0&a3n(|+z4jy?Gc5T=7jXV1mubLgQxG*Mc z?ZIlD&F?}(Z5>yg4E^)3s;00iJ9?FMzg0@<&xuA~%1^vk`(F9C=kTopx6PGDUzf^h z+}$m>*LZ$SjdR@=U#)fzi%Awu2ezE%IsL_M3d`wTr<}7tK6<+P-qmo{$EMWuhZ*~nD%i#ap{}Zy>s0$Q~9GEuZlmclbd?9!>TE0)`FuP zD+IbOehOF~y|PHB`%a{6-MkGe`hIqPzt6~#@?_?#t`*s}3On5Mh+XHo8hlZL9Uzd5h5RI#mY zIvllan@Krybl=7Ff)}s;TA8h8jn96pE*qj7qgI-enSY>i^|U6YiUO`^72nH?W50)e zDqsjbef=wE-_9$B%sZDo&ak>66~?2R*${ko?$Mag<(oGjf25HmTyl8hf}eT{nU@Xw zpM@MhT`)oRWy#mMk4jd|{p)do|NXsYVG+Sji*H6t-iXz@v2U6laBk<8M)$Ls)f4w~ zuitSvc3tZ!jvp^raBmD5ATSGrzbs&|c9E+9Ok#JJ>qo{AIy zm9?8n_cSizsFJyGEX(lKjg^0#KJjY3n_wT+|9$V@#UGXP|KE_``Q3IuXy;G*{htRb z9==;G=olO7&v@X^Qt6B$nb~!B*7msbe~|F{HY0D@1yPx2qF1v`vwWBOhez%?KeZ=X z)yQp$%Jr2?g3K)=_ornxU;F)FTFklIYy265vlR0-1X)c{FI7FPyWt6czo+Vp`Xdb0 zdXILn`+lu$xtjK>QDbSAc-8Gp=C3=lm-ni=>|tOCoV)b>(V))2YR;$WwnA@Pw>>ad znwkA2j^#Ob)QNw24)GhSmqhq##5c-a2+Q?|pZa~NUT;;1fwO(_pRe1d?oIp2QM6pA z-2Pbci^X%-GRSS-_r&qLB=hXdDi4uqE`fUQmu2s%H&0DqkW7_(WvKks!+H8Ap&PIA zlpT*}UE(#IE+$y?Cb8qrLO#}AWluBzU*q*z`zi6+)qO8q=e_UhVNAKAv4tgTD!ZeA zv`Cgo`X`rP4#y8_K3)GlMDD@ta{*N`%WkNREF1Uj*=Gv7Z$*inO;uro33V@Wv_m zbvtds-eupN60&#Mr`=K=i`i!Ff3VrxsWtdUyTR|7IlH_i*G+QmlBsf=f9cCJi*HYx zid+BtJ)ZRa?XNYbJ7?EFUOi*ZUg;O<(I=LOoN(!v+sl8GHFVYHs(+zUfwL}0mtMQ2 z)?+(0b(T+FTI2T~i`$KLcK@<#t)oiLXvXL3GF~&=F(>KI_azaHTJe|crsTc$e*b&b z^M%~!)`Xi^XWXwm&A)J>!`5@|e18OY+;N|8cVz$GzGrMacMtz8(2P^&3D#@Xo<3{K zvxS%9_SC5Udo}-0!k%w`p35(JsA;=2zwFnc&F07M|MRHv$DUw);@OL z#VU#Xv*{DIN6Y0aTU=JLKj`_%=jH0%S3`?m8&13>bl=Q$ozf}4xyj|6rhVCmKbrme zF{vQdCt=<4&tbpKnl2U@&VQbBh$C=|YLh~~OaJaj{st47tmwom&H zyv*u6ys7=Nb7MExENz9x`+xYByKYuiovLi%B$WDC>eiLTGk>yg&|Sps5a#agqu^Wi zO#Jv2MLv69h6gKVOMDdbof8!M#i{$u<>vG8zbC9repmPWV?ppGsr%e3tnaS>JL4ip z@TR938l^rDXL?(o-Dn~c;#+aLoK0(g^lQ(>vgal5ep{d+M-tapy$vb9vU=%pj}^B$ll>LBY{T6@JAR-0G%oh)%kRcDF=5h$*Tr5rTz#A! zX{%KCV`~3V{(XNs*>C??>!WY~|K|_>dq2$|?|eM-jBr-_YQDY$e->Iv{$#Y8Bdxcq zC%`_Q>Gf`ny*sP6u81t%%xPX;@NUr=rkv^%f~yjCT<(*Klhi<~cCRU^~7;w{Tx3HKMy7MIpvaK1bLVj=e}1Ge_K zV{UwX;h$DM{dj?;ebsfZgPymX8I0bsW^icQH#Km+U8cuZxo*>D-Misu(?5Kl`Sx1w zrY9?3&0T$Fa#fDfCDpIC#{-&HbM9DkyH?P%^`Gp5o2w=ZotYzD!f=M?f#$Qqnd#di zUwYY{tEqj)xW1m>bqj1Qz`E49vmEL#-S1jVafs;t>9-|e%cD8n>;Im}&^@y-?ezIS zHc~M;iYM>4%DJ48jBnY$Kr-RcP0p}|d8}`QI&{zMdscJrl32r;*i$im$zG*-2R=@< zcxAMN*Y}s>!K2>Xn~f)k&yU)^?>he%^PTIZ*DG-*4h|fE2cJ6X}S;D`z@AqM^+q{<38UH++H+kEWmm4qLKmB|iUz4|7;t?^~ z&+^_$^_yyUH2vOX?-srC_pI_&a^m}qeT=O<$t8y z(X@QIOY_sZAnAv@9&hUjzq@kjtB9D`x{Api*LPnsytVZFnyTHe3~Cp<+Ag~hoSS|1 zV)pKk_J!~6UOXDb^#0?neHVSAA4MfjyO3Tj^?K))>_4sLe}Zbxckln*P*&~b|8n+x zyYE}`yXXJ@(tkX^_UT%-6A9n06th2&dE`@m?xR7&_Uv>2bxn0;Qh)XBlw#y?a8sVo zaW1oE=5oEti1${^zm4ZDKUsQ(`R%iI`@?Hb{NBBBb(n+x&#EJjK3ryfVtVE26TXDG zo?HBX*q>S$>~Q<#mya{f%9TvH7}(z2{WrEns&=_H!v%))-B$1WEgsi>)BVi!B6xRi zQFFR`yv*ja?sgOT_InyLWSvl~Y*My8DcF1Wd11{4&lg1@0X$zdBDiLWK5)Ig$LExw za^#(^K+jd|ec3ZL__rwWuY8t2?bh3!0#RY<22bB8<@Oagyj^$o>(zo+Z;orMZO)cc z=d7H$=hWkQc@}>brK?2ui%BUK%zb~Q`SRcCCG+Ie#e$9({5WejPa$dc(~JMI ze#%LQ+)=(Xlg(X>!E}nO@P^$cvCj=+zgC=<)ID+cM-AJY>m6cKd0F3ldU1hmuIc}% z6iLw)4~&hOf=aYrop|3XSa!$qp6>itJ&Wh|RPiviXl>s*PwdL}ulLse*%AI#=xdkV z_PXaYzEt%G?A>GaP~rA1b*pc+F+tC?J>(qsuKQ{7wd2Rd?e#kMexEx2cwOxD-}NCu z-5sETe$Xirt`n1cH@&)4zTxX@ug-1kKTh}>-~A&0?27k;y<6t2UNmJj!;*DTSHdLE zpDC2l&3wYPRP*#{iNw<(ZC_sGJe_ze*f#9$4R5(K=dI+6_g(r{p)FJMZF-c;1ooA> zR;T(|Ztq|`x|eT8`UN{%GxMgv${vkuZux-ea-B1+EU$5h*XlpFRa(AO*V1gc-D>TK z-n_04J6HEvU6rlsdB}I6{qTRk1Kdv}zqMUY6r62)>h~U(ZBoA*-%m`w$EB3@WW}qQ z#=n))mfSnXZE%qDX3Qd!Yl~SGzlJ~c6_@j#&2Z!8#P$t`O|-Zam=EZG+3z~jH>%)C z>8Zec$%m|WyEkc_xb$Sb+pn843JSb@Zw{(ga7e~8#%^i67&?7P`clEp-26-T(n=rR z5}YC^yPLs%eOTL$M*KF;v9%AeEHdb-3Fp4WMML{+ZD ze4TZwW7mmQi3{F$Tz<;ukkfQis`Z)3&V9FDFFYlB4!z4TdLXG*4;2<6LjQ z<)CBm)Ms<=HFX}C!F**qv&clgW~OUpje7H|Ya);A+hzKG&Hk?+cAmf~=id4OTJSX;JVAN?|1tj~_CHU} z{+!`FVZlPXBi6q#ag1FhROoYszYyhZ{@JEPgNLvXf<@$PC%}SJ|BAmt3idT-SfjavH+ZTAQMG)bUzXDTTGi>({&%l+0vPkL!yr z{PA>+9^d{KZw^ifs$4T8DpUFV(z!bq%b&X-wz2S#?7JCRQ$%aq?_Km;oGr7SC1GOj z>j&K~c~>}W_kHKE-k5&R?`G;2FYgJ34J))xZb+|s=r7{8GcIfa^RJn^fBd!lvi5Z6 zHBZ^9sFS~cGNl&#m~>8>^+|AERmjXw?{AhaeZyjKfiL@N#jNBBxh}KMJ^1~-thCq2 z^4`}SfmkoSIhT-X&UC& z*F7%TwtnLDQoVqxXaS#tyZ;yTl=sd%Y`pl-yz>+0+rCuX5b^YOe`R~2=JNov_SY6g2|h^e{9_) zgI^ckE)lDlzb&6FVJ_z{vv}bZ`ws0mW4Yb>0mt2_%6p%8t$!*XUA3hlzITa4__0qj zE@y1sef8n~_UMYUzV9PWxy+q6{rj>1HOJ>LIUm-oIu(3(UdZxY);G+(4z9B^5xwS8 zz<*!1C+LGp%e%Q%KYx|F+I6p-`gV2dp_4sNW8P{n4_fIFn!=`aR)du@MD_jc;JKf6 z|4k6RBfWL;{PQa&J)g9?cD34H?Mqvx`rSYO_UR&(DOb%?uS8|%>YR_d*ZOYDjw+_A$Dex2XML}huf3Lb z&-m94xt@8^w=G}TeY&n#X&Ls~Sotnni(`z6skOfg9t)BWR^!YBiiWP5G zwIAOemf<2T((t*i{NGQD1Ixda`nsR=o|P4OVNv>}t>*$>m(O?3W1iymTDNw$wD7x0 z%dHo*o}L=Cq*&@y>8`u2`(9pN*Us=T>U_1JZQTpdg8DC?)U(0s>92qJnXZ5AeEqY( zA9tqT&vS@knd4irUuteYU*4RBQeJZpzUo+YJn3rkX^UG`RtK^yXDCi#>)p5LFn^fS z>0eHtGWQCG`mdeEa{iH>%(P0DfD2433Xf^D``w?m|KdKi`3uzhSteD*Ht&48Bz4!b zAO+nudbWqM)7!J_S6`Fy%a-ZqtYSQKF|zgAquotSuRbXEmq_2d@Rdtzl3wZN?K-!0 zjlaFi+;5@%YT>!kvOx8BFRpJsv+muOkkfL0SzmU#t$Ap9h4E*gw*O)o5gGfXXKvK2 z`txzux$^~5{nalQoO+%XeYCOV{2f^x>$z7Qv-tMED4Vm$Dm5oZb%AP;vR~`#61KE& z94{xDt}MN)wsrxpgB;_Lu(De7pZELq7cqa*xW45G{ZUe%PSzua-pcu~`V4E6W3UoD$f$~R#`!|v!E!Zt7VF)sGJ-~YUF z|F_vq6@20bS2?zq)-GA?c4@)IfQok$mUH$An}p76owMr9#ISSB7j!FxQtzdx*KDRPgWV+dS zUbM$~$&1iD`IP88*BsaCnoDMuST-86 zFQ3ZSf1~W@QLSU)u5;KA^sjnu`cme|^VPP>$L-9XJx*(W=(4Zue#PSBF88{!SPz6Q zep%h(nyS6mbQXKEX;Yc>x`!v+T-;UP?>g6g@7opLyU#bvv4k2mEx*wC=U3b&FYRB? zv}RjvsMIa>zkSnRIrE5I<*K(6cvWqUtT+_j_LXhXcVh5lbTs(>*!m3ztHKxKmiol& z7SEY8`Xn|@x>$Zx?Z6#5#|D?DuFBIVm^|v)czn+C^|1^hoqR`MvLxqq&k6r};`p3? zh7VH<4J$k*@Z47{Uv4wKCW~*w!<}+`^EA&-TqogtYO$MT)4WSdq-PwM9$U}o5R~wC zis94SM-Qh=lb)gE==qH$$3j{A_Ue*tMf*+V%-;mo9R9YpR7JkZd*-#|2b=wF`1O`# z+|_XIUlLk*z3y@eZ@v3srq(H~`#vx~Ui<0srElNL=5H!?(RpuvCb=$MmgR?wd-<*Q zenZ=+1N_34?c6@XQog3;rAhDif8M!OXKvRVuHIi4GC3B=&AV<@`6l_iSb{{=?o}%v z=O*9NdSu$Lbye%DviGO|Pkm=AvPGUj+H}g-u;Vqg#}=2}sJ|tAYH^k6q&U`Z2E1AZ zmliGMin%;9IFb8H`cm=Jv$PW5B`L9L@ZP^0`XPdq&@#&Vb z4^b^Hzt39DI&9UP+!GSqa5*#NdtS@8J6U-mRohqU7QIg1*e7{ywb0(~wCK`P>*Qxm z=~^CDIV+jz@m!lr|LlGJV&p4t?!Ld;@4AN7rE|5b)@{Gxm4DVigzd)lXWtLMDy?ojv)o<&p+&wA{+!?QQvUe)n&<8L zUT=b{yw@(Loq%41>k$VHf zQ_a5`((nD9yO}ZaFikP2U?; z7k8P%Ufa8WeyL>WbJ>ht=Yp(Hy@{J|#W_{Z?ZDQTHkQI$lC0C`FA?TZkYDU0etQ8! z$AxJf5*F6g9*ch-n9OnN*jD+Q_fM?X?iRZ{&;GY!=_O5$yet+Ti;K+X5?)=I+vlrb zy43&Inz>>9-|qUIpHSyt)oSIf8xk8@`E&7q<(Eu<_f zZ*yF{%jV^r)0R`dSMkLCdy-wRfA90D$DMC3Ur~B=zw)^LvHhRk{`dItu2|}T?Yc9+ zt~77o6ZlHMYlW0+=`+E7f{f>deXdM3oV;!V=Z&H|1qtVw0Sf8n&$q9bShcEo#qSTZ zC*FG1c_`v@ulB50S}xCno))Ied~!FhX2ri{v4<|MOz`O~k-2#Kihoux&xPEj@u|-L zk5w$FUGa0};bg{0rJ7{XV~OW-V?Xy=s_eY{f}ua`c~0H6$`?lScbC=b=ju2d%Uk{W zfpm^4yV3h%KaJIu3w@uP-nB96^Hh;%Jk#W7vsj_`w#UAUe##p^$VxZAieZ~o8hkPD zbJI8DS2y++>sIPFOuiO)fA(?(=}!z#c04d&$9mAjC8D?d>&E`iJ0fm!gx;?V@AoqK zC2hvFasCanne4l6&6#*UC|~f;>Bq%~Ux&!;Nay^swxrS|(W7$1Y9+Rc65ZN8-(KWw zzcTY;_KiJPUUl-lsh`sI-EW(c{ffUvsS%92HQ%30@U~k$e0%Iio9?Q|v!&NwYq4Ya zkZojmyH2wtyv}J}$hx`z6;xn zj1T4Q<-hpg>cq0xoK;FTS?mr>^N-h>&OFYrVBu4?_G3Yj~v>|AzxLqg7# z#ZR~R&fD^btLdOl$kjLBv$W?!)&ZZ(_6Ca26Kc_3hN zeFT%nhPPMVm0b2qf7@_ol{%+ex$*ChzB}uq*RR`itHDOP?pooV_Xp>#JNeOjtDtg* z=#(|{`Inm*H~o>ca(bG3b-BcQJLZpTJty9_DY)?7Z~MjAnCDBZwte}%c3;5S&3>=B z3_f)_zq@`z;#?HVvfW$Owia2>a$9%&9@p%byW@Yv{BeK(r*-ys(8?{_OXBnP8rJ>0 z{JwjA%zc5wVvB{jcW-#PPcGry)*kyFK8s$yLdJ!2R!8d1dsW6}@$`;UhVT?e**Vr< zZ^kwSCuMA9JQ92AbLqp?^L2Kg-L>^?Nmc0b`JY}+WBdGgON3Usvem-UaI05IA@iC1 z=biBW*Dtx=ioa}gb}z$~n@jWTyACvMe`*{Pwb{n%PXSl!zR!X-Qui5{K1pSUI!J^u z_ZJ19J~91y1-pXSIgQ<)_}ufG)ENBY^nV=P+H0kGk=>mq{eJD1CAH!4Q>QA&9Q(TB zrdIM)zPWd6Ss&c~cje)omb$4M_0BJvBge-RCcTV(uK2D`r?=(KDc?9nk#B!wT(?@}=hWD)G;5oVIDVR62RtN~v_sDn0r8`j74`5;b|cB|CoJ$;n&AUyEK_ zdi_;j#jA;5E3X^*zIeQG&#p|>RE67*KApX~`TELa_Uq-pG<51uKek&qJ@kL&{?`&Y z%O02RkrVu=oc}+g=Kk%v(v_b#E}j4LU3^FRo)71P*xoTEe2~e%^mvAR_=hR?c)z%E zzqg-zKWfeUqfZS_#mO@!GHzP3XM)k;jOJd4-z(Rx$}*Yd6{YKc-uIB2`WElScGX*i zX1<3no^?hF0{K>J^ zTYKi}WQE$}QZu@fEw;ONeG5&0WjL*B&65TFvqUaBYIbw3TK7%S!Q1Vhdz0`lKhvk( zO|q7keKxFc>stDDk#wh*ittb4p=k$}3(F{+od1e>fJ6za5!+VmR zrnmh;^Aq*AT<-ew9gvYf=o=Cl);~q~4_g8EZpN=J0tuJIK6!XGWs5(I?kza;{gJLi zS--&S?77RIrx(Xle1CCx6(j2#E}@I}msH#@S@E)HN&K%-QSuCCw`DePHy@UL(GTjYURDw={G&?Uk{& z1+4quebRUa`tubo+iG$tksb_y-PLv-&-%>|9O+&YAb);!Hxc2yPmB5TEQLm zV2xhlof?^S72@^x@3TH#Wb*OE4N)JNmmIq|GG458kgdPYQo8JC^~228<=H!RJROC$ z9nQS4ans~QS-*;mq-vI}>A$urrhkjv7DlhKDcASJ$o1b@{pQJ)oevM%O$tfPE;T-x zKKcGHwFgY!EWbWbJtlCvxS{`X@OP_SmaA&^X9nqf{Ty3!#Y(j2%6sd3JKL&O`0al# zkVkd3? z_dj+|KL2a(e$fMM_mbxNiO)au|5d`bkL)Mrze_royZ7?ZHJ?|>?vN8)Z}a`=kJa_B z@{e{;Uw<^X%Ip5BFZK0beLvp+`)hvx{eP#TKi}fAC}9>YsCg{eaY>GoPrX&@i-emD zd)18{Px#*dnrGagBRD5f-s+mK>?J-k!%1sc@5vqyIp{rQ^?a-3FE=s|mI@wxtTdB9 ztaqF5bib_BU97IJ``m5Z+$Jh|J7{Fe*;cHL)Ias;;vy^O?Ms>i zQ#ZVey4GDYRXv0Am(+oUO(Jh{Z!xo^&)!l#)mYA*jbYNuYi~NgD`ci<$?QHVyXAzj zPRrekDGSog^{UqJ?YAyfD%tX$|M`c*dY&YxZtSFK-XcIB|ZL0-n?Q<6Uiy#CmD-A?HLx6}KDrf=(Ju8MitdOG}Z z`u(rwkJp~BHT=4G-|=(dd#*IyI&SNh@=bNm`q=k7?{0|xTlwYQuC9YJjs`JbmpyZN zWH@I}Q{{n!YG<}e2wwfxxL4q!iqwSE`9W>lyzl!i{qi&B%{QLK^LGX*|2SjxY44uR z3NFnnb&nOr`bTm!SlrruC;B&sg6M6ll2xz8_Vt(ix%>U_ty=-hFK|bD-9I^XOV_?F z-#@gz+F*Hp_PliuQu2{M&LVgx?#z{g#_#oukBiJ=emko;E0_7lqVq5Q zTvHZmiP-Kuxvj%@zn@(}-QBaHNtZeQGhEu5#2pf)oT41?X~E59(wn#3zOvgWeQVIN zQgLycW0?^kcVE{1xBGATGQqysw?XqinJ)3!9=+?U@+XE4rdZQOf&B$X zZLTam({pa_+dbM}wdQhd(sI~-f5OwEmOnRqwlK%|Zs!u1s_yF1Ry9ZS)3uft;ddq2 z3f7(Cee)>n6w`Xf8(CX4Zgmxvz0W@K@m1#}j)oIOHM$p{)r%Ie@=v|raqnnNaAicU z(3y0G@~PWH#e<)jovBrMd6B8k`f|C-j+Ldmgpd|KU1r-)asb+tcx|pr@YR4 zWu87C((>9Q+{d(Q?uzNsHU~C2?hapkG@@BfeuveM$oGf&zQ|tvI@#uG$Ml71e*~0m zT>`xmcS6>KUt_x?XUx8;lq?yO8(>k}6(S$Qc% z@^V^aR^Yk!zT4-zx@5PX?byrRbN%mH7rqM38;{rCdo4NbP)MxrFOkJLucP@g^7^WG zExByvv3T0sw+?pxQ}2szxTnf=V2al(&%YrCb*vlmRZEwyQD)wsDV8xebb8y>-It|3 z?ihDHx0%(iV8&m&`cGKjj~TaWzyItmPCW6~>+!qo=Q>u^dY;|onfA8)Z_U37vHvG` z|MROkF1>Hhg%6;i@~L+J-yHq1)Bk@&&BL4Bmd-CGPBm@n42wG=anNR&tX`tUoej*< zvPZYX3(1*RO%Qjt6KeQ)_up6BobLzczS~{Sy^ha5{!RaHpWR0pOy*}TXqTzmTD$8* z(b-q2&ByCRlKt5q#2#4nDVcX+tnH-0w`|jvZh1K|?ic52*2u)e z6QsPadDzzE_geK-zv4LZ@?HI3Sx<4<0NvX+d!KJO79-puv;9^NdxiW$d-o5_HW&OK z`bfqr9xrj6x1*8K|Kp4uSN*&f1pd~z)+@R@{bSA4P^NzqQ-9ZN{kGGMHBh)Crk%+$ zvC21GK0{x5%U+o!^DEvS{`fcl_mgeD{ib_g^2Yb=|8s7??0Na~N=>=T@2y?!T3U48 z(D3XUslL7-}`)b-^8Vt_hq=UU2xve`QodBMNDbxR`tGuY?JpEu(bdMv)`BG z8mVi|Fxv9W)#T643l29gB(GV2XsWWuoIcx~GP)9$%fE+wQ+%Gm_*s-fX{6!wi9ER&R0T(0l7}&g;3}Eua3q=N7N?uDm5R_xQ>9 zCXe#os< zm51!Te$RAuc_Xh4>)#$Pmt8N_yK;8qC#zRnr(*jRyHC$y*lm93$umPxQz=mOjf2+z zJNv7>KEJ+j-Rjl608>e&KYw#-E9JJney&(jTDdC!RDkF=gC)U*ud|XKNM!{c?!R0i zY?aNc&3|oLUGnt{#XTD?uaM=_x%4t7p8ftVmxi6KF;x{Oud}C?Gc8!_j>pA*$E_5Ktv>wz{xk!feA$e3Tc3T|v@+6iq3xTcYho_{ zt>>C$wLkp9(ck^1vtPcPzjyk3$Jg538OoD9``*b+^i>oqIGLY(>)=Yg`cmyf``lN{ z83?a^vPN)iUGb64~I z3gBH!HNbmVL&%6h<4HO*vC{tG!*lcz$y36yqJni)PJz z_UrWTBflzgW_CZ>{%C&fTVFv&??e~x zkFr^I>#A1xNhCi}a*&rvd?oW#XY0Ov&$)4H82vUHufKZp>xNGcKS-~WlPN!%!5AU@ zxHEf)=$doOWgEmFP83)CvfFJ5+p@|1U)?XPYBb%f-G7bwcJ0}s0vCy`o3cW3y;%!5 z&g|4(EjaVafmQ#NZtQh-fH zD5r8w`l~0$(l@uBI=zgqoc&9g*!HHyHS6bk@5x`BYP)0E)0Y$1|5~FaD}8;*Y1tV+ zSUxaWmDYr2Uo)S$BX3>UCZ--XK92oSJOwYcN*(*d{>lg0ed(AdUhHzDfB&zEKmKj6 z{nYQ867Rd-_W#ZwFW>(PurYVsU;6DMullO{q9)fuxt`~^eZTLe5o|v1#l`h{OKZ}~ zW1ps}J9k`QJ}VPD@&1NWAHRP!t@dN|Jz;)2%$l*ZD~_`-{OVq-{x^LcEOU2#jeoxR z&YP>@zd2%>Y}`M198zAZT@BDA5k0f7qpkTMt~AayY=y3QvUH3Q{M;Wumxn=Ki|CLdL*CO{Fl}mjDH^Al=;2+kGJ%x z)>`SFq?~<%3XaDXym@pZi1iLboBSu6H}|&uO_#0M$Mk$c^3%{)9e-ltcQQDH{r0Qm zvttywe&WKDuW3H7UR>GOTyFU2#kJyZo~-+8ogdh2+8NlFe|}lNvTf7>|J^rYpWa>9 zr(LaXSpU*w3D*XmFR+LU-NFTbnK;zCvc%pVya)-oDnm{@v4&d3u6PeC5td$KT)D zU$dxQwcF4rJKNgMf0pPLW`PqG|0^r4(ga_MziBpEmSPjc z-Y{+6_2YBr?%Y55@a?^&zs+A>sPZ_w_Qcib$L|%bLgv4V4mfS=)PMbIVb7fBhvb)* zPJJ7=_;OwLs^pyoo>wL=`BGo|R?zA4#)aN5uP?SM<%`O`efU@CzNz-RlURw&#KlXj!&&~YLKsQp%o(XOmt*?Kpf8>45SKUTc-Yp+gk2QAh zWG=Nce)dc5$^vD}3yYN1K5ds@$@aF$XL-!_^s>z#@}7JRc+kpc*Hd>_Fuwfj`&0cK z#phoA{_B@nsD1v5(F>lk<($u*whA3s{P$5n|9hqr%Tr^V?>|5M{l}IA8<+Z?TKJbK z{mY5tKNLURpcnu-#T$<#sov7sa>u8YHYPUF+bH z_n&U*W!mL2|LfXJJ_dKY=Y5av@~kQ1)B6@7+p$Ml_>55d{HcaZSBSR9pIms&L`JD% z{^_N2d+udFrbpR2`a;Mx4c@ymd-qhZhxQ72sK-l+ zmrmbR#MW@(!A;A#=1Gd*Ca5d-KatuK|2CBMVazwp!-7|ss~hIMed#Faw|90Rt6hD_ zftXU(HQP(~eJnZqn#EJ=1@Ek5Hxy&V8bz)gzQDdUuHp5qx~so;EHb&oDRIdx>i+Z> zAA|4zT=?VQ^m^5Q7R&43p4~6`zWVF*ptPJjtl??g;z3n`K9glUQ^7vPO+N3H~IOdD0XGg1*@jy6}Qp_vlhPC@kHXnRKb+c=e-%FIIsLA&4HC``u}ka=k4&1W%ot)+ee%=;PvMIPlGjUbD$k1BvM}&nF;D6C zw*di7O^#J2Tt;8xA6rE*R^IRle>n5@{D}?=n#xxGc8RO*XJJ)5o|#-?pC>+_Z`&@v zv)j!3HgmkP{;;n(aq_yjQ#rlT8k4RqIMZx5^{sNT-MKFrjQb~A*v?JU`ub-(b6<(3 zVco$cvgNg2uZq@Q>n*bM4NgpW^*r>#q759UFQi}33w#x;s~fz03n#NDW8k!9fwD$6 z-j%2N@BZa@D&ELjzNFdT_I>4V&y7+Yx_pvJi(5ASnfJ_jP3_UYQAL|dPKpQq+*W>W za@`;1{pXTSZN0SGx|1<|PyP2I(aqCt9p5_t#`XsWPxm%eR+}zOkV;+e`S*44-Wsda zI4ir-O^W3gth{FIYT2_^F?aE+qeT(Nl}}x(VDw4ee1F$#ZlUXUCS3~KBDU7oa_-MI zN8=UtYs+edgiTWJ^k3k~d^xXr$LgxA=^u{wT-T8m*gI~ zVK?1uqrT?k1xLT`xcuhNt>atXyoh%6OM86uy53(i^gQ{uhOmlH zTrcMz_1eYGrhIGBixaOLkH>5cDC4{~pDB|2fNu=1&(-j4 zD)ZWXLNvgVIluDRT=iW-(YyZpa)^?B9X zVs6>}5h>wMnN~M&lsknlf2aEA$N7g}UQY|3yp^|)=_coTZFOd+hc|AzG5Y+xZSkk< zt#^QK#J#QZr>g@uJu&lQkbNa$R{8eQH$MSB>-X)!D^g>xc8Mmu2~{Hi&7?e$zeg`^>1if;D&jG)_An(5f!3y>Qz`NaBx0Zma9v z;~(#Cs=4-Jwc@tG;H#Sjzy4jh$KT`kNy#CC^!Ng_+&^=V@Fv z+zw99*T|i1kd{eat8Sn2#b3SF=9Iv{2|v$-9TztEv?AyF&8YdGxF$A8?PNJW!>)ef zPOf6Upg@0xO6YT@#~%X8l^ zUFRtNv)58ELHdo*o%^!;Oc}Q1{asVL;IGB33%$<*+wz@GE!Hz!mJpmOd8=Ngn=9tk z9j*yJpH==#D;w4ZN2u)ou`;l69)C&lyCBbzs=v(k|1^cl}f*L!|IBVTN>>mD{t0z-)nF6^X0QDke&Z7 za(#28Utw(uAPq-EZX`%Yv;x*TX*Siu|MGb zEish6bkdTXRXaJZ#wpJ^bnDTjtDowx?3`}u71~-e)#>i+XYP)D-(H@G^1k^t@$qF* zru9O;eZN0z-_JjpmOJs=bFNow*_)=W+|*sY@^Hh$44JkkIaBxUey>t*Rqgup=F_sN zhfCL=)T`INzW7gA=IY~T!;B?OjUSzk<=)OGc`-fo|J$z&U(R^#)myWrevjLIn+?mS zn%aK(9kwW?=%nSbCvWWz3R~SPmDelvIPurfTuH3l>2dhs@x}6v%dP)>k+tyo zbxy9f&3&ceqNJ^l?r^TSZyNeM@Wa+XPK+h(4XoAF2O1BJA7l=2cuDGNl9g zO+E-dcluu&#IWJB&&>;E7be>L=-zio;^KEL#r<;4%Zm2fTN!Wi&(uwxGeKYKZ)18u z{p6w#YobmDz6zW7d`3=P`^BKd^9y6S${g9WUo1D87nph4@72o>+4mP5*1yAe=}`Zk zoQFlVymHk`OJ1ipmFRxj;aB>_G}WnDdG%AlfNd)i|Jgm=YhJMB;r3~~a-TSY%I7gQ z*r<81tIM2{>@%s9baS40C#SJU(YeYdw{>!qo%h|vnQuJQKRn3R|0HX@uavj#)|NAN z*+IwWyfV?BziaWjIoWxy7_S!kz7rJru5ojN(Yi_T{Z_|}wdPlTd3Oy!8!kH{`C|x0YVKZ~xWYiP>A$IERbJiF4a7KKhAo z`-jl!=e%$66|0@!_G-@RqMDOti{kc0uiC~R7#$k_pqN4E=|a1Imow(QNV@-Z!wQLW ziZbD5|4kSynSkP4XD8TQO-_+PP7llN}Hzzm` z{+!?ydg8y+r-N#p+6Vu8abNTO{ubQ`Y*Lhh_ z1Fq|L{$2e$xA@z;yL+p?zPh^l`sLN-IT;z7*2_FtS(El;-sz>U&t8}x=FU*g_QYsW z;hp)vu0H#neI~YQUG#o~U;8dyQ(s>zz58?bnG%C3?kDbTt8{hQ=O!{ z-`NVCf9AE_wdQdk>#3T!D}{5Vs(lvQHM;Sogx+rbJN32b4)=e{s@ATH+V4JjV|>D% zn~gD7qL^J4y;UwS@6*j)W88oAl=E~}3E55N#uGfE*lQn|RXY5-vA*(f!!yQ9Y^SfE zetxwgai>%Vm=g-72xu5(#A z>GzV!R%X9=7HxF1y!U_hMdJk*#>o@U=GFN79vW(2MZYJR$I`{B=Nkx7=R`~CjhZwmW( z>gCx5UThJcHs3RvesrbutnKG3H*K4Ey!=~UT7-FD#1r`oyb52oReReO>g?FFXV<-n z%Ra=&akfiDKFVQZFm}CrY60KcO_O{ke7T}KE5!S)-JY+ zKTS7Hd+fdS_YK=OQFlcY&+T}3?cQyjmyy>>e3OkYf9X}5uK!V4{$}Os`=3|TdprtT zp#S=b#=<@OKg~T~$7%oR-u$1}KmFDAe_6Ohf6pJ8x<{Mucdw71@8~?=U1`@*1DPWRQj+j&%fzFvWz^kc3h%1%GIJzIKHU}f(bDI5iB-i@Prm)H4AwcMUNg$u z{AQbsp?|Xy+a6n9kK=)+I}YndZx>~7d2%&yw&;nSTX#rp`SE9df7=@YUdybYJHiv5 zbwA2s-OPV@W~14`t;VmC;+}5~V_9@q*;t$Z?~99a*H5rt)jc<{+jgB5zvg^Vh6_zw z&u^O-RdKu4UM=)mXG3IR;Q61`v!<|2)BKomKxeY^F_s&<)~pe0`*9}Jm$hSZ&oRUP zMX4@TJ4~KgP2*@;_PF@vh859^Y?Qn%`V^U5c=-H$%i;4?tM?`My_|7=*S?i}_VEr#jdrfbe-^`Z+nTuwZZZB(F(!1E{IoIsIrA998k9&`oPI||8p_A*~K6~}tJl70S z0h0s$Z?0^0YcSYx?UOZoVD+`KeDjl=y%iZ7^Hjf7eA{qVj4Av2R6e18#_dMcJquTL z>wn{UeZu5grDK)<`BIseb=z+5S#7gws@&w)XWqI?Rn@Y8$upT=`|P^Rg=C*yOV2*P zsdoK8!-t3E|CRRrUc0}`KJVovzdsME>&5cxzj<$)nEamc;{WZ7cFz2h`QX|c`S%Mp z7p-%R54bid&w=eqM)r=lD>6#APbgch++P}!2;$_>+6l6Um91iTMf6JsfH*fpgC8Z|vo8Eal@44Rf{@Utv2SJuc zY?B??nKrC$m~;8z9*f_19wY^Z_(?Y~SRVQqcdFyxw#tT1_m`pfe$ScfD0`$$tpC76 z!^Y{$iZ~>$B+EMUPkfir|BS^UL4LpWf+O!)92d{;&D+*}AoU)Pv!qBu$*eO+q!z5c zv-)gg`Yi3e_gST4qx`e`J$(Os`j>RmaDK_uIeq3Su?qRTC9h@)3+qpMdntJSguG9} z*Tn1M7fj3Pd%fhMzlTKW6T=R*y$>dqnJzlBy3}Fgt@bJGd2^J`zWJP%DxlE4;+9&S znSOnrVxGi<9mQ1vKb{@;vFd35loMfU`&~6v^NpQ{*^PWTS~&$FHxRIQq0dEvBO*@w$dlkUFySaE4F z+n-NC1v1*`- zrWy}NV=ckTJ2s!69_3oK>u20$uj%s2FG^pY*vYqRNx5pOvhsJO*Eg*{m7gxmsSA#~ zb9Q@qfIQni&OL8FdiHg%yK`SB^?S8xThm#qDGPCO}huz=3-x;2|%4t8(x8`yA%W74*J<}MSUUta#c3I_~-a9KS z)_h&1q}<7ud(PjopMFXG?V0JXOT;(6o*%uXY)`>=(LdYef3e&v`TmvtHt1C4?5Y2b zUccY8|M$%PN1yfW`5D;0J$CFtcZG7|Cyiu$ zUQXM;ET^{Yw6{Q4af005D~tG-UbeHGe0}kqs1HupZS>ctx^GK3_Ugmwuj|>RFALht z=~(l=M{-@0_tv{x^JPD*xj6M}Wch;M>1_Y_W-~@z+My>srC&H#ZsJPIozZotW?nw2 z5qOTPM=e!lZi?GBX4yAEaT-_0_9C)@@ro&+@?( zo&tr-Pk;XS6B~VBH_XvfuD)cNO^KZafAN|1X*uOmRuvxUj%VI%+h9jmxl1m0lSXUuwWTj6 z*3`_9=Pg^Xe3$#}z7D0%kF(}PAAM;4QsTfpnTd1jISMWvynG?~+B%+?5XmW1!WTr% zYu?MM@;bokO!$?p=jPt~XjOCMnrKtWnlHi%6BM4GE-lO{uPB+iDARTSt7~1mBIlL< zTP=8P>buu9vjP*<*&04F>;JR)*S!7jsYfFJ9#5LL`?uA<&-^t^=j}gVeK2GFizSmy z)VA79JX5TFD$n%6t^3sQQH%l`}^AYF5P@1e6FN-$(#=_jPsc%U!VOY_x6j6 z&x(z&{F`=g)`{yg-QS*{ZSAr6RMs`NbIJ!^*k4-RvDc>Ex<2{L7EzrgcPI2qFYrEg<<%`;^DN965Z%&;q-6(OhH2jP4^EXnW$1HU! zdjH5BkiF2H#9moFy3{S$O|@p)qdspE&O3Sw?O$$kFa+j{HFRVOZP-Tt!6*kXz9Orwr z@!+YS@BftD;xzbmaeh{E_dnJC%Yw@U61soRH9F-ha7SRFW#J{JB_EHU2$~++IDzSh zzHiM$o%^3W?EAiSFxs0}xTw9_np(&&%bv5LpRn?UXZ|e9zpL$(z@F_#?x0~Ch zq#Zaqcg?O@FW2sO-8}tf4_`aKY{Bbm^X_!X+V`I=eH!ZG*S_d6%O_bj1;JO=-j#VV zDKCs?%LZ?CTE_o!by|e()@ipdZEX|#QY0VSU$%we{}+~~>3WVjr$csKj7Z&(|IT(! z)WX@}8~`31%+$D1XfO|4EDO zf^v(lb=hB99C)m@$Et;FzqRgh;>~HsTYop`q^?zYa_6jB=PkMSdQN3eHa|V{{vz9> z*lh=*cKYqy;Zl9;l3rBb>oU=+PbUiPvpsfuGjrR{6ZRXJy5quQMW0NaoKwQ2HvL+m z>$A|U4UCPQQ<7!(FG(&t{E&fV$I<6oW}6?H(hge-Pm@bt-yGYt=~#BbJe`!-R3rB5H{?XCI`47MA;POr6B zf19jc6PJDEyA0o}o>RxZJ%1jS5%9IDlc_BIf6#Z4+ZKmL zc5M0_I9KlAEM3dLyZp2_*gY32Tvq*4cJZ3|59VG!y=%^QCaq65($@9weV+b7{QfuX zACKqV`}pSl!}fc>jTfFb-F~`l!M?ARvBgu(Dh&R|?o>Z;?zc;E`}K#Pp1uFI)b~(L zgBj1p9yay~rpwtI(o-+*d|jM7@8Q&l?a$Yy2Ul7re81~wz3?pSlDl6YzufOVbIDal zhV{1{1z+WqtNpG%YGd>w=u0*0_8<3lyyD4!P?J1oHp8OVu1!2Fx}57a=*cF(JooXA zo&NdEuP0V5$eningxRID<<%3fFPWcPvfN&b2b6umL+1z}g1Qm6uHS=#g zkL>f8c@ z$%zsbP4+j_cKlzpYxSh1K40zILziXEUGgPGzw+0!JpU;xWgW~vd!BpErX#X$(LTBD z<~|qqZmwQpY~k_X{Lg9jp{w3i+^p1BeJ%ZL&WrU6&aacTOWn*~qN4Qv^IF@fZZog! zox(X`ebl$7s{UrnW7txx)_zj7{P@d~_j8|g{PtUY(%(OuzrQTC^u?vv-`3V!jjql* z@!3N7f92XwyRJ=eJUo}Dkj*?{>D{pU+^BihU;T{TzoyyE|FGCZwrip0gFO+q7gg`J znYuq)Qp@x4?Vp>y`Tdi(zY9J4{lbq)b}{p>bxbz9@%`*R-t}(xwW6hD?@V9_sXbx0 z&VT*qQ=DHnI_%_m6d1LIk*Q$c`!7$|#b*EB`DJ-dZ&b~mchC26aov-$k8Cn8TJm;k z#^0{~{m;ce$maig%lj5|o%FYt@%z3o{d<1CPJUlatr)|>Mak!qa`)Ar=&zFLHe|GX zY<0i#nO~dT{C3-u&sWITXg6CkaM$@dNSzfP#?m-uMI_uycKTEs=&b6%ZW0!sI#3tZc}N_W%q za<^?OY}f@^j_fK+nY-pOpH%}4?lAAm!G;WQ`fmO`Oo>cdVb|>hc~^E{b-ZQ zrTMFOqEvb&|LMI>whwZPr1jhvcwKw?VXEzEj*w5SSMDmxf2_J8zrJu!)$Ey7TI+8e z(b#?c>z=aL&o)(^z(@+e&%@LkZ$te z+{5Mm>=!uh{oI}W!k}1T{aM-D>Go$HhM$jAFjX*A}0dx5#2n{!LAdnFRu|tJQnoa{XhS8@BHC`c?f6YZkA+cI)u1CAo{W{awCm zyoUZidXV{* zZ3m-DWnkP(qo)&fVrN}vIelynN4zF6;_&(rZqX32v+ z245JTx8)@qeUdKTF!9;hw6e6v>HZfR#@XQphtwo#n$H%S&Z9T@4h^+n<|X(H}AS&w*d2W)mvD z1ckFixp3V2^Xl(|@ z-QW2QzB=aet55CvbN6)N*=L`v@_wYS9=kDplH%6=ZVtaD&TjwsHSgBks`U#`wtlQL z+2lG~X3e|3OL_U0wBG+LxG2wm-OrmD-`xFv$~O9JUu5@s_wvTA@8z?rwlvH?Bd~v3 zeYpB_K9-WtrvA@$4*Jg6^W)?8ojZS?S)IP?Rom`=<&Vv$ZxP-Q?G%2NMeALaMXz>w z{HMeFto4oltLT{t-eLH@>g6Mc; zkCODCm#!Y{s9HO9*OWgioXUgWEEe4SWP_-CR;d2>@Qjo8<+V$0<#|WXvRb5jPk!}m z_e){?uZs-o*ge)P2<-noZ}~3k&zH)kU;Eftr<7~y|cdkb*50w3~QYTOD#4pDO zzjQyCUOpL;%;=W)ar>$6_}kxCrZtOw|Ni#Ome(t9J+rc_s?u8?mLa~sY-QZ{75mnl zz9M(M_L4@Z`HdTquUPhdZoPjfzV7z&Z6>x$mw$;`e!ueN*&iGI|0>x1zhrSNSfR7; z)tbJjvrBe`JK8a6imu2CW1qXLT;aeB_j8TLmZw9mFL=;2Z%)OYb9?Gc!j4NFT=?3$ zU0!!7m*Gh(D~3Dbv;KB?G)>KN_M4Ntns0T-}mfQ`abLA+-nwV&t$xdD9co~ zjf}gNe9kYW^3!Xdx-Wgv@gL*(7B7wB(~Fm5y<{+_^84PUHm0AnPj9{WDv*82!=L+Wz=ueBw{-i;TXL0`J5)a3Ql0<(!{QCamWjd=46Q$J?~Rx_EoZR?*PPEb)1FJ1 zzDaH?5%}Q7k^)RcQGoQ{luNEiX zzWZj*OgP`aDny9)^sa_)&1V-nSYErBRs0~O zSLu!7e24p&7X3_E!f;^0^T_n26Mvrk&voi+W$g{sOTtU;KF`{wc-m*#LC2lN^Gph6 z$+#W~70&;};jl?v>e$5RQ+VUJt2g}oJt5Wp++qhuGJjY$_ zdUE`6DFGMykL_X0&$)Ve`QMlndx!s(Yxf0LF{EYX-_kJqd}lguJg1HEggJi?e_yM< zV5j0#%Zx&+qwi%ZSE|SO{h7!7CnQsjanJXP({5kQ4$hM`ee?Fh@d*(xL3cRO3G&htb%*ZI=o8M{7$MbX3d{eonR_itI&kEbH;$HDA&!x8> z)XvEkV=u3M|6;@WKzqy74TqPlnQ86Z`P=M?(b3jh?v~=GPdiLFZGF6Be_^`rYN^wb zT;IQ~X_)(Iv&gs7f75pcyM! z)mb0X%kvz~-@5(V^K#*{b)QdMcvB1NcV%~1#2mEB4LET;uv#V2{Tg50 z1OE3F(Pe)(otpJL_IFvxy0SmB&;K?1_nN<^sM7rcXqQdjm)7a?5Bt}AtNwVZa{C?Y z%g>fi-{f2>C&>}QJGuOx`3c2kfs?maGj!cbX5n~$^?|l-OWxr3D{qcZg zVAWZ#<)1Gvl#x4sD%s|4;jJb$S2-?|VEI++fAs`Rc6)l}^y4^vi-q6+JT>zBFsDQL z-Nbp-uOm+`pY!tEd9mEm)wZW+MVC2nGhCeeKF`!5V1d6Z=c}K4-@izSJ)o7+eZ60L zjk{FX={-}^ulRe(vv{&!etAH=g5~EjW~QHuYA-V$D8CWIwZ1mpG;L<-b%VKX zbvc1s7J9O|&vV>)YCB`*=%A<#nzXH>R+k_RkJGFgN?aolmbK*3VYE_S64-m1NzK&$U_? z&4p6#7D}9NtGiP3WukaJWBotf`3HleE-#(?}RliwJWZ6mZSN5<+F;B zVKY8SoHu$N_++18^XG-`?@BoiFs}Nu<;xx&)tA}*A!{FRkB)rVk&s}O_StPASI(Bo zw+_eWzAU*ZnZ@5@zw*oq>(8tTFIH@HQr~L5X|deO`z3RqeqcYixa7#a>eVK!xl@duAlb$xZNk?MNc=dw^XpKE=l(OEAt>I z`1T3ya|`RvBz{is37g*g^k*0D?IViq282z`xb^6GJQT& zZn{`i(k5z~_}u4`2ew5m*8dc-l0o{QkKF&;w-~Z78dtbK*fNuk_wJQzg{ODz?f)XX zGGDnqqHW5r<1^(}M2VyX^@ zc_Lna{k3|-%CMlVeA(ucwKiPp-50fOwfKMD6!mh}yG3$uliz({c4nO6y=2>teo<04s zsyE*D?Xz_@^-q`D7kA%wzqEJey*8ilbB}|r3Ln39X_;K|lh*Wo;2z&cpWTl@XNi{o zTDyKPul=``@`s+s%T276aZK-d^QUfd+_8n(fqEbB9NB-M^#8xzr%w6B%xAPw>gm&C zs%BFAvPLFeSLvugYRap~ec6HiD^5hIe134Pdcl)B!M^wSvV8Zdci05p3_r1LEuS%i zXSC3P;j@{zWgj)wA=gZEDwQgiEi?mOjdSKpncE+^rj773V za+`VWyo1YP?%CW*W`8yDd*0j1FZ1>@cW)B?YM$E|Gw0zpV~bO7U-92ptyyHnzNyCi zhu+s|>n@wR zwfol`1zE@L<#NVsDcScL(@)lzAE=r7{;SVio45$EQkhem?c{f)C0O1$@UW)v_2kmn z3H|b^H{DM@U%;eL%dq>~uE$;SHRsPi+I|1m>eMT?s{Z9~yZZP2_+0UB=6Y5SZV%yr z@`=YS7fsp~b26RlWcO{pN!$+a6~6V#{Pgg>yq2xwYGrp-oy*qD#~$8KpIE-WWTmJ3 zI%s-z{`BpCZwVfl*Y{Ia^-jC7)#-}9bJJ~#xf_~iPWidoa-ygI@m0(jdUi_bbb@PGtXIC}t zdleG9vt?&Z|Cx6pFuc1cEAE=?``vFP|H$mgDwaEIWp~g1I?Ft@4SNKigp{Ohv(K14 z%U4+8PLJAbSt0j}MS1yp-7M>jUu?GSoBZjCyMEEWzFyaB&i}e|KYqWvcBxP2tlG&+ z2M(Q>9Jb@g#HqO(x7s|q{B~Ay(+a(dhr^8ah8}Zcy3~}d`^J#nzOlwe{r9B5llvpj zU!2?ib@KP-^+kMh9Ous$GyL^*L;9wkU&}Kl-JS7kOT&&ilVwth>rUm#nd~*XAAUCd zrr*BT{Kac_@Wn8=cj#T${r56(Ba2AopLeTN<@~FzG|0yuzge+|A;_b3;R#o>F zMfa~Re!fHP@4kT7Uu9dF7xj48UG?BRv1iBJsD-{;u5C-_SlqNQZn=JBaqQRGzfLVn zOZog&NB2bTt7E$V=S5FF9oP6idgZ&b*FGukPN@2s{4(fqXr-0GuA)0ni%(3wV>I=- z?Yq>OrJbLo=2-LooLg(wY;DT+>1X=!4H{9!!OFYURP=YYF51%MXFYST>9?LE3^iBW zULE3M_*l$vooQcQ|HoD3bJ|1spBb&_G)jnbkK&Jt+PTVXg?;Vi1FLRFzSb*M&@Jo> zS)TG@OW50E8^7O^JYOX_<(+JNzWnY=@8po$z|@p4?z!EUXP8H=`Dm<} zg;{oO>h&wH^}qjkZ})|B&+D)Iw`V>F9Rid4>+baXE&IRUc_IJFJr%r#|mU4qnfo$~cWl>R9=u53l(4SN)07 z|Nf`avcmRIPVM#k8SiV)Aa>CmRpP-c8ScoUyEcZ5Ol4F124fzgC#tzQ_B{K<>+Aw+Lz1 za^L57QvKY;GbgC6<+J}faZbjmrwUJZxfw;i$~&m}bTR+tsp>cN-Y+yc9@JfQrEk}& zhd)j{uwAxp)|bTncQ-{%kvn>JlmCa<)avX@#|13+bf>U$eDMyyqPvf8eOAnu1-`qO ze%$D`Z{PpnTKwVQs;^)A((C!_e>2;6UYA`zW8GE3t9H|SpUe(*yJWL==lXB!Uw>4z z-oid*x`XKNTdDFB{HFJKsrmJk8^vBI4vCnuR`e`qOY_$Q3|xO>BbQ8U@NWO|y^*nv zHz03~^VX9M#|yf$dt?^o_4e{i;Nfrow8H#=%i{abEw3}z_5ZY0I{#ciWbTV!o%18@ zdu^t_I+GVSUFNFucJW&|&Bye(mQ9@QYo-3hBl!2_I}(4Ql`qbj&%CF}!IPsV(vfwl z^u%eYaZk6(tX*t*BeO%<^71m#i;O%{dT)I;P5!m)`1X=1=`SwoNxSS(vSmqNy|(h6 zjeFbDw2R&c|F?DMeGX>&(q}jI_3W02<>$j$=DD%v_Q~FT?-=Y~)7haH@Qr245$oq` z>Q9>XZ|Lc8dc8d2aY=3um&2}$e6xx-+|=1(%Tg3syG%0HtZDfRMi15nw}0%Zc6ZyoT)Az#Sk6w8sz!tF{%yfapB z;qsXCezT6v(?11UH)_UhUy}ZQjc#f140X4kKX(VP-}i|(Rk^pkFw@n|MK?!oW7XGp z4$QC3YbttP3NqJ;lpc_shRnPY>Vf+a==g zb6)SRuXWC4I^AwtFWi3g_TKJG#g8`MbE{qN{&ZuTaFNe-{{`PJPu#a!rQ9G~?qgK% zs_4u2&U}3>X;AzjB|l90)17DWQ#qgeo2@%?S!=iL({)##B?lCDrbcyYzn*bJcKL~2 zPZzCzHhaapZ?(BQkM-<(?YB-;qQPaa^M&J2tuCMX=b<(wa(VhcULWnFPtNH~5u5KG zQCjQvd*bs-mX}g1KNX(eUA^Fa*sYf=C+EJhS^HM|!s55=_j^voA3Xh6;`Fbs!4?SJmp-~ZXBFk6^Sh&TJw$M=u( z_u89+jgl-ZGDwi`{6-QCGqH*Qc%J(v|z_HlO`ElSW!6r|_D{yISXRoM{m8eXD~x47 zOHf~l>tWj{nUyO|>I8X~T%K9a!o^vU_FCDRaWr!y_J{9mIMzO(54YuP?Y zsY@T1F=hW1cqQd|aMz7-U+bPJUZ#Uv1bvt-?%s*^bM%ZeLd2|Ah6u;ECL_yYH*# zmeeho8hSJFj7viI#Ab8Z2~S!rOOKqN_KD4RpRx3-{PG`#`_lG$viqsWzB%C@KgY1E z=yG4)sr}7uJ?D~Viw0g;dq=KMZ~5K1+I1pR=Df+7`y=4#xt;GW>Q{advwd~0^l`pS zc=}_B32#2mlDTf%JH1^euu(0tJk0XB#HSY#_G~*}C4MhU`Kvz5a{ZgIql)(hJYH;i zE@iZRt?O0;F&`SeKP`l7JP;JR0m zeLMM{`0|wPoyIQUGNop->~+4&sa-EDqw>T{@6>kI6h`Um_P=Mo^j3M+a(C%ceCpIgtb-+s$=_lf%#-Qs@l34Plq^|wqo!LVBSSs&+=AJzXP zET27ya+%{;CVb(_H%qav`&{am-Hx~?KUHsbV$J?7g)RHcf;-cDl=fEbKlrxlNcDf2 zn6`^1kJzGe)K=6!yjXJ3TSM!-e>?-r6QPzb$z_{!mlrbb_J43r`MJy+kyy5Of$F|< zHKeW_m;1?P@M~u7gk15!@-5(eiwXX1arXsHuVrxgrk&cz_tUG`?3_`p zssG$<#tuidnKbjSH+;Hc_p@|coapmF?L+*SKuS0t95j{cb)UH11~=KcF$zgynb zvg6abaNO+8Gr9lsepvPIIa`$XctyY6|I_(@Lu<}k*Hs4pg0!RNPQTZ)|MScKN8Ri9 zWX3&Qcd{t+PI#SRC?VLV3Z2+{vs9wps6A+Q{K| z^|BFh1?D4tXQBmn`ZWlJ@u>X=sRDZ5{ z{@;hXoWQ;`0Y*iZpB~${>`9aEH&JOgRrhE4ygU&%N$D{HN1<<gb>4C2xr^mkZ!j?5+Vm|+dS~T9 z*}BBLWp<9U*FHVLF~Pm7K{oYlN2A}bt(Q*kakThjRkCH;G2yk+FXu$=N;M-?;F^oxNXv_PpPRoyxCe?cNvnMX$VCRN7tmXWGA_?8&>9NuRy#SH)%vWyZ{G|nX71|#wZkuiyz+k z|5IzeN7tABbDOlLDyZREW`9t+=gqbYS3{Lw?2))-x9fQ2R0omNA6*~MZA&fg%k@~` zmrz;4^Lx(&lV5F(?PeJTb1F=xy{`SVEZODN%UQ=_d*<%@UKG=_WAPQ|+PBBuUM*N~ zbz{u&9rDsQI0T#&7BibpKPi6czQMDl(YfuhyagAZUD?IBs3|^Mv!kZy*lxS#}`xOWY2walXH18<#}?}g<5tu zzs2_t8eW>(@M2xLT+%jsKaq|q&NklcQ}^G`X0$q+Ug`5vT=~4#{vURh(|iQj9{lRq zbLtzTn!Kia`CFc7hlJS;YmOY$dzBRu|6$|VpLw6cCpO8=J-u)4-yY`Wb7dT=4=$F9 zjVoW!cU$Sr<~*Cv8#M*CN6&xy`^n7P=6v(6Yj|BhyXE;R8w=enSEr@-OyfCm-c+)E z*-5?sbEFNQojrGO$z-z_)~?mIN6N~dlvkB`gm2=%x-K&PbggLZgo+1WSLFO(yD#%# zJ-a~in{9i}Rjhe=k-2WWgI(NtzescbJ3Qa-?~Z@mweqAvY{>j~2VZ^JE24Y%Z0c!| z^mTWOOs8+1<*s}8vvY5m=JZMGonNb$ne!`7bAGz?{@H09?hh|zJWbs;;Q`<2Gha8) z5mW2C{Ag*}@7=Doc2Zlu`SdcK+H$q3{Og+-zOOUG_T6XFS$)J~(a-(A`nemjj8?C? zb6u-&%4TNS$aj%Ds$S2on0YtQ@~6es_gtUuWVP$d+N_U{K0AjoiQ%Qh`Fj_ihpoKF zn=xm9tQNzAH?zLHK4I_UCG+Ew{>2&7{kPUmjb0m5TpYgtW!Ku-3i~#0Sv`45=-rvA zlY)0vO}eCVq2tPxjmz^by{td;ulPIva%TO!8lP0IY;V>7agS||+rDJIp6$0XTYu-# z&qhnO?Yd zk1G83zn|!+yx#qN=pwco2Y+mmsYyB287o`2#JOz#tp!z;{pX^etu%h!DdStvFtJhh z;*~XbH|*Icp*w4nTKR|SE2&$%R}_k#T>i~#v2XkQmsk4I-p>-6QIYfI9pl?+&wl?> zv3^tCC_72zu6q2s3mZM{ez#7pxpZ1NI`!wa5c7lk3+Jq?c(h=<`q#qE|J_#|h?f(+ zc_=M%dmp39-Z%f-L}k7Sp31K23zU>oeOh`YnKia;l}%`*{e{bq?k@gu=jYqx_LmI@ zEY`R1t?@3j$hiJ#OT(_Y1s4SOzjO%P(*8#4{=&5@x`i`N@Y$d6oOW>MRPjxB4ElfA z2pn&Zl72C#d-0Z}B`NOHyp}3wpLl#z`ob?3mDw-XSjtV8y(YKu#kbxk*N&S%b#jl= ze1GHS`((w_RZQMdy4KPCr8&L+r?$OVx$9i&ty0Dfuk!5qE;3sCUwL^>fBMzASI>NE zu!+ku*>(AhjoeC(-Eqg)W%J#yxxo16Ky@A8{hx={Kh~^${nEbfy8WTuasQ91=-cI6 zOPsa5`uW151%8%hPfaoo3q3u&czf*|bDq1w$^m=NY)Ia9{&1S}m%z4sjg#k}l{>iJ z&0V|MROP|G$heyti{|l<0<+7Ovr0}J z9>=X;MWnr~?hmp%`Fmb?6N}ZYV=rZQE$EzgSLS74rC)g-w-VQRtUf%XU3q_rI1e6x?mL_0?Z`^?t){ABAf_AMN>O8D(U*cKL(FU*uc)unzs#I>%A@3^WFMnxP-;I z>EAlT>VnBWlh5tkQhY1UeNrbM-=%4(dl{BQU03`y^LnuK+IoH->r968=^s=Zmhm2V zzRmvlp{?>#lQ+j7_R}$wJ8rt*--RD3@e|K~#*lH#6h8cb71PO?NZ%e8RTF#ddK@|G!mN zPI#^gF^IMGW^36;6wI_GO`{mZ_mu(jmc`5VsAMml6Xidxnak%I$FAsV z-D1zsqgQ5?Gt8UGxb(@H%4y1;>)93WPI~;&nwc$9%xG>}V#}F{$8KMoxi{eb-|cGg z=PGJvrY%^!RXKWt&9V#q?{czb*LGf0-s-by_TA}wYrfC>aDVH%t-O}6Zdkt0OYHv^ z)t|X{?y9&uo_E&iu$L8ETP*WfopSN36Px;7(`fV1J5rZ_zrK~er+!h>=^M}1F23}# zZ0FQ-Q+MxPxT|>2l{K3`FMqyfle6q?=7fE`lf2FHv&F6+{+V>=gL0|#C9Z|#d%l*& zAM3AsvHXL&o__wV@1T{Q)9t=*-Trw0|0~BotdFa+OFPyk6R4oBQ)+Vjxz(({e+`SK zy^Qd*i(kKyE$;P+hABE{Z0av-t)3Y8Snkcwof|Z#q`SxVTUGpRn&)7$T~5B}$47nZ zKUUTmFS@(O{lIFgC7XGz>-x*8?ma@RRGtx|D)CV0cTx9+QK`Q=^3PPgA{s88qQwL0;5q7~EWEjPR7STxIRUwq^F z;yl^;r;KJ_y_mdbgB`o#op~o2<{mgv5T*9-)G65-$0_HZ-%(OZ@R^w$=gQ4_WRKL^ zHS6b1eJHjq%zK7Azvk7@e&(#J55t3d&g9wbe)yrg{7}o|MXig!Wbw&=D$`tjno)Y! znpCUbfAnSSN;a4-QQmM!^IEZNNy|qG<&Vpc*M4fWK3{8kpz!IRoop2y1$DgY7bnE9 zNAq_(Jo#LdH@oMX)v`rjoyALEc7FM%^xE_~k6l>St+gxGeYm)$>a|zz=Z@*h+Uu4+ zzpl%A>iM*}mn)Xp%)AzQ{#4Xi?XEp1Tld_HJY84TR_)EV_}p_v`TOgw-+lb}y;i9H zp|1b?H@};gna9K(s{eU#{-Mw3YgpeH-V!K}Sp4qzpFQ!lLMLS3tLL&kJALipAHEdH z^{d7EcV)Z2%RIg#_emLt!pwzs)9)rFOW!29xPPk%pL;f* zB~wC^!f`i{dmok7Qb)NIrgnJhR=Dg>T2$cR-tRee%_isk8UGws-yn>3u z^Y(}R(|zV^_qriz%Ee!oj^{8xFJf2uYo)vFIAffj8Nuycb5GIe@p-HnXJh6qGr6x~MhqV(*+}t9mfd=gII~pt z&Ner7yXdl4bE@vFd~JJbVSnW_rS&o<>GnJ32`qT|>u=AuWy!|A<$>EPKb5=o{|gAo z*}kdv&090J3)f0+PLsLBrp9mb?1V7;=D(Kr?z@`XJp(OE=i|`5`@~?H=IpakYMmiw zH#4I&!sCv~eCzK1koUD{qgGeMx^AC1l`Edp%d<k97yfa-;&3< zxpYWfpZiL$zTUHY+r+fb3;s0R>wfxS;(;|h z1z*1G%uhDmx!1SSFn)g8-9KwoKVRpP^OXA>tT%c0C!0klltm-c`YybhT~^&$`XseD z-e#@4S=!H=y50F7vmZ~(;hkzem)(guW9`DN-Di1{mrYRFD*1Q%@!iKSrT!{s?@O6= zy)f$Xs?A0pj_#`M*}CJ|;|tz5KIZtYuBqI+lXczOKlcrn+Pq$+JZ;4jy;9eyLXDA< zFYYW2J$3Xq-_FC5g)3~99O3;Ob!wlR*I}*wkN@R{_j&D`s{Z;tk4)CS=<48_H3~U% zJ)?eJjjBvf+kfzN<&wAczaIVX+-~=Is`MB8rOUtET5`Ykr|*y7`~TTiJl$g)a9+8$ zs;8nnq0}U1gVnU97cCckl{1U!vJDD~rh6%Q+5Iz1V&0)Cz}BxBEMS z?>VkN;K8^)#_ZbSDA(0Fmi(RoG(+cksGd*;BOi zVw#`L@tghmNcz@}??qEmXBX+s{Q9q8gKzC>qs+pk9PC$$o!@6$zhAcD zgfqKhrSGhl3|B6C*t#<5@a=C~pz1!ym-~=R%s)HD#ZEE$~foQzJIn_ z$;P*H)Kpo1IhoDspSvdcgnD`S#gj9is=l6m?c9UK?vvhJQ`d}I|2yNoA~)Zp%)X51 zo1xX=6I#Fai{8%)f4j!vmGJq!>wcMjuasNAzDf3L4e$KmO@1-qHIhEhSE=WF7F$U- z^zVKC{KNBme{TA6&%d;NQe4F|?H?by_j5F8mww%FdfjWG_v!D$*L{(EtCNs-!$dYx zY!9FO#?bz(x(mAwKmRb{{Ibxl^&evDWPG0ddGjgudR{4?)j|%zNMn-tErW;eC4buLrKe`I3$m=?uQC@eIWil$%S=h%4wZ zdS7lg`1OY)K&|}8=CdsRS-Wf3bu07C&bTDAaJgpoqm9qZ@;`Tc5?_tUnZqK zRBO5XYi`Yh8sA-q`!xSvyl`-_T5Q_7r$35o-+x@gJjw5W=`DxpYP`=IB5&D*t#fC& zlXE)O+Ig9lz)@d+ck74hmlNV1@0OJPuwJnH(nj5swFmnw-v6AL_jA|P^4KR6zh+v8 zUYpzTt$JqHreu~Ef{)KB^Kw2pc#BQpr1Z-V|B_p_XIzzF7qDvVtX#R;!}{yW{moN# zsMVXcfx4nCEr;pmu)W^du2Yo8P&IYfq-sq znv?g_>ey1tRaKu}-16>semHM&-&`BrwFXJ7(bvEIEcw^qbS-ScPs6!Pf9D*yf8o>G zf>m2Z?N(bQ%xXB{E&uoae!*YgT+aW`?|r=Z!?&=I=)LdT=K&9Y(|&Iqc^V)#9S@Axp0}uz5J4MHZz{C+-LR4`jyjF*;98- z!s9AJwKq8P#WmG#_`RgE^hf5N(@GPMDLHsN7gxUbYBy`@(H+u+a{d* z`u`cTbJwiQo2V2jXX&Z#8@t!C;92eSX+7?}M+&1?92e?zQ+S{A&0oZhP4;A^)$eqx zyjQ#JO}2%%&p%-HdU~6P>h|IvOO?B3eZ8xrE;GyU+_lB-?T7u>ekgy&bNqs3x##?C z%Cr3@EB_FAzdP~nwfZS1_avR%b$I8D`@ByXRzCHN5^`*RZFi0LK;H+~A`Z`QI~ouF z-gR_y!=f130>$>&LzeT_T`P+#f3WeDY~$lg+P8kay6%(aZ7C@dxMf@aYPs_r>!tc_ zPwh3m{^4>sPx*1t`p32NkCgBIX?(k`*6V)NuRilyzWS&B|AMUU^=x8Q$kki5t>bhm zTUW8Xr&`|nh)+MF!(;Ysom^UY`Pj@)PmMPJO?{jlR*$?;kup9i`VsS-x3VN;?TWe` zA^y|J&T!N5#)~i7Z<@L4N?91qe`tNdW|7{lX$-=fU3o5q?VnJ)nE%tqR~!wR4C)!h z{FO(Ojm~p=T;eNWxMBJ5z!Wpy%zJ73Eo~dB)h6B&R^aSYkzX^(WQk=p^Cp(}yidM7 zX~_I#QDlZ|y;|IF*YU764Ak@aBN|8);?S#Jg{(P2s1n75AAZ}Q5#r>rMB zcP{f}cxoeL`se-H7foL)PS5@N&b@C}?*U(-Eps)(?e4d@SQec9YVb9oVVPERk>0)q z>u10Haku{q%cmb5-(@DXY3_en5!DxddEu>?1&f{8XXx*qQlrKYXR-amr;SV8d4Gf+ zPy0KMac*Jg{n!5<#%$8ReU~viDeKYe^G{lzMSZeLT)XqvGpWqGf6ukoSX4~99dS33 z|6;)V)L{R2leRs%eX&5==gGm6!#n2||8(&a-Xiy8!e^`2Z0&PT=k?vcTps`E>yeFV zsg;)LCm)_xj^DR)=B&)=YbPID~iKsj=L?S4rzG&$T#%=TgO2 z3g4x^v(P-SyQ${fVyk2M%}Z8peHwKwcl)H*2W+DJIsOzETuIfvyzl?K#jEx{`%`jt z+aJB3YHOFjY+QA9&(_d*lgpvILzD%>?^e8)eE)veLgy_Pm!AA4bHm;JU1^PehVTEFc)#kV%>%PPNa2s*zr^;qNmtc$OAzq|JR z!^>K~NBr}@FV2YMd$~KR_FcqP)9K&kYD-VwT5)lzX?$*a?B1(}CrVn~r#{sXn)dkd z`K3878Y@EBSIpGE=N>%A!RN7TNXOkXCm&w-Rg=H5@{C8%lUH#zdzmsiaB%W&vn zxn7^~rFhvoS&s#artiF*{^Yfwpa0(TYHp#-7mVa(ubfGC_M0QqyJPd}GanOZ`0 z=>PvU^Z&f9jG3RUqb^U_H}Sd9&#Eoy$JHIAHHF?UFm!*=E3Kq4`E{6M8k_4Ckxdg0nerZTIx$gjU`g65v*>zM0c@#?R}o;IJy4<^1+ zKky<@Klfi=z!Is~#S0o!dtMm7o_&wu^m7KGG;59}JjX4SZ9?arZf#h7GM%aG#6_1q z&jS;5j2VSuYjvWX1XFtQo>z+=6+SoB?D*D;W#>$vtgqZtSVjJ?^%v_t1Tr z#Z#icb8M2SpSPzw+0xfKwm(bd%J^2U z^U3a|`rF4hPRx7vd)CB1AIpDiUC_SA&Uv4ttyjQ>QqS479@Z+)u5KudKJle0=Ea1? zTz!|#maeJ1-+nZ^cA-b~ONPQ*W=swY8vV7s`{w7W>n=YVls9=2S3Udd1^%0gw&-wg zI(FyYRhh}hmTztTHM{iK@AK8OlYJkoE6Ek+uX$j5=*tR5`(=NPHq2aURrh=f|GJOM zD|($5TP2)dne?zb|GI6r=wmu~x4 z?f*{m%XjmQ#LMrTEqb)I>VALGB*$qhUU%N#`RDSy8=4!#?7nj!zmsHp_@l$;f*4yb z&PRvWo$p#HnY!j#h34kF0l9qtw%&Zj`E6?%%ZuxVb=haQ|D4w?Ikmz(D@&U1Qy)*b6EDOqzNf35G=%IKThLejq* zPVuh&H*@{t$NK*cF`I(6!?c5LN#6eWxc%q96+ibdFL1rUkkO}d^SO+qP2R<=(i3FQ zlsx&xv+9LKw1?>0KvT2rXMY^JonHSe`BP1gUiP=$=ia>A^R>$V^!r=SvvgPR+28;B zK1}uhro-#qwEBXc2FO`@{xA4tb@yf@PfxP!Zrj&ki=z$y?UQdx$Pw>Xy!>h2+sSO| z3F-&TPPe=Yo*Olx&vmns2uLWn!e*Lts@>>o=NMPE=BfH-+nEM^Sf5z|mp`tgT`HUey^YZS`1-tgB+D!r~-P>^xSp=djUduh^P3MrRDyTq<%=_!+dlpo{P7)D)RZ>tEkAs^m7Z zzxz-`{>|M~Zc;XHS~=W1r(Kf_p;@M5+1>Tf4?s`Wx2<;U5dZ9J=y&1n00$JweJrP3MkpIsU>`!>JJ zZRni*OsZGq0mJ2s_Ek@We)hbNo!D}boz39sPWj;Dv%-uT&Xy|A_e@y$HI~7~mRVv> zxa0&of1fgR?e|F?Gyb%wsWIc~v=1}=zD1q*e`VE@$_v*PuPsc``n~D!vx{er z2hMx8PfK`p&6z#N{;xQG>Wk%sg#Opve+^$$HjBKLFP*D8Nmx;P-k*KU?h{WxvHT?2 zU~_BPH{K}T9_N1F0B;pFqZe=9|NneM`TtI_j>lVFz-lV3J_1lm73rprJ z2lqPk?b*CuiAg{z_*RO+-p08_i^{BaNcZ~1zkX3^1DdrfJ-_UJ<&P-SxwD^UTsXAj z?EjT1EGY`MFPnT9T*zMQ6}&9Mf4_F_pLc;Z4s1%rx7}7UJ<7AZ7G55qdph&cd!AdF zk&AxpDgIZMuxk3AJ!)~+IxL?1+44-OT=i4Ea>r99`H)MkSD3aOb(+jGd#jFbwX&tG zWL|L5uGc|lV!!PR`I@~||HdsH=1F&CP5GKW`#nvJ^;)lI@0+Y+svqk5_13iFo5ipG zh)u2Y{q*R-8{G#5)2#bn@XUN%IComm{%vjdj2UJn-sk#P+;g;qRd?yyduwHW{a9B! zEA@2$i95ZO_D(@RvrqjAv;B8maMz_ROdYS2&VAlC!T9C5e3piI#(mzuz6M;nTXlka zeQNKUqLYUAFHJsoTW9*tH@`wyKa_nb@3=3Mf6n;gw!Yf?1{b|Dcg9C8TK#ES&5f^1 zB2N^bv8lfE*xmj|aK-J{`+AmtnX)hTrTP9}e1Gox*R$;Zeo8tyu>Jv0`^1#^?)jG! z^!g`ACA6Qp(gj-!z_I=et3*^)o5F(&OQckFx=lYu*7NttE5Ew6S8n=L#+HwFl^@7$ ziqZZM?5JEX9$fZA@zp}pmtjxSzAQet_~@#`=T9qf+;~)7D${A^Hs_?|a@KWULi@J7 zV)O|WuhluB*ge79w_Iz}d(o{HeIK42x;+2#q=0k5%cttE%2!CJcDuj%UfR#tzDF6x z94j8%GJKA0y7^07{EPc94fBSSyNhk_xIUP6FmpbWyzTaTp)Ug$?S6cnBgI5pU&bRa zeEY6bOtO|zP2b;5erymu^Jdn>#m}=!V_sNz{0WqP!LumX_i@GrCH9T-GgJ7SnYkIK z%-d+Q_m8DH6 zmQQ?@#U>L_Z&h$)?%kSmr&s;Dz{qOfwr<9xYPqMG$zmrX&zGF5zTVgI-h@cQiKTDhh=6&kng6xqeg6?lP@gdC$H+_Frtvvau)pSzfHl>t9jS z(Y`OUb%Eyn=SwrpPI8_8uDs^($$M$iyBye=DzD#^JGVRcQ*%^%jla8N(|Z=>1rfQ- zv$tC=mr{69HuJlE=^T0f$m62-AB!J96UDhGR&2KX?TT-E1odB;?o9f5Y5m7A{{PhV`_U$%Ld`4+c-l{c9*HrEC=TC-n|Ts}V|fKi71d68t~G>$W! z{s$5Rk1e^FE9kbDG2#u6+a1q;rH>eej~~+AuzsO?i}YUixoHcJP|E;@XDQDl0> zJw9Qd3ufoaUYX9VSzwmU-2QG}v8;>a>uK__Rt+XX0-qNf{Stsrk zPCoP0V_BYFVlUe#=jqp;F3Fm_#^c>5yAN};?Rm59=T~(s-}mM7>o>*y??hs!W-pqQ zoWR;J=YE~;|650m?gs7CUG(+G-t&vCk1u8Xur%3*S>(!Ao3~qbJkyK4c-7mw?ANjP zZ;$QSy)Ena9g+EOH>FNHc3Mx@dls*+?be#9>t(mvP1|f8vCs*H1WpsA2Ouu}yM`$DT}6oW9^|K~iRK;d`mC)k}ipdQDHQR*dG5^9;Mo z^6rfC-l^s{t3=-ZTtEBi)A^f{^(O>haFn|=+cfc>)aA9lfAmgk%OA8lb-GN7@u+f@ zV;EcGG3`C+#pin?zs_NZ-(Gd)dBf}Tfo*-JlSJd+YH#oIl>A*Q{`I8X=?6zV$}J8n z%AafR?J3=GzUtBH?LRlXXF2`-uc~C}>*H&A&n>d?nox88+TjTkyYFV7C_41%{n>|) zAFptHUv>I+{HCRc>UPgiZcJtUkR-_cXz8Vj|Llh*-dMx;PN*#1-Nt#=*^3pK%LQj= zavh)k_LAK#PM_sd`tqIrJp1VQFu^RnV@}?)53e8FGfg^N+5Bk1tgqj1?v`GBAimId zg5lkEnatYnb6!4J9C|xL&N<7ZMB$d{ob6ZnPMb~dufEED`MT||+ul}}HoulSRJu=T z`Dd98%)evSTm6U&50%OHvw!JV#J)Y@Ggs55z0BMzrgLt)Fa7uKsXY@%FvUKMsEX$FuLT=BD?zXWjezOaFoX-pBvB{+|2k{(kzIUpp0FdnJ5ZZ)v~t z=TTMLQwtv3ovhmY+@QbXjC8+E&`IUw$2VM`oG-W#C0oh&<@=Z3_tTeE&+DJR?s4VW z*ZwtGtM7)KW?Qjb`U0z5RouSK0Y7i&u<_tCljh^QUOo8O{PM-cr!!x)-rP6shiii&W2nOV)o;_2H5(7k{LbjWqFOa= zTf!9MulAL1jtdK^L?@oB(S36KNz-vvs|_y}B=~+zSvdEP!i8gY7GCjIzE4*69XJ!W zLxTI*WIoq|P4{+J&Pj3Eek@}3-=}5m>#jZy{9UsxQu=R1z(2-Gq1Pr}%S(KmI(zxy z#rI6~=6r9iXZmvd7|+~@M-KDnrx}{XUzzR|v76W8>1NAQ*AJXnrreZy{UTdTzuZ~P zdoQn-ReqZI>+#;@JNGa&ovwKlc=SWIqH;jVr#H?`OXaSf?#-Rf`?g>6Z#LJDx65i2 zW?%goxBI88qLfV6@oOR%iupTRvaWAR@!!n|-ZahYg|%&8K6U+Xt4-gZ z+P9%+*W%N^i`j#&P3bMKJ3nz|sn6P9_Zw5*f9HBNGjhIN@%;POX3zY>*zkX+xLtey zp3n1hc(;Ovmb$;pT)&4Kyc_TR{!eU2nz**OTr+gN(9XSZ&uxD`Uv`G_p3eBaJe ziSVdZU|6QNsq%h*PRa7{xz;Yqj9wQX{p5eK<1pijFBht0PUZ!cq_of9esS%Jhz*L- zQ?(nOSnXf>E8#xpu1_5v{c*cpvUlt1FD?DM;%eZt3*9^K8?no(*%Y{4i7B=7$m4rF zL&xWmU+$YtYWvpSw(YC%GwIl$HJv$=X=eXYollq2?+HJ?+r)RtsL-rn!R6m=f3+4I z`uTd!nS}M97oQV)b3A9}u0Ory|7Ba_`lP2HTy3duBwxOoIsU1~w~6nbug%xf<=a!e z>Y|vTT9ArknL~)c1U`*|=S8Rat}txh_3FXIn6I`va*YBe=fZw}Oj#5DUh`Cu`|~q1 zW$GsX*NxWO`B&y?iI~~jTWvBO?^>c|!p+{@wbe=wzPGdfOu1>RbLO*k|Fd1E%>ABs zb%)=R(&_52)K3O@Z+&s|>aM4&!re7q-CKLY`qZDR>o%UTnpZBiv;Wqra?ihs`)}pw zo6mVs&R_L|=XCIsl05xzWj*zMg{?6a&nj5|AN^e~1zO*v|Lc+F-ff`Krmz10g!VoD zdB4YU%3q$4n=>~>$jmGK?CyRq=iy_n3B8Z4Zpp4L-@k)fu@vf{*8*iJ4mv9_;oHjA;Me9`W1Ilx* zZr)UQ_JCo^0aeR&8`bLf&)zS5QF(P%i_b3k)a?vsnNH+Xu1or)Vbwq7V~6Q9$K!jN zt>#3>)Mp*;&W(9ddG3?OCD9f^i-W&B=ilzp{xOMB@Y?CRFUqT>tr8Oa+@JN%=X)UN z<$j}hmh;T{@6C#LZ*f~@+3{rCA4iv*Ny=SnYUv!M`Jh z_fC4&201*g*`wVke)aXXGY{l1)l9y>Q~lqh_$>>Y>phn}+wsQ3By`7SDEQpTD~C z;4jIuYWcQFi^WSP?U<^XwP5h2i zKNYNU4q4agbKRNmed)s0ORqMp7nr}S#+Ucai(A}<%e396cjW2qJ+j?azD97GxSf{! z-vIxn`?}TNYUfolF6J&=yYS(b_c@m{t4|umc5Di}d`0;E&q?c?Z3CuPo|?`$F=jHu zys%|Ey~O9QWKi4xcG2-wds4S z>Mkig{@BLOO{SGOYS+6xrxLCv-Ve8onEZOC75fJMJ303l-|wEbq2v|Yx6Iy>wWaqj zt>68c_mc1HP3HZwQy(t4uls8Cz6&;CUpJLRXkCnNyXe2?m z*SF`f?REVHd65B&EyOPET~nL4cp`nX}$Vsm|q@OC-V z^9(f{2AcMjN6G|Z-mc_}WSPll`La}JxqEBxW6R@7wNpwR;{>XY@J(P;yLe{t>^SY{#jiH^1s=cgRljz|&t(&zP3y4kv03|V*}v(m;m7|!3Eg@8PSa_@U6XgI%BRi@ zx34>{`{Ebh!BzEtf3d3To%mIA-|b@D>6?-7?o4@rdK=bea>2|*!oqxE44f6{o*XN+`})fD>-RofxAygEVZGTNyB@Wa=qYcz5W1XMyToYopYG5r4Uaa= zQy2FMIDT+Phlh!~new|B_sh!Dl+JQKnVCHMXXH6c#vO*~3XLUJhxohasogzu`e*tX z@y-2Ki)?N5wlK}DW07aHJtsNm`j0yOY12#mqVL;ED+DnrNc?;p_Zll)3htZa?l!zb45huwjo><+D$Zwz)LK%AWpnw(|1Nr=KUESGU`~ ziGR=9s<^-W0e*L|9C=7{huM{e87GJuO%475mm}*F&e5xrNOC&YUZLDlDgKrh9SRGdGoKlYjBJ=ZJYr3n&;&*mdK# z{+kEAy_Jhp8MfczVcE)&wCVib`kERm{&PvL1$Ul_zR>V2JHDmZx6PvL&b%cyua9u| zYTxQ{f6Y*NM=iqJHuRR&uj7j>6?d-wWt#E2y=;M1ubh$^JO)w=$M+d@9CcJx1@@0I>g0=uMv<@>h=Tno~Y?eW>^vldHdXy{pRouCm^$zVAtu z#L7PXi=j)We7$?gGm>x4@0m(3-Geq1?cDpSeA-!a@V}eUT?@uoBMWyjg)zv-XYNb-;4aUO!;-sR^NB|J?~QRuWOgn_kGg) zGuOXfBz~`5H@8IfeAQc94_{C_ey04Gv3AFV=~sH56klk(-Y=15|uNf<^7I!PVitx(TT<*R3D9NXyopJ+=B9>*W0Hr>6DH3AlGH%ThbP z&+W;&JK9q3%nVk_3!jYaeIK48&&=}g&a1NtcTAtnw!1wqSz^z; z&hDJZy!-usiqm&}XZC))n`h}&RsA>BSKt3Nt4m$J_E&UY>_v8sSHb=qC+v`$y8v9^d z9p&bEH)pO=wqSiZ`B~e(o2v7}3u}%qsFFT-`_-1z{~@y{`!C-Nf>^l0eY($OcQ`}Es_%kLgf z|JD9g^=IF&mHU@!%4pc!60Lvz*S@#@_0RLVRSz|5t1o{(Un6S&=ivN9#>fBK1Qo}= zzhd&s==6s?*T)l^4f#!VChBg~WVkf>fYx)v@0CYR>jW3y(OSZvEa} z#qW3z&lMTtTWdWw{C+v*dg0s|^IuiE7N30f^dyJe(;17zd{>$2%5N}O zoqM5v%W_F?akY$lMoGoq%DQu(wGU3oYJMr(pzE5-7kSfNb=TXM-yF|u_f42)uPuH1 zYfFmp_rQhnT^pkAv344Nx=^=2>23GCU-8>wujw26pZ<1v>D+I2o*(;6Om{Eq_3!w2 zpd-+&$FS+bamGyRf@2aYe|KI#vYJJX*;DWMvJE`P40jn`;|?=R^*B(#81mfsO7)gR zPP6#lXELU%d)MDOFpY7K&gLnVH=XSKH{O4Li*v>s@38QDccc|$e=SSh7r0z=mci+* z6^^qvw$6K)#(8OP_p}BE=)UWQSp?5W2OC@)&|yRTbJ#c{ZixmC%c^9mCT_|M-Ij~UGvS-uDr{& zcemY*?0@Zb!MkL?$n3A>vC!rFXw4g1{?u^iw{qw1kB+Ymw;n&w#r(nc{g2c?()oXE z=3NS|S{uy%Vdwh2vi0vb%O9Km?mh#_9sS>yLSuqWf1>Ru1`m$fm%wd(}^8Ok%SOm@nAb<2t=iG}O^MA8yYN$+0XVIFw6TIZ%?q+PJ=NHF!nG zgV|fd%HREpm=?G0qM@YCnTz-LMIO3+UwKx{`yZFprlj|2*Zp9&@2!8Xx#@ksPt|{E z`~LqgWdEDUyRx5+^wF(N+udYTuF&83@t)yR%iTG$Q>~TtW}WzmGe=lhzQ z7BNZ85pGzyczJQudktk)woADcF8!AnbN?Jzv-_;o9}UOliQ*?kwgoeWGBEkSu5B#Q zeP`*g;QNz{m202Z%#%D`XEybwVD-H9%S@C`t-o+R?Pv4-&n?>LDrE~>p0cJha2)oW zSGmeVzIfN-;}a)zn%920*%6YJ>D;|LXVJO{^=|WrN6e)-e6G}eTH$~FzIxP_xe2_E za~?#$lxDY>aK211wF>c-EKTAYEYB#J;Iz7>jJ=-Jr#fq5~ zTu$3k1b*&4yXoqdX$3c51TQOjvv&no_1%WUQcF+tvU5tzD=Fkjw_T@v?e6Y19(Q=A z^%fo7opmu}XXn;XCTrvAoBHyYHgM~g|C(C1^g6%KPvd~=i+^QB>t8#6XNSYSB|AI6 zd^hwvf6s}}`TH#2^IKIuN9vqh?AI^xq4?;_Q{9&fHrwPKVvuT)jJUAn!L!_beHx06 zY!{4{t6geYp?ZIHWqEGM?{b z>1yNouPWL|RdnBrZ<+@#yuR`FrTxVI^tGq`Zfrhvx#`}T4$re(T^3LOlplHj_1?VS zTkWT-R(!S6U9G)&XKdak8!CPg1gjufZxz&qJZG(7@&b^w4smT38QT(aL z1c=%bhEuQMv_@rd(^DGnQ zO4CJbshyM5OL`mZN}>$L+uI$KFCb2nc9 zGNSC~`!~iXf+Ce&P3vsD^nQrWIa4(ERcndK@r|dMO1E8(J>Jsay2`qI|8(xz}UGJ)Ren`Ln+y28i|5tj2SN)bt z^*_G-m)76+v7E6W*tvV3{KQD*_`63AKKbk*#eDae>uEEN)Tc(JwOtdsp5H1t_3EBQ zT9H+@y6x`rBS&Rq`|76u-g9kr@)hN(WBIqYgfi^e-2cfJlGuJU;0QwF!*h9qmNGmQ5`?Jh9Y zq)fR|_2lWP^rmUsl~Pj<_rL$XIp*AQ>)8tqKH03z)W2u-f+psMErA?tKkl$u7$og7 zVl=y!znRB%#m!$w8@$-nBqu&;nAoh%cdl~(NoUs0+D7kx{GCy3_tHlwD06DVH~S=C-fK7*SjT;! zz2@PJn;XJ#0Djccyk7)|JWyG-ZOvAa*#uDrKcXVaN4ey4Z-R9G86>%RS^ z)IRqGzH;dX@(y?E*MQDSNsgQqt8Vvp_sv(=KTUF3Cs?-jRN>VdO8SfDgcY4uoTGX2 zOXZPcvy|g+bBFh>SjiX9e&@=uH(dpFZ|b=vUVppkeOJos-HdO4=Vo_TJt^OQ(xXIt zM{>RUcdy5@WI9gd?Pc`7FmthnO5h64usM%I*-!kKT{5xmk_rRMx0WX>g5J!ZwAUx_ z?CYn`IgC#_vbtU?x|W(-Ch$vGXZ!T$#dgz9R=>&bTkz+6X7K^v5Ubj~G2eGJl&DQ= zt~p?_t~jstb*#LaYazB1t+HuC@`nMmSe_y$D z_tt8L1KZV3PC4`SM}>X*?A3NVd}n{YD|~#yZu^>=N}Z<56D`$Wp30lD%d$Cec6N#R zW66k3(}Oeb&u;u(w!U(ePGJ61jg!$E^p01`Ue4OMZ~Z5uO+6bwZA-6{|9_VKKVw|o z&6atvwE*>dikj~&|1#y@hfC{gf8PBeZ~yo2k5hj)GaPgB>sHm}Tc1_vH)iMFf}T`m8=yuplMeeeP3_@O!D} zE3;MDC+?|Re}20{$?vls%cO4KX|7-0>#eX^+{&iu?C+Ehn(jHDBL9EcW%&DN*P5rR z79ZAa$yr+UWJ21H8xQS@=L>jnYTP=id+p$5=5n@x{!fWtPbOWOqvTtw67|yM%zN3z ze`1@JEQKxP)~OlFFh7dkb}r`GDpBuWvH#wi_c5O0Vm!6_q@-8e{V6`N`U-R5~d+vQrPM`~?3B$7+LHEyDy{TAuL-cO$nld+y z8HdkjoRQ{_vItl``SBdT0Q**JnYy)o&6?V|ak+W994223g{{xbt~hCP(lhz{ol2#X zPd=CYN#PE1*H7I!r7uFZwBgw1=0A7$dFET5t$dwYx`^>c&NBy1ZFiNGCQq09J&Ray z#xOp%w7S}6z5A=cXIJx1R_g9P8ZY;M#?Q*0QoA>y-~ax|s-O1jS?~1eAC=|*oLpZ1 z?XRFOXop>V?T7lq(edAZYgSq0OpthgQ?9_$Vxh0xpSRj=+2`j;GBq5o?7eV(i!#HR z6YJWt&;R=OX5oZsI}BiTLY(1#Vd+oA$5&*Z=2J0o>V<=cB^ z@d6w6+%k$-mZx%;`(d+HmhmFrHvdU)sQ`%P;<-zhzHG;z-x2BQK4@0>@hjCR{5 z|C&)O_59xkRW1piZhd*4C#aiQ-XWlMLrO&dg_+fK=uYB$62C3gI z6Laz&3x||0IDY%wrA@hu%RY-T*{EIq{BdvHmh@K_XUs5}d{5Q%$j0gFeBD`Z9Lrty zDczp&B$WLSpX%9z`YYb$J-!hid+=V$lw2EO>5rSv9`(4E#l2|dyygY=zgKj}@BFzs zr((*p1%Y3GsaeE5PG7U|(hjN0_s;@9$GqlVvGpulTK%fJweqz!Ew+1aPWUtfbT8GP zjJ*@DWZrZ+nYPP*@Gml z`=CL8w#WX}w``Y8igq{meCIs#_P!6VxbwpnEY&rAQdNGwboaB|dtW12!$bAo|2|Pr z8l%`A9b9X6_Qv;n>QmP8TwJrVXY;mhpS!;6cr$ok*49Z}Klb(w7t4(-^YWb;cD?

    -^v9 z-&^h+%Km%oro-!W$;FqS7R;J2{49C%(k)H>(R$joO}1A#?nntPmyzBPApUc~hFhC< zt1NyH_S5{l+2-Ep^bNAdvrCk}O`Lnv<7mwD=v(Iwcx+$J8OtBax zcbCWC>#5#3-Tuud>G-<%KjriPa(`U<`Dln$=9&=q>mdp*ALZtkR2}qXH{RtoC*-JJ z6Q5m7dW-Yva=C^4rOys37PI&r3J(uk(yYk3XxPk{)BEsQ)y75cwJ-l|Tf4}$D!(*A|KLqV7{QTGS{XTcQ>d=}z=5xk{R-)E7`D2zI zmAEM{(|Ydi`8U4DizMRuk67N9wOFwGNM>N$4!aCa&3Q_S$+i#rt@k~WvUp+k%=mqv z`@@&fUak|OUnpEJS#B~*NN;KU0d|SdRY!|=740zFeYTdRS6*vl<2L=Z$5sE_oir!= zi|McS&sOF4&T1y~Ft9PWFde$c=FH8rcIxpJjAgwa7Ax{S-gNnA?VYvitET$DoE7Tq z-?wyo#^=4R1tO~sp1$F_q)4e zMZ|^jpDP==46N%92Yd40U4QYRAJ6W|d)51I_1?YScAi(sn&g28X4*m%vWJ^tNb$}XCcY!>vLcT4Xi_TEnl%$a=G^?gmA z`0cu#YSU0GqDax997D#%Z| zZ}VXy-@TjfJo+QPJv*ZORO-}$cM%RpCM`tyQS%bZ%*MBbmyA+b8yCN+Ga>zaie zk--O<*S%oBpz`+iLw2h``DM!TAB6Z1Wi$DGou~Phar5INsgY+|^; zr`d2_@9$l2ix(@*43jAP5VqrHxATJ9Fyk4!Rg<}I2LH`WjIW*?lKSB8zUyIIS&u5b zPwa7i`yzVcr)x6rA6~fs?o8>M6{n6{7p!r)_jog3upoa^R`6cCy6;cF=at-jx3jqC z`&OH`TGmhH&ZuTEubTV4;g*m6iJf1!Y3VuddmUjZ-Vs)`E7G;L??mFQRp(!wIb40x zq}}a(OS#+EmtE>_Z0niXzVL01o&Die%n!-hzUx2Ft#w-GIP2=?DY~mBueb8$d~N+w zJ5+b)v5mzn%VQ4CD!5bd=9X2GeVEss<=^g{HGZ)2tIezMqh{BbV$P{oe|hvJn{j!9 zt%$=P>-T$GS1&*HE}-SownrCV_I(I_{`7#u>D7G))wVLe?!6S%^ZjSwt4!TT!uLOT ze@wsseP+4IzUrOR*Dv`apI@W$@3jB_t3UR>?p}CIvEYa?U*U&dCf03MuUGi^s;Zuw z8P#iT`6}jZr2VmlehdekOxdlKWz{`yR^C{Z&D4L`o$rlJ|2gL^f&I2?kMk()INa>~ z&SGWJ->I7~{os3S_Dpf=nm4EGf1mS@kZYP4Jj84CB7ZSTWyqD;NE{&a= z;laAfZ;SW4dv`a;JH`~uVRr7g)7{d2akl$H_cMP_wO7v1^xnPncXm*5>68iAvbY@1 zEM8W;^po7v>6eY)F>ya{d1$a>N}jBH&AO+XXQ*2Qul|x})HJW*eUFN&Y|yQ5d!$QP zzH?artUaT_-V=4XLak@6aWWh8o0T0&98&yO7%r*aoxD!6)|{`0`{kcW!RI`9-IzmX zeC*fUB%!*<#zomS;EKkaOSep}g&kMz>6G|t>7ROe$CF#fC3Sf%8~U&KN=el6&Z~Lb zBNXs<<)d9$hEf-s_Dxy;WOXa^MUz)&g4XHhvMugi{dj8W4gHFCuluW$ZF;8n`fm$; zYWVi_^_r9=vcJN9g{v=k#&J{j;u%wc*m-Zg@9#SHMJi#{4~N-?A3r^My7q_k`v3YL zm*4xnvo-ksY5BdM&hLG1{BeE#2XW;^m-thcD_2=v^?Rs4wM;o^tK9e7OHQ*fzxh#f zz_I(@o1g548{(|58~<`@bd-L5bJ6*H+K(+B(hCD^cQ8kMtMtT%+||p=iTaIsRToN1Gj*B@50ydSIi(?O=EP#g|Z-N0tv(vi{tA?zG>&)kc=j zMBazWunWZG1xqo+YRRscELL+td9Cut#jkmds@)>Fcpt`1^`4(x`HXMB)~Z!mFDELz zHm=?(zpTk_e}7nJob5Bwd3QroHP^VBbB9zE?v+|UbKlxSyYq{$D4MjmgzD#~m#_WC zcq8l7>5eRocE`CB)vXr2YS<&nc!lNFKbP8j#mTjISNvGt{wUSu`^)zoR?2;?`|bqt ztX6hPT(d~&_>SdXrL!{MTfGVud4Jj?>}ap;Zfl3=hsFZ-S^Kv~%)RV*)_MA@)GwMJLb#_lMB&2mVQmK;rF*WGTqDeTe+1+yiHW%;S1ND*TAE8#^Xh0 zTd3@%H;sQ5$%RPdUeGyYmS?GXpYPhVw+nN74btv+JPCRJXve)L@w%nQETXe6JvQBY z$gPSe-SYPT6W;qp>t7z8zsqnLsG#zDDfn^c{of9Mw$J~WvZvJUN$HAr9;<~O@~z#d z?;G%W=s1E)$C%`OdJ=eJ?n`E@Zf__X`t zuWvoZWPCR&{#Vb3sc}mar~WYUy<__Od&h}eo8B=z`BKow`|h_vwd8wi6&?K(jFV<% zg<6K%wtA^Q$#_4@X3M+#?@k5RB-d1kt+WMxNrZ_j@4`y2cmlC+E}|4bMmaeRe$J8vJ`Jk zc;2P^pZ*CO<`}+}%JiNa*I@new&k%I=Z!Bl2g)Q}oBD0b-Dz%`fBc$#XHWX`My&6J z$r=~!m$M(N3ELIb-}=b>*?#Vv2Ilhz4_w|9E9Yu$mV2#q=Vg_Rb$8}GfBityefF}A zYcGXqpP%#8ZqbjDeka?v%(>Yt3d$3&evoN=;jres)Jk8zRkP-vRabm zIV6_{ByPE=JZt@0J&Ud1pP0VmuKjdB?AMjbpvA^YnO6cQ?#QtzXezw?;p{d6UiRfd zQb)U;{T^O%R;h9Jy8md^)Jmpxf{iz;54uMG4qyKCz~fB6YfnBW9f-e_xcqUsoCM3= zb9Q=#({{G%9oq7K0UND^{gCRfrf`+a4Z|lKfv9;O^;hyKG-SzP7n{`-5Bh7N&Q$OZe?I=Jj3YB->dYXJ0(|rC@50k{M^s?~>Y6 zPIF6t%)QHT&G1@f@QrU4tHNvlWy;C6zS?n2@a?THrNQRw?N&y9)N;Car|5y&uBR)$ zmNv|LZPoWF_O;`#=j!(^x1YbZ;NE4Mr}D_Is9#iu95um2_-fI6+H&bDZe1Hu?Dx<@NVf zr&jK+++q8E?+1tX8`V57@9e*@;-XdCF5@-H>+=pBa*kTq`t$eF_TxVq`~Q{fsoA-I z`}??m1*g~V`Iz;`eE+w*AD@0!6kTl`{?KOOj4bA|zJQJ_KkT~%BY=~u+pybO?|9$TsEjBc>l2^=k{kC#< zpzqGm^50o|)b8y1U)tFIcV(ljTiOAZ#kRpF-x@BhpCqfSV;d)DA@|qVsK2In!@-*y zf)AYQSTZlvOZxMFjglo>7EclqdElMY%9rRRkTE@1`|hg4kA$?iyAB^oIAD85HYMwu zbJQgbvvVojmwFC`2L~LqT=1o*ti(KI*Yy+DrY)^^j?09*bIO|TDVz5ELwVY7-vYyV zdrf+S5>GBJ&*bPd(P3&@J?BXOf`z>A(*l{Zx*vGHa+7N*pT8n8U&8PO#}$zbL4$Mi z(po&6gBKs<3v4q?Tz+xW?1Kk+7g;yU`yXvi`zouw##J|eOX;omt6h}}YP_S?y{K#2 zYrX$*&7wMvdArvxef8y9m4=0dfl|HXR^NRN?S{Wji>zmIR^czU^~*zsV42PC z+dF>lyncQI+l~2N?X$`zzwUg!ZCz>n@p;>w9tLYIC_7Od!GHhvE&n6-pYQ$Ge)qI; z>U6#Qqu*;j`yW4jJlbvNOjky&gL{gP6kKyP_>{Z#PS2)dFZKA>m(sWkg?2o3S-kOq z56gb%DGRLD>b?BKQEYJNLbax!o=Eqe+57b`YsgRbU%8mSq@LyH8u!-qecHLvb9Gjn zZWe#BS@&xcLt$>F{-K|{mswu>zTwl}6?>)`JejAqXWd8rB)LCAhpjHz=}qjpAzYQB z!Z(+rHqiLIWxQ?FGG~?6-rDyaq3r%YIsJCLOt`3Fu>QPlRrrGik|oDt-)#K-`-;%J z1KE#rlR7$E)}m{coosb?^qN;YN@ewbhb^~ZkYs+{B3Q0Fw;^NxU;p-if^*6m z@((v$vsiH4OipU2T#4IM^ALU3S}ot~DGS$4UHjN`?w+|d3aRA>H7~EhEzB|NJiSWn5WUblbRR*(G?4o}q&X|LOAv%Kz#=1z_J zi_BbH+v}M8rX(*@JIc6cm)#tt`Qeq<`0ULeWNmTMpD$JTGn_tDM8Ee0n-47LPOLp_syQOzGyM+7dKkb;@ooyXcvP$krAHB)GvDe~+fW@m7 zfy@@mJI|i~xo(w6)!H555{VAw?82{j{>UDx_%Qcay{z>Mg+mV)o!WX%{%Y)oHS=nj z_jO5sdGYzmDf80Z1tGKIHcnk`X}n~vm$;Su9CNK^#l3G`beHlUHJ@9vYhKBg>WK2< z^Rq7YMJ(~MxmaD|`#y5POTof#*@sG|Y+Sxk<@!XmuZeU2-m1##y}EVT2H9=fUdO!W zPEUQCZtiT&_u|KMnaZ_lrWr!cvt#F_$<8nTws5|G|Je}D%;v!3a-P?xoxgSZmz|Rh zcinQex7%;ux!*VckylshLyPAz>tE)T%I;e1SgmsY(p0I)+vz*nWs`e3mVEj%FT7sQ z?$@V$JHuxARi3vExxt#5nQkryatm1Zik`*Yu0t++oXHcM3`7TkVWIpRK(6SK{gd2WHl#Ir6(7Jyn$WDbC1uznJ~O<*vuuE=)Pp_iduol*i60OW$Yw znIFC?<-z_=PB($xMVWUUE?5bobn4YJOiu>Mt$VdbHWj@A>;i-R!6xEBu5_areb#VPxpX)C-Ogi5%O~Q7$?T6iN($_e6k81GP z|LRlgX5l!IZ1~akfpXp5lj)zYRL+w5!IJL0JL^Ue?-tKk(**}S9_`uwDe}=muRZT( z6*23)5Xvp&&wRLY_Ubn0d3}p6p8IiyWuJKD#*VlWch$LNCQQF(t=_ZOtM}Kt8@uc$ zy|>^m?<~8r_ts@T^5s<#zb|Yzy_cLG9{=y`k0-0`)Bk)+lyZ^0 zdbCK?=wdCy`9oHlCWn{V{Jd4TBI(b%nu8{_y4|76YihDdk#f>I=sf%42LqFVY)@z9`1!{4)t6g$G$~hoD!;k< zoZYvuPZuV-P4hdkH;2ES<<|8e{;3USQ68&O3qvxdOtp&Fn$ODj(BVwRnmO<7Zd(W+ z+idQ6Uhj9x_nk~-T6*%{BB8DBsXzbb^fg^qe_<_iUTNyK4<^$zR(Tp&<-XJ7-NVMN zt^8iu%C~S~w#V_Q=az0eSIjc^a%F)2{oOGSX5L>V>?0d}>iPqg>&~t|$?pXxyfpC7 znwQHVyVc0s^4)^w(BB(Qghob}`ZUBETQ%rsL;w0iFIp7~q*&$z>K^WL((X8#o? zekbAX(lu9hEva6r$HHD@byfQI9uwaRFPqT00_7#^Jj;);{y1^3=&Yqwz0&9D|FV}n zDAqoI>!JI$1<(C7Z|zQIR@#wwW!KB%&ec{X5{E@hK6&msaOLE3CmUJUD)GM=flaHj z7^`33R64Ui_Sk)|*P$%Y;wR#4mwP=t_IP>co>dul-PWIyD%dhWD)FjEtM%=ijqAF!Qm+`V z%qcB3(cF`LJ9fb*N$2``lZu{O92a|>^)c_C^wN9xl+&)rsa!esN9gHFv!L2j?-yST zTylu3F4=7rbK3f*?3=DHe*St?9xGkjUEO+6*6G%{byt3Vj=WJ{^pruU^d7TYtanM@ zPpMm$Uw$20oV{|{;ZyfDpIr-Gt-MksEL`lEwUO)dT)*C>F0Itn?K&K z|F-+l>F3;)XUmhr6 zM!ycc9G3KFFA^Xk z;7;*n2N&nKJ>8}?%kT8#t~spRt}NGkTKsHknrV~A;>WARgie27rTTN-k*QBwiw`_s zB^R>Q=t@LzxbKdmJ6a$2>^0A9{_)`s$7jjTbqfM#M3^S$e0XBWbN{ernP0MuckhD5 zWhcJRO4;Jk?~^*^*sTN=d7i~DRd}p^2px-DEStEZg!y6n&HPhL~CO6TbxO4Rz7 zaE3X*?en}$BTn^7&g!SddWP3bPnWk=rRc6}e7?#5n&Xun-~4BMiIBLwR_p)aHD5bV z*S}wEFM9vmsppU5=9T{xzxRLj$BEPHjWge8**smgY;T4^N!*4xn>Q`nzUGtfwwqNi zc7NI7@Adn^(Ytd!Pss<0@40vHuG;xXX(s-jhtoa(O$#?Xn?dOW{x%)T1fRHy&8$Kb}b41Wt#q5Qe~cgHy2|9xee#S_DK znO-Nn=ZGbim~592(3jDE(3?>IVDFLq)4#7CEX;gf@Wv^u^XjTYCQohWPTr-zTzSdi z%+e)ynynh1OSQXXd<>R#cL+JuTlv1^fz0d|r+V&87F@vZaxV7wL_h0XX8#H?(MPPA zKTGd)u|KeVo+QlL^KGVJ+xaDDMD=!OS+u8hJGRXHR)0FMW%X6dlZ8&_zBz}j?m6y(Qxi}mDoZeEe^zJHa~_OAQOPbx7*i%c@w8TkL(3y~-- zGl`3lS#4Wll}+czrOYvI?S6k|5pzH_lginI&mXhTXQdsE?@c>gJNKs8)kddTjJsDS zug%gaSZr%!x_OTBTkrSl1?#Mu_Bm|fkX&f-i8m{^;XzIrY%RchADK5Yhu<;0`RSvx z;r#ngZm*XG)_uNP`)l?Mmej2csck=keVkt0as9%`_2By5BLB-db5+-#e=f7?askiA zq~{*dzhA!paO=l9cKKNcO@kg+@t>>g3ovH+`D#blcJZSZ`_x10a#sadoGa1YW~6j! z|Dk}nzh+(9-go=?;-c{9{kwyLtFCo8_WE2=VZZwEbwG%@>dV{K^^dkcTi4mazwdSV zWBdO<`j0v9&O2VH|NYZdjs0J&@5}uEy8h49AD6x!Ww>kns;kR`Wy;RtPvYhttC^d2 zud;sgV#UK#iw>4Ooxke9Lb+3~cog3|-OW+cvRtWr>krNu`V-v zKir$d5b$1Vwaabgj6FVget!N@d(7+dE%sBXm+kM1n*J7J*6mT?FPimJV1|RUrfNy4 z)LKDBEyD+QT{Fzp^!z-lIUfrr1h&s`EAHWF*@f;|OO(&b&4GUgi&WC+^wo`F>ti_nuvsZo%E7P7QUzyIhNrTHiF`H!jX`bYWe{v3bgzwi71p6befPZ!2MX1Dvd_~TdoeTErl zWz6IBw7WYy9Oc7hmT^eA7yG};;SVgjRoA`ar{7L4f8YI_c5&Y)bG#Fex>R`eMa$vl z3qxd6Q`ZW9|ckNtgDrO!(+!e*{h1R?oFvX%X$4tLSW%P$8|QW zMbfKJq-XyV()VM3*KsUH^UaFp98vc|g(RP6(QDYqubYQ2@E z%%R#(Qs-vMxhdo+fBE3%E#nwU-LR9_G$g5Bv7+&8?45*na7Sm-Q@Re?FyWO%Q+f_apW%R;@a7_2b5G zJHms)-Cx|^{&b?3?rZC{uRd#c){-gt{CD}TUwu;Z zWO>IcK_~ME%A)h_xOSa-_3D-Iv%Q}~oVdEV|_^q|4BwB!25 zdwZ_Ua{2BnrF(Aw{vQwhkM7pb&x_hUz53^?Dd+27{{84Y|EJ5IQoA!#ZCk&ce7?ZO zp|kse)=oCj1A*5}=GjEP=n^^~>G#y+=Yd;nw*r?69gEHHFFm<3gwZMXL-h0sQ`i-+ zF4vr5SysB@!{7XlE^F`E=T1sQcKlw!Y*9G3GtBMc_p2{2n}jGdJvEWI>QjH_cbDsO{eMNRUh{9| z*(nMNSqj%4x_0Hk^NTDM+x9hc)xNMU*(H%TBk$tz!;|+OOjq$*f4oGX>tkbqPqO3l z-ThY%%q%FCns{zz5pSQlOI^>g%$Vkdxe~1lcQ-t9IS#$7f`)R+1`?>c24Rlvs}uf$T?f1#{K|M09} zcHPQD@%3-zk8IytRG)tTdQj!hPiZyJ+wDwWEVkHn%&~QbpQ_Y)=Xc7BawYb7hIgDg zUG=c9?~d@L4_dz+A5Oli_+(=8y0wkh4`nV2ytHy6xBpp=J(d2ITP-`iQtlKS^R)|9 za_m@eZi(~3+T0H>Eq1pF0$%@`@@UOUXr!f`HLO2 z@9{je7@qTOEwN+2|e2i5tYsjBp z8TxR_*6e<(s=Z;y7k**?Q+?h}tNc)f{?(I9S|2TXMaplRE9R_WoQR zH-C~&Q2sYrTlW+z|DSiCryo5Vz_g?4+`3hjT_;<&NiJLwURxV_>+Z*y9anw0>x!Sm zi~o6fD|+tYiQi?`E!Uj&_I}f(+@LpUPd1CSW`0@IE_&}CqlevwxNyE>M?9;ZIA!KP z-LdFf%IaUM5|*F0YLB%md>i)VVV>^C&9}>s&3{q*=@7uE7 zYTwF(|E1&qzx+}B{`b`#)2n|T*4qEWTE6%HtLgvWR&2I!dG!-+6&3X8l%QHastnTgNokGPdRb37xQ{UH>q`Y3|KI>W;d+ddmymMj}MbF)3 zyp6*+=cUx5gC+6iN|!!__ZqL*ZT`sASSF*k`^}8<8MA^jqGgH>FDPH~(U_?%#r(%X zh3YdN!b^BlXRWsSX8F4IT%|nQ{^H7VzMea}zu9#8lwCicIPxNsC&;;7Z9x!UC~uI- zo{bqHOCN1H_iyps8}HHrl{K zA3uKobN}PGecw*m|KAtiYyZ2^U%fXb`BF&wmqUV|`u0cWe>l3a?co)tmf4?EE4Pc> znv=W4dELam#3jc+YrcMx*j1Q+K&+CNEy61J(4wCucV8*C-I*P={a=7v^*;WDH5X;f zTr`$l-so;saHde*Z~keYt;+-7JTCq>Z%^SH>zv0*>?R@iE*VPoxBCRh_$`lN&NE)! zYH?}9^926ni+>NK`uBE72_92DI?sOp?D0I8AJskO?+VYq;M{&`@2OW43j3b1D@ZQA&-<;X zZPMSY1J8DOT5af-iP?Bz)7-|GME?{}tt=n0yWDzM=&_q!dd zH)%hg*DfFMT&p~L%iSm$J{cy*Q(v_f+jH2Je=<9M;{Gb}#J_znUZ0!tzBe+oK)~;} zYoIja?exaavNgPdjaMhG(VSHHfcd?#%-=cF!b;kAJ`b6<^RR#DV~+6Xt2Yn6K751s zv0+GssKu{8^A~ND`m>eY{Q0L_yOy?I337e$?a*g2EuMEloG*(*7v>)nJmeG`TTs5p zJtMPgf0)8W_2|lJTJ3#&*H^s|J^1ss=DU{tPC@enlXq=fus{3#YKa9VE${2zU4Fin zt0ZJ{ZQ2&O+vQvj=4`oi?XA%>k#$+}nYH^wEy8&!e0P<~KHu~H%i;Rfk6&F=KmIUG zV&>L+%J*-I3(D?)ZtL=6z3cVMp5Px-#Ikm7{dS`M)z+&AuWdiS z=G@i0TfJ6qHGgZ^WO&wZeZ>B|#}-6<)Y$l7_oZ`r@ zy4i249`9mUQ{wk--T|xiYaf>%d1v{2`2t-zGYcUu+nj@cSFD>qBl+szQ}2Jv1$?*m zEw;9L{c)jqz4gB5%J$(RyFlaCelIURx}0C5Quku>{0{T;;!dtb_ciYd7W;{xR-KTR zEaEG>DY#)(QJ8F#){}Uz`vO0H_m-Kwov9VGE4X>`gUG2R2OLd|*w$8@^1hOMM51o< zd991@T7GQxEn@x@=v^*iTlg)(_)ulFNDVLZLB&&s2@4;s_KKWdopHN<^7_mw@ds<4 z&%1K=!@7!A=82yduoZ7x=(btz$%0w4Ld(@m>y5mYtLhj`+rlKiRQAxz^cqX^1&%$x z4HFC5Wn>gjy}i0}?e0l#w^oW|yWbE{RDAoYZ-w=hwN1|_%gwg3u{`$5McAe*y2*V|A1*eni@2*?P!{>ba)4hduSt}l`59HQLmA`y3&FzNSFUKd1 z%Vr0yydQkzt4#E=^TFv03ir+Xs;snYiE3zYLTS#*M1f22F{yIj=3RG2a%GU%1NYshCV!PspVMAZu8|Ru>Cdn7VEd(X-@LwW@{c!cU1l&* zz18K_tGc6tTL0Dc+0U!KFFbkiyY*7bD@UZ*_DD&-tybiE`TptY*&qL||6fsayZZga z+W6H^Gi>dC_S%cfS6mlA_P+9N$^J?X$GL^dXE!|GbunYt*4~et_m=K=zO}%(;gj3D zc-v2ZQ+nn}`e$4bedX3)GDTCzqf+wW9v9_zR=3(7O4{(&inl+0@moi*Xx?0XG;q1<$NpchLb!U@JpRYTT<%-V`FOWm*sA2q zmnzxjwt1)QD~NkjIZG*s|4K^MnV(l&`7Ujd@SBq@v-Ir6ZYzb0;_v#+&Xw4`yti!W zBauyxPnW+e$qGE?c6{C`^&Yp+rpqQS^b56P`@&iCLT>$Eg}+K`)c?h0cz&01R*Nfq z<|=C@czETu6AzvWggsLGempI(eZpMj4d*7#ZF#)1@3fd+a=KcF!rfIh!Nr!EeIm=X zq~FS5qlR$+5A;x27cD_PJU=pJ%6v6w-^;c}HgVD`#?-9ecV z++Qs^Pl>#8JCf<5W5f10vpYFXbEA$`+(hM4+t+(SWVNT=pZJ#XTl-HvpA#*&#Evb? zmbD2_jk=I{^m4KG`8yB8uk!1@`q1Ddb#eMH-&>MO2C|ZB$DWwRs!ffxSoz8}clG@h zhkfOBo^E>>6Wh(F?tQfLyXW&|^ET#H`u095u`+O-`|tMGkSpH5*FF;oe|S($|KX2= zlXE}cmRMbBw(2RwlD9c9ngU;=aE0bk@QP3ciWkW0Z0&{(i8YpA*Uc zy|Fld>f_+&cJ=SCZS5BP{XS~9T5_>OzWa&2cV`{@%GKW&;A;DvF{X6lW~OriuG}%J zl{Wpa<2n`SNnR8xBtcV<>!9$%AfPtYW)F&Ipw>* zihNU9|I+$jSj4M1)z?Z&4@9p2{Pp_&m(3q9eZ1ED@y_YJHK|Xh->)#Od$IYxXutZs zJFbfjMHX)iJDI5v`;qnWKI6ms8;J=pg!jQ#(L~`f0d2aE4Y;kGP z2g^6BW*Axs80x>0xpH}zZ=LqMfLAiFPsUEwnfcGSY0EaRBtf6o=IcIvdH%!C!!x@h z@C|1^%i_sdzZ_c~7vFz%uK(ZEXASaJ3bW1@Pjy;f3U~-yACTTCC_T}w10o;lbq5= zrQfd<(@z*}V!d!^!^Ad27hRY0A$}6}i#|o%S%;GT*Xxw_J)K&ea{qc&<@JwYHQ&wu#kh1-2`Ijv_F6Bq`jg0q zI}?6|R!i+UKljwHI(wI*GuDPdLEB6&>{`reGqX18$Sl`G8Cwj$i)<(;-NuuCCWBq@ zokX{r4|7=9&`TEvIiH^LFNI&yN_(>sfOkJ( zS9cySWtUs~(zA44>7P^cd&30pia)XuWw-wy6aVGmnexipx9aviooW3?DU4b7tlHH% z&S5eSS52|n8g*q!-Hu|hYm0SOPmPaD{=Tv{Bt7Z;`>PL^CCA3vu3~#o-ui9jrf-F3 z-g@3toRj&h`tGNdQLTUD6K%X=A2`mxI+LkcDdtD)+{Mg#OSZk?4tsUU?Y-^8reCSg zr$3eCowPo+UDQ&jLy|9h_PW8D6a%1)Qcw^jB!&9-jlOpgtZeXzdb(x)rGZuL%` zvdz2xB*)pRdjH^G(TU-!0;DeAyLjrsB=?8KiK<~hKYIV)*7tq-aq*{K7tC_ud3DFN@Zomr zgoqfYBEG$IK5%RO;s2ahYcD-TXu8?4t?rLg^ftcu{HLz_e1T8EzSmmvr#ODa-M-FY z-kbJvqf}qH(EOsyhu4+=3{yR+Hp%4Khck(v&YMK9&LGT*vsBkeNOO{>%3x_$FUuA z+KZh$+1X_;D!zRslayE1xv?;XucY47WA@hNsn6d8TQz+QOpGYED`#qY7bZ1(kHY0n zSF5ifTpb-pcdR(Ko-ulU@*KXKJ(oUw7l=Ljqx{=pzuWxD4?_M}_wF~aTCq{`{bk7w z{g=C!CT2XiOIY_?xpulx3e%qMHv~+C=HmRKJ%J^$iN33tH!qvT^lw91dGfWt-2P4L7phNWo9v#bJMZG7sqOm5 z>i_80>+kzI_5AU@e?Dr||9WjFUjNV8UcPFDdglJ)Ju@z^SUZDVBI=?1JCy)+g>Ric zj8czI%sVGoW1c%F?$bD!sO?e4;(>$JuRKuQ2j7>=b*@FPOgk!Tf>;3BgiZc3azim$I76 z@k>r;>Sl)UUM^z^Sdj9Jkc0(slYp3hEz4{;j+Bk>{zyAGiCf zoE3Jh`?h(u{oU>5?A2vYr~J~~?#$N}_ifeOYk|vCO1~xAKX&xI`*+5!%g@sfU9;6S zPvt59wo>oZmrcoclVx5BtZ6R@D0q;y#nZi#zyA25>_m$K_gRwfH>Yh`cIfr2@RTh& z$2vX+v_BRW+&As3M8!Emk>aDlLnjXK7dH=PeSI%GU^sGQ*ONmj~j^nbv3yNAEF7irv$l5>xHx#P8Ehb&uw|$ak+R_f9bDnasD>_ViXS z=->KJ@y7aSzq!%!d+nEQxsvnmN}+qqJNFaS){2YLqbsfnw^qFMx^BC5qQ~>NZVz46 z>Nmpo$^s_wNt~aMmbfg==+)Em_*C1dD}r;woV%AFw9UKndF!>O^B;9jsOGn;zE>7I z^_{`x(zx#BZ&I`E;tfvjp1j`fs`>TruUh5Ltw?iv@Axw@cfYsqr>s(GlgGj}<_ZsP zoPS=mc4~Tcz>-yaDxR*sH~DdNf8dWDd5%Gqb)Ty@r7ha}llHkJoHIN^X1UsgR}2w~N2Y6}V#`?5sk)?@2=clPr4 zIlE8PKD3zMO7KbqPpi<=3Ds6$&Va<|RD%D8Xxi&y(D?+!jUv$i6ziuv#Lkgg@ZOS|`)L|k5;S#|pOy6hPr6i?~R z&DneQyZO|RoU% zv?;FsWGc}U!&PA)m3b@ht#`Qjk6BWGHq>kC zU)fmqKKs9d-M4x5Lf=0fU;Ssb{GX*ig!TWuTQGmytL+`<*{eoS@qSF{)v!lbE`i#%+8%v7(QX~IcJOF zb%kf@qU`cDO&`vfUELwa#F%p=)zPb;qjb%&M8AO2X9kN@KOJz7dw-U1=@XmQ^ODD| zE!KU%KIr&i!Sr{{6>Puxf?I;VeLC^g=(z5t{q1hcTl)gb1+VgcQaH;irE_`urdf|l z8W^7hi-bu)%I^~y;0{L9dg3$qsHo4Zj(POIVBle zmGjfzoBMrtz?!8~f4_@~;648MR%U5Q$l;&C(WN{)v{+4#gwE9PZ|f=A(z29q#np=r zq1#UGomX1@;cj^8G?{l=pI(*PK978OxvHxF`s~{E%eKw?V0kv6;)ByH*(nb%PB&S7 zchO-Pl`0&xTUO=~`HpF6H z(^ePwQ#SKIVzqjCJjI`}KD=FTQPi zpsQ@498CD~(;&U#L0P~d*E3%V zl;T=vHGIztw{ZHq&RYE0R4(hqGIuLPo=L2^{;}45GMBWw<8|&^0aDqD>Svk-TkX{S zUc0|sFC}p4qe1U#cb<0Xtt;~Wt`>?_-R0F?d#L*6l0&CL!e^i8E7_KA;+B5Ib_qn;5^4{s|zkd4k^z_H~HJAO5b02?P)S=u|?fzxw ztD~81zjyBUxwpbC;tI3=`-iVOKehJM2*(wy4mm6Eo~<{*WWh<^$?UTmcUZK{5WC!M z^|PW2q84A=xV*G8WXpFJF8*s@CPkSz3BJ@UwYO1U?%^JNlR3+Co|2$J zO}Jue*4_Lskss#h)f)XxnXUPuYT36k%Z7>RH~1B|yUO?7T77}7>r>f*u(=5h?7z1x za|@k0`|V}N$nTAlhYBZtk<<-d6!x4cHT+PKn8oC0X=aV?mErlh z>syz{gh-srcy=I=UH;XJnBe?Jc75;pdw1Kc3!Ih^D0RSYO<;ZL`B=>buWF2@`LXXf z)b~cV;@nr4a*wQ%MQ`W#Zg?dTwtT_<#p|qkU;jzqeOfgs!{N^QbH__szE1ngD`mTO zzLlP>%u?6HE6n{8=U?QX+M;w;lTW+$?X7b5m%ntLTx?nTX~6=&Y@?Ldhr9#s++6;e z`E?Y((gL}~yUqPBy({`ytatv-Lw42{EuAa-3)^r0{`rm3U-6}%lD+K{zV(6rH}g~O zYU#W=qJCFy)hdB7|Eoebr!ASgeA>*(_Q&s-f7g(@C{e4oIB>=F!d*cg$EB{wobhCt zo@N^SGu=OCxA0P{#8nUf34}3CJNcz~b)si|>)%U9c|Us{oqFi?;!a=fUw76`&%1uz z-<-8%_q(lyxzk^Cm(H!*;mExEZq@69Gjq${uH2Y)WU{qW#=o5}C0@0%6<(>d{Aczs z&;8%m4hyL(`N#S*eWcF4NQ%9vx+J-7x0B48bMsG4zhHdj$Evp1nbV@9y`O4x9ro&f z)4uw8rpTdZiMkWdJ$&+1=3dbb>nWjERvWxFZS7e0rK@?dL!DYrL(2ZDLcR+dH!a?K zYH{|;n&PF=wbfmp4A!)!m2TjE^L*ChAl9(n!rFDLKb^VGbA8W|9%|H*z#t2gLsQ&}u@woiBk%cQQeo0dw zm3brTW6ZLr`L?2D$@G72M>u8b^$sTNlRU~XqxxX>Qi(@#s&*H8w6-Y+lfm zugfo{zj|<>^6u0kO-7@tDKYc!>^f~8I(_Tet#h?@DzeHyKlnL+j-yoOMc+dKClyZp zn6+hXALsJdTFZNWd%R~;f25gfo71x=?Zf140*V!a%!R$r4qHq&iNAYY=fTU4qK1Q_ zwFd)&ZXMh0^rhA#cN;VF!C7fNnKv((DYL27dSn@XS~spC6VsnoTs6JK7v)c2Fchs}Af*LiK6m)thvj%RmP!ID5fOS|53J;mnz zzsje+ySie_AGQW z{Hn_D{$%%zB`XgeKe0Xfb)jfo+;>^Igp6l3GJkG9-FL8`zw^@N?~cCnt{h32v**4l zudinNl$jmpPVe0(yw7BhID1m|#61;X_CC6D|KstG3*L6SbY?$^lMCuJmTj}0aY|^v z>CqQ`^0EbYa=t|zuK)01x|>0qm&k9^D3`^>yqX(2XQ%l|UAeyEMRc`kq07&I9gaR7 zUxNRvF8*S*w&m3lslbXY1{&vU&N$n=3Q??Gw02fn@q@nVz*=#sr z>GF!#H%((qd@e|KG7V{+%-w6j+x zu9evPSHrZ^U2WDX?}Ep%fqnhcGPdMx{;xb?R_kuTtKqhx-IfpZ-jqyOeq(X#Is0RWwjKX} zJz&=szmdBex97`=q~Vd-TBi26Bed?F44Nq zcFbkg>i0a&hY#_J>r8*a`QLBTib)1bk{=XGXhdA$=-IjK^O4&@?D4+0Gb7&cS&Niv z{80Q5lNRFAZFisBgW0$Cy-3g0Uv>Nz?CXWLE>~~owCCwr?#}4*a-<6+q~w7=3fl`{OF@Z{o`bNx%Kz?>+X8H{MpI>XK}@Q?)aV# zkMyX0_4+6F2UfLw+$fg#XG)FPrIpu|&j?6w?rrZm(Kj<{Q-rZs*Rj_vOGW>!eb2Z? zQ$}#EVZz(b1|55%SGzoa`RmZ`hkBP4Tg=vYe3AX8?8Z>U?-qSP^4B$IRjHR9U)O00 z3(j08n4Q7?d&;tRXCwthKMGVF-#d*xrLFPLv?CmnT@zoGS*Y2_u6XBA&@#_)$A?? z5PaW~?Rlp>M`z9aIc{?n>j-*XYJa6Bl^8Co&b9ru@sz;VdvB@VdZg%h|8U=nmowJw zaJc<~y&^45K)(HsViCft`r|WVSRiW=6J%1UatLBx7 z*Tb%QKabDO?ylaGRWj*uZm-eeQ@gfp-5oTSulBb8(X;mqy(_+D%0Ha8@{48R{yk@R z{7yg8@j^QOnDJ-Zy0r%{KK>sf!cdp#7A+gD-N&-ecctgKIem9ImpxvVoHbvrxYhOL z=5^X@D%{K$^LIGZ<=Pm=Ec(5D%B2u@o0XHpj~@uCEROY;+26PK^p0z$hIQe7THC%U)!4DDD0=fJWY;Ro zvNZ>a1CJHF7kd6JQe$1{%sZY*&JV3lRV_C9G$UrMuJ(VeIWeN%y5j2&l-zTCw2+Y@ znQ2ec8qx=5ww+@3nk3ul#*J z^xeX56W8|6s_0)V#k8fi_g?Vf9`C@!iPdr^JJLH0F9;mtbDvQZSyMmf+1lk4i;H*e$(U#SWQeU#p%W&4BZ(7&OTfg`ozdK?3 zj&3)XFIhKuvc&j(kH5LpZB?Ey=jnG(-P?er(r6{i$B@(ZsSDNuwro3%-M5f>TtA817rf#}&XaA!uRUK+aB(nGK+|JA|%xA&* z7YpQV#g# z@ppTmd#~Hi&Mp6IK#QUmhHPa%x^2$Vc`GI}DsPN?9h7Z;auvf4t|hD5S8e?zQl%0T znj3kR=ilAf0{@ALM|rC*2_EXHzaiZI;Lyj1t0H7~u71BYWa$#C^B>;1ezC2({-x!_87W21=J~f*IOt zxh2bwUg=v_`e!P;i$bf$uLYC6*1tV>V8hp`e4=*y!_GeqnHW`g@M`I_ZL11aZ7Gzx zX3+Lk^Im&}x7CNww|6b$a5YW4=*m|7&vIe9{yU52YrKD{P%y%`txCZ zefl0t<=>yKBs?g2ta!!SS)FTTr05Yd-ZlH2-^NMtr828)UQ`QPro|U}FkwkovD*Q^ zyj!27UKNO!y<}{AI`_&kQ@(b;`2`>6c{%=)N!9k+d_daUoR6b3NY>TB=JJGnS{`d3 zEcULII=eFDTgFF;dE(4&KlLo6&p%{&Yp_gtt(W+Ym48-Gay>5N^QnaG+mUL1H{m3m zSL>eGPW?OU>r%I_#b-RY_kBLUbJOx)%zYR9PRCUlMohTZk!}7WJ48v@BV1EpamK;# zw)2AGpEJI_9$T)y(SA!~v`ccx%SA`EriE%IT{yBQy>I8u{MX;2uY0;Iao%`--ifQj9FhEcdrW3)_m#bW81!dBy5tfB4|njoIb4cV1-&@aOcFUoKy)zGbbEd*4!HR^7rYpA{sY zZ)W9FU!?n}+-B*^c*FO%_MiG{6?OHY_P$Q%KG)}I;*qO<9K3bzd+sTTgSYuCa~8Zl z{xG23{5aoT$MxEE`Ztg7VxK#ArF-!5T?bFk_XeHW(R<~B)2Aho?!22+Y}|evG2u?W z{N&ONOLvDqufJH&4*fdAudUnRQS@Hxoj2P0*XdrLH_xlfWY&!pRyO5=Znj!=g{})3 z+`hW(oxe0h;@Y7jdW)AWzjOF|*019~S&lBArPR0J!81Ou`w`c2)z;`mgs(mOe$Df9 zZDOmr?Dk#VK4q=e9`X5~Wxq1IwV!#ZzsO4Kb;XzIR(g%;b}JVvO2<9-eBPo}e8#f) z@&%d6a=&Nazdhx~S7XgpTVGuMc+q-l!LI0rxl?B?J~RE&q1=5zr~9l!cwXGB*#G$5 zj_B-^>)*XPUFSyLVsV?}wDrB-9!9>em)EVW-7h>R;Ek&6i<*#IA3}p&%V!xTyjf{- ze8oOnztEn*AJ=weZ<2g^HbT71wOlFuU4(3XDNmPR?tb@vS7Eocb}zf!QGR&zDCUN@3mku$YWm5oC{L+>q^^&;}$7l9+D^P{|Nw{;u-Xyp1N@Z7ZINoEV<1G^=*PlF{+t6E4$ zw8qFUnEvr~;yE@xHJ2?vc8Twk`2TYIzy6QE?%pidH$Sz#{_y$ZzvF9^zfanp#`S2i zW&Jh(s|_Fah3sATekt?(o)vs{*NX&lr&nKATXmMN_e;lwEi-JFeJuM_;#O>st7dBV zeEGiPjmN`%Lw+ol(NbJrzGJJxTFrNvv-~YI8|x)@8GaMn>tbzcS#xQ#t=sSIK2xU` z1#EKd({1|0Ju&X&@}m=XoV)%cyOKlo%)`>7cItsIZ8u!^Fu8W8eD&vt8XFd7gorMl z>1wYL*mZSh%-U+J^2L8QRv);~U)6JE-R|ca>5|McoSM~&N>>yb?yM6`sdMl*)oR}C zGJn~bhC=qI@+Tf&Uoo*$OWg3Q8kfOh_CH&4y?dqKMXdfc_ub#E{j2y@>{8do@~zCR zh~zI^752(M`$_csRmMN;Vr&^Q#2;T148Q65ys1_zZ^7X;UrIA)P3$fSTAv+wm-G8- znb7A!sbW)YMf@WUTTJK<;+OonM=$}Wc*beEkrYSTRKzA3ntfji-v)o$~@ zAMY%ked^oWdu0_z-tY%bR9@x2UQlVS;HIMy`>saaxpjTkyKRTIcCjwyIH!Hg?P5yk z?)?58hgRv#{NPYp@=@e3V_WU()y3U>!VjjGzPRupYS-I2u^;ze>brA#@#WONU**1f9B<{^xwYybz=Pa(3M=m*Y{mcX!)e+ zbh)@LY+l>WH50d-omcxi=(@#@lN)#5H-8*#d@OJ4tM74kg|d4bpYM{(xbbmO^yA$} z^B0^f?NHL%$~WaY|Z3K(GvaFk6O!m|G!DLmwUf=`KLY8*9W~6 z{FuG}_ro9Z|32=Q?EkBzF0(P%LVwLE{;<=lEP@#w8;v;HFUL)sbEw)zwsVp76u0?` zQj4`ZC$PMD($#Xlyy>b$jDNQF_2`{4st3FS{Tf!!dc=GD`W9PLt8DoU!64rBqrIp4 z7iwi5iC#2k?#}zWKc2Q+RP<4A!{++upY(VaPQCnu&+40ruitckJKykjsZUoXMvBIt zi=MyXQHgnV<3_n1*Y@wt5&pTQ@A^{1OVh2@Yy2cC%@ZQ$s#tuqsyldsZIgz{W^4c3H!$i^?7cJIi13K2JRVok=bJvWBf;owLy4!lU=5)@A-F zdD&3#N@7P-^tsMQ4a+B=wlX@r&g!-MMU&Z&&3mVJ{_kk@e<=Ah++TF5ac{}$s3z&E zIeZuT?#JJLaN|Jy@mQ%nd*`0oetgH1FLfGq9PGRv=e{f5iR4f&yvj6TRq)Ts7P%)3 zC4ZKkyCL3p{0C^Ypxv)`|JC0;jmw)FF1JtQ|H0#RHhP7!d-M)n3UXt)EaqRe=TzbZ zv5D{hZB9O}YqUvfPdtCYfs1MH`Q9jh-Tdi}c2J|6_wu<`ABy@t_F4VA+#LE-Zh4X1syLov!}@3OnwoOc+2I1?_4Xd_?YxP{I>pc8#MK` z)}~9hf2|kQ>Qk6|E#%&;WkLlnmY;H)aw4K&?>fh$@t54<7qhhIJk1O&l|Pm*E6nBgNuSinQlao)uJQ{?mz|ye zdZBSp;BSUJ5xWl=XJ<9OwwhMzQ^l|(vi8fR&H&0*^QEwBfDOE?k7ZZI z+ZJw{ogTENZ|}U~fQ<*v@3y+T`;=s4ap{u_GgrM%+8*0>Cwl*Di!EmR&Aet^R92oE zu-cg+@8a&|8Aq*ud&K%x3s{S;`zsOksbk-rwO>zK=S|<*|LV%|t$NY_)|!6&b}l&H zdMfkXrfJcNvM+Y;4EyowR>|j;eRq9rZb_v(9WOl*o4bCULeTD6FFB`QTfHT^aJj9< zlC!TqHn^33*<@>)*&8Jl8h3r+_caB-_*`N_FV-y-^?h!+IQIY2@AYQ;KF03fEBPMO zpjq?h@cm!cenjv8HT^Bi=h9hbmpKG%r}9}vwmGw2XTSTsX5TtL)0hPgCy&&I%CtLq zw=OzqtYKoYq5pWq+**SRO1@3qQiv0_<9{J3jQ%)dNiI z_d9fKjB_)dSX@_m+`3J*1$Xyo;A zbx_n3tH3`m^5RT6r7TRNRrueeZ{Mm@MZG1 zU-xW#EVpi&#N_LL^6-c5OV+)UcJM!z;#n4Ho^YafX{}V&POHR-YgZPS`1OlT%sR2y zVS>`+60RHPDrf!3NUvlUQf;{VyRGQ#QpH)hy9>K=omM}Ldi;C+s)O%mob!AuTI05L z@&vKjUqTI+Pg?WI>8YEwbL!Jtse^02e=Trs+4ERq%J$E~n***l^@$pU-sL#&H0w2| zIPc+z`j+$V9>=XW9(c{{Y+`Db&3=C6vGQr(vYuF0+|uUXFJAxo@&DqQFL(dHPrLHH zNI%Z*!=wD;_P_U?Ulz=rsrmJ9)nNpWU|R2zw)oj-`AyWh|D^_(|*oH6<)PUiEll# zrUjg~+IO?;R{Wg%d=)RmPTRHY?kT%#ux`_&cgwZ5zf=_2QvOYBVs&|c`?0zW)0_E~ zm;{ULf81zZqIA{p<&Iasg+k?||2C>AiVN)%t)5uCw08DqH(4IX<5M06d|NI1Ciaz# zk^gjy)czn(LBH-@(~IKQT@0MiANXCUtKRDBm6Ok_j#Tx2DBe@C-0IaLhi$bHcgk9J zKbmWGuxduo@%DY8Y7Z7(nCh3cs;W04WT)HnwgM;n?521tvwmHhzWw)heyhnle2;ti zrn{$UVqi93#ZCO%VPe1GT!)NsoQMbq%+nUFQ%^&U!VEQC-7Qv z=aElqte?6`-%U7b@k-LyR{NDx%nki>t%nLliaC1U=w_r`zi3&yVY>0_weOWK|6KF@ z*~i%1m;bMBY)gHej zt~cJi8p*cmYWDBIjMr1=TP(fe%pKKS+xP3p#YlyWO5dM~*JE1S|5~3pHT~+BqPENI zlNCc(ef)Z*#lPR|YG^=uVfluG(XkJo)S7mFwmRNe8acPYqUOO{rh4~^tdKRvbFZe} zHCZYht8ea={gL z+$LDRU9{y(Rd?a0;$DUr(VVxNwK|{V-s_JGp4_3O$frJa&fUHRF>az3HA+oK%CFtk zjI*k_vVnK;hN3l_w=B(7y47;*iInFezYvT51z$`h|F5!;UHJKoh*rgNc2UQ7MwY*q-oy`CE|a`%>h?H&46roLoREC|Q0$SX*7j1D zr=@qi4y~3DWM$r$>~=M_*;*jOxBuqC^|O8ztdIQhE~5Xntw^ektoB~3yiA|k8*`Sd zOUcWT& zd~)7_+Ye7HnQ~Tn>8m5hExyccuzeA6Jf`^lfme{k@p>Ehc0r4oXh@=FSx+_uduV=dgXwAqd4V$}s#@BU+d z)sl9u|C;cpZjPYq1ZJUh*@{w6@3oHC_xZnFvE%gKm_=7N9`7%Fw1K1ieaWO{kMqBr zU11~kHh%GRA^+l@io6d8l0W5KJHO(1OA{ZH?V81`fv#G!U)@{5w=&xG_v&f=Qkl>C zIBNUO35)b*760vg8|vQnT5Iz@iv^|otrpET-Vr3l*PUUnHM{tJ;{RVduYb&0b@=#k zznH@>gXV8G4a?Dub5HHNYrV6zy=8r3DNB-0oj~cjzZPOqE8nhm-MO!Qht-rX+t1BE zr=4(k{;8nAd6^IU&UM_lG_h{E&iehSy;Hw#xV|{{`_aAKSJrOvwpjJ&{g?KiR|+(i zGGCuQbJFDOwu3CcP6=EPU2r|)#GbG>>8Fe#4I6!gYpG<#oJU*6L#v992w>ciYvOad!!*0n(8(z6BZI5PrmYW^BT5F+|*_Z0K$FJVo)f<+z=6+eh!>rT1 z$6ux`wSVh-U+my(KW0AF%wyXN%UgcU>A64s=gv!kYhND?e_rA6%I~<`|f<#QMzT# zT8YEUmjyOklz9BU-NztUT@hul{PNawzOBi+zpa+I zmgc-Z$g}45E~XbIr4KWtUwM50s;URaioPs-+*6^r?q$!WFAr?KF7=F$-VnoUH)li%q(lO;8j7#+J)E6^RVk_>rgL! zRCxS|^+yKb#LI;bE3ZWIa__os#57_4suSkMKZ@C6PsU`Lr`R3eeN1k7pwQ>2(`%Cx zc1>G!%-ydz*$$+pI^1BFko2AzkIgW-Mo-Jr6z0Ts$W;usviuulK=bb zv|iH6`0H$$9+_e`Uj5Em_6qCM{FmD_SBFco&s*Kj!uR^>_nwZ#55dP(5)UPI2VS|c zvPOH!Uhgk6A5AWfG@ZOr?%a=m*X#ehd$W7`{c_N`8GoYXf6lD1Sl2wwxK;UQn$Nv! zN|Va_Ry!V--FLpMKjr-09~O(=2&B$6(XVc^Ix_-wTNN$})SPJ)vS{P(1JRcgwn+qDlPtWRaiQ#H@FqPJL^_DOnmk07JqiV`uxXyb1HWEXB~+s zeY0ZCvT9MUqk+0#Z=Je*z3`XZAszKw@udZ>N7OK3uq5VH#r49sO59(oPPsnRwA*^WaQ-JJ+2GjyQV&;cc$*o0;XTK#_6k{Et=$M!2vxdOe7lwx9kEs@OlbNTGXRS~t9 z_iHV>`qR^<;@}R`xzE=MPZkxfsd|4c@awvH7x!(Ahzhx*<@bW+Du?7McT=?m-C!L_L8tvjMD^K+;ES+P$1&h^rh zrU$v|c#FTK?|b(dba}$ha+9{|ozs_l^^4j6_TR5t_v8A0<$E^q9UW7pWu2C5b@W%K zI~cBND_pxg+j*|#$|Y_4wO6|FFX|ObRR6O|X?dVQ)PoC)gm#Ais;)@k+{Z6h>MeEk zg=yWYO)L_62PZG}eOLPPh{b`66V^(S=c%hJuU~9dzTMDo zPxvD4?`(3lb|y#93ZDBL^6;{x#Kr0ZilHvLS+f=_dJ)2H^TL|Bwyx??sk&lf`N2P{ zC!03CcTsV(%%5IxCwX4GQQyymdW{md3yu@s+s-O2^Ao*T{drar&UW=Y1YnR<~ z@tzeG{4(bD#VvEMa$NVF7^fOld;LO2_65<)8_s^URn}``tg;DKmY7f#e0k&7H_gV? z%M53}{d(ZrE0eT9(arw3;(_%(lHm!OZ~1=o?di8u@=$J&F)1jUzBppF;n%40#S0EG z>|0_X@p@vbjl)vu{cRTVQn?pqt(Sdj|Af;?|I)I!c9xYUY;oLH>h)jE3g1t$>e+FP zSt099Pv#5h*U~F18*@uHTz=p#^IqwHiM?`pnayQ|mo~Sa-~Y%uuQB_5^~c^H{`c#V@*8SSYtQe$e*d$yQ~HDQ#amufRwylgtMul8%Tvo)QYMFfF1I>e^?ae? z2mhLRb0^kib=W?N39_Dd`C*%f`5WmK)3dn)6O0$VFI?7XclzJ5YSv@-7vC(ki2Sm* zX2tvJnM>OF{%y3Eda>GB{p0jcZI6FSwJ)FXuIC(^zMRc#kK>QDPWxK4e$EhM@7ZZ( zRrVp(W|!P$bKdB z=!Vk!*c6+dj8*TwKWBV8;=l5MvL7ng48D~2WePH(N8Xt?R_s>f?~ zrO66&eT}>{<<;EML^UcO zUf;Sk;A~{#_wb4~sV8r@+!Q*?@Oafc(Q6;Cn9aX+=~c0)nyC{1jW0W2Nu(t0diCVc zjT21Qg5JM9wsh}i-%^K9v+_94Cak~VxL598^y#{qX+KwPaC#f{@T#uk{@t^>0(ai_ ze7=ABFXnsQJ+;pRA`9bW`Op3OUjAj}Rl`kUrMoUky8O7pd7`jvxBb2?5`x~gZIAtb zg{%yiTlwgTL)Q6@X?**vW|#22no)bU=*ZQdW!be~pZH23iL+im^dyQf!Isz1G)zelS6d+~j_>vf*aJgpDYym%H7e_Z+&}vd=~<&sJB)(R1a=avSM|cha86sQeGM;k8+@ak1CtK6i~= z+e1pn8vHeCCF*svUa&1+tf=bp>yc;B)PgT9x^~}JYH3b1J$Os--?`Qa=_`EZzjRo# zh&NsI_VOSvo5!}%tBn^uHQxGOPIvCCoQhX^>XYVqDpvRl&&z%|QQUN`=G3=)T{^ci zC$D>?`CD+YW}Wh-1@6fy_i_aL_KDdpnmEs3`^aS9)oqo~FY|b%xzi?V{_mJ_Iw*?#-MzHEWydlYcM2UrAiw zcF}aY^VP)`&*zo5{cU(>IJxqZ)$K1^JM&GuzO7WABq8bdY4ws>*-Ji%nQ|qr4Nm$} z`-bBjV|LPim1_@=xLZH@uf_g&ZtIiX;gT1>@BJqH(O3U}J?KzKc3u9rQun{#@;_EB zw@*Z{h{NrY#&r&xyZm3|epoN+dhloGxi8aSojGiL?7dcf--eLcTG<&Y=J(8Jye@es z+i`1gmb>2*{qXNq!-Xre9`OG1 zNwa)$x$)w$I0m^ze$x+Icz2d*{a$i!^#<+y%fB?F0+;>1wYF(V=c|kp<*IIXm0$22 z*`wvN!)=bGzuoElLk-R4E6O>}UU(Up_;BC(?^Ene?`frna~E^Fu{!A;`@KBS|MqbS zd4aiEzxkBktU9-}J@?8&mYvhSc+9w})V;Cl7(?H|>*x1nd|7FRv@`t-hq zR%RQoYsE}>9{TUn$H#v^&tNYt(z>TSKQZ3J*V|q3dG7O;W2HUYPw!Z{eQk2komUIb zcLiJQUvc>D+=mrx6=4<*>VD4JHrx5s82G=Qcoz9<#ryN!3;rxE@yWfA8d0;}NJgeP z^j_#*9i<|EM!qfUpGVBwc$ojRVCy0y^F#yxV=*olCbCYA3Dx2Hoglty+K>N=YeQ~? z{AJ>ad1n3H(e!k9@WFL!)`k=t$@07@eV(!+PjmmZx7%kec=fZ}bkX_O>%Rvy_i_Gz z((_{5%C@qj>c^Kq{yMK_&Z>Kv^&Nhfe!oc+tqxNSs$L;+<%~S z+uZ2+!lqtpzTXuzymi@R-mjB_Zy)3(zJL9?&+t#)tW^Pve!8X1|L(o(!_F{wYj?+t zW#?eD)ouSz_dcgM%l)jy;Q46KT})mNU)wo2P38n#>C|M0=~ug(8f3y0rc zasAbw{vcl~ui&eeE0Q0}SL9C7p14*+mU;giYkP?YpEn-*cIEx{-PeV-m5RQusM)&q zbKLP;pZa=ZgUi1)J$LI#xwo;h<=gt2$N%N@W%F$fw^i?)ULIEWvV5Oq-3#OS9mnf9 zHP*$39TZHTCwJ}g)>SWdm292&p?I;Q&UX{pKvRpuH&$IbW7_8QC!^*tuWUfom6J#7 zcD@eRe92+E_T`+uQv&6Jp-p!b;(1N~{qK9+ex*$P>8|a~%0=$dJFHWB8aOWrPnmi6 zgRxuVzAKi?mhV6Kb@e7O$K&@@do7r+SNJQ7DtW|q-DL^+&gXJ5(&={bsR7e%EWeeCFTU9QHdA(L&Bt|1j^CTM zOIInlsLf_^(4KAFk6-yIWqqod{;Q?)%DRgRwzDj+fB2KCb4Qxb%pKHN)HFysJ``HUj(mySfVB*RaACt{v7rm!^E`PQmm`KES&#fcZ>Y> z-7)HC7hPyMS!WV;;X0#fMt{cxsj!@6-*9#7TbH(+o+{6zZnwI`Y(*o_wa$5uBR)2m zt(wU5nT1{XL3`udqmK>mRn%yL)^}g}^yp()&GUBq)IWEAO76ejELrvUfBO5ob@|bo zeyQg?ZP(#93F~7PBsk!=l>YmC^$5!a5*X( z3b;CTc8D+rc{C{*oY+*@^S00bcHZS3$>rOBKP&z=>!|bD{960ukhQgCv#0;Luzp)z z^;*;PShrp&)2x`Rkk0$F@?E>Ol+|7rob~zhs@2hth2~e6=-J04sz|g=)+#oWHMROQ zYx0K|myF$_zgsNZy!HD=!9JVTqL6j^>-$CRzV;UdyOiAsn6{|dEmtGGbk2%3elJ%@ ze|e#D@&4kid)#-=nR~BdF>i7SLx*|sn|7W#vYU6C8lIjn`fS>RwXdar)^F3Os^f5P z>eSx+bz{y^zA0;eX2n{&tN&iQ=h)8^kA=glB>N*?CE3QPTPIwcvEu!brN1<9&M9v9 zJLMp|q&$yzdd`HW6WVG@R=L|8o%!j?zk(R$V-tU0vY)5GU8JmNE}JziTK(2b*~mi= zcDEHRnapLJc%l5`wO0~f)0X*&S5Da+-2XGL@Z7dn7H?Cer>-t2@Tp!CE+HUy>W!%X zs`I^sVU-DeL*VfBA>Q3;aQ#{sKYnf-{zz&MKQUWL<16c)9q3swqxOT%>JqnGR!Wz-ZzHiO)YdfT8vzbcX+VrsC?wP{f8MoN%_lHM^UYeF%zunj8b^D8- zVH>=DT+dx<`|6j^NG*4@;^(NwC@-#%Ua3UHtO5{jcJWo%}VKd1(`ZJ8OCbt4^7J zQ|Ou=_c|}X&}4eLu0R|LA=#mz+|1e$FJ*yLRT?9mh=`bQ;aQHG87Bt@Po1iz-W{^~*!Ib!~Ec-S6Ii z?eTGKKBZ5`SU*`ldu%xIiFbLymR)LZ%_h!pU!Q#GRQWpfE4rJC+cvGrocgOlHviT6 zF7|cqQ&z6FoA~tSo`1V!KfT%WZu^PZw{M6qTYMmPZp&*+mkFC&*w;92X9{kS%~`Fi z_U!ZBXH%+5)aLGfwf^bVyMGI(sme$Cth#r^?rMilFZWA}%Ud#oKP>IgdvG9Jb<2W% zOG6&6^?O?#u>EP;p&tFOo#}}y*S%3W_qj{Duj*BE;@y`Qte1ygz1g|@4NKn2+DnIm z1M-?`_-(Wb-lG| z^EVz&k2LGOKC@<(V%dbXcO_-FzP;nUQ*XQO)#m*-y$%;k-!c9BBIR>QAIr;o)9(bY z>*4;k#BI09mX#+9T9!ZEXY2R(>&)rLZvFpS{x&x6{IS~lclY?y>iqV+jgC6|Uc0Ah z_n{rHyERq&6{`>5Rh6kWljA`otn_jGWp0jgS zy?bX*c5vV4@0a#(y}Re;!S}E3gvY*p_})G9xyaqSdsgmQy=dam%^$b+Wb9n6f3Vc@ zw_V8|>Hi16|9zXf{jqnI=lzUdJN5sc`_XUzcm0v;@A7X4*!{en)$#P5t(Vv1d;M!{ zJU4tRR1NddZ229_e~wMtIooJ@?EQ4rqsNxYJ@e`NF`4PWZtpqm?rRHPAD1!=duaT8 z=5g&NN$+%P_?-9kyPr(f zVD059G}AkA@!DZF1*zhsLtAgF&M80ZwxvS!c+TY?3mB8sv#YO{+nJfI7YRG_HbP~e z^e=~9C#;wFeoof=VSe1_r`%lQiK-^*RxCSro!R}PtGRc>e8KL=ofFGq)~2(tf10># z(!urHj|Qx^dS;lT5&dv6V?^6U!QS$7i|?51D`MHShUww?dt%3<-?v;VontHiQ~BlG zOH1c{m+Oehe5lcXC+zLQa+TM1$8s7L6_!i&3s1E%`{8{}m!nv8RXPeF6`}+!PEx;^}{^KnLQ)_-7*=f$BasB!``40Q-! z-!4Uo3Vt?Y{&Z_`?~0j{TT2gKtL}brE2ijW+l`DM*{NQ;@l7 zRco(KOZ_%&N%6Ofk5gyP+I6tvysuYWbNH?0!Ot(=35f6iFmYDdmMWR7EwbTRc`d5~ z+ZNZaR=)OC;+mnJ`@yA!;d2Yu^l!TIBv#}2&(oXUto~KWr1x~`;y9zTvIeVS=0>-1 z8of%pcRf9MPVL;o=YFo)w<(_Y{!5!HyH{P#sxv%vWryYBOJ|F{K?TgwcQUrh2Y1bi z{c~>V=R*RM1&X4xzi=cPbbpqX+PO1*2KQM*#S?6qtEW_d-LCd1seSsqPeSTeAqq}@ znob+7R99*1t~N56^t^7pzSvNch=S16=odo z{aDu+d^!7lk4XB~TdQLB%DQd|<6o*cCC}6L$7rK@H?w) zlW**weSF7q|I+EZ|7681{I$%ix@q=lALo1S#TxxSb=#j+i@aR^wC_iePgh~GyY%hY zpP{nB*ETd?+pKE8ns3vepC^3wF5A1fD8a6O^RM8e)z_{BabAnq|5+k()~n;|H$RxX zW!K|{+PrJd?RK}Rcxqg|Tr*teX&1ZyqppOv50!0p$NdPdXMJb?E7x9LzV@{?_Z(1K z&3q;JadZ5?ls`wy>s0m?{daJ=F;RG8`j#DYj%Hcq{qb?KpL%P?*0q9aTIV_VwSr6@ zy^;-g)KvJ+%QLHg`-xKw{SR%F-Zv~Y&U}Al?u38L_JG3l8w}GHG2H7!&vtCt#!}0XTDPu-=ebco5P@j-&r+L9 z#ZsHrCEv|(nD^DE$|SE;T<~K;bNn;zmYEmc@YJQB4CbxVeeuA|{zBm1E3-CVGpKsl zk#{X~UiO&@;=Ao6wbcJEkhQvSLVxj7Mzn(KT$aQVcij@zy(T~;{m)@S)xIo~FECKvx)gr2Ywc-nf)zB@}SOIOb;{V#j}VT|0a?TKf;rbhPgUAEGX*#GPJOvAY= zuistO;ynM(gfr*0tnIdc>5;7y+MSuPRWZVUs&e-ewO+gXyZ!!kMShz2VoqdTUUN0G z^}QK6uL|q8t~=ft@UHFR-u171%idI435p+i@#=x{>;5m*t?zZtzY^K>>&OXN>#sJ; zo`?J_dOstE-SE^)Eeq*+p0Yf9!gX8hq~B~lkr`UBblaU>N9WI2WAQlFa&^_J_m%x& z4|3be4g`M=a}SZ_wq4(6`{-Kj*&S#34!AECS$M+ky#Iq|yEdQyxvpyVLW^Y|p4ny1 zlRxRX=Ti9JJd5(;b$g%5o_;-h!@Q5vpHFmGlfM)EFz|ONUzpX+#K>F=^XFUaP4|b% zZQ8ZGthVm1^+z?UgyhE45i1MQ?rn4XvhlzBp`WkB>i%zW`?~docl@1Z8?WkHn>ykb zF6cNr=Zuk3Y;enc9@UKEygjvh#Or@q*MHh7@@rDurQb{A|J^$NSbyJVW#dijtzK^u zDn0g2skrmYJ`-DQDc<{2i{5|`TGdVV3U>)x^;+uTpPLRzOZ~jA8{U6;&i-Dz_{zI`n76O9c<#!%{Y5y7!qaA% z`uyi^vrASKrpU`|T~QamBD)~mde-K5&dbifY588WzOwJ+jhM)IXi;e>8pnw~ZB^`Y*T7j&k|)q5MzEp4v6+3;g#nJQqHldCh>y z|D3h!&#hnD%M&+kGcr2dhR^x!0aDnR49k(}GW{PuTF$!g zWu?oEQ1$CC?@Z^JE!%f*ipS4`Ms8EjCO=xx=imCg?_1Ke`kLnpUVkmWy1#oyu-sHd zUCqKb?=N;a-xYY#Q6i^&YTwmup6{3B9u_UO@%g@b^Q^CL3nJ^e+yBIUJ=1wSwK-#HrJ6z$D(XHX`VEYF)b9Rky>c~*vtesB9Oc$c>#y#4fI zYnhiV@s~=HwmiI%EHeL9hVCw->sWy<1alo_xIZyA# zRZFpqvv+d3mNu7^?t5B!)->_>;$r!Twq(bTs@8IQ1C_4_{B~J4W9JjL>2sfDn_gS& z_T}IviG11gKfmvPE`QW~yn6P&y-TKlNqf0`-Zx_B`^ubE5mwRp_E%9*MHpH#H0sxBX5E7`g! z>5%d*Arnb)D=ydEqUEKgEfqP(3mrpmu5y3!WrJd4(8R3oKl(0C5L|HT@6P8_xU}a^ zau)s{qx;7`yyS6-sZ#I1-tS*KmO1Qf`_vL!zsU04A-}ICPU05Rj8Cs#`$X`K%<-HD zJwm=^7w>Wm`=6MYEIx9R|IY1n zE!)LEE6%drdBAZYbIzVQomF9#XD<55ykEI3HAU!%a<3V$`?Lb%r4yrWU-fgAym}`s z+DJuXKt!SDt7T_^v2q>#z5f zM_w=-+>~`^Qs~|IZ|mjWAK6*B?7a;0)2}D?bxnI_Yd%5d;`84+tyQ&;mRACrjLsu^rrObY!dg_MyoZgtjCI8nvkhHluZL(DEosaHyw#RkC zejfOAD$8!2QE|~Bj_s*yFYbD1s$|Xe`q}P|(}mK{Ccg>qo_FfPLa~WI*B$#FcFQN% zwXg1y@mj8bc~&Y_i{`E4wcWxdQEnY$zZ}$T@!R)OMJdUpDN?5I zb+lPd|M?mI*G~#4H0~03BgSSWb3(#@&smqLvh_LHXQR(@T35V@nQ-|$-|?&y>;2SZ z9bT+_&s=s(XX?WE(B)kx=bltt-ZTB~_p3YPIrDY*-t4~`*Zb7&+{H*Uc*=S*zZtJ!Rg zbWOV+{Q2t_yGzC&?SixB>bK=Rzq5Aj`czi-*HLFDbu(u#6y#bi^yut)rKDY=PfFgk zo;&;b%+~CAQx9LayRmTY(R*@hbtZSItufspUn!e#daC!KnpxRNDfgL*=2z}}ue@Ju z|M%JUyU%~06n9B_iTrX4F$z2+v)}d<@B5T9*9?~(W=OU3TAFv_ zBk$LnCl(rp?q9N@XsPwbmsZLDPR(B}=-_95&}sQP8O>7d`-0Y9XEeR9FEd{M=cYmO zt}TZ>qAy1*59dF(-{-pE<9W81EBZ1r40%>B$#e~Qqq5ub)XNo{_sGqg`)TXE$X60Z z^WWcn9X{LrwP5a-*%J$cFX;xBtd!4nvG^bnc&@RMC;E$IVUf%I`}Nhby5({86^6a5 zCtqI>-*aF_#ZI1E?fcs2luc(`z5a7ov0fT~ZpSv0?0biV=I~FA%lxo-F<>&sqIhByLX{YSblNMIn(DY!54!Zw>z(KJ+W}< zS?LnKYmX-;>2gsWCF=#}cFs#{?|-%RuwDJFoez^G@2*QLKPXxE zdfmZS9v63{{G9$t;@XTNbp_evJ+m)_iLAGdvToO@^^sc|wEM*DSw~h&E>-!VasB-goM|fiY_@LDPQ}|HtDX&rfd1PKDbTUlO(tFk8H(>t+Thi zlG3m-*|YqpwzbOA;L17KQ{)Q$cW#lJd47*%?`E?*?r9QO#0PV z!Kp>3e#*sP-f`@B$<(Jxrzh>~?U=Ds^Yn?8p|Vp-{uSm}`meOVpZ2dtTvoPlYMs=- zkn?%_uKI4;{m-ppbMDjfBg)TLe6igcU0OO#xMt1rv;U;cz6BaS_q^YsY_Tk7^(D=x z50$leXRi->AG7lYcnmlFOS83Ra32}x^IaMbo zY`J0HGY{QC9%*iD1iJ@wY*QpYX& zCsuvRa9qCX$kKyvu6=zaYrj{-qxE$1=4ijFkj3>2_}6~veYUgip^`pl-Qj;%0+$~) zx?EBJHvd|_@%2|6w=B=z?e>xvH5dF`;dl4u_1*pNdQRL|R$FQ&8-K(2-S3vl-ZMtE z)pjWr*{eRUy|iZfs~yiS-V@yNsD8fOS$aK|N|RAz45$=Tq}5iTKr_@7n8 z>-E#-r5C4(y~+_QymzMD&B|=YnLXQD&)(LG_f@F;BX9jNEKc7p>h=vwukg5q@sV>r zal}?+rfR-RcUkoN!~54a+wr#s!1dw;ncb#&UpyL+|L z%g_s_nqHUNyUYK*?bY`w*htp@$oHxz*7Mgi{ItG(cJ-Y84`;qwcTIGg66*Ek^TQV5 zl6%XW60^-|m$Z#@D+)?$p&EpTh1H&nbI+dP&C8R}9NOU(U3(e$X-Foc^J}@Lsun zn=>B8wMAK+?-0Iv*yG@_qK4F$;f9~inN^+P=;y1%07hf4qJC29-KOLacn zIrriBKWA$@KkThEirDyH@Y(reuFu$G^iN!VwMQ~2T~4{~ag^rsHKwkgvwFkLe$3on z`*3gnk@{cU|Fiyl3b&Wjf2sPn>{9UV zmlZTzyyp3`{(EnFw2#YHZ~MBlGuet=bnf-7W<5oZ^R{O*U)*}|N$C1r3$9ODUZ(ds z%WcKk7st%ZH=a;@n7nuC+-;WA-<~;h+-TLmlk=_3R`P6rc1C#bS?j;A{x(n54_xOR zW$;ex%*4od<)$^of41a#wVmFR9~=C-ZGzYxm2~z)M@)aoJ4)VtT-X2i;@qjne!TA6 z*0NoLzO@3Yz zSbeKvQ~dYhkg#c)Zv~#U?TkBBoV$lnd`alR^M=pWj#{2Sw5jWu|KHn>@Bh8}_oj8a z{_SU0I?rW4mbq6KJ&?MMuHDz$HaQ_GEJ3sb)( z>E=%s)=V{5T3coPQ#$jb%e}j9_wN4KAa_glN6goWc1mabkN+;d#3Q@-O1drIPmlPE zFV{Lm{5%C2$_=$JwspVnqG6R{x@AR9=w}((<1W*tF84gU@>}MFZ|U9_*4SpfyuM2A z?di&0ZXux>YIX@R_qNPlcz5gNQ_G8=FI{@*jnVG9;{A(d)tZlime^?U*FnG&ae1wet*S&{gq(9BDTUNaPu>YjSNg|SxQOe)A9-K1GoKmsoPhqQVu&tGy zvG%@I^}WZp2L=7UlOCs)_$X7`eRpfV(LGK1SGR+2c;rRi@Y*x=-$l0fr#EkuVB4Cl z^K#EwiH)D8C|_~=9kOH7lq3JX?|l51LtbL)ZIgLF*A&(FI_p2p+ibr~+Vbv~;~tBo zPfa?fbMxyCc3y!~t9NdW{>Xb#_is^F;MCitzh%moZrjnbWJUAt*_P@z+U{LlY&ZWw zLw85Y1yvtgrM&AGrx(R##=N>??KM}hghbE2-b`uoq(@3?PHyccZxbkfrA$Nxb4M|K1$?P`GJlYxT0oe6hH1d;C9782&EwoR>-J`F%FmPDb-k#s`nHQq+)ulTJ<|3cF8c3xjE}$M9d%j!{_lc6 z?)yJ1fBgA<-D#1uoz0VsTlkc`3_}c7oVhhqjeT<8_BF3J-A*{wH+4^!@yBnnSDp-JbBE>b2nvAKR!Rg^9s^b>5aq)mJ0x4{UfdE2HLd zM5NN2gL1b!!=|ceU%Zo=*}kCnXI!S+?K>~eK92X$zWiXi+qo?Vs}*%iy|hlZv0F|q z{`acnS;lTZ$@ec^Hawh=yy+aP?Q+F^UawY9RNL72i{zWVp1G;`k5wNg>M``zs&*B)*Qedzj~jcfAu*Yoz(xr%)1)4ZhF zzxnaT#gf|V!fSgK{wK=wzV17o@h(kQ$$QVQyu&-pgiLZ?Nf`W$FueTC@6=qTGoC1?x8KG>#mh9(mnq|ft~k=*3{YCR`{nWmtRw4v)y;-#>)7slIKfJ799uDD+h~N9W?8o`KhyHtI-v69bcN?^<<@3jf z%gbx)wSPo+vmaNAfB$OPB(aAlEL?7WT;XMvcH;N#tv8d`#HUZX{7I%vWyfp#ZN=?I zQ(is1criWy`o&p08Z}_C#lju&)G$~hs`=s6jl0S z$KBhm!B;sYRpn*HtHO>aguDG%YW!lxd-p2Q*lu4ytRt2r<6pjsSoQRZ2LDeHZJ30S7zw+ex-V6hUctjf4=QGb$p#r-RnoSmFhRjUh34Y=X)^m zc;(KrT*WB;@O(j2MuU2$r?b^j#`_888?O&WYZLO6`=_dCbReUcct@Gb$ ztHRa-{4seEGW|z-&^`VfGxt5~dZ(5a-14g3#u%|SD)a*1Eavlfj@|mDTyZ7NG~P2( z#QWQ(nf;5D&t>Ve*+reSyyyK?!Fu&^jd#AWSAXvMHYLYEY4zr-hLJPV(x&9vWmkAl zUGr$`x074n-U_f@Wd2O4C6wdTmCrYNb!5^mdL%XU|2eZY#qrpb3B29MIH!j{KVO^U z_$&3dc1=s;@0{|_tNN3zx3X5-neF~Ix31*gQ_IwAwXOiIW*>jyG zr=L1_zBbzWqtE;!(Q#s*=hzrHt&W_N>~XpE%#vqu||^r$-n+fa_=Kk#MZ73lkYsUtN%*gI>XO(>s^2IGJTDF*q(dzL7~f^ z>ieI|AJ3k*@87I_`<6`K;vZk}UiqW=y`RDs$2R*m>rZXkb=&V!tE_BH^Ci++ukH4~p0_;XnTGD8UE2LZ-xgR}e$Du>_2AD%lb_AhaKCF{7ag@`*{oBW zJ&Zr+*>2e@(|s#R&V80L=ilUchh%H5jDoE*?oT|ce1ETear-8o4x3HA=e0xU86KOl zpZ9mx2jTgG?h^_F-8?Tp(8{0vKYfSG?w08#dCH6G(wn<}N~qrd6WM#AV6?USqjw)=mcjqLNS4<8+I>(4&iy6E?>K}tZ9TKi;%0_U_?M6G{0=Jr+GBkFhta#6Zclr! zdMZkuDvy~hemT+6a$3Qy$drAjZB8x!_dLToDuTs(sJ~4sclzMl^&pSVhyL689 zsqi@*%a80VkXV^_YUl5>X)UuWs#-ojpEhsfVf{l(mZfYvYJFuz#+Ror&!tFfrvHoc zT~(a>zDaKi4{B)K&ECY2criz3`~K$H zwhGLtQzlMVo?W+zX{A)u8s%>*Os|?>%2LXd{&BrEpzqF^f7d@I$wqzC%0Au4a6Pm1 z{O^2|d(YQg{JY@N^TK3)kKq2f{=aROFwJHtx_5Q$N-g;fQ?4D`{d&i_W$Am}clZ4a zdAs-Zj3alZX~vvyf01dGv~H_?bcL{8*1B8n)(tJ}x~nH9+_=82eSQAC-seXu=2^~? ze_~jZzdZEV{4C|S*Oz`Tt&MnIalE6V|GE6`o&|Pk!tWMu z>HB>yQaZeLoq5n-xwTTxFXydO_7bhm!UV-e(le_;!b=!ZiwiDj}Kf3N| z?Jv;8^Q^kpHQN6!rPo>1eO!IN(01YB)FoMO&Y!BVd!^Row??_oBHct{YTHLSx9OLz z?Ob`jeDh51vYJaB@l%!8t#~4#Yn$!OS){+!lU;`QzV4>Qu0j)UO>+#t;3>G+`GrGl zP*J7I3KdQ*{VKJiQ!6v~oZ7LlDcQN#Xspe)@24f|1qH ztN#pNXEsddy0<#weFoNf zxqYrnqrP7J8nU=c)oHs)=7zm--6!0w+=|Z0P8WXHm;S44_acVLmp63YD~b;FdKZ58 zVopG4N?i90!HUVp&n$jmHEnOV`xmphdB;n?-~UlJ?eV=c(rv|`G?*`{%gj+WiI^Ae zBLAMnCP?*|Ys}vb3&YvG{|C-qc`5j>9^cQFYG%%8XWf3D(#Gx9hXc=^uFBEqFiQIW`X27^Se$?*s+3dv)E6GXS*buXS*;x zjaWaItFh+U?<4ZZr&k)!S^Gfo^z>;g8reJk%h+%Ito7zVV!c-1%bLR4X{IkLl4ft! zzcTZf`s?rIQU7T-j}!3zp4AL z(%O)!GgdEu=*3PAoN?sm;@&M@`?~LazGyP{YvZdms|7P`7Cs9MiJHn>Dz7&8?$;Zq znGG&=UTZ48YAP+~zHU|CDSgW?Y5O+@z5lZ8RAAHWT?z$bNyQ#)C*CU*N?rUA}%`wOD zd6suym*=LG?Phi9F%yqj)un$d|MFwT&MEtS_gs6rze{BG<3xw8m#(~8xAw7UpkbJ- zuG#faiz(le+P~g7xbODnd%AyvU(G+aPtNL^agt58xJMHcne-UpEb{`_kdRru)2dM(c7b^Q?DrWnt^SC-qITl&WY=KgxZ4=k(`> z^S4iN7Ma~DH~q<zgRc-`o~l5e-rPn*>86~@UmZjYk2;X6Um=4WG_B8d+w3F z-EhB2zMlJo{<=TQ?{Ao||5DZR?r*{RcjEOXc7Lb7@9E%U{5j*$p4J5S`5q7U`fqi% zp6hP)!KYMnZtAgb5tbn?_a1J)eRAh)U6UArcYBi3lnuB4O-XO%y~g-MB36~v;rNFu zGw%e{+XX9Fhw?vJ>+V)`T>ZDwjE>H%Im;XuYHhg5c_UzU@rfTgNBu3Vp8aMntyEpY zv}~W$a+@T*$6;^NG8cY|_;#_aP;%29ZaMMEnN9|m3lnQ@CoHtOswY|^$@%8U*-MO> zvkKmZ)p#$~{ku)^?M9Kkm!nut-;CB$o;9~`FhuaG;y|=pOs=1hB|IIMVQc-j*unTMOTdI`Lq;9P`>= zId_bDOnmMgiYhR@BfLLmx9POf;GXMy_O(8rzVFl9kMVmyuPmAJ$h*ojf7ZVj$LrJT z*3VY_CA#srwO6{zf=@2e-}}FX&8e*18)#d!s55xp-kU$$zJJfl40QK(FPJwmIo^0* zBwJd`sTt3=-JDZ+^DxpS5?W$v};)MCR-TbeEA4eVcshl5R{JuB&eni~k4VcJT5Iin9R9sZ!e^iKF1CHx`u216QRAlx z7gO)DxI~;|uNC2Gn$8#hHL|F?(86JYF=E< zxt&|7U#ye6&3Avh=4}H>Gb_LTnUi%)4yTyKpUiq+u=0>+pUafw)kh2WMhB;!dwn_U zlWI5_(B+S9HjDICuSMONcIWXiUvBqRod1qLn|FLp{`G#XMK*C>pYGg}bUdkf^*QtV z{vBichldW2oNT^*66^Z2N$^0IPZ?8W zKC>sf5e^YFWjZ$6nB-#H!a=C*PjWAxK48yjui--b$r5$E$lP-4e~#&q z@APF$wEvlWUsdK1SH0wU?YW7kqE8y%*k`zOmqz=|i&=6L9xgSUTzq3v&NJUxr(4ct zFTEWjTkt4+wTQ0Vi@V>bcX_2GYd&;NU9!XJOhyK3^6 zyYjzk{&>&-@$%)J-QOP<1s&}vd-k^`UB);_@8eUkOx=vawdsXwyXH)M_{9CFrRqN` z7HqU*L}+;y*%@Ihu#eKk2}rm0_RP?<6y(#rz#sfzfgAN z{VVJ{3|lumeX*iPeBE2geLCWwS_IcIPOJa)>vXTg6#mbIS{`@yz$CXU5uZnyB_nzyOK=vmRawiu5>WF@(K1WdIdye6v zGY++Drp+vRlYK30Yvl3zcKzP9B}oV8o4-x@=`p)w#l(w&VZV?4tXZ~g&(hfUn`0)+ zHiT~Li70%r^TE!_1+wz`S~vbw-;h30os>EKZFpqZSI+B;4D(vnerxZrX}_7*=3iWB z>-Vj+=KK6Fpam!?7loQrJ!B9@pI;M4c449LGtRYhCzY-|@h;=qOwH2LB!OuR zD%I^*C%!uI_twL|R%H`5Y*QBbdp*j#{B!G~UrJ7Xd`a65zkK*FP(fIAhTFBBsaAFW zRbnbC1>`Ce=1lK1{xm1rS7YA$Ql8J>_naxTJEAlDcOutSnMu)mT+4b+o9rt7^tpD5 zQGel)_hP+gyP40&#_OJxx~G%5W_85o-!)T&T9>{rDRGxr-~Zt8XXCQt)7~Xy3cf8; zGLvPwb-hwp@ZznKPp(G_{ssb@8;%7*S7v&R9pJ} zexCRep}8hcPF&?EoL`!HGFgMaPi^y}6dNwJbsa~nl{Jo5uALW|DfdCj+xoCj;flre zFI+edtoxUK_{0rHdmi4f&i)G**B@`WY3)!f{YrIeZ12+dt0LbUuG}JafJrtb@Kf=e z9EpT^uO!|DH(u$QpSr`Rzxz>zZ2QZ{F}Yi&2scb>ezD2x%Jzt*hjwIPkr zSJs~OD)3}y&1bQDpG6vi+p@0Sw^o%r9aZw;XzS}4Z(m0QexLdIV#T_)Y25y`cPdR~ z_k8v{Jma|1>SH$g@{)gS+>P@;$gD4#{v+stvGuJvCwANZ4`1wOnzd<7J-6NYorzl_ zRnNK$Uj6kh?%KalyJ^qam2HpcYfLTfdwy1H&E?l~j=j_QnrEk|mNN&nH;^^eT|-TZNT{_p0Glj1I!&#L?I*j`lr{{wM$UGwv2IAwOw73&8}ihcin^>Y6A z@W{SP1$BOYnfLN)CWpWKt+{Uc I%wo4OjPH)hf`9F2JYo7jV~lib{QqS0CO(nZ4YJgztOC$HaWRv9oO?52HfR9@kK*UcpkX|}mbdGGFz`)vGH zX1mXo@1BRhU+LF*+&TY*-hw}Kwm<28V*S6~1GKeg`lK`GqE9Lc&dXf2%J_L!p3?61 zSwi`UCf+scqp*O=3DmpPye33S&>&PSL8o4yDm0F`{yA)o^^XxPY;^I zf0J?7H;d(!ur{ePa!_>ysg`Th4F!t-q9TC}eR`fjj} zSulRF4;EMQmlg2-rbV%x0GLbYA}c2dT>Ya){}KI_UxN9n%)Xz^-ok7sDnlH_;y`X#4^ zybiu8B^nZLyspk%!f5`bz;ro#S=F+*@=q)M{jX1)@yePvApN`5w^hN1Ix3&vV{BIJ z-B8?TVlDaXPs>E}MXpm$*xl!jIPJRSb)KD-g!`67FE!NSewXNFnY0U<9=1xiOOQWz zcE&|vLEYM47TZ?)Y!6wq%_gmO-}J@7xmWJ~-(KdH{kN!Sr+@mc>@K#KGx*#k|1j;` zv}I1EUz*Up85UEwO%{UT0j07^H?mAIi}^kzSOtf_)?#Z=NGMcYfUOj z&H1Oky27-1ajbhpb?-!#gT8XJ?tia4vv_W)Ovcma>wgs(d94fFyZzYWcV|T1p4>m0 z-ev56zu)5Ri=3YlcFV+8JLi?($?J7{?56dw!LRvM%Fg44=D{}w11$Vb@3?$R@vuc@ z&!-zkO0_p_wnPOR*M&vee>eTU^P#!9@G9T0Tc_SXl3gnERM*z9@O9mq*K(yCuJMsw zEisMzHt?NnygE^8WB0S7C9-oZ4!Qq*{Oj1RKBn}o({{z!$z7^y-1vp->(@#Cf7ee8 z^|_j;F0pE{hi9dztoyBne#$=&8XfnFmk~bsq2?X$>}A?ko6mKW+_Ctb7xAh3)SXGP z73uRoxTM>f3iooqUR$BCuJym@v>a1aJ(u)D+-uXW`d#ptFa&0c`G<%2J?-<^B;CHt_W z#NRHiD@D$M+5!Kq?zeV|I@>;tIQ?OPQrGH|DTVJO+xuU?)y!{mE(th2<5Zb(bgJmp z>(1|LF0Cw6eP!8y=B)84rNpP&Ue?D=WanG1J7O}OS7D}-v09kjl6`X-wIUNf*HpQ* z@Ba5;Z^i$Kw=5Yd%RX1%effFsyeH3hwu_&2clofw&#r&RGqyPm;XjUjuld3K@v!{= zcIj2Mp878ff1T9-7yR+M{cm@rLwAhaqkBtOcn_^MTK4JLnq`r)#-6Nmy4dH|c-?s@ zK2g+GRV(t@lye(zKQup;+NW@`flo|p@g37SQ`0`LuYRa+6led)Vyl0ax=>HpiIf?4 zEsuVg&BngXXX#rX+l^T%tY-4EB8tksW~R3v+z*mImcDQEu`kZ5H{XX?d6&ouZ}VP! zF;d~tDINDH+3y@yKi;GWyPeDU$d!C?{U4(P0ZMNYkH&mmrC+4P?H`o0S}2A$d(m7k zXZObCQrDtRNS1G{wEU7)N9;?#}!fHT&aYj@?PVw*HQ6>4gGo)y;KZ zqtBT%D5uK_S6>#5yl5%hetG@jjMe{6ZSdKV`e5$Y?H}DAv&eRtUKF(GIkvG!qx|Xj z3}gS&kg&%~o_$`sW#wAzxD8EG>Gp(RHu?q)TB}Pb}KAbfWV4wH&gXDHZ1GKm6vQhV517+y?E| zil(1+v)Pv1-V<#k|9SahYsrN^zU{BsuCuIdKE@T!Zy#MK`_a7qYkbH5&))Zi!Mj1T z1V1v%|DO5dNxPkW-RE^zPxRSMn<=fRx5(zwvI*V4GZuTj{#aspt?E3Vp5=*EI$HNu zB_CP-@OPB>yk~Q_h3`K5*{SA%+^$OtPi>z0oLlVUzdPa9*RI%qN;)Mv>+~D`>uzrE zSx>pFG0K?w@JpOUqKmihtIxp|%CgtHbo$rT8u5L0<9)Wc=QM|mZL&-FJq5wfm3I>s zmdRPp;At*A^tGcVbVJc&xvz?^jEf|`G8sQjpZ8%y@rR35N;|`{w@1~Q9zXPY#;f%F z&esn2ycWBEiBwNDvn+cZb+WElm+Q$ynakdCz1`QMPT5V_es%k<$QASY78aHHxt==z zwYFXP;jVc;2EQ^QOznTJIa}kLCwwRJ`zgO$x7MY!hEG2J#6>dZ$A@F9|L$4)x1*z? ztN7yMy$j7ByC*x%?X77}KL7E8{Bxts{^e_*?DUE?zMQk5*CFy#zwDkR$yYZPf17x0 zRZNKatjxObSrzMEN?QN9rs|Q?ye!jd$BB?vm)>kiE}gpcR>iyJMuO>^7C%n>>vt?{ z`utf{Kd)X)zdpU+^2x=XbM9_$?>$pBeILE9V9SXmo4XfW6rSz>qToX23%SjvR_|LD z+WGrGz2*94;#9%oHdXE36{$}xC-z-4pXwXxafV@a)!gH=t9{B|&G5Euy8QkwTd1|8 zQ+mL;<@u*>URHnjj8<;BPEWtJYfhbQ)fc}u9run*BW|%{z5N%~=I&VMabJ30 zxcUUw8&aI%{qIZs%g()->bFX|`tRyR!Bd{Uab331c;ExqRRB1&=nKeXjfW z++TAUss5_)?yBHSCtG{3*e(v+H0wyo%_*9irg?YxZ^PCCT<(nuk)MCatwegkH?G~s zypA!htvJS8UcO$tcZ0^_8RcQYjc0eqOA4+?pZ2EYPTy~v@5C`Z@c4<`bd!GfD(Y<96gseYDE#rR?pS z396lQ1EQQh%g#HrzNk`fX8o5C=dxd%b#8LE46m;@v#|S_p^<3(xm|4iuFN&;AN`x7 zo$ZZzubX!Kec{-?NceiqcFTYNv-f{#{@B0o(_C=(Xj0u9>w2Ymw+b$I#HUMb%~4Q~ zdmoqmthWC1jB}gs>^Fb4V{1)93ct(GM*n^*wa*O!*`$5|gf_F#3a&F9=}g;xbP z$DK6yvb`m`ce-rn;~me0KigS{pHTnlQzTJ1-CW_x*Tt^K3=1d7TD^9&JAHze?UQ1A zQS8~TiN1FpbmT@<^@Oy4y58GXC8lwB*Xqd%Nqei$_8Gdrx>CA7@71Se{MQfr%1zoD zy{h@#{+`>nvwuxWZPoZ0RWZ45u2#Y$c?Ag z{)wyfvh~}1%I3)R;F6qoCbb1}t`&70VjuT)Of~B~ziZ*=olDc-eAv8d5~tea*I8%I zo$`*e`;m6s?a#jHmwK2^2G97)kvDnry{%X3{;s+2yXt3xu=IM?;4|l~TJNs<6yRgf zeP-3YT{VKsO0{k@KB@j0vuOGIV))aXz1Q;oFK_{*Cv#rj?m|$%t8T zVWQfKtn59WyO%YaO6de_3wr03yL;lvMX6=;Ht2`Ve`|E#vS<3045J-&%Zn}6?Y|ko z?`C@T_urEAn@esOhW913Tz_>Y>bdUpIbH1>v;AJ*`{uL$)n4DZzsmDIZZKE3ZCk8c zP*uqHB;f9nlYeur>@i%o=!t>uyNaIr>ka=(J9C$oofr8#clOVHL1q5)XVzcNjF|ho z&Wx-jFj8%Id3&S~;{k1xo^W>{667?=GG7ICg%(J?lSNwT7=BzY<>I zKC!VfRVH)$;r_PUi5tH0?cWvaS^B2udT3@yyws^p_8~L!FHXLY&-bt5>C(i8K6%OB zmk+u&Y%KTCSHIV5b&uV*L4__6MK$me-ZDWnOw|c6+sv)3V5*#O`^0ug(;IS#G64pCmkn>x>4rhSjFb^gUy6EoY}c4k>D zGd{T^PSyKa;uNOLKI?VG^_Ar-f41DZ6tjP6kmX&a;O5H98H(2DK8xvWH{PK9XXl=b z_QeTtD$3=uXN7NUdKj3!vU1O)3bE@E*Dops?|!I0=UMmagZ)>ue?71M>|L*Z?7r>% zN9*@}cK-PKeO$%weOQ0=d)<@b2fwG=+=za({mPq){r4MtrJtPrx#PLx z^}*}eBZTVz{uW!Fw={Zig-d{Vn9 z`EHJCPPcsO-)Xs5N*MC42KMWnkJ7m=VXYHkytr0FSi8P7?qm7Y2Rj>^-fFDs_G{Qx z`rF~Rss8WqucB8~Esysp?mwR$R`<>1_iM9PQ9g39b8TB1Ys2eX^iOWB^fiAobzA53 zUEhT2mc5F(Y<$=~eRlClLv?l0!V`8OHFvzFk8m&k^>dxo?-xh1HCDg3X$vm(h+AJ0 zvvlt(jrX(dU$UE4`rfmS+XIzQGMX`8oB6u+o>J4v?q+{NO`x|1(23d`-dd3x8P-xHqaPkSuqz4HH) z<>_xeOb&>@8zr{cHsd$vw$eC}uvaf%rJk`Y-k^C^#nLw-ZTtC@^LebtmA3^Hzk6*V zcJ0s~-Wkc zx09nk^jXjJtw(FQ7cIRL7ngUW>yGud>5@xduG2S7W1oBbibcwvcfoJt&A7K%Bw74i zl~H`~oHCbwcK^)k`FwV@-|huZk-yukcU7HtXaBs&3yJl;ee7xGLw(zml)WzpIi`rHD zKjch5yvMzN`=ii5(ewYXf0mdv{mZ0#`n7-mmHqh{|L5Y5Q-7H~7xtgvy8h~t!u)4% zOxtCx|7phR6r4}&1Zb&S*kv;CqY1ivG%`fx7GMCxq`%iV) z&bzx{QlQluF8?!CFWMr0`yW2K_k?{>$|nAheMR!Oj&x2j^bC1-+wYm-n$Vyp>msMx ze)Rhg&K}vn=X7v#m}u>{uu2WX(AK@zO0#RNR72C`Hy*CDT55Kwwp979l*SXL2kU;n z?_$ooq_N0cO&RsS9Vwj{E#ZY^YKQIm7dhA z%v_0%^H26%`Sa?h%G)-IymFm4$(fX)c)Xfw6&rNw{#;p6DD^E>6GCS7)T=Zf#mAw=7y^KubC3c24&rhH8 zLNohhWv$A6MYa>)Z_K{^X0G9>YdI9Wu8`k^)2`s$~NokQNi!8{fj3X1((X~ zT<;hAm;2*k!Q_f>ZxnWm%ShQD4m@#x&Fsp`GsZu)7dM9J9kN;Cc0yotNyI8XE2Gqs zeuee#i+O{qpUji2I~^zZ`?B39uGHG4R>m#O%(b_AC%(FP%<)sgOQ9*^Pq(bfmP_3; zBem%MpSwo$j=AmF$GCs@lB$;)`&#?wP47F@J8SpXX<>f7?5VSNeVrAqePZRYYToFS z<3_R(Yr;2t4f+1+K(I(g#$>%t7LVm69B+G+F2_0;mR*FS{ABd@*x zXkxnZ>dGD3+BYg*d0q|t`d4hC*>j`7Ws6uAZ&N9}KhZu(wwXuysjT|nb$qw1?q?ra z^4uo%-kInXt2f8W{q&yQP#0bHDb4EjiyK=4f4SS(9tX_~MHUvU^7e31OZD5M^XHxC z)=k;_R6DyoC&y0i^|-UXz&7c@&z;JL`abp8TBQH3y}a+iZA(Vh-l==;PLX?G{`cGM z+L?d$G4{pXTc4Fy_Id4xw6f!W*9*>+y%gdsQy}k>d;i0(E4NPDt`7Fw>MNxnb0oPh z$~ZeII^<2+;ssSVCmHNKiHZ4di~jMlpRt_&eU(A+ zInPG3W!Ee}|Ju_1W0SGRjYkVTY-@MTv*P;w)ZqNpGt7UsEv}ol|RGzOY-!FS= zExHKz zEt@8?NpPmuD!Zv)^xm6oRa#@V@`&q?q>8J7y?aZyXC6uRT)8gFZk_M36zkG0uLSBm zb*?%*2|fSG<=OVt3!Bf~l*_exSo7Z3ls)~irSi3$JMX6l8#&)kt2TLakz?A@XDJ_c zpZa-X&qufNxD|Ucn*S#4-E+9nlWTR>w!>Eh*S%?;_x_x4K&{b*m)pytx!+$s;M^hg zO3*B>^z2fz_YZe}uSr*2tfG{3PxFwKa*~8op}fH2H!mja@;!druTS=3{r1&oYy9JU z)bBAqpWCy2@!rGkt9;$>wSMoln)GaT&sqz+&)0G`c~ob9SbNmsSnuD9=8}uuO+5R{ zWS^VKOpRN2`|30$ZyWK42Jhs`AFg7yHc>lspzf<~*x}rHqVtYEIlpuIv~%wcR-QW{ z_+PLIuezq|l&($m`ks-g ze4^0vcJ047^XFGqtllN~)H7S)*-wja(tJnq=6yP$vDWOzT)&BZdsa<1GBA(1>s70h zt(RU==GPr(r@22mZt<~L^TyPFHQn4pVmHSn&ne8!xVYF&EXe+& z#E;7xo||dR7t)vFw|u#(=5(pqq1X1;ZJ$m4cj&CatMaMdtn24V%ROIteDSKd$J>@a z?|Bn0&&gh>xWnV(_esb7=G;lUJ7f9tQrX^5b06PKeqXXVM*Opd_uqAX@mGUytH^!{ zQMvfkH=H@~^gdM`ROV&Fw)BAHiH{k3cDyN=xnbA4mv5&PJ(*lEyO*>7 zxW)f>rr1k3Q6xq2|(<)nzb-ns=uQTsrfWL7~%(U1z)2ek+ zd>0q?nbhD}Nx`H3yQtEzN(jzxrYq}-V&(^pJ@zXZ?J!HxKCs({G_rC4c z>OUL%|Hez(>{&8>i+}y!&GrKG|D7s#Ia2WCL_^@>UwhUYtlP7sR(qb%u4=8*JGQP_ zvVm7sYE5~Yz*3#uC$e=n12y;#EPkrP+p}%X^scq_w{OITdugRMweDYi>9pC)f={tb zyObNg|D5Zn+VK91-4Swa+#i%@*D5lOHO$)@@FfgRoy;M6c}> zxy%`y7nZ&*NJ`PXe6GNSS>vUm(zAE<-%k9WZdSM@y>!CWvUdduANBStSFK#`df=q_ z;!j=5m;BaEoA**~Ij9twJHd9{@1J@)@kd1xE3(t)Slse;ujP~ITdlW;J${zoq1V4{ zgx1MlmdMGxSAU z7jHK2%ZDh3+GUwDSKa~i12*haL4AI z=9cDwzpG!j+r4G5xx86ta=^4BQsqyV8ut`sPV1ku-|EMnn+H>iw%n+?zCgJ+M!fgU zogWAP7|t)8Te){mn$7cMr>*Nc-oHJkm-IyBw^Pm5Derx1@1HC$^^uq=F;P~kYI6UN z^Irv?sqc9jb!Zoh_1tYy{5vgscKPaM-}SV3qw4?ntbcCCO7-+R0n4mTNn8y7t#*24 z!sFjs{sQJ#M5p8kzT=#>xQBhdtHr5Fvx8@9`K@N1m0dQ)%HuU}sm4Xm3q_@`R{^KBX{=HfB$rDZMEl`39I_{EZJYj zaqHRco>xJOf7L9y-{P4z<1?en)h(i@uRM9aj=%rG-Mv#M&V4oW^%MQ?n!E2CT@kGh zy?cA(jf+fkmx`V`lM@~l@qPchU#m7s7DW0inpya~XT_I|(IH_RcRq`*d(-wX`0|Ci z{!2gdjz18*x$+>(F7M;Q+fouQov~EkvP{2M^RbfA)3>g(_x=pMf4y$~Q%xJ$z|$8j zpG=zi`O4EGbMdTsQ=i%P&3oUs^2Ab+=!4&E({t3~GHcv-M{c>4-q-Y`?&Y2ptLL6d zeO0kbH9tszZFR&3w}hZ6H75UG1WaFi&F@r)Px7${Gw(wuYm9_{~s=lk*h-&*V0R`>J@K8_Q(&u-2;^}4y% zdcj$ZkryX^e83?;wdA;r>iwk1BH{Jt>f&2#3mbPGKL2xW#hw)+a)oEK_DtSg89inG zRb9WV?o(6eE?B)NrraaV)jh_8OT;|=MuAS>BEv`LuJ5YKu$k)5w?`(@%!^OC7 z9MCUfCbd;*%kB!(o*g#fHvOuyT1VVNH{INJ@AS#Q$=B*HiC(^^c&Tx6jM8D*i?jGv z$(=89x%Xr3K3Tz&H$Bor!)Km8xqSEk67~5H?AI$>@7$%mYn}UUo^9?$zdpWO-1+#m zgnwzic&o(2j6;hoKY8jR!*|FyYBx{w-DQu@ygze3U>D}iw?avlj;=$&?@4$JaPmp$`d zyTldeIDA`EdOu`&@5Pw%^`>uUscqkOsqOZ5jlh0mm_3{_HrA&n< z{xp_lee$%VBDJ^QsL?WfYT{4t*-9GhAK$;ZH_2gV%WJONPnR#gt5u(war)=hWg(XP zPyL><^-J_?#-D8k9`oGhyte$w`!I3UYqi4sd9%$^-z;i=u_dt5iZSwC&)1MiT+Odm zZOB@qk?vl>J4M;?t4H|8$EW#RPqwtEzE+!g`u!Z$YpkE7bZSn{w0t)GqqFFxEFFY3f<)-@8wZB%f zOY`5%JmtIoRddi&;W^yLQlCjqJ%3Fja%=ck=S!xQQ|C^}zAGq|etqlxv=23xHkbaG zsGG*DH}z=NHO?oQn)~;^zpA$NX>jh{ZMW8+ei}9TR_&IaH$ky-sZDn2w`;Nv+s{8* z!V_{V@7l)XjvHDl{Oz^i$!N%Ioz@4*s3eL{>PjzTbs(h?Zt*^;<70hSDfRtnrQ5^v2vf&Bm*^d zx9rE&r{8|#GrMzln$k*>@|*IPTiqO#T-?vL{Va?+o@c8UzIkWPfjZvOwb&lBcxKe638z3a_t0fF-8GTyUa$@e~-{qgKw zxqV?rmY$j~QhTD>|DEo`Cjb(()#=Fe_eR~I9UFF`}((_ zZjsmj-{SlA|6P0j@4yX3Sre|Pfc^AXN?~Uz!<$I@GUY@W#SX0_dt9{Fq%R+IMe797irXCOV zN>Ts-M5;Usf&U@JCHnYztX7ef+>kmaDJA9KRADcbv|8DTZHLR_5 z`tO#>waRv%xV#SU>2>O1I4kgS{jqP{w{%wTTzmK32d~dn%Z~g$c}3pqj-`}h(0=jc zE}7u#&(}Wvt=Xn%viyn0+v7E2f|o6q`+wba{OO9_a`Obm^8+*8pUCFkv0U+Vjhy_g z-E+5=J$q}A*7K@wpXK?e{X9n_U)l*OE?Vxs^L^Q++QV~p|FWJlRh7@X_T94ue?jX&oNT9L{p-kc&5NO(GmF;#xY!xB zW2#f~$~&fA4yEsS3ZlA=*j3+c+N!+0^yz!?9$V=@=X|Sm3#R11d@pGG@7(&o`+mIC zugeFGxU0S7uYZ&Nc(>h`*E6#FJT41<6r5mK7_O~)X5w+ZpBn|A&e`{hp6D&uu$ z)gS$yrhkn$#Y9Z|refZ_$=6>LEB9M8t#6;}k!~L_|Ft?#mxxJu@!YKV(kH%3aqeI0 zp6|JIXZoK166ejPT<&~S2RaLiIZA4IIKS|G+X)I=GK$LhU2X;H0I8hgS$AZ`7JMBE8g@f z>bi3LN{71+=Um+EuKs*n7oGM@O7-rQUk>+pLKlZchPQ@SDizJ=_^nspIdt!)lU)*z9eM(Zm zx#T|^#C41Ao3?K5+O8%qbSt3Ub&lE18Pjd7Jl*Xq^XZbzgC(oa$=f8}~a+ zuTF69Kh5pFbJOLykJq#tW>4)ox9HRGEKOg+a=`-w}ZP6_XGbno?)OgBl$(?7(tS7_=-jrV2utGAe( zekrlI*h6*xqUGs9U3NE1H>N~~L&{xjQht%_cdrudw`ngev`b!9A6xsO ztSQcjH%0YK+rqh<-Ab$PT%Y=0WBwxTrwb2BRn)bgZYVjg+@sXiICskonU!n(cWhEC zI(YGJ`9n*~)OE_H%&D7Lb{{(X?_^`ymSVT}Te;Kj?mVus^JZGl(w^f*=PC;=Uw`pC zwJ)WIg@_3v7p3ZA}o`0Hr&w1q^mY!kh z)aQ2pVT$gt#gk2$A1_|Kk1b~Bl9!GCt7kfWeKz;~yy*T4&PtuiWWOhe&Foh4e3qYW zwz@FL)a&uWg|W5SOZD7DCdf}P3xD_Ca?Wqxa~rbCRv$cXv!1nIW^r4?oCjTKj3wF1eczrr+me+E!`u_2~JNvn|dYX}fiCSIV3l2CEIH8~@q=`;B~O z{J&SnAFJ+NV(w}GVdMOn_fH-#T2deL`pkp%?mt$Xe;9FMw%L*Y%IhjGhCP0L=RAF(nV#_ZWM|oovh!*7hxrt~Z9l~;c(362 z*}C1PPPN}=Z94U^=gh)8D*s|qFG>|odwOG!;_Cy&bzFM2L1_z{ANx*95Z1pU8~^KZ z)#Z=3-=^-=oX~E?w=8ODB?E&3gQtsQ$k%q|PZFDJ^B254U2#9zBJ7>M`JiD=H;@p^EfS{JgZFWuk7SGaK5P0GGea5)~mZN-wK$qNy<)p?T_lxBP*u< ztt&~ot#@>4Z2XVcvm?XaD|OE}UVUoj#>F|VEbr11-+3P0p}0!*nq|o3SBs+EPiM<= zPP_GR%eJ!RzEIwZ9OBewZhksX4PR>wZK6c@;x&dmJ#W_sZw7xh;&%q~4$@?P>``Nz4Z z3$hODr~dHx8)`3VDQNgEvuNHtm#cEQmP#R&9cy1saH(d0&5^gg=V!EuW=*K`+MWob zlumV{uaWW3>|eDlYI99Dv=7hRtafg#)%BHsuWInxu6MJVIyu?Z;=X{Yk_a^hhVKyeK($CL?oQgkA?|y&g#GQ`ZmJj)N@At|7KePOi`Mtl(K>LyZ zUV8sq_WhCV^&hxTI!?U)e#gAijwMG{zm`aQx;S{Bt4?yFK?J*Z;YV326nAz{QD0E-c@65UfRqqOyEVey){!8ui8>?qeKQg)8 zPxDdu>J3lqtn7NH+qCukyKKCz+HH5APv6Y`Ds$z@SuV35My2j?kllK2*UQGgy`SQ~ zrq-|)`2Jma8d+X1-BQNR?1nhinD`!sWOFnCQntNWlO!A}6m)`jKohjbB{M*&^Lvf`cUpMCEsl1tUy>zi^ z;lUS?u9t)CS3h>YeNgw;pVccB-v`dSzU_R-vA?nAr|s5*wjK*=XTEoRGbb$R#46e4 z9Loi!_r`2KbLesIJT1$vR~wlEmW%g3xp`vF+!{Nx_h;t_CJC3WJiqGJ>l-_7mXv8c zOWh&*CxT}~(aObcpJzOIA9-YTg^Kjr(`|O)b1pb;(tEk{s?MUPtUnB|Ogz?Kx{j}F z@t*T**O|VV_a>uIJ?+V+d&jR{D!$HXu`RGR;$CS@`e}=zkBe<&zf^5`oV4u7&ersU zF27Ee1nl2$ADmZQxAK3PRp_3#AAVGv|8q;o`>o8D{;U-jk5sw|y64tid;hxT=GJZJ zq~-r?ICS#x`7i6aE}Pm{HqSk^s@-@_O}p-X%Xv4`zc!c4R=r6MZqwam9{J#)#kRRs zn;N$|Zpr;w`~LZo_uKob|5)#T{r+fh_1`<7RkC|OYyRsl|5x$nS+)EurtLlR1qH8W z#ISx*K4)|~hb3XA*euW7XRD71NlL#vAVVj@(c46>m-!>Iy%;>(W(^<8MMMjJs+&1=6}ymNv*i@dDU&tu&4W~)?d?> z=~bI^=2w-ppTnK?4%q3x^8%M(4GFG_fGagy@J>DKe7EMHc#%Irn1n{wM+L+g3hylro)uHCsk|F+;k zv-bX-w}s+Q&o}%WAoZN@v&hHJ_csl~R9~Fge#U*%M7)6xq>-gPX`ibyJ9OBJgHMHzrcbZMz$G!Z=`|F>zKia!lZr;~PaY26D z%Z|}=y7RgAN16p&=RUl6b0W)3l}~Cdi?6KS_4PQ% z{w~qH2BrT`qn7>Jaj?6_Yr~yG%PVI*7v5Lu`yj%=GkhVdg7x#TS(E9Ur^(vgVp^@AzM-^{qC(PheV6qvsh!7F zsn2rymPr0{N#8dqZ?=|h->dBHn0W1IG}j&tz8ig4(&}$){u4dXRCHd))&GD0r5rl3 z=%!Gl6i-?u94O2= zbMTdT9Zk1s5aUX+n`q9r*r z|E8Pn;kqmH*43WL*)TnbS2fhT@97(EKg}baCad0r*T&6H-?i@CPPsk#{qDkcUYq~v zWxQt6O+4lI`i`}f{EGvtikEH5{g%4D-Q&WAC(qB@JdbGq{5GvJZ}-0Sr?Zyadooct z?o74M?d44!}L`S5Pqwuoah{^XU0UB7(v^B>ccevL;xJ=sA!<~CJd46OWN-Th`= zad~_EvIDmJZ*dybOxquuU-iuEqS>CH^6xKyugSETuDr*!`~BYs?~j%5`LCTVtN&6} zaqi!a`G4kuCZZn)KQ5ohP{y>metyA&6>F~Ry60ReO;!(%V4S#ELt5ZX$t_FM5dEok zT9!dMFL&I0d*MpC<;N3WSKheLvCFIT^|`opWQz3}9gRi;H#lQtz+-A#S-b7Fblw<*UhR`^YxYvNJEBk|_Ro(bJL>Mxvf1PR-2T>lrw1E zI)Co8H`CEc71?)g&dChrJ9@kH%!*qwALe>rnR9QmzE4ryCZG9!hq~*{9tRt|wAj&e z{o|b4*%n^LQjZ(dL!(x*?HBvG@BEqlVVvm4O-l&s#_f+s+!S`=3E-Tgv@{>y2G|{ZzBl?3v--`P&r}M&VdGGIi z_Ul~0Rdc1#Z&r(og!)_h-6Ge$zM^n!;=IUu0rq)+){D9qtbQ%YyY<-p)m7)ydn~{H z%&)Qe*M9#0i$^7up86}7`S1O|`r~uEFGo+Ziyl25Qn_v3%b#m`Ew?7~u6aG-T4VU< z6@L4}T_(&mU6yWrE|+(uL80s7&wW3oKCQ~L>a*Ct`mxTsJ#)4{sZMsjF|ptgM?${D z?!~p&ROOr`=XPGKeB=Ghv)Y^cKIc2F;uZgYt@#ueD}M65#{Bz962CabZ+~)g*nWCf z?wa_u2A4$lEY$nn7+6tc!TPG}f~TC}&wZ1ge!3Gr_32AZ%OIoEJ(nz3*#%tp*uR|F z^0DIjO_rHu`??-){dt4^r1Vrjr9G9cJ7ixkfB1Ap)|*Q9xT~jcxb@auQUCq3Byz4r zoZvE3D|gS&Q>0%llka`a`(As`vaddyCry2`=DlZJ_le>Zb92durwmW*`eDU?E-1dg zwC4T6j>|gIp5Ip5G`uaD@_4tDVfaU}i7z`orA%WC-#Ni1dC%?m^9%QsGK&cRzuelp#j z_^`UWu=Hn2{Ehc}7$PScZQks;VfywrrKUeue!cr>j^-Y#xmN!+vTX|O-d;axCI2<` z_G6-F&A*&8o44IZaPRz;d|!WhJa+ypef#wLp2nW3dz&LI%hE!f5ARFWDp~i+CHic4 zztGVhxtVMc+cPiDpQ9}z);DE(!7BdUmOmx-$=Yvvl@J$v_xux&>NBAdBFWPe#blmH zzbQXktX-K=V>hj+f6k`L&n{<*cI&eK3Ulw@;4AK(J@MVk+e_~$M@G%A^vh2Fb7Xnl zOVwTPRri{G&G@)E{^z_OH`mwrpIDHXYAL^0Io$W@j#;v1iL=%2@0xeXVbQ1ZE6ZJ+ zPsDY^m2dhrcPfkYjo(3WlWwg3v`xz{-NSOpr)g7p9zGDf6E(G3%l&EUl!+T1YFGQY zJ?cC5kwaekWr|E{Ohl5P-nHLbbxP$nADwvn*wlIZPFtRsdhMM3YK|p;r6lZ^ws=l_^A{p4wbE58oyR%&}#esAv;tuo%l z37=vE#Q)v4{4JT7o*I+8>c0D8ZuRUU-J0tmQj=a}?!EW++Oo&7#VcEtc`eFK+CA4t za=%@0UhD7-|JT*met(*#`^<2!`%PEho95HrH%&g~*{d#__N4yKO#i&4n|}VVxVrn3 zxAlMH0{kj^Ut?DY_`8!WdGsKjQVA|7v1A7|9N@$?VHN( z&Aaz}c)VSl_gl~0&Bx~~p1eKg=rf5DD+Zpai?aV84d16-_fY%3?eVXwdzZxS+GxzDG=cx%B*>t@(n}c5{lGdxo7(zZYQX z<#qpY#YX+z=l|$jUh(U^hv~(w&z+W)Mhfh_>Cfl*(yYs7%hxl-lN6nQ?N*fk+AExU ztx))l4O7_Ti08{boO(a&_nkKnKGpdDD)~F<{ikIu4?~u2j;cttJbTt*@0}CgR#)1L z4;}nBdHJt+F)=&7#w-ZS0qS$&syVzVWGHMutv9xy{Kn3y+_A z_e%ZbL9ULPBbF;>vCZWRO1m}rl$7HZEkozbLT+Av-z)#p3mbIhPe>~K+$9kF^unb0 zLf7Xr63atGLQa>P#cobjQNkCycaJa6t$CZZ zeQRM(ViCi)mc2eN4?Q=0Y584$+I?+5pYGp_m5p;>mmj@+u5;Sucd<{E=d3NMmJX_w zo3Yqz^De&ovyOhZeYo(^8^b+Q`Cr*8cULzR#5?oPmI<$!YkZwg@6qi=ud6(wm!6+f z^dw0aar9Z`guX}8v-hc4ovYs=Oos}>0f9i@~$zwWk zm-_Nc+j^I*wdubp{wUV(#x6yr-EzkF&-m@xd(gkrE#RZl-?!U%PE}k8XKSIl_3GYHji7hF1#@H(DgzW1KIn zd_l)K?WXzXg;ys!&YXCx{##8|K8E zc1^L|aJ(bzasImgrpB7c>>Ija?U7qOSmqT+TfST$^>fF(ZzoEH{gzIfm(J%u)8+A+ z?>0`8jgCkB);ZpFeYgHK-&azHw>}G%nZE9a`eqZuw>k?#-!0&Ct6chTWlrgwqQ9ZC zN33r@vO2f*&W5rJ9M|(7P5NAQRQ;pi)5@!zoBH|p%m7gT? z1Ue%9cfUK9{5Lo6+#@#TQ{hJzzE<+JESzV2_oCeMwFTRXSG_MO|FpEw`~jDIYSg2) zlAm)fZ!Z1en!;#hd~#dOd2h+(b^WDP&!axC{Q0J&Ha&^yMESzDX->D zJl=g_)h_o5US*T_Pg`I5Rzt&@S^M3YU9T5Sz50NsTlvtP)1sdaiplc2oyyTDcbTVt z)#j>F)lzR$Mcs`S)=G;^4`06cz3l1P>a{a?q@}z*T)FrB((hm2R-XO$d)Y$K`1d-t zQnydBe^T1xc4(Cu*P2EB6T{Ehox6KiV*fqQ$lu}L+k2yI*flMlN$lOTvB4?qS-AVE z_7C9_n>#kjAO2%=`Lb8Ed%^j{B}Gp@ReRi7UwU4?K&^e=zW06m=JHzKpJToD=cQPki_1TW@RTKby?gCAZS5O=;5xUD3mB(?0reu}u|| za@t}2v7=A6E^hCZ>ZyE(K0it}Dmt;kQ~79s&bb9an=Skfb$Q=?_iM0kDK6Ba!Vk>1dw{y6nY z;rt6vzTH*79xi*Zd`n_-?7fxVGDWj{qd#XAJIe~rEbIRu%eUlt&vdPag`q3_+_cY6 z(Rq0xSl+cNNGr8{g#u?AIPKhgZ z*(v|w*F2s>hKoE|p0BNB`PKS7i$QGP8y2CxGsGuN^PFEIB{lu0hw8FZ`>V42zrNv9 zFTX2VW~YAkYNh1nx2Lqf%sk!yr@1Kejfm{!j?Y?BJayH%MOT$9pKqRc<2VwkF#b`Te`%5zhPh z_PMxq{*rNzH|wXGv+bY9TX$;x$2G~8O8S9eY>AsJQMZ!6WdCi@N=IYn9iBpWwqYV?yS7Kes77}?AP2+ z71l|&Jk>}Ijh~i2M=O3qP3hY78Ta>2xh}gnXYwD#({nA)A4z|BrnGm#=iW^kl~O-B zu5;W=FQ4{rMc%sQG3_(r=R~->T-vyx?CAP;6R(TPuJutj{#d|peO33LOJBcV>6^FO zcU|qxhcEZMQh)uyLUQ@D_dmTD`iwspo>j^7 z`JDWD?(C}`mo0e|4x5)WO{|Dze7@tlmfNFeWqm>a7f;!4VO3wcWbeB9I^LWW*Ubvu z<{j;IaX!9n-YMR&E9QJX!iyzu`rTcyB3;mGpY7v@lGTr!?;cOK&D$y1aQ@Y^4u{yS{fE~76g-}Bw`ak>6=m}kKC5pR`2SziHoIN^>NmrR+Ru5@ z?Uml&f3Ri6np@A5XRrFZ{+(>8cfPyW9HE+JC#QY4-(YK%UG&6D?O$zmQ?J_OQ$n9Z z`h&{<&YP>oKJT)o)<(ytst=z0TJ!JSw7BUf3MSiXoS#{@vCN32H$L@q|KcS^eZO1k z@1EZM&F{Qs)2ih&eZNjp?{9p4mXC9~>Ry3&Yv!3xSzG(G=;MO_T`wk2UN3vGdjFid zWv8RG3l+2swuK4maJ%Ghzq2oo?}zP2vwt(qUf)>H_cONY?xuUw&1L_dzjHkKA#3Iz zy94WrS?>Lx?lL*#SnllipKr_BDAzxmc(o_AF#5gf*%=Rt_9S)wjaO#2eSMDQzn{WM zCzHyRvg=HzF5k6y{myGoUOXC;s+HJ+k=P?_VlwxX-N$$lCf$FQUF{J8NC#(rL~9cN~Aj&7H}+|8D%%sJROx z6E``|z7(O*?;h6nG459KCqJKqMjs~4?JDE?>KR_DdM-O6?rv@Rxd|s%INY=lJ6(ME zvRWPMdB&`ahr2^`3fJwvu=-<%#KcJ}wpHDjsgP+bol<1dH?J`Dlpp7|*LSa!%C6l1 zIyH~Wo%(ppXz%unvwpWcH{X?b^JBm3gO2lduR99v9)DW1J3f%l_ST-+ z`iqu6HdMYP%4?{w<9o7|VaWZpb2pz|Y{7OuBRsvR?rVD8{#n92v)U)IJ&EX@F!|A< z)Tzv7{SrIY%u-&O<*jE}=rC*DpHor`)A^r!ncca0V9xX1y_Z6TC30u+UwYvF_izCH#^fKJA&Nc;dUPC0793{yh^FE?ht5JU4vLoItUOzpM?O{B&==AGN-M(bTQC zap}M7ueo|IDZJU^U8XK5yglajl+*h^&+<+`CRCR4o0h$deXe&oFzofF zU#fL+rc>qK7Cktwv;MoBzpT8?srsj9`H$WI|8;&x{+;`~AAA7Cwg0~N{Ev3qe`!4_ zd{X=9_nn%af8Jd4laZbN{&w=N<2PnZc_DS~P2l>;*No?y6-@cX;p}p+F85}d%1NbZ z#+t{k@S6F_ex2xlQuFB9qM7DFY3IMboILvli}$s8#r3N{_t>;le%V=UwX(j(Uos|} z{bNBlk9p~gjv0L{YHNMhTsPqQ=W$N3&d$|6e$ENy)fe~oNf$n~duG)5Psl!oJx^nO zov_;Jowi%WpH?pw>=V82acaxeOwYT`elwRhJ&*ghX8Q%r$%!fd-!IiW`SI(!BeB&@ zAKRo>CwE_*b7iN=zui+RoKtGsJCnVae_#AdYhBgJ&BZdo{R=No{SaQ29QE|Vonv{q z;d57?oAPr0j!@a{C(5thHLmu_a zzCE5bzO!dVKC@hw{`!OPtJ`1ekFTG4CHth8UZ_dAtQyC}o-;fl=fBKb`{(4zMONvr z;uho>N&WBp;^Q{UrnV~Js^@QpiO!kgU)Fr;Yg%-8qPzO5-<)&asnz_uzc+4r^5bht z&AxTNHD^R-iSG6>j^ub46z6)nP44ze!5_(r{y4w?^M8-FyVJi+%KEiZzfNu6m$Us&nwvjb9y)cOmu*7Z9>MC? zwsV?Np%O36>ptIGIq?&p{kpWg^P8_{oAIg|Et;1)?Pc)sF9C)!?nO_Ezg>;j5~zw+ zcFnQada&8;HHW*v zS2_8_z;oTvClzHT#of8TiCbK-^w{3H&98lK=gUq~n$>^c$%?q8)=LlBod5Fn4f`S` zy~D|`SDx#b;b-n@li?X8aw;lyg&ApzQuDO~zebMtJ-5XKQl1+zm2q@=oqe-X);F zf$<6(=dNw0?W+`Tyk&UbaLH{-&Ije|_ay(kC|P4Oi|^fm?{g3K``KRH{p$J0IfCh5xt-^x zFU(KftL8QHmB&ukecf}iv$ZR??&F$o>eZL*t**G3r**Q_CBekw%BAaX?GxIc9((?C zh5Gkv{{;Vs&R?>|f9}$AoL4oM%Ris^Mch7B+ad8~r?mYx|H{>u zGLGi9mak1dP}INe=*C~+sm$AVMsaHHe>11`N$8Z?W$OfI&VTZ$@-Wl!xw9{IaMw+* zyPy1ER-f~$oUQw(J~wbGdyv0W`CP2k`IG;bq+c_e7Y&+7;^=T& z%x%BNy-u!MUhOlvN@u;~ywb+i7J>JbJCZlQ=Gr~|o%>eTj;j-tOxEemKOWM)>{8&4 zYx9m9?4N$>=$_ht^B=BDGYh)A`03G7sqJM?3VnP|-w|}?`PxxwE`Rg!)w;diI!cea z-eg}d-fdibdx_WI^V`1K$y@%)uq)(C*I9Eu>!k8lM~lrr3yUIye z`{83Ps+TX{ww9Owy4P;ClCCTF?CDzjPZTR1Ea{!ePRB(jYF{v!t-8JRT$-Ytv^$TrW#j7$6PHdADKXsnF)F9$cz0KerzGY8JmY=&5w!eZ9`$%G9(hN!#6y`D^u$ z*QedOzrN|vz0Ma_>)LKkyynj0Tzr~c=~>#(Wn%1e%BED_JIeaGbK7OvCfU9&v8Vg? z*~#Xwjjf$6SS^*_UunuUCw%9_ge|XQzq8%5=BcaQW4$h8Z-?3338pu9CZ#Vv_U3Aj zMaW+9y``7e$V|RACF}R!m*VA|6lG4gKeoC$Z!N#j|PkOHK z|J2B5;~^}#=kd*R2WM_&^12;)YVo#1Rkz;!&-=c;=VfHlS2p&?Qw5EWOep)gJt!_Y z@t$70;_u+frt-_hyeHX`RHbviv*}M;KhY)hQ0(=4XX>YZ@7VE<;qK>&dxbAr?l23H zJ6dUfJA0X;wdld->hAh~zwb-`e?7e};r9ROUnVIj+5Pz9w(GQh)9j{C?*-?2X(rE& zf5bW~yyV};Yhll1*2ahKJ1f{&Yn^YaUMZ4h%cW;6s&)V2A7%Tgj`1G^?A-4j-Lrc4 zsf?|8hjT1cl2^$r{@LNZPI7BqJNJ{13Du7yb*00{ zrkE!`v2>Pszesj--mKdT-&8tRKGZ$Ero?RB-$gt%Vino*L;k<}QG2Q<^89zV&bxD} z@?J(-|H+7vYd#b^^=9O!3d^1^)u|;>QP=l+^taWCzSZ_#o11>k(Yf9%a`pM&E@B}I z7e7A!_3P@rvXUt^q3KH$p00c;>HfB9`@P>s_iIhKy6=kW#_9V@d2F7QXc%Vx+V-iX zAmo{r>EE{x&$hq15TjCdI3wusq;s)Wa#!0+Q$BCaQU;liw?4D=A zWnJ8A=Y#*%EzfM%KD+$aza6(Mr^~Z@RqW@Gka3^{}pc<qdQfcUE}*&l~HHgYJj9l>hJJ z@<;Rk-s5kPv9-=S;Gy~7^5)DWXRUJE>#|pFGHkGq^VnRF{$YyHQx7I>*3erw3bi@! zb@fbc($RC%bnxtoeQ>w-TfRyh!@8hJMjY=Y!ydTrR4!~0i##a5zrSSp(MFr1RUh9q z?YLL@d{g-QU3n?yi3>`OZ@(**sLp@9@!0CDB`fae?-#7o5?OpEID#$w{w=m$%1U3= zCI2|=4xQM&;GmlHPU(BQ^PAc#jL+W66h4vpYwhvf5^?qOH+<`!Cct`KDNcIl+iymF z6$@*)t^d9&;M!DkeDlLMpUSt^zkl4}eb}sL_4a4K|5qL9`BXfAy-|V8BsU|SCGJUz z2`6MfoD|elzg=tfPpPlW@0Lp1vSjH%nPXAUYTRE7{#~T#V&~_a_PXKQEALG0N4xX| zbuSn?J2S{`4_)*@{{8kfLEB!26nr)Ce^f4|R>o$ZWcNKcceCAUzdXDAjP4@EN+#K` zIqI)A|5|we$_%B96G^o)st>I8tlO);NyIyMnY*|9q0Hrb=6r|~PQKJMMe!R8+ zcVt=H^e>a#ejV)pm-Zz?Gw6}s;+2~}r{pCt+OIhGJJhc5)F1u*m(9$rM8neOzdl!^ z;NJ1|M9nm#vPs+@YL|0v<~w!UbgtnO?bmme4U1;&`Jr=OQ+w6g=#{TMDmR@uw)Oni zXH(-!x1Ml!=+^)CW$#knqOz)Mc5C;nUVJZX-t!f5)wRmZ(`H?r*Bzrsi zne$IvzVsu6-Rkz**Grzxw>jrkq!iqD@qN`i7TIXQ!;wEa-qk$W`TCQa!QtBz`indj z>Ze7r^;vwYlnK{wd3x9;?yJTZukx=m=X_qG_$+ik^ZBw;*T$XCmOlymtJ?={V#_1_gTw@zBVe2&P$ z&$p+l$W4q-OT%Z?5cH}_I%krHR8d>lc&z{$gkeM zIy2U1P0)@Vm1qBa{de*26H_)@7>e*#JkYox_t0Y*uW9J=B_9u@E>r(;-?OUbdEDIO zNAk<=cdb4ySUR;UciqiE@t3o?ciak#F7e}iA+zz>^L6E|PfIsk+OqQboM`4nr95}M z`?@ael$`(7WWnf)$Q~9Ggo(Q`K5Aje%Aqw z+4k~p4=iSKRbLXzKk?Vf7n2v$%_G{cO^iYd9zOdC#=h#$M-Z&weV|eJl3;;nSB6uXsJj zZ=2eUsvp%ZR*=?C0x(&{YykGINoX!5zgI{wcPQ7NRT+Qp& zXttB-PoCG={QGc~{Sjz7_}7i<{|0q$Chr&0&3SS)YH9Vy3aOT7s!v1C zp62)@ynnItI=3rn&*!8@Sv@I^R(`vv*iwDQo_Ej8uJWY{AAYoRclV=*Hlp=c-tSSn z`u13@+p^H)ZLfMeik#S=UU;LI*dp^(;qcWB%X(DQnf(JFRIhV?Q@-`ZRnzlWp052~L`u{fRXtEIi8W45fXmi*Hg ztM!@RUpzHFtsrS06aQuQ&+EH6Pu~))wd$IuC)+MPe^YY(`#tIN<(F#dm;6a{iF_)W z({3^4^R90*6=iy2td*Y4$*WxN_5CzUJh2m-H5W(s}O@KlS_j58vlp z+Fbf$=9C=2tkV~^2Q{638uunv+1iCA`^)9JnIC?KPKm4DC>QR@Y*8F^^Q04JVx+I* z*7&Nh?91!s*NXkFR?9&e>HnUwu_}7Hi!_fsa$B z2ltuH<&@lf&)RK{$%9JK{7=%`UsnCux2gEh%c7F78#7CmJm2{>HY;(tYxj*i?$_46 zSXNo`@ac&Ujm0f1&imi{c#JuT^Jdp!FXo-+`-4T}P5S>v-j2RoS})Z8nD2Pqp|}}R z-z{I?tzEWBHh+P~-oq!Yo|#o%IHDUBxUW{nZ|=%@6X!_(Ifcjr}Y z`H^4u{P?5q_x}WB^c8*A=RLb9S1w=W;O^rc0gDf%tM|>VFlsne;nd8rR9N$7*|!ws zEd4Kbw<3O ze_wA~?_%QqaO=lE=aikI{eP-%eRa-uTlwLO)i$p_m08}&cr&vgMs)w7xuqp-XT{c~ z`uZI#bN&Cbo)0E_I>{n7c@U%;zylB?(d6^E(rA9ksNO25_V!7p z<$YKobt2O4X#Kf7XHj#-g1w*GCY9a2{=6#x?VKMWyKR{+?ml)k@68Qu*Kemhx3B4Z zTNDznpZC_Ml0CmOvVFmom|v%6%XiKHcWAk|+>c3dlP=x=b4CBy@q3@$JDpzaxc_$wkjCIv1X=5uEs=V&3lBVCnnOVapz$x4H7QCs;#A+*53I(fWHU?`f^yRad`$ z|L1GApN02{=P!I1`!(da)=%Newp)pRt((nDJHkG_H``n|XJ_4{>GB)pg-^YlGP63x zM(~u@>FaizYQ0uXmCKecef_Vtu5Z)&1;so2+W!2E?T$!!(DuG$*E^o?rNT>&?LYKa zWZ&Z%Ry>6PzhiF))SXgVbv`>sXT!XU4@^wwPTKcX&)RP#|C`@BJ66gI`(1o`t}|oj z+P>+pBhBldeLNqu=A+_|cL)5>hAUsWkylz&`ECnm`P}o?lCG&C?5TRMFIGODlz8*B z__eb|_g9=Y5=^(QIo;`ZYvt^A+jBGHwCt4s-m`qq6YO$q{i69l|J`Rh`Ru0EA2!F3 zWjaBT;;Pebt^Qxy^(3`PFwRW>_@AwMnS%YEOI9ff?hEea+a%ZLb8@Y1*3wz1C4`>}VI(yQ$k^*$zvuC*$& zaQk;wd+BBl&ugy6fvHn>etVVkV(GppBWuryZP)yN_+Q9bD|$az<^C?6QdjNRpM7O# zC%zJ>;pqHTk<{{X*2%Z&hHDQ*C9E!3@Aug>zl^7I{u`EC?w=pO4O%)u>(1`GjJ|ho zPka7$@rk2ip-Vy^O^Q&wef4C-UaQ|vZ2ENjjAFfRgtNq%?v{QRo3Ax3%UkI8FA@GP z#{y^H2Y@#mA@_B|7y>(^ZfNsHh-MA_+5RCr+#L@ z*Z<$D>oxy9z5Z{m$!e99%K?vm{|H-X=435$TxQB9|EG(jOqASQ9t7V|@H_lHI7Dya zozrc-||b&PfPa;MQUxml+il#c523l^*6dh_D}U$>t(~V?JUOuh9d z7oOOnesA*iXIG|MtvTAWr!Oai`~GRR`Jw6+IUim>5S;0@TE)Nl{<((I-8^-#;+H+1 z`|SBoH}<5s{4?c8v?UY;PpIyRXuf^=i)qv6P!A__wxf@~M3ztE*6+Dt-57c9xzygs z=erh9jy_cUHzj^2+vx~j<>bTFefK3Bc^O|{+re>vu}W@mrKY3*y?Vw&kIQ#H`{vhP z>Hj(Ir~BUnofYT5zKQ>LaKE(u_owe~pP307)$njBZIoj=>>&?fh( z?#fEJ8B(*?t`a$Bs%U-u$I2=Gb{~x0UTx(2bWqFw<=h{;o*d)&EN!KrA^aS^hogBGyk=bIG6H+m(DxbDr9ayo(PT1nV~UNPXUZ`@)Ui z-?f5+^44EW+A4FsU5mN9EbHFfx~1>?zL?paY@fQ`>L|I=iyO^#tJqU|WKG4{b^7ORZC~$u zBeCsrUq*RO{n^v1xifNd9m-Bm^?e%=(faCQkTT=pC3aCy=N9bT>b~{ujPxZ{d+vWS z{L`keUHgX3)t5afC)Z3{+jF_?$JV=9eW%|XsJ&IY{`5yV`H8o-?#^`QUu$zQXt~wB zxScEebf%f#eyy1k*$*CT%g;v3{=aNl zQ?j%8&)O}~)BO&WPN~TaPUjBfNx$@1*)MtDdyT~7k)qsXdp^!pwHEMI{HgU&)+cXf z{yElLTen7~T{C+BVRyp*XHM^*o4TLN?Uh>n|H0(_pUiA)J>OsZvi{$P^GED|9g63c z*6=v0thp(x)N1XawY|4^-!HW}-64BD|NWA+Pjz(cZ!x~Ux#jje2fvg5IKt+w)n7W5 zYj)IxMbpcFrnXvri0(Ub*YASZvnIhQ7Mpl3rrk8-J+XW0m1MJfeJgA%W$y@;hkVPJ z_}DULdX+7YoYk9~mkx0H+%W^U#mlB@7b&5u6=2#W<=DUKD`Qk?x%A@ zFI_CR6xI~nw!nE~Y^|AGDW}crg;UNZm&vWQ*j-V1@rd%$+j`}H%l1Wosc=%6qm6vjyw+W%p0=oXxlM-qVm~MbZ6J%@5`B{?MOp zK8Nuhv)R1f-E7C_R)Q|W5Ip|0MEd^m!ujd;>x%kK8traN_Z^e7QQ8t)VZF}m^(#N! z*0!g2Jj~>}k8Ns6x4C!9cxvZ~iLzFcw(gpxd}8*>g)`5;&D3@demUWb&f-sta}!?0 zUR@!vaG90q|JQSZ?bi7>{$IU$@{R4r2Hv}`vAb2T4^aQf{qV)ak2=nY{#&#Eeljy( zcJ;w>o1Zze+CF7Jaa%WaVt1uod^WdIh4rbBimD?$No#Yj^oq7!-m~s_X-mZB#E`y{ zhpxw8Ywc|cE|}hOd+}EenakDR#Qy*IJiqV$kHz+X7d-K<+P+-=?~(npW(O==yeho< z;E&qu-xcX@?_Fnn@4UbEyUFgj{HRAZr&l{o^VCs}mdpLju}4l)?$dI`&pjdjZ3~k7 z|IEF(UvSD49sYNV=2^eud9q&mcUJY(a1MXT{F&~-mm|RQ^d=UHw(2FZjJpqgDd{+@>_{Y{m*W# zE00mO;0ygW{fyJEjuYQiHrZagpS*Vewa`-Mv(navmjA9knpqhBTmGr+Q<+!UXU>;y z)UCIDx^jbig-+S)_-XM*ZwqCg*F60py}nW}tYSxD&C(Ua zLF|qGC;nNTex)&?^+%UJ^C>+wDXw$>E1fBE;m_v<)vEpB5Z}%ey)-@Vz=~oMv-#lR zkNA0iM1r(WPPARO$o25|zYDrNuiBLEtlAxNGc9eq4U>Ohz^c7g)gC)4CuQ>Q5>wJ! z`e%)IMw?6Nl`U4MK7H~xPS$^0eW>(`YjgG5$-!Gz_4h~2Q%udXTJ&RzwUexxk~D)Hvf5(_@g~R+kgG@i`;Ynt?c$$yR9!@vi9tMw)Xbhr{)U-XQ$68OyDtf>p$+M ztG4-WP1xrrmHQ40e=mGqYj3w~+ULzlg-7GdJ_?<;xn$hk{HRdUtnS&g&5I{)zG)Hp z&?rvJb;9%Yd?#NmI=;Sb-;|w~ZV47KoLijtQh?|D>HlwT*DKon`Qo-`$@GxR^80={ z{JA1-H@9q=Y_LIm@AawC9v)?tmVTe~UM>`o3*6bFq`Bv@!TRQ)kWXvGbaa9sTGmu?Z>sKw!B-PwO<#!mhRj>$_qq`pOe z_dMBfd42gGZX50`-p?l;YclBY<2Y^G_j1XU#;l%={cmi9%5Sw2S+$(E6!qR}X*xwa-iG-d5dPR#E#dJC~U7 zyprR0U2-?kWqRXew}o*^`96Zm?1_^O>v;zs7PLsdvs`hX{_*Bdd>hLCzPp(AFR=C6 zmOJnE*cV*8m=^oX`gcLlH@VLi=e_L*(;jt*_~~MCPm6S@@rk|89N8v`vnG7u)BkB+e@(E8_b;or}50 z7w}QsKK zUN#5XKFOS1lKwH?`5SC4K=~PmPj`*a2D+cgjGI|LK|CTaX-n@laV!0|5}!9N>akk4 zVb=Qe%3hoJJr`zQd&8hGU*O#e^OSv)-v&In-!C&^%HorYIf5TVKKm*;UwPMsg8RNd=Y4WLHFvq<%?Gorz2@1v{0^## zI-6iy6&1yEUedOrAZYEzZ((jZPp8j3Q!TQyWc}|C^0KlsqC@1@Sh;iP|BceRenYiC zsMp1q`To}v^KCcH5Zt(!t$v$;*rp$kiqhn4r>gIcbuUcU>xyty=x==;S6=Wkmb-uc zt#bk=eGay6SbF|Vz*&=kyM=hI~ zi({W2P+n8?hV|KD(YwoyO6%(0*v9wE|Gcq2|M$O1_wK%2`&sP&gYEyqYCiV%x8^lW zSo9=zbLI4W7SX)bEMZ&DEx5GMr0<$#^PJW1n#yM0x>t2_M^LESd&j;Ezc;ZLck*v% zQkI=D<$+fJs;0@wYE!ljBh{H^u! zocmr`1oPEtoq9V**WKWjx_oD8cd;9*)^_FkCo+5w>MtDA&3Lj(dlPSFjlPVH>%CvW z<#)R`2N$lnG+U%jYVMRJ66+*B-3VTopSZNYYwf4gFAkqrxOsb|o52ar8-g1rOuZkv z^6BP1*UT)gD%~oTpFbz%@`W2~yo`gK`i?z3k^MPtcjx41A0_y#tWWl_MLzA4@X7t& z_Pp}E<=nl-hw=|CQ?`+{oiR7>@XHFfGCR4BFFVRzH;5^F7@vD4^CoItZHdNqFV63~ z7jswt*r9xB+xrPu=Ir^z}O*JTF+nwJoLRmgl{; zV_#P9^pOiHTx8n0MThIk9HG0r^!1iMo|w7EXnhiYbkp92YhN|2-{WqfW_R@eS?$aZ zr*{e6HjTT+%W;*XZ2vxa-F%J9v*OOp{hQ<8ud}qd{qC8a zmiHam@YKDxJ7TuC$Q=E6U+Gcz{T~_N0oHp~z>60@~?-YNy z(?f2l^5(sY4Mu^bW;ab@pE_HKMcsI~v{z~p^N-G}B@_2v?fb!#8vW7aQ2KGtx_2-3 z_5Dj%pI-P-xoNZG{G$CoCVX_>SGyqpP5Yz=yO@vL$Za@vQCG+Q>&*Fry_Qc+UEgkx zJfD}V^zW?s=ZXu4-jy3qt!%qHz1iod<}J~`Q$Bvmcr*3QgrzzYAF9s#B=yvAm7o9C z#~CYY+AUtM$mafi*K2ptDYwdFN4|PKJ{N3|Wu5c8?yTmy?aUGnm)W0{-FAE8@!F|t zvi?0Vz46oI_PpOMw?BzLwajC?@lfG$g?|3l6R)=%)A?}I%knI{)y(YKm+oqbM(Lfg z(!FiC|Li87*HUJUXTp_zl5>OA?@yM0vGdoV$F-}^z5i&^yE6Vu$cKM{p9-zMhxD!N zQ@y>SX!7fgYkuZ;Uw(hn>W|y1N4oR3PfGv4^If5Y|LXg9buUI9+;%eT^`@ZZ`;JPu z=g2sr=}lCUuWhfRnYK~*(z(-&$u| zZvES1zm(^;ZT^Nz=Uui2y*w_nU|0T4H~#Azi(l*9#5&Al>&F#q3EzG&oGi;wn z-ru_Ik({-keDR~mpGSSIsJYv)6!p84K4r!f)=W-b>S8dgIiO0-rU{@7`(ozoWuH)N38@ksEKDT>Olz&U#oM z+1an7w8U0&Th5;4lh1pe(_eeJ(tKB{MsNSIyI)>Zsn~MOF5%nqCCxM;v{^oJNn^X$ z{{zwetA2PVO(^ufXtMp;rk3T0t|_OfL@nceuM&Ef{neSi`K6&>B(^@Cr|Y_nGg|j* zY?!IU_op1ED+=wN21b|5Jg)qv+;{rtify7luj{eLo1Aa0wofyWUs}I4+FX2te95HU zKK=J((-o9?SML3utasdM--Pmh*WC4~akmejo0=81F=f;AD^F#f&RBP;r+4!b<#W^T z{;gkfKIemR{s}hC^VL(;?@ufI!Kv(g@15OB`Q49e9~-?$UA*qu3EN{IbIlXN&+WD8 zzxBr6-Sb$|qae$oFaBj=g8Hw5`*Y?jW{i0%!MQ0*de3ohHZSXmoW%>y?)(-bdatx6 z|KQiPnU@co%2z+1T`4v(d|smZ-HV&bgbbhQEBD?OWnFVc`O(T!7p~`~`caYb(Mw(& zXfw0_{WZV)|7-1f#kfn}t6oOWyVoKA<3zsS<5HJ6@4vVI#1|VM+B5l&j?-t|^^$Y? z1%F1Adnd;kTTa*VndGRM|Ng=9&y)7d3}arl=dRXz&Y}}uHiXPhH;I<9t;**YowzUuApxMv*4=2YES=oWJ&M7HzU+Zbu%{59?g(cjK) z5Z?Y~d7tl{lSOx8++u|G>8wv{e;}CWyoot6VJF9-9abeS8>O^Qep)ioxX519TO-v| zZ~a9<=ko!3m+_z03yn*cUv+26FIN7q!EQWZKdwxx>+f*dt{CSKd;C|=i}l_YYSv2PQMlLY1#L;2hz3AS08zLV{);6mHfGVR~+`gQy2ak zJmJkb;bXyZJRI?5NA}$744uB`&&5n(tli!fxbfs>@7LDBHOU-fnmy{R(I&1$g z;s|2bLp!${eEFsZW4S~*7x01(FF`X)<>uP zxOU3%OlW5Rq=>0!b{NV2*lV%v!^$F)I|BE6E(Gr_ezWZH=?&jbT+G+q#1yL9ep}Rc zamPH##+DAFXXnrV>Uh&wth@7g^_kravGbL0Mtzp`I4rr`D%4u0VQH-8r(31h?_Ff^ zJ}z5t`1;GM1=A1~3pYi+TJ>vqALv-70QU#-8lV%?qR zX7k-IJXpTZev$rV=3bd++spRNYSTTtfhTc&oAo)7i%Z|J?(vunZUZAJ|f(=Q2}^<{W=vviKpnnycL7Io*RS{T_r-#z71Y?Mu& z-~7tS-s?8M(|DfuC;Ify=TX;qq808Jyvy{F5fvy{ka=&zJu$&X4O{Db>o>m2%Fq8G zY#*Rf6tkZ_XYsni^DFKjzsi5LHYxbPlg(C6J1o!J|9rIkadG{hlNFx&ohx0B^w)oy z{So>~06=1n)PqOT%W%`Hqt?vJ{sG?}v(Y@PJBiH1y_1rA~ zr*^0E?^&Z~6Zh>tdspmT*uK?wU#UEfS}Q1a{`|$Iaf??QPYCmNuiSb5O8b*Lrh1>) zEFU&(VimsKJJUWo_~!bK9&@X$x10Y6_P?A~68h5G+L?Fx?@7;Rf8JUVsxkkw?}w`^ zHcmB;5WiTpKK*Nk?v%2NFI7{xzgyvm=lS_;Kt>~W;YY{f7_=NSO zJmGs1X3tjNUSI5#dvRfe?2VGDZxZL?rUuJ>OTTa5-?_f-#Bs&wYv%%w|LKm%+;-~V zn&pq43%-3*akALwyi}e4W~(P_|6DV!J9cJqs&8;yR(#w8mjv0hZzHa}eqei9{k6>g zzSA-DzI%VDHY;4+CKfW={no_%qnBsB;W?=l*XFLZ3?_c%?&FKPa5wqlv(J)G)zjy{QxpCsakk~Yu=`tveLVTg_HCbUoE>D{ zFXM4@VccWkvc7#+Lt|WJ_pMx%v{bf>U6T2TbFTj9O+3QC11b;BvbtB~xjKpQ=+QIk zzFXJ#KUCIxb7pzPBB?T^?THbuZ3Fy|6|T#FIEB#EqpngOWu{UnP;rHfF#BkSw5c~wcq)-buZO;oKgCu z@00Sm(}I~CN=09|k1NW1PYzX1O1(R6nN11H^g>G@?Py|+VpnC+Wb=+`9oK( zbKB$ovSXf7R7lwV$o`(^x=GQ?RNZGRX5hVC8gpGVcDnNSO;fD;Z|4}wPC6`6Z@GWn z9=l_g`z-FAUY`E>#{Mdk%$LW1+%i zigCN`)_V7UTAR}|if&I?*~?tNT+YRN(V~kh-8szG2IhPgd$ay}tlFW#r@p7QP4iw| za$j9%%PJ1}%E?PJdkeb0l?Qe%D^-8wP!M!(La>I?<6Vn&Ui!V1i~D>zDr|-KmVmVz zUTMo_+Sc$o^vb2q{kksY5?5x^OF8YkPksGmYrn>vzkTuUWG&^)yQXuW-+XD9X1O$G zdBS5gwrPU;#`$-?Uf#0UH!|}3jwe$(mcD(pbw$l3b-fh1f@%A>?^R9FdHzD;bDbr> zueB8Wp`3dgFR|TL*Ii*>x;S%5`MoWH&)*dLp1<`ly!YqVw;nMLXYaXfvNG#7q4O({SJXY`S@EXiRaRa*o+p;xeKYNa zZ16K{e}iqI(?eDTuzRiX3)It$j9l#Ovu4tU^*%>SpQUb{{>O4|#rtV9_isCOMX2oh z9P96=lgoRm7JrJF*TuXnyykevr`11St8yM+Z-oxIunxjta?aThH{|Gnnww|dL9>s!{$I%TQ!s=xBq zM~3L1)$Z%0e9KjKgvY!qh%OG<9MYC{xBBT$XPdVLVXY5;`fRz&H)ZFs&G+sexBgw` zci^<)ypLBN|2-c4@vr>9xl8x!zq~v5T-_1>+K=sz%kTZD2)NiWfuY7HYtyB?hf%NC zrmnF56m`O!_qJ!o)7KLV9e=)b*fL3#xi|cI^rPq}4y%v2J&fWyB0Q(pq$%Lz9Z7wy z^o>oEdR^BYFW++Yg#PCoE&XHqqEGh3CO^5pS2Waev*6K+)m|H?2G81|yrkuMVA1;0 zloj*VxM>$}&DpSR_FK(!C%SIF(3Mqu_1f_MGf}leyTdC*_~))$_1Hz)@b*h#v#-v4 zH+D@6Ywml0kMn`z<%h3(lxjcER6Ve_WYMqH2UktIY$GXHnCINJX2Znr*Q?hT{o2}X z^hDu>p>pvXlN~CamMm2dEcTn7&gdy?d>wPJL_WU1L$I~v?9|g2>KEl5I;E06|HllO zhEw{>8-vXj&p7sGhS0yPR~r7GXC&?@@cMUk%SVSRJMwxySgbR0ed>6%VfCJpl-HAs zTR(SN_y0X-`)JSSyTvo_MgR1jwe6w*<40Q)ZJCdi-!{xI3wT!Su6FOaM4$StK>dAM z5h-8RJioUgUocKTWcjCxGj6s^Cd$sWm^7zGH(N0--e^wE{Keu=u9(kRFQ9qHYp3l0 z%$K$mHIo-_IIj`1@A2lj2mOCv>+8t4zGrH4{iWdkgV7qF+6K;o z`&~HocZWn~uM}48_`gSh^`6bIRG%+5Z|`z2neutk8S|{!Y4gsoX`e0RKho8$b?d2N zv}~j0#giLf7cYB#XkD~)VC~lx=e3hox_x;0Zr`*771sVL$>-bUW^6dO_!Ue2lr48Y zzBn#3*X!dypB<6w``2Zv?+Y_b4|lULOw&@oR368E_aML4)xEZBPQ|)TE3JF-GdUyf zIO7|e*vh8ju+QyYAA&35kKT;B{cm^CZ2q-2TF--d_d0w(ap(3T*OEgw4qaSdb)_k= z=4#Na2U_pz9z@%V-~YC6y>4xl=lgeGxa0q>`!Q4hf3@Job8W&`rmSh)xCF4lt-(BsGt;&VEjy3T;Gd_5D-t))XznHA{-DzjLoVn#3^WNZSBfrAj zt%(iRzx5A$@4WAq?3sMMCy(2+tk$mo#BEk#yPtA=1_w<)gfH#jxt#m#`?}lG?`~e& zIIrlHX6WLpJ+r#YTn~Qz`fmNQn%a9CkN=w5{=xs{_R2df)kkyVx^G_<-(CK^ChPIv zzq_Oh-m65XmIp_1pS7QQcE@?Ys)rvZw%j~4k>|+TPw#$+F3pl|d;DlU`<${C8}HOd zYpa{@Yx$mh;I1BF+O{&M%qzTC4D#W+zX~;|)5u z`thRYF`j?TmWC$xY&G$2eC9h-z4JBq|H`*T`}XKr)t8>zzC$Kou<-rFSDzvz>gV+L zNGwg%%Tx@XYn4>IaH^ifFVo}7mJiz&$KUr2-Ch*)-o|f>#k=RT&hc_jU;IA9_MPps zKi1XVF9boWO1k6!yedEHUFGQ`Uw{Alqu=|!7H9rlG;z-m~nHVe`UbSiO2jTL(lP9O*vA%y2tt6H6{7%e3>4becd;6=Y?Be z^}3o~YnkOHvFLNwbCxMQXC8~~WZQKAmck*c^4c3~51jPUpx+-c2Ziw$Jq3d=^?Y`Hwq^C>b4y7*EDY`Zh0@7 zvUAtP$KbubtC@cO2tB!L)2Yx*MeTsOMvZ}*pWe^q_{8Bhd82aTr+ES!h1{BcRR3EW zCi&25#-)qBo87|{wMw$|H*?yZ&#b-nV246X(&L>mp-<)IPp>ds_~Y@t<4wZ-b0jOu z&OVLnkQKNW>hbYk@WI3yuQM^3i}W<>l4A;L$}?M^lxFTXU${+XVx+}$ul`E?`z1kN zR`7LSTW70q_S}MbiE=B7t1(mkL)qhF8E<^Pu76v1Q!7hg&F7{m&(0_LK3v9e_v!UTN4MM68vnaj z{_pekEx#w->wS6lv*y2#@BbCJTsWzce4yjaV#lpk%~6$cs?1WmzS_BSMtw}p(d)mR zu!^l#szlWyeChF1J}kVi?md*;?8o)0=#WOJpT~`|;~%eFb-lm(vme{rGoCFA>nx9O zxaP;z6dcT<+F`f4)?i;nuYW>L<$jHhOKIjkG8K3D6)w9oZ@%E|C$?Vy-+0?gir`Tu|ZxNzD0*_tJL5+tXK%?@35HQ()ird_}PdEQSC-f(o9yx*L2RcOAo z(r5m|R+D56AFu6G-jXvf)nn@F??ERM;7D}CrVNA;-~N*To;;{$QEU(^H$m%U-yp%#1OptSOSbe%g2AJoZ_K?d*0i_gC&sH;H~) zd_{G+9b;TVr1Is?RH^(4yV_s2d?;QQ_3Z6t*;7eRw(7n9xq0)6$#E6=M$eP`be8^$ zdU&?jq(AW<$I(Jj{Rf7hOYa5wg|B+;+VVX5p3C;h9rMCL8-92FNfF$&=|%0!iF5kf z-mUREnJ~}$oviMf{@+|o=cjC*HA^Sy#LS1&jGx?eIb!~%dal^+f4l9zdv5qS`RAK= zmW|6l-YNeT8q@pVSa|*A8d1+rSMF@gJ-qc@?yA!(swccQtPATBw0<wc%q)^}a^f1N3A{Hr)uIPYBe-|UIgukT$I`}-4ze@xiT zOOYQo8w)-E`RMRWqx&aIB@_@5`zA2)B$fA_k|^ZltW&wh&hKf3;}I_NkOnXp5B7LR(C zTRbki_|sOz_rABCb+*z9i6c{wFMIrkp(IW#U=FK|*PFQNLH?^d7pQoF}93<9k> zKTKRM`?crSdCN5Q9fnWUw7=(WyP7`pj=J1Mr{o(i-WRByu2iVmx&HZ8`SrpjBHww> zT@hOxkbU+}?;D}84r8915ffB@hejnmN$-9WVA#r7yGt%oIWXjdFHeqzT8_RKUcmt3)6jkb4gNm-h|_v=Whyb$zq+D zmG^Mw6yCa-_9=F+LzX_VewB2860_KRvmZZy`u$hX{k(m?v|aDs#LIeC zxqauJtTTbyamuSyrhmMWCN21^&_qQm&^zIi&HKJQ-pf;YVk^V9@kZudwV80vX}j#? ze7;%6`xWN8RbD$RXt@1Z<(W7iyV{FCWQ(J|9N1I!n3v_=M!W0h^G^QSQCH1>E2CM^ znf2o5dA?Vd8tI-%w)zw{)8X8~v?S@P<(3levES_kJS`wcTK($%uW_%Y@Yi0ICH!~x zN#6gzcE9QM*|PZ$e~E0&%a}0d058v!$a5j>PaQw3^*Wi++_Q@#J+_1Q78fm5ejwY|Etf4NQCoUB^w zi$UI%;T1Ri?%p}BVf3iwefhb|KIuQrl~-tRKdXwh|6TuJ=F6Z@`+iTk&T@IFfs?!3 z@yqA8v|Y8_bZPkmjFqkk;jRYkLFPk(MHb}Zs3wDo7x zES~*|FHvRRsyTC(M%hQ3H>Uma_!YROcypigR?jQ{uKF(cwdV1OKWm!#JPsXAKa?o) z<8#{U=kq~lyYeS$?^ia`ewto;-%B@lQu^*?k5AavO|E?-WAOTm)rXlUbDpmWw06Ja zBxrB-qbv7$t@|7E{h=PfO-UJEH)Ew;0~)!TOZT^qI9&!<0s zW!ch_d7Qg^&x!n-T=Q-9o`1X)ajYh3k6@qI+kYjqpE&9TT5{EW{&8;F=aYsO_T2NA z8GkpH|NWI!8#Ipc@BI3@@;~3q?I!kZlkuC+>>k3ym6fP|%A>M$ z+ikb?kX6#=MMqhe_fB3HT%0@QF&n&T6T{H|?ziS6?~0$;R2?ZR*2$ zcS^R@P1|$Gz3*w+{p07}P5Y3()mE>4oyyL62@8~!rR!A^=PZLz1D z?QJD77erJm@)K{Z{4nA9sd(zwE_ZSH?mc(h<{$s}@!UQ+!M)MblzMLqK3HC+mX^$Z-0HN< z61I!0j$izHqH?CqG2ut8?q8?OKlkTr?U`LM`x8xK-9EgV753o#hps-!mmjT~=RcP( z@82Fd{l)z6K`XaLuPUFivHGu zwOM^{*stqf3Ya2u{j=QT6=ym^nsz+cb@A|{#HqHz@>$1>E0tb9k8;V3{keMK?#KF0 z#quWCe_1Ru{(9l_&i2adffe1agmvt0ZEuvHc-*CHRch_8yVc$2|9@0}B)lEv~o&5h+|J|{4*Jt(LfwCo64I>LZDs+O^U37Uf`&QtV+9}Vort9(aF_#K%n|r-& z+m*#%8y`EXiy!y@+`9Gi%oiK;Y8IV2FS_&5ns2-Nbl;a`H_V(Zm+N`I)_qqMYg71Ae@bR+~ z)WqA%mj1U~o_@DIXUo^i6D>mi_(EfHOuY$HZyx@IhO5va^C8G znZVmyQS~do#yCH7epP?;_{<8%z=9AHR;7FA<+Z;nWx$ImwM00a5^S*@8pECg6*M>OH|yW zF8uCTqvBulttZ}kW6bg3(`?5w3}s7wbaPnd2b$|HyZkmo{lQ+h_1W_@qs~{9r_7(5 zU9@6ile?V8-piHd$Ku>SZ{^CZJJltVr~ zzq9|-q+d~AD*r5;^t|VDnD5EY7i!i!1uRXMD&BPSTxHdoKYf+&KJHlFb#3v%^M6m& zM)TI)RG9sI(a&IKyP_4QhXN-(JfWSQK5b6e-_=>J&x+d)3UV4&M)aml+}Q6vRVZm4 z_q7U(?ri?>&b71tf0=FL{QY+5y#>=&ScV)f>7U_e_IUBx$L2fJLVVvimk+EmV^d(>B%KtF`cvt@4pF2wyZ0#>r`LME5d)|(D8iuESx3uaMU-)>u zYUROGN$$^;QeT+75AdIQUYmc`axRx=jFD<(bMO5)W|yu$Uq|Z9abE$;NqwLCZl}6T zGT)Y3`%^GK_hIR~m#bdhxN@+!>QJN5$5r=>l)^fDu3mU1clhn^i!`K zBtPi<+%fOX3nit~Y$a=4D&DI1mDS7*tgxDOzo^mtONMS~+dfO(fOOq;+ zop#aIFWux!VSdEZXHJ&qjB-EzO}=$%#~G7VAD=wa&zp2Xy^_(q>ssX^jlFuY>w(9)s#cisOL#&c|i?)6?w!Y&j{3P^IzV)m+zn78L zf83P1drqubv*~{9s?(np&hOikJTKPr+3D1bOOFiabvaBDtSTQSezyI%eL4_w>#%{}zxn=E!0DBTHruWLys&8Q#M6SUI?-AaQ|M0G*_Vc=A2e&|nFEPgo55Hbjym#5$;z|2YN=Im2-_d0-=W*?)sd8V_ z^eoHE|8#!Y)))3vssC7%eRRd|Z>O}2t|=R>m7W&8`}qCeeeUs?9*!sf5@9N&L9%@wbAJ8;?ujf*#zT%GkJX#bKMRplvR#c!9SYHwXP zC!Q}_OGVW0pJ%Sv-6x?(-5PdHx}&e@drGGNLx|`5V{bR_FPrtG?&id#3ZuPGI8LtF z6X;lz@*!Kp*v)}2=&jqbgX>%Sk19`-es?LTHe^Dmefhj1SL?}!){h^)`I)h_?r!~Y z6=m!9dtUdf+r7Yk;{M}1;`NoD)m9cQS}FhahW|b06?=*pwspL`6Z|Ei|AhPJhjxy# zA1(V?buD^d6z-o>>|YcX_nlGBV%Fz3?pvlkzPv*9Xv=@2tZg}WjQE&!oAs=pKZv`3 za;@7hSLPXZ+G{u54_$T9_}@9U{jZj+KHf9)QY8QLCB6E34|mVjNG<=M?=G~aP4(+# zWAE=9R{h)ccxKxpvB&53g(alRmj&6)ZHUSLWVrI`g!FlDzI~qS+A}BR_micQLN+Ix z9yq>QZIjfj*Rza%m%84H^nO>EZPib+P zg{K!T%Y?5gZ`<_mcB%Y|MXbw>BPQ;%edEG1FMZ4Xt374{cdEPB@BiiS=lcGy=J9>s zYCJXnF2DbA^W(gmJC|)U&_6BcZkEz-pZB3_W_$UUwMK<4yXB>Izjm`FOpW{?b)a4FHF<)`{KIvyPzs3Aa@6wqzbE&V_qP7vcwJ_%Yb_X- zbfsv{$AfiU_dMg5Ft@#$z#oynIOl59alXy{_bSpVdn$xtPWjJvvOVZf`8sx)c|iZq z6OZiz&CXm4y_|oyL-1i`_~OW~H`Dd@tvCKsxitOlhuenpODlWNeve`P|Gsn1*FCxW z-oK9V@9bOPsZsyl@%a74_Y7nw&fJ?NwQ`pFmo=*lva8zcDsHDZc_E4wmc#N;3DZZA9-^!xC^DXZUI42`Ycv)%W#^7NZQrEFI} zNxH9lXjnUK*DuMnrtV*2FZ$Rl3U(JgweX_e^ZCc7#rH*ru}+d{P*e1X$xO|&NVx1`-tC&ea+{-8)rYfnw+E)+-nqP&c9*Z zt_5xdA+f>S=Qhu^5?*PaEBEc=uEI6m>-UF0kF(P`b^i1FIo}M7-Zz^jiJzUmru(%` z-R>`c<^MU=yuNIH&+NW;)%PX;|DL`t9$)#{`K0CH(^tyfUVgMuKkLSM<__x`71w6J zm2)5KTj%IZ`7Xg0E9tMX#{Gw!`QO6Xfx8o?Z17WdndbH4P89#8G|5K?k0n0tJXCr2 z;qlmMVJpsbo}YRBM{4wL(=%M%_vc0Qrz{cw9-DtrByf)y+jB`8Y z=uhjKdf4Dl?JPF~*RL@X3cs)I7kPVq zW7D)&21Ln`?y4f`iuHuhT5=W>?KUe)zS z*SqAGrj=KJ)QIZ7`dIWm;&{2K!1E&-d~RaZb`tlNM?Q{QwwHO?cH=+0bk9qBB|VBg z{(=?Uq(ank1KmuR1j4XQ|2@*OT>SpPS^Ib427b1&fsr zEV;RQ*5jfLa|Qdjjuh@WC7j5@PHSvl$UjgKr=E7klpayP!+lN#Ul(X{?*&r6lsS=wER0n#Nt z7jM*x-MR8>br7JuvU$g|)Rxa*8o%#2X)%u!6`QJic8$V5SJ@&k2=BC#-LVp!k$Nc;HG@T2NOZzHxO>ztN&B;9mwc1H5gee-8mPF8&Wnm4NRQlq-4 z_>rAI_~y1;I=pk{w6~ky$<9~U|2RH(_9sDe&o}q(uAg*m`R32FYxLZm(=3XPB+i>W zr99NWT4TA{>zkf)7cu5XnEKq|h$=jGU$FWAp04DD)|dW7KBztiYLtAM5~8#-ZEHhY z_Vdo4cYn_aU3T8QdTOEUpFQcprk-n+il z-Z@9AzG%9xl=0kYq^>uw_Mg8EXZ@+_99h}Y&xKd1H<{Cgeg{Dx_+gluW4{zuzi zG9NRRM19xzzHj;cvIBc3Z<(JSxm5IQaZXYFQZos)NB<^D?5^H6yHqAvf423yM>cJV z^4f>@{Hv*%o>pq{{luKZX`f4l4|hF2Q#j{zP3F?$r_LAMUH^D`={%uLwtuVmu6HDD zSJ`(YwDC`RYisc$-&y_JBE<@?ti4rVQhwipul&P|^EF?to3Y)S{w2?M{_kVzkM{pR z)bHaw=Y8R30qYi@{I?f(cgVa|Og5TZS-E%W2H%xx^4c$Nx;g*MatT{?ZbxZ)fxnPM z`SnWyhhujXm8`sTIn6fh$kf|m*3b6;@=Kg={fFhh&8nu zKR(?x4eOHZy?nUhO!9;GS>daBW%ZU^m3cU&f8(Q=!2dhCf7|Upe&%z=(n$wnOIMwd z6|A&+wb|=h%*%>D>Dl{&{f}3wEsxqFDOw)m$7IP=;UBhThI{3<)eB!9*nQ8kK7LV^ z(xW1mIiGj)d@b&Yp5OLg?%|399WQwjdJoiwN^U5QuUz=myo6}w{@p3Qu@U&`k z$jKL8Q&+n=*Tt9LT^~KmVws8Ar~jukWfOCDtYTiXO+RYA(G$O*r3d{3cimCV?VR%2 zGF!(d*KTq19HZ=(l}hJtN*Vs(vN2Y=-z|Dk@A<-@`5U<2EyCw#emI-4r%v|n&9p6vEzh^V7Ji>G+1|=&N98;7PczN# zZ@>1qZrhKS`ZZQ||9ksE+Xn@k|JA)n-Y@3t7WIC?J=esHeZ_O%FFebBGr;@bf=yf3 zojR^5J$ZK6&yeD<%9W9qX4FsFV=a;OdwuidiK)LrB=62$_Q`z8`P?UquZOM|N_@KO z=+|X=C(ZNMUNpZ~<9^TUr_a+p$F_tl{~~v4an9CP%A)zJHqX;i(w38T4&__%MMPuu zzR;bi?A)obYfWSHJ7>$ip7^lI_4O>-#5(`>Alc%xhOeefid6^(quXx((9~me7 zm-Bp#Pt}=rb^apx)%%ui-Ji$tVNbUBn|m(~AMxGp7I?lUL-zeP%K*%MYtmtQ?rb;KrB^|R}vMVGcc+wzv-@#KqFcuPNVO?*}H{Nso3 zC(0LJ%Lu(RUuVa&L_68zn>6%`PW=f}UjFmk)@ts=HF8}R`+&4pXYWn@Z{gylHcZTQ0pk-mf8H6(Jy4vRJ({B zE2kVZ`{5b3AT?3E{rU3TmCB3!=a|==7r0`W7!vzVI`c!*lGwek1z4k{_dk!V^~sg{ zICHL4(SwrR0`F zNelj(_WOn()hguN&!*n^USYN9(IwN%M}j{-t&@47Jh!^>lI-K@{qI8VUgbS-sahsY z=DFPrW9hiF&!;Jr@h%GNO|AzFhk$^8fAgdJ`p`iu?NIK4KQSSHAJy?OOMGqoPSfdg_wJaoZ1i*lGre z{M%|&q`Goz3EO*$U-#YH`SsqEFSB0uZa zDW99rywO+Uium>Uy&U_>wb#!n+js0p`RoZnLK&QF(;~O;yufkUD{iZ9`%Km6qCjU}`JrueCy=A^uCsG9+exxtVMwFWb4in&te=?-}ZgekNJ@*2K?Goc;OJ|J3()=apu! z+q~~$aqh`YD&BpnJsV|`3mSW6b9!VwJQhq^6twfCZ_&(pgQ=@STDcS-3J5K*P!$pF z@a0jFxH;|5$xSKJijlXn%k-Yr{Q7B|e6GBHe)0A#;qRk<*WS1MZBSM6{YBv$w>quT z#kB!z-lg6awN&1BzWx5yS4X5ToqHQJz5epVg^zX~@60yKY!<%1`rg{9iqnr+2YmI( zuDufaP+jxXYg0=dNzT1$OFo>QJt2LHY55A%`EJK{KKL%>+Zun><=&jzc^`jVkzMjq z_np<(If1v=ykB>J)pLtamp&V17H``u;`#jIRN=2L`U0M+|8q_>7j}EM*?&dyd^G{I>8|{Cd z2!5Mu`M&pi$*nhRD`dBZ&78hrTIQq9*He5B?X~~8Van%s7B*75GZY@z1l{M|U%B7r z-<1;AzP3r-SJ$tppYmMf>*+(Q?@m1t%~f^k&fa<{^G|z@%uW1uciNiEZCmWZ-zv@j zvEk!e&cC8ZUN+3!?`r&wTWybBXZ^ZztNWAcc%F!EnZo9FIycVt`X7hdqF1VUUt_+0 z|LR`lShei@oXPt7dlQ=D#T&nzJotRmqK&O78z$RaJ+riMdD-je9Cb^-#VH4Nb}1OG ziG6=$lcVaw&nag$rdzN6*Y58x?R>{BJ7`Jd{WmSbi4R}QpJ%LUJmFDsI(OgG7l*g* z(Aix2I6=EV_Z+*F*{h%+38{v=xhkDczg@q%?#O42$DgdEdE$?IZ8a|!T#$JuxH`p| zcYm$&g!s1Zjf(MC1uvT9-m!kKEB#z>ez(E7oewVj$QLi$_+4}6?(FsJjbBIc^G0+s zOE2$XU%S=4ZA)RMcfj3)pH|ddD>ALQ9k6TdMvb1t|9^jb#yF?!v(dL+`!MQ(j-T>P zhnsPF9}joztNz%!Rxs_E|E*&2i7(%$MSuHbbLMJ}*Mtkd%i|jvpIhDgmS*!TMzD5z zIOF+~Ed6``J$hdM(R9~))3smr*M438>i^GU{BzyI=A7DablS3Z`SOeJ-sXIldwz36 z+WWrd5HH6oO_xny9X|DB@mb})u~)i3EWKWQU-zY>JHLJP@>OTwJ)C}r(RSus_2m9q z{WjrNXKw9h|1=g%__(}Lq4i!!kG9zPFa|ze7h#A~j@*P|K+%k$1XN_N^5>f8=Q3gpj!R_F{*2DV>-jChGTn z-n8m(D;18z)&g9u+%os$QWeLb)MUTj>hh_x?<$6g^k)95eg1H5_xqJ1)${rql67Bu z><>Pv=bYfnu}FK-xqwx3w&`mA=vV&2$GW$VZR$e@t{PXqO9d-_nM=qg%bwZz?v3`B z%D-~Y=h(mhnEZbgUvkRXsM4%EA^V?gihle0Nl(zcyl{8>z>_XF{!|{dzP)DGIacYl zoAs9ZZ7#aIG&;`9Xi0(Cf9lq~l^VjeDe@!-D{C(EF<6C+o z|37?Q|8h_I_V>)o`v3lWs`Xi7`EX}^kzQUE6+kUO`+5Kgobhw0J@zc|>{T1iT zdG$W>{tf9hNr;=eRrXt>{l53Jwygd8b?-{;H<<~-=jH{>|NSYV*y&z}p#9wQujZFe z{5Uu5^oG=X4u5BA*iXASS+H05{@K9Yf8RA+{weZ_w|YwPU$4&ie$DTt4^y_hKXf#> z+W+}%xs@yBIOX@qZ~yFS((?U#`NZBQqG#?dcdN2~zU!N_wcj$H>rX{LpJvZ{`O9O6 z(6%MQGs}-}{D0GKYs8dZx3fp1zt(w+y*bzaM1Jb|4U?vq&7CWD^TvzdNQ?Hhp+1rK zN>%PFMzov`oc7Se*t-7c#tCO!sv=b987;lA=l`Y)_pYwUpY>#4aU6&Dtj8sP1Y%}h zHjqBPEV<=m?aFWScI-PeSzWDjw z4+_aGAvG-r_wJe5Px*~Fckc_1MA=J~ZnK9?M-RU~JsJ$MxzswTCnNKZw2 zn%jflI}7KopZnGN^UD{9Jac+h6;9f6@RQQD$GYEcREt$(Mic?slr$!t?);px=_ApVw?p zwqGe>e!5!bR%PSXr`IZKr#-z}#cId(Sxo z*K<_gHo6s}TI|~&%T;Ey&y(?@twSjPWZN$_VRqqqwryACwIW3W-A}nb{Qv6V@?E~M zywQhNr5{?wlbqFjO!e=*kDdp6LYkPmkM%j-xc!-T@ddT4TjxG5WLRb$cF7=n&xwZ9 zW~u^#64M;se6wADWTVFqm8pvgY7T5%YxR0fqs+p7#=TrQIrrrjhIB5Ou2LTH*zEoH z6LZfbU*at@ zDSxbTI~Owb{k77b5YAYYtf@xi+3*F zzxzb&*-W*|X_uwkua{O$zccs2KCM4K>}N%#{6m9&^q$g~{ziRj*6%~^k1p)&Gr9DzjA@|-r5IEd%aucV~6#(<~?hEe#)7@W5!48sV`0BI#<6eYVQ?UH#>Q0 zl=c3Vo3h%gySH%7(w${G7*tHb96fEm`VYjTtRaZHq zg7?AQ-@7XL*eoJuA1i$J@7_<5EZ1K7ua-Zj+KHb~%$l>i@y>*q{>4vbe94)|U&bNx zy8i9i_B}gAf6lyOBB^i5m)yJj;o>u|lMnfF^SpPk+qtTEok)Ss;e81fuQvT&p89h& zW8~*f6W_|-UXw$dVJG`Sr@i)k{bl;Z`n!%6KONUATc=&PaOZVeeASg@KlVqi6j#tq z_>z4|_3-I!?{xT?zdrj>v2L}$XJC9>)j>9UzUg(^rG?&I<@%A=51i<^bIF&jdbcdw z)}nU5Nfvio&GmxQx7_J}9J1?FYl`vjInhT&>$I<4{;{C^=5ppuyt#$miErP`^_2R3 zC^vLNmqF>_qq1x}8dW7#y04#H{IROl@}_2O(P=@wJ#%;3xb6^?5c`tZQIZlP<#)4x zqut4@iyAXlp1&UXn#12#`j5=iHe1ozD_D8XRla$?#?G4cr;Xz2Np}k>WBnh?zOVXZ zR#lsv{Nlj2?+;gA?#=Noy?@qz`{_&NT8|~4{<7M8|J-`p8gt!Kl7}ljDt@iMm%Lqt z)gZIwT6%0;5TEwLX1ehw6=EzOs_G>5S9wt$DJ6<8jQ_*vYnkf>t{0vhKdpVq%%O>ej`} z%U2xTy`rbVN90|Eeyf$+sfnK=7`z`kZf*>m8PugxI_2Wo51H2$Ohe<{ejfTQ<1JmQ zxo2;r?Scnsb55L|edkhKvh30$6Til+yUM4jzteZ>l%|!{b3gycsil58V*Kq;#bx8O z`<&ZW-NKXi+-1P)kt2P zS9oOEu@{*;)-9I1u-mxH@B7c6-!1=bKDW4q*Lm*O^^48V7hPYGx;1~!$sO*8A7pIk z+-E!2{qHHqB=%e(oy~54&+^x8i@Th?YSphNv+u8-|MTB}@h{ph--&&BIAeWL#Opn& zQv4ZjPFaV(ukhMFv1VE2f$nXpx4hO(`nvRC&)*ui%B^Ru*59(V-u!i&TjlwZXwQ0= z=FNVO18qV+$=S9V{=I@#NV*kfAF*7aNUH@M-ll?Md%K2NzZL(~hPw$;Ghuh>%Y23Z* zY)cBSmR9&LwF%J8553pxJ#U^-o2*S{g7438n>N!#yN@YM*YijveG2&NF6r1utX#F(h zUZ&jX3p3ijpZnYwde2C8{lpXBZrWR}{A%fA<#_M9Zk5c-3is)mQmNk`*?2n3AD`W~ zVUc)D>zwI#Gav1WiVv$g$hLo#$m)Ajv#%^xezz;XNqI%cvvp_v^j7^Ux@`RP{Nq<@ z_pbl^!!sa%l`b; z-?i-XV^?mf|9&Fack+4G=ybKnb7zj29-p}D|Bh|!{l1TuZoj0grD^r-&KaYWB>BV# zHFo~jy3%d0u1URM(JQ?<{&@G}boJwRvAY)QANxMl zFW_&{5}T?o`*eF}UY#y=*kpO;?D}%4x8k*jj#o{aA8vDJ=1$9?lX=_94o9?GE+}2F zb-}DJ)fM(TW(odXfB4VJ<@wj^KmCmVC9r4DvhRv#SN+P4|9SJ*^Z(DN2CmRw!j@AGTdFRS{-u*BWiQXoiC>kxOPt^sdFgW7lFQ*6evM`u<$a23a% z*!)35F`0SZmpbM%P3N_wANG0)Yp+@D^0#JAh|^3iHrdPW4=;2{UHh;sM__S+H-AK* zx42_y{CAe`yYD1s@WeR1+2wz(^2f?AA>qnr_xwETa`d-`^ut|(%kN(ft$1EpB(qks zF8uj(KGj`Hg*AJgYc5bST7IgeneBL?+mD~WdxBSefBAFgzW&!;Aui{v>_m=pp4+^? z{o^IO->a^FIoq}PZI6b@*+RL;Kjyr?yftv4>S0FFxleY?Up}?yxZvvWl^w-Sw&ynP zxs>+w<>zhEJ-hc@-06GH^pg9bOP^&8?1O%&`lnQGbnt&Ob=|)`u|Fo;JfCODbZkq* zZ-x>GG|&woY+By7*I0>sN+3 zeXacag==hgE$ez*yrEl4*~;S0>lJ4YYkX&8E7CeVe>v}IuUbE?TYZyV-G9Ej>}GFw z-|gI?<(DJQE7$yWtV({g{Pm<+dLb9VuJKV~w3_kAr zd^GgQ_Zk0J#S6@d-M6<`!vA;fKRr>nbo!Ie zR(gHkDpoIlu-@vW%7btB<{Z2J_{pSQZ^Qc&UjJEMJ#&9(KaX=KHTzIWtn{o76qoY_WXTW=+%Rxc-qce0H|o zB6Dn#Wpt&H&xcy^nB7ZwLQ2AX>W)?0rziI{W*i7yB<&UJXJhnwO{nvH<=Xo9d|XeS zdqhuJ5n5ucnf-AmPj%_Z?DU-*U%j5Pa{cYsb655qvQaY3of9mt{_CNgy?g8&d-q+& zQj_-?mhRfQ^}S_(tN(e{b>7#@mwweZ-CNKcAG+zmuh`c!U3&|ED&O3cadOtS6{kB- z2m1fIR-}4dQov^M8u9Nj=Y9UT*L=%u3^srG_V(`VWt*aE-?m9=?_S$s9@D>U-~Hti zH)|bT&8Hq|u5~SBw&xNz{~w<+Cao!0d9F&_&*zC%_TfJ%JJ-FrXt6$M>BJ?ERU%Ib zew|Qqeplbb*Qv8>e{w0S=U8=pcvo>~X6=mPc(#3k>H89w<~=HXx@zs2IE`Ny=EvmM z%2?(7oGZN|?O(?Etf#L(znOUO%PFa~_v{<`H}4GQT_5@U%e8CIr8Cd`-+$z7-0ZCj z7VYX>oxEC5m5c4xAG<~8qRwAZR54X^YiaFPQU(T-;(&h&z`?t|Nq$eD~dgD zzJ}QSy543bomC+|-*ut#*%|5IN_Kz$5WG*hv$K|Ym7}A-*G(<0!rhg}rnnt5HCJx!oy3%!6SW)8l~)J8d}#gs z%iTHiT6L~%*S#E9)Ot6;XjM{NPKJBapA}Z`=NN4Nv90F*{8u&H^RCHlsf%}I);xMO zDp~22zWMTZD}D0%KlDzWerMkP`-Q8G^tj#UZk7slKXTGH@|j@F9o?_z-j@HnfBuAQ zj#e{1x$)EK1L3V3-KX4NvvE;Yj>G3Yf%j{+$4l`ZZ>m{S#XrOH zeoWcCK$|Rguezmc({hvT-+x@)!D2Gcc6|j;W>UDV-T!AhuZ2gO-4GCO+AW=3GUa95 zV;SZ3@rRaO)BmjTBD?RnkyX>ZRFm6Zw^u*^wrx}6g>zhOzFW=~=db&<>(F|4?G}?@}CO7;0>gg`2=k<$&cHW=McWvT~9r5{F zgLgbnTl+lf!yeYPm#pjJztmQQi1D=*Dobr_^n1JY=Z|y6A*{cpz6y)$e7D*DYqtC! zpW2tR=dZs0WtQExy=&utG{(oh{`>08)a;Kt*PfoDC-1%DCCh~0TkOjB)Qgw~y_Kw- zXcBRDN59v5^#sBAtCfnELf+MS&3!icyrsyqyw{aeJ#7T)A5C_zwhxs5zUAhz1G^+$ zZiuJOI}$y$-$ZqO+Tn*i`|f_uuUq!l_3M`_--V=V-X41LYiE7Hzku#zb3ZCb`da$> zo_%k8E9B+M-gU2*G=9~XEQCj{=-kS?B=-mkWA=J|`euFW}B`EHI$Qsg%8$`rkrv)7h=NJu~O zWVel-U-+EmJQmD#PgCPf*0)5jGe3DpICb@;dl`REo^a!9C|Mn_tp56)Iaf_zy_~Z& zsH|qU^<(W+gU@r@&iwr-Q8vTJ*mio+-}L);vZIaOz4+wqt$*ji@r7Yt_D@!CJo&`3 zvn*Wg`R#r_ZqHes$3CX5&aK_P$lCSO?k{>_ZpZfJecA0_e!RR)-a{(qU60!04rl#2 zQBS|-x_92Q?&{Vl6`$@P{Gel^uk%rsGn*}bPkKn@T24PB zvh3o6U95dzOt zi$5B#y&u2WH}UW1AN#$Zeh(CWnEdwD%Zou$vp30aPRqR^#qs*8Bi2-^VtbJ?CTi z-(BK;`qbF%@Vct?7S+b{UO%_{t$lr0+~w-&-*#S&|N9{Q_3Yorv#%9SIW;$NxqFn% z%J+dMUufCylu{E9hySbwGF z@5Ody{QIpB9xm7*zgZ(ClA+}Mk`2%HO}}z6zwbBy_l8~W(X0G8vqd;k-!0z0uKJwq z-H_ulCs&wn4G-T|p|`Z^*0G1Sua-aGW!oscU9NTKr_znTX54?qWBq)QrE22UJ5ld= z`ecmUce9>5QyE&b{L)cP%T+#^DvEx8=0(g24K--{x@}6oJG0g#*U#Tx_7p|liQDab zA<)ut`pgwe!WTV^=&CsPy*BT(LWPUuInlq$&2vS6wXN5BuV(#9Dv7W!eE4VPJ9D+1 z=)0bsx1p!_AHPR|u`E}_`i%CzziTX~U7UDq|MG_(PM7CL1$HDgN+Py_}{&EF5h@<{dwiTbK!NroUX@R{ynqq)#m@Z<{kU|bmt4^{*Q0? z+#eaQ;xc*bwLNo6!WUWPid~HDzgvDxc~b6kx=KYRQ}}1j)3r*x=Uui>jl34oJGFjJ zHT!%?`9C7Q%Pu;6-L?KZSHZKuSHGpc`}Ory{&~WA+2CexHT(NNdw!+cd{x;|DZb@? zY~}SnaY@5mflu=;e~2ue?PKRIUMtI{v7LRiowY$E1j2Lm8mehZkru_JbqR0zPu}a^Oo(I zQq;6l{BdWt?%XxUPOg4q5N4S#_4Je9?$>!!4YGA|Cn&$4^hu*obJnpvUenb3r)^ob zZNgGA;U!KWv-g-Uw zdgmR>w!$@5Yn9G0mzF)Yockj#tLh<}J#S+FgU{Bp*H(q^%{)IttmgLZm&|L;-Yt5) zWo@LTO?JPO+tPM7b-A{VIHs23?49qI6{+dJ?@Zrp8|~)B^R?zUPL}SRmHJRd$n`UM*e-brm`%XuD1C?wWox<@T8jtNuO>c zzRKy@bSC(c^uON4Jp7D#+IJsr|FkCeKxy3HE|aF;OWB2=uG?VuO8?`<>rbzmuay43 zu5_<<>8^vj-t!*2^Tu-eme_X<7wujd^`x0RI)H(QR|LZx=Z%Cd@DYIahG~ zt6G1p&#mwOM%6y7-d}ck|Mf5XmhS(1)jsh5_5A-2S6%w!bNF1?cQ?6vo&{e&?5;|< z#2n@}H>6|7zjHFHdF@wUb*q~4Yv-lKcjxlhO;uj}YFhB31(VqJ{F%nH^R@E#?|S_9 zMG|?zB`2HYT3up=@|OyIpBq?x!TfQD%(0mBu9u&29^UsUd};dneb!!`Py2WER&P(^ z=#TlEXE*(sZHU;0dko%x-o2P>BE(gvb+SsO=U8`>>f%C+`rmrTmZWc9^JC^(y{+Df z(|06Jx|Ad9A8xsQp4Rh2vzkvUq&H8$6fxZn}zbnH+bM~sDBcwgt|u8FQP#~fY-W~uU0t`pzf&sMFnE1r~R6LdA;;DTLSc9p*8%@*71IjeB)clWun^Hw|h)Y~u> zZ~0edu79@lTl8y#tFbrbx6iKbeIazdm z?A(%n?6+-dA${nz7QaReQd@ZgD(b`0ZB- zyL@j^->$W#_m}gu2p`+eyge@S_{K%g=QaOI;jy{Z&ceL-&Me90i<>j1Jm5e4;AhN- zHI|Jwr?%O@t*Tb7VVWz;QlN2cK@X_t0#u$%Kl#RKyq!o@vDIPBa`2)nB3;P_jR&+ z^5TcSHf1-CI>+-SJ-T~SzWD8}*T45D*8P?dWB2*lTGRaF#%?=L>#4WSwDh~ZPu92J z!EO2ZrNo7M|C{5t*-YNLYM;s0yOJ9t!)%VnoS*#slGoXes3Mb-)~O};WY=wTAYYSKSZT-unD!-@@L#-&j|gAFGW1cdDzz-s^DLS#PFWHl61K`8{FwhXj7Q z^;-4)l$l!ob8d0s5=OV^%UjFU`tRDm_L6%4;9bRj>F&PQcKhW8AG*KUeqVj+1D;R2 z6qo#sb96uORBBS=doT8^hnWxJ5B=8L!MZrvz^~Bm*vna4B%fQ{m1leLv#kAo^_=+U ziI?2+R(npa*|D%l>b<-FUFRf)Xj{XbJ;g63*M0u!%OZb!*~fg>W1ntBKPb4iX8Ff$ z|6a@g+|9r7|EzoSzkGdPv+Ccm@P8?`*RS<>`z2MaOju`RtT%0*l27RO55||h9cLfv zwejq?SyoZbl~=W~)NQ)Ku65O^3`f1V7J7;JWqK{1EwDJys(tyNkQfg3xr>C?ojbU4 z+dIb0)bC+JU(`OBF#ey)_iA6CiCdK7ge#N3uKfFa(~hO)ceUpn^F1f2#a6Q>{ZU8L zgog_sW+(7v%BkuvyqA%8GvoO#)kmi@9GYFlw^*eogd5l!f7d?vR_bO*`40KbSNR=F z;-0%bpO%_3dusW~&`_7X5jW>HEu3;I$6D!eK~7ru^xUT!yLQ{jxS2_dU5kxZ4`}Lc zv%Pyi{J`w~|7$LPPrY`eaBlI#R|b~^+e{R8@hvm7aC>Za>$zW4!j+tF|El&szBs>Y z=U$%OuYZ2sasK8jjVnj%%2=CURXIhTn`W^Y!TmZm(Ri;=Ay({B;dGU%eLUQC;w4iu>Fzi)3SGTliLa{n#0H zZ!3Rg{Z_+u)!SbOo0QGJZk6^scxK>Mp0>rW_S}9qr#t<~TdCuso$ARmGP@Ts@h3R`vJ7iJl|FY(X?EKT; zt5w&?+Fd+o{~QcHiZf$@4xRttovcY!v2G zGs*qh^FmQ)xrJ-@_%APXs4@B(_vuTUwk5-((A>`HulO3ZQvV34&+QkhPvLxe;A)%I zCVj2l?$YfOC)k8M+@0#-wmI-$GQYnaqmbb;fUtZw*aVB=9?`O-E;va0R<^}F{d9L$mo{5CfqbWDu7kNlEc%I+I zTy#ppKl@szob1*YnopxY6_=SA%zrKy^5p9rwJ@;t0{dsL9J^PWH!iynQF{LK&W9(? z-cDV5YuSwDm!h9uh~0a}b5fD?37fkDj*CO~?QY(rw^m}g?Zl}U&FP z`wJi2T%2|OOGV!u$y@7o+I3B=G3$xVK6%w9|HI3-SJ-qnU0(Hew>W9s{P1$@|d+U!M|2xex>q>w9EA!Xf^DBDaRo}n7 zX4U>bPv@^+U;q4as#;L~nFp7mCvDzQts8v8df#Q447O@^e}`jMQ$PK?JN5cacH^7< zJ9_Kbr_Sr0wNR&E|D2foRg9S_Qyl!(M{#XUo?0#&qSee~@`G!~ZY~Y^)v{ePLsT}d z>CF~-_U)+Uhkg2i`|9p=6xv?@vFxGQ%RQpcGd-3qaBX~I;P&QYbW>$l@x0}a_}0ly zeYWjHvuEXmKOs_cGYwLOSoSEl?q-hOWh}K!aEbPxIsO-Q-Wc|BYA;%5k$yfsS?}o& zSBE*uBKL&djNSHU$Z_%QUB63;lU2R{`s`E3%i0oWuiod(d0tX@^Ya$ZB_5^c zCoQ`0IsVS1zT-=oHV4cr_T8Jbq+wBREAzL^{PP^e&sXg#-_BFkVtIY-ch$a|2YzQ& zZuOflICWLouG2GY4`pBE_^)Kg}yRofg(v+K-88OyKDKE0PD`Zap8D|4_^IOEx23N-Y(Je{ysqSRZZ7Y$ z?0bCXFD-eqmt^<9n5LY!C;ZOEK#!vv^_QJdoU#5o_l1exzYRn`JUhAb{!D(KeMhRd zrY?E2IrRIx)jTyO2g<~&rPX!&OYhi==U+D~{}7{jeecn@Q&K0qSKHa&yk&FCe_nF@ zhKZLKu|@AW|JlfX<@>UXH*R@Pzu4{7XYP3Lxi3yTUn-^VOUX2q^V`|Cgxf9MpI9Hn z_W72a_WhitvXyRsVs`%Ct^RMR<=xmvJNu^i?@`F!c*gwvMpOS4mt^$6`k&8{*`l(d zF4*5;rd@CP=Sl4m3)bAd&Q!`5YP7E_-p|=6^}I>+Gpi~04j((|C%Zbad5Xj4^N;i8 zu6})O-8)lns&0VXbf3NAAE!Q_zPDuGlUC_JQ+@@=o$Q_z$1J>a$CKY-KQ!(>J^eJ_ zLuK8$Nx9W?&L6L;yDptuywz@}>pkg35p4x`uddy$Y*3uevnBINt<1#bdQbVj{#o35 z=E_xV&dEKVIhLNgZ>t@iykv)Sg3*b(jy-Y#GgIzt&S`y~b$`CuyD~9tcbmffiStTo zzNtLEwzYhFv9KGL?Cq0}ZH`Nr9t#sLpOP8#mfcUyHQ%-CroL3&&p&rxzm~eIacAfL zPt{7C&o1__QU2&wHr?X&?YMp4mo42_Hcj!S?AF&B*127C&unVjy>n?vPPf^Ky|<6| z&!`VyJD2Ul@5LEUMR@IW3g!AfJ(Rk-?{>tTx>%DB8|SaHmE8P##)Kr9c$@qEPS2$* zt{+Q0q0A?&KZiLl{JW{#{r_Lm|6gri{LHlW`ttvux7V-v_wf3^h>4u<=b!u{@9AdE zH79LR=AA_e4r%r4|BBr9*c!X&k>uVySH|5L~7&ne%MT?G23XJ3=kb z?LK$9@OfO!?HOO)+|!xdruw(uw-hg2bEoe<^F@u@2kseWN&XVKI{o5~gnl4tJuY5)1Pv4YvFdRqFH#4popd1KChowFtNTyal(-*(S? zy`Se8^v_xzSfJ zKiTk<toUuR6ziv9U|SJ1XKT0O4w954QiKIAH~OXOm#{C&~L$k5Xa?y44_ zmnN;xlHU1_@9}lP%I&?M-`PrBsVKh}7k9bmN^R8f(yH31OGVX9Pdwkw3#`+=U$WPS zQM;${m+$h{?Hycx>gR#SlHYP&)9F5owobp9i+i|h-#=U7%D%Dx-Bte}!}WU~Mou+Vm{ebNY0i?z3%?)C zJ9290oy99N?g-b4{m=L9`Ptui%ciO6esx3t1F_Qi73ud(-`j6Fyzu(+@s{?)NM9Zjp&Rad>OOS)+#! zZYjoos44xj^6593n^O|kt8cw`lPFyZsf_wQ~bKe9gBq^FW%Tm1FDkJobkBUf#;-%Ea4=i#!<`hMQCtKZ&j+I+_2 zuH^L4%U3t76W#Vu_G-4gX>4Zld;Q*;MUKk~(!4JDDj%Qrxo6GIsZAjtcld=H{i#_y zF?a9o<>!x0pVVjj@5i@o|DL4p`yrsc{^ehf`!oH&n(zB$tSVNzeq-O)l$5wl8`Jbw zXHB&(JGJ-B6Zy<-Hg{jR^V?ruBeFtc$%eD*Dwc2hVLkQO3FY~%x|(q(A54CADnrHf z+Y#esAw^48=zdq{j1}Y4*4vJe{&=rTOE%V zY-rmrZLYDR$mZlx9cJ&PhaSBZI?kV=VX@Lx(s;GRMVF=8@9iH8I)*jf=*V_mXHi%+ zrHrq1(VyFsmTMnB^t0;cv6msD?;Cbi?fYI>Wt{e4;kopi-!xAsTb*@(H}`R?^1G5N zH>9RtX4v^`S5Jet0*DdpGa;QpUoo#;YU+`tSQE#|O4Ixt9MZ{Z~By z_S1WIpGBXPuX$0~_a}EL?*Z}EOZC39efzkuskM*)%db=|w?106 zX3JU888XVpSGbpPOna^*>pd&yNAVKbhd&az_Wz0J5}3Btas7q;>&_H}d{WNz>iWL! zLo)xBZ^b_)E^MEg-N5Bg*c|5Y%tpCy@A)UY)_Zk+_6m2IuK4~)Y}L&9)$``9eiylw zr_v;+*DB(q`kI5aQqK!ZmcN=i$Gy#Sjn-VDRXGi}&ux_}E|Prp%n=V1yC$%>uWFw3gPEbvKh8UTZ_C^^-%pn8pI$8Zkmiw_v8Q9% zpSkP*l1KI31lFDqHL}aksy2|E0Kn`sc4?t=kmx@4jX1 zMER9r{NFk5S>C#>Ea@yW6bKPy^HXXYd z{MGWg_WPv8WiK19m9yMd$aW7Y^53I>u{!v9L`$^P#}^_q&-Ez3dU$dE-a6@TCi#*p zHf+DEvvjrILYdNB^=D-^_nG~lbe}N46dAhr+E>}zt8V|PdcJsyN#2o-9~OPRzP|WD z)wVsA$Gcajo!o!yxLm|G8~=T|>z_O~F`swp-KJ%%mohc#Kh2#rxhh?~Im z{8}!3b|CA-)2`U`?-BFJG$?jR%h?R|Nl#QB9+cA4S7~9 zVr{px^4mYPH6i{t#h0^7$Ma4p-+Uzhq|%1oGuKbw$vyb^5_g`|4E|loIVsk~o|T_F z9z+M$z7X#Fa!0Il-J=>Cw_X?htDEj|{p``ax$5=qKKpZ9);`=KHnVQ~#Pj)9(l=|D zyj!rxXo6X{VBSUs>1QYR96Z<&b#Lmsw7h!%X@`;zTryhnwBjmf`m8Me8KS-wwdMYw z-_4tRSLMhzYvFw-c1b;7=U>%}LV>@eRo`^%Q!{~NdP zn%m#>`Um2#H_QKimOJnImw!w4e>`~piunJx&tE5K^h@TfcQ*bNswwjQZg}dhhN!Ee zH)C$zitU&Al(Ws;`0Ss&aDzRXoGyMQ48P`ayZ6d8#dpn*RXiQ)@$A>ijD(^%?hTp? zcCQOLG3oY>DnlWou1z<~XD7uTOFq_|!xR6m;@h4jf)4w&3odAw|zPdZh?{r{IQYmd!=ud|Pvl`aj}S3dZ=FMHP1bt#9; zr@j?AQ|5Z=!QG~pJqs@Gy0O4QyzJVpgBxeR&eOeGskMLor4w5|RbT1K(cHT9?Xszp z1^wTy{lhCBEg>Og>&W7}|L_NcH@#P<2OgKLPxe{EDxbXTgVp5|$C4dvSEt$t`x(#M za{j)PsJZfrui8Y9^cYCctNRVHJ97AT{5e8X1F-c zwB01@dM@wr9DQA__n9)sc0M;&%HL)tGI9Gad-uY=>^t)um(No#kNnuxbErT_~_~G8-|GvtRhg|Bq3j$~6%`?ojt@QqMsMT!V zJNH7B-rchKys!MjxfQ#=Prv{E$-KNT7v~9oNpZ|QK83gb5O<-*jf#}S_T|#^ zS3P4D`gZO0ReKZ+Dhjt}jK zv8jC5s(k&`*Yq{-xwW@?70t8sy)t=+_>!`DL7jf_o64&*<*IBi?@+Ipzv}bT?`cME zuU<`l-D(n0n(fx(weGUTwlmXfb{aaKTyfd=+)};I;-6Oa@e2HkcpP(I-*j(6^ZlIp zUSSQ-pDo@aEWGql?zOwG&zk+|J$NZ3B|Nfn-b4@0w4afy`mMB`c2sQ%ZjWbM{f>WC zl*!hw?>)>|IO3!X`{EBhh`I3frGKHRh4;u zdugG>zdhF1HcNh=^8K8~J24w|`=4K`zlz&^KcDyeH)zOr_5D9FfBW};T)wgU_Jk$( zL(?W^ay%)N`m`dsWonq4c;BvyqKY3sn|TZPt>t8(mSoo>>sG`b$8FPjgH&2t=?-)zbkrTVPwG*kARQ9SGV8k ztor-SCbT}q;G~_0g@}!f(eg0sN}GvgOnr>4>Dyk|-H{aia_2_@%f+eHM$1|lto`7<&iA#EXkFcUyC_fd zrfWO-)*mgcS3P#@e|fs-;cLnds!e(dyl-t(x^+uxN5Kx|`PsfX6?Se{qh*#yH$AjD zHu-pF(cbls%?;JsC(2GrO-}ym^CkJL@ddGE1>AC-2bHxxhWwbjKJ3c7L&qbI`CP6) zf2Q+W%7G`cb=~n74d)e2V_3UZ*sSkp{Lf4JSEld#$^3QJz4u?z?Y`GvSD#wsNV*!%y>7|t+V`)6jIUe&jM-NI)GcOv z!G`c}{vW>7W&B_4wEL91z$MN@e^TQ1T>5?a|GS?2>d0c{jvL{#1SKY(HN05(ZJOeq z)tlz&y+0#$bg}YD^Cy9Go-ICU%pLZqwaDkwiJ}e@{k2xP8TZ2GF0R==Go^R&-`azV z!!jaoGo7Bhlyc9^8C1Gj*l|dIy0h-{RX>!^3Ql`zB>(fe-v3)3b1W|8T=@Jpr&3$~_xYKbH?Llt-&6E% z%dHAS9pO~2^IOW&wq*INJ|F)0`HnBSTgrXP+n!9H6Sv{u`uuF$%%R!=O=SEdL(j-<$DR@9mAID^kDJLKok^ zyZYu`yZc|x^AyxiUtuc$@9ZtTzZb*azu$Sc+*s!5)yVg9?|;`xiLcc9GHuG=sw?Lf zCkwy-d-P<|Jli>cBWGtnFPz8hF4nioN@>=Y43<9YH^1IpJY%|adHLQGRlojte4De_ zWxt7gyjq;yuEZ_-cYfRATeT%2@q4Vq9)>LP#`(SrSd;4;q=-dOZVkX#G zIsJ&*?zJrNpW&YOewhwu3Kvg|+y7ox$z%E^8{WpfPaBN;-pahrzni|ZtI*YaPfzuY zRjcaWOx_o)acL*RLoJdE?=+rfp?1NcBR%1+mhYspEFlD%6?%GO^$nQy>szyyZ%WU2GMg@ zP3?O4dZX?h>jxUE4=*w4JM}%J`paVOJx98xo(+);kl4g9`-6%f-w)eacbiR=d3w!1 z?G`cO?JfVf?{+c!t7Y8pvO=_~W9FFia-ZbAch-0B`-|qSfBw$ti0tc2oGWBty8g!U z=R4$IuPF{#>CpdF_`cPtbtU{$KN@!*+wtbA(1F{3YlBv-w|>7sWIE#lEna4utp4wb zrK$U0$*-=NYar8AcW?RAUu6$!w`nZ1jw^OcQMer{D|U0eiMB}dA;b#tfGN4&hfc=mCl3mfCjp1i#AaQVjHH||ZW ztnGik?O4NymHVUCTW8!@v1r#j2xo=ZN0N3a&BKwxTI&L<@AhCGY?$W zIi1$czE1M9=q7{R+PL zZ$36LEYfRT= zzngL5V&G}MsPi&u_Cihkiw)=2KC#-liPf_Fc+;!8-tP;nYJR zzh19=d;IgARJZDRTfcvuymjq)xrOHGx{rUbtgAA)uQlmQ%!V@MclBR(#`8Tr2igOv z|My-075l$)gqfFHZ}yqYEy|GlVkyYTaJnb*sWPHjG)yVmrP^9Q%vrH>ahbgX-9KDXE8{3f68 z49`woE|z?9wpX&<+RKCS_}0^A83oVoy!&a&|Fw3@t}EM~t$nqGY3ko=e=E*Uoy7Jz zA&oi$jE9$>YIIzk{x!-u*p<8*mH$Ke!{Yp1oSE}&d zcJ*5atvM<~(&ujApOS1}v1R$ZbD6(f-_=}PGOKX6i!IC{!3~VNgt+z#=UtMW zT5G+%!ff@c`G3FdkN*Fse1Adv%Pl8-j zMTtxQ!$r&s7F~OhlVSC8?^M1Cq4&!B_DEMv{W@XYhWU5AFRv_I_iM-g^4<-TdLpxq zv$f>}SN3o_<|RAKuU_+b=O@3nddWNAUw>@Vn*PZsHu&n|nQZ?~tj+4{bXV$sz44~^ zl-YkIZ@)eN&SYMAg)m$8xx2w`#))4Y%0{W!xoXUBQ7kZ*N{;az8T-nlDY|EfPJPD(7p;nSwqDvH_r z{`pOQEvohV&jgic*568_zs5c^3V9qf>4~dO(@nwc)yJQ4{5rSoQ~7M}&*vOMjw*9M zzw^4|oprR_@i{lL<{aa_YNd6vm(xbg=gy<`ZQ08%?yH`%WABV9_c!YN{^j$hfahe< z*V5n<&f6vnsCkxq_9}js)Hh@LSLcz{zH&9s7oGX>*Ee4GkeZsiCp>qv)w+<+hW3^H z@y`^akKMGpe=&ViVy*7(*uJH_d(T|H*|Fr_-eZrO4bE~kSI89ZHkDc-8m2UT5TXdh=QTKh~9Mp|WyHrodUYTqCIjfW%)l$DJdG1?=z0O<99DTlcwN$_d@oS1o zb>AxY-=B1EjRuFrg>8i{kMDfV)coW3m^C!~wng8qn{B^WSqmQbSa)`_jU~&&R~L8l ziSB%Dowxkj?Zv)UHauVMzt-p1-XH$#YUDQQrMV1yjE!!;{cQDo`!&CK<~+-t2~~;b zzs}(@DS8oCd&~QT?RPuwYv$VPr+W3gC@3krx7BK5`<73KMeCltxV%$&k=L?>w7)aA ztx9DO?v44%Z+&IWo;iV!Ph7wLf8#c})g|9De^ky-b9=I@?%U6E5kF0yS&5Zg-1+c* z&z;NP7Ze`O(S6U5GUe{kjSf$j%g7#!`g|~+|AO8Fzb%~?+qEA}T>Yv<$6}Gjc42!q zoofa?^*w2Fk00p&+a3S6`0Lr{?|1T@$gax2-7o1JMlkL&qs9Pbl);ytz9eSLYK!p_4N=k3%z8}GENsKuM@ZeaW4thF&Q%`ug= zA@U#Bn>l37@m#I-N`HzG%g!|3*&m#jr%6RfE-E+>vNSTqE5+(v-HhiVd3W+JUeDcn zv-f%J-Mv@7H1XECOHEIl`?3Gj+jraNJhj#?O#Qu{t+(>p1|N;?o;dN(9aXyoKipj@ zKjqT)zrQsrOr6dNUwS*~eC_2V70oqizte8Y9lZYg-u$Jf-giyU&bR2Zy!ZLjKJ{r{ z-}1M;ubTe#Oqln4Mdqh+f=wm~seV$<_wG*Ly>a>k_i3MU(qnBL74z2IzZb0>E zDsRVIwy)XUA?>d#!xL}+xZnJ>I%#%o%{De?^C{nwEsB|!p6bcEzIU&B_xbPt-u;}n z|L*gaNu4=$@%E+Xp4zPX+>#xWJ+D;i(Cy860q=@k-~an8|3`hgRs7}OQ~zDOUcaaA z`&)G{C+AHM#EP~l9i8)f-CnKg{b4hW0uxU??)jq07U5>P)OxDw-VYvv{eQl{Y}g&P zKg}@e==u5g1Go2yzIvxo-ZeciMB~RyjYxBWK+6D)>*Wfv)=72;-0ZKG1w_b(K9)Vi zw1_ojTYh3A)5c?mpVlm_=ITC~xIzDz=FUDnt|~U(E!wYalEnj8o=e_n-}hbY|8Xnf zu%f`Wlcwd5*YEST)OR*`?)u#&)z-+YxGa0miVN5NJi1u$S5i4;&$V-9$JVIJn3ro@ zJjot^D9?XRp2TqHiLt+gsjRF4$xLev8G_zeO4emkjIM-nOv2Ip6>O zbjAL<_tTcnE^Pc+sTFne&U}`CHqQ^4ob-}B5Or_b-e)HRt(JbTShoDz5^eFcJ>Ger zPd&W;%KzNu)r^r}Ru<0>1KmubEp>L^*ROe{GNQ9eBlm};_p4W^HK-`>=BjPuJdm zxle2!#7IuJva&r_yY_=m?pdqFee9=vuFoz1lIY98*tH}0W}VVs8};8SBrg{GC-X4d|J2`3A`N(;GyrJRC`BkmFL=p;3N}nJ8b1yKje8WXcMbQ^o z?zOkW_dVHqaz0IZjyyXlH zm)w2*BX~;9bY`CAg=bzkzYEPXtz?(lRHCx!*NkIv-^2G@{5u=*Fcex<9uFJ}&up{U*V4*~#m6%ktm(QFrJGJO5+jxleAeTV4GXxx6+` z{K@~&XD?e^cf9&Fg=hb!xTk%O3i>Q;PR!U@KC?#hC9CwGW3#5kSt;>YE;X^8%yXx+ z?aromlf;F4tIS${r|`HEG3){nrv@davHE zPE*?6`%e7oL%k<&Yv1Mno_zDxu1CMJo?Q76^ZP3AO0k92r$c`J)Z8xXxNU0f{mpET z|DU^1oqu7^xxVbIt-b4%E_`nE&pW?W#cbJTCzQ3*hUV|LD145o-*Gs9s`Y0Zqfd7w z8CI{d`}-{V>v6lU(%b)5`@VPo^=kY6_5a%S|2uWY-r49M#gRCrv(`wnL8D)&m&51V z2jk+ZyBqsb@(=x~b7!2nV^dIPuByRrb+>)Nt=7%`b-_7_EFJsgdH%#0L@e-nyfX4n zNZV%pD?X}C*?Te*8*H#4=^{m@?ttzS=Z6_@v!@qa@a2Kq* z%dYWl?W-Nh{N-s!W$V-L?owa<>dw6_W$ucL-2d9x9zK8KprOt6YZ3}YA5XCsZ$EEy zX#a;Li=BftCtqAKm-*o>#d%-XMaBKK-EL>2zv|&0+eK%$^nbonz*kc~#du}pA-zn8 zV{4k-GHfRc+h3|{mcA$`#kZcz{<793gR0c@^OL%b++wD`5|dlG=GnO;AD3Lz6RkVx zxPDjqqYpc6e)F;yMxORq_I=g&3iGDF-gmB~p8fTA#q-J<>udclKHM~Wx3$`iySw*F z)#KP|*~LaFnRl~fGi15UBtJ|)m}3&v@o(jtYihkUujgHSx`QG4jg0oLLfMDeW;cGH zIrIBV#eccqs=IbvjoCkaO39_=Yrn0YC|G?puOK2ryBCuM?VoK9x}>)L;QPO^SCdF zi*@f7q`8{D7V}rW7w~28=kW50+3fXJ`lXxZZ(i5+MeF@p6WP7qX#z2KR=XT#t+ub5 zP`l_;Y;xv5v*V|Zaos!m>~33iX?tV&uZjO3*L=F?H1F9d#TDm6&7}H2P3+B6mo@if zf4O6F^5v(J-`7jarLA5po%>s6$-+yYeQH{Fe%V^CG{4~S*Jm5ANZdUs`i8yG=P|eP zvm0>>?GI_4t;oDo9imssy>0(OdrLb_^;z8}_KV-IyZJarIsf^#n7Fr**Up@7GdZ5| z=gItQhZ>E~zm2?|%JU*)jbX|j>4%BcrxatfpPl>tO(!n((BeIpf5aT!y6U6Rp8`9b zb1zrF3E&l5tL!c<-ThZZXnw@uoBValE5uhkeQEvcd(b6rvmZ+ZU7bA-a~|DmlHqIf z`TgtfzsvT9Om*2)A|qFv{^j)DgR|DP=I>}V`lulJbWi)t9XFD!mDlZ<`9)VL(a6%j z?Wp&X$0=Lxe>W|Eyu$7>huO8us~er>b4n|EOXRu~Z91v<`fOd*vkwji?o}T-jtZ*U z`1PkTysz;oE82FR@0X6`r!bcLy%&@H)=#(GXxaaI&6R6q=kH0zbzD-vv*w}Q(o>%@ znlC1ov#sf$^zL)-k25>NrkAHVuiJn1RM{pL%dpM8e`PbzMouw!7Jq4(-*%l{1#xHF z{@&yI8*|70@jUawyNBzhuUo6K#*AT7>HFl;HFHz+ewt;T-~EEeF*Ca&?f>F+hItQP z{hYb)L+ARd{55~>-`W0m*1p%5*989mJN=(e?dzY91te(-Pv)~p(; zQa^sY+;ly3L9zwEVtD0Qf#2otr@u}*GDpd6N<7cTRvY)M3kIgztcjn@gi`Lfb9>F* zExg$;S$gsLdpf_K6<)|U`hBE0>0a^^|3hVes@A>jF|qkKZ+b-H)P^Z{JMKE!<{fX_ z(DU}Tm{{<}b>GDn+W1LV)%?BxyZGE3uKv*dJ0E|%v+h%NPmQ^cRyarT^Q13(rN4YC zUnjh*@^eW@e?{<1=byUGH`Z89d88`$Vutwn;yF1}rrtGOx8t(m^mnJ%nE%yV+jc!r zGI52!?0WTN2Ibt6^69@ypWMxoem=Kq^CJx#H-6c+gU$@o4=yauY4uddD?{fUW16P;|AOe0xcjBthfDu;+f}YJ z&hN>ddGB@X^65)FP4=DtcKl=FmBy+C?|0tfR(&gRL9}kk_B+dk*q3ZvS+la?na9rf z-r~ReqaR+kOnu8AT{y?;@BVL7-Lvl%Hf85aofIzTn{@Aa^i`{U!Ik2=Gp2;}nQnM? z&$nexLQVC$NW1t`TPD^Mdt@kh9SJr>;{r1PL^BifPtUl*F{{F51>i<7a=l7fbn00Uc zm%sA=-Tof*uc`eg?zO}@R8n@4>He#Q`{OPpf7R!Py80r`^0Hv zP%*#A>)z*&b=OYsWy~pxyJ+WL7r!-a?>;q$w>M^(Z0P^7ZlC*x9sPH@ee#d~H@ehc zy{ACCu4>(b1P0dov@Kf>A7`{F53^^VrJ*Q{Q zUyfgGg$qBr?YP}_kgN6n-+v}j8S9MZz7ooL!fn%LBIBv9@-ItIg4cch(lF`GS_#Q= zk1Z_w_wIck7&Z64__qoz&R*xxdHPQxBDTL;YjpQTX++sw@p(7&PcPG49#LA4itOej~Gd*-Hv_v@*Cj7xOO|7<^%HCIq zPnd5XUAXl}w0K|->;3W@GnqGSe>vsC<#x%s^?PRqs%7&3JykVxwKUVsn~$UCi>t58 z>wB&9G_~aQn?5Doe1_C(Z}r~S|7`!)fB!j8t?zx`m)-xr6@NWn_nrGHYeUSz<9vU< zIn~bD7ID!|YDIjRFQcoHWUGten-Gtnj|)nccf56<`SE+K>@C;SD?)$vyl;-%C$?;p z&B6e=s_5^s6Pz|_uK88}^+UDQ&EFwcB+iR0cvn_c_2Z`OA+OnYGBqOlR%lNR6zQ|A z4r=(Uvq>?fJyH4nF)!v5J?0`>t=~gVaiq^{mW-Wgy{czsXr=sO*b+W9^H9bckv2jA>H&eo>PulzUVNAQ-UtCcKreIGvmjR`t4;rZts>vwND_wUS3 zM!u&vnYMTPC1ig+_2ptp%xmuO)$L|`)YD_KbH5$Adqex|=ZLo}|E|)GJ^kbMlOOI+ zckH*cOg`)XboSHIWiQ(2xo;_Ot(|sVN0fJ^O`+Z1daa_ekO?VAV!f=s%W%(CwhC9C z;b|Z0$7cD}x%A7YMR)h+zwuxDN%N(r<5^4Pqg#Jn{rzNT&hd#y4f|WBxBUw|9=NFb z=8dq@yNk`PEIe_e^SM#P+oz>l9<(b?D)?=;@9@q8YN1`*7}RjO+Ft3_ zo-IH5r@gXS`6@|L_4AXvGfM9kzwlW4-OHc1?AylOoxk_JHJQP4Ai(u)xZK}5mxpgP zqSc>QPN|8j-StUWYyR=fuKLjb!RHeslUR7gb50)pWqIGabNz=-nPZ!Ef(NMtYsiKV~a9-GoakeyYFX#B0x2dPKV)NXvbZqxy(Ur_bqC<;M)AQ;+|u6W?ofx+0+N-POz&Y1YTwyee~!Pb}wI zsQ8Z4T6yo8;LYFT`n67PU9j)c$LX77p6^h6#_@b^`8)2P52yU!v8!L*?Ab2e&nKe; z#lFgj@}8>Zuw2~3YNe-=|4#HpY3|S1;$20nAFPQl3i2F5r#+ss&oi=w^6QW}_YJ{aub<b0*%cCrf&`<08HPm!{{uefpl)rRn>hnD1ZD?lLcWV0k`sWmNg! zv$LLmf3y8Yht}-W;#i(1dtV>E`)lXy^>yxIr#GKDo-`@7fZuxFyJt_QPTgt#CFAq6 zGsbfjyf-JVEph%KoAY?v`$HG!_Ak2bDfQvRGU?+v=KbtxTRI+0eR#h3!HS#z0)N%| znkY}uedn32_S-ph-u2{73j;FeXa`G|CAGcz^lQ(Zo6AdsrvLtV?Q?tf*$Ua@?)yIW z|5oZ>@2`2EZ@cEPX>IxP=R2>~|6X0cZ{ObfH9AKkG*m91ck#F4@|6y2_;kT}->VrP zL$pek?)c>O;Qf{KE$?G4`cFN6)@G~dqPsyqr>^MOppf1=zhL5S_bRUQD^|bCjXas- z^-TGDMS;*!%T3>Vw(Y6vTo&wjd`fFyV7~TVRo#-0H^lc>2UqUscr|4iF@9#De4TviC1D+dgmYyDfb0Yn(M(@*&H3iAb--Y|k&=`{X|5 zT4qEN3%}@x7|FyrTK&sJzEp?Wu1~fMeHJ3bbAR`8lXR)sqQ0B&g@0=5D!Dwjeowvk zsamwsrrDjt^~?9;}&vm#mu>{wgtO>@;zVb!oDx^`24(udw-n!7gGQ7 z`oA}eGS|QS>uvv~bNyBMe^=N;OV_Zv-VfNFb}Q#__;sTWv5x&Kz0}z*rfN-a{lCg* zzIDIPjI>gBxW0ik~`h&7Sp}g8R(JxX{qty%IuiKTi;y@;Vqf>K;zrb|C26rKc5q{#^7Mh z7T2ej{6DQa|N2p2U3b*ZpUV=JdPPjWtWaC|IoIq$kmvkaUlx8W&SNk4R59M}^=_IIA^sR+qA-uOM?*fjSeH=b6pDBql-(hxa4VW;to zTL~9$u6b*ew)ItF)wo2hBx9z&6CnPkiuT^t(xO0D6;-l|-7hu5cBQS@F1L62 zRr&MWQr}waw}zYEGK?twcK&5v_|i=s@8>5rNU^%!n~|$$z5k)g^-4Qy(HrLt_%28Y z&iO8RQz`X-Vgs}I!nez_WE(A~7v0&MQn=LkxQ~0O-1o^p`_?btsL!l$c?IWEt1HTz zU4QX>pPlXL&KTuoX(=mvJ$$jG_l)zk0lTH1Gn;El#81sietLSblW|gG<=1&$evhVX zS*|X{zMI?s`4N-pnLS1NcdpIVzVP`_(wQFC=2M1?5*NHPN$T6$CnM>o@wsnL%cm7j zCm!-I*{1zR=isFGi*`Lb;kokGmItpc-MYP$Yn^rfi4Sh>Y}efQVz^Q-MQRDxhRgJP z$f{Q1eZ9MR(NCevGu=IpC#~Cad48A1oz<_-daO)7zHx!k0$YEJm%IneAAB(gs7v|( zR3;($$=4re_Fg={>PhSkvEHs*-D;;woagaO-kT@+gX?@>@}_U0>t5MN{W+uN|F_ZZ z)ou3szyAF?9{+ps*ID=Of0;c0=k?I3Hfoh@@9vt#SY$pc^A-5{Vae@fb=m*f?zUt-(e)ON-*Sd|Tz->xulsDK)DK5@wz{&Y-pFZC*}DKBL+DOway^zT{>1Z#8pnHK{E5vDqe} z&U<2zT=@3t4{v_ITHk*{)ha_YI3GZh9`E@|YQm^xod z`O&oEliIVa*gqYT)BpRbimT7(Di6EqW$C0Dk6+IGyd}-m^=6#^r55)qzf(c|t=T`6 zJ0E_YcPXUcuGX)FZ!5RP+wo7WTxD>{BhZm;Z|>Qt?$JLV*9EnfiN_XS4|krtolDYQ zaZSrE_h`1g(K{N;Yf3M68pOJ)=^tCu8a=5l`0B)C%ewX`pV}N&H~Z~>y?3(bL&M*D zPE&pTSwmGbasH-%`(Bnb-&$di5i-oNSZ@Vwfo>jZD$v{O^ zb=Sccg}eIn3~yfd$lq>%+RD1+{jBQ#YugNKV!QX=uTp=k&U;bjxb^(|e3!S*segZB z;;WJ*zyI9t_Fg^u^~kT?jh4mXoxV@K_CMQs_^TtcZSnR;A9wXX+pVM)Y0P_nFZ+^s z?V|Or8*eGRGu`}3`mx!SGgfP1YXP#>AO5Cyc>aRlC*S`L+Pmz#vF-V_|E}f#yAl*t znik-*zGbqx_YCXP)BAi4FaO?lBE`Bhb?c<2LmRGLEM;Hx{8Q8KP1jbW`01&XmtB-x zDjDPXe22!CoT*nOJ^5}~xUaYs-nyOLa#QWcU#?gx~} z@zl86XCHJjjC6Bdbva%1h0nQ_fqmZ=Z)!bNBX{?332KW=0?{@5Z~Hs<|eo9m(X zCdz*A47z0e;G$K+?I(ZUFELmdp7qrF`LjbeKmJ?!Z0Wk^t*uKK7yXVpZ?r>u`nBE4 z@;|M2I%)ZsKX9GX_hBNJy}Z7a*O%)Cr(T3zoR@fF?t72QKPz4`oz{)vz5F*XMwQ2Z z`ion|XU&?VxHef{yLD~%^UA(MCN{GUue-fQ<@bgMQn9l>MhND~-p<}}tg!vTid$~a zrY8Qkcox3p@g3>H{m+}SFECj6OKq8-{9?D+aZdeyrLvYSPk1!`obzygc%xv>=OQ`P zz85Z4$L433%xJr%@bahU(`C03wmgVi7Q1*-c;{lj?A4&tYBu&M)cL-T|FwAjze|ti zyGoyIo-qC0#1hH(ajW@?^X_Gzcs}D;SKWlqA-10FCx3sre=Gm}zUaCYr}r%gRgZZ3 z=Bvol^+hd{9$cRlVtpiaq5Qq_$?wDJE4$pc%{=~VrSG*xc276HUlds7#CJPYLU8J1 ziw4EM-QNPQ>&!Z08&Q4f5qIGBtSft;K5OaApTaq*d%I)Fma41H2d^r7h2E=9Y1^=Z zr?>y=r`P$>i*xV%cyW13kjCv9%9nRN@S7K!@?zh$riF{d zPG>#qKVkpv>#4G@tIx|kTq}LIrm4G<^I_wr|FQO;%b#!cy?*Upk74lr-=*@;S}#W& zt2}WhMw@-!+m^#0zv-X9-K_Wa#bY*}UsvRl?iJrDoh<)hmqq0)Ht+eaRcbNZ^^#X> z_8y;A?7X&c-mGPnv6I)=y?n`9>|36)dH-%{CBgK6@7~|Px@^C3($lOtD?ZPy(M+p0 z3;3pRv-We*Db_dd%T>qS#^fa4Fz4Z(?J#%f|{GRrT zuamy%>!r%fx)hZ@w|v#weG@-Kn}435)Bmb&cWJQuwX2==#}{^yzR0~jD%+X=Q}*RUu`{= z(@~eN&SLg$_SuT8A!^Uf6xBfeE;)p`C0Ex zYs;7I|2o?~HvZo={*cgj3|>iTTW9e%=C0>G-(QnCry}e95tH)Pb-bB758rg&z9@Iw z(LZ8B>jZUcS;MDD1}+OWU!To+GkNRzU7tAi#ym`WBs|TUe?RZqvW2F9zu)NQ;Awj}(1RU|1*&tOtG@a2!sk!K&nI)|G0i`IdGRq0IZpjU{#+sFu1|IM3EOj?mHl~7 z+0Ap^K?fIFUU4;==9%?&iOsxn_LhAArSFVCZG00J_D9QVy;t&_n0ZQTmxL@6%#r1BT&G=00=o-;}6w&uo(Ua;G^HOF}M$ zFEy&2nj5WD|L%EUZPe%r0l!RN9vuo(o=R8x_JlQP~xyIZ!eY(NC z)t4EUXP3zR+Hb+NeeJG_{M7Z027!tmRVt;kcvGhFzF2Yb=gw8mp0QI+cCEKO_%Y&P zx>oApRSAy;Pbxq7Zg(MbdBMYtwT{+I?8C zxFGbrhQ!V}9{njk(QnUn?f#J_+h%cSb#lYXId<&k>&(6SzeY~F=0W1R=QE$J`kra&!z01MyIz?gyLP#t|2c^` z#e3OLE1V<5SUz`r`u#ip@5w6P_vyd>eE;M3cjEisMIR0<5}ajkGgYb5Oj>x-`-NdA zw(QV)8FXo4$quio*?bworCI%oYq@r{#@Ccxxh!VQ zXJ2LWHE*`f&W!=4hZ|NbzuS;L=dSx#d(rfpAE#{jD)C)rZrpB5<@Gb4KWIC{FEqU= zG3=bCtHn9t^v=6XHG9{|Ic$C$UR3*pyC!5wqRF3Um0xCl-f~)NbJ4ry7yaGL`z9{s z`^ai-;P+2&>82^2+m-y^-;vqN+0K6cYBFC@&mO(Y2FJcu+XR=S`A_>EGrgyFiXvJHbtqT3u-qGeQ#R)3G)^H^;1l2cD+-Zwtw zW_sqE&eZqDuXemXzVWZmpHpvleE0a_acQMlk)=`meYU-Oq)yj!E4sHdy}$bZQt6Y8 z%V%aEGq$g_xn#EDp5$MPbEk^GcE0+Nvm<6=4gaxMCNEyr?b~^(prvTqi<#MT8!p%y zbMBGfeEj6!hqeWFzrt2^?tR9~*K1zYZgVKGzHBM~5xc_M?u$03+r2B(ciSK-cdh8V zr~H$alka2O)~xM)bZX+~7b`S9f8O=EY7uvKU;nX>hmVy{r>0k>vxv=CwiRz z;VGt@S#{^^_Y*Jf&MTB_|M-5*>)7&dnz_l>>c1ZT|J%A~&$9Q=z8rjCyY1hl>Hq$| za^jfzym{v`N5xhT+t)7_FnLzGS-$dlx$~H+(gmj^uGr9WFaGyEi}vj@_b)BYimFg& zob28#wC~H~;-5VRXLhfRIOJ2um3r!E)TIxpi)UP#+diL#b?Y+adY8!c?mr?XguE7- zka0)CwEGkrr$C#{`wov2Yh{$)eEIM#UaHG@li|bnPCJh^K6ct4FKcP>aqjN!7Ui?D zK`$Du-j!KNRrCrzysT$iuIFI=&+TkS+T*-3m${7g%AdooT4hcCT(dsPJzejxQs1TM z()AiP1)G;U&C8W(WBIj3{{9k;a+L*!ChF;CEp8 zLDA*58?x@XoKdNBmyoM@9=^-ZaM5(9y6~Wh(qgd-m`-qATH?N>`|3STZ3;<(7wrLX9V5s zCGX7J*vEO<%+IPqitTa58N=p20sgLM(Z^>WySPX6c!k~EEvb@sUrZ>l()sb@lHfVE z;Gd`d{FuEl{JHe14Qvk*K9)R-b^m*A~mMxDuOm1XfDPMLs z=iUK`#C35yf-G;SM6(7!B`t7{fy-)YywvS=wB{;Xb z{|%j_7}EWOzk^HL>`nm;ehQIGLD?(jC4=}DZW-tQ)RUZ1qf86oHX-C6qY z&f6!uROX!w`W`wd`&6p+J*(4o{xhy_&#s&rIR7%k72ewZOF79;eyv`Y{d1RJjFF`9 z##&k7#aB=6yn1`%f3HW&FHhF~Q~p=6_UpB~{W{+`zuwe7xG~&*%9j3^bVX_F#ijzs z@4mVkR?c={fopR2&bsOD_v@bs?+>;AB6ausy=D7twQv`!Hyf|d2s+~X_{n$KQum9eeLP)Bd#uQ^{3v_oT2tVM#0(TA1p$oZr34 zUFCko;>Wb2_yW0TvG21tzT@1IG?%Se*7z9HhFWHt~ za##4q@hTTt=D@&{n>p0ZUcY$y`qb_ZF<3{og_uf3;^vvpg^w#@ou0dBE zx}}t}8#s@N>8Lca@_R5H*?Io|%$TEYc}XlMSXjy?Fl?H5V;Up>Ce_K4JZ3IQ2@<*a zer3#?zgIq2hrPWlUpxKX`qdx5S*E|23R@esHH&xas$D8GZC9`|z82Z~{G%o%&-YATd))8)(sd_x z9j(1|W1Z!G=|2ts7yjJxIAv{rvYB0??OTa+?tARDDjAPDcpcNcySde8SH1qrl9+SW zA9@(sZ=d<}{CUJVN89*``9*JdosaBhw+_&&{^surE zU%R^QVe$P{tLEkxYv+mP8mAZKoH>#0N9)6Bk(@KdS%kTGPI?Our>}GH;w& z{wqsurp9*6&_Q&ZB5=7jvumgV-lXZXBSKegc7LWZNsfopERHENpI z_x0q&PdCD+gvrZ)oL9y3a^~Y7O@YeiL@d>6Ju8xp_LMo4wf{KzS=6vJsk3x%tWez} z!})=`ylrPCpA>vd*CR`?jY~-NBa_9TTfLvW$=}G z-@A~tQI8+nNhxjicdohS^0m;#_V@M>W8TXA{tKTTNOe1kbrt=b%U!?IVg7vEPuXjX zGUGl-q%P73yC!EoYo*oV$U};)srSGeO~;lqBMPe;d|BjpL6H06jlAZ`RwGxc-|K4JCtCYn@wxTk zu2SZdxu-uk)Kuy05xNlhdfVC$#@k{h-L({3WP5pQIm7PQ@BZIs&3(Cb$Dti{Zr3$S zGe7lQD@=-$Jv}qK^YxqKH%eK11GU%R&9wMxxh{Ls@m=28VX+rW&6{{}Y|+0ka6b3`J?tej%^t5icg+2O zxXa|fCmya^wY|t~+I!(k6BlPPh~1yFdQOtYy)BPjb8mckzyJU7`kni}HtSzI{^g}l z{mbrn{XCB#q5GA(rzbB_JK5TEz&dqqdG@}0DdFL{eV-QJIa2Df`Rc^>CzspW1FK`+ zm$=7I7vIbFgJ)yZ+w(u({oZhA)z4iI&SprQ?A&}TwI-j3OLMM}@-6Y}-`Fgj&##p= z+H?Ek``M>=h-2yGcOCOGzwAD9x+=);Bro4N*O?b~ zyqcZ)B1h?rO{^OK2H))V${n)ZPZsKb?J&C&Ze4sQ{Jg?Jw{$&EHP`pN zJ7Rt6p}D5;?z3~E%fg@D5LBD?zW9O88sD1R=0m{ZRq>0hx=DO<_S{tTppafrKt7! z-gkd;n|H-jET0&2xy5h$szaM=XFlF8(^On_*Y_>o<-MCbYV8tt6i>O)_;TOf#DhOI z4VD}#WKY&oU%6}EymJ5Nt@|t9+uKRI#c<9)z9@rxiBR3j1!0j4 z%Rg?@ZYw&G(fY=%x3gxY!&%X%=}&*e%}V&f)9>@<`0b5nMJCxU&)o6$_<^$x!fX#( z4{z??nzZJ5pzwgR?=k15b(`4SdY%4k>YWs6h52NtcN!oi^%KqF5 z2+X?q{*Qt$XWYZE(hcT|R@R!Dh`l&7YHs-Mn0wpF71zHIoEJI{{nlBw*TR>&iF*=6DMryhH59lsmy zEZDGknsNWJH^+-aip;E>Jle{iUZ304r4_R8>7ChOiRY88G!OfBcb9G#-hDcCdgGTS z-@ux=?Y$S>kLd1N7F)FLla2hxGZN=4GmOPvPW$4aoH?Dx<-71#p?!SH&l!8;yVh-f zto`%N+=&N`dVWeJUbcR!Vt?9K#^#g3SM5Bm#4DVy(`K6(Rj-{P-v3sx`yPwK*(rhN zn_dW-q}e%Vh6M`L^6Y5Sc&QQf{;rqu+uKhUd@}40-P(5{<R zcF408QlGmXy`B}KJ8$DVhPA;gZ}(&sNqqb&`Z@k$!*jP5Wtm#5q8VR4%t)5pb1h#c z-bcdU!Y5w+-kp3)iK`1T3KZ^l{D}~kexJ0r{EOG*P ztdO^{3$B0vdjD3XHTKK=!+)K&|CxVn&e@&0HzRHS)J!Xqu8g`~arSxI36m-O{xkKT zJD9=b?cJIFOA2Yu0dsxG&A{>kUHiH*PY_Pv@EbMy5r9}BUVoN|W!I;;O{ zM$4w&G*OOpZDwEa_05V;wt07Myr_IDxzxk+70;T}67Qe8&aqrm|9tNIYtCyn{_L~y zUN)z>OlGvdMwm7FYJV`P2y?#Z=J65Koc zzZR;;*sU=6%2Fg8XlMTLRedhkyYQwJzUSvpF)ey`^XL7^$Ns!^?Y`rtZMRH0_x-OQ zc1yp<1l_vpBDQryA;jyDb zRC4>=@Y3ayy7r;_wpTB+o;*Lo;rw~cQ`?RA`8!O_l%H+#VD-{<*EYuVFIlzf)Q0kD zyB4#3fBEihvBZ4KxbH`Ht@qFBHhx&*A}s%V=68*&qP#N}9g~O^+53Lu{`a+io*cPY zxy3NtL}D=?_xt$|J-&XM_~_5_%H;O+@(byF+sd6Pa-P0hbn~6C?}E*>_O5UD$@HzR zdnyxs^0WNrW(~(}f4SZgaEk zk9;XHp}5FZ`e(49QqK%$o0?v5I4Rud%VX z(V~$1ShD%!&?%qtt(sQ(EH{xV;(MKUwy`|a=*Q%;$@`Y{mS_fEy3)9-wcq-9LVwdX z$4%2V`|J?*Uo3oi(uC&+&S~qIuJpSozOd3{jp{O)w+=kfi>~ch-Z*`>EQfaC{oZL_ zcXs-D{JvGd!Y8YHW~=A?<;)k4>+X;HzGLs)wy4ih=bx=9^-nmLUe6V*|Bz#MM&*sb zV;cJcx5^ZLE}EvP6jAx*;ZdY;I(DqAn!^Pc&N?Ce?pOVpw^&*a|5y82aH z@}-Ffz8+b5vik2CX=}c}zh`|7POg*<7a*N{y(kxd8_+(9GxvKy#CqYz)2f5&7Uu0J+);{ z{UpyR`O|tYPTPA~a9L^3r>KQ?ubFqcg;@&y+xq5!k9*7ZpHW6@ew_Q~t+zDB{qWzN zYByItD?KZyAG7@`zqRI@1g{lyBnnFy{&oJ@;&U_h(PZNnS&Mj1?^~508l{?j+WWYp zmG_DKw8AsHez$$n`Z~2|-hbhq_g%X^h{=q*CiQC_aN*zj`gOTjO{ zPKEBA(44*b_L8^&?*6+Mrs?n~ z{dcRN<>!Has{h`}&VKJ*)h}D8ay4+?44+uhm#637vvX&b6)H<9Ef)NoZPfGQY*=up z@ZsoO%#^hH`k$YXRE^Fyb>&tUbzV~~2y71$su&c5Y=Gtx& ziGK0*?$?uxysnu=?MpefY;ua&=Wo`<64T=D&wDqA`{j*U{&v5AubL%p_uQucqX^5c z^ZAaZ0v}B-9&WL9RdK#kfB)>_=pUSSO_RN;=d)W>7!^aI3&#L~tyY+3V z-|t0RzAPzTEuXjS%Ndn*@8`_FHFNUcjh1JBFW@_Hr?SU8v$F2U=a9sEtl|5V?HqzIpWg48EM>op z-~6wC{g?UIUO(nY?^!YFlt%g5=oS0+ADDM&N!gE|KaO!NEStZy`igw(Z@bHy4aSih z>bLECR=&=|NWt4;zjafgNbm6{N7}S_>fXN9k^b?%@4d0Q>;cZH8bvqjRI466XrF5R zXT_S5rJLU$OIv?6Pwx4n-=ZgWwthDc_*2O;`S%nq_S?%1HK$&$-6QEb<%?6N!pAqV zuOCbK?+^YPvZdsXpZUAf4^LzSP1`^DT>9%Sz8Uiv7!(*hT^vKyZ%0|bpS{`dVpV=# z-^#lb^zKlOM4*ss)n;H+97byfI;zkU#Of!L028`=qa{*Iv-_Oqx^+ewTs-sX(!He{wHDtuS$==o z`;OAzR~)|WT=XL2^ZGODpH+F~cO_q|J+V7S=H{V~n^Sx%Qq-PADcn0>_~544RXfhz z`}#ix`g?23om;$X^{RW@7OVcgxG#VG&cB=bF8ZErJGUcL%>9#9RQ`=hiSM_c9%Hqt z7f${+C1cfZhS#rdo}TgWO8mKFpZ-jk9CUoLR?M%3<^tR<+ z;N4>h?Ln_1j&-EGl)bOHp69?jySG48^%`dm*oM*1d%hi&{OQx)| z`LO1UhwJ4N4trz6o?4~Nykapq#cP*IZ!}-9c9UoEv@NO zxs2_mYo82Kvp*j_qbd8~Zn(sr{+G68KLWq*xGjG9^4~}EpYGP0(YG&Vo&O};{WmLW z$`zJ-p7vXiQdM*!FlXbcV{_iWiZ^#W8=9Z{){0%ZKTko9XPL`D~QJB2$UHa$U6Tl(+g{6Ai6{shTo+_~B_;Xs{uXnLNPV~zNVozlH+Ok1Cb*#@V6 zNL?~#;pi*MZLLy_m$ql*%Ol^FaNYxz8MkrLFTJNN%wCbRg>}`hEYdPi56ye z_IX|GDLeYIxP88R?`}Qq4->eKasTpCcU|`=-Tq!fo{3#oMqvCN>pP}?R}P!@)fztY zoV@kJ#p4ayiiIbxx<5W18hHHgMbDV0)~8JTWj4R~xBA`mrit}uLZ3TWckaGxc_Do2 zzSAMqjx$mu)_2c)5@Wq?_x=)=7g0y`)tUP5)x-#v^GjUJj9GtalZm(tx0{T;SLfSv z56lbVVM@3Icmu;T zC65)qn_>RWB)llNLGiw-L-2Ij@?*!ncN+&6Uv=BCneS8n*JrG6-`ZTvl>Bq-Y?RW! zf{S0Z-+g~m@N!0=<%tyw_wh^*{JlBr?DXq1znHAI+~3C@DnD)Uex*z6qV`IyerhmZ z*-ZUQ$1dTv$6ZlAy{|?6+pjg$5tTdl?Oxw>_fOAvsaNY9mc8S6 z*7tkL9o_dQRvh1Cbu8Ls!LKXfxf?XD98CZJ#=m~&zpLf-3+tV~L~E|5u2kIrRXVfZNt@iQOOEfp)El4IQV>#? zbg^@i#KYx0YVF;2{WA=gm0Q-DsP%`v!pP9&K~`jpnbGKb`r;FtfXM z3y-hWp3Qeuec$eQCA~B2Z0JG#sLyjMwwQ$+(+j;+v`{9z{M21Lx2u&;S!#A?simb| zIcYk}#HZ4?_($H^bID$j?vE~Rv2$R5r)_?v>z~Tk$kl#wlV`|Jbl)b{e^c;h<)1ar zgqJQ@to6#|y+OI>soMI>)o(s5c8qvZF3x)W>h8kH>HqD-CQf*1e{J(cHTmcbzhAvu z8>uaM??%Gg<2OBPZVKP+EAm;v-{*Hr{Q`%~y9xKc>I;9jw7sA0?bvKEIriDSVBtrAwkDjcE`tq)cc0SV|r=2U# zlR0qpZ{3<*Z?CU$YKbdaQ*QO+1;d-^hHG`cd*9n!x%&D3Z>{-P#N+<`F*|?!%fn^z zc5$!j{~gQMOKs+AOcVXi8m0L0qGiabC09Hzto1rPQ|a!m;`dvN#PwfK4LoeEVBF;8 zrK;MI{<^AsRfhY^xxeQdaJ6mRCoCVAD1Wv8@JZRa^)Du$dVaU!xrWEi=Uyommu@bw zZQi^_X3sRyt^541b>-fF=x!5vaBk|-gU5Wd^n@Q*T`Re==N*s7Q#D?hCF^U~ie7*I zYQyXaxeBi;mMcCX5puZl&L zCh3UUOzyhl#%k{yJS8*D-d=I>;;U@3f6nc$zjQS>unyDd)Xc7 zeV)F&TDtD(kwqczjAUY^%Fn5{v}e1R=XBiP6T`RixX-;Oj{{=s`(2iAzPP87Wy;)l zaanA4!(x^0e*G)zw>{mnbX|t|!>lQbA1WzT3jZYDKmVf`qYT%n2aX@fE{&T@SE027iB)4`~NJcd&zx2 zX12hTOHvv8u9^3AtUvkDt!o+UF+q>?O~&oF8)SE8&AYc&q=b2?aARpz?}a&qwd(U9 zN%?k85PaIYyw^^KXw z)l)MzKjBwge|e{KdtcR=Wd5byFL%`UAD*}4-lXu-mu=bdzr&{*@n*I^zWTKLx|Nh! z&u(VhEz>S;Uv~aPytaL5V9yvhGvsna>_4H%fPCoPneRr7pvBu*){K} zjisuk-n9Fls@of`xY}-dWc&Oh$B*1R(w zFSV<-QS*GfEz>58VR=*iy)C{mlBc~it5=y7J6-#}Lo>f3I4vdn*WVyH=9A(z>npz$ zS&9XF>0K$CCdRLH|K84vzh~Y{ZkK0&^yli_v}&E>b5|W$`k`-O-=}|UZjVATGi^Wk zq!z_<|F37r+q`6Nc>gz@#dVw5ix0k3?^|S*xag+#^82y(i(f99Wjb%l%e3X`rjt+3 zIeF1e#!zeW?;RI6PT=vIp}OZ}*_v0+g1MDn9o<~_MChPQU(qYRH6~kcF*-|Zo_g=` z+O3rb4SQGrklQQuv|?9Y!fal-ZxQFM=Y9)&_u=CGLK&k&`T8F{zb<{{*)`9<$gtAx z{pYLf(le*M=-5*nw=u20EHLl9v-^r$%XaHmp4h!n=SLa)?B7$*zstJZbNguI#qamz zk}ICAni-zG+}qyrevXBA-mMqS7i$^6W)vshsk5v8Ug6YT^=&Oi?I>4l{qujd!(6gaZ#*i5kCOY0?+m z>ACc1+sWF!$$NjP^!&PPE-(C8cKez8y=rlS=VDB}0uKuNZSCIGmHfD@!l5g3vi4;b zncX}Z?F_vlr(9pU3P$~Ut$n&~O}5mPcQ3+}mx!iqm2S&FIAPN*LAFnyZ&sEpyDoM2 z{qht0uBVzjkD0sL*X{0$efpNnA!_e#NS6tmV>R#nS8Vw!Wcl^eF~Uz?=VoChP8SNCg2VMy?v3DZBGwb7Ye;XPk_&T$i#m;a~eT|Q9ivhVZkiiUI3BunLP zRw-;Xma&y{}d5tP-6KXJS)y>j0CEm^n3d&>P%^4V5& zT-hwVN3T769XIpSpE0$H=O+Zen;Euv+p4IR_{uo_Ux#hWX1%^su_57N;oi$OUVUeT z-!V@-qBZ}^;a-@ei`bk^Yc+FduZrkMb zJ}vc$#Lv`y!ux%H#($|l5}YM$QzJ$sgW+VoRPt)=XLFI#oRYwnwh zrF&k?OO;(Df63#V;QE`p*tgFAnq+q)b#+c8W?)%v~PdRSk0`dY1tr*_M-d+k1vFFaMoB53~#iPS0b(bii0-{+h- znCiB3wP3c=kB{T$6slT&aIv<;3;UJhE4BPW^u`_mj8ijnwZ;)w7p#zBzaB zM(dWi(|4-;CI`P!jjvrJv0FsY?f16rzk8PTT)g?O&{KCyg3g&W>N+M14UcWMlwbOG zb$1inbiE`KS>5N~OWu`mT`t;sexkou=kmWd?i{&VAMxtZ-+T8~$R?dXX>5CKQ>yW6 z7T1#Y+9)a z<<~Z^_W#}c|5MKaP40!ED;vC4EZK4Pey!`&4Vvmoy(}UgKcl~{*t=PFea4=GTSgv7 z^AFZ;dubJMKfAYM%FCzkS=_pQzmM{qv*JWy_+uBo!?Pci7kP31x;rCZ@a}s*_17D> z9xq#aVMaNp_!D$)Owy!T&oYV4NkpDdJ zYTv2LJ3jK+P2c;BOSz#<`L~#kh1eGDkH>c?WgSa)eXg0cVx3r6$oUssANRa_W4-Zf zk?Vg>xl5M6D|uw3OJpD4?EkriC(9zF{nWR`8o%dQB^tav8zz35BTjbrHt)l2Yo*iN zHoiS~ewX4T>!+7HA9(CG+4D8|@(p*(J-;tbF%!Ab`K*_vZM*x`NohBiCA_V<^8O6B z>HDkga;}^5|9p6to>gS_`lTJ)gI}&0J@~`ZXVC zmfqE$F=^{!f17d%+wUtjzLO07|HWHc^2?tdzd4Ti|L(iDUo>!Qj$iopxQupCW68RV z73=8~vocV)ho*Z6xicu;BKq0h znQPvkWAOjs_O&;?^XQY%EB10%Kc4$&C^z~12K}4sO%4^u2Cuh$7k9sUKG%+gKJQ+n zyT-|`eqX{9z_&tc&BMF9vd#pVz5K2lrlNs29Y+M;yZ-~ujTn4oICHQIYIEis_?46G4Ct)1zumZ#&z=ki$$-h zCS|>=c=~(Fz3i77y<3d3CdXc_nm&Ks!aTNq?|%_T{_ME-!NcuYdUlD!-OfEiy60YQ zlHXd+A6{=J9<$u|@jm(3N}uNudaH{k{`*|^zVF?g?O7dn;o|q=k2rofA0SG89rOXy_U#^-o5#KvGvk-w@#IL23Gx!XmVJ8^7Dz) zz0ZCwJ`q0UdE}{`I#E~V*dM)kq&GwP>Ybgvw=Ivq=UW?K8@KMw9PfQsKW=gMKO?~Y z=Skrjv0P90@;x0U>3^1RsOwDlzb$aj&h7cK|0|1op3hBQ|M**;&CYFquKEAZyZ!Z# zVXf39`#r?kB zJ)O)JzpfyC?-}pZv)X@|OTX_Hcl#-EBJ2FxuD7*QEcBGEd+VR{-FdkDZg(g@If5bMxq&Go)k4#3xM_#2S8OyNKJM8t6_sVoH z&Iz!0o6g?0_{lmmk-z5p&fheP96jByoSn0(dRKZ{pZQMH8nau%L27OKUvnYs`k%f``2^lYA-pwK=Mgy?fEUN zw)JAVGfLm>mwfwOLpDF;*w-vigR>cnKf8V8l|Gg8Cs}sh`?k>B+4Vbh=C-tM>gh3% zSKNQ=qr;wyf1EsZ3rwyY=Qf}GdgA4klU4FB-l>@TEPl$G^D8cVKL081U}5~}!nKx* zE7$#gwaPCp@M+O&jc6B^PZIu?FQ;wJQ>)$kAi~G?efgcQ-^B9LU8mfhlkO6Ar=Ptp z;G+BV$_4vpeJ(#Wx?S0fz-KL~=06JO?y+9A zYyH)e)n7a-yN^8rt*E+Y|MT2>(9#;O;}uu(|9siMPV18Y>CG04gM#FKF07bue)(-% z+((DZ{-U~`u=wo-drW3+KXc2xpmUw3`li2?Ya=U{Bu-6@iW2s#*!zo1JgRw%pU1X$ zfyqsp=1T+I=3U%(>tmVfYwwb{8n)G{sYS~^|1(&>y>0#Ls6#6D?gui{C;b2ZqQLdu z-2O>#TVFqzAI`t@b>Uh6j8Ea~8vKe1&V0Hm&~#Io_vaQ7ThFM(`ft`R?z}EBQ1j~x z?aq8X^WB53Gxt9Hq24yPe9G}-=fu`nuh3omdsod2qwMRu*B+c0#TGR)@Yn~LrKW4G zyR@@JuU&c>@zLz7pX0@R{d-U2=l@aKk?wGyu1e>QcJ2+ytM8|pteuo!a`N^cMxnD> z$LAcf&tAx*8?h@!YsX885V=zqDyM72eyYq+PmOQP$uSE>ul>E-=%mTs~c|96EeFo zd-8j>M`r2Pc2#plCcIPJ{-dD(Y218wf9{7Yca|I!{P5PhPSp3zztD!&W=++(5C8c{{FaFSEAwnw?a%eEYinK|61H3Z zwD{iT%H^B+xaV{4pKp8bTK=CS@2?;K^3wbNgZ}@ISDkuc`T6%9)%EHBOk9^Q{97_% z?-Wt?cm68jizd!>E8Y4d=zF%LW&bD3WpiV0AKR*B&9wSyuv}6@+wa}h_twbl{5NHb z&H`i2e$lGKFYjJ;Z(dgLzl-N<%>E$TPqx*0S5wza`V}#0D-#GPr+a2 zK6~?srNB<$-e$cw`SYeflsWb@FXfWpys&e&(#Kh6|DLqDtHyJS2Wy0d$)BCddzM=> z+p1bmy{Y`v$J#`tZ&j6WS6QOXpB}bDQ|4@vS-S7yyvq~3qSpOTu`O5^vt!>pBdha5 z^D0Gn>!c#{)P-%9?2K)i_x0PUw=bN|tF9A%HNArU=knjzdF$r=UejpZ0`Ax)an{F_siTztS|nxvI?*7Ix)L%3%8%%^Z2V>SDvOdyFb=mRc`sk&Fxp{ z&4nw`1E(#vYcX-|9(GRi{I~Qzw-G>spOwY&o|1s_p9aaDOT#6_4W4sU#ILW zZ~}+= z&o4_SP0!l5JjUR)?+!6x^Q*sNx4OF-S$S_*{ateB)Kpg2{p$^%%Da1QmOmnS`efpn zeLdWAR-T>wwckDL1LjwsELwEHPu?@V#;lt?ZP_35Md$KXEUq&t}ObyMEGFEk?K>=&i!|&UY=9) zNliX6>-dzXF^?wyS$=9_Mb__zXP#Dpxh<#lc6OQ-E$d~S{<cYS;TaFHYOEp(v_u z>7Uf99o9vYFBB{}vH6a@RZ{lUnGG&qRzzvk|M=d^@MGSR?{^-mw`zuNf8IC$_ZIhz zrN6HB+otr|Zu6P1W_UQcD3s;gt@ht6aYl>Q3C;UzS3F|^uiVlb3qne&>&y29&Yk`C zXJh=_nbN!T!k(zeu9b-l<6`4n`^|Ra6j|-_{H2Apva?g>i`7|Njckt&+Y)@d-fF^= zfL9jpe!Q(%_j%sF-O9GCkLSGJ{Qc^diQl=FRXzJwzC1d&^xONL?W>CPgD=dZ`b`2cmBt_ zeLPdvn;uJFmwqwh?#mnY=}R-sg_VEvv`>EU*io(}q|(Vmrc-_u-?|;Wzc;a*-L?Dl z`2>y1#$=|DL>TB!9Vm=D(No{}ugR{r+!FsOMCv(;OFi?}cu) z-F^Sz@}G$ZXYe_{o$|hGa%+}$v55i4v41}2ud4O$Pd4GIJg(D5+uHcC69{#DbE;9Yfn&p#C19{i}-995c`vs6XhXD4&0 z?!GuLm-`2OTMubx_ANU0JoVr!K|#L?{xjK?JzslX_B|GwHr#rEFJJ76VtaFa=HCl{6IP#1 zyrsLvRl@K2k%;5ZUYfsWT>VMrnrxk2+ywWtb7mB!oNEyNGVAr{x_c{iAN3o2wz#OL zTIl1iez0fHB6jI_y{G%cJzt*Gp0qCaiAnB+X}Y5QM-NZ23oe%yc{ews_~4_%byhl0 z49kz_bli2P&e$5(ug+ZSn7 z_C;_{3eT*ST77S>=06qp54ziBAmaNr@JW=r{OOm4hc+4HoxOzMtCQ-#c8H|a^6Uq+lhTT!;-PVTJjIS!IxUr#Nl zKa}FmSX{Q}$$#TtUsue%@5Sc#Qav^5QRnI%*YC#6m$*Ast->;XXW}}sdwcZeq^hKE z)~kJA<6atUUl0>_%R5+1^v%mn647%tk5|;1$W85^&Ar;@SdQ^~36p*Io19MCbAMfG zGr_3wL1ko!r{z(BZn^glWM0>XE6Du(_()83h|IZ5YGtd5X{3U6g zJL^2hMRBt(})4BNg*ZTE4^-oJW zyMJ{mc-gNN68~Vf!2Ms>doSPpcryLe&mGe|tyEU}gqG?EU0Y?_wQ{u&=llofqSzAB zU&rb^N}8Ad;>rf$M=6JYCnkOWk>aJ^bKB1})S&#MfBxGD?F&8kmfm=N?b`Dl_xks!{A^E+hDu{y*kf_q@wkb9uX%t={FhS?Q%&#x*yYif@S=IsZF3 z&HDe%hkkvx1gUdoDuf9;~p;*4n<=bk1imvB{N@dKHd%O3N2KTp+ ztW`39KdsoPw6sd@>c!sgS&bWa8YyJ2z8G`9%&%0TUaHG|wf*AbX*V_e{XVU53Q2x` zVWr837jv|>XERqxv9eencX~BlWZy2YqW1ZpZ!OSUdVniV%1q>Jct$_lEE#4glV@6& zr>Z~vm}{AJV&cRp8dtd0zu(;-FSh1Pe*4L}Q#6}9j(zsqclH0>k4CRcW~^2I7I5!N z?CLkKJ{!#WyeeaDPxIS(7B#&bV&_j^?kxW+w^b?q-1EGR?%(H}4{}`27=Mmk?&R{l zYJGcFmzLjOBY3eYbnB~vClfL&?*28stXUzaIiqd%?jzMK;(n*wYPHwS^yXt-dd^(z zZU3Bh?(|gmxC5JCoU6X^UAb^l`HONZw$0B1jptlwn!Lqk-LDe&1pg=UHRtP2{It;S z=Y1k0Z2z)kZPnL#6L*o&A*(VM91@?>c&w9GzP^r%IFUD4X`!*E^9Iswg z6Fa}(YMsV|(}A{o*YQ5hlvW6PBCo_WHKsjP(ANL3!S$n`-(A*=Z($7jt8p*9`lN|? z{*^y(CswXIU*dZB&z@7K7&BKCtua-XE57po!|(ddbw4VCFvs;bq5l3{xx>n)*T`NG%x zEcZ|LoAd1K9m73`iYBXFGrwD}+4CYqrT3figKgCYuixy+o}#z3$|R!qp^Ws_)Tk3S z`d4@Amuy{ijQd?e_4cj5{=a{@x9msZ%N^!{J!_Bj2dU2$`5WP+ySn8--h$nCm&VO1 zuGD|BNh|Y)|EDXz-&LI0@_ll_dxEwmtgM-yYP$6O(ZwzIO;_abKa^iP=k{*j&x@L8udusxb&Xc!>=TDV z>&qEtddVMn%#rhP=lm~)6>QdXXIt0VEMJv2+nzJs?rweg#FS(D&xB&1+wC}hEo|39 zt^&2SU(?Sgezy6Z?|gEp$;+G--E9#bC-Fjyg%Rj!?&iDE5vd+lOcIA7n)&G53|LL5W{W5<2znAU* zKK*r$fBy!TYg*bNw{pWn4VhnDSUCC2an8uX34vj5F;W{{_6jY3`DV4(x*XBM>19*; zk8yZPZqC^f9;aFqc6QqJTj6`}t}MQGgu~&m(X`K#7FpfiKJjSziIWU^Pamc}J+sz{ z`Nx(mrCOUqDt_rjUiEyrhWl^%q5XO>+Z!*xKeAEM_vF+THpO-EQv8wvYs_vnCfxG4 zRb2mKPpZmfgZa9XxxE}G9d-$d&pY~IUbvM&NWOhgo`x5ni6i^r%q!1sSs(iF_t5W; zZsj67WZu7z5>%aT7{h04dEn2T+>@3slo?(d-B|wRfyObxw|37~%u=uW^iMar=1NST zjpXCh7xIrc-bz`b(ywFlx%{SPCD;4l;MwOaA8l5OfA;>;!`)?Dg1R19eEYV#?AGaG z3m$P^!4jL2UrR5)oM|$7k4|cat7P!0An98giIZo`@~>ZU^<3#Ef$#Rbvc*@=PQ37= zH}w3^XG<;Ez87CVt}t^wx80|?oqx)1sQYs+zb7}tsx&FMV9@(#oN ziIeLaw*SyL%Wb{*Q0DT-CY4dOZtRoh&FOdVyJq6^cbB*fw_BHP-?=Ch9-am82@u;d-KYV%|o;}n2)>wX4GQaq&=yREi>_LAu zWMgJUv%GOS+goKPc4foFeY*D5ms{rUvR>1feOA@8>q-8zkmHk%*uJ+Z7m7~aI{(j^ znyI&6`iSZ*-zBH?M<`qHkj^0k)ddiVVzVW$@h{Pff1+p~Sr)!4vq zlRqbjtjxS4AAfZ3t+=#HANK1nE&EjPsmm!v z?VsHXI(PP#%huYQbY1uRE`F|m&Ss}n#=K3?E`A#Q;jYZ{lRIa8zO-lO?*4KP| z{q^T``8}KO%U^DvD))KC|F^U2MK?DveV&=ovQ3~$&H9_)szH{J$JsktQWj3zcuFX0;hE@k1alWEUjJeUiR_kDwhnmFB{M8 zT<}RMeCouSuxByivS$`giaXK0HO*>M$79W@hQg=sue3Y%SGDqyo$g-wt8+JZ2(9Y+ zv(EgrROr6f>t$k<7u)vUDf;rV!&bgE{c-i$@B5Uqw;J*uoi%y&+~dE_YNxK|I-YpT zWBqPM&fj}J898O0WNrR)JgeXw%ZHwYg|`YT4h8z(ds8$`qyKiBkNL}#RiEx?e96v# z9$8(dEhYKmok!HE7blm$PS$DnZI_Ju2slMGB`>$KRGTeJ`;VD0(rKbOqFMHlIud6He|3ACG zNc!Sm!`dA$x%KPg_J4X@zh#B{mFdxMf^Tp3(X-3&d+jli@t;rMG{M@fw>&KWF_=uc zSrxKi-pqfjcUL&YPP4a_=h`}d*CFQ5=U1CO?SAKQ{rjCc9yc#eOkVjoV0QVxDPJ`u z3pR6X<@!Ejb^X+z_J%q=LjFhk%!0lNTV0yz@GtAe%N*~DkaNFcud}Ocj$l4f>Q*)3 zU8?oRpAi+I{vPQs3tsivuIIg!zam)3{)*yPKfyZNNVd%~##!rlgS^}F7CYAlzrHco z?BJiR$2=!>Z=JVf>Xn;6R{o2e_sGosaj;*2*Mu!GyQfO}uda^}SUqKg+N?fr1?k5_iZsg6sH)k1Hd%#mz3Ts$RLxad{aGyAfz-<5KQeIvL_ zXHBy{A5^`>BI)j&d4Dc{ejK^tN`|S&v<>oYf=iy{{?^zR4_aMpYwq~oPj{7G&11%C z!A(jHQ8T}GNJ(g>7TZqM;}WqE+n~=cyKmJU^V;wGzWcwev^4m$Ib+T9|LL4^-9Oj7 zeRm_7Q%_MOyJLUOMQ;n&)|72NI?=ArE>E|%dtW^vX7_uW+oHFkHauPQ)I~7iNV#L> zwSq0_qNPv1zy2=q{e1Py&ZF{u4qHvLl}=@{q<)c`*rxsKqi5z8|1PCp%PNztUSHf~ zoi}f5-on!3@lJ;~im1F=eoHOy1;?K9S#SS-t9kWia=|y}^IK%zGZlyzM$SIF@n(C= za%;`^6=&{#&N}~h-nm<6ESck$vj4i8u66obScS`Tw)K5GbT9vibbNjM#b=x6Pwsxd zxBOqtwKeyDbgs{>v|q+={r6jW-QK$IyY2Uvl?4{mZK<5H`{tfkfiHcJKC4k@mn)wn zRu}%Z#^LLpl}l>3-c(+mzD!N;R??OdU1<=tGc-1&Ba>snq^pZHTHWJ<^iFQtes?Li zrDtXNq(wG&wO$^!u2iqP|Mt){7Z0h;$%>h#mAg-ehq^3$x!Kx$ivPr<(XJ z|EYTP;kjL=Y#j_SZtQZ+=9eRC<(9bnE30 z-@C6@UebTObJ~e5eYf{`?T_iRwEDj@(dBdAquNl{Beyd4f33VASm}D_tmxF}zDsLY zNp0quSbt>wGZSTI=ioi}_Otjuu<B+?<`d=CNZ(TRITDW}er1IWZwVpFp zUAnQRDtFE4J&RH=MvE@ezGiqfYPSz>)bt&Bb1E-s9RIoM`^yW)Z!b4`w4Z!m`#$}( zeEsw5uabY2EM5QS$o{ojrwumQ+&LMUyw_VY?rFc>>KXwpQil&#A?m|0ew>3 zYTv(gNV-RD;d8m;WgcYx?l`l=C&L9=(>I@1o|e7qx##p$ORKvlUseR23qK!!z31#i zM^?G@TGqcS<>x=Ke{A-Xr~igc{d}6orrY(ziZ!1faJ>c?f`Zn=zXFkkG+mmVe^T_Wh_mbP=%b&j3JX>g< zs-AqNfnD~aDX;jt1osyUep(`;xsrFe`)`xxo$6|vCJWAg{{6DS``^n&7M^%{`|g6r zZ2n=N@2YRKdjDGH_1uJaYbKmNvw2_1#(VF-b?!W4>?){uc4q(AnMp2w7fROskiKbq zTlLzflyWOYU-#$w{gyYc{*}LMW4fhyvy`Oxsy{z#>f7(vR`+;kiEM3 zxBY{R^VM}fJ)io|se5|-|AV%ecl33jhc9@stR zshu8ozt>YSu8mpyc}P!8dw<5~&ymTJ>#}XV-@R0RUBr4N-M;F`pQ}u!ymhjA+V<(z znFcS8)jjU!1!;`bQ^ zS$&(^u3Mhd*u6V3d7hboj;Gb>RY~eZXC2r~W1Jg_9*6q)f z7OYz0;=g&4y~>$ok?RgG{`GOU-s94%>sZ|Q4VmVCU1qbz+E_C7gjM{j!jslzfBwe* zf45rx{iokkmd5`)WWMT@iFdA%srS0zTPkT%-)b*T**R%-vG1e&r&j~JzZ?AsoN_gI zTWD?ByA?g3P9M~pbv-7j_UfyCUXisti?cZozb-oHp+0e6p-bJgg`2+=K2>77pg%$37nK)=q;0V}A>Pwm`H?q&pRu2&w9mP_%_h6yiu;e{p?7ixXYaMQ3v3Nct$JVGcvov~QirYx_9=e#k%KGV%EnD|ZGh7*_b}F#wVW)X*+${5- zeU`hIzTWk(X@~cmFBjz+n~g0GT{luXz3k8S{*N0EuHS9Cvasvkd8;QP{&5pO72cE1 z(7aasbjPtP#VVQWqvg|=nyR@^x@7TH=~CXS$y>cj`0khf`fj-QIG?>L@5+vAr(M3~+8ZzS!|mrJ zUyF+~EVD&E-alO&RpohZ){NIWCs)3@c;$bNdye&TlcVeMyiQ$9o0Uy=o<9Hl=6)#Gvj}ZbFE8Bt`oftdUiy

    R)~T_vZA~_dhTDlB0HUMIG0PSqqD`-CwpimEY%$ zOkLi6NxSZ>SD$k8_9OZ46xN;65cKlmj4X=n+P_#wCt7fwLB#UrOr0Hm%nhQPoOj$K z4NqpcCr|G3vH!H})TL{)y_%P(%D?Y9Q|MJ8Bl}^;uhN)`EnexWEtA@hpFbsiH&t`$ zwJKx5z?+}nvaN{x{bRL1|C2UBQZp_cU{L&E;lDjMvfHiPykP5&Ss~iRcaJYu z{wxw25&D{Af28u9NugVBrN}>fqL=Ww!}$G!)qmG~)9W3Qe)f;6-J}n(|1O<=B(={<`O~I7$G>l^tL9<TwwpWoZQ>u0Uil@sgJw;bL5!{WPSuEoOzG98OP*UmFmVyQmTT)6psup9fU6Bepc zcU|;rZDZZLuXXHPVruvP&+ZSqSL{q!ae4P2-Q_9%JE!&DkT797R=swDo2#|ns(s(m z?St?C_&opCt=}{3?tIxi|99En*7N@|PxMZy&h0y={Qk)5mp^8iuJf2_liOG_& z`|D@4KJmt0bCfhq4Rc(W{P$AB`{X$%LoNL^_;<|T+wwGOz2Z#w*J{`A?~_~2XMH?m z+Q&G~%;(BI0xIVx`}{r7wd7CKRVy});}LmZWh$xYgvl7Gh_Xg**fuW zAM0~=t^N@6L6ZGVzk9!lhg5w?REkmQPlM|W>;Ej8FIW1aNKSlxTV}P~kJXocP5dv?H#U-0jz1bYZD!{^mXDkL{SE;>+hqxb-ibe}0nAimK;LU1C4)T(M?w z56yd^Di`mq9l<*P16vdGmK<;Uj+URhl4fAhPB?3LWkE5!|bm6sOWE6ypBeKGNloV07hD?P6~6N4}BCvCdl|0T}) z&l;!9P3OL*iE~?fKYRXj?r)2b{~S#Z(>JYH)14-``ry{5$~iGpSlu_}OWn4u<#{bR zb+N3P`;;{QdAeMdsa5L)&uh+l^VjfA6jRa386SI;BKthr4=Foce*9AJ;>YH+t)+>N z&KVj8D$m??bJK(KcRkC!SN%G&*X@Yoqn6VPj~hMMy~b&C=A5ou$&!}ec6>Rr)_m{Z z-TwrP%cm3_fA!ACtR?@>mYdICe%@qh|IP5u{SP~T&)<3em*u&8`dh3wfBGEzX5abO zfnu`1WN!NUT5iAFZoK`ygUx36yrv=j^^jYRd#KT-2n!=ThUTsSUg5eGU1) zd}3qUf2Wz7b2a6Q_T9>u_3_TCa`QC4f*&O-0<;!RIb3+n+U=L^hdo&jIQH3|+_}Ug zEc)2*eW5Gdt(GmRR`=Drq33Mdf4iQvfk-h7T0>+&0EWxIcm%1PZfM}E1qXOEz1V{2vA?e)L#;T! z#{A5f^VCM|>|D1v?-utf=d5h)CGXx*J@aPo@$P7+Q2EyugpzAOF#}X!C_*x(_?svRtQWXcfdgR<_!-@!aRP62f1Uq`ZtJc(1NE)oXt+^IXSK znb&tK@4oN!s%$r!a_TaNXXH~u_rLw||JVMSVHf){|NkF*CVP9~m+mqTw%W9Fy^lY5 z(lvikX8wy0SxM}Huh_KwtHe$2-t_Z6*z-yAa7f|19d&YVUzTd6CVYSD)BnQ$I{)*R zeL{`~AD7Ahe&JDZ?XmL5_j5M3%#zk)WlojPV(ip@_K4$Lce|(8OT*F!FAdLS%0Ain zt7U%qo4}+6Wu>Pcym4OG^U_g3Sh~gkJ#Y8vfa%JT`5j}Nn(-o-}<{*uaxiPP1e&S}o!oH)jb@7UyA2Pn~zSpxRWqzl(^&KDA zdk)7cub5AK<1^W7GPTU7*j=bQ_jb?LG9C8>Mz`LzzfJR3?2Fo4+h^E6 zzudXJvV!Qu|;p&@@}V9Aphx|@iyzG^z98cQhaXt{La3sC#x(qe@7InC9Vjq z_d5JOy=uK|U8s`2o@DIYGkVVoX4$@4n^hXe#a+Jhi^^Ruo3P7i(@pk25!o=aC2jiM zR7K@#y)(CrkJP>E-V*(`J4eVUam}WvJKq-x*?pgxzm=haX=%g#>Sw8C<^6$wPP!N? z&+M+Aqr`Un%IWOoGX3$>YNxgD@JK&1Q{R`N`u(a?e*0caoX;o}uopK|du@IDjX8&q z*zA4tmj1R=yBEw_?0M;Z#`)LJzS~XyQ!U?HbNK)HeCGLOeRG#;h*kc7^?B#g@^bgu zd+J>e=g!--|BnB0^St6Uh1Tnywk?`D_qJ{3%Ds;p&p+I6&35H@d6v3hrO;zR)iqD9 zaesY0FNo*$FS}dcUwhoXDt!_~DUX{(F8p{(a{E_g-*K zt&e=%uj%*y{wyuO@4YyraNoKOfh!-a^R`YYIkSj2S7b@`mF8Dp&K)gTw#PAAXqWrd zM?8zm*cV1UKIi;&_KN3zFTJLw>&e`4<(u%EGwzT%axAAmc=qAZs{%; zIF+&1Y7h5?F6PD8R8HJ~|3Q0;y<(&UU*Y_oh!Bz9tLkqjJnM^i6j{2l{ay21nN`6% zwr$yQ{dn!`W4fW+d~&pxcGjvstLP7N-}^VA)K+f47ObymHfyo+uHF4?Hd6Qdx#ip*o+wzK%y@mX)aw`iwb!+rpEtg;{T%by zzDM~{|NPZHmPuJ*2R9}zuAk2x`cmhyl<&zWe!+@7{Z@;Q<)nBt&nuiVTj7Vz&P6Ye znHW00&#Iq(^LJv9oatx1kB?hdHym!0wR%1E^G!BRscd=P{f~ZY>05N<=P?D^Ut#0z zKX%fAW#Q|EUyg6pd|g!UtH1KDY^l|{7JjSnGp$djtlOh5-0{+6&7Pi1*86Akowqtx zwC${Bh0VRL8L}D92D;Cu$yB~rf4_765A*l8c-U|HXifUO&iZ!zvB!@*m-(K5xpC2? z(6Ebn`pg$~3NpUENdHv%dEe)ovlE-+?|g1nc9!(@kURR=Gn$V^;_*a_f@{nvH0P2%>MGf{eSOGe|^8^`}0@HzrHM4|L@8B ztKxC{_-7f#Uy)M%r%|=>vD5xDmNwZo_BB~Yc3O4T2dUZLKkYI1xa_KTTI(&hK9J$| zd+urHlDzNf4cmKh#iw4+dAJ~F-Q!=cvRvDW&g#2=dQ(tl+3Y@3D}L%+k0-jD-S%p_ zvtA9I_kQoRrEgX|H@UQ2#d5u}=UsEDU*$88t1m8CD;g6UcVg3{#d~IdZ2Wiqkmd2H z`Mdc0-%1@{xK)O~C=KB)D1zw_|>K9Ao=s_krE25qu% zI9$Ef{CCI$CWFV5pKiIn@%ks8eUWkdvL-HlF!Oc%s%7pU<@Vpqn%Dc~>h?KrT4Gn- zTPOCN)moVMU)(yjI%ECY%6yqc9&65jjoVNfoZeO5QtHRj> zJLBQa%^&q;_Rq{b#~tPR`{2&ykFD8dRFBAKMcUqi17xzuRXK~IXUb5}o6fediwmsFqm$)ak zJX=?O_QI~p^a!i>m3qf2!w7p5s_D2Hi@vpN^ue|UVc{ThqjRaMcME@g9z zg|#Q&zOmEfwaw@FE2la{-`x|5`MqX|)01txUN*S>y#C_s&&ua}mK1GTUt_lFeOAPy z&SR~sB)fWKN@~xv{NBCW`WN5+$j4TPjCo%-y^tx+tyy7I?^Bu~w!OqQ>~Hebk2!zO zdS9)5-m2M?H7ldlbWd2`_C-?;KVSSevTD}pizlnff97p7yL8g}G~3I?dy{wPJvQp# zowYh@^fRa#FQ%=eob<-ogV7)dM}IR_T>3bEb6yZg{)sRes!7OTQSuGQ`9 z2(}LkKJMK&@!T!FoBA=mOFHF#PW!Oq-L41Hp$}UoFMfCKz{Yjm`<~5S++^sdE2OVf zbo9R7^4pg6?|B^;`yEsH@g$0%UieXtd{#`!E39y>WtM>1=g+K zJ>|d8EB|}B&2yfouk*ZXc!Rgp)@nj!qRtTReUdBHuU<*j+Fi<%?ljfr`ksC(zOQQ0{zo%^3vQ7+&9wGQ z@6z3CmS42}&=yjl?%i2uvuSSKC|O9E8c!urh2L8 znZ?p|#y@|Q=WaLudikT?UgONnc=nauY4bZo|MS`?s%4aGY;oNiu=!lzrrl@WmaRP4 zZxp*cX2Hh=JS)y_-YYJ5dd}k~3R8-{wpe+tSJu3oy62$#R^za#_t;+x|BWn~kbF>k z=i{8_@1^%VE8qK9otLdU-(q1jrP}F!=pvIUYp0BOhUce}FWD}Rn`E#xe}TNr<5{~n z*XeKkWBTZ~LoK_D*r6k}=H-^D!Vo3Q_jFCQW4F|Vh5@#%w+L5#tN zJdekVKYo{ZLH)Vj%XQpQeG{yuc0Zl-Hl{QA*)5-q#ucY_zs#;bSI6PpU$M?2P`>Kh zft-aN8_u)lTPf&=S>fmVLcf<9xJ^p z{cqIP&wR(dFz{%fRll>=-6+YN4FWMIU+(?9TmE~>)4P-W-swE~ILGM88*K?$?O(+r zilUUGY}hguG+Bgg^A`3#`AivHba-#T)Blj#u28Q20w+W{^kf= zb-1# zg+9j@z6#sBw327e+I<~dTV5`>|1om$y;pLMGLEO}HtyG%&F7;Y>~yy)Lc3nYX-B%2c*gr7n=$zA1OXzWe{*oxfThZyzpydAV}$tgqSj|JXOy zX*7BLsbo1@UHjzLBHz$j=guEiTbb9zKRKME%=;qrT27_P62%QN71uN^FG#x_d9A4! zY-Doe30qI0{M)tLv!eem*rUtdrTp;NwP*Lr*ZLmc+Glg>o!WEm$mMQl{?-K@%-Fh{ z{YdV0nWCP(|K3dtDsnv?b^MikR!rF?!PPsT^(xi$MEG!C>&y769PVd5X|49N*jLYX z{VR^1ws^+uQfaq`yQN~Rdw1qp+s8BIo!e>`SNw4GsUJdpOO6LF^UgdPu|2qETHh_* zDJT6O_kNN#@0=JMu+94ErkLqzPd4%`FRy%bc;@X*Y4S^VKI=HPVg3b&o#v+M^CTu_ z=ZR*XFY$?PRQ_BPvm)MJjHTq-&NG6#PJX$c{c|s?U3@a7j->s>3{3*Ji_nXv-i|x}57yG5})=1QO`Mkxk-2bD- zX{RT?##Q@2`PtuDdi3|#b9EAYQ!RPFdY-(yV!ejq_F9Xme222=|M6cLj<0ezcZS&Y$o0y4={K&8H8Y7f*E_m#XIaN```fEd z^2%EsD+{~&`qZLcaTD2#Yo-N7{Fh5Ml5vfj`uShqdVzhbR+-=4IOT_($+Mf^bSwng z=RR3~{f|_5$lT}C5@l15-_vmU&1H6F^^(dzR{clUKjO2sxK>fJ@h2!>#YS&T63@F;pHJWWewK6A(?WGdKYJ!UAa27|6xO3&|zvR6Szdir#JCEscQJZae{KxfEw6*@7H+*cd!#{nI-i^7ASE{e< zd)EA{!Jk!9WADVy$nYN}FA*X+{spIN|PzO&0p?y2dy zi!%A2Ijy(;j9Kh%8*aNe#`~xLQ=4m3Hk8lxD2gsp?)P4ES35juZjD1l((Xm7uIqM| zZ9iuH$;Wm1zPDzZ?yl3Hm42ydXFk)kd8g)ug3) z{oQP?-HV=|`#tMkal3rr`p%-9_r||eLywloblfn~(wu&Ijb$Xmbf0ZcQ;(+H3cP=E zMYp=TO;M0W|B2bZ%~F=7tS$FDz1MxQkpFJs$@#mj7dzX8?T(##=i}kR3tK(~-BnZ% zR%Q0A_`YxU$H{B8%HMGsi3nwv9p_h+{yIlgB`&@H+~xm8w={S4`_#;Ny6f=i8y`;I ztNI*aP+oKW+Z(xW&;M>!a6SIR*7_yi#ot$s|Kv-%9AuTtey?cd@(+(R_Eo0~e6$SL z{N7y=a(eE%qxF8D#U7puJfV6-iKExy*Y_37AENHmm$j%Dmd-!ozA3*AG)(^0%59s> zQTIR%!^&*m-r{*zPc8oTu5j{)4d>R^edK@bJ^$xB>(~Eh z*vUmckWhlESyF3d&j(vt({X$hq@%KQiR6`ac(){Ep4g@AEnS>z7XlUR-!8 ze09hpwWH;3JP{8+7V1atp6XGU@hXYLtLlqQ z&TleVR%Elo>+GX45o=cA>6InEQ!_*VPBQ#k%IEUD_uApW;=U@$H$T5F*RVKf;+g5A zzC^M&_~QBGIqqra4jIn>+%qBicsJj<_Kl}<*=Dbnm3(;KPOihj>bBMNC4!F6*I#C{ zas3<+EMb~`j``g2za0`zH}6M2lsWzL_|Jf;#my2=e%oEU6H~BUI%8h>b2;V1zh){_ zsV(MHcC$4DJu*p6+Dd@f3{2$*+K3&}S(#YgnCQqDO)`IoZPdR2;v_*F)>orc6WBn->Skrb+ zuq<@z-Id>GO#hto<1gpqnDQUC%N|;I@%?ysV&AH#Ey3RE@&(mhCt@%56dmf_JLlcE zR`N=6d4e@v2WRf~-Coo$B}G`@8E^=>5p^f4@hip83D*YdhY6czW`r$piG60Nz{?#SLh|Ko$ylnEtOpJ%<@b#q_ZtXr3Mt-JsKjsL%- z+Rx|fi(bDz{v~nQ{6A;DztaErL%wlaP}Y(dzsQ~Im)HDvh@HkNuigLhPf4HXtreHp zOwYF$M&|4gyHGi={L|7mlZ-CRwOR9gXIjCvTNUfJUbZCzc?pUqX7AM}h>N#h= z_ItZ&CjoQW*&_WoMoEisI~X#U(wi)YFF#x z6Xa5L&J^iL-t^eFtZ?D7DW4{#%$;JXviW;&+e&ejo+HT%*9lK6;n-PoiTme2y{AP} z=626Y>DO6)PG#@Jv8?!JyjUZ6)x?^2yNc5G*1xnZ|8aMz%paeZ64u4@mz-K1 z&0&z(xHvuZvjlb`+hyrSg!<9m8@ z3)eXQFVer$*Z+Lw<@vI=wtlsIE&KHKinlz^H(5o!>|WM(JIcWS!hHRd$oa)jGvAA! z<5~So?)k#Ref^i}ru9jEjj#PVzb+x4V@E;^)syEn8Rf&yRK0YRNl)?Yr6b z-D@~5}*J$lXTP3r0s@nwXs*mwgd;i$_&DpK( z`q*gG>wkMy1(l`Le;wGpV^!Ceckj(|UcB&;yB=P8Z}rl}zf*kXuc+7De_Eh^ZHjYA zV4236-Tzj6yJmH)`0oC#D^9##_@MgC;;g5;f1DIuxk9QmWJTp!S$B_p6Y_sp^L}gU z4q8-jM^)CVzvSDxjl1nCr_V`vaja^o9_#9PdNb43PkMK}>eU-Z#m+pw{4!B)Vf=aCx@%rH`@8=4F26jp+*W#dbN?Tw zEuJeq-3vF_safV-EzXxKsFQpAy6SymOGf!M{`S3QTpVexk5~PZJNVt|yt001|Bt>` zpFb{Q{+<+OW1TpAwfr9b{^OHx?fB^s=Pr9Z{cZWDm&Qtw?bnwsPTOsLWy7}@wg=De z@~?^6kzv!kr|99TH(MmKWqzEgm#bdiJH@^#MD%CdFSUsB=K0rqpRUl$-}f?G_xj|k z^EdGD!F_x;TezJ0n-YWaKn(6z( zr)=ICVeqkMPK^GJQU|u*CTpHQn-=x8Wc4A{%WHN{Fk-x3X}MvC=EP%#>qFC%rU+C& zlk~lLeUEc?l-Hlomu3e2f%YquC*1#;;q=Pu_@uwOh3~5-9lI)+{(QFblGfVZZqqHj ztFBi}J-_y7>?aR7ORcB-HXd_5S-WeqPrQ*qf`HAF_phXX{^N_(-BB)iwr0oa6(zgA znl3m!cOJ78cXI2enCk~E-LHh(Zq&QKec|(4w-;M!F64N1XV2_izizts*<`BppER+V zb$(@HV7<`&ib&gKb#L#yah$(8wok;qsCu60o_#JgKE>*60aGb z_T04g{ibujsylq1uTcIqYw_Jem#SLkj3YL*@KZ zOVi9t=AS=S^?b#&9L1>-JGn0lKCsH#dpUmnYrn0hwq05o@+0rt$(4sRO&7^co%gY2 z@5URtQ~TazxJaM8B(yI^>ITzvKgYx07ne+xPCdbaMQ%ONH6T z<>%WM6hwB_nM}3(|2%GAJZM2qZf>oQeBLkn{a>#>$_jmYwd+v){$Q`pKD~D{ zJXTOiZ)t|jtB5Y?ewjxbXRF^Up1!>BT!+kePmAy^hmvbAF&Hs_+xaU+)w3;6>v@lm zs!IrGYkW~jf9j{}Zzc;bU94B?k@Px9EitH4YkgV6wbuTai=NZ}JmGTnG~wkI@4e%) z;fAHdtc{aS{XQsCd3j~lG~QS2b69lNZ~M~Y{wDP5S5N1AuI%DF%KpUmHAQNlTKA|< z|FC`fTI+r1c4bKI%2<2%^3o-{GA31A;W%8cf4S1}`0`&a^A60sIrk;^cJ2JNd#c=- z|K|J*(%L@7Gw#T*Us~&bs%mJKUKCidGh_LZIiG%>3*4;PDRW}|uL_svvg_YoVo6u> zO|ZOItG0{p+HKjrzh#5Iv)R|#XR?-_E4lT`-#yK2HB*Vpgc+heRX;l0Ss?XRxM zPCfkjM!_Wh&@!tIOV>HaTF!HRb1>aEZ=!yRFja?s@d) zuxod@drFut`?HhjXSRyA>g;olvk07jZQ=FozroVSKOCFdYMqlJVY>L-Vl^}V48I+= z(mMTB#&Q|I|I{4Z9DZfy@hVmRG?A{?+Yk1i@7e8iw~}X0;@!%tJyk)@iyHf+v+I6G z*RKS3r*@vN-EH^((_v9Xr+sU9r85IR&Y7^L(r)WvxBYw9-Fm1hx$(NzEz!GHLDz~_ zhV88T#A2yESET;|OWxOWtByC{4PLkXj_S(^`?c1ql zl%%CPC(!1Q@yA!8wcF$>z6n?DpBPtuCFZ+LP}(Xb{*S-zm71UY7RweEtbMF(CVI>RHS zS`%t{=#6pVW8UfICqHk@zrXyS!|~iKlULfQW|w@9z0f>#NpDw4p0xc-3*p|Z7>UH1 zb2r>&n!RGDfAPE-UE^QVF4%B{_j%Oxqm#woRh;ELAQ|~EUV45AS}3I$Qlb zkklYf&A-WYXOeuyv;mmmbYik-S>rt@6`W^&MWM^ zbJH>2OR73&dSK40a{=p%U;4j&e}2+?(KK1T+m8(I?wsQH``)&F(LLKX8@=zZ zF}J(VYTVDJ7H@gY+Nx;x37foq!Mgj!Kf8rmyz{wz&T8BH;;wyerOy?fe>l}#Zr>$5 z{qdit=j+zjeL6e8Hfd)6%flZ3zi;0cbpPMMerJs>K@0cac{rWx)6bLXD>qzR@Zf~5 z{M(tAI>OCsi=>a8UgiGt<&sC6qiQX0m2Y!TUoe%ibE{p@q(i$z7VzcI68^UPuix{z zm2W@G*4cT5zULGcKJM`}`{|a#_Mc0(T)4UPH&uk^Rs6}wgRf7UJ@dx$K%egnNo~<5IxkFicF)|N>unI$`LL~A z(8SEv=*Q2^i`Qg4TbFB9TfXJwuBq8e51#)NH~aN6tG8Fac^SJ|X6f@*emTu%?{08= z<=TyzlkbH&b1q#dvbU>LS1wR<25;Szd293q#J@y8erh@`QEFnM-27D!&Y$HfDsx?O z!qj`i?w@CDmb#xg?0)Imwbe|r=VzuDTF5U~_J139abJ)WQl*LC;4o=o;SeC$M}i&~#m*xkwPG3WkQZAtG|`W5%#I+T?`Mo&^er zPu-lf=Lm0vQCRxCle&|{-!0&;|9iUsas2-Wvp>%Jm$syTew|$WzdQYt4p%MdNt|}S z>frA;MUiu5pS`{l<0iRDj`hUu7dz}C7k`#o&uoxkoA&tY#A|z=7H&KGRcX4^&&wL2 zUw^mlW4+he-f1Ve&*84+qiJDRU!CB*;(zjhOw73(T+wCD6^|b%g`b<|Ud8rYNLK0Y z$2qq;KZ>MRG*5W=^qBjrNrIQ;`JR0LvGI(sO3tJC?#+LW`|-cByyR$HclCtt_0_ts z53M{Ie`wEYk2{;i+*Ul>w~}xB;fM=!*IYLLPU#y#(-)na|0Lw1*vXHt&!ql&x$tY=EuAWL z8}WM?dG8z}S2%t8b!m0k56g))f)7_qomy&jhp}wlTj7&lwPuq-Rh$fiN~Z;Gy=^UB z`+eT@{l7L@O)v4D%{1#g)AK%tpuKYEuW9JcWXu!`kxf4(sqr)8zUK6+>vUe9d*<}) z9%pv8ukKSrmNl&r4;Cvtn!tM2)gndo>HC7ekJdV@~4P*zIEF3ept%7mabX!WZl&}_fgPTK)-dlXi-~Rfy zgJsyU=Wp&Ti8xrbflWB>`-Z8mKi1FB{b^VD-0IP0_kOd*G1}{D%*0}3n;y?R@<(j{ z|D*XwpZ7gKA9B6A>h8-+DVkEv*1DRFU9-NdOX8m8{OQVX9qhao^amZkA2{#qN3HVGuS}-}!$bT+IGxU| znZai%`D3+>nd*f~|LN(;a-HR}`)BrlC^^EnI6o~`@Zzmj*}IR;PCuSuWBKltY`w_} z_aiOqW6wF?{eS(542S$h&5Dc=ah`q3Yu2p2w*2$NRcYE!L%z!5~@};E;E5}WH^{`cokCV&3&aLJXn#*TyXn}IDXp5E+b7jU7n{G$An)ylVelvaQ5=hXWAOGjGj6Z3tK$2+rp7(czwVf-R> z@{7XvMyZCEr=KWqmVF);FQGW|dbM}y%4d5%w*KmPYB|qoK}T|a!U-#<=qjTJ6Q_D@ zIluU>cm%(LhTNI6+$Gm!Cmz2Q)N^mXW9n6SzU1Ph-s@rnevBT%2rk^{W zlRWcx<4OJg)2~E2g34s4ullr&B}>u$Kf2#*_0QFAJ5nQiKdf-ta_{w7F*&E+eelWM=3968!PXhiubf|P-1B4d z^E&?9dguGN1d>&^ToCcGSsHm__3}rWzCvFskEtKtIqShEtw$W8lkZeT9PGM%)8~@- zs>DA<{6V&R7tb>*n4g_6*~9+%o&|EQe+oYzKG*p-a&Ci2;s2A<_kW#vYR~fP^Zz|j zueYxI^5>^STT%Ba(?a&Dunk}9?*6=&%(0>`CHpj=y%kqz-|ouIO%rd2RBoR?*ChSq zVwF{2Wx^IL;ke})`d;pX#S81H?N5$q)HHXAh)y!@vwRd*QF4ZV`yUU((;;WGwkoUE zo@dn**txr7sNX@#Mk~1e1>Nc%QTUVgXw~JxV+N(3W zBH!)kJ2dDWjud!338@BE^LDf*)>A$(Xb9 z*rFVsGuAIc)q7Qo4tzYfC+yS)`?&77=(4cBsQwdd`*UuTh%|VGEN0`)i@bEYO<`;3 z(vnXseT$EOz8LeBGybe&bNsq;i__=sJ-T-6bM^US@3yQ=$Wv=5Ubg;22Fo+sD(PdV z=B2EAsB(PwyK^Zfdi(D$Gd4J^oG$zNX>8T@vbaYX^ZU#%wSKm`6uiad_33ivxGnP8 z>sd@Wdano;9=by8-XpuIIs0sfL%j5qn3-$N@exQ-aV7g&GoT7{@efE{OdTxcMuvj>+;l^7tV%m(}O=(mTySMN>v+hl=Yr%0_SC?mPpPpV4lM*p^ z`|@(bg)7~s2C;qBIvtRa>*;p>ZMgfAhCnk;}K6&VRc1RxQ_M*YEe1=iGVR z5VN~TtgyiH`Av4@)<0Ymc+Tfo|K$BII?V5K` zH)!AFo-p%e&t7bv_NrvdYO~ePO5Nfjp1ziI-oG#2YMt3rF1_2_cebVa^{u;?#%?+H zY*hOd<`ea;v$IWB?HAntx#we*;Ohdx%HrN4qa!NbTc*A1J-oF&@>~d)yos$jW(<&3?58 zU$3nb^Is=*`EEnYr0fQsyMObgZ@iXx8(R4N;<>fS+Z>)(-BUlZY3tozwcmGdy5X@m z_57=kGrv~cahGN&+8%*Y{YrJL!{atXr$it5-4BAcF*%-^{i!)+^>Ze zy!6=EWGAG*t?z?hc@Xn9*Um-fzn^n|_^mJWkdbN7139x_t}`CJSt8W=y7c&yhQAIe zbE-pS=X-?+vJ|&W{Uv>Dix)HR*H?dK_iMD?Sr_Eghjjzh>8)w#K>CF81qiE?UPtATU@ysqsDVwwGYv>E!#h2!-I=oYP{;Bx* zsNg3GyrDmfzt8<1fA6J4PSyR%%CT>Kt*(f!opD(}^>zc`*6qPja4dl z&x(h~e$G4hdhVju>MfEh)ujUaAFp}2Q@-&1V~K3p-I9*Wqs(#x-+A;kOv}7^v+%pl zq8a=jOma0Q9P}@CJS=g0K~KQ%#qWRa(D^K5&E9V@q1o+(ly5}g?<2vV%&sP<+wtD^ zi*hfOtH{x~yjT8Xe%+7nk8J;*^@#uZVg2LR^0oFS-y8~c>vc()BXd4n++91nvF6sN z(qooK*A>r#2J@>!w<^;(x zTT5{)e08!WX;0w}r=_hwQv^>JO`Ci>HFV`93teVg+p~XVia5+arDO$}YrgrSc<$`2 zV<+m_eJo#{+nj1%aHiy4VowoK>OnSQV?mMx7J{5h>Hf~a3-ou-L z{ynC(*CuY=_GU(8YTTz%=ZKA4mT%v=|IUg-7pAX@UTt@%Kq-IP(^&E3%R3%!`j$Jf zSS?jx@282&?ij4DyJGFR`Q3|~TsD~p|5@b6n$OdX`dXv@cZ0M{vCZbq8y53@uDQDI z&ld5Nu9(D6`6oZm%nFOVqP+4q!_BT&XZnh*rqr^hFXdgYyEmylUi7z5lIFiq^>Z_} zd_HwGZC;$(ebe9f^tawxtjD=Oa&Eec;>1_0R{dNhw3}aa-X4>^FEY=h^WHqNP5rf+ ze~9u|J!PxTXcu;tnrq&9`bTehPi%_X?vWhrk=2&+Ha0at_ObGzSlRS_%DsL3*VNcQ z-aC0A{qN6xn>b`2zPztnA9w$DY313R?bUm#w6vRE7RG*DweY;mZ!aP3?A7yMOPx%6 z@h0Z3%{_Ym_~X4+qO!RbUYE|iw6gxUbN=gH)hy3F?(IDmbt~t3M2fhg zp|`f0eeaibc8{%MZq7~s56PoK_twb|-#&*G@}a)!0c>>6gFf*C_sb%U@p|xxFOjV#l%AQj;{- zH6e;g98=FHKCHX@&^_;lUgyH|<*Ur!|9O1w_W||oazD&vYqA!*FH+r`$YcEsoX50$~vL*wu(hl26IgKCHPh7k*rkty{NI zZu9c0oF^syOMI%_la48#pRDR>ZM&yAxWeK1!nqtb7hDpP$QF6<>dDk8x0KSR%(eJq z(3jpB==Rm?XtYI???tUQ>HMiG z`De1$)Vo3^+IJV1ynFFD%6ppMiqsPd-fumVr|{M->ovQ^S|=G_Hu3zOt#T_ae=kaV zz9Zpr8~?ZIpHptVvdQw^GR@8BqDP={4$9&4R_)jz2{y8iYe+m6q`~6An zqqT9|KhHg>-tyzR{SUW4SJn3my?>eS_G_;GANB{If6T9m*^+watXuk4^AFnsLgKF# z?cCRMJ(5jISMI^jQdLPYIm`7`wKj9T(|4Kpo%PsaF*Rbc|IHgOjb#5W{NrSmIPXoV z?#yd*^uL>=#YM~Uyp}XP9rgdysdZa+EDk;BYIlai{1QiQ#_7*#>t6l-Zy~q(&7@rW z#o>1ZQg2P2D=Bz|({g>}^(ms=6;iXUe4@+uEMYASt2%zqXxj4?yDsweOe#F`c3t4} zNV~w>Ev-f&wt*@i_I_fu+I8pHs^_z&N6%YgGq13!CfNR6!`)Bmt!IjJ_bAJk-jg|+ z9(iF$s*hNRP1ro?b2_VU$t|c>y6f*Kx3cWvs){7J_MYdt+bSQGtJsw9WL$VXysztQ zP{;Yz0_#F+J(TCn-Lp(yhBz4uXfi|{C34jlX%}srH3h3CEsoBwQ~P@`9k5HisjLz6(NG_zoq}Z ztG`z4NFyKr-IDs+{I^Q;uM5u0GFN((VYBSilV$IAuH@U{{=3k_s640S&wq_mCfpra zmG+AxYwqlSEOC)>a=7&G1tD_AH3c4JT}~ha{i!fUC<+m zr^Z=l+|xct>{agVU$`k`ak98j>1Zi3b+k{;y&C^}(LBrF!mP424d(FD^Rb z6X|~c*ygYYkM%rymwr&pk3aqRoY9eqR_=CXOY7}o^}5xfqrsb#Vn1tITIHBB81P@-RVP0`JK%ZT z+xJQ*ZQRSg-SM6`cZ>VVHus`cdpw<(KO%hXb@k58!F?9) zmr`v6?^>)gwRkwo{cqeA0ls?aj3l?;S8e01&J|bIT|HX;LCfy4z>(iSI5yvsE3J6k z`0hN{l51ozV7{Z zv0cCB-Antmwtru>eRAB!!~HK+59ZF5aZ|YY;e4vd=ezrkop}{@`Iww& zctq6Ct=iej-wo#m+43EjQyf$p?K*X;%BReG+Os+X)M86}HYHCvlF-`zfBQ`L;zNch zR;Pt0Up?-pzAb0sYVnAus(t6?&UH_jU8J(QZ531e`O^HzRhy4@Jlp;1O>>RaE`9DW z#uY02F0RZyE?BtzU1{fo8|##xoUduPwAlY?^vT!B>Mu`)tavAxw=X&|H~e<(zs<(| z1}VmMciCh2yKmXqzxR-K*{Q>!cg?rYN>@yN{VV7Bi_?Ff*VIInBFN?^0E-hKfvlfBW(} z%eQU(HC9ytOj{C9PvW$+V!e0ftetv*^ka(VpmEb7iZp-l%B1 z>Y&w~wfOkIrVoa8?nY4_oQoc*{?O%?a65QJwl3({iNIBYZM&x}-Il`6uPSlyR+{AA z@8z=tB_Ute^1!>*TJrrm-n9gk&;iHbM8llb)MUB&|Y%?;^UWX zmR(M*+EOxS`KeVgF}bq3vn4Cc!?Umd*d7$m@A9Vd%e&7fF4!z`w_d(5;O%+KBZZ5K zbo?qF1nf}scbU)Ua__IZv(MB^oWWC%7*BtDeOH0pT8;Jp_jp^}-@H|A?dEAwx4Z-H z&f4gHIPh+`O_5Fgo0*>v+^nxOkHL{|6=h$wFk$YHp<<|nk ztTj_@vSP{?U0iZ@X4!=R!&gSf;{U$TyPCGwjH|CGd2Z*rOBbsa-8mO&@ov|W$@jA- z)uc{*w)=YS{s%QphyA|)>h;(?O{U?coz2BrY_}r&jy(OfV&c{+HTC;ToGsp6e*EH3 zmAd+aJ=cwmdRMG{+mrZOFhzO(qK{v8zq6VzxPI;O`^NTt`p=~1)$aWvqa42apuTKj z)U}2q=2t8Fh7?K=KR}( z(v=C%i>4}bX1CqnHRs{|%c7PSUNn3zzy4aA-DFv*Fzd#?+}~?|`~9+*_d$#0rE2=B z@+A*XeD!(uT2i9glSkofsGqmhvB|c!xhn$qp4?i{967BZ|Dxbgu}qQMXLha&&a5lS z=`~~Ve>Qzm=)2ictM~0VcGmhL=kkBwLzaJReC(vI_VIYBL!9|8UTvul5woUPj z-jo;+_Ep$E{%PXl1*!A*{@Z_w;b+G^EAg1}C6lKu-fH)$t@+NgnfFSzEL-yU#O5VA zd(UJS%4R>x;y(Sf|Ha2_kNhJKk8hdJ_x|C@e^t^GH+y=|UwdWaHNUCt-sRKt`K50c z?`}HZ$Dp4)H%j*N=H>MwjIT5dE|zSV^{426-^47F#T>kfHTcR2swt<`QVYY&~- zdvwn6nC4@b3bto(-V&Qwv_bFx>f;Lg-ozZ0i2FXx)bd|Jef<0Mh|h0Mf1Eq#yj)qK z?8M_nt1YdkeF$2W(^>k=U#>s;sOa@;Tq!g6{@R>7Px#whk8@!~CLF$zqJ1(qe+!*l zz3jK+v+$Y{?ljZ9v$iI4wwl}w&9aVytp!LfoA9Yxd;iQ=YgW0=x;wT1QLoGrXOlJO zj=XZQPCFm9YGu-&zB1i{PZGB)+k#%Y-+p*#-My)^u9olI^E*nmegE%|@yCvDkGBDp zHFLi#xBnaU=fmWFp=T352OPa#uKlQAQ)uPYzGzMV7LAv?f~U?e$q7ANX(smhow~H@ z5)PY(dzDZ6++49I#=UDImY?0<1D!bglviG*|KJE8=w}%+ZE|e0# zRI)w!mik(sz%90K_LNuuD^|I&;`6=RHhtzFXHSz=xbn{@xyt3HhC^J*lyXzS`4v<0 zT8{3!{q&2l&k|?hNoG(jk))#%?lS!{VJ`iH_325>pp&~wz|)G zhh7M_F1ulodFMp7U-r=&wQSKx=a1O+6~^DQT(oKF?mv86PEX5Gh^>55H7Cr!cGXiB z=h*Zox3?VWc>a9xn=|U!DlCaf^*8kF^Cy0cda1tukH){h{`;lgzkIvAKW~4>{Xc)c zD1yNp=X+j9p0voFIsNsF_dC-xKeL`%y;nG(WKHAU;-!wy*?X)$%+swb zoqr?Zdb;H`9gE`Mk=xE0Syg7VZWU+udp1+1`&7O*e^`Izd)fK?zsk;-DTl=-mO7D_cIR`HXG5yiBeyJq$bL!98#~XAv*GuufygBD? z-$fDM;)ewVuWJ7@NdoGzuG{!cgQ9!?gixBj~PP{_<56X#uC z`J}^TpY^&sVd`(5ym+{A#VdzU!Kq=B=Zl~G)zj1T_^{kZ-}^n&-R;=Fu5!^UpK|`= zwsU3=Px*iL37dBD@{Gusg~bi~i{($hFR{NLx?iR~YqGfS7PGmvH)UsjRC&xc`KrOA zc~xS9tnW-ikNc-iU9(uOE^w|-rEO@aw)6A%dB=?}Bpsb~_t&z;-G9sPm!G${{9W>T^4d?!IQuL6<^JCd|Mw#C?)#T-m&obd%@f75B~p=olduyl!eeKuUkD~a`7Tl@kw%lM7X4wDEX7c9Ko#m;k;x2Vb%M^b9Vm-|? z^?3c0*#Z|9Y8Gzq_FJOttbF+3<9f$*6SYOM#WB_1etUmK*S`G`yY#hjRFT=M$@Nzs zJgwW=-(|6iEnwSLsXv>V&mH@vb2ubQcw*tZwm(si(;HjAew-2KEBf0>@MNwkD2wcW%F6^54Jf@BjSU`fAVe?KA(qUjHZ2B}FQKmv2mF@!G=P4ByF{ zH9{-H1Iu<#b}Fh2X1MsyW%jxd)0B0SFS6$!EC1)?eQrfi^8LQXYihCuYpLW{qQ+D3i6V#`3Sur}+LS1mu`tMuvuT)L5>8bcuA-^*0 z+;zd%%Qz3_?!13qWpUu9%g5T+7Nk&RZhRZe8_mlHixb-bPeX+1KLFDUf zzFAqW{U_49ZYn{$0>h#eZM?oS})# zlexBE55BGRd3DU}Vem4wwvC@Ibl9k8&HYm|J$&m5T`K|4_=;2PsXrr*t$ieR+~%_G z*D0Se%BF5N_!rUD_sRNt_AkZQ`J3Nd(9PfQrwW8i-uL)FBS$K2jlJuE31@w$~^|`06 zUt-|=@VWJ(&9g4;ePI0h&gPtb!c!#utld52GPqW&`ChACBKJZzG44C-i^|eG?>$i5xtoM4y@0U(VpZwM1qTkAOf2_G6tJcgvo4Bb@;bwdP?yG-G z?IbeZGpzma_SUV$tKRz~H!b(Ci(g#QJJx-?~ z|NgyLv9i_uVtbtPV%u$=GGfm6``Kk@E}5bo+R$;g&*OXOxl;yl2fp75`@8SajbDFe zsJ*L=t(BZUV?)i)=J`k8*ZmRK-t+$D*`@z~yYCnL|1Uj$=Kj?Wt~Kw-Q|)2eHYJQ} z-&K!kmZz7${ZMRmI(vFqK3&nK$NeCM3c^YEs{q7|xg zu8;0Vb}e4Ac;{CQp>3k}9ydA6dzFRfKfhRzePrq@4=6;mz%j*Ak-^J{35Q5HSGuYr|vk^ zwQUYl<a0{Mu;2-^(7bAzeg#&XkGIXD;39J*QkktMZ@CxhlVtM=jp`VgFb5 zwrFiwd&E7iW8Zh}F23rvYRa1UJ8Kd?FL}5v@o>qCSt1^rS2^~Hcm}OKcD%24{le;i zqT;<<>w;w09^ZBCP0RaCnG^XX;;GY2KF>H?nXz;KpPF|!A4K#&4c%w`?!5K7uS(Bv zu1%d);U@Ob>eXA-MSkVw*Q{+sr)sy~>~yw5rQ$#(DBFSq6E)$OW&9X0uJ{Od~VbsoDP|9X>Yx@G6TJ+q8r&t1Bp z6|Keowax4H>WfxE`+RIw#M9!E8~IdGZ+ti|+XG%`;M{nzA&rzc*{E?2(!+>sP5$f_{5nu7y)UBIzqDG){E_EV!PS2vGKyG$98 zmMfL3bCySL5WVvE!889)ey{3|c(2p!buL?#?@wfP78RKt#ZF&x?qx2 z|DAS+n_KU%y|PhSzi;I)@8^lvu18M)8WF_v{M?tI4_h~^TT}Oh_uS1xe#?vBc`x~9 z^L^g_F8l2Uaj9AlCKi;eJ6?IUBQCt^DBu1$VOM1Dw@;k)XwgNR-HX_wLYa$A%`cys z6R7>c+IicdsjpYx|IYT#xP&EMTj2V&P0E`mF&Wif|JQNkb?w*g-zzR^ZL{9bS=gqp z_u`su@T>ovKgyqJZhLHIvpRR>=4E?1mringzBTw*a$czxci`*2wbDgZnNxRd*H3GS ze;K`e$MxXcb-VW|d&X4n^A|1u9K-M-o5inZ%e|188yhG3x2s#X#yTIBoo1t7bEQV6 z!0X+swD@Z-!oD+aZwb?COHDSszS%qc={{HQlo?wxw{I)T-&Ap|E;aqjJ2{85_h&xX zd?NO`jrYt(@f%e)?_c4FpInpSP6@e^*z%e#u|= zq1R%W;hPS-jf*7ytUJGE&F^wsFRxUIr-q-bug2C0C8&O}^C}UzB{1#wRrSwbPdwWG zaQotq2aKOS_%>_vmGo7|bmf0x`wqE8gH@9f8ReqXW_V=C9q}?)Sb@#<iDf}u>HxnzoEy87akvTmDJ{_j`nHO{GB>Am)Z zXXeWTUp!wQ6e^x3_0`s$^`_v&r`vNrJnpNx_IA(AMI}>C&)AfeH02X}+-!57Ti3!o z1HL#OPbz!zUhwkDW98*8OTM0sZ#ilrKY3>5Ro}q!H~yAE#!A!d{CAu#+`Ikt_ILlg z7X+VMto~=S#7ff(kKeq$HN|+N+-pm7hm!01v!?J~dUsmzdCcRh8m}#HUv3LN{+~(N z^Rsf&rKMS4QvGv3M8E7zkb9kb=8Azx@#o%`j%6HG?{bbvUwrhaz2w^E2kCbNcp{6^ z=WEKpFqdt5lKklYy5;MB@0ob;@scX{D!%z2mwaC|_y2YN`fSPP-@kmjbn)De-SV~1 z59wy_iSzGSdeX+Z{L9?%b;dHetG9|I?unnvmTUK2s&Dn$8Ox(5*r(P#-I~T8Th{U8 z{GMy2w|1PnrE&gL;gQ^PQ`}fLKYeTVI^bT|smXm$|4rn3>dSNO{FmsbI=L1}n`X+N zu?xHP(s1gTvzEywkKg5}xZ2;!T>jA_&F)};`8SqV7j9g6v3^eV(#}dgH`(tejwe|q z6@2m861;f!T9r8)=R9Hf=(XX_Oz*EP)lL0H4^NoZeU{tW@n*-F2*o|+{h_;+PFe1r zwchlU;c17TUph>kCd^p1FZkTqmGOVie_EFkoBvue(`B}BJ7>I{e(sXBMjGK2Ex)HZ z>)WW6Z&8drFgtgZiq)&@G86T?%?dxy|H``Fyua(^6!SxwHJgOvtbWQSpD~TtYSq_y zOzU)F<=kMiNOQKWm9fWnF-HBIbN$Ml+RC*r&szMsrVu@ew`-g8m&b)Q=}%Y#c<kDSQ?Va<`3?NT>gx>S7VrN-)gQ_dO$+p7Ous1c(qJhe>czDvW~bxT%qX=Lv= zKE1wHY~yr;i^{7RL^?LDIC@X;RNt>MAHC;hvtN4O|GTr?X~DZXw=K#!wwJzZpWo_R zGwp@#t*PyA)*TgGd-d8X>&xfN5C7y~e|*r`R(-YIrT4F%WJ_P#*j2x~Ec$0P&t1W; zpv5x;8Xik6{_w};RI$$a%)BytdDTuH^-p}$4&2*t_0LPQ%{!7m*89rrK7J@NulDWY z)1@{`C6>x0>$ozPXD`@xar)1@XJ3A;lufm^S60gB74O}3>-B53wyoE58}q}DWz{X6 zsQ0_Kf8Y0{==U#kK^>&|^8ej3p3gqw@hs&(UhWJwGg$wgb@9CS zVUt@k-8xcKFMG|_48O;lk+-YZr%1K8Oh+jA!&bqT#+t^{xBB>?szZ=-C32crOiYVAHA@b_)OVc{sHKzj|SVeO8z{e9Kil3Qc3yk#7(O#XM9=oRQX7U{nT$6bDtzn3bV9Z zl*KI>AG!bf)EDi~E#6m@$w&Xxy(9i7RJoGRJGaNDkHg}YcIf9-kB>2Yo6pDlz4}Yk zId&)$eYekyNZ%vheuRRl%KcFg@{$HNo1KepC{ z$ErM+d&zbB<>#`s{%f7(m#(hS=AHj%RsZ{4-5biie@8Wce?8MobVj~>_;2-FG3JaJ zxwm)P3oWj{dVPmd-`Ulkt2gCLxaNFVYHmg1zU%tCo-AIwI&I?4l`{NO%?+7iD-_*X z=L&B9x4e7%rO1L~20ew3JAV|K{s@i83<=%I{ME>4=_Rd;%~6}L8Sq{<`83JAt8Gi9 ze(w{bAFh8s_W$=g^!EFgvdj5?vHI4Rm6U2?7ND<3eZkhJ$lX6+g(s%Bz z&PiRe$7hzuT^%L&tM5&hO?*Es>hp8IXUiJz7wvkP{B-@R>2oG3m-j7vys>fS|H9K- ztC#ItZF|YPw|%bMvE_Z`+b%_lT~vP`F`aLQZ2X-Vr@cBs{3q^fo_76mWt)G@iHrGD zwrkbBGX5O#+Ap|mW^Tn78^4WLUT)g5Kw5r><0h|MDfVyf$Gx&XXShtWHw`)z{OFwR z8<&)h32w*v+@78c5_o>1W(VtWhsw{A?DtZ<((P;&qfSp!Px*hM;8Tj?_Vd15Lg$_B z+a2h=uP$M#>*i#G&y`a*&YAuGLfQJwN7k5qP3blIR((io&aU(2S0C-XbnN=1xQ&PP z^?UA?>y_VoXnwD-ziRf+r%DSLP8zA{s$}n8`cG(2+j_ldd-IcvW@%JxePX=R$fnNC zIO**5k2}42b5m6Be|S<>e0R5$W?rOBf8^}rTW9Uw^w=-gwr#G?_FT`E_TNpP*i>Kc ztWK?ndcv)4_B86>Il~i5OoiuiPh_60J$}~>~o0%FY_}lX8cIBjRg&X*4&!?qyK9*d4CaN!WjzyWyR;#NK zx8GU28g^S)A5S`#u6cBcx%IVUTU|aE{tP*ywST#_?$o_c!c|@uZF#%Pt&@9eeC1iG zu=Uz`Djh$bx!;d`Rq3Cv|MwvOK1usOPu&e!p6_B?yW-Qj?mfyz>)nEQIeWiPxqauX zwVv_v6;rycZ~cCjKV|#FNGJWzryqzf^}8QAVXDR2Ez2JS#!pjd+w8NuVCU+hJL?0d z>VEZh6PEh9r8rMx$8*-{FZfn2f1WH`tzB>3EYJJlQD4v%*2|K|?>tOz_nqdEvEXIH z($@FS78hxEh49Y3y3u{<&6wMz>90yB9y?K=<9^)TO@KYdTy$keV$SkK>n@c(f3B># z$h|vV!oxJaG~Il0ec7?>!*XVA+q3z0ySGhj+Ewq*=P3KwUHyqg)B7HoL=RPd1Eu3D zUI&Rh|5#n7@x$X_@jdNp4=f~VhkQ(V@P_*~_{kyeR%Fi}Vlac?}$XWe; zSNM~J2i2Fqiy1qae26JE`W5zx(=1BbM(|kW6{o96TcdKW&Ii3)7nS&HZ~_BFt{q z+|r%>an_;hPbPnA*|?@Aa6V|8)T8_VK5Tz%yZ7&x+48mJk6uYWOJF{~qtNU1Rlm7= z@?5`qoKERI@inSXM(>dFuctB3rx~A~yzJb~yyY6PpJk_?Gug5@_LHyF`Qj}h`n8IG z`&k0d%&NUUCvj$p_*>(^e+gD;oZC-qTP><{J#+a@$%(HDj)Z!D-Q25n^p5gt5uZuB zzs?EFySL$qWn#+gXL(bDL+%xC%v!E|U2DHY+_jk>&ndq9iCdMJ-eqDK7J;DSS=R>rcuUULt~i5-fr+;;qoy6D=smi4;XcTQO~&dbj2+7^0u;c>3h+1~4KJUqV8 z{_?8{85B9rUla*;(dgxhMV|Gdcr$q*=O@@uNo>(UKZ&U*lyx2S-$ykk9OYvXJHn%Yo^ct z`lXKlzZRdp*JAUV3+G?|v(9wQ>ur+pvcA!>cXumWSJtc6AGdn0{bu*ZGf#K^`ntyI zL-dy)&yK(6+rNEYmCK*+_22Hhv`p15Ubsdla^pGc!%KCpTCY~wlGZ$b@+r@mtDIJR zXSSbazGA|g6|+uNO@FDOykqa-^=@ZYwkAf@cU2iy?7x@!eMA58Et5R#a?%@lX1=QK zT~L^^^tj!#ACV^)8NK>hwEx$oUB`1QME|z&#k>;Y7%fl8KB;Ljw^b(E;(f^Xw?*&1CREQ{ zzj`0z=gPaPFXrs|?_K;`#4f8~x$75S`@Ff8ViQ zi9YB4#m8OU3%+U3`rz~0D^-7ut4Pf8UCWdAw9o0Z>-%(V&m#$4^Zw^=4P{Ff>Du~8 z3+)y76Mpa2j=kTN=ZUJ`ach~AV7=J)){&BK<3(Rz#wfotPU?6p_9IsK`sN2#mwoz= zWZ2~%n%KBS>es5x`JXnb+0B2grXMu_)vq9HQN5>23#a6+=Cc;Gwd?t{I{LTNywJDn zqvFeMGij=Gw*UJ%|NmytKBvFW-0y4mX+7G~yC4$aQFYnlLtmSD`z`yfF)<0LR^f_}Y zG{1C_(5KH*rkC0s*1ihYeSg2?+|?InJf22&NeiEFZ&ferO3_w)zUEZ!E92+Ee`fq@ zPh`!X`(a&?`;i-05^nnLcqpZ5p2f4mcw^5KdCQa?fu&cjJy$byI@`N0j$hfnKj+Gi zY@Mi8*7-b_rQPGx?y7yBZdxc)@yPjJO7`5naomBaR@zqW$;A$E6EWA2TVxWic=8OLh7G$}RL; zuk>Qi?LN7GVx-qaMqjhDnSadtwTPDM&VQ!M!{2;JR$4h-x#9Ah<(iw1zcI@GJpcTu zXZOCGVN&YZrN40E>t&BU-@hz~>Af2#bo{Hn+24}}D{UuETopAbM6#>xVgh%{Tcyio ztJZlpEZLJkuXhXotFtO;wv#TZHJ`d=QXWZ%B5dMFIVr#j`+5dcjEJa z*G=p@U#_#W+F#DMAZq^aPZsHI?m5fPE&p(tr`@9N&_tP)TV4b)pFZ_@qgC0=vZPn* z>?QZFoE6fuUE@^9S;5r_wsxzk?jGALb@#gW|5eHBB{%K5_UiL5Tj#kiUsOC>Jp1+T z4!Qqt*Z;q`ZQb`T+b+rf|MB|cE7Q6O@mh~q~?a$EI+}s{gsiGNnRng*A zjOF}ER}BwNTj~Fx-1LI`6XOqitBti4cWsH9|7v-H;M8f&-X99u<$F5}KSvx|aq`su zsd7?^I}fjyx_AC`!OEW}ABXeKlnL*<5w}w2lQ{}p_H>_ed%tV%CgxL zo%cL`Z?-snO3d?%XV^pS4wWZOsM}BYokb^UZ_T4AdJ&y;^Y zyuTxY$Jj(G@YS*+y_ji_VwO64_4I|E=5sw3K2h$1$0eo5d&-_)ez4p|n{Vxx%a31f zO!aZqOZ{{CT=`!64}NU+t`Xrc&6>)e3A7oC?K^LfCR_O|nYqp)K{&48^{O@c+Y<+kB7Kyo~oL%60=EV)UX0{hMqVLZwf4cXY=F;;U z+w|u#9KUm9?`g@K&#R1l?zlK4@8ONSE~DI~ue8kheb}P%*Wa)C><;zI4*LF;Q#@R2 z>A#yZ&h2VhI+a~u`cKVf)sI`Itt<#T+~0F>=Kk!zX^+!w=XFo47iDIZF5ElSf7xxB z{)k^fiS0E{r_L0gocC7O?9ZQ@e~UjZxBqurI^*8uXz%}DuK&BgQ&8ve#DbcD9Lvj3 zDvI8$=KW=I{_@M*xNBT~RcBW$RphtuTX$;1lhi2_@Ayp(e3|oE_j^mz+X-T;_?OIH zZ4)qe&dk?7mMhi-_D=jP>2;a+;#S7ackk^O1-ILTc&)l&Cy+6;H zd;L!K=85ih@`mf?y;&p>?k@4v=CJSd*p`a@nd@XP-BFlj9xU+Oq+iS1F6eo1)tS!w zGX96lKYl(W|L76>6kd5(nQN2NXK1_(uUa>ATJsjK-H*~OrYAqz`#Vjy{_5nOX3I}! zHYcUWK2=_Kz2>&SwG5-cNpmmvp3{4*U)m@)=ktuOZ%cg+-xr#)#b(oa$vCf{6GVmY zexAcW$M*TJi!TE6CMeII_P^)xx%&NX>bHY8J&iRja5gP2-n`miqgDRmHR%^`+IfGu z>9+Lcdc(a%?eSu=-~H@-U+>~yAk}~L*!dIXe{KfYdqw81HrTSl;O(vIlNo3C6`b$o zUzU;~;PcN_k<@u>tUn7nq%4qei^*T}MVHcm3PwH4REo6IV z&^_rV*CM|2{rjlnUU6z?`tcPqwO0k_%tGi-X?W0AWe`x9G}SkWI&sjtW8zw`FHdL(-P=Sc5duIYXkOt#KHZXx~a z&&hex{HvLD7fJq?e0lxbj!VBKOE@06zKB2CbpG8PQ{Jx;5ofY4KA!*g)qESsN*Z_j zU%eeCxaNj!Z%KZ;Nmk~QPg7c{)XSTVRT2v~_UlB7@^UU%v%2WgAz!uDt`nyuStEnQ zt^fa68CxYQ(r*3d6Q5O~`$cQ*1I%fXFGIFJ5IM8mThJi&em=Y8-wS!^npT#_C66Z+ zCxf9CX?>t%L;Kr#J?TTa6S0}$(KF2X~rO~}0 zPwBvV>vX;O-y4_%CYryg?~HmG9>O<2ShDZK+-jc^k2f+bHP@5woHv!p%X|IixTvmq z&#xjr9mgk)rFZ}M^qC*h;n}m*xXS+7#5sLBo16pu4*arSx2m!50!1JHmSl5e6 zO)=4P?@4asU47l;Y{u2pXQm#9JKpb^=;-qythr}PL&^tczVPPxua+1#7T-MlSn*e3 zcI3x(eL_#)3x4*9T0&8tzS9c2NKNOy0jw>gCp6d|von{*yUqHt{$(Bs-N;$Cz|WTW+kStt8HIP#TEON*|??bjGsTnCG2}b znai&VtAooHS4+lU3*I|*o#Z~P^cg`JHai=8Q#D=(pUYjDGwsCD=Cj4Ma~p4OPqtT@ zzsB(CW+v;OTV9-v{B=-{!#w1Cr}>mi=R)r7SUN{=rkv#_p*=6O?gnhm*ppDn#CrZm zBJZcR_fqbv`C&^wFF*Tn^`@v}1?O2a^-|@mtR$0^YD)fZYVKWb@us4sD&o4!u~Xa5 zo|cmQxw1w|eQm+VdyB8^C>Gn*-xgytHCeIpjNgjBZ?~36|E)UjQF178=l#;H9gk!d z%a+QXjkEiDH*lKFd>gisU+ee`PDgK9BIMUA{#kaVuJ_f-%L>~dQ*&Ye#~Rr*(Shy2VqWb!*&a?AW;oojNd^Y6`nl6t~0 z<L3~e+{*XEOab=R#TRwTXC)0W%q-1<yCw94%~h0fZuGsiW@WdrI=$^SH0Na(DM^JmgsMHX-c&cXpAGh7*Bu$5-7M!&4(&5-!=9~!PAM+%9S50zA)nI7n(d;>PdJ^aH zX9spXFFXI?T!0qmtManP5nU6fEVQ}v(7j!GDsQiUY0$O>8}D`PyBGQC(;vB|aZgt+ zoAT<(^ys-yJDj+IT^AwOgX*&Y-0^G6~XA^X;B>2AP<%KPf%N zG2d$a6t}B>(;kPtZTO&?vv)33)Th}cM7ePI4< zcJW5@ADL_9zfOLib8S`}f#2?^4`%QHkwd+}eB9$0kV6DJ%+_ zD_&6az&h#tIb+KoecGS&o%}4`xRHDBjL~%a^zKdlAE> z7k)XS>jPtpRK74p`GD_{(I8R$eF1f#W6R*i!sdhYK z8jGCztBsF-6vS<6R>=Re`P~Cv-&O4aolWx%&1@#JWvjegaN#6lD7Q$gspwN4i^%BL znpIJoeP>0TmV3H0#XFBdqOern09@qBz>ecW-jBuDwNPj3pIT8YI8>hIj?P_SAivG(lCsn&mHoH(Q`waYC` z?Qu=7)XNB-ke@vcC59<=0D@_E5?%yzH)SGE1fzG9sde7x4h zlOsc(N8~Mkcjo-hDeCHz70#dB)uJ`?b3|Ctw!XD<4R;rApWO3CIW68+y(Vn_`sHlm zrNMz!ck1K>FRyGg%)k6IP_iLi-I}9!_e>w5?y}nTpFMIcz5T9dw|}0od9ShIqQ3N8 zW%Ws4_tbrwv*N$t<9+*P{4AOC{1l(%^gI0 z<1dFf4p?sMf4TD2iF3gRXPqwX`5tcnC$Q#SMcu}G-@p92{Qqb8|H?ndZ8bNKddv*42`y{z;` z=7r(+KAE-d3(h{Q`K+bjc6aythmU@6=h=E+47&ceF@3w>%GMiKuWm0}_SiA>vW?OQ zt9KVHSg!7q{%(`jH0K!m`f95Vt+@*hFJS+8vBE1|{OL@s(g3H&e1+Q=7u^id>{a#d zT>NBJ=#F*FsjCm3chg;0`rt-OWzA&99%=a<(|CmEa$oze=I1v5ZE@L;?%JUEs9&eq z_CM}=HH**q%)|#-f`w(4Z{4gOs!VB)`uVQ*u9zqLomH%Fe%vTHv1J4En(0;3jIPI) z*%_5v2+xlyyQKX-;`-{xKFM>HI;-1MpPR2UIAkb&*5v(hna`GHt!npg&3q?t#rSIQ z;{RH2a%R8O^mA8ti~jVaH2$a8{J+X)t`?kp!EbBa8!&TUP0%_;*E7*|pV?;Kns$ws z_h_VZz`i^2d&T3{1q#pq7yEkCrS-G)rT_5E{h6{`lW_ z`kzcZodbfp$|>{Q?_C!*Da(pfe(#!h;`Zs2^Ur=i9~s`y=Ds-d zPGp_7pxH^Y9RI~?>HIrg4_lsCijM2NrB!}LdjjWW`*A+cJG|}Ml4mZOr@tDm zU&##>A!v3zGTVPz5Zf%>iRSrt4oF3#a%5^|7~V&coVe$)u)`N)}LQb|9>ZD zH{V(wwdql}eRRsi)eBQnpRQ?4xiw+)y|24HYwb2o6R27jk?%cU@aoCQ&wBz2-@W>i zI&s;tt6zS)FJ5D)VV#)#Ot^Pr_a#2_AjZT0Gxiku-|&mc?wZ)Y>bx||rsRIUi(<#7 zd-;E=d9rmv%R#A=%Xj~M_4!KoE&lrLmX|AE@A+i@xj1(9|0BHHen-#$AGd4yQ`^0J zOTH=p`&s_)V$zDFE8Z>r2a@FC4E7Z->iM)RX19#L0KcZk^-V2HizKBED!-9Qnp?&a zA^5P*Q;YxC-thgmw*Bjvmk@MG;%4WzS+?xDF-KFRzg{m2efaph-RB;TF5_PAST*Il zhxbf%XEf~Ud%Du%^NXcgoh#N}^_?l|cy;&d{#T11DMw`O*DhaiF7~^!8c)qJ|3|{v z3thrQo0n@Vy|bH}oojVSLi6$>fA$&2pGT#?jak&a%$cpc#Px>b^o6_keVy^O@7u4Q zd)XZqF5lC>ds6lJ-33TvkGejV#sO?JKnPji&rqhcr zWxBR+&vc1fT{+pwOy=dvce{2@EjP;H;B%AFn9mbkdD(HQ+~6_&ntA!o_jqiTRqIh-{Pq9{wmG${!dS`**~6lP1wBICF0tGjnkxg zGCoL`9Q@S5lePPVZNGlvv#NsV)q=PF^gb@@*YfYRKbfF@EMQ07v|s<8mj8cPwB~Dd zRrJe@^qRk)@9+OH$&c}bU(x4?n}1c9FaMoxno$(vt!CqOu_mL`C~a}cRPEB~vU5Yq z-bLDNf3wiT{`&Jh(>V7`Y(Fn~P;P0AUEx9H!~4E{IkR_-RK>dL54YQTZL|MQ>HXr@ zCmWULVf|!OJ3-#F8#dwmw!HM<@`Ba zrF);19@=#+BlM7F%{$e8)khp&qA}(3vQLX@o&CD--|Ktsw{=Z6SGJz_&B(0TbL+*0 zXY#*&-4}jkQa`OSZ}FZ!R{v{P6uSNLsgKU7_`_IPbkUvpi$r+ZR{gJYS))iDz$WOW51` zR^8=i+AhTXN|~?q=eOa8;JN8rQ#bm|azFe-ilV>Bj8hxs`6^i_%;| z=JbC^ujfqP^X-Wkerna z!ItMHsun)|xT?BqpXihoYwT}5EN4!;E_zbg?8m>QvUMi6KI*Y8b^lu7?LPm#+y9jl zN&{lKuZlH=ew*`kuHxav%I}Wx?Rq%jF<+7u|4I=KHrx3Zr31_5f9>R1^XPlgn@Sz_ zKVSDvnepM^37HU+Pv?$kJ@i<)`Eqh7!x_g-MF%;odux}zF%sDEc1H4*K)(Xx_?Ec= zhMz6wCOX%|)T)%f?wGRjosXo`(+$>A8hPe(l;2ORyS>A2@$XcF9X+4+e108J!u$T! ztYd%MiVlC!PnUmxJ6Q7E#yR=I|4yIOV1M+)Dg3wbp#VQ?p0s7+1rJKTzAI`GW!}`o zI!FGI`SD|^n^IQYYTpucwdmc0b8TvmU%gna^jz-Y%+o(NyB>4)s(f<5)M=`p%QtIj z#Y&cb)jc^9CyUnhq-e=ceE;Uo#o~2OJLVqr7f6*lZ75z-Ch?B9EK{Kw& z7+woE{UIsUm%qfSr@C_AId1)EV_s#qBDXG>3=Wh&?1_{!WjO6$7RR>&QCd_qy`&z`!x zm3fcd^$k44E>#82U-9+ByE#_hUag+=QkD19ln|cfx6UR4OZIg%$!2biIrn?PwpUZV@0|*rvNkC9@eYnB1~w%{nZ`-m!g{JI z+~-#;%v$W@D0%JsipXQD|I93T?6cP}eu~V)->X^eQ(JtxL;U%6-stC?+vqc;Tt_@* zHDl@|AKSI_pFS3heqw1Xvuvui$?LSByagwgXLPu^WnKT(l({dJ?`vRk*i(_dfNQ3A z)Jnsxo=W|bIH?)8(6aQO%tWz^kAI$e+OcbE?OEsEH%fP;*kA50IrKvB`Ha#CcIiFZ z>iKey)hy-C@4EL|uOnptgKu-&jwR*oIbGJMvwVH_osy<({l~#etln&>dXsVLwN3sj z!8cF3uTERYQTu4k&n>T)>{(}7dfs;WR)4`I#^088tlJuSxGUMZ(&@tmvq#Cjoy9im z&#JR&%9|e#lZ-cU+VQrs{_acB!|_MW7X5VKm#nRRVQ`@I-l@x z6?^j!w!O}}V0S^fTWIx*=6@{ zr$0Z~x1R5mzrR}i;w$$Q|DH&EW|Z}RV(_|kXXE~8Apd?4QXqKUJUV1jt$w--AfB+1+CtK?%1zsr9(bk(+$4X;iY zPmgeYnaXpWJM7QibhEviSEPJ>`SFfzmHV9qm&5bJ|H$n=`v2ehKR>t4{r;uw()>S9 zvOjkJ4t9C7V{`r17qe}|DpX6f0~Nw7r7s^V*H&JA(8p;9@8@bx#rGeibtfv_J?x~J z*tb9_`Np2j7yb&)IUiWg{jTSRnZt_yJ3l=WXK`>2T|_EmD46UE9%`;2rxkVyg6B z9umKC-Tr*<%AVs*n(<=qKc49lSvt?`bn5ez{XF-BJYuxxt`%JUz&CZxy~_)phjwh{6lJ|}5 zWt_6^r;AXhXw373FJ~hr@7!y%|5)hbNuq`4#Gh}o`leLGVp5(T&biELZAkkIzS9|J zGbSI{*u#E(L9cNM+pU+GGS}wsn`_t?weGcDf4$j{&>uIyUoDU*_F2Bg=A*+dhktAB z&S=~`A@ri)+V0+tZ5_c!T6ZhOU7fF;^qxuY=< zkzC<(qxy$lfc@^iS6NdJ?OeyPKL3%-)}(3oEq9*Cez9h?=jYv%AANOsdNz4enA2ft z<&LS-|7?)@lc7=^J#)ECu}o3OBLkCNaVPn$*KRo#ecbi+4#wjqM`yQZ*sN)@lm5eY zX8s-fj{N^$R-cyGzkK`DfA@~pSGu0l>gBlG$i2ySM)u2@J5$R}t>nAg8$J1H{l|q4 zcPn}OtNOdy=XC1d*U$0$#QLMarMp@t{7YT`uB8oIS_ry zRVhDX^Y85Mh>)51iaE7$c}wZFlYJ)V=Ir(OeEPLA(|b+#tUa2u1In&MyixMWwsgFF zD*v(X{$Fva+K0=|n9FU=QQg|?{^9aY&zgeyGp+7jPI`8^zT-b{X+a+I{_0c7JEy$f z`$;2jmgJvHwIQcV1di9-Z?4&Q?&=i9#rF=*PAxd~{gU~rT9y9PWtlPUZEIhxjr+d4 zGSPDV%!~H2(oz$T$Lw&H&9isEY2~#eRBiseiMb24OY37_idz5a;j28~bffp3qIdO- z^)mXqe=2o!g?#=pTdDNybDI`Z>!_SN?^eEJ==pc=lCYZW-RE7%Sx|$-q2n2e6N4wB$M(vf~O;%)CT{)w>J6g{hJfb_g&q&{@jv3b?xf4869ga z8cX8uKfT~xK5gpmGhxpsyY5Tgtg|+67H=V&k>$E%rxWitpTBzW%L&D}#4EGi1M4N{ zMXh_3TK8z*&$R`U&wYHuvxW1Vd-}C+<&PbwDJ`^npMSFN2b)FMj=!~UXZL?v61<9Q z>zwj+te1CQo#|evW4-^!$tiPxwaj^ad-Fq4#u-vCvpAzqtA5^{>moC({}??# zxnus+{u#O7f7)0xvG#|pI~B=!;+V;{*wzT?9mOL351y>L&bOaKS~nyD`T)d!PU8E%-A3O7Pb89mqOr?2=^op- zXr^$_t<)FBvv*xPQOa_^!*9#P-R`r`U)d&dE9b-J#M_=lO+Alz|L#1dr13o^D!F~Z zHL=h)wUZ8dY`7EfKks+Yv8Q`>HsoITAfVVB&k)zowmq=Wm!r=;NaeYG{@2eQrx@Iu z$uNFasBh9V&`a0 zm+jHIuI%6}teD}De>^ok*?e``fHaL{6B|Fzrw%)M+xrj{E@gfZ^ zC%>PMxQ~8r`Yqi2dQ#?n;_K9+ zw(q}Q*I}-=RqC+ud13vTHVR=?ezy*P-D><}WzUbVg0*>80WNDlT`5(0yz^TB_1&L# z%-7MDD3;gF?kSyWE;-@+n=$V}DC=#%J-IKBGp|Hr@oyY5-OeSY10@B6b} zpA|c7_Ho`s^({`BN5d_x5BVAFKe_bDk=0)geR^BDR`&H9vkB2cWpfwAbMs32XEK(? zSKK<;Xy^E>a}VE2<_^7!mHv`SL3Q8DO1E8^ctSheO8Dt>uke($3*RX2^n5Sz?1As3 zX?tI!Obkh`RO~lNJ?XHwXNp?S)HIvw6AVt{yI2Xs5SpNyzn{2d9>Yxf~2%KV9lzxcR9GLNnWL zJ`*_cyzYDIyp_v2+jW(9n7emMBb*Yf` zx6{AmI&HT;JEbCZ@5x@tvM-?*5B~hTS!UiZ_r5(|zkmE$YSb^=Y#Qcx zLH_gg_w^rd-`)h;DE|Nb^7!8T|9`ZLuNwaH>*UksTC%7ss9?pB)aH0I4r9-RtL1j< z^J=wRgD$+iQnXw4>FNX8Ty7o}Dm=G}+ek{4fm*)VDD?+DcvIU_H( zp1sGXh?NQP?3{9{NZd4f0@F3G-EAwE{C<06X+ zI8MKqu|s^hli81(k{hLZI=Uknw}%A%64-dfxh8Z{^2`eFTSvb7Rz3atD1C~>6OYUJ zl7g#MJQsUiTeQh8__lb?y_mv>0SEQ1tU~g+rFOiz5S}uhx2}v~1^<6dHhbI2li&4} zhX3q~Tb<`R_1VWyvei=dvh%&&#gA(r>Z`N*HYNW;r^69x)tx<;ze^V0KGoK2r_7+d z$L?}X{P|}x<()0IDQ~7l?6CSP`&Dgu^s4>W?`ZeVFV8y1almddyYw$54rAGu5}UdC zF6ahvA6maNB_v^zp@VRquyAj9slZpbCNmyhC+x*nmwb0!v7$JG?c$nW7<;v@?&rECCxKG!; z`0q(a4R)be@oATDJ?Yckn!Dnf;DzNf!I61pqOo6PF7}0GNxiM&TftvoBRY46UAb)U>U&qc zZ&u4ls9!p*V}6BKP||v{bN8m%Yj+-#-?#g?;aqk13gMZz<36r=HSO5CIXCpDt$*x1 zI{Z_gN0k}8+9})o=&_-_|CFuCTJawaS6+y? za~D^YCyorlxE>-MQT<-fmqF(mD}Z%~NY{hb0bnh~KqPuJ)?RGndb%b-Ye z^3)l&hBB`nN4?%vqkOGaMCJVBTK}KXS<2S(*|uW!tCW+sINje9wZQOS4a4VKv*w2f zM}~4L8R@w+<=*Xn|GX!8k#m9J+0t#7out;tRGCidPmS7rth_wZ#pR10`{IA+*_XW8 z(BD~kvg=y1{K}+4zbogMe>|%B(HC$fXy#WJsmnS(1;^75*HrwE<+jc*TAdqwT6u?& zw|S-fng#22>pbe%y7tG@=H{0T-*%+lC^!CjNovKbL#MuNve4XfuF&E-qiaNKh-FW@ zHuu`k*OILEKYg;gB6d+sdGVI&F#GW3w$-_Yj*mBmZ$5VWyzKst^|e2mEBy1V|8~Fs z-z>s-Y;M7$tk)a$>im=El=B766sg^yB&XW{>E?s z+D_TN?&FJly;a_A@292&C#{)ivgftVrRP81znNzI=FaEXXtPh-Gv|cglQUXWF8|ZA zUqwbhgQ+f;02_dVys>|=e~z7=je z{y2wQr=@dZS=8q3X}|6&FPr?qLHO&IufKKX&n@~M*EenVwcuUL*GY4i)T<>1U73GP z=eS#7qm^86$-^>NEu&o%p2pPs8~dc+o@F#Y<;#7mZMu6ut2IoN;EYv%n^%0<>CC1) z@gHHYRBA8$J=m0b`@cb4=pW&AfyV^Tubw?~#&q`|t~1y#JqW-4x8dmgwSNq`+|Sn> ziCXgY*e>aL6UDYpQa^3r_h|c)%B5Zi?LwkN%$Vas9tn<&SLlzWp+lzg}X# z^}NQ-MRoHz`>j8utH{f~USc{!_RU0tdv`KF6i@BB+4aIH?tY|QnB@A8KGQw)Rk&B% zmlkur^o^4hoVhDi;?pzF?eXTb?*yuymXHd*e&*}je+8R`=FZV!w={ZFk|KS{U*e{k zZNo+DX(y|n1g7q{kXvTI)8|;<+@tQFIA7k)n-eqp(k=49?n-Wa+;larb;$aeB#vAu{PZE(-+&jhAtGXw-36lab&j2i68#yJpF&W1y(BV zRERWOvzqJF#+8psT})ZiF3x}C86Wj{`Am1!yv6#VcMLtvyVoX%)L;L$(|$i!tl|9c zmfKc0C+N!&kjY^=SpKk4|MgntgU-@gwgVC zn6YGd!~C?Gl|Qb2c>giRt|_$g%gpPWlZ&>TKEIvU!^H9uuZH9^4oil+eb;M_e&?#{ zF7bb=wrl-4=cAf-zqi<|$}i=*wu9-=?n_Vl=hsQb|9X&~U4QTLY)||B^#b?*y$lyh zyXd(5eB3?5NhyEUomy#_Z7Y_#c6w=1Xy+%76Jcgw`~&MmT!IXXW}b^=RxsRJstD< zDiyAOsF5(AcTro~|GI3QiQl~m`V7(2VvY6~zAl}&h9~V^!1g)5?M(N||GX2_bb8Kq zc)M)no8MFO4=;UX!TL%~e7Vr_zw)wvT!)I|%Ih!QuUlQV zIH1jXuezM!N?oakQPI3VS06mzSNwcoVVdnG{r-T`FX=WlDIZoxv0UehJ}p?SE4z8C z*7j9~)>YL%*QRTo-5u69r8zn2aNknKyFVq1Yj3_V&ocivv+UxDLmW0=J6~TffAM4H z+~s-hC7J0TjQ_@b74{anYLPnUa>mykAL=CMPHaoAoa%6Lv&P4XNZ>{%%(o;MaT{&#_;~j_f6VC2? z*S9XPUqAcmis1g@^s_g*`F)s&RME!u&t^)2CcNw7_v@_{9AM&W+}Gdj5H|J-x-bCH!mc+Phk- z&A&|lv^*<$?XNA1l}Dow5d$0US zQ(?+u=8%u~lw%dS0RFX=!zt&DCd2 z9oX~Ut=;ckYWVGm+`0R24;^F=T%~tmeX@OQ-J!eRvnSQw{(H}|?D|=@SLMAcC6m8o z%m1;k+qbssUUilAOZD&jMeqN7;vKEL_n*>|JI`}10{6Y{EdOzJZeHo?6Z`ZEr|B?w zADqOHt>?j5VR16)*-hEZ#D(_7*Oiqd@2$NsW8H<7mCK}}WimH=Jo_(Ye^C9LVwVn= z-qxNgXZ_u!r|d|Xko<*NR$upO_*s_ZIMpMU6&@NE&adUUxWe(&^kcdK$3((~!b3Os zcv_zdjI=zh@v8Ev#4*tm%xf>DsC%*L{wfN2&dKh$Yxk;vP^qpgyQ%q#hkuto_gS1A zS z*EM7IKCGN#_Kj=lHNV+{m1VPT1WsJ4>|HGM z=ej-lTEU!iWz~+4j$dcUrT=Y+QF^)HY@htq*@Z{m+Qsjf#}}b7vF!7LiLc8`XPjib z{-OF%>te0V$`{^V*>!ww`MZZpF6dtF?{l;5>znm<;`__CkLG;w7Hn0Qnc#J3V%^%{ z-lq}T&kkhvI6W&p8*eAw%vYv%m-mIok?y)}d@@gL6V{zC=ia?v%KH&><>E>G55Gty z$wmb?&74^OX14M-ck808No7|v91mSplFsOKH~O)3#m7tAf6X>nw?$*U`nJ{nmmXNv zegApeG`u<9<;ZvYpGkkd{7c-keEV#>`rocKKbz;bJh{Q~SkHWV>Rv^sBIcKjb6=Jn z={>@0ty{8Y(bMpUyQ3pa^JNXZY!e(FrO)gyu#H}JSJlc%V{_GGo}bGV)-3zNaeD8w zr$uhF%2S^|X?z|kw(`%rvb{USXUy1fjWvDm>>aNn>gHE&ytAf8P3NSI?O`4F)+g59 z6Do_vP77^U+OqJ}c?lt*)R;;y-=)j9vpu(d?sawn<%Wt|)>wZ5; z?6Q(e)w>Rx*Ss}inLc|LEt$S@KF?vr`|YgeH(707wO!rQyF6sZ@1U~hY^MD?ALg!z z|FM3_9r+w4U|B6Xj{Z4YC)vLnwubs4B=j~mQcK!M(wNOP zrZRC>d+>{y2K%knf8#6MzO(Dd>ne@|hin&Vznx%Jz_9JsyoYOZW-Si5eA?pd&tjK_ z&rU7A^;{xzvvVKoiYbR4?`B^4^!=twTRt7H{^PYX>|vJV{(r$4C5P>=ZfC9T^I!K_ zzV>DG?LXjQm#4e`7sy4YExzGVx_oDBn9+~kkn&60PK3Ce6!D8$z0@kCY&)w1+y3Q0 za;*RKeX8A_d{y_?wypbq)y)k39dki>uJrPT;_vseuPSS6 zYtR3B;q&6TJIwXvxo13F_qTk4-@$`jtK*tFm-wH1&-i}Vlx3{x^L~3D-}5dtW#^ig zDP6%YR~defJU%bqMZ@Cx&&bL|7FizI^N)7@etziuRe3#)1;Xkd=1uE)FE8bPE2sb3 zY}Ks~$_wsBh~%D*Jo@-dNL8!hqjiS-*;$9~8hkt3-CJ+2UaE#!1c(uRU9=d-kN$^*=jr zUF3UIo!*yi=zjjOZ_H9x2EobdOVYzZ{l0)-qzzsYK)Ul{Y@~KZpHQSeQap$tDLo8CUg6q zzvA|8cHzVOjqjUmxqSMk&8SXHw)+;n@}1L~-R#*L{FR;RbY$kOTvE2^?Qi#U{<{Qy z?!3*rv1-m~vn^s>tN2R~rXSV5t@{3g#JeZKPxVX1XHUvKFpsIH^z;GQiXwR);oSdO z{og+In6-U)@}THx`7!0MiH`1dmxAWbY-{^-_ObL*nL;P2yhJ&z8%N(;*sp2d64GB0 z(RN&5ONjq%mV)^Bs;!Ln{HL`Rl`}3p_2%}O<3@t7qXZ^hPxkonvS9AT-Mh=*9H`&f z7y2?H(cWvHXrGPf=8pT@1st#6J1uc0^~R>dQv^$6-@e)wbJHQO|Lux!5$RuhtEaub z@iyjjpSfLdZ0Vi5{nt`z)^SO^|Lok!7@f^Ix%SYRiD%v=vuS@{b0K$4?cIk59Br@d z_3oeddaZqV*5sDjV+)&2wOjr=*45f^U3ll~{Zt_*^ytb*j=2UuW_)}w^UBAYhYp&5 z(|Ww!J@orN?^Rjb=2r_c9?kt%=My(kQ{$BRwyU>X%VQU9YAxU8=3=?1%qT>>pn*wueZD(rN++Ue)|9G<@LLsRC~Yo|Mlr#;Gfs=e-d3fPS15bK3U}AT$AaK ze3-i#mvDGr;n4mj7$&l_DQ~&Lr`~ZAQQ>FvFvCp=N&<9iC0~57q|Qhddqq(*Y-rz`ikJV z!nMg2t@g?9Cm!~%{A4(9=K1HgAZ>)83(bY1y8XK{Of$E^%+ze%2XTwRy{(!W?W$RY4^63gQSSH<0KA3FFu(0_h8 z$E%xrBiptEiF8JPD=YMs(HCssW{9OmmJ={L| z;FSAUA1*K2Qg_8q`+oLLjr+Fzn`55qsXT1%JCo%oDEHD;P_X_>w|&R@`(;1(UVjIiFpNr&z6*eD&b-kL^XmuV+o^%*K)*CT2CZ_zs;@-vOjG)&JI6ZVMA>HB z*@Y(it{&L>YK58aUAcq1GTv9XTYtT_Mc(?^a@W=GS>5}&IkseW z>CWpj;&Ko8uarA9slQnIy{YAIm2;~~R@*EO31c8X=?30YMLTwBrD&ziNtUUX5 zU2WrzT~$RVj5fEfO56RH%hUV3_UBF6dDq43zpE#1dvUJxUE-sN4bubfy?=G*@HG2q zf%C5|BG=yX&%SVY>*bZ7b>^~N&S10S$$uZBs}a;{xPA3~v%6u8KQemcA71n4yD+V} zUTptIr=N3I1=er>vUmCN+>RnCA zE9D<$Q}#B``?6`4T4ZU`OdEfb$D4n-y^+wr*d4uiYeyK<1FLPDzgMn#TVwjt`%y`2 z?)Pl*3yT^?p9ng`&E;^_-dE+@0jUkSLRxk zte70%zst|U@h0>1mc zJs)eiJ^Q(j?Xv!d*JnMG4G%YX=b|uScW%{|ovYvPk$EYkEj&H8be_af#*P=y%$jS% z;|tczkKMnlb9cg}KW`2AX1`whX}Wu5s;+kH`?OP5eq~J)`7f-v#<%Ouhi=yMCMzVT zto|Uxr+TUEtorhUedZI-RiAX1(@bXlW|YtH~86+bxfOz4f&+`&sd1w+)wb+oiu> zbN}iWw_x|<4aHL{p6yAtn^wAWb>2s|yNBCQY|mkF}e68=I{3U3Zr*-lgBO>%JTe|0pg0_wAh7g4cM8e=PL6xaPXo z{Z&#y-NvkwJ*pSEosIXJUAOmSmGxdZ%M-q5_e7~bssFM@X2tPabD7hhWL)~svGNVy zE0(L%R{mMdHbd!^ZR9bg)5Rtlzcr%2o;)D`dE2D-bw67dU%494URuS@!FEJGui^Tq%T{a3 zo^)P&v3$m^J6~OPi?go2U(GG>w07!Zo$E?!IsTKw*LHvZ#FX%#b9anQ&AH|8nqMv0 z8~Ae0{O>2~_#R&S<-Kja@|)lUTfPg=bp_wlw^Syco0!Y^sr~w#xZDHzscXeNqdtd~ zKb2817IHJYUbaL`;ow}!S2g!e2K91Jj%$1EFmsy1ms{-HGaE0bFa+bay2$K3hMQe>i*-fArf+q}H%dqmmS zt=DQwo|o=fIRBug`TKX=4wmae?1FY5TlleVgW8vseLlzX%gj04%kFPEd8(}Tzh38C zDfge%EgR<@zg@|@``0gvh?&o&o2P5%SX=CHZ_ZnMM=0^GXI&Rm zT;b+*bhXWqNB;_KCGYj@ly&J`uXB2Lv`hBB{XsuZ1o)Z^ zm+DOYck}!IqThdX_u9Yw|MThlb2HywT~?&={@JR@b5g&a5V30MkND}x`-J6Gz|FJ| zx#=>iY`qG$dMh{bCCg_{oclWW+E%Hu(zb08qNQ7{3l6nvMA=&QE!=t5^2P4@Hy^Bn z=JHMba`SrItm;FNaZ-m0uS9&4*xe{qXMSbTg!N5Y$2vdE55Ia%R$v;BS&Pytlc%<& zGv!R=e4hA81%J<-%2&en!s9$k{pOMjGX&QiuwJFhbxY%h!Nd2u^8{BUN3wcWx$N@J z-t+xNmbvV4Tg#uyX#(rMPb*ld{8!EHncsdp<`Sz-pWi(8*juGO^XnXkpV@b!_*}TZ z$H*;6SQ>OyS5@ z>b4w=^zf%6K#D$nsen>eoy!b#?i(JpNzVo~7Td z|K9ulUrT9?ziWrxc~9kO`quwXR9I(}c{GLkt^NJt)>8Y~{i*HSUX}dg^JDp|;kiRc z_3Lq0x6*w_bxe!G^9BFgdd=LtC6w9ZOTz^92)+w!3*M#7joR==%s=$+wp$@n#hXt{|ACWcn-Vv#-~HJ7b7p*h$X2O)XH(_gDxI=k z_~Uq8`iZJdC#tP>Z9f0}cf-W1(uqwv2H!1br&<5tx%_MQvzM&$c9$l9&X{uNz1fHA zN3AszDa^$p9!#FplMyIWd(XH&x2tyd}|?iN4tkEwWY z-rarOGqW;1`-5-m(of|t?Xz*R{af^k^W9YaUZ2{Z|1>$M^MvGyEsG^Ar&hQe4JeVnZeGrQrfl=0xbW4P z<`TVqu>uWGjmqV6F9>R$(^i-JzUjK8#=GUBbwN*7)}H8?Sdw1g6La$TbsoLo-wN!G zc2$S(|ExSF$fa@WfY6##i$lwQ)h^I~TquBnN`WF zrtZ0A_1gB*->kj6mqsVM$8~S)_Gs*$dt{y4nOe3-Jo9DWJ->6cxcPJKx+iZ8%Rg`F z*plrb8x~-Y)WObvYhA3@*)1y<%>DQ@Zh5k^t9$A9i#A*Z2h95Kyf$psWq(z0JErQA z(7WZ&T7IP!?Al&=B;Hr*`d!s;x)tAf?>}eQ_8|3Cc?Zj<+lt$wbI*KSdN`GRyWPsn zf>5i^+b-G5nZAg8T61S=G0R+?>T`@Xjnow>a% zZ)rNqgOc`imwQtsU(`P^Z~kg^Yu2ZZ%u6+!b=K^ztN5c^+H%TzQ?h(OT}`vzEZs>7(M=mE%NcM`Tpx)h)mtJ-cOg@51rX5n;3iW z^JR;Iz0Vq+v_9T^e16?m>5tRyz5lX%evRCv@SOsVC%b)52r8XenSJ2MpOBjKpBjrw zw_k7#nN_~oLSZGV(WK4OX4meU9v4u)lKqwX|A#dp^=qWRTGoG>yJS+QWOC_5pSjg7 ztv|KxpWW$wF!$!OPM%Ey{a$lkKUrEDn9dM4tv6u9$qk+9KlkMvzJ0p-LZT@xYa{+N(HUKRaZ;HU90kUAwiFUKeVepWBkN_}ubU`UQ<*@3nJg?^#s& zEp=^G zJ88;v_ERsnH?7Dzyu0u2_KgyqR*uU;KdK#E`25-8Rra@ES=$}3V)4GZ{&j`X3c06| zwry98_KDU!eJd}x+IQ*qQpStfKI_dMh$~+EHtFzwzF*!e7d2hZPCsVbw(8%yXHyfx zPMoq95*3MI)qZ&9S?`S?)!MzMKfXD$XpL6D-t(7Buix*xrE(+s#v6rmC){33?H8T5 zV}sH~*TRi{309xOtX3>)2>uuNp?hceSLLMLZ_Ex|tK@BY@!f{WWcSxA=jS~*`*?CF z^X5~V%~xI=e1We&2P&?WOCU?E3b`#(txP(i*X5 zzCEd0-(^1Nyx??O{b`nS%>JuEw!7y}{+*m${^hn;-Bz1|5(fKU{U5@X7F~~ex3X%x zc0iV<$@{8K&&MwW=f^#dV_{x;D1SkHsBFo+TB}=<^J~9s=fA&y>Gk>lE>E9-^!fdN z8cI5*?+l)LBz}FjS0^*c?y|6@*xNbhPIhgWQ)~G7R>ht5A682>^%<`e3Mv1WntZ)$avre(y@vetBrhw2)rWy5nowW&YWP);k^+tt*MB_;%XyXNhBI zZxLIz1cPbG&p!S2|CFESc`C1R72_x{vA-M8<#*YTXNn)?O&W4jNWv%jyK){$Htes72MYSH$(`F{g; zirF%~-J;E5d3@#WyE~t0RqbL9a6I05nQhj~n`@ob?=|i#+&*!Os=S~^?YRo2`iFwc z>gG3RT$}WCh0*`O%*$Id1Mk0_^JL@U#$7vR-?-5^bGu&Rny7syr3X(>y|HG!)vrw7 zjIv74xWoCyi}z%ovQW5Q*Y)PZ=BJC&?>&`Sky$#SP`sS^p24;kmur)b@32~YwAV!J z*zQyIo$qeldw4x5aCVyaPX3wtbN0GUiLLnTaqi0b*TRl9XS;7c-(p>{$6i1tWZucm zzg?p(f{Len{PVRh{;d6l(&a}pBt&-X-zr>e|4i_JqocyRky2; zxz9lNx5fjH(iL;%?2;~9T#s3@c<0h@$}%0o|8{&nWF7tUjM0SdfKAK>`f?k1g5s{H zx6hyZ-u9KGX5mBS%l8By=iPqw;>?|SazckU7h6l{n{)?H86{GXj)FH!&NX@1^7FI)*xkP){-@kUrM*Nn6cO@t@8dn^H)aO?b4?QtbQAR`jruP+f?w0 z?oH17PP?ZZxqj~EsweNXmR~J)oKz`!K2gbkRrk!YT_#UAskBB3?O!SvBCh_XVnHqk zyTK~n=dwY+e;@p@`&Gv$wNU;oL03gh#CWm<%a1UpGJX!5yW!T9rl)rH(N)Vs#P?lQ z)`+fpZN|dSZ0jEJeQ^%wA2t5;4Oh2hRcQaqD-^5#Gx6@y=hHg-{dl4ZAJt3=PCx0+ zpQP)#>-?td3-{ke)Lb-ezGw3-u4d`04_WJ{7GBwZMbzZ`=STZv=6yN8THC}CuN`R(S$I=^uL z!vE_YrSeaGl^Wo`;Yxz*Y?tE-rzLNuCjHoZ?RfqxKaIl^uYZ5Oeb$1#QyzZSGAh2A zvn)K>dN+H~i$>cA%S9HtSDb5eXRGMb zcOJB@UHrWA$oJ0DtasP8&J~huQet;J{+)Tsmc@;x5--oMx%cDuzs>8q4cD+IeAY`` z|GGFK#6Yf)#ed~;2j$$ix87_$vURel)z5`mah1-zpZ0dUzh~Ofc6Q5xf3IhLTxM9K zb1ur|&yU0UaV?K^_rCkG|NozOR~FH%nJmps^Ax7$C|o!@Z>R9o^Lr2LKYQ*MRTX|x zBe6aH@H+YD=e7ULdBL#8ZE{b6^{u;Xyv&yTDH69NGnemiPUjMl)41+r-1}p}Wn+f+ zIc!a8?EIf62`1ig^pLbjk8reKq&~y;nAy&~%^%{T79{Gf)Blluq5r!Or~D$#Y1hlw znJjVi=j}<(Qcju5XS*&z?$u>K1*x>+@H20YM}?R6tkHZuqwt}_?xJ%UnZCz!UhlH@ zKDhU*$JrT+gXTP>i`oQ&;A?$+h zL48&>=G2Nc>F*ckO`XeF`)*A(--*n3y?6Ii<{2p1_aAcpU~stLhfY;k)g_mHTa~=&l|sp)^?pCD7AIJ)sFR5Q&i?q&KewK{)lExJ1%5KH5-slw zIRD>vo$^%iJ$x|*Z+hIH2jBnq_Idq|Eq|unoBt(SzAkV{Ud;X@*{{|pyw5Y9|H7we z`Mf6w66#r=ZuGwvp%{@n+1l>wyzYh>)2)=BF3(!tbLG>XZ7Yxeknr67YscwcGtScK zy9)ZapUl}V{$@>C#FB5D@5Oqj?$%Y;w~PAy)GBQ6kIH=~tC*POo~c`E_PgKNkvO+y zez%d^-~JTGx5eM)y?eu?ANSSC^{J@N9ZNTv@45T_^jSq*E%%trqa|!Nt+PXAd6|*X zqIYKJ$;^>t*H>-ADH07nD8*T_VbRl-07OrzwW8~e(pKntdBOUcI9+O zys%^_-zxqp@1c*po^#c@nulALhRc44zFz%%XL(0O$CG_hEah=L$)Yb#%}w5KdMw8C zong(s$v)O6lm3aBRJlFh8(h2Tx1U*1B-irw(I$%(s<&uvV$&_-Q>vBw5gWUx>LG-m~jSadXA%>AMP8 zw_m=Q`-iW_U`O2XT=v&`Pm6f2$-M}dJuTbc@ndg)y`X)?udCbUZvXP@@_pNSng1WV z?{mrZt3EbLIk8o|(N1RJJrOuUTAUX5}{9@U)ypAn(jq8t*n*Z9B11 z z@UEUs_4b96ERyfVCbk=?F8!tH{K4#Z(qr|Y>T}Vzmn3ex{WYX_N%G0fmz-RloxU}7 z@yGqsA4u@dtU9=B z-`nTzSk7O2O(M3h`fB)P4lbGNwHe1Z%{Dj~Q}(`Noz~jx4eJeppF8IsPR`sF8UBBk z_)qcP61F+vu_sH6UQK3hu%4c}GQ`*U>)efUznAZv{;*)CkN3?9)0&?|EC|h7dGFNZ zyn`3de=n6}w=9_T@y*XO2~3s~rsqAKxy{N|`|pI;)`4X+(%13r@6z6SQAy~0AZUE$ z{4})6%&ixv3uRxPIV*Wot72`A?$Mep z?q~V;&FS-xx}W!(PuREgyJBt8Z?(ElAN3CzYdUa0x*licz4wyUte-97Z!7FhCg!Wn zdA{QfAL}KnsBJQ5YdYN%Ze?Fc-}mbML)p1rTgA@_fIP|A~LpmgU=?)^2_Pg&(zVJ0& zHl)+YE4lLimX%do9J*$x%?-cnQ!2AL#{b}LpYLxX>&`QTzuldo%C5NgL(AVM65l#f z?t7lIPn>s;>)a|^t+~cc)}=FxE=>RPOy_)u`A}MW{9=7Lb2zJyyp*v4BE!gTHSL`M0v_EOf zgVtqx-V+UpihWa5*4^`}Z_(AG6PCaCUQ$2p{2RS;&+V#Wm#4qnbZxCzb8hmR({6kxs2bI#zyhmNOLc1?WG^{KEuxSt~~DL8iK8{dC> zof6ihNL;(KHN{u*_-+QD((U_p@3XNtnp?^i-%PF%LD zsq>_5n0(@*<@+uk`Eujd(m5}yef4`)UtgUpJb%%~(sjG|Yrj>@y#3Z=>88``!>;+f z{=8^O?R*QpssFAY<*B~$w=YZV=QF>M_t_mCKknE4?Y}?qz3$#;U!KSRxA?cOfAuWM z6I~mO_7xYMl+;W8&{H$NWp0d7(axYdUTZ#mUbiA^!p?KAR89xYnPjs5L-utp`}X~- z!alV8s|=shzwGkfvXUSUamG0-&tJ`$6r{iSW6$HFid&out~MMx`p!fAp_1BS;mix1X?PB=Ux~Z?V z|2LL>{=|NG$-hFG=Y><&E-&X1(U|Xb_GeJpyE!|Ay??&{d*XXR=AS6OKbAAxqZoQM z6Dn*k+)egbye~UOS~HQ?#bQTC=>A&=MPgd#XUoiY(T|zMPh7ON9zLJz zBH(^*@hu69^?OpM&M5PkxUS^Q6tC?aU!qHkUCUeE%WvG=o?kudx}2i*TnU}xmmjCS z4d3(hv&)Y=JC-=dFWu^VO-f4EV4r%(UW=f6Z$1RifAL}U582}tVcLi0tdA1WRk|x( z`EAYD)$^)ndOtRvc6ZaQv&)~asy}e;d7l&O38k>O1!c7^`Ad{5pYt8~aA&=Bt#wn2 z@bv34*MH0_T%sWJ{^sc~7MFspm&bG)w9YYnb(Y(iEyiZvtRlVBW%X7QbY`8Hq9Idq zMOjKHglEFdnKLTS2>y(-cYZ7Ty|l4s&fiz34j3wJr2V?nK%DZ}^YzeOHjeUG=XySc>x$mDrk*cy{(P)E!|LDF zNBdXRyENJdm^YV19=8jMQ-3+((~|u*iq*!bZyGO2SmAeRXV>ZcR8X8tYO zv%F_v?Yq{(ZRh8k<+7jJ(ElsvsqEKIjq~{@tICobZv9baKi4~dj>h4w8{W5lpQZol zgz*j8i7!uo`0{hzCDG%XAE~|$?f=U2sGoaVcI+DGf70(lRIdx)y~%&1gY`Y@-G24o z|JUV8uUFlBt6_dbyH9H}-+s2$vo;Cd+`D$U?Uvi;SF$br(Q~=?g3FsG>#r>_yQSMI zHfp@r5MIg0EwOiPR&A@X@$)m^z9}w?U7)soVzc-Wx$G@g>t60${c-6wrL9h8Yr}3l ziz-uRTh+OER#|pW)=%3tya)T7kC(+YP7u?Ly6kaz?Zw9)xk8g)&90h#+}~iIji1j= zmZAl!kJquCvshRCdBdg$Ui()wK7XHVx5lxseQDp3XP;|M71&B;9}2r(6aMS!p7UMt z$HMY9YkBVx58UrA8)7ckdv$lg?I62Vi+^%Fs9pJI?KSzwcAjsZNIM?rW~*K)%D8XY z+&a|LjN)>ZB&Yqw3DYkF?p zJqr^mi=zV^!>`=YIte-*6BUf%!i+N|;yoTv9Pddu)z{;xiiQq<(T+_G=p z-gh@9WtnEWG#+|U{QZ)E;nj|Bdz*@OX=_-9C&xRUK46@!vPV2{%0{_Jujjn7b#m?Q zeEW|}b?!Uu@LWeV_m<+6=atVQr@hcR9%!_F(?z|-_ucmV4C7m9@nhZ9<2)IsKP^h$ zZ*}&?mNUPU%HMpwd47%XWkJh%#ukqs$cV*#34AAJsSsG{cCS>h_`6Kv@?+8~O=Rk( zuS(&)V`7|g#q_^ni)|9y;>WL!^IHFk`tfd0=Gu(ua<6VivRgF;zi;K=R{Ln*p3aY} z?>ykH6HDBB{`j}FsxNxZf3D5YbIJqO4kIcE;l(^MSX=-ATfpN5dPVmn?5$zjNW4+G5x_h$Z$JM&(ciVnU)~~B( z{ux~re@VXX*XE85vJV;}pZW8MMbG2+3jDBossH5(rz)bIyi1MaV;h$FvnD3leGdG1 zNqUOP>DPX<6korL{OqUC_I2}}^}qT*2VGx(OX2ytr*^ptZ8wee7fg=ZwO>r*rjk^t z=RB@?`&N4IS^O%?tJ1_xsDDjS+y2i<8lSz`_*aG-PPpuC%XR3>&)caIQ%>x;vCX|r z`?Jf%*sbT8zTQ3bW!r1%_laBMHa}{q%Gl~&#;qkO^30QK`+`5E`>(ClotpQ{CM{^j z#Jfiu5~qCnnWE4?`?I9}lfb+kYKyFnS(;?x)q|)x1A?j~uuxu>0pdt!`Fs+gXw+oKm+sa+1QoPMt5=C-o*d zA!+|+)kkxV+z7a?vEJ_I+V6Vn-c+T(db#~7&r=l@$!~4@fA!?w*spAq_CwqM`M$H$ z7n**)wrjCWRh0Km+3$wC_kL^K@a-@@vtA^@r5H zt=+k{%I}P><_j&;gk+5gjwi&P8S73xwMhT{y|bHpcfKl@`@CB^|KZHciDORyVe(*-^}Uo-gxx$`)E% zX003b=f~mrW9r-Ur+){{J^g>!eShZt^A}Eih~44WHSa|ypS@hMkzM5yH``5%ms`zU zW%%%$k;&tTo?@x;t$b5ezYA^kUUXfw?%9cF*+v(RI=*<*{b4S{rM5En0?i%j7MiY` z4lB(5`{+~9g--EFI#8JF0`WamERuWv!S}rGWbrMFFgEyN1eZV?=#=acM9g+5-UISDbD`h zam#Yavegw;{yA03G&l{}1*vMyYW&N^b>bLUu*#SZCUtQJ_-|RfK^2F@dkC+~Mai{IL zvD%%X|C-bZV^{gC|I6cRwjKBf8lu^Id;74jH zK30th@Ozgc@Vb+U`?p#|{zHdb#f|B&QYHxV{tf)QMa84|&1%1j#DJ4Kq(9rvw@8Uh z+ofA3cq^>(RQ$Q@(|)fGEK|RC{p^7i_k!(=W<)n{*uEfb^Q9}11KK-U;TJ2ysVJhP_k-+!%t4*J-oLJv4llx5N@VQlPX;;PK z=gqR-xJ8Z4tGaUX!o|C;O#9ToKfU!_X8V2Z`ttLa{-z3kzPE43yN}%&g4b*7f{Ipo zPx$e8^GEkm-};vF?dz7+h0l$V7Wo_*cRuE~?8i?Lf^uAzL7hdR+auRb+-WO+Z>#W| z!c$82tCzKW=kimHk-Rr8YssxOE)(ZBPx}*7{U`SK)kDX5jV*L$SzefyxPHcsk78`E zi!W@y5D=dj8p-xGX34gA!)up5m$T*8L}UY%YJS)h&5fcW=JUjvE)|zBsX<@qohgU&$-if2zG_tCF{ed*3sM z9))w|yidY<)vff;f0@I#|Kl^xzuN>;**%|qy%%`!fn@lPiH~3W4yXXG)EZ9{&>7@@0yviHyp1l<`op!_~xDpt=oaLV{-fSwbjcTU#aD6&;VXbz~%q2G?xR)0%IrPq`X8qLdn<_qW{o0#ymaka) zX`@leE{lp+Ka*oh9$fr0^H1mJH#!0*12gZUy!iDzf`ld?uK^QnaJ5qtYbbxz_9Rmai9@818Q@uihZ6@AS<3^yi943zz>1 zJ^ffOP4@B02Z=2|c}=U?US3&$YhIr~UZ>oz9Othor;R`V<}`n`{_~@2=TGIO>gij|d$yv>KeSFqJxxWX$S?ByiN;dPKQ9h^v5>U0e*gQ(>f7h{#Me$f zx8PU*i;vy;cD?)mT)n+<-uvQTXZ!!Xo}yd1JuWU~!(~Pj^Hq6H>m#$B0TdAE}GhfLd?uajnwfBMffgFye! z8Yw&XCAIt2f4V65&VA~BuRD87+Kz3TUS}KExBhz^!=ry3X0N`**eolYAaj~qIG&I1 z+P@p;PJT;j-91mwIl_f`l4tpW`q`Db&1F`C%t7acr`^%ZwR^SEM(&$jsQdZ9OU=Sl zL%qLB+FkNEnz{9U*6*rqY+Y+_hTTdMinY^MespBtRac8?rGBsUYXzsxY>Tz&{pyk; zwcGtzXDQ45O7B@p|6ZT-*nj<{wWWu~-NS#JQ$Gprt&DDcaAup-^NtU0b5iWPE4zO! z-t>k$w|n}rFZ;iL$zrZksX?dJa*8kj`e4aG1nC666S5`XTKDGXD{>DPOf_GKJwIL^@(A{cX1>GzR2K?Yj;%9PgG zoqqbgg2N`e^<8=9@kiInzV8eR51lt%P|Pu1>h#_3(}P2eU+=cMSGnw6Q?k$Nt9RqJ zr+(hF?eC_GFErzSRjXv+RT!4%Q!*MZZ0`w`M2%^%EDZcU#~3 zEL&>hwd7>Y<%1QAVt%bTu6F&)+lYJss+Sz!zSTu=$eNAvJ56{cl&6EEvF5a-z=;ne+oBJDgRm&Kh*?DWq4vGJL zcPEy)6&m$-cAZOMUa zQ|kO*>sgD1te1%}oIjht=jWu4CA*tkZx%%|AD3BfT<~4?)K$x@9mi!XnH+a?SVSFJ zd(`ILWvN2F=(SyPe21<-sBt+HyR&xNb!9!_vg&%r4BRvfBIbTC^)pJ)mpqp+hskZ4 z?&3UoQ?%{z7B;Q;M_*#--i8nr1}|0&zF z`jhyl&NI!b9mC%E|#IbXl9atcgYw_9TGMDhveGi1rypk?u-8Q>$vUrju z$KvY8-w%2|UH{8HE=KaD_3tan&rTYxn!auR6Q8T*?++^L-!;oEeElMFz46|3nKaAy zRXNN1N}T^5VSM^h*-~%D%J7g{-`XW_dYh)tIG?qk_e;il$;|$z^VMbedUpMvbouvA z?>*_i&VIgdex>r3BlENNPW^Y~e~$2k`X4(Udps?+yXZ7`wan`|_p4gP|F8Q|k^Ay0 z+aIO26WNnzm?V^Z4l#Q1B~va!EEX_fXvFubh%MH#29p zB_G#2q9tQdSgUqj>Qb;>($NipD$?u2oZTch-3n!Wpr^EL`~FbF04*x&oXI%hsR5S#5@AwGZ8*N$Thn{V7YCvf(L*`4QR)8~hZYJ2tlH7N_Y z>8QEmwAddTzujdgZyDcrZa*~f5R$;ZDO=D7!Txt-?mICZnm^wuLTgB5nNt?f~s?1H};BHy|1+cLMYwX#M2 zo@vedyM9%c=lV-hmOa?pbowucY~+nwmSyKS_O0e)eI(*?;hc@s`jac(E#7*qXRlg~ zsrN}P@p6fa8e6XAdn(^rQ*3{zrq$8@;e5U~8mVPbk;~q{`QZI{gTw5(6L#BN`*%|M zT5^H1&41U;Hq*lR?6=)LHNWcR&(u4%?qxqxZ!2H$JM;X}elDh0lBG$X(jVSC8I>ou zI<$J=t9cr(XZ~cGAw#oFu{iF|_Pd@Cf zXwS%TEa%AbX>W1i(%2una--m9yBqe=Wt{WNj`7TW(lfvAXJk#a-O=bO`^)*Yf6R@4sLpgd9keNA(rhc4QoGj` zGdC^O?z;6xHhaa?(jPxLxu$>Kd5(Q*u z?&a|#3&nR=@fgp2c0VV$CUV0IziK_b$A^5Ur7oE8&Ajl5Lp)#A)y2uHW%3(rKlmA} zzPHPwp=xi&);N2?it}cYbGlZ`)C#Q%cg*-~c6B;)`yS(ozqW}>AARF|joD=0PM+YU zp3_wOd1}<P-If%4=Ho2zh|EHP!byr5pJr_}-g0d6 zo9I=&uW!onW*;}-dbU|TY1@?RGtwj?+kZ_=tenEJxH{&hpP3_PvDtjyd_CViX&+DT zv(Cxjm{Gs|m|JD&q#V8N?mIYM%Ju(#5E|F~TI#w&ZolM*8Pg2io>-|bpC0RDs}xmy zVTHTP`w+!@Q@`yr;;sw#?T=XP-g?}Al^t83)xYRW&(x?ZRkq8{rAHk5%$&Bg`YFSb z$h@VQ>gU#$KWtk1qv!SWSJr=%G%jQ9Nzbj^Wh+%TM_*!M zT(@l65wXyFhl?-OYsM-gSJbm^%@ki1 z_wm{p?lQ5P#kT^}mlyb^cRbtdw#w|?4CC+F_pWRcxpR5l&Cj#sXC?1Ro_xMSUjF^{ zY{hvGYi9l4bAQt({f~@n_mm#(GX65B{O88nukKI#BsJci&cE*dJaYH1x;B|LQ@@9C zf9tUO+;7!a#J;w&@UZcFt^C_nU)y37^e>&*)p76ozl(+H^L%H9mY-X3&iYg)dtBL% zxhFRsvpQkFU(!8I8I9?;x5YWj zon&x&w$UeD=Ht`P-ycn{|L?hH>38G5*S`O=dbMVnT-4kLH@Qnc-v5v!%64_d-)FJb zmN!i1O)RUf^tRmgYGdgA2YN0qHLhrGe)l4O&f;tBo6k(16TV*~Ir^Ya>4WRvGUMk? z6ps#Y7hac9zT#Zl`_NX(Y}|~;&GFr-!xT~GOoIJ z)i5;fm0f831tpv9M_qO2Ro~oZ$SZ7j>Cdhk2f5i--gZCX7FJt3Eq#9Z->d20dJR(J zR{Se4WNh9e$354?;oLKq*!`a_T%QHniNw=#Qi;8L&Y3yCR1CW>?Yh>m_5G2>XYH58 zCNxyK-#A=8Ig~YQtwsI1z$;u6zW@J-1H6h`;-k);S zRZNx&CJWB4o9VT1rn|=e56>&lC``%B+c)8&+?fJ^M*V+v&%% zoeSr^%uLUgu35TONaDK8OS#E%e;56XE0`>9XLF3HJoEX!SCKw<=1be`Ke90D&x4ns z-E4Iqm3Z=BeqHwe&)5FPw|}#%zBqif*+gtf%xv}#JH({)E024IZTY%8i)WtT&V3x~ z?0UZJ(>pscNb_m6DVx#x4UN_c7r5-d#$I|V_WVgoSx3~b47Phg=ils_ux0V#{&SI% zr>4DFy-a!Cx|*hk4zsWRDEqH_bZ7FRM*Byr4<$0U2%KDSIVCo1Q4^N))?%%j6&^@E9X8xUh;xnplyb|nZ;p3o*>$#f+rqCZ&ReDa1~*))(5^OnX4uKcvds7S0pFHPkAtqyg>`?G zUrVrU&zPh2Bjk98pHg6atmo;OTe&q(dBkpINK)u(yYeCbSo5vxvgIw$J^q^ZZ*E-Q z(2@SiFq`kgj2xb7%hanUr1#BUwB7V{ndEXC_Kndhcf_;pwI zq`4g1`o#5GVt9Kz_xas*tY2Q}1Xb;Nc3kKBra6fZa<9yE-#K-sP~(A1Ji9hOw=_6@ zVD_iVxa2#h`wnjAcc|WCDgT>I?%=`4&8rvxdZRnD~9}$+-xOb?V9T~5$=Z9VqF7IZGG|a>fggZy5s*=fs376?eRy{x90~LI2bK`bvZJt z@5oO7O2eS3*||XvUwM4Lv#d5@_ENdGp0gdEezw{7aC(zc={>LS3vAX$D`*7otaxza zOY1Jta`wXSy|0$ay>peGdVRN^DjT~b#|mx+7VFz#_DU+34{Bb`FGFXw;vv=OkXHRyPrexx-aOunpAY0vBlCJWC;H+mjC z6+Ppa#{VpZE1#4bdjH({WWC)#*0F5EtqHLT^UnXgvTo0&jXNgK-=_68Jbw4XZ>#Or z{0peda!+YVe3W!W%&>V~Xb)UVd_ zJ0?ti_I<+kXQ9ugzncG+^Sk+Z!)uX=T?GbHt?jbwF6CZh-TZg$eVP5!nclBg-5d4e zIE(m4tr^eCr|KMYcpX1`#@}DbdRK#*J+F2K2S=Zh-rF>tubk~#MoE8pT6*NxbxAt2 z`D2pvr2&SJjq{e~N%7CzkUs=xbp)DfOGmm_x=Zyf9Yc(cRwkn>l6o%xTCeZ0GIXWYEE8OGiIj}ppx z-j#dr+_!2~R*uKfH;qv?%Vr4j8m@SDOb-&Gw%i+K4KQ!;3;l6k8((n3z=huHe?|katu0#2Im(2EB zHYHp0*7;6-8@p2nS0B&$5fPbt^5?QYW+zr1IhVL`+NZFo^;5s_R<1n~b!%n$`9c-e zhzq9+B#rg;&wmJ%{CTgD?amsv$k}hVy=W+WvrHi;%Q-dr)!bJyTW{{X|CsO0nqSTD z8y;~vZ}nd6c5MC*zOCYiHuT-pYJDqlN+!B?Z@JX>vPJTW?f+J7eI{#uAj?`9smCfaiOZp`L-mQ}~^>^#0;-h(TfB_np!Wy?JMGd($a!^?lR zK_Z`nHf20N&$7bxkngT2vBz&8v^QT|^s%$J_x#l3<<+~^$?{fAUGp&Y)H%slt0wMS zzq^0EgT}2pnH;-+E~z@f{8GUnWS;&aO*Rcv^I};ZpD$ll+O5*HvWPBld6N?;eTVa@ zrFXC1`S{0Ku^%25J(ItD^XB^99~V9S_%=E2j`hd+sSf;X7aJEBl`QXjcBT5=nG5gs zRhK8MceU#a-hE~V_Y6<};sfUlt|{#M=XQ6SkdlndobPdQ*1xw%TO7Jll>L0G_4?m= z2X`v#-45Kf{Bn8Ss^z)cgdHPz^egX`h+O^c)VNwE!us*Oeoyz3YoWT)=jY98u3uHZ zHSx^r%5c%trT<>Zto&U4ZL7`aLyc3fKe?N0m^tfsZ}z$FWy+uKdbOlqnf|cj1fTu4 z`+WBLGae|hzGDlLyjsZ3=DR8H=ui30IsT<=pDynX{JlkP{;fdu=LveN3qR+7UZh<0 z=lA}f@{e`*&VQL<`|l+GKckm#w)vGVf2Vc*`UUrvoQ4@YKOfSO)AYY3<{I2rw7l!z zS7UiwkADXm7No9xKD{LN?Xms^d$x%8zkd~DyZBS%)o!hSs?UE1N1Q9n6RN&eofG^~ zw%O*A^ro0Eo@}eO=XEc5JDIus!bxx0N19D@)$2LT^w@;*ujaGHWc`&|eX3rIe=WE3 zPrF0ATJIIVF)^FOY5hJVu3~E8x-T+u0k6tDX8*J+dgxMW#NjMe?>28`@`K5>sREH7 zzMf#z?UnxQC#@i2le=QMYV-#e`4zz#c@y$h)qJ#xdF%f26)BR&CN~`gJtx za=L7#_>Qx0t9!oOJ|8aa{&lkdHCL{xb=z2?dCRWFZh6w$SQjGiw={5?vdx?I8LQbo zoR!~m+xSCFqutA*(tCThfrf^)na}q;oYVJY&ZbJ6IbR}WRvpti^ylRP&Tu`egvql1 zwG1CvKHF{e@zasBm(}+h_T*OH_l`4eG+tB2aFn)1Tg&zOQlrwECBO zKhFKGf8prD2D4ZVt-l%qo0=QfT5(Jf6@FxGz*Vp-cG0QDj#p=W6}V>ezbyG(v!B<{{Lrt{kL;A`7cYC z>CfLU{{Lh5d>0oTW8?K7PPYm4$`^7;F0o!YTeN&`|NQVDg`%sc_yuY6-rxwzi+d<8 zI6X0@_hw*p+(YxGlBW2W&1daqOaF*tV;6WLvm;hOgTvsJb((##{k6F@M^t&;_u8w! zd9G1-qrpz}h+f5WQ1wOoUy>@iZl$fZ8 z6>evet$%;rYqijQ-fQbQ?*w<9*(VXPc^~(`O}mdLC#&zB^HH~IOWCqdM^?KWEcg=t zH*;}swY`Ggtv#F1haa}$xbgd;Y<0LTmrhD}mRQOY*jfP3GqEj2zxo|`#4m)dW%jFm z6LZBzvi42J!Q8O5Q~yq%SoQv9WBkL6r;@TvK96h#Z%%Zx$e8kO+JTgL)A(JUFJjNy zb1UNi%xSD=XRGen{YQz3 z(eb^>9^dKF{uWPb>up8W>@J(H`J*FYk)7$X@|v)J?_=948#!bP<9^0lI>i(`Ul8Me z|M~?-?n~=_n*LsqKI`%v`JCom0_8O}Uf(~>F4(ZIy7AyIzo+*i&C(=S*8KESJZHXr zr_~>mS+jnh@}4=*GCy`lYHib|`WJ@j4_8lmytvK&?<_LZ}o5REqrjkWHxi@tmUiu66P)YsrT2d z_*Oxh_U!$|4Mz8`?&kK|$R@|E6=QT@Mzj2%cSmB)pKNStod5OS)w_I#kG6Qlf4)+) z{{1_T<9nJ<{uSvD`Oxt5rrX=q$9A|Mt8Y2BPI3ON(~MWDZ>T+fXM0J%a*KG=lOyR@ zc&BRJOU;&fsJtvv-0*nef;DP#o6boaSFE`o;}P`rx6kBj{pUYCy0hwd^%)&|>4L)! zX?ez{&vEoEJbwBQWA~=C%-dH(`PW)87rN}eUa4ife%^;~3j1G7{W;}(oBt*L(?$oj zNgGdH?P&2U$Yh($bd9GKT$69D{o`G${$Ih)bpL8wm)Z@FUYRZnm;NyM#@SU0ohyz? zsLCA&xKX#`o0aehfl0bEBdB>_0pZouX57w zOMNoP_y2Dd5IR%xbsneODyx*;CgnZrMY(r#Sh)&445$`4`ODw&&Z$eU(nYu0K8sB| zQ_O02>EgWW>-J0S5ZV2p-ps7elV9@oviUvzcgz2o^;Ghnh*N#rS?cy<%gc}1=hbE= zr;6Je35VBnvSz+)@HnNj#dWDRTMdhS^tuZdTas-n&-(Lvulsv)eo@=}mz8Jtcio@v z!u-KMvHtn#M~x-N?=5)BS-np|Q!TFcTGW}lbsFZ0na7sRvpuA3 z7+-jBpYes43@di>XU9&yZ@*RU|K;!hizYwU-OK;7fBz59JHHJ@zjJthGQ7R^hPJ2U z^3Pg_PFKHhSQixGRloOouKDGiuja1)_2us7dj+!}MK{gf+~D=1BF|V;T6D^!n+E68 zR=p00UiC1pYI?ZCuDP!Qx)&Ti|K~4{yt~Z7Y9kfVsFj(2ZoVkk@xe|pG~i(EVngK} zFC$L0xy2RE4gYg1W8p!^T(`DsyH&OybMKoyw`B#J@cXxmrxhRJQ1Cg<+s{4My)tcY z%imDnTPxjrSGoGM?`&>=?En3hpna+NgPWS19>KOu-#OWuCYG{a;P{Yw^ZqRkrUxOJ zhcC^YoHwKILGvpWAFs7jR$qF_@qW*#bLmbMU+cF$FE3f5>EH6c_DzL9^URv#+OO`) zTZK!^SgyL*Q2ee{$NS1tzdrY<%g&e=vW@L_AB*YN{LiV6v+uTE4v^m(-q&8y-}Bk$ z^19=V%8wg&1n#x}$_$tFHf!RzA9cx4`0z<6YOv*`JNqCA<3WKQguN`<0Cg zE>Em@`js#0|FyfdE%66;Tdu#IG5vV!x!4^u_&E!D zdS0_|KRIt)d8dFr>&HtC%5;13fttPTDgBm&P-*aGwgLwAN*c1(dI-! z#PiU(_lHi}5Q$tx-JvoGoE)S793Rvn5;OxSBJSL1g3 z!2F+^k0-0J-nXiA*Az~?r&)1=d++46eep~FTs@Xx@8Z7q$;7^88`oB?JeIn>yQ_AZ z?()hd4jKACuPsQNwlJ%|YIU>Yve#$s>!x3`{;`L{_i2e%_pkGY{TuF-JCrV2{$bt8 zj#8Z!*Tui;RlZSP6?5iS`!8?lt6wH(e(fDqdVJb#Ii#lA0y+CI>U0nOQf- z3k4Nn&&$rZnTuRSki@tbElx9^?p%?aPSB>JU)&8&a(S3TZ*4sx`WrykS$%iWUC zn!A5{h4y@$yz0~Gm2Bx{eDBycJ(jxjb;Y@@DPphBc$(>6b1-_pIpi%XbNTLa>uFcL zYxzRIPC9Oo;%G2R~CY;V1_)mBAswdIwz*1LTjVatz*z6kb} z4cHcV-9|;&UHMmZ?sj(H<7>R0*&PeIR(sY$Q8&x=?X3F$dS6R^+dR7*dM5nVeOBJv ztl`~%e^?ltnz?KB^W7Wn&HJ}$*Q3y*yHj$~q$GY9$@-l8ymZ>VgIB%g&I+HWY!~qQ zfc4XBix|1{d$sP*K6LFtl+byu1oxJ`zJC|p7n_~>#5Lky}+t$j;%bwSNR_VRo_-n_H{r}#5znowDZp!-u-|uqm*QiXnaP@BE>L8Od)<+X z=Okq$exBE!@St>q)vI9Z)?n6Qf=UpqoXw1rx9c$fw|B0~erFGG4?`J$)7k%|&)tqp9m&2D0n;7=*SW(9E zO(Kg)Vs|s{ikZzwQ2F%Qk$=HYFdi>ex8voiu|XhH&x?#OZ}nqb^`M!Upsuw?`~`0 zOKk>!-jI&>{JdVD=4>(e^#7xNz52aNzh~On%zNDKAAkO*tmCY_$!ys9D zWW~Pg4l|nEBPXToTfS|+K6h*POpg4vNd@UqK5$nUCu4d-{kN}I>8{P|vdl|mU3_<7sUUW*lLw$3^!8Gkcog{8K!;y_M1I#wc^Ti(%UEgvUz^@VPl1q zY2X}Num1a26NEHhc)b1mcZck$MQ&Pe|7D!`WqWw5aJitiUAR`zg^Ry^R@^eWQ#ozc z`4`13pJzP#`bc|Q(z8ALC!8>#N(Mw)}X=9)FxYpK;9cxzTo@9 zKJSgM7mC(ZvdT{l)jXOicBWh~$Vqm~rj1o<%qreI=lAS6WhTv%XRJS4Fn!_e?@vYR zn2!lA`O?SycGZTW?BlCtrq3!2NxQvf;o05ZSrN?^;r>~6TUFWjzsmB~)|+20IEORM ziY09<^Dymy1yy&e9^7%3}JKBWKFME z@Aas>;cxp`up-^$z1^#Q`@5}KOIsHHTJTBvz2WQLcL}rmJ_pw>-s|mU#xDCcrt^4g z;l6L#?w4A2-}%2>?l+%Hw(uX>%_7G)p4yW0B)t8@p6m^0zLb0J@Ty;;dsTMg+~1+z z>-?P5vhK%BTqSsERr#g;udI|Ol}!CSw<2kGCHs8l@_%oun7+<-Dy;g z39LV{T)<_*q_dOtqj;>3pIyG=v)XIUf1*#{av3upIA{Fo-=Eq3k9XdGq`SBNi+k6Dvh3Ro}6)R&w($-8cth|MM__nuAlsQ#uj(!#%Mtf*0oRWIQgd@Th26PTQQIO z@$%1R?<9oyZ&pTb2`;>wC9rbOy{ilMmd>k5UuLVN%>F(k{pPOE29GaVJS^6|cjw~@ zzL?Znt=G&}NgKa8mrvd#^V&@RY~#_ndehe`U!Q&4?UUi>vvc2A9d_5ewx6rH+1m1g zVaDN4M;|A=7tc)H?s3haa?cv>w7u_lCb;eSC3c1T%>MFE^9llzWMsMZ(ql^&Um(4+4HZgn-{&_knh|S{mYAQnbiE5 z{v#^4;g{wuRoRt#FU_yKTyon+{MWkToot3HvkMZZRXWXk&RcJ*wDo(2`|E7)^=1#k zTg4{NtWUcU=bgW~I`#9;X|W0ZrEkkFg-G-_J+doK-!3@QK`nCi=AW^mt*Z`KWX`U- zn-p3be&g={&;{#*qt3sYk`h~Ky5vE|)9~mz!D%+TO!%u`#mWU=-ORlrfT!$UY*?9% z?=l13r`=srt~IGpWz8ZUzBekuvRzem)5;&+tn6R+IsEA*w_X{R z!nYg&d(Vj{wkyGmADU0{_b>0eYSnmG$-5k|&y>b(If8)OOU8*;hFJ^kJH;*G* zpHC>R;@!?%%imk0GY$z{TF4-t5p}SwQeBaW@7_lCIp38<5(;8vHgkt-yk0E%`_jI; z>yL|~qJMI3biP%$<#qVq=P`F#Kd#AMGfSoL#GdrbXui6OT9wUSv+no&DoW_{E4{S8 zU+uJ1V%fQ$wWY5r&J}-O^Fv;DrghVrsrpCOXn#=qob>41J>^x!E3@{La$aeiu6yj` z0_)x%*Ce)di@bQ0bLGzMjJVI{2{oVkuaJE&~y+VAB)b$ytP`;B#b+WQUe zsGgp%#(7oV$Mag@n`FJt8mT{4ZJOu((D1UGf4Bdf;|CuWCLPNX7xa57eoy(+ot3+s zj=5gbIX}f(?#ySqYx%NY>QAnB zu2p_}&HYO0&Npi}7|jz{w#M$c`o@C`Z{~R0MteV7UTy4b8`nHvKD?`6-PY6Cyy?;%;cw~cCUf(1^TVI(MFcl{NN&4(M^x|3q|b?!X1~vS z=T@>X689&bnyZD3?AG`Na(!9a`_CKvQ_68E znzK`R(LUpIoc71B9h<#G@3@I|(DC_9wY9=V=K%4xu&e0)c04g;e~MB*1HAn3wQ$# zUs#vWc56{^SEp1%)09<{i&spq3elHME8)_fK1ZwZR~T>ppSb>8g{Qi?iY%>~qfYv- zUBR|)ihps_p3c%AcUZ4pPm8wAvB`e=TDg6`Z27SzTMQlr`LVojdbf0*RL&Wj{=UgQ z{WjmM@A=8uyx*$*_l2$X>Ixf;%5!_0)xS8N=4!iGSn^&ssrZiCWajH~`zw2v`%Z|Q z$9TX^VmEW%uPv*tr~Tiu*l&;GBdPLtGjf>OSVbzItoX$7EcTM#0jWJ_qIRx)x^k|B z{Arc9A7o2qPp`<*TOGsO^x67p;ym@T8=8eWET8>;uXn7u*gmIjQS#x+j|U&j-M()1 zE4iHIatE)<*9e7O{A6pR|2FVNW}wjfE+L+h4Z>z$+iUzSl=W5_+n&z7n*T4i=F7{5 zC+8N;`&Y3(onPKE&wcBs&hsIA13LR||N3|Pvu545r}^M@diFp6ou7Qh%+-2ASozhC z*@pV3um7CAovY`_Z}YXvy-_>%SiaBu+$48PzOkxkcbny-!UwIlq?r5XY*v1e^jq`2 z+c&1&uRg5bT~RCkebog;+El#ycGePLL|NZY^XgI8_oQVJ@ar? zbEWoMonF?5s%NY%r##JhXJ3APvYFB+iPipmVW|>V?mxeo|LW4)UDwwyEey%E?AUqB z^H!_(-Wdif`TE?y-g{RTdF`j#pTPE1c?+{Q%C!ua#IxexM4#9deC^|xnO|d0WuB^C zS{)#Ns){XfTCP!zYC7k=nd&pP_oed`r2V^RZc(}SdXp zIxhdNcVNkb$?rXdca}X7_PN@yz-z+HBC(@I(pPsFNA8g<;GME&nc&qa+cXbvGu~)k z6V2RIY84`!qQ2y(pU>ULieev%CQPloZu2waz@^z?%fEd6cI&PCoi807(=zqg8LAt7 zm--)=pm=ZNb=m63_tTOCZoW>>nvf>Sdn_ROgQLxr2N~WI-ZmXvcf9z$PowOtUF!Ru z*O~o!9uoStr+3G*1s{3^wN0i!eK`t(#L(9v_!I?PF|a&GHi; zZ%RFQyYg9w<9R{dMe`3n&U9bKofq?M6Zf8XOtmJ7-+mOzefC`~(^7f#vES1Bw&!#I z|5LBu+WJ^`@4qkkcK;7|M9eka745#ctIs|-lKtvas}~D`PJOCcuX#dX)8Z4>D>F9S z5;)a%`_+fdVu7O1qn-MV?$ZmYKZ%X<^txt?iem_2b^_RBI zCvfaE-My;RGQ%x*Q?*_6bb3>HlO!;j(-Wu^~(I19b!*6 zetc*}(UuCf?zZ7? z4IclC{;IDe{jTEIc&(t}~IZXGQ2 z;hW7YXZgeMlKkIC{EtB6wCeKzzkWUYOMS2QwfV{}dn>x^XIFl8hyFcF!YjU;{hm8LDE;3iwuEIlJ!|4u?LYo(cfm@l zs2+#56p2bx+tXW$Q;kEV7kyKFDbZP0Y%tksU5@f6uhWfN*bDvZY>2Zu|6I76E15ubwS>7`5+~P0RUi z;T69NuCIBzuleM>;L?LBTZ6yc{oH!J<;kY>Lv5AMI)54Yrpp9AWB-(PTRmQI!Ot^c zl3T7U{}9rAujOvQ^TlrQ$yHk!_uJlz-g2nv*#7HT4}QA5Ilkua(``lB)$UtP9?Sb} zws6C#36gEgp1)dkdB63Bw)tfD>-j!EG&i~2T%gI*Z z#}aUCw{ltOm3^rd7GbrYE3byX)0llwK!1Mu>AN}KIyN3Qk*_@Q-jZX|d!5zwhfXM8 zK2_oqx^8*R&z+yr%Wvf6+&g+iE9PIAbJ11RF#i7675k>ug|C{uI&^*J4U-AiH||(| z^}u?^t)k23{o1tdrLl~lwqE(3=B#y5Ut=ql$e!PRb?3&#KWyx;Th4KO{m*4W|KIud z*FTVdoxb5);DWu&q%77r{)u6}zW-^Ioa(jzzvtKdGq@jJwfE)f-|ip(*M5z3nV@}f z##f#52bDB$`tiJ3@ke>(>gQi~*lRU&gu6<@v*;@Y2dx^W{o7$Tkrvx*W zT~B@&SK<&>d?WMEZ&XHp;WuvaUG@Bx{bDcs z&WPyr%qZobQElb)#qPQ5{QaU9!3+A2w-?R(G|%??!fHFNKidBNAN=;e2rU1gdEi)b zO=!JsQqX4?gOr*tJ8$iCz4tKs{qMoZ-TmO+eDRq&}yK2wonAtn#%xT^;>+_$D zVXqoO+5+F-QD?t0^}hS0(DwVQ0C#ZDxgAPMFreY%%YFWVXN8h2IwSO*GQ3nd3gG zd>iW;?|aSOiaxNl0FUO}m;AE&yJ+@7rP5RG=Za6BlFJS-P=9Uit{MLIW329!*^i=2 zFEWcOO>Dn5Q}@oC6Y;OZtNh-7Dtd4IsVn{7pap>V+MQt+4mND zIqT0C-SkshqqF$=GR@cNQ*3!&U3e_}aPi7a|JC_RZvJllTvf9CUxxM0IhAJh+dtXe zo>ytJ_PdnyC*Fd@=&4&}&s&6R&hNF?4-=|6zwsWg&J5X>@5@g;tycg0a2iJb*BryF&UXtM_f35+CU|7` z&zYI6R*6@wcNYA(sMK?P3h2I*%(=7DB|~QZZte*;x;ydh>D;y7D|)Z>W$&8HaU|oH z+-Z~3C-e0F3gv|CT$>cG+OV`}eVEW$$9*4FW-Io;?G?aXOwz6#{5pBD4F#zaedYigN9@sV5G_Auq={(JsiYQ0@?-S?1>${JVK zmGj-Yb9&M8<+C)leBSZ&YYf+|ptWJAtF5A$KiArwcibdgnr-)_m7#P>*gPevX@awV z2G3gETk!Jc4B@|vUSC`DtHhWgdd{`NmtS7d!} z|9S7yYv1~BSM!(1N(!2GOiC5+PwP2h9c?ms^^_^ad%Sk8(U@hmTF__J(uMP%=j-t8 zm>%|Hr`X{cmNUZ-ZvyxvroQyEci?@Idq?)WAdqGE@7WSZyPxD zRZej$Ye<=Qylkeqb;IXVm$MQISq+Z=>oc1%qkaF*T@zPN_`Lg1&7-Z>AGSPB*cX4^ z!XnB{Yx%`hvd&BGtj@jXNhy(XmUY~2*MEHV_e#Tr2UUG5tf!<2C`t8cg?xBFp3bpWzDU&kB4O4CC~H47;3KAGFgpzx#f@b&rP_l)|LL)xc8L)yF^Rx z^nLyBKgO4~Tok+*U~M|-qWQhhiKo4o1=laUyyw!|S2kYrjl*(MxRorewnXi_wD*~K zzfRYJ9g&iGOpFXplb@#7u>?b~3R!-#&*5-FjB{uUU zCd*enN%m4!`nXI=M$~^r?cU=NDj!;0*`CPm-t8=J{imwR?`Po8HBUXxY%*=|Sbj6F z?rMVaPlcB^b5qnKOSjDXZ29x#kLrCkT&5cC&+|(yijGAE{jOfS`rATL8Nsk^;g&6z z?2kMw=YB2!N?d2k&1*AHT@>`)^E_7O(fNC(PvYiPsCVD|B|AN0me`9AulF9U|M~0q z$7%QWmt?2^xu-s#eQo4N-gCKZH`grI+WPbMroE?j?|O5)W+9u*E1BfIH~)Po*PEIu z9ooONXRY-tmh`p3-33;4t8Gdj@ch=w&iG$oC^Y$J^|9Wc3DZ8Wa;!M{=i>ZQN0*kL z=3k$jk$>x}_&?EpvtHTB*OuQZRhH|?{|-r={>r8~Zt@vp?e~3$#6=C1c(0jhey{3j z2<78Smo9$wYen;)eN`8ysP{YWUA^x7d9D1HXJ2dFUgUf&$}FUYi|t#ZiReRRxtSf& ztRGG4mBOr6ZQ8A8wU+VTtQGr%j~QC*ICpVPJjeIlKb`0H{5iR0S}?!d>RpFUtH;#D z{G9Nq=wi{`mnS~1u6_8ZP3-Hsk3QC0l&|PjGG|UR(X#2>{v_euYv1)|57Lzk8Yj>A z<9B$UaHF8g+WLs!DjRR*m4&Q#nsQ&;c~w%1`XbxF?;AeOy~^}Adbyj~!eiy^=Efz0 z>{X>MZB2WNSD99_tcja%d|_hYqgk>#uTz(N{-^e}E%{7XVEOyUH~gZ`RG2r(+y2da z%fZSOZQYb8a9N2tCbaXGq}NoZSG(s%s706T=WyngSbOl}uiDlvkJj`pRg6i$Z?G=q z%JsV)m47(zFJAE8qvURZn(FrSHLsiBzFGZ6)qE%4_cf0DWIBojCa1l%+aYyAS?b;A z%K2ZnN3u6xG1b_y`fkB4eXDK7k=w87?fddV<2{OK0{Kt~|$Tz0qh6&%L8x`y3s$FRU(#{jGXq^F-@8Td!ngRFvANyLUy* zRTM0oyRqJ9@%3Y#Woeh5C|}?1s3?=RBWFQMyIp3Z-!a+iD;@X9h6~NJRm)z)R@El^ z>&YJVro^PPwiw3G!tj53!N zeSR8f>n(R_sVvtc*W{%y?KC!Cy63k#Ek3+`{&ewG=S%W-)>-|L(b(R$Et;>Aby`}U z^^2=*Wp}!^cd!S|K7HrF*9^N$ip&1kTG(snv}k{Je{6T&^XkI8)o&gj2#rnk&nsQ& zvug9&X;Cio*7IEGZICwE^qTwmr0TZ!cWs>aKKr=q>x%Qy*2+~e$BWV|wpiDGA@1GT-m?n@bilqiFN%y*Jzi{Vs2a3y*YHd^V@%ynCQvsK0ss&1Vi(uSH^qD>p{&>pySF`=?+{#vH?lvmgE6o-RC`{YA8jrKEq!()Aj% zf99lC-dS3wY`^8oG&|l>ndcV2{;_)yi6)!izCQl=%7J8J=n8FQ-_{>)rACCL{mU z$o7RtV($J;xaXG~Zkv4i=w8-ve~t4wJ2@S?qMCJLw67j)|NL=vd7aG7o$p@!I43P4 zdE@8yWsJs^b&XBCKdHy3ZE^h4vsT|~f7!mUuXbBx%H(XN{55CBzp|H%n7J@#VuPW7 z?<%>~`geq{uG_rNc!jl@)#PhhtKT%9KlAq6q(#M*wbSQ4@!DcBW!veC+7tS9KdB!- z*C}@D-QtTgwwAGXUC#ermeu%Ldtd*?`1cFSJ)O>W2mjym>a@HUTX1o?ax|OL{)lyr zm$m<{&OcsRxAmp{zr&(Ai3JmckMKmqb?$%h;H~wJb@}rY=BoYsskbWTXI0$8>*{G$ zekLP-ROS(YdXta;i%P@j>I4THm5;l8N1i31o7W( z2Lq;_7L!=8r8MC|>6If{XL5G`zMjzbYLeMAF8i%r*Oq>mTkGUM(eZk@&GwX6_jZ0S zdw-^Kb=2+#r^k2SFN#i3xPNl%o0q<)x5QS=?_X=57Ry+1%46#Njo;1m3f{χM0 zqL204N*ktnneg|YH##uAwfVHpHabyu?ut+P7y86r8+k6uzY=5JkfeUeXQqgM$TSCM z-%Xb9ZZ7Yi)qdCK=C&!z+_L9BomYEw!Szhl%!hXB2V>Jy59r^Ye0i_t*2w)uhu#?N zYM*nWs&q$*KkGpDkl9x&OfN`D4C{CCAoPNl)t4HjHqn zi`I|ve1FG!>Gs5M&*Wx?sO4?eZ?Cky)(B{Lm32L~FZJ@5m}G;~*ZuaIPSq5?)acOn zp1WnYyXK4N$7N2>c`m;EtbeUSU%qn}gIn+Ei_?omUwzoI%w5xAlA{e%O@Ec!hbar* ztMXr4!E&SOfPdMSEr*?q)^A)ABviAgw(S0-^Ou4Ck!{7Py3;_#>uX5i}TgZPZ!p^?Rv?s8_jypD}2LTNttp^#ePTq9JUOb z-|`!j&7a5t9v{~c?+P5kzAYyAE4Yj3^7V$MH4Y9XR;^`h)iu>Hc;U)@zx zcg2{^-963DvDm|XgWopG>R-Qd>-)ZCw9R|BtL=U1(>+VRH~y`) zOsD3!e>Ho#GwS-==ATbQzbn^zf72C@4G5leO)xcO(){$@6K$5%3Mb4gkokT8@1buY zUpE?g+bw0-*!8=vYfJjvn`|Es8JB)OoLrul+?1OhyXAPCz=Y(3xjQZ`KlNQ?dF|d$ zQYq#U*|Mg|HG3E8=$=~~Q!2O8_h$Rc!v%(meoi@GrMTtau}SWqZ{^yko^G2?ypPuIbQjSD4F<;?p5pK97a>KoLACr+z z(vp6Yk_+oE@42sdweqixjm#B$b^o)wR)1P`<~Vm<`pRW`qW-InG+K++q%F9g;40~67|*Uy5-(yhQ8_b+htChcbG1k z!zWZ`_r=tGnQhd*ibGXA4{rI`&AJ)3vby`SYsJ)j{q%;k=4W%?d+~AZI{NR;m)^4X z+e3fn=pQfXOMThLQpnq6pS@@bAM3O2b2oqA&i6s~z+R6DA6ahReZHO{%659LWc2Sh zr(Vtf^?R${8>v?z-^;PoAugpENicjXPvTFE))C1kue{X8K z`RTObyU8w>imC$l*zNS1abUru@E=Q)b-ljtnRO%dNq9nVpS5hg<&i8`{vF(RjCpwu z8C68NZnss>liaiWMTK6!M@*XR^(WsYZPE_tJ6e4|E7=lq;6_Q+r)=#PC(li-$k9kW zeg0`yuCGFsL9y)0@auxJ=Ra>K&3f-YlW9%On|V#ocoqde{uvvY%*Y?Qv%B3|o^=an zfWn4}3iE3e`!{X3ez0D)CHwolK8~0>J1+@aSGc?`?RkFE`zp&Fqoc7VchjFAsd!Xb zwL3G_-NrV*O2b^MUG=Ag&$QdMuXgW!D^r==*)If4*DnaK9jC*}a+SvYVc4 zls%mJ>to;ES&Wmi&F41m7WuF6&e>eM5 z_T@6euU9|hGPc(4*;gM|x2^fcueA?y_0keQ1et_EJuua-RDCI0Km z{J(QPD=oCOd|>`)Rcf->(`n!CKG>95y{78_7x{f}Km3lmEdTGv`&Yc{n?3H^t8VZ5 zH1F}cE(f1irnjp5cYl$8%3OGF;cMZ_m*#WCo*0(iT~xH{()G}Jt9|;#-{11Ab(mEh zyL{>YyJ7`}jBoeU6y5t?qjtJRtd?Wi^>Vh<|D_ClyJplZw7*_%J~8ek$HgZ*uk-bs z6x(~>s&Dsuzx9>@woKVq-K*w(iSpBF{`H1I>$c0^-(q`YT&0)STsocJIoomiDaHLW zchx-e^Zp;1AKf=kn*T;S%k3AZpUk=XcKP44${+3;eQst*j@pvL|9h%n;7!f%w< zuYXeWg!iwJ?fv`u>mR?%eEj>*;cF(hPb~hi`~9)|=dY~`{$FInQSe!!w8zP8_k4{H zE8kQX)*amFdC&f%$#(y_U#3Q_U%s?jb8@=<)_mm~Q?Ac7%$l0Dt31ap^Q}Q+qv^9W>EDUWGvDy+kYBMS zHuzf7hvxH=G7tO~@afc8UgWvApR?tP#{T1P@^qEhxDU+{zGEWGe_>8;$l6DDIbYPc zW`A0~{_vBJldKm6rHZ#a{Un^*|I6y@tLA&_r*-hH`8ng-MZ0?Gt(Wgk@>_lCWx*BC zT_=Ap`F~_P%g(so&Hv3$3Qabu+bQC?Smo&?ZL4dOHoUo>w@-SldPDxQKm8k-*QihU zb@h93xBHgPa*kqylGkP{Vpqm*>VNKbzF+SB*Uj7S?^*IP`qz$^|9^dzzY<^j|MO#y zFD*CE<-B`j;V-kU^K4JG*WI|U3znU_w*1wbQtwlym2abL%V)pU{L2B;!|)=l?KW^{Vo9?xkA3AC@=N6WVV5Y7hI7 zdFk7=jMt2IdLJLL_-s1T(D5#l{lJQtjVnB7X8qZ7&wY94^>_c5T=SOxy^dkus~Ifc ze6~0Jz2o}b&fWIdXC}^f3;tP`op@<+uCeH6-`<+((^h`STY9_c?(v#e9d>Vj1xqr{ zV~Cj%csyeNb&>bWeBaBhHtK!FAM_*V%gp&~yc*rVFWIq~=;+%utt_xVK1K7)m#~%W zKH2Lgy{|uYzCpgU?S=g6Io(>XH*WTQ$GB3ffARNI|HRH0E#0YpOP!-{GY6B_%ZX27 zJgVBQ*38I!oZI-)cnyoVBpB(`~Lg?OZO#zUnOflJ+4{G`J6HI*4tM{TJ2@}SwvjE zXEIKDA#(SN>2DkN#}{_TeznQ*T)g^q;q~cto9=Nhzv~urXX&0fw*%6(zZ$LHbGWl= z`-Jx7c~<(23!ktabk&bL^JL!#r5?t(jl7)ucwg+^*%$bPN${4@tAeYGH+kCswZ3Wm zE&QD0rVR>aa;aMjhmN@f7N}O`*QsXxtrhfo}WD%E4MCo$;-*=?6K?T z)h_zV#Pc$^_dy`*+-VoTTs-3Zm0P%S!+g03cFFM!4!bOmsYKtp>-}%_U(5P*>C!VB zjz@iWwU7Gsp&{OURnU&#A!{ZShm`I9wD;XPzNig;Y+E?3B?MlEl)iYd_2%8^sIAQn zb#aLed)fE|Rz1tv{9@Vf1a3ghP<*uz)z zJ!n$B{hEL7Ujt&-7RlI2te(GX-puVGZ!c{+wAL_=<(6*cJr1d#o$u#LkDe%;r2m;2kl7+(7Sqr3jL$=#_>a&BjOYd=xg zT2~yRWuJRt-}x!$_RAbSz4OU^?cM3eV<*S>P5M@D60>vX^w{%XuJ%hV*z7#_*G;}Z zp={36pDC&H?t1oJ>7wknCsQj|zqp~Ue#M>Z(aRsEPVCP`>z-NNcb#ah=PRo&YxB$9 zDBl5*OOuef<36^hioVI%3<)-?3oTb^nBVTLSPhEUq z->s;n3jaH*^BKN!NO7!KF)MWY%L}D)>?@uh(cfoZaOJ60ZPf8LyYK^X2~C%*?|nRe zAe3J#-b`1nS6S-l*q3Sl zn^LjF?|a2LM*Gt}jb_>AFSVz5U82O5?zTooauo_G^Z( zFm9N{xIf0@`w`QRPu(9&9#0ptdCFC0dw!G3`_|W?TaSG@^8MYxHOZ#=J6}7@zWpGZ z<+Tal@4|gj`PtV>`>UC{y3Z%O-OM?@rsU_8@V~#<_QlTM%<(2XGwaHp0NMYyRcfx> zIaXs+ew*-@?YMSU*@X)Gkiq(OV(pftVma*Rp zS)KlI%i&EI-xZ%%E{=?U$5FNB(^LBw!PoDp!jsmoVq+ zzwm$E-T&UZZs*^q-&J3h&Nn@@EbM8-q$THeO#fE?VDdkgUz%&~FTVab)n(ti=|wzc z36u7n)nOK|E0=z|>^SG?_iwMC__*#sw-@_;+t=!Ax1CI09B(zXs-u|wR^_d-tNyPY zYc(7m*JyR;y53iv@w8xFLY&>>UH1MB{hzV|Pvktk7#6TBC-}#?qgV2)<|WL3c4p^d z!_y-C91?;PCjY68GC5c3qxstQ>(Vz9-YgP3o3Syq{@&Xnr3oh5$30q)$Ju+N~Kp|F*?4pBwjX znWbfCEq;Gw_C578`WRkB+nY?C3jF&*tvoz5jLQ?}%`Z)yw0rug}SDvaFV0n!RbeYUn(@ z^F}AinQM}-%sKz)oW`!?W0g;w%Qvy*v(5X9R8BF^YPN2 ziQ7u{viz7;)Tc9Ba_Y|=mY;U~FP%5zpX`i(`plC!)=f4y)0a_{(d;*^(=}(hrxtac zf5Po@^?k3*Kc#May}wpS-}ijC6zi9>yZxVk{wmni-<=t3S#sy@BF-g! zb{m~%`N_zpS-s5v%ES4_Z0@|)>Gyqn7OYE=xSc%Rk-6^uHJ{u<**M@Z_QAFSo6jvu}3qv?syVP3Lp>>7M+n(Y&s>?{&wS z1uv_-tRHgJyqw9J)uX*(UAVyc>T+2|$IQ3sy{tAi$M$@-Hn7iLQ!cP?^_;8kYuaz< zN`L>@6<&ApYJ>tyb>o4s%|2f%?QVTE&D;O-*6*%`d8fL<+YA@|m>xLjYC z`qoHCp4sXZ)9-sph7R-F&nykTHe;&Hov$Ufwrx+FAGaS=U|TWmUhJ>3`IW2V_bR0E zhiTSkoiCR@w0M_l(?|ZT z%KX#~pG7`cf9x<`x4J$@d&%UIxyC^+t(xj~9iFh~XZ7tlvze+!q$|B$Ik>W2O#Q2n~ zo^$2r7hfK`j6}}AOa6IE$-m9>zjXXd^d}9E)6>4p%{X;bQj&Ga+>Q62PH9;F++a~? z$ye98PbOA4-gdTL{AJC?CvBzHUh{HOY&{p3_f9T zE#BO}@$T%<-^Fvjxu#CbJl`G6_vdD6|GwKN_21addht)l;-}!HcD6rhHOqgl+H|An z*Xehswr+}*efy(u{p@9@b{EV${l)vniULd3of#FjEx*(6UpQl4{nj(9L*caMoQk?h z0gJpAMF*$;yL9B+q+eXJADtc?bl^R?nNOkQ*X9&Wb;g#pxye^pJKp?#^L%v{)4ZMK z|6+IlX3H=-Qn={A{!i*G%V28(e$Qf41>sj540C;O3-FTD(Iy_apcjxsV`J@21c;=g`f{(LE!qq~Zo%oe9kZ=U~d z$CmTIAI&lS?z-M7;mW3$e>TlIz3_YA_b2*|9ItKGAGp7;cH8XLQ?CZCKX6;!RycK1 ze4K1<_fgITw^r`k!kV&w$+qQBL*y9U=6PJ06!-IfcD?xZ$qK9vJHPUjT`d$^7Ta96 z{eJBEJ-3VBU#s-nzjfO2oVdy?)*I{R+Mh42&%E7f$H}0aE8j0ITfR4xfkQ#u`p2vy zp906pJ2zHTeV*~&_VSF`>HPifXA0KXEPnU*>6<6te-IER+&9Q%J z$NI;o|GsJD>zlR@o^ROtwfnYi-8Tk>mnj>(%Oyju`$<&07JqCuHoUm^wMBnwui`m7 zn`>!%{XecNDF2=k&akF;>DCiW2WB>Y+`X6m!e1%rbMc|vDmDGG+phnARD5@L>dw8| zo3-v5U)sPV|9bE2^Pzp8IClhB&;PRheR=x4Cl}u{?0v^|V86rFz+&0gCm+1s_dEY; zY5&jTzK1mz>@0aD^WCXI`(|C$oc9VbThA98tavT@>i)%l7OO*RYoG?*W{T4kF1Ezvn!?waIZ zExHstwR@FZ@3nX5d8R~bME^UXSrOH4lO=50Q#&>Cq~|Z6E76V|MRzJOctqG=YC@2yU@aqH>X;tnY>$JoO(E2d+~Y4tk}&@inq`Iylnox zzo930DZ9iY~`b z-IEqy_-{p#Nxh)|{f}ol(@%-Nf2sHS<*G0D*ZlvXXYqqaL;bngOXs%}Jug464A+wj znR#X5wVG{nm)$LET5$fz*12NWlclHHDIA~k_r%>>&ptVxyJ-|Q)BiS80sDd_a@16rd6Li{B!#8na5ur zjXZfxdS39}El0!WFOe@kxo`5*%iK%ijuu6%`?Wwn?o~1SFN0Nq2?~#`L#K4V3D%QY ze*Tm5gD38u@)92&?-QSON;~t_%daLSs;j>(yR2LCD4;swg;ay)h$r$7PXy1@r%x&v|IVIIum0xM&z!E}UnVLsD`@54 zm3r@$-+le`x$4@&+6iYKe=K~OexpV2L(ix8g;pNtYu{h}I4{>{Pt=10h820UU%vf& zr*z5uEBlM%=k~35dq4i-ul%}i&u@RtfBATMe9iyOzv}kMnkwraWa9Y{{d3*@pC?7{ z`o{!cvX-&Cu3W~LHnXy)T_(+H%c`o!>hwtwQ^vW^ zy5rXCEL%Kh&*jfde3rk~1w9QZUwd=wHuZdA%Lw)9jH&+%ly22>vl>rr-}2q_WX5&L z32S%cN&T8+_)F(*(CYJ53GEDrZhzP~V~YHB(`51feLpiCx4XJ0KQo-Y`Bm7@VlS&r zYgR>NJFJ`AaJ~9F%QL|gg$)aS9jlN#bE;>P@7tK&n|8JCy!Tyw=c4?l47zJStK^J#oHp;V;v3v2mw( zs}w5cpT7U+{~QkWACHP`73;Pc?d0yN5s$sQ`}{v+`Bm#;%YW?UwJ=%;niO zcla}xFX(&vcDKk(rGOQ#Y|3BHCZ8$boqB$^-A!)E1v5>rJz{*_@MP_=tz~RR9aoy) zaGEqPQ$5ee7WsbHe8~Wn{>x_XHW#s0N6br?yT&X0Gjy6=rHf4S-%75oVZU}_`aAg(|0m{ni--RFQNZTKxooD{?Qid%N+;ue%O!`f_6PZJXbJ?zJv4eEdu1#{Jqz-MA_HYoum}UMr2AufhNKzF+nB zwO-$zetUjDp#9jZ=goDyPRXp^yP0D~sCE~vGUo)Sy@Z{cLmPflKtlCl+RPv+xe?ST&ewx{i!w`xk>ttud^O(_vA}|+xR+r z`Pt-T$*H>Kx;vlcZMpPyPYlPQ>F56L(6l_Ly7}qyt~>jGOR~OSy~j^e(?s0%?~Jvz zS6|K4u&-QTRP5?{Y2Evq)A*DGN)kAZ->mw&h0|K6;>?QQh0887Ys z|B}CZ{Qq0w>314a-@bMzwkoVGzsP*P>d^56zhmB47TjF7nf+&|yWHWT*#9AXYhKQ^ zpHq@r;3=#*efH|l#tJWuY!Yjy-7kF1d0n}}Al&wQ-jqe>gASn^iy4rt&%G*U0CSzVDiq@UBBW!|=r)223j&);#)c0S*`iO+%^vZo#AIbQKrYvtZ4!Lh^y2wVCT#O2|9$(1FHAxqh4VebiWkppPUoFZp4062W;*wS zZ#yd2e2;XJ`|@sYR&8tf+q0HU)q)(da`(@_JjxI*x%JqleZ_yetRSa(LB*JR{);4DKmavE~mN-$Pb9eER1ydQH=>6a6tQ~%6K6BmGbx(TQb{FRQ z$87syto>R=;AUy#mw@@jE9`C+v#nKmetwm%#W$AR;@D#Ax{~N;jjvG$tR^S@X|w7sZUC*fYds(FF&yL7+b(xICCch`UV&J$zT zES>3}A@1??cg>ag|DW-{0uAxjf8J~#FXYO3?x?9`z`9Mni}_ytTQg5q!#T*uI&$rs z*XDo!zJC8#&s|~K*XB~m++aPQC9$QCm}F~LowKt~ylrB2Gw+vRj`3~tk88?R_QvVy z&OO@7e`RO?EbcvzOqp8vZMOdj{&VfM!j=E?PybE7wf5l|;o`@U?+)(s_L#_TyWUmw z?(>(sXYKj0?EE&NKd-vw@7iCR$tLmrc~IWo1*YX9QO_^E>wTnGx%`W1?EH#(6Zbrc zkAIMEuk?JvlAYI;f0^oqtgCHc2`uer$jk5k)np^F_4n3O-u7W7rSf}T^XbK0++3T! zKhfX8PmG)%V)_mTKQr z{d=T2{Ll6Gc5`2wJdd?5kztfQ@hVt*T4KTT_TN4C&%aal-T(AjVn&hYr?R`B&l#^% zK5e+#tW@sbgjd_=sJ;F5wd2=c5#Kv`8EJbb>70DFV(Z&SU(VSv)vI5~&+>Wq_V(|O zD)KAef7`?oJ3;?5tNuLw*A^dr=I{Uh^7_}y+wbR`ul1I<|NA@s-{nr>a{udvK>NcprxSAEN(e&Ig9aH}uM>&{A*A2>f*$)D%4W@zl9 zXh#2aA9iPyGXzeyT)V^ndHsA3Ne79CrG^i-`#Z0?`?-k0UuLuH&O`lou6%xC{CoR{ zIpM|cc59sZy^pzb^}?guYma`qr{`aHM*P~;#!~hVr7H8AUfU=IIDR>QBXLQYUHZC~ zI=`0h>1_ADu4($A<)LtoVa4+A`I+Iu<>qU@9X`X+5r1$-=sk`1X)<3kZPtJ1V~a@C z_Um(R$T_ut+170~MTgG)n=of>(XHjTF6r`y-`e#4?>xcp9F8S>%`;ui0cG@!0#k$NmPsy^l@5IRA{T zk`cee>21$G!~fRny7C9MX&bu@%aRiAe2-;WG~4Wj%m?GMPjdMeXr9;T6@Ts9=X#RA z*=~MTnEkuiMFDGhDYrmx%mCjxB^@r^T&AW%i(l?lYb-$|mdFPW^{}k?fPw}pgSoY?^ z{C}_d!Nm(`25Elnudkab<+6=)=9bJ#-|)?qW7$RaC!6oxoXXI^ut#pea=wHo7f#Q6 zdH9xog@XOpHnCM9Pb-pZ|DNxbyFCA)`7hnt%98IBXFg|HQ6g8cJo38!uNqdilE3SW zE`@)#ekia1DlL9f-yPAZ4YLj^*k5#%Z?^x|eE;K}HCZN+W}HbA7r~9|dLu0pgWihQ-cD(A|rt7Nba=jXKGp|G}jGvpJoN7>cy!8-M1S`w?vV8kI z`VN? zy_4&_+HBXAS-wuztoi5s`-&=Zpd6L+%z z%X<3qSys5=%U>lON#PGU&#LY!UN!Ic_c^AF4L-5j-;VTb z>#n|8T^w7@`>8bV%Rl?Ct8UF%D8G~4CSoPC!usVC7uTN8j&D-?9W0)D{%Y0#>NUIT z&b^-TW&QWm{O?ousP(Z;NuBv^ZrJn_%`@gKZuaK<_O|xpF1FLj>}xLTrbSFx7kce- z_Vc+$jRz3Hrba`)y=`^yO@zE3)4 z|MO&g{l}g8FCQFYMhK2>F{`nPtSa#~95+a1>Y zTPHKu#h$h>$W!0FfA+!DB9WTDmHp}+mXZ%#F5b8Jcz5}MvVWzn2~3%r>Xic?3M%)f zb`-r;GU<0)eLk*zzH+G_m+5KgPp@u#*(P%3!Kv5x;`wXD{db%`JXzoV{`8dElW)T< zV?1|+O-&M?dvC9+)xC7N>=)&qW8Gz{mdlpCyIX2^teEwwyXV>X;{~7YR=v-j&VOj@ zA_Fu6-mEW+!p+7VISU2YE zZY%p~cQTxD|0l#d9Uvkft;laPrd4nb`j5&e(tfPv(sd$ z&JV4>8~FZA;I}NlCw_gR`jxv=*k6^tzG{2%{S(vQ2i7xsUi_}1ccDQ)_?x1U{o5If z1AAg-&lBYSQzCU<+hEG$*+vVLf6vS)o;m;I-^815=e)7mJFpc)T3WkWc%JIJ+HN7|Kw9n7JW}A+}iAYulQDt^_9@$LMv+A z3e*yJ>KvT^>~4>d(fW0#pQQiJ(EGMa*xftRv{r{em=@-9m%X;!|R{yd2d(Rl_J_%T!sDDy5;#%pP z#m)t+n_q9-ZFfbMU~Gb?4B=mC7ts~*lP94?@voEt)44hx%Yjt#q_H$ zU#9+9EdTc}|D|ubwR^sV-~YSk-?QKI!=}nc%Wq$Fpv-E66sL_`o3P3Itkv5Noj<=n z^!l=Ed^;zf@tnu-`dX>g9&VOZJWZ>6>$ds-4wl{`q;@5ORj%_~EHiwcwM?AP=KlZ8+rfE6yMbN!{cY)r``1g) ze~(Rn6*{%DvGZ2$iaA?;7&n}7=aks-Qu=$~qR(t<&%gezwY#R`|My?m_j3z=|5{$i z+PYr0d0N%U*$saF8sE!)>^m-}{@_i!U7jV|4y)bOdoD>Ydi(cZih;t*g*Ee;>nsnN z`s%D^|C6#elQ*9AkK5OoZ9i}C4S9Vi>|~-CyrXDTr_3z1_)ht-b!dw2mGQv?*#Gxm`d9P& zwblLiug|Fae|$gBP4C_1-(EkN{B7gXFC0HN+bxlIvOQh6XxERtEqpqkGBTOCmdro+ z{T;LY$H>)Zws7-LQM|kCqmx79+ogPBcc0At)N!Br{!8{t@=~GMip%DGS8BcaV%66v zj6Jt9mQEF1VDZ{YvrVD@)qC}xCGT$J&do^ix~CF*#rf3r+^BdD&zmn8I&PIt@;x6N zyFE8nujPe;Y`JsLx-0Rra~9`k$d@J5CEPdKc{S1NbbeE{tjd>@Ccj>PI?h^TXunc+ z$JDcuC+c5CGtT?FcZ1hl{=KDJqPMhc+4|+Ys`ZxetZ=4?_OT}!muROPYul~jVex`0;`MjDdUlua% zKO}H%!n#$bGB;m6IQ4~G`Jed4JRd&8KWl%*_-5UsvMoZ#4hriTSQq z^f+Ssy9m?0QZ<|lcw_9D<)5we{eJJ+>-U0BZ4Y<{Pg(YyMeU7Z_$-5qH|HOIKk=>l z3&ZDY3Y%+^Rpj*zmNdmRDTeC{wk+QHCG?>1-GI`2PlIP|)7Vnt>;7ia+|+e(asMBh zTy&Z#S$n=bJm}e(|J>8AwdgFr!}hmqX3_llF`3)kzpDn?*iC=CAm+Ma`?0pl>Zcp4 zi_2;!M=!sxXRN7|aQEfJOgrmD^<7`*CO4J@+`DbTaO14e_iJZ&eCJ|#)3EvXKb7`V zv#Yk$zqfh6M`^_^#}D>D@8(;BM&I85`!~P!*v>fzczzTrIiEhC5XJvyqfGpHPxMYMH#F^H1&bnakJ52H)EG?8$|wJCnuk8RyOunA4Oy{aN*byU!*x zT$B6oTDaIZ!BTOe+t(-O&TakipzcA-^I!Gx53j5HZ<@0Bs{3(U+dZrO_T6rdT3VfI z>3GKMb#dhk2AO+V+iRG#S=d}|ez!j07MpNuG0!I6hDH|Fv|d&R8^(W`)93a56kc&$ zw(8!|a(|ulCY7Z&-~V!Vm@Lp{6HwW+?(PD|*xgfX+-xOlnLCzO=O0$?NN8Pq(YA2* ztQ}2$9}d?Z=iDxw`%W%K3j8?#mX}BTh7yV zrn+ZG9VFN9$!zMXa&vTlX*Sh(bz`>1^j~MS+lv28;1Ate_OUZ=+V2&s-Y<9CQ_=eG zy5424+COuiH$1-0ct%*`Tc(NE@|UWA#ZTN_*Qmbv-EZU1JyX>ycf7fAOE=tGouj9k z&A=jT-}93Fv+_6hX1}_<@y9lX6OkJ~`*+^o$~>`DKqir4;z5zR_|^Li->tXV{r_%y z#HIINtTLr7_O1NwDSupdzkQZl!0$=5Q^VKpk%^Y_{u21B*!IW0Qs3>`^DNc)g$z8Z zOQW)8+7!!vIRu*1GrmpxhIraXU8@jdzp_lns0*+(Q^ zzPDVa_sI0uX}%lr_c_mO?5(=?t7iW0uh0LSyRwCGlWo@WjAgZ_>OAjVZda;560CaL z>bK{r<^;*?EqZsKYd^DpIp=h^NdArw7aPQ$r&~uX*`#N=ZP^p*D|zi-_Lrj z@%Bq>@k8Fq6Rpl)81JT^{Fo;fg zTYu(N{fLQQlk(wOY2Y;3wdW+a;{;g(PyR^G~X>gm^;|9-ff`l(sSWAOLh z@_6~r_1^NznH?yrTYO-h^wv)}FVk)VlM!(I``bee2&v6;>;F{N7$WF1#Ts zHR|4PuKlt-9_)7+H=KEC^xJw*g^YXFt!}e@=b!C*H8uD55~ck+Yp<-TdEVmnR6=}$ zMOfuZ(VZ#>&bP4j>=v%Hl6cLTmo+o}siE!PSYCDM8*86MpZy(M!jd<)-8y&L^DBLv zbCy14=heGVR5{D++UN7XZ=AnueQ;g!Cxe4o3T>H(CN7$MaMtbD5?lKuMP$D`DA8}| zti1ToZl`woy6;O@=6+ctabV%smtVV@&+mvcSD50+V*hyG;~Q^ktxpRFH1$oBLEV z)p`(qI*m1cmX0^y%I}r`Uvb}Ba_GC@e6Fa#`V-gYOnMW3zwp47m(^Rfr=S1Wk;FD( zt>9Gs--jQUThXzi<{DZeu>^?f4Q;AE=?|QeWTITulp>D zraJAK|FqTH(>d<(4YPnmX{XvbYlfP}*=(lG6XVK5)It@-GwoU29)z>9U*Pr$aaI5;wvTw${oWqN^&a_#SyX?RA z{J`8rYb$Gg-_F0N_H=ozU8CtV#py?4Vmg+TFfG2Mx9q*cuC(3$x833jpXKb{(R@F& z@=V6})oDxDq}?w6@A)Snde@(c`uV1__sv)+?Dx5}_WieeAGtnHOg$UM_S`U5ZI#V- zDGl#kEyo#x=YOs9T#(-{UvuS4BcuJM_#c)0E&HQR?_MtV=bCBa-kR#3{(HrG+Ar^x zyiI(4abL7a{N)*H7B5x)wkj&6T5MNWn`iCo#^YGhwafC>=aVd7!Zxuy^Zh#cfyBWz zd;2e$&iuM&)_J2Bh1ZYWzwy-M`R7}A&E1#-jd)6J)n>)qXEpY8lk|Q%$Ct-R*AweADaVdGB@C%cr(H&T78&lV@## zRQ8^Gm){9h>wGadD=Faf%isEUoW9nD&wtkZdMy9{toWyTZ+XMo?|(w-Ki++>%X_l3 zq>3?o5!sM)A@Qto`s_U)R{d_|WW62e zsIRWef9L(KYmP4d0@exM32&#^-A|BZY~B9wo7#TuvZtB_{}1e46{T=+&uhPX)ywa5 zO?bTH!1v!CXG6YjW@MfE^}c(>x;qQqvMv0KfC_QY=61++$mQE$rJlO8NOI< zbnloPPfFFf-MYownICmlRLg2xi(81F7H4m~wEHM`!~8;)jL@SS=T3@m$~(C`>StPS zC}ZOmA7j6``4#sbm*#zavG2=i)&DC$@0}dB>uKjk<7xXUrO)#!Jo^3Z#Nv$GkG5~E zyvo{jM#cG#(S4`^R^}<-a$W8;u!wx zfp>Y>!r%UV{5IT(P{ekUy9%V8&~`PPssgC*Qfsb zQ2tNv%Tv4CQ|eAzwwIkNyvUhrefYaCY)lTv&{*Qa5)sJ z%rB?#O?juxvEu%f%~gF0?0;=))mJ3d=FFY3`*+$4_iG!sU){aoQva)6rD4~%<}|0w z+H~o8-CgytNjg6yu5P?o{E6FwDekgqli0mr`M`A+>aq*|PuZjUSR}sSuhwcU$K`(c zzeJhu&voCwljGz8-O8=|r45wd-mRNmclw5(^U>PR8=9L=x&Lq6_GfDR`afSDSG>Pk zA^QJE&x<8`fqxfu7Mtq1eA;2n_*34vHsQefR|c#(-!+~RP5&-<_H z85L`__D|{7N-9^cl2Y8jJiqpm@vUI>3m4y>Sm<$Ujof$Bj%RO=B)m8`AzSY4E;W{- z)3N)R{>q*)x=C(9bTvcT7{7FFtL5H)W~gPSyXl zxoPiL*YO)+}=tq{m$%ldGC=e$zS&E_s(=L{WZ5PbopYN zulr81^weAbUHq#&;X?B9@U7av8u#6)yngzB;;o3|U;jS8U-qN6^rig0`k4Cv|0aKp zKKH>hJ@E58$94azpDd+%kn8ak4r;oO`YE`rhp~g^T?a zc^=)|^zDgXPMJ9LI znp^e08m3(>*|#-&{U5o#t2UOsS$o(1k!atynpJOp|E*_pdd9@=Rz1(|+?vL1(kV-N zVsbUHQLOs%NqAk`;|;bKxFyu_sh3>*_NJ|zGk29 z<^zu+=cSxm_4{t!6z%2PS5()xFS+#YVd2&)zXvy;U1zk9pPH_J%dN5|Y_8g?>+6F* zczoaeeEI&mb8YKHD-P@``I06(@9j(Bvc+5l;gMHLtd@PgT+lG}K-t5ctnJ-PQXx?>6t5>{qHY z@2>6Jz0^OfC#20kr-M@eQ(VczeYtJ>z7h+D8 zT5oySBRY7;F(bcjjtpgw{@agl>VLhJxsfq*?I%6^^K<4dza9BfX?gGgll`X;ZT`P| zd)(CB&9U3lt=OK*z4m(57O9!IbS3E^PNR5@3q5pum9MQQO&%U z=TbD^pL@%AT;eP1zy4JJ`ue;4_3d9um(H*I)myu5QSR*R>kDFkhgjzQUiU96^}~(K zxnh^fSD!GG+OzQf>^hxN>GG%Fe;&$P`;*U3zvj04($gZfFaPd*cbRY2yZ-RPxJm9y zSH&=y{Fpkq=>62}D``kxb3P}TDgAEnnQy!MdA?1o zn|k}XjLziUT9)O41sM-c{Z+f=>v`%V-!p*%-}zgAM=sf0;9sL}V;?myaNgq5d0$yQ z*me}vT@)5)*m!@Z!ijBJ+pBk-+j#6sZU%ebiR@QQedhyTw(r>UHzVMh=|uNr=WT2H z9k)7v^Z9iBxLUn2+k$<9Z=bY35A93cz`Hk|W6x5*lYxuMzO=gX$B0+x%M~Ol9&h-x z^4ynP-Sf4HjL-R2{rCPn;s5^S{Cq!3ukY%*{PQmBzlT>Gx3Vl+w^Hx^->H6YUcdi+ zHL{Fxjn{caHoKcsS2o?1I>9RX-+9ZN6|eHzgPJmIk~V#45&fUNZpM0}kRYw~mG|Gr zpWhp?`EL1_&{&6i5~1JM?JM<7_1*m;^s(Ke&sFyd4!Q8H7V#_hNuIuYum2^M4Y7Lt z+5P^zH{S1AavhQWe4^AoU~{8a`@YzsE0*b3D`ajxy%Rd& zr^4U%vsXQr`F)RDdj0$y6`$+byWM|UI-b?}9oS#h^Zi$|{NGpXFMm(73;Xr;cmM0~ z`Sr_JX=uimwN%T=9=$1Bp8bB#iuu#Ff3b3Zswe*RwQ!r>-B}@J@1LxFX<2)^VZNHd z?-pa`j_Y@ye=^LnH4NhmdMd;7p)Y z>JmMB%eJEB1#C-p)dW8O(jb5PwdY3LPnUn^zp!29{yD;*^|*WX@s8&!jjN^aA1r=# zV_o)|56)b-yJ$Oe zc~F6Q+wFt0Qr*u}XPZCzRk+ZVc8ajb;0jbKUKa z-`}ZrQ@&2nseHx$OH)&O>#g@ToBzb6JPnn*IAfP;bKW;KnKjp~e>|Do(Y?g`{q5ba zUNG)oz0BPfT>oKkZ)9t4)g&s_&l-pPJlxUPJzE zg?x1=+l607PvYX{i8;tuUANzBTlLJlbi%wZ;(U+!udkGSu2{z^svh9=HFCLR#AVx8J0q{v&I!J7uWH`pK>3@} zOafOZN~zqloTHuhdoSHJBm z`7T%Hqm1LrJ?D(7ZMEFb2f0Uto!t95;%UXCx`f@IYL3)|y*;(_R?o&urCpB|B5%Fh zS~us*K}P$f;jsrwElp};OE;)+-aWAVi2Y@a_Sw4@+DUe=S-ksGvGC0h`BlcuWg-Q9 zKURy)+G|_dI`R6iXoFu5lxIwyY<+QN$Q-qDStajR{`2>oxAHl@;>JaFh5U1u&h3v3 zHRXBr)5CwKo^f4&M*pXn@{>>Jo`3!_Ztb2-wN2*oYtJtK_U!wVo54SqOi@2IKX|^- z&&Y3CURLFD^BNZK>oYr@Uc0=s=*-8SYhONoi|G0#SUTDL&cqc#pCcYTXK4F0Qok?MnWV&Yf<^HRZs)zbn57eS7+1E$@Eb70XI?)xS!Ydo5|QSL5rN z&zsgq{Pz?;GwbX6`d`z(N}T^SZQr^t^8X(0U-$i``HelB*6!y0T)tQS)a2sZ-qu_B zEG~9#U3SJH!S9;s&mEU;U)r$zf>3y1+_fiB3!i0r&94c39Bkhcbm0B2P3u2=uGldr zNxuB)ean}p7OXB^^Wx!=UF;dZpP1yHn`$@xdz^8`sgpg;3?)IeXU|o=yZ739i{8JO z`guE+rYrBd$KYm~%YE<7^*uSK-@ZAR)0`T<&j0)F|6J!kS~oHPB6jz$Vp(@0T#7s3!^Nfz9}fpyy45Novr>7*f`6j*#jdZ-;;gj+HMrQFFeKP=IMs}H=WKW9XOxZ zy6$+$>T3OTex7?PW1{b{F#EsvzB=QH#H`-sOviqGJkwwL{$8bd_So-_E!(w z<((9*mty$f@twoYdvI<%C1YvXMRnd|L^Iu(}sn6 zDi?OAb}&@?*Pi+2|5m1ETcJXHbJ-igpO@J89ZPt1_RF<5(Ump7>VA2CTlgjBlX7m? ztJmMBTJXP)35#W64Z45s!p6m~uH6pTle_)XncMj7^`{$W`TW*f*!8^h?yp7HzPnGE zy}NJIec?B!TJ^qtd|`c>&tv|i^E%O1a~uR1d2ij|JF|@c=G(4&Kj+x4_{5CvzfuTkCmM(VO$nhi3n}{nB`+yk)-P zfmvl|&o8eDx#BH5v2KcLTEBz({+avF*J`T&jl6i({-wE)%yWyU6-krgH#E0jnK*5+ z?1k5MS=(A4e_L|e-V3ypcDhf-el_99sd4=lgN zop}9td(PTd*MjTjr%wC86>$Cw*PKexuzI(%Pj*}Q*PW;>_LTa4uQ9!8*?AocgQYZA^LVz4G#8hF1}` z6aUsfI-EFXk^52EOIKcp*qwZ^|Hs|`zq_~8d&?XD-M#<+^yW{*nR5K_~o5)TNgz=ttx(X z=)r<_pJ%Q0_H&l}a5|y>yF$?+&nTORHS50Da_(7tEMa$qlI`}$-xn2RkIk$Inruw&I z-*(w23O4*ynkVsNH&fkC4%a=;ek4im_dU>`oW9N~IR5myjF{r>d*+E=xX$b)bGTM= zc5dFX$?9((zdrX_`8Qv+<>wD`wV&>;6SQZyb6x)aqpibAeamlO|KH8u^zLdfi{+Bd zCoaqCNNB|G&&&_nf5SLPbDP?gkT1$M&1JV`9L~;M?Y)%!Si}6kYIlF~@Bal_nzHYU zfBmQM(5D}#{bM}t{fm`H&G@+I_kxKFPMhwycYOV)BE_WZrYyZ_y%*FMP2R`inBQbH zPdf77?{jOuht2!?Hs*0p3GbDwnMxf@mIGuD3uSM9}{xJ zapS%4IjcADyyUrb{JAId-V&&NCdS=R3h zZC=#fS}FLg*FoTPNc0ir+DrXwr>5tn2A`^$Z|5lZ{Pmo@0mm|DpA*~HS8{P%N@b*& zW92mSXt|GN`HSbh+&07J%#4;_XNx(Hn;e-Rv*)GM%Jvi9cOMJRkztnnx%u9Om|kuj zwNJ$hC!dmEG2c++R6*{R{*3!8@7sZsKSESgtu<+se20YK{NPbzQ*rGM4wLb(H1E8Z7(b^-AUBoC?ubp6YgMS6ov6!Be7g)6DX< zX!+_FGqSQCa85kT&2z?T$y8xYW|_)+_3u{Cb9}6sajYRCZu)W4N0Hl`=j+8Uj&V@< zE`RAzp8J!BJMXGlC_LCC`@=-vq5Iy(R=FKzT$TZs8Ku5Gj*k3l$Hu6<{qx$l8n1Sj z#(ax7_YS6B$`n{FM4Sr=Rtc?fb`nUEHtk>HlA&wBY=O*P;K)guW=fm^WwL zVxIR6mv)rjY3`fy?n{WINFjgZy4Y=(Z!?)5&)PpP&{z4?gqX?Guct@-W_fMtSM+jX z@OLxK&x;zh3%>HGKb~aX%gyw1-kx)&Vk_>Kh)iqNn-=%kl)1-G=J!r($D&gY7H6Jd zSa{67vHbM+ca`U+wO_ByKN%MK#;;nsl=(sVy~JAE>%|v}tNzEuHi%qiPUR5s`89{d zgxjV1c*P`}zTbQ2Fq^DjY^%8X^@_Wk0_)Tc*j|a|TvN!{cx=JG*TJes&K(io_4Lu< z%~>KTZzJXWH``4u`&`&(^E%f?dBKq>$+tTjmGllMG8}OTyS3f+f%z+u56tyi{U=of z)*Z;b^p@3rld#tOOP_b@G+%pp_uY-C;P)5X&V{l4|8>sp+2cOf`-2eCI{Hj$y+pa!;#i_8g*8ld3l)Yv1{#Og$ zzZw2wU+4VKH?GZi+@yMSF{{I-uQlRxj_rB%GWp`KS5lkjFR=H^eNYi%s~$b2bXnij zbuWw8`%$;xflSOV5@5Hgfuvv*+cu zvvxO*>WR@`2Nxmxzhea?TqUvuRC@3?(-=hpM@t9%T; zZ;5E#^QKPTaiP{}#iuj>X5XG2BYt{l^WzS?%_Bl@nMXVw)u%|2T2K>R*wQAGKruPrMw? z@Iz2##iI-Le|;Qfa`?Xd6{(nZd-}oOCZ0d9Xa`!h3b^gwCco<9>GGFCS1w;kXnOZI zQfl(5tlZUJ`<_jBvC`i3Rw(b{y{bi*-T&0FPWmEsZp))v60iT(Fzc_rSiX8%Z05B^ zkFWgST(V|KXpZ0heLl0-z2;c7XxQdYb%^Xa|6Z5wmH2S2Tt zX7cTE^wDkGU2ncCos+WQ{i~IS^WR-DuE?vjoEz;huOO#D$MC^|gvs}tUF&Ps7%sP# zVdv>8Zfs$$%e%O5jp1I^zx7l4e{1E=*z)>&_vIfemE9|`3nZxoxn;(Wp}t?uJK*B_Qo zo7-txXY}FL!LU-pZ{t8=u)eQ2)9A-K2Xw z)tmPhn;k7Hi`erVQ z&}XZYtzRbAe|rB!+;+nCgjuD6rxkm@EZ51uo41rpSC}}xHHc7b5!M0McLJPw$)}Ub^eP!i2EA#c0zqw zG^<|Mai*(QJHF|B3T9Xu)-$VY>dy7zzy7Z}6MLL9Wy$NA*>UIgZdu2Bx_NqUxon8& z`*n9-yDqgEI3VE+w^o!md=gxEU@GS2zD~21v->*FR8S|id{ny_$d3g((ziee> zWDFIyWXXE5n?bk9QQbf2{pYCpPwzT~vfR@;RiEwtVQqQG!6On=cIfR%e!f5_Szdg6)UrhEEM`1Jr(-F7s9{w0%l z&#MYLwa->7EjS_B!MwkpLu_Ll`yaQx$6tK=yX$nqq_?86wdyUON^Tc%{qPJg|5X*x z@$}2w2esx6^ETJ|=wJVSss80A@7dq_icI6?1*&cJyL6TLai+D1!?z!InCqrI?OC%S z<>Ar0KymJ}PHMVc`GFr6FM%-WiYs`7e2&>1lGA`WMU_X6r3ja&l z|cxD?KoBO_IYr5 zL84G?_n}fIt!3)Rmmgzl6hGgtxBpS`Q;WOhB|HDJEc0NVKl!}j2lwieGdoVH7F>C4 zcUD15ok!1w{4oHU75aZal_o@ zd*{wsT)8}K>%Ns5%DEE#&%VgodJ6O>2+;SMZGRrb%>8?({MOCBw7D|b z^CZ<9oOfS(y5@8HC&gd6>Bm1tPRrkLZRPo6ze_(>HiWZms-DYvt0-+^$@g8=+;Jb3 ze)?4j%Y0ds@Y3NI)9(9A-alFW`T510>oZOlPBxp*u=4ed=Vmkexm9EHf9a~f{Acm9 znYk_~{|$@W?#QVRx7aQHTF%T8Bwh6R&%8}hOb0x>Ury+FBGUA3ZD@X5zF#}v-k{mP zOT4}pO}hL({gH!7$fB2Lleem8E@Xa~Us-PQZ(fGPiN7~~H7g#Hy&*HTrar*weC-|M`%i{^EOYg;?rJZ$s(a+w$Ha3=rT?u@_tTG&Cw8Z>ytP`(75+)9 z@U_P2)T*mF_idh>Y?%MLI(7Zd?roRde_oZi8hqeSR7I;NETBGvNUmy%xA_*5sr-|9QV3GRxR_n%!X zwKrVLPT{+f4d>A5F`5VdWjy^R*^~O`$~3L4)SJ$Kzva1I&Hle|Rl%N@>t4ft9-9`PTvq#ozWG;a_ogO+wQl{H6|a-cy#gHC3dT;y0Xf* z;&q!g*OyKGzVFuT2fX)xyFXa@`;AxK@ycIHn~SzjfAu`cC2Ct7f90w_S-qzg++Sw3 zg7M|gvij17ck7;7F`P`#oT`=)c#2ikc;3qf*ZIuB*UPK#y!Cpxul7Yx&F0uS>2qsZ z{JKvk-+z8_&Z^e?FZ0W+kCgFGnZ97!`4SYU0OUf_Vv#!rK9;Jth-)&2fzLH^<;l&QJnPKx^UZ&AM?^?%kMt5?6$%7Z=3!_ zE~$B5-NsO5?f3J0%7TX?d{4g5e#Y?koz<4r{0HJgV|V`xo9!|2{-JB-*Hu3pu&Z5q z?dH2D^UA0Es$@#vJazl$71vK&`IXH1F-^#1dyVGxDGP-;UT*T6!LgiVXLe|ff zTlMAIX-DzjN{##W)~dfMw%NpA#C|`bM0km>>;?D8=RBF=GjCpxUH5MJk9GT2sr_EI z{_>TBch<@8Pq|fO+kg9hbaCBfhuoiWFPoPX=j>NixBvg;_2rdI?_Xl~+q_Ppi>dBb zs}uV>lf;{Ilb;q^*dzGU5FL&w9buQt?%$4q7VQ`bNJKr5p_ zLQmxT&+~%r9yt7Nu3@Em;M9i08yOC|e&3;CxwqPfvHoiKXRDxMMnUt6O4*4o=I!~F zxBncc$X?5>&Yu=94lZRmZDq7^Qn_uzlGk5ORDH@$AVEs!rImt6sm(}k* zosm2@`CDM@J?jX2@35f9o7n&CNSfU!cGXAw{Nh!+mYVG^R`Q>FqU>Vu(mI>UH=EbR zF5oje_pRr7(4zOU$vH3INH6L8Xdcu5<@KePCytji-eG>fz(so5@k1TTHgmn-ew(i;{W{Dly&MBr}nVClQ{D5{eqqAT-ic7mv}zYKX4`A z=DKZjBO8n4htE34jcT}LvfglAc$CM>c4sfwy=}V3XCDiH_36vI-$^Yzd&+;U=6N+S zua{p>YoX24AKxAcpIkLbT;K=q-deLmMsw3PC%!R1f1^T=U7Yvnp%vNTYR%POEU)Yq z7nrcyYmK4FyyBa2&u5?7_2YZQ*A%-bi7dbGyZcP8|7Fk6xf1-KwbE;T?t}B!YgsZs zz0|M!{QIkJZE9x7-#3@@4;{NZeYMx8srwlJ-d+{6 zSh{5IX^z(+@@K;4XI%MgdF@kh={)f`)%P5$K6ezHuKKikdwA*3oih2qp3Hc1V}h;i zORZbEwu>v-e#hF}dam)N`$_-t!yPuUdF<=v{WxhianG|y+}jh}D%E|z6@rd1SXC4i zvvv2iKku$6%Es3p+nOG`oAv6`{zukF{)qfPpUHmrSk}+-UB5~c4jzx2C7Zof| z=Y<9SR-bM!{`<}9ak%5}iy0GV)xO>GLvnlame;oN>${hJzqa5nV^fSmJnxFFzwMT< zTKvlD)#j}Wn3aER**$4p*rnn}2Rr8%@4kMh=k=|1X}fpY-cPP9e!Oty^UaeEN>=h@ z%{?9Nxm+{){pPwYx$9&%|M^z%XR2K4&$^sa&Hb+{&h8Hvs$R4=Z|{SwGI+xb{2qx?|ka^CBYySN$$_&AI(Gw7jYMn&JB63G&O0e|hS@%$B)%%l7G^9=%G< z@aL_}dB^?b?(bdmJo?v+%yWVDKmVThKDZ>ZEN`_IQ{COJmr`%j_=CdVPJ6O*-WRXh z*zyDCfBrU9xfC*Q&PDB;cRinfZ}IY+{QBQKC)<;P7n!-ZJXda$Jpadx(cb>|Pk|4s zgAA@s`@iLo|F2(r<+Kf)`pW0K_zR!$Sv_gD(XU9p#YOGU*G%Eee);?RmTRvn|N2C| zIY0SwXINY||K&;1Z(m*9{cG8G|DyE%esP`s_t!sT;<Q4(^?#`3Lg>h$Wk?Q6{Tz35-y^+Zziz2~gZ!jz2AtJTSDy&G_)w z{rB6NUu!p7UEBTjiqPKIpZ>D#=l*`Z`pc@fx1`y=Z{0jCIpU6(!HRnitL?7pu~}Da zSypi(oX%bHT@!}0tcKbXt^fBQY3ZO1>|+CL^)*ZSWp+uqkMXN)iVcWv#D zd(5v--G44q`lI&dmD-smr7P|`hpyhIS9+(?8RgDS}-|H{w&sfdN zdFJf{!P|b-{&t0eiO)Raq<0ucoGARwu=EM%+tBZ_Ft5Lt~0U}Gqt-j@AKxD`^)YXPn%lu&S;B!f_254kM6gOKY7~zh}(UqW(jDM z@%q>6ZZT@t%Acs#OVtlnjZ2t*D3WJ#wTBwFsf+2Aq6PbJ&E0nSp|=TE-|Joz{!UmhKU%k62Z{5t|@)ErlZVPW; zUYM#sLBUfMOPbPjPC5oI^R_B>zss@jnaPJU`@{8)%+o(^T{&UXg@c=d zd8g?<_jZ5iZT0%--oxkYWbbE2x%Kq>-4(9&YnYvDTrz=M&F0qgUDr%Qr``Rz<$K__ zbfz6zFZt{LoSwe-hi>f|lk6+{`~Kg&7!>E8c6O^)Sm&(LHG4E$D`n;~KjcaYX7+aa zE?Reed&`Tme5Vp4o$U9H3NxKcccjv40tS5YGvcfCX)2B>S?qdwSrm?R> z-OA5btY&*hwZMamuYQF1zd3edm(|%zO)N1-Ze|B1y>{I2^ogR%i5I(nzw6!IFIwXM zF7BOlM)hIA>NA%aTjWkGRSm6Lm;B@1U4Nz@ry5!qSp9dY^-0#~E%0*}U02S`q>wP{ z>4JR?y~`O+1g_58SN}%lPFVcX<>@<*b3OYRQL}8%{4j}f?c;Z&YO~%Zum3WA!Ne!7 z=l8whKN-d@#QE!XbKnF;X1+Od`o4YddA>SG=or^C%ZQ1M*6U`3{+3@oWp&6q8=qg? zU!vBBJoGquR6BEfWd30p`_-JPh(SLVHc{B)y3*5{YJ=dIVDzWCig zdD}zNvAy%;f3={9p8Uo?$zJ~d=?&jMalXzrcPN`7dAY-U;F>E^Mo(azh1noigh`7Y?(~y{*0UaC!D@V zN4BZvnN+UZ9e4WCp4{C{FBe05}Tj!-lviy6Yys_r?$~V)e{QUbfkNN2KbM>d{ zU&;R3xbI$S!4u#qz+1OBtgqd*4p}xB1qYfZ6r^$!G7b zS^mho*m0Lu(TiQz|2(<7Ce!@zuXPOn>XsL z!M(CRuNmh3Ot(yoU)D1B$=mj`iq~fseZP`DVf}Rfo3nQ4?K)p_=7nKl@}j+>C2tzK zz5g4{<=Jjnn6A6DM*eL24!_d(y94j8|D71=c|8Ae`ewg;)=O7Dowhl#+ET3iW_f=} z`G!@;7BgLmJN+#9nd|Msjm)2R{pW2g*?GHsX<4nQ`2VB*li$^D{gCv$uX5&>ug}-l z{Qq&hzFg-!=-k*^yI1e`{m=B6AzSKiW;yMdqZdbqXLaSGRhw)(pI&0}yTp@J@Tjcz z`jhDQ-@K$Px-L(hqod`qO!I8^t{`oT7vC0F=`Fv0+T@9(#e%fjqYn-xKmEAM{n_eo zwx^RD3a`ZMZWdW`rEtmlPbptzZ$(u8=GwpPW7un1n`>9?etO^gy7=p^eP5rve)jp+ z+ezmw7ECy||DO1_Wpiz^ug`1xc>TM-#jN0;JQ@-%0uG-m?Y4a{-Fvs;-l9wgKDUQ6 z&If+4XS=rS^D3Ff>W$1%EuM^5S<1uXCR6ve|aj)XvZ0j@JFp-IsqG{l2)H z|Agu9N0Dq7P1dnATo+lvJG-#HvWHtDsP5gb%kQ(J7EbFeJ%69Q@912{yrSvz%HE!> z_E|2nt{YsQvpyY`-9 z<=)Nr$avA?y*wY{6QZ8qKXPsfOZr|3P4W9*B=;ZNC8o6Ee95nd-+^`$zAk#R)ZyTE z4c9o4uNrR;>^q>MX#SJs%h`1s7BSaVu4DLl+~2Ef$&)S}Pn*4kF-M&|LnJzXV<*V~VWiX+S~ z%MA{!|Mg;daf*rqi~ZK8fsrga*1k(-mY$wga4zWRw%u}i42I{6FLvAtyn6rdyI(tQ zxNf=mc(d5c+&6#T+3CNwzp1h8-QrzGE^CVvU36LA^?A=ekJp^c8B3_Z=VE9kW@!)xZ9eCx^tu^(?ZLy$u2fm%cfgbGajZ_nm@&R_3!T zw_RmBRr&40^x)~9eKYx%P2B#+*Y3NaXMNN8U3(*U{YrlS{d!eb^6${@-xbT`75~{r zYp>b=Y0swBbe1oJ>*u<#Emn2geIsbe z%spmmuHRIGVwZM*<1>A-;X%M1-xV*!H6ECHSU%bOOs40h)a2`%C*9|2U&3{DGxMGr z(>1}Naq_vhO7<_$ziK(Fqd&MlYg5XHZOxOWHK&)FW?pa8y>7ZX@RIGUHJilGF5XxD zrCsEY=dp-oUXrU#F6S|yy0b_(I{U%%tX;lo zPg@3gJN`1P8Wx?S*VgLCRQ}gscoryG^zttgEF7|fW)>m<_EShi6eWuU2 zv-VBpapUMRx!cu|Pn>cqD??VzU%aL4M)?){Ul;G^gVv*2|6N}HV{z5|evUQ5XFfk! zoz$sd52qlSj^(~RK;H`=u66k`;MQN7%%S(<&5KOfOz+3STf z-*5kauv{kcu-$%v57lnb>&(7?esfjH`scIzD|nc~WDFO5TE)d^AANHb*Xu>Mstl%1 zTWkIBpKVy(*W16}gk8zC{8K+>%4W5Pn9{^Z60nc`w+NTxZ%phxs#OH4Gk;zp02slQ_h)Yu$o<2 z=kgb^QuFX5*1eCiBIJ~EZ-&%=|MysE@f^-G|J(PLXHH5rzjQ=q;?e4#FP<%KHp z=JWsm^Ni(lkC~WFN}F{pWpd7^Pho6Z9BO{ZIXtmkEBZR(VZ_`sJqHdm{@{LBkT5fP zDR-~TRhL=H@+&WSs9uV_^e*dz^!^C3s>n|}10O3IB~@TAfF4#kZ~tJ^Q%Wa9!D#u+Q%|Hzicv>eOzf}G}}U$@p5Et-(IVilk6q-^gh0}`c=mAgW*RX zTL-c)<$s^zTqpC?(oWwh@AbK_nJ$y`5ArqOV{C9ePEqTJp|0kM1#>)Pfd1CRk6G~6ZOSS~c zt@!uAt$r(ms(sXZ=XlG8QyJS{78Ne7pDO5aPIt@vDV~=7D-Sn?Z~0WG)c-Bq{M-t@ z6}78YUHbXp*O|4;JKe3~qQt)5b&Y(Qws&r}wygO}3Gd47-naNZgq&Wsd8$#%<29+F zY)g6A&T#GD=NuGsaa&~H`SP!7w$*!Ut<9=qvyZOVI==DBUXgusr!CmhTNQf$-pTCk zGneRmoAP5-w!@{XtCXM2xIAx@75m4ShhZ@vO}TG}vd`ZaZey9lQgf!P_}9ft>}5YR zt1mCTFWbz>9O}q;aRS>Dz4wt-K@lu3@@gJMVf?UARP5;gnjlnbC&3Qr!A3 zDH}&}Kl_w-{;+n{m5mwT+<)Cd3E9X-<@{(`$YCNn<_HaEbk4mT5%%$ z+O1f}yE~YquT1w@`|Qubi_0&rnf=&C_RBsS_uI$!^rkNfmZ|Er?6JA}kxgu6M$YYR z9QU>A-pRJyedVk3Z~1#W*}D5tzwZD4uwS>^u=GNx<*_xz^xAvxC%8PmSo380&G{FPMc(+hsynFsXP}y5*14Y=mY1(f{ZV*nsCMf)SHuMS zxlC(+*_`9~8Zvdub51@d3(Ez86}R6V33YxP+p}Zt9Nv1^T7XlpY^pq!_pdm(#_wpN zPTJqS>vl&TIZzi7d;P}Q71om9pK-I>8g1~DoFdOwcl~#jsocrTf)_d>%57WrCbcLo znmq6Cj=sM#5gyAA3GkK(ec>$L|LP>mgCC&HwzQwIx=<##nCoQSFTl&l@TP}yqFSU68 zA>%~Y;fNm-{w*WFGeQ~8GPcDCDk!{-% z{rP6UXL=Qj{;gYIJ(NX5o3G71#kKiy_9>n-o262B>|A{6qr>q}d(56_)Ls7Rbo}GI z_}vHndwXAWZ|g5AXS26>K4sbE0=GA@Uzw(wa^+99pMKb9mVDptxeK}e%KZIowk2=s zO0INmx7VS8+g|^9wIg&7bIrNM{XvU2p5H0=`K8g@8Tm4D^7;F#U*&F`Um@ad_4JtF ztmAKXKYv>DEh%MjKF2}Bt?#}C%dM!bjhKJn`Hn@+J;Clh>;C-fum7w6b>_acUsk{W z7ZbYcV)l|L*R`fMwx7=mezz~w{O)goH^p25dmTS($MVQI&MMuvZZ^}Dc#Zo$>I>Dj zZdsteK(^H2i5h>aeCk#nnSKp#se7(B?^wG|5dT^Fr!*&Y+KO*`9{+vu_MGQZzgaEu z!n*c)kN2Ft+UO~>XtK!Hik6@?#!t4Nnjmv}*4v8xrT-?By-le+!1Z&Lk^A*2n$=ed zS6Ln7TX#6D&FAEC(?BhOTh@1%&osFx_e(1!_weVmy;iecZip}LS)yH~a_0V>fK3Oz zdmgUKJF0u?knFj%`7&*9a;+Y2neyswR9vCqSK+AO*z`sj|6hSJ*R3|?T$@?a;x99C z&g=ZQ)7Ra#EBbYS&tCO-$n&Xx)9Xano8IiT`gdi{0u`ecmEJq%uTNjv+s>za#aY~6 z<#^iG3~4VpcZKwCM!bK$HodZ8x;6ce)Jr~HxA_;Ut$ttoctuQBtle>bCV$ON{l4a& z8?$-ipMKfIcjf-?KfyDu$X?9Wk@S=NC~|kNNPLaYzBx5AvmUU0UuSgxmB?9*-D`@M zcQt)1J{Gmp=+VyDBZ>3Gj!$&>_v$Z~_^*c(>v~=&^=gzZm}dQ4>G_0ZmGbt-b>;r< zl_1lwDoEmf?f>`bcG2hm9;+TabMh~*TKf37 z>M1{=>pA)1_8X>LvMulG4YHW^Ca023&Z@>g@bJPb>)7n4SuSFW&1q_W zeaPGW`_zN{e5amNz1~=RXVu5Byn@4XQsYCd1KB59a&~=QEEs3 zMQzQ6dNlI|Z7*j_ytr#2bgbQX%RH+GS3czN>D-yS_0H<@r(H!mHlIEn`}xwHkB$Ex zM+EFyFU7}Z!NR!Jdd7Ogn-;&^N)+BlXcv}onb;_WsFr`v2>5b!@!DTC?;bDoTUx>; zbiRSz_|WDR3su>e^QV0KBg0l7Hp%~IyVZ+TcNln>1$*jx4#fUsn*TMjf7|r#ukAgS zTUGQngy(i`VXPE_j!t1if&O$?ICdTP?_vGaM! zq@RDjGWBk^N_`M@wdBjemF49DOp~@*&z+fTaq;pA&-A$YsV5H}v$nXdzOVccchpR_ z{iheMH<`M_`1ZbgFaFlOIPlUTIH<`ceChBL`>W!XmdCeb zyzpH7Ht_Y|JuB>=#)d{#E)O(!(YpI=m9P1~H@8BoLhdSFTzd5TzLSr$8G2`_u32?_ z!`aZ~1^br0?r!AumrRzrcOre~>v_c;pWLs69ew<-EMkRBTq(a5|5d{Uo34brby%%k z^l&?SONC-+K1u(2qTNUtWA-$(6hOz`b&@t^Cga@Av;(25y6Voow$P zW5?_L`q6YBP4z};DNW)=f zJh%1~V`J2Bp18-eMc8sWDz5zQ*u7- z!mVpIPpt{B{N?T^f8*iu6&GK<=GgnJy7bG_&vTO%BmK86da>}ubIVRM?Za6gv&~Hv zgj@s4y+T)J^@v4ZS#&z-?&iAXQg0+*zpkCEbN*vS>6LR!E~TEis697c@?+iR@4LE% zH_s3C75P*aQ~vFvoSTurw^W11eZ0v2aAH+N0fmV32h^S;t|*H{(y zt=H9>^IFJnerCz^ZvH*tJ8nO#mD_hUyR;|x?+fGp%Mn3q53_&Pol{_U`}dbucfG_9 zu=noC5iVCqySV$Yl;Ny5QCCji_dCADZf)|)bMIS^J-s_!=0m(!mXT7s%`^3^ptwJ) z;!5AF&3$uv)#h3I*?H`1|7@-M_v2yr-yc5m>U+Pt|GjSiU*A-0`n*dLoi2V(dp@y> z&!4+h%idtc!$ZHXXx+JZV@*tVy2k^TpXavko=~;m%I<^x+~HRibE}qa+NdkFHseFH z;TiG0WNL8Sl4t^`5ta`TS{%^2@HlPjX5nVW^SG( z%lqTV$62@7cOLeCePnO*o9x+qhvz2q7(85ObN2H3vVs=1ITZ#k9{26F24{bG-n6;ImzM?35e9pCxx*@nq>k@459r!{yVFWKVYSG4EK2gZ-z zI4aogv|nBQzTBpI((XS@HYQD~ za+exk?3$_mfjRbu)1*z)<~W~Y^wm!eSzx)aC(HN2;ma@XhwfM0KS!eE?)BwthpyF} z+c2Tt#PCPywykeJFPWV!V|^>xUOndRs@2E;bOryHE&W>R%6aRW#@;y7m(v0}OO7>$ z{dRS}JX62?*VlV**6CmPf5iRHbxnzdeRW$-zF*Q=8J@oQvS@DNzVqDMWMXC9dpnAK zcisM@+sEx|^I4W-P5TPCf3#F-r!mc3tI^)t&n#T)Zhzb`3SSLOPt^J}f74wwDM zXMYzhzEe@6zCJ|!>PIXW^kCkc$rsrSGWIXP~|C)gu7+kC+zP_1elsB zFa76O>8JH1W|fTp+mzhhT?O;5uCwm*ejsnjx3aw|VDmQv|GY)trgmML*(Z36aehg| zw?|z|qG$hqd;b5%d%NdP`!v(8?AOc3`CtD&&VSUA*z{&~QRV&B&uXu|y5T%?;{49p z45#m9w($R~(X}bPTXUkc@6_)}zlv)Ye)v)TsrYH}gWb!{$EMD^+VbyK$t%sAA1?cE zw1<9Q!hHDQ1+x+x1?vydrAAMdZ=C;l;p0V~snR=U^i}rBM)@q~ONj?bpjbAEB@a3`ujWC zNkJ}$qCeJtev* zHC7%^%4(TmJ@A&52ujJER%fAMFe3k3}fB7qKR%w6P-LL+~ z$LEh^f;f-f&${4Pq--qeR{Gn#dcWQ4pzxy5Sb?(UUdxR)Y?s+xR6n{vrT3@Ft^Q3W zc|Rw{?>n3yaJTYcaok0L+Gn<|Pwm&;m$1+KEwR6xZU5qmE3MvN>h3B(>e|t_-%BNa zU1^|2X3aU}KUIbA80M>)ZZLSS@qJ6pk^Z}uY!gfj&c9W$68|;lxTdOpI-^q0mVevU z_QnK=YlikD6fKu~9@2mPjp>}kCyT;o7y4+Ndbr(6FKx>O7F(W3-&FmNUb2T(7hjxy zkZz=EkRcS7%Qb#Y$f3x^%ZEaeK&p!5h#lQPMvzTVgUwX?bQEAF1l!lA?v@ zi@v|A+{&14{r<@A2XA-BKHg`+%DdR6VCI&Jue-1I2puv0!Wy_vV*29P65Zp;+suC5 zTOR!J66@@K?*2`(p0ZzF@jNNq|L(?RYwkcdbA~Tj*CoE4WH*^q@ocT#PwOAdudHts zoHKcA{A}0P$}cK1O)r1UsMU`D`=#R8)mulSd;G#qg*JO@yX}2-OtLhL@%W_%mN@=@ zyf=IP>`Od)I{k~io&2T#_9?-;&P|>AiT@1eoX4x$_gu~VI`zu()dD^FR?n_D`ky-f zIeA<7(=Su*XzlzFSUYi}=H-j#`wq{jcq8;<>$(?}ZVX>KgMUrmbNs7fxlYit{%_yi z&TgvGPFT6pTyXZ*^|Sg*E>C;EX5rLxv8(O>{@BdA==_(Bm+ODL>py0{TA}~el>FCf zofAX8ZI5~>U$M;X)!cg#Po<^2ZiW6^$7i+fOu3ZEb%j?d!7=4_KEM1WC)C!TDZlq^ zuk)$Jy|a2-?;oD}NBrl(+hr58UfL{qeD1m0WH-50`<7U({Cp~{(&Xolyf3j2J*>i_ z)GHRRa|~VgR*CB?o9nitW__#0{57WrtP1^f=4<)3O{<+(E_(EL-P^7|mf3IB)?W*q zSROwA+RCTVPj;W4|5CKE7hTs>BMG#>*cNY zN~iZRY3Fy_cuP^$&^fJf0b0YtJu6yr4wR1 z=FSgSpZl$#RN<~=-;R<5k*m90K40_hdn~XnmZ@jMx9&fRdzPhnYop1jB zr0UhLo~>=(dGV)tU2=>`)|w~3{W`8b`)(z#sTXJY?#u7GdHdAva;}~9ZzZ$m>7|de zWV5ZjG^MuW^}C(s@XawB%+kzvR9+X3HGCrv62XR?4s+ zkF-1Mvf>=8*5Vh-wKn7_J5fFB#N~(H z&0?D~c~`^vN+-$p`}HqNbUuCWJuh?b55C2BN{%{wnvx-99FO|6)ke^q>A!+c3y3+2VPEM;^q*_HiJTC^@SJtSbc=Q4LW z2kY;1IrNq|dp%6vXE*m$*J|Ha>sL7Ts_xS8mRS|099$E=XPwNinzko`?Oo1CWIrqj z{Py+XGp_k=mo9ExTjRs8?*5Ze_ualD|J@5~s^D}>P+;wBg zE$74M@4CEdU$FZB$5K2t_Dd#b_#c-(w|nu|s_eaTYu5>%4|blvs?YVy%_4>`HL|By z3YLeO_Fq0yuA6Ui`NfpeW)9`~;&(G&RjkiFJ>ybl*S_DeHB~O^@Azu26<*Yu+w>&X zB=4EpRIP`ly?frte&?Ka|0#Rd)e}9Opa()Y^5hGuG((;x10IQ7B$;%Ax~Yk_XnSs{l8{mwB(LEJ8oU95&e1Y(+h{G z*^7PTn*DyRDQz@5ZjtQ!`1t-Hx8T#)m6L+oGmXq*vz7*5?ES;Fb(cccG>5fk?|s$Pma~XDjyS#DPYnH32rgtq}7*>Bj`}KNPy2SCR{{zD>Z=Lr!$9Csi zzbvg1u8(uoW((A5W}d$`Gd4W&);~V&s<(;1rFO(WJzKczvdX8OhxWXV|5j_B_V(G% zYg=cp-d%XMN_cl!>AimKl;?8C-A=}R@>SdDU$A7&x!H^Rva61}R4=)xAV2?uUcQ@^8rOOs zUFGQ>dXdjx9eF+bTA^X`6PMkc^wcjSNS3YiqRte-Ic;i^7VgaYG#G5TeIVdjJLE* ztY_Zg_gO10pKzSc^lHcq_FmOOM~IHl6(Il~T2^U&HR-8;T`NR|xs~ zy-NSQ{xp-`hrsnxe{MM6WxUaAogMq+cwNr%zThmCsq*bRwcg9^e8A>&VB+cJt6H6} z`ANTUZFh~mUpW2Fo7FB484ejoWuM);d%g*s8Ci{%z2ioOr6cAUHGN6yj5 zOH9hAKJZ=XJjdcyAY01?-nv`t`HqXlr^adAEx)z9&vCoaD#jP@jpTDJ_N&n-kJ8i9do4XIk z_q_`_yh=(bH2OX3@%i^fZ*(7j`pE9=WUefOL0OA|}x2gO;QPiLB^#lOJ0>*DUbDe1jE z6W0H{efzQ~|M4?hGY&nIVXA4e*)RV5K%b8SsWYEb{1Aiv)(wS_iUORq>4gj$+wo}BFY zyJ5_sf`m*4$q{BV>9if34c)X>#vlv!4||ZPe@(3SRZC^v>UVQ?FYE3E%yy z{#jLr^ZKg0Rrh3N_GU?5U*rGznp%9_`LdANC%#9$&+{v*EPwmXq_^c~_OY7&*2wv? z_Vs}oR+kq3*X)1s)WkWqVavMv!djm?H~lG}B=u*nSe^m@ko1|nXhbKo&J3s%@&COP)6Yg2As}DVV(p~lPT&vw3 zheg-rxE?p^|9s_!%%xj~hK5Jox;Fj2ZFl@jc0|mf)vNYgTT?yp>jcOBlBWy376$#> zX!U^OT&uLy*69~(t}nmX^C$1BTJ4@k&E+rWEq^1saNU8Cp_WUX%(Z+vy^g5B#dUIpV!pd6MwXgZ#UvtS)g}yJ0(P z+SHI;8R3taM5+pW^_E|$@ldsY9o)J45vF6FXo7!{s4l(3FrUMFdzC`)jxdi}%dheGJ)9yZTJM@EGF?Gjq(9Rq zJ$~8dt#k4w{FlrXoHcc|Oput#BI$06V^;*X*e1D2LUTZtEwddu#nFrvBF{I&?~t|I@@<(=Y1I zU-#EhywEN>jQdrRNa*avk1RWXUr~4Ow6BwU`Sa}3`ikG)4~nL)o3#5v^Q*1zE(Fbr zKhNL1=KP7vQ`_b)x6%F*zVf>A=UU#!Mh(BVtq;_wo-$qg{X0hUuSyfU-J-87+%$iM zy0WzBvmE!|y-TVlA6oOaQvUnngv?XCB@#_UVK3(x*M z`LVU+x=s0p@F$n|-8;Mgkw@LTPj{cboSh!eemSeQu-4<{?xV(cH-x#)n@}@B*Fyhd z;Qi0mmkPf5onA3#e{^}>k}td#e@s-3-Ux;&hl&_p+r7_(zwWEXYAt!rxxZ`6Tl)P| z|J`~e_sCkDG5ccGEQd*2HV?~=v+!RjnE2?>xra|8jPi{*(=%-UJ-m7EMg8#{mRT`Z zZ(G{E?fS6$-z!kFy%JmYn-ET~_B;&XTP5&3(x7X)8Uy#G!Tb2L4IB!l> z=KCt)e0+7<`MK49rqBO-Ui?GNvi=$WezwO?3zAmp(wk8-yJ6S2nb(&J7jST=^foyL zZIwBe9h&%2X8*ZMFXT%9Z^(@eS+zvcYt8oXPqXJd(^x9AWulknFJ?~n=bh8S+ogJ! zzrVW9!+Fcgw_k7aZDo8SDcB<8s@FDmw#}PLt-p5M1x8xi1ADtSy!^D<|M}^<%*$sA z>W_<-e}BHVlyl4Hxb@j`M;5X#wx4vjx7?C>S@EJa=JmH$FdzT6HRxO2!vy!TxwX#b^4%9Vw2q$T+$nmBH=Y0G(Q}T?6R%oZ zn6m#`w?EM)Cv3S@?&*1}zG+8o`C4qdYx3WV*S`Mts}5y9yZB@5YRBk~W2bk{_!^^s zY~#GMbMiw=nAGO=ZMtr_?BNk+y_bSJ|E}^@<_d0p>AKHg?zg)y8ExET-|RYd;eA#@ z&6dKB&quo5tm>v-S+L^VY_a{ObA_{ySMR;fH#=5j{*}NLeA!cPdrWb-CHGl!FGaogmY2R-_k>_#@RJ8ssy z%u98$%X_9Mf5qmB@~Z{Gc?Z6)%1oGYq2DB=xAz0AwEzF6eDd`N zH|nqUHC)d67`$B6Z0#IjfA2-pJeyCc$JSlSYCZAL`P9pJt8G)zaz@?p^ z9wop07?l+}_s+?0Q*3_eysi&*-?s8=VA0CH4SfmIj&Gj3ZEjS;t93WoYnNTx`RFF! zG?`?Zy_2tnX4kgt%uU>*J-K-C`ErRhxo=sN>kT@vxCi`Q79KjSpLsFK>IDp8L@M}1>9Dl`!gf`^9`Nm#{q(GS zReKHh@`hPL-%EGBI`Qe=JK4uOm6Z-X&Dr6usk3dfU&o|uYTKJ9h!QjP=!~^93o(zs1ho@bb#%eHLu{`<4|yWcn62wM#lX^!Vau zK^s>aSl-#a^uu)yfBDm;e#dtIJ?OAIN~qg1Eu*n@-8Q3D`m*(#Z?3-ocg;~r4TInF zuFpB&VttoSH7VeE^j)UvR;@zw+okQhKBw+?4tRNF>Vo(E@~?L*zvuqrBX9fnbpQW= zT`v};EZt)LRG2d;T_bn(!Sz=SeuN4(2eNgx*#uZEtca;M`LXk}7O&qfhZC*pXCf=k z{jRP_oXh#u_Ei5_kCO|;OE3 z_g23sl>Ad9dC0Pymu>#Cxr)1%t-5CxXzlSnwpvH%wb2)Qsrw2>>;^lTd(Sm3p8NGp zyXy}FMX47v7PtTYw2G~|eY4}kh{gX~+!WlNo%q(_w(Ho&pFMt$k3605!eUXux8kSY zP5vxicRGNX{iNHo6_SzJEax7?oxGBj^^9@vo9zph6sD*D`Tplm$RGEnjlJD|R&N-~ z-PFHo?G&FPa=nYKGK1-zPUB&ht&grgXzN&ccwccL&xyne?`C;-E#A5-s|2P8Kb2bf z{q9+X4zAQGsb@chn!bN`J99_q^i#?O23-6*>ZgV;k7l=9%(pzT^q!(s!G+BI1-n-j z*et*B{Nj>x+3&6>M!cOR-nl1RSnJ9~^);uY)9R<1v(5dQC8m3im2ZmU-Yk}Db@Rhz zMN>^)8lTuIW@C|>>!y=2d$avjrhLQgtCF*%ZLIu%uesRxgV(0r#x3^uRQ^Qg-wmuK zUT?3--irOVVCSoihi~cUiYAxTvy_};uAG*=dzaJY`^vmGUwrcVeX_3q-phzAm2(d) z3od;Y-|e~0S90GKaQ_ncF?apxE&5OTj;Ln+&3(Ani#O{*c~ySv*+GHO; zE5CN$&xz&f)o-_ci=40eZp+!y+TuVB32OcW51ym|oKyx6E0a_s{Nhfz!S- zv+w0zTeof9dAs>n_iSGu%G>UtDJ}c+WkAvPeBp@LHTOC1-nCi#exY2@(}H6==Gpz} z%6xZY%K0NvUCD2@nw;GIPkG%p-?z8!%kBwzZuC8s_>}jf@R!wD}*<=OXr%Wmz$KjU%V+kOEb*a|C{Ypwk>aS z@7C6vroU>q66pN%ec$sUmb>Y{e!ToHz1UNZ^Z4C}l6RrJK9x(Stz7JQ+P2HaV}AKT z+g_W1c991T_u{e)Y}9-Xderdrw(%9#`&v_vjKc*A>gg^Xc}_3}-cz-&4F6q5tlw z^S*TZXBQV06jV6f?_jpt_x90xGd?GFJ2M^c=GE?ResoNZo5-*GTeiGDU+iufb!#XZcZ&TXkEF-=EGY zx$-c=-(u^-Jz>7we8rb{sT}f`eRY{r$U>8@chRKY+-M?-v zG0xuYx3IeIP~}R$eQ|5=wO;QzE7T(Tl>g`2^XYe+?B!}7?Qp;8cGLOzr(M~z1Q+I5 z%f7y)7tTGa-KeqhVtik%=*!0X35H9;&o0j`m@~sDD)975J*V)Qmm4oJ9XqZpRqMK- z0iNvuD3zVBrCuh8lDbYHgpf1~|H;=a+3 z9R<5t(q37X*u08ZVQg$3{g(IRtUrARkISr$*>5rT;oMho2ckc1ocKQ8UbgOjOx2dn za>sxF;k7z@S=S^pMZ)~1!0fA)t^O~bL|waEW;%ai?$y~IpO4&fuROBq6_ak(y<8KY z)%{T`uW&B=+;KD~IW_SDqYtg`Ih z>{zSkD{WtHj*XqdR4wr_X6x0K;{9$np5H$h{!!=mqe`L26T-vqW#3Bl@wzaF-Q(Ys zfL}9f_hf(0zV+$fnwNa)MS5XpRp!2ay(e|%8u!od{gluA+GirRyR7`DFZcSr$2MO+ z5_WUnZ{NAzUyY`P{yUyt7qVfUrR=S6lmFl6+wC~4-#IlY!)C9u4Tq*_bck$_-_=+9 z{_MA}yO?<4{V9pCqmy2(pSC10H`g)IF}HF;X!Iv%5$ngRi;}MYdAxg5{3=nqZ_hW$ zd~Pwk`thD+W|({93Z}d6&h8slUF~Vv6?QlF-TP$EZ)&o60nrPJ);7I3eahw0A}d!D zrLJ?+>-jm=iruUAO0MX%tN+@$O8gvCaa|eTr|KJ@B;DeCV{806UPP%(Eo|R^sP+A; zBTkE~UqqaG)B4qJ=jQGy@2Y)j=S-Hb*k_iRnIAS`p47b4zv~|Q2p^9rclDUtXBqze zk3ec-kCRN!{QKAI-cH#!wf)Y+)30ovaaf;OHRaoCm6tDeKR#ZSJzucyevsAg!2f>^ zuU~b_^0wZ$FXtXCzwtxlOpvN1cV>~F#2%AF`A>qcZ=;I}x<#LH3qNT{vIF*Die zRd3WDgg6UtW$%4+_@jZ8XrW}c`ulg+(qj{nFaB2BZ<;Ul=U#VTOPqWB<;jblPG4%=TCXIz4Ka?c}i}qzNp!;ZPsOTp*eXwyyIWSAF8XVDzKsVIt>yy;BLTA>mOI-b!}1 z|0<|icCF^jFU{2_SMHp+Qf-au+UsY$YnxwN9{8l=wtm&+0Nw(=s}r=Q=uHVsRd$eF zDt_E6J*0AOUXj*p;ns#Au9uN(L-cJ|zxrPP`?$W``rk9{!m6^*|9V$(ZTE%Gi4pHk z%3ieKnqt#k^W@S+E#*I<^Mcofzhq-u@1Dr8SN*^0{UT=bS63cSyvzC0vwDxz<*Dyi z=e@6zIi~k@%kEttqo2;a=B&5+{P&kPp7{MO(Ve^h_Sxb+-n^of<+mpOtD71>|EcxW zePO*H_sx3}dh)C=pYHbN^;uU}y`NNk_3}-hKN;8l`EvjN zFaJZTcM{f#REFJr7jXn7LJ^IJyPxRl@%)h_-X_-p@rAr&#js9fRuHa#mTyoFk&UEiQskm!TdzL*fsfo?~ zmRx91#IvqY{5eC!?;f`-BlbrTOFplU|Nh;yFpnqwQQ_T{=1-qL^>DDW4f~*D^+wLM za539;L%*biyg9#L3S8XtV)}(uQoR>u?{;NBX8BRzsbQPc!)HSCiz8k41mx~Xi@PNK zDeOtOlv3R%Id$FH7Aya6zm#Dg-?5I({!-Vjm?`h3tcr0Dm320^+_8%(|!q>g7-)o+fydg_YAzRM0_yc=g<&R-XEO4;*^rG}rO!2iLM zqkErC+*bUQ`RnRirC0LiySFUz-TyFZtFYJYm6->(0=USvg;BwEQVA~l_@BF;pU9_TWj$UDK>eacI{T3hm>MQqit&OF5 zHqXDs*)kWp?%!Rdty3pln=p~*cRJ_(XW5%m5AD1hYt;Dt-6GbRAyp~*tM*L2TRb(w znxkxg@S(l0Jg1+Z%aZ-^x9FM3`+94am%cszE>EY*=Cl!4{`#%;t9(;m#>6hk-FA;<=#Vr@1wQv{;6v(=ejMYf5NwD-?e?~e{QMO zon5ixb$Ip1f1+_}cJC8zUA8E-_{9GttZwzM_wK&(cOIIDnEAdeh@5MiesICs``LbG z`DZ0mH@Svahd&8k6t;ew5np?LsGvxZ)bYLdPrUxkyJtP8dBTmU_NUytlMmdnQ?pjT z`1i+U%PFr|`gevr+by`^vl4IT6la(C;={S?SH0R}6!ZJ&JYg-jqL&q4i-hhQuI=f& z^Y-Vx-cBoq;{1!}9GQ=M7*+O7wW?fUwC#oAh6i*0<^^q+*9$)V{c7XZDzUEn*Dba!KErf% z^S-cGKMudIULN~tWmMhz;^&nmJNKU6`2U~P+O+2IVz-*otDF^=U%&nAaXw$~@Av)x z()5;XtSELaIs1OsgeS(Kz8eif_zq7w{&9_r-0@JSm(s@!r2f=A_}y^l3=X+;1!YRhRVio!GJ5e|q=6H!)NH z-`wW%;Q-_E-RV4aJLeqNa@}6Hb7tO_rG7$76HR~Erbm8b*u!hFON!NV{}N-V&mz~3w|?(> zY^AsCXWa4QcDrXc)bPaCE#KlV(Qx};jM!b{tkN1Ld(%yNudTbcu%w+~BbR5nyw8m7 zs^^l=ytcLQ3v2GnWlB#x|FQl(ur=&l;y34?{680E@3694@?Okfcko9I3j@ozRo@xd zcl1i;a{l9xnWKHJplkJn$DZqW=dJIvcGHu6B(dPxvWlg}Px4M(JlD{Dd!2!r|4Yu} zyG}ow5a)iS?fsR9GG<@AelzVkxGgVs@r(ceAFtoP?);axOWduWdm1JG`~Am9F6`-R zu?N={&w1>a?`FHAdXIEx(GByjw%sv@zA7CLzQTCVHFmG0$*#PMqWeF8np(d6-qcUZ zi6{S5Ec>PS>SEa@-Ys*3M8C}6_3rx8DQa8~*KIp9fA5W_^$e&-K4=Ift)Prcl%f4247u5;E~=iT|WWwsd@lE9?QO1{9%S9b6LNazxzl%L?gj4rX87E+@ayZ3DyP@n zO7H&88LswT`bXZOPfL3_>fgU?w*IrP?!)z`Z#~)ty|13zvsLPRXs+y5i$!y1Kd*Sc zCNS1(#pUVZx7OL^Pm4~x#@hakYyXDrzL#HZuvlW3Zc?-B(8cLb4^&)x6)1IeaTaU8 zfXWx`;%rly+UuXMt(v9xZr0Q$;SXEtmTE1kJ$>yK>-2BG{Ukpu`QB&fHHH1ahq@DA zCs=K(Rd;wV(kS9sa_6OwrFF?x>1U$d0=IftT;4**H{;V_d zF)t_Vn|pZyTeE!8(T1IGI;{UKkleQFCC3Bn>qma%?vH5^ zZuHw7b*VsNjxB8HGVf!Qf*C$!z7S5XZu+ihdB&#cl z{fj@yO|5R8Y_`&L=|TSaUfx#yJ^NDEn@fE;df7qS>*kx|o8K?p`6~HT|ChgcM~k;? z;@G=J*mLe9_o;W=Z?3;D#k&0a=czSzPiCCne7usSm#_T7_Dg3JbCteo>o5ABHCetU zujajw=8EJ!->$xADqYU``&?vekEhl_w+Zgn>2kd%0-{zsg-lhKTF{w)p#DSp(c?!} zr=7nO_@LT&oTKAViE z<|f~sM{J#`{!_yIXo$^qtAyGD_D3iFn&>_4i@T}^`{Nvor6ydvOm8aK=>Oa>cUD04U5Ofl(x9cbd8?u>XMUZ`#uz>Q z)5+N@-!bQ+-HK3GvDR(m~ch5e(`{&)OGgHeR$IVWkux7V0=et)2f2f$Q&f{In(x`d!_}tAQx9|5Z z-?n+$OQzp{f4nQGYu{X6vaPP1ocC6HPL%o2#p~P;7TfLGy#Cc;>px*n zLfMb%HMuN~4pA*#E_d~q$-Mq4eiKseXkXmqcWv>Dw=15XsVg6z#BQoRxH!p9D&F}|`Jr5MH_L5jD$gs#zfD@S=~`;a+_R1st#tJtO0T+It8(qu zy!UUz(kE;?lM&Rn_wv$Zp|u6aGw)8@D|~5v%k{3}9*3o$!wTKzPVu@b^7z*2a4$tW z=Dxdz^NYe&f9?BSH@)oh&FA~A)z?2-^yuX4E$_GQf1cjI{7BR)#V6(a|Gw*w&-rg$ zyXMRPe;;12t!g`e@Vf2GMWJ(fvR^f(HXpj%=~8O7`23v**Pj==h&|9QA$L`mJHkTYkN>y}AKq_q(^>P;&C(t$VQN z&ap$RD&@zD_htN134Lvou%^!`gzsnTIbZ$qwgf)8S2fL(SI@aTUubQaTP$y2f%)-5 zIiXVH{=2*TE?u$7T99$s@S^*ZIKlb{Db@QIH56PIm+4*c{>||YzDbLnrQdzbR$iq3 zyuyNYwMhB{gE!Y>>t9*OOzh#hUaCLys)F&I>l`(*`WHe@s_$FuCZqkbpjtL^d6t0J zX8-Ke{XL7r?mYi*GGl#|MM3o3<_j59(pI-^_Fdc%Q7-;t!tT=+1&*A@6}EHrEtgxr z)Y?TtmYrZ`tw2<%IrH>`cnHC)Uv+ec4&Fj5upBy#rJ@)o! zht-pV)p84Or(2e0D4&-Rwmes6#j!4!@yk5#Vxx{(r5y1MhXejw=snphweog#v>AIy z=-!hP=l`kG6<%-sc2L$#`FwHX z*@rS8tnV$IZ2Oh*NpRfyi+fMpKDGFO(Mx0Vd)6_MbKAekPl|pz>6GnNZISmoYj@~A zZktnZVUgZc;|6YBm7csg;rqM~*GpYEZe0GW*Xr}Sjdu!EtMD7{^){Z~(^uuxZ0t7E5%XtUn^;{SV>$@zb@KHTvz%s?3^oQt1=2maSdk zD%twT*X{VuRjr0Bb5`YL{x5%f*UBR_`T{1(`LkacZbSK@6j8paC0f5v)a<$cQA1X8ZKcMxwS5NFFDrIC8~j#! zob31RK&zes)BoweHC1)f|2j`8HJ zlML*9e8EIZQJLcthilN+qt#Z=br=6MVRBJsymEm5_<`9jJeoDhbu#Sd>LkBbc{SR- zW(hmH`}3-loC@_g&$*9_&m1VU6uok?;a8Pm(hAQf0im&hbtQZ}ffrW&s`&n<-O_me z-yK(!t@zb#x9FYY&8RP#ma%2Z_x@ztcl?X5P4Q!%7QOvG!~Ib2)@4i2JFI>c;o#D1 zwWzR1t>UQPrhwmqO5$SGVaxq}b5BX%*==t6MpDx=Z*|E!x45V0(|`UxvNiDe-J2@!WI~v?ulrXf zr6-e8UbHj+9`CGAdtU5+WTKR|KWD|a`wP@dKWtg#Z1`VDtj=N$Y%Ktr%G&$B?SJ;U ztrW;-+n=OkSDALUaB0l*V~uw>CVu^GvBrui|Jv1mKec=-t?tctdMowPrEZnMg@(3o z9kY+PZgZLI_MSULqmx-e->E_7)e#rZR}t@)thxC~>g>}={L)9N{ysb&ue0lT`mY-= z)BE?IeZOSl#D>Z5o%%zcXtpOPmArQR{ceqO?&^C__Mg1HV)^e`4W`SAWwxs1Xgr+# zHl%HLb8Kafo5s6Wm+rm&aVfU$s^R2CTjy8vCWqf%7jr8=I4Je*?)2YgF`M7cPLF!# zU3<~g?VGFVGM%M?eQV-Bx`r8j{+qXK*4D3F_paAo3{9=KoVWf`UR;Uk!z)|9si(5< z)3*7y`}*Qzv6Z_GUlrF}(_QX+OW9`iXTSZ=cYLX8mA)l!|C{4|dFr?KR|8jnU0=NP zXNUNaD`)2a*!?)qivQ=IP`g(1vy~}b@z?%VVsc~p;^Qq-3X~>wKRzS1SKjpW z%7j9;*Ap`&g7xIDmi)0=d1|_kwq)YfT{0(UP1<-k@tW52e16|q*FJ6667Q_;C}zk> zxwX@s^~aV~Yj-7Q^r*k*xHI#~p6$2tm)lvr+^N~1w#7PKbisLF=2s=fI=d1w439l~ zvafmH^m|{Q?^*li<{5d-`#Y6`WxpD{eQuFoi29%!L0Q(b%J?grbuIRTGn=m{q72s<15(L=TN6PMfmm6yA= zTwkImwJUP^w&mqtKUR9(`S^2<$&ZcO7FX?!t&i!O{LS{#g^!k+k%rF7oOc=yfAo}F zY&`km#ogt5Z9aL*E^n|kJ+^tbvzqCRn{5`y?^W++c;`JY?#SP5wbyg|p3Q&o@)eKH zV)+YZGVj;E;CXX(nX!<`8cx&blEkl7yWgG4xg@se_krMLhyOj|?l1E@&VFm|V=b9< z_w01pCBf2+>e z{kc~17ujtZVFwoE8f}_hekn=kO619_zV{}3&vmI3?)hKBvgw{ppYY~7iJsNx8g2L` zo8#_eJSghl(|g;(ttxK6>7-p;v!xAY7wnn%-{Sr0vuxSFcRH>VHIdu@%YDK8J+dJii*s8Z#XY8`5{=zP-*)iba6Xl|DhuuF6HN%{h#e(z8|_w!*==? z(XSbQw_bUcyJlDMzc9}Ck9SOaZT_?TX}OTwZU2*tOW!|uoS&tdliuqS+*v&Rfy=2a zUY#wKx&42SmTilP{#0G$+?rfFKleqOz`l#ZqWesy|N16p-*9&QquNuH8So_h^-guEpV9&qCIf z`p=*FJ^SG$!;7K~*QWoRsu#cY^H+;s-{p3=>uEK?B9hMP61!nPn~3&eWKR* zdm;OuccBRwF&wF7@O#Z%k_Hf`nriSbK?##W#$NIm=?&Idr*~icF+4v_Goj+|dOMh;P)%tVKH!c7D zOPD{5-S$@K_T#qsp6*H8X73k`vyC%T{Bl-c@fH1hcFKSDE&Ve6dHL6S2c^H)pKL6; z?WZkwv~yP9%<|AvI}cCgzS&c0zjWPqt2ca0oD0I{=J$V+PDwmq`^;QwwZhCh5l`KI z&ArG|%jUZ1zx&*zFEU&0vu*zcuC(CY^q!Udkw?cBi}fF`K9Bjc-u?Xnh6NWZZ|$?< zxG2}N=@u}H-)0Js#&HBop^!ijPt_yoW*i zzRXc>F$+8UaKfLemJRErcI5I%3taKMm>zp&)2u)5CcU3ydhMvV!}FIcpK9OxRloW( z(dO*p{Q|ndp`{+z3#}@%_ugB-!s^3~g`2m}a8{T3zLD0PzE{of2{sd*>7XW0hV^*{O4{j>C)f%F6M z8ScxiPqp+IT%0Oows(Qbi&Kkta3)UP6x#ELK`)7K3ZHS3R;Am%Wb1b#&R@>xE%ZCl znf&jo=5vMosca61vwF@eJI{BOReHL&@AB;@=VcV9q~0&#J+$!=hsFHBxRZ7l8dh6* zSt-ZN_vkxq`8bNZK(L+dUEyt(pP9x#4roeFb@vF{yx{u&=6-GGb#Er}@0a}l{OdHw z<$W2s?y0lg^e67OU78;C{Qm?D^5fs^#9Id|rk}6$-25+OYxe7q``=Qp%UP_uet1cgLFFFjC6_GjTgX_q zix&mGk0_1bw)n&Mr#szd3p2I*KeoI6ZOcEd8Gf40GU;C{`Fw&Vf0Iu&>556MShu5G z;H}Kve{!{D78kl>E`F)_&XvD|?McNZ zbb9P7zJk(g_n!zU&GnOEttr#o?Pjp9`g)PhoHb$Y?)rT*pPjaK=i2Pnzff*{x%lyo z$u~af^nHFaw^Zh8m%Bn(WlMsQ^#<+uvUS`OtkouG#xjI3%D=SPRlILXZ(!e2tz{BldgZ_J#F!~{FH^_^hZHP zKjZvXSIj!Dt#JGtr`e^Q4(p2#%#8fD|LwW7ONP0h%;$6YeX%RpJJJ3}(4FT`BV=}2 z|7vb3I58)A=N@V4dHg$Tx7Y0}2a_2t-#9g?Kr7?W4~13y z?!~Jv%Kvl6LGbk71wmN)}A(03K{OH3vvANY45c22n5($HpR zt=P)Hvz}d?|4~m?vbml29kZlMyR2FNhmOcAjo+nK8djD!|FN=2Yx-^b>eOQ!Q>)}H zi~Gdxo_Kh1%eDH0x^B0$>=oaw@sph{m}jH?P+j?@;54n~DVwj>`0K{Lzx}vkxALB7 zOZ!>7MHgSX8nG^U*JSf2yG~iRtAwt6^S7YR=GZ?S7x9Y+y?)x>dXhH(N$}%!`--jJ zZCT?LdDZ!XyoLBm^NHz&H66=$S$Zix$WiItaHnhazDF;wTZMlW{&xI&)02(&mhJe; zIzJ{Z#qNuA&9>01{eJ`N|Caoy4SpGZ|L@9GS?A2IOMC5H^4$Hwru=6YA0PT^`T2GJ z-*vM!rif?PZq*E5`p5a}{3YD_*Rz+N{?qp_-Lr1TOobp>5lKye_3pOoc3IGk5|je{NGDAyomXwc%iaWX+%7zpmojcuVD)5ts6Z;Pc@Z{hgM@@wS%5t9>@pexAAf;!~OIpL3F* zYFf)}I;`yRy??G<1;3DC`1QHV9`YS96tG$JUgUFamu%{O)BpZ1m!1}O;x*UN0L8?JaX=@7rAm&>_(ZzSTowuhdT>vJs+c-zss>hr6(y|2&yowRmq zcj?ybl_i#*ZYK9D*1Zc{WyxiJgj=-CoZoWF_cOVz)ulVK^5Y+7u8%pk=8VCyB)eiA zC++7cH-0RCe|(eO+(!k=?pmw8pJ)9paixoCg!{c}#^WlFbk4uv?=M~Ae0y$$M6vAp z-HU}2)b1@!OWyd{xP8m&RdTn_PE?-P+i|sV{k)}DQ(3k5F6ZyFd-AY$>fHx9Y?EgT zzWZ=?zOw!u8Ec!nnjYW3zMIp1F4TbEO5U1r?)_uyfVTrSp@gy8U}Ihb>(C?0wru6$kI#AVa#8HQ?XM*c ztg`Dr*ixK-D6zb{ccSHQ#dFLq2C)%3?tenBzFM*S!Qs6%pCf!bxMz3ndiUY=)mxS? znTwYdectizqGy~nX>y-?lU&sSyz@Rh8Z z*l@-(?o-*+CxH=O^~(09CoU>w^he#y`oPTgmbaw#(6mebx38TDmiRk0%;=@@6~j4? ztL-`q1Eefh9Z@{Kr)tOf4v$>p{nL&LZdR@AzxKM)^xqn7CC|S7OO0dxiOJ=XoO*`*VkEBarb zI_q{zQmVS}u!mHGk=BQ`FL>J41kUT<)Zf6crN!#%kJ*3SE#3I6_C78?>KdQ=Ofl%h z=F3uB&&3@5dh3C|<=u;!Gt(P2>K|=4lv95BBeP`TwYPc(Pvf=YFBGnlO8znBD#x?8 znx-22uZkX=@U?mN#e#@1zf$3Z;};4|oJ{9-n7;n_?aH24JKVDl-Rg|uaclXIeMHv% zpWl)|XZ)ycKd@?M3^xBHS^o8N0sQx@A$KN{{v&sb&9~SR>X<3sz@sr1asa0pK zq<*cuQvBTER^cnT_vJFSx6j<0;QdNcQ2Fil39Hm*zYjYbT>PT#yV&_Msfg)+ZfrSN z_I_^n-)FYR9n!`8cJG^;xjuWU=oRnln;zWB*{-`Gb^i68_g>m)NpJDlyiIfWCX;*j z`xmaee*I6iEzd5+KAq54g*B3;tA#H-+%bQ5Uh?*5-n#DD8ME(uK8*5@HCPvQd6&@+ z@6~)KH$}bov%YF5kV||A^Qel}l#7im$()RM#K>Juvq5zh{5^ zp1sUda69$3!0d7tclq01serWeeMN#i$7em7VU_#wiN^8Yv2U#%7xtaADNuJ+=Ml^} zSolw4uJ{+jxf3crn>M*;yZ?T@Bg;BqGs8lsUEAIq%6@-iTKZ|R;-8&xzr7UiKd)@Nf9aR!&%b~6IC^Bl zoy_$!c&_Sg!@hK6<+ll65g)Lu=31jS6z*EK8@UY z9maaZ*2CRyC$3OR&C1@Zrrv= zDzyKX#rrv*%{!O9412$8OH1^tcWU8tCQ=i{~1M1kaC*6HspHhYX6;M$gVMW2WR_!xx%H%EmrqZR4SK3dc=O>CIJ}!rYRR{-n`xhqtw)VteIm zn*}>AUFOw4v)OINLC&?D`)!%rexKa7_5CdIFKsn-BF}Gyxyh-?y{+JTX%L<=VP;G4 z$K9ffeTO5Bbh-eKOa29X>a;rX{ASzr#k189r2p{y zDt?N&^ue7IIV+X^Qc>Rh{5cB=DT4i^t#Sd;hJ^SnZr{_7;t}nhm)#=(+ zf2r0h)9g~Kv*#X=?A`Tg_v=}I)+_I;zVv+gz1;1G=45lqzt?&EH%hkim5$GG{-^s- z9XKMrEO6H9J#+U&&o`KK*E`kzPl>k0M;WQcPh8Bur=9b) z^IpD$TWkXFYfp(Oyw}edinQEG-l^VEV)Ni;+zs`~FP~29u3_|q=ev!o~ey;|JEwX1GDOcXDha&FCLk>hdJ4x9Ie-7}ls8TvZs0^?)bUByb7 zGbg^k@vMA?NZyq2%RzFo21N&38X}_GQAFfBrb-IDNL_2AdPTd^2W$JpJ8dzhCye zl6m*02Flfne7Dv9^3ve%+tMSaKm%Cs>wX-6<>{y!@kQGff7L1$IpA5o)w-WE<^HN2GaP4qe`7i=@r&H=Hfx5!w)q!oe^~ZM zH632`zC8K+y(FL7byqpoeqK9cmi5iM5mjFcjq6m;ONe?oOVqutc_3ME{Bz;HQXPZx ziuHTgCoT;wXSQBvNkQ_adH z%lEvp{w&J7x#L@~bGB6V-4kpvA2sX_tp33{L!{}7j_D%iui2OEo;{oJJxKlfD*e^R z-bu+nt&rN<|H*k-$gv+1A5J7pU!OC%GS)m|@y8vJ4Se4}#{KNPwC1wAu++QL5xXQO zY<@Vq^3H|zxeLYSa!Z}4=`-5;>a$02|G%(3LI2L#bV<+nd3oL{pDbauE052eN?aCP zcd}Q?rb$*Uf6KyiDNimgj@DG)5#_qyQ@et#R%2(CuY~+&xmQyEKW(p%IQG@J_RW{q z@Bf8N*?OePcHbwHIqN#buSCy&D7S>c{FCbU*nYNk8NsP%r_5|ye)j>x8;^HuivP`c zn|ejz)O1_lw`#H(Gk-lRW_P{juiL+N@1~y*g2SbroO+U4{?{`-{_1qoh}uatS5(jK z^77iTNk=BD$NAi}zYi+&=U1g~Pv&c$!~7=j;6 zwApg@P46x?%R{T16W@!hs+iwYvi(W&`Bhmm=WnvaS#~eq8d6@;$7npK`VG6RK%Uzx zw%|k0K5|(>>tCCAUi-AFO>MlJAv^W)iXB^vZC=m2d-u-H%G}(E^H=WR znJTf0=}v0s+AB9(KCQn~dQ0rNfdAC6P5)<|K3i|CuIAHTw?9$e<^Q~`k5;UT(YAGx zbYNC0iJp9al9^!rk>#f!-q`&&Z$I`&uM%9T^rUo2k{Dyt^-|7{S{`^$|cJb!|D=O2&xR`uk-~pQWe8>`D4fLZ>zGbq)cXc+-^z!xJRkuMZumgS5LoO zP%BY+%O=futGk7;z+97GuVd;>`My_{ERbt_#qIX*(W7Z6#rIV5EO>k@Z(`@p@K;x3 zs!FDOYMJ%3Vv6dVxCzRyrkq=GZ?524*PB{aEDh{0R%Z$Bv%c@kZLn|Q`vsrp9z6e5 zb5@9l{Sw!;>>E~xtv{CD+mjnwS{8p*##AXKdZOQlGOG#CckC3d%{nFf{#3^Eo6&n8 zSDgQL%Vt8<(<>rJ7|lNHe`Yu<^yc(zzFp^aKJmFHJm!4m+I}zadC!m8KUVzBw0+Vl ze|t4&P1lTz%RaAua&t|1-`T4iu_wgz-Dj9uIV+!T(5_nlbb{v`|I%3t?oE5^u{Wyy zvO=Z#lcvk9j}pGMmaI5uzI6Y|-`#yut^S`&HP@@n?m1I?%DQLzVXw-lP~%C{+V@Um zPv#2{SI+i0DOJ0=t@P96yKN6;6R6F3Z>6yY=~#=JThv9)4AE*B7)+ z@;BeD`d(48Vf|(!!=_uB_ru?;uw3eVa(C>^n)LyhwLk4{XI)*tdh(`sYKwjDvAo+@ ztfwkdUa;&)P3XJOy)F84_4@*6PLI-jm;BZ0h0kIc#r>)J=Vt03XU{%ArSsI|*zN7# zRtqq{Kk;yDZK>Zxy%OWQeEUjkY5Sx{Uq=>RQr{YUsT!j4q;2X7u`{U5$lhiPTzk`Eb#c{Pw%c(ol_Q>x1{;*bG^4e znyf8@g^PU^UmyG~S0CT>IC)9_p@;03Z<{oDUz+@SWB~x0?4f zE_{~El$bDenVaoWulBdZ-F>C{$InYsX4ZlI(W`#$5WFQ5oN5#6w%7G$TEH%4$IcRF z=g;TkO#45C6kfh%xOjHS9(VuH2qmVjbJDWqvchj$)kDR?mMX~lwH$9v5WTY9_*0g3 z`TgsX*Tn9!xTarS$6xR+A%<;<)X&oX+TZCd=lflKE$;U8UA*Gl8+JUf|GAcg=)Bna z)5mr#nJ;&@Q!Gq9W7bL0{_v<=rm4ZKjytN>O+RtvK>F^(>o>2xr@uWT`u9A(?Q%WhJCTz?4 z@c7aE?z-45j*lBwRZh|OGRbPTJzbaFX?Sn#_lF<92OneVn_%5M-^zu-uqP{2hTTiT z{KwqSlT$+`OL`ad)w-o6{rRXPemA1YVRzH#_m#4LSGi{;)yz+NGk;=bZOwf5Q?YK} zj;~pK_D_Mtg1XYGTS_Y?TK8J-;j53oyJ#}Q;~w?>?>M7-T%^^TyiyNz7@1rs@_XNx z|LW?hCpYeFmg<)gwfVU7O6sI+*%|SBlDBAN8mUh5%Idvz`Om-I(RF>C^A&|eQ{^V= zPj7f5%zN;~d#R;PI~ea*zuY90y5i|-wo`>y-kO~Kv~=^PEYlw=4_orqS)J>@$tL`A z|2pg6HQOAG3+7xtS$g#*hx4Tseb0ksZup)Gxw=GCZm#F86FcXhe;Rjc^LDMHSG_}L z?YO?WZqK_TM=s7g)&DS}`ElU;7mw#m5VLfv{UrIJMdte4v^6HHlY65?*FT@Q_-ID| z$KM;QCb7S06V~^R3ix^W>U!%Z4GMC8^A#sQV+|goICj7iInM) zogDM@?%$SqYggU=Q(|KEp2J(u-mmgEI33(q-6Q>*`?%558E*dy<23H>{`%LX=6d0o zvYKU#tG!fT1l{X%XWZtS`)1{An^Ly#tCNlj-xd0E{QLa;qWWe1bL#%yo$n&9{`OV= z)B2ewrl%&Kda^vP<=U^n`|JGjPJO)H?+o$%=SJ@(AwsrR(B1#h-e+*Y`N{^_jQcaLbk- z5WRY6uf6hn#SKMg&zprd87$mm{l?cjWhhpw>7`5vE??;mb$7tH!6CioM}6=td6x$343vDNbW zwZeS%rWUIm<=k>gzf7FKXXx}b#c#- zPuC4U)=u2#ALOeOs#@?;L*u6gvux$nmCg0l>eH-Pug=-1ejv{HlBfN{Kd<*z*{@!A z{@N4)OQq#o-}}v3e8Oqft}jph<{p2(`upSGRr)f=Pu;aY{_Xd5wOBu)V9xtL*8aX( zyXI#7qprhWxWt1`9P(U}W<2Hjp`iKqRLfUncJI2QwAXshPUo`wx9avxRkIYc@)Ny( z{?uaw&fBj=e%KcN)+v2a$X&Jm+Jhcv?YsN#TmHW!*?y<8f4=s)b$W)^H&(9SS|d4c zSEb*-7dM>Kzu3lr2f9AD$A^oG@5-t<8T)x>%aQrB-KS2<{IEF7nrCjMim;{D$IpWM z+YjdNcz4f<%`!cUQCl?Gej2;#Z<|-b@BOmB8?aBw5;Og67_~Gx_;=x{jcL;#?oQBI zH(QzOp~Vuf9;s59%n!wfwdXDTzN*ni&!Sdd**>`J#U-1?RUAUzPVQ-@(`J@;>f*L5)ms&4H5@-@^9F zU(Z*$7kSL)v7g<8lYxJ`GKzNIlj<)%?J6tu;YFtID&yuh1K(E<&fcgo-Syly-ukRy z#XKpgErzj|n)5=1%PN9azuPSLp5UZv(w@&#_htlzPqk*ha0?WFdW=@#( z_V%$xyU%G%eUr@RuX+Bf=G);9?DH46N)%75iC*Hi+wked*^B4oZ)&tjSTZ&1*E&XR zJ^SwC;rou;Xw21~XSdX@cR}_f_f)r2eAn)$%l5Fa-9O>W7o%(Zt9y3kiS%2n+dqpf zRkfH`vzg=7wPdxIJEZ{~oy4hX(`P;{y zqWr7;b>9!`zc#LoeyM)^_mM4k+h*TMS!(f}$0qov?WgN&!cS+ilz-Y4%d~Xiyt~Kr zFWvF-d?gUGJzZPz1Eekaj*;Jw^K-+t+7z=g5Wyy*{^Z2j8NCp8Rz)pFNwh)&A9#pnI{icOCz~YwPAG zvFl~b*H!OjJK>butQyX};`M`FX@R>%=f>7`!oldX$JZt)%ubXF2w*s1tp{rzQ&@5g$cofmX>fyL+QFBWmy zcB!|vZm9e2oFF59M`x++vl#_xU*bb=&JKTh>aJduVEeX*KhNwt9J{u6$3CkcHuwAT z?t1bT_dO~sTD7(OlzrH}M?YA9aQNRo^!n8*t-|DcbzdjfN1v)$)<5^(kAK0&KQvo^ z**ZU7DfPMkr{3M0CbtegV1Ltmc#-$rf+CHu*Bir6t*x0q_wyG;-ebMiQ#edtOSA3& z{AfnV-w9p(*4VtKdi|6{_y3Di<~!>IXfwH zMq5Z#<;sXn|IFOC$GPw88a4N-xX;$_{z~^9$UKu9x_0hkkHg&eI``+=)<~V}tgCGg z-sr{aS^I4H#fqorytLCzciz7^{m#mzO=ZHV?wxM!DbesspUxn*nlB%f(rSlpLb^;D4$X~(>+F+=SBZ_?w^Xz zL5Gi5WPAO&{_#wQglVwW+k(f;;SmcAugw1AuACU#o!TVhzK)UIJV&E0!)1Zje;Zwg zsfuIUU%GBZu+N-1sz1Na(c7daaCMD$YR98zUbRn}yWC&BxbZQr?`7WJ z$NNRfL+hLG1-s5!!^!>B^_9%Y@|)i;o{PV?KR)4?kG%EYM{nDMY7|u`_^py@pSa=L ziC!VKW|n@@^`>3??j zsk`&!;vTKXe|b3bt!2Z1Pi;Nq!0wVefA!?%^VxRA?j7sv?r2Wt+x$lLW5?@biU;p3 zWU7ds5?Xm|@%*i=TXol+yCXQ+!sSfRjG}u}ZZC7?_-Vk`Wm$V|t<teVv|O!S;B+cGNHvJ}>AAkUUni{6oaWy7EALCV z;WEC>X_Z^;&+_?Q`t|G2nXuBGTSB=C_D8-itB=oi-&@j?U=rQOKjTK8;gY>~dna7q zzfA9O(T$4Ud8=NYkd0K`DRb$o@m!6r!j!8Ox7IF^ds}%WasTC++qP{@ZnK2ln4JGra&o2sAwvdjF3ZMS>jBTJrwUAy&@QJS@<~5 z^jy}IrB!g{l0GA@u}V)zfP%RIKTJ&mAC-@cYL9BE#DZ9 zJO8Tjs?Dl-A9~E##3(yQ$>41Ax70`VufOhylRK+C>)O=G*FU~d{>A%cj@4XOg|6bY z;XnWFef|0GqOFB8?@ZPAvh{k}fAQPzN#-Ri8>&bq;FA7q1`ul~I><5+;y zHEV;ww7L3s`~CLu+ulo6eYrf%ZtCf?uZp6sJl~lc`n6eWsjdEclMRXgYnRT;+24@SmcN{laP^_7rY*yE)1`8Y+A5x0s97!CzH`UP zz`1WvHO3zM_;aq>(x)5`qwFrPHu{+t?tZ^!m&(baS0|L*{|c?S`{~_WN$ZNzJGI;y zecQeMH?qGg`C{sG&NlJdpXT-R!~aT^EUYZQCcfvnn`)B&Tt^xHTYH4-axcH%b$CXG zfZt@ZFD@KC6RoEkJ@QRWo*z^3WzueR6A1f&fGRQP}Xlh@(roN&Z%f`HmTEDeONLay9gP=g#*m4}xxf+gHEMc^kL$_PJ{dvig$h?JfInoQqv||L)TacVFw> ziCXjG+jpg(t!iu)p1dyCoSS12^P0n_x2>w``*7uZ`PG_;Lnkt=j@f;?xkx7ZRkz}m z+xzBZHq3pfd&wu<=}phAkKeO*y*PEG=eY=*XszPg9~`%%-!67uW}Wt<^4-e7q@G+BG{(oWXLo34wMe|gG% z-PR_3TC>1;{|~d1d)^wK_IP>X_pdwmPCog*`bePHjgaO1AvO=M8C1S2-6gO!LRK*E z-_Kvu|1(9@FaLk*^8c^;|Ia>B2>ZQf@_v2E{G+$BX5No%GIUxHWm~>w7XR@})qAV$ z-%q_i(Jbs%s?Vk6KV^Dj)!!8yUijGb>bB{w%%v%{Mwcs3hA^IXk$vZF{v*?U!{?x@ za#Q&%t+IAJI3;^hv-)Mq#p**h3ePQF_Tlroo;{I|o0XZ$dv%_k@?6CKBzdRrtHY5S z<}h65HkR|A!Tr;E`yB3=E1zzhH=onp6e?K#{^y%2SC>n?!E3E}p3ij-tk-&+EVNd7 z&%71dOH1yYc`o_v%m(Fzr_$@nL-bDm+A+D$epPnDNb@eXF9b%()#VtFwF2qo#caoB6h!t^OSr{JAV7?#JoHMX`553R-N6bRU z+iGKB{<>|t`m&8$RYHF+emv&!S?;QmRMGs(Idh*kW*YtevAW~^%~Rnsr&mn&yS8-Z zCU@~_=AKt7^%5`Ue-Ze4x8i0vtJ#6HxbuQ}Yyl=2=6;vHxPDfAZ+^;f`Qk`}6<_6l z)J+d`Y3<$7a@zLP`ziO^E*Y&`U-Xt|+r>>`k*D({h3>!DddyK;Uc>#X&PSJju75Sx z>eQBAELD0P+*+q*$6`Kr*5Wn#UEBV@zwftyf5@-f*Y`eq<5vIIZmsGO;}<+{juoBN ze$`hlJNN(Ww8`vCj~?{fr<30ia(mfFxqZRWuWnt*_!$&@`?b}<%MX7|*`K^^x_8{v zC?(lM&BSklzps|}b{_Axc=u!5H_zU6r+-~OwfK8Y`_9wl2VIu)%+23v$NiS8vgq}a zC(RWmJKwVKMez6cZ|O;leV^g)XL@;~Z0#k9AALU_=U+^If7@^Stm5r;ZujO1&g**(#TTl@02&)K`^-O~T}x#wM}iaCC>aK-lDVKJFn*OI?k zt~2XBd-rF$j78SvsD~@(Z(053@vierjdLQ6U%xEYzn=Tt>if=Lv6tcxJ=|`swP(-5 z!(KZh&$Yc5%s0JSo_;ISe&f|kE#ARZ>U(0=l`mXb#jBpZAaReqKgX|2$Nv^~tL1;M zRDbn7$*Z<#j;F`zn^8OF^0#dM_VHEixo_-q9O6vrriIw z@{fC$S9n3u%N^F&{B-AhF#K5FR2KeJ=h~&6W&1zZ7T2HK=**QUZ#}nLa`X8X^ScYG ze!1OSZS((4g%WS!ziX$;o4(%Zk6&tM=Q&@*xOPri)TKF7B%J@1#mm>f|2nBJ@EONn zyS`fI!x8^QG%Mv4<@fHq?0(#{e)~b5j0p4363gZOetcqD`eAOF(cS<5cJKeYU;g7K z>)QQa=Ev8sUNxD~YNwX?VWUajMwcHfPoK8o<&7P@)0UjBt^BDqpFN>@zxeMfQW~0< z9!$S&yW)rTs(`=CnAZQQTr>66!@lCL@!U1}yEkb4Ri09MEt9$Vqj$}QxwelU^_FMN zmPio^*Ogeg>i6EAwWpG0g(dnNWMnlmLhi2)T5g%y{%ek@8T*k#7avO)pXGJ7&vI2= zscyAu^E|8dhO6h88u) zHwkLp-mr1bm(Of*{(bunls`Rm`19SrS7R0%H+dHC*uMM4VxRr1tP@vOtgCymhpqp~RkCQ~ z;OO|^Ap~CJh(k$ak6V=ep>&J z*T-wxcy7G=yc&e_D1hFG2hDgH1E87Irn-Y?p; z%#YVA+39iF_NWe0{3&X>zM|6jLizrEGl_g}7i{NEOXpZh0Lw8O?;J>h|tnXaIZoaLzxcN#8#y)H9#jjrl{ zjYDZ`J1rhZ1c-Z7_|88zcTt%8>&2OUUw)?xJ&%6WZt2IU8r%JM-pgp~KQB}+JkMBl zlclg=!?#V#7w%d9MXxNg$ws*0b-Ay~`H%xAzf|)!6}Im_oV<9~gJn7>@cv)xs*c0GP$`DpXAxBE7QDn6`RKk@yk5p~o`!Df3lLh zeCyEJhczsTQa?l1_qJ;K?x``VUzoDuh4phEsXu-(bKFlpwL4^U%qKT%{R6#^Ewc0}k_A2GxtE5G@k|H0okeAcur zE8K93Z+dlS-N(8`dUmrvmnp644csczTeNF+T<_c8GmT%*xVx$OZ`HH&-0l~(vNnVr znJ3$J{e$f4_nFJ}pL5Fowtv3$fr$Kc;YpucYf`SPk$0Yb-DpzZrXxEJT0GeM>_UIl z@jbqB`DbUJ51DpurJehqyYrXGyPcX}v13mBo5#D~thuOuJ508(;bZYB$yt%R%U*4D znf9~md-1`ucG~;r)i=%;Fx$Jk>+RDsOE+KLb26GU{pp^NeUla4o^sFMZue2I&#=-e z_|u-r#b&*$%B$yb$2RZ(d?Ux>`T8viub55#MyVH`-;`D#{rUOH?8mPxz8tD&u#AbQ<-oC<$?dR{m+j7EYzQN*6@83pd=^7pRJ@@Bz zNq5^rCv1xQZEii>R(xcs`|r0LT5|JWZ0gG>-XC&q{_1l~M(RpoX~*LHuH zbd`PB+{Jq~&B?g_TKKexW&0X^m0q=;mV?>qZeN~OJyqHLtu9pZx}~|*-zOhu?`HFl zDVg>0;(|#VOY8#c?$%!VyFE_#PVK$tCHLY_M8to)zW+^(O8CWHI;r!*PL}n3J>hUm z-{PE%|K;dQv%c^?Og}EUl|8BJe#g%#A9K9FWX2drT`0c(tC;4RWHkb`@z~;=a-OqyWi7{IrA#kWj;|4O`kd^C(1kTozl#SmsRd2D*b$~G`Xor z{DsOr@Y{@(s z#gx+dbDHYkZO=ZfUi{mSJ#4-4?e|?**QwOLyDZ!K(r)6?I7aXCbMuaUp8U9M`O1(# zzy4edX5Afsa7p&wow2@gewIoXlaFW|J+#|@hwqE;9Cz+rH^Lr+tnv5x!ONe z*ov?C?^i$dOaFISdF53PzKKeOpXgjw^t(6Y@^>xcz+-Io)}p?L<16MLQ`YyYTd?)^ zjOTNUN*>)^I;EY@S)VmFUuxqDr{{eScIQY%sXsVT>DMe@zHYY&@1M*L-_Tl@xx)1| z+K1En&%Eiob>-YA>*JAaMg5;S=4_~0Klyy5`Qm4*%9bZxt#zN#FZ!j{@p{FgRVD6m z-REXE{al%6`F!5}&xIK$3O^pQt@&$b_%t~B5UZ?0XrDoh+ogtdm)e*wzS~%TZQEuL z#_}LCOXzs#&vymuH!03DdH8cxQL(GX2DxiTH5L?}a6a28 zKH2o9z9l2)$=dyo6XUjLSX$lN|3qN^R~gIQ>%C=emM6QPtNc69R8D=da?Z<`Db4|W zrDxl>mjv8-Txq1xaXs7b-fXu#uOEh6UeBw^+g4cccXQ4+PUlM-g8!JVpW5!H{Lp&w z7Z*$B^ONHH)9Y5|oRgK_5L|s;Lo{pGW|^sJyt~SoPkYy{Kb3LdO7WexO(JVoz}5m(hR;fyS@bm9 z#`w^bn!p|3+t!>j7nZX%5Bq!P_Tu+(0q0Ysb<`_%Z=Rv~@^Rh&;<~Hvzg+kH|LV1T zpTPPndskS05!T(+rz6`G_`~aobZGj#=fC{F*%m#x()LMD|C8%E$t>=x`{qx2c6Z;y zn(OrG`3Poy*DTcxd8NlUb{hZP?x4?|J%c#*}5dSx)adS8z-2 z@nS{m|1!~*kCvY1eWl3xdv4AB-KVAZAN#5+xW{nGYtuu=@=~97UA|!9)XO)0pXQQP z)+H4t%TA}?zdI>vDch6hueNSg^Uhtn{P)ErGQVr@KKZD$_pOk};%Vg%cj~NVKGyir zt|5Hg7LW7u%DvU&rQ+8~-C=(%cx?O6J9mB=Tr4V=dv7%TgHv>T{*1JzcVtqd&KA~f zH?n-T_wMKK>lVJ*lWza$%WqIQ^18EHAgAHn(;sIGbY`5;sz`~6-*Urbqx-3=r=~w! z?04?Zo8MA?Zk2l%e{baf2jHC?q^nE_Nw2Wn$*drFWcpx zJ8!{L+ur&oJ5CnG8a|mZck00<#)t3BeL0UiZCUvP`|_)A)a++ZI;QCF^j~wP{)LSZ zyxo?cpOnpNFaNjyBH#O&Z@zz9d!e_|{fF&O{|*0E$=}ti*k!!_bK4&C_4z?RdbZmy zoBPDeI>*!aWU1bsTJe`BK7W_}`j_k4{g=O&{(t-a|GFI))_&r!e)ZgEsmYJCM&Sz_ z@7lO?m8r?IT0Y9N-G0zjbZ)KJGV`91I*4@+RTIH=APJCQpy657wrIpL3ocwog_uaT1$GzRAtuOr_ z>sJ44Qp@5%g9|o)bG~=Q7BHP#-fMm9MWN1%yIT$~*6P0=V%rrVW%@qD+Tw*(_4A4I z#NVA<{pis-!S<4ZjDsTI|3)skV`8&MK~7@x)$5+Vme233h&0`GY+CnG;s2pe-aLOg zr#DW0?+$5oA7|mpU2IXe_dF;p>atq2()(DI>%EnEv(C<4alFK?sQzTTXzK3^qsQoX(Exn$X!$~?UpCR~?uUrPAj|N8U8u1u?C&rV&OmOQbv zzSl%)jWx^b*!Zt)fi1^1_&$Wb@a-wk`TX_jzKnticDt_4ubFjhdGHh2-;1_bFZ?cg zsHVd1^%+r5SJ^-RqAbo>{(Jm#;gaRg(%Ls$|JbMX)VW-S}KMgjoz+a&|*?|#r|j+fG# zJ%>^M%N-MY`4zXVq_Xd(hn!-3^?Qo#Po4k!v;XXTHtE$&!}J}Oc4(EJ5S9( z^HN08Px4~8|Do9>OaK3{KJ;FH_KM^uX?;tS|6Pkpc=iG6dH%v<-nz$bU(V&@)h*6(vCX}vvkvwXc&4U6W|>goBK#U8m!c-PJOa#lL) zmz3t~w6(Fn@a6H>r&^+Sd=z`eHRGG% z`^}AS=Y`L_GW(Z>Rr~$j;nsO&XFpjl&wu}6@y59Mm6L21H-)tEG@ZYE^Mb7S%>C~Z zOV5g^-tAP7*vs<6$7%1Ing>PeYj?QF-CX(9etPb|JG?JL<5rz$oaVi6Rn;8BSiu!1 z?6dQJn0;r_?%Un`Eh55E2PF7N-{ zZm;XF9sO5!`Ssl9cBy&4_Z(jR%g*}epDoTQH$wl1%Dmj^RUr3b-%|0*zu)|3g@xy~@4@k!n=+><-=7xzMAA~$ z(;_c@zD(sQb0+DCGY|9Dm#)8YEctnH`hrCh*Ii8uJ=pnZ#o=0=SsTlDyu0_kx<;ry zD$bZI`T4u;mp5C>a@oGOzV1Hp-ZA6!`x$c$D$i*Ns<|CHcj|@prB(aNpD)RXEB>DT z^2V81v0I%Fsx5M5{Qo^w-TTu?_P+GJRVAM?>p0~;HrE3~#jmJX!Ppwa1JneCe#QcX#<`}k%&9(jT zPr@$9v+t0#(52KX^Be8%?I>`$y5^(I9cWS_Ux^V!LNZ=}kuGq7@+|NNri z{;*-kf;H0?_kRry+;^6BzrxbUZozl0e?TF8c78S4e_imx%r_?{>%6p@Iq!bO z#~VBB{eEXMO{?A3qjGoko!xGKYyS6r_^qwF)^fMxo!P(6EH0CLzeoL~d)515r~T_5 zoq26J$-W}&z3IkdSH4B+Eiw4#$G2{Z`nvt+*Uf9^>w0rskMUD&x!VVhvwPZmWi)Ru z7jF3)9rnb^-)4GV=M=do=a+Om$yZ-~Hq&OD{u1jz|NmjxbvTw%{?P^^>|OJd!dfb*)``aeodN@7F1tqp0w6x%H1PZ zTc5`)fAjgE$qU2aEh^q$rkWq$ar%qa#jr>H=Q4|gW$mk8tG!<_zgGCnO|geI(f|Ey zpGyRGzkKeMVsD=ra>cqs{ql{D^fH6=D~3M}Gyj~)KUaCK=F9FS`R_jjziLYpUi3a_ z^(j{8&`C_PTxN0eTb6we-E&fw#Vqmt+rYE7x*dLdcTMhn^?8L-fI+(NxudN!)W6x4 zx_@!7@cL8MerEZV4?C28e%bqn(|x|zzURB&b*$WZufNdfaK)Lk%PJx>(zmGJdg&Ds z?xqn})Ia~j!syw5e)GIsU;qARdQU?5$zxfc~n*|G&H0z~j>SzA=QhjVkNMTQGoz1I;e@j1~+4AwEqbK|3omakcj%|O*xt}xE>`n_Z?VtE+S&`lx zwtM|wd)W5JtXRRfbl;l`e#KtO_n%&V`0UTl=zme?_h!7#3^SD}eS9QlL!nK@l4!Z< zuR5HbUR}O!{qo5hieJ22BN4hi`E}(xjs%N|2 zzpvzCPmodn(Xit8*Q%i3?~i*%G`JtVZz|XRsODDfyHyijg?#SJ+9l@OKdWHU9g_#v z+P@zipHgBSn&~IW?Z2oq*0`+p(84|k)H51-XU2=`#*pc9@r>C7~=Wt2C-ut`a8sDV;DbGy$=B-`zbjziS zvqE=XSp4eatUkUcwdvsx^-eyQlzp;le)ZH}6XzE7{jceJu}Aq`nT1TN`j70@?dL1Q z7Zfbot^eMx+IT|2;+pdRe|CT7w|x7u;`*E&w_hITu-$Ow_rdAr`A1%{#INL?s61oU z-8?C2-px-L%@3R@{U0NznO?OgKs~klncZ{F{##Gpo9{cFcs-o$ndnTN$yV_QlGP^9@wYj)`L*;D)%RDsW#8QkcUw}q_>}aYCTWJA|GzEE-#q6^ zUCw*D-2Ku0w|^tp_H)fjwDfLtdViw({guo|m$i;XaX!DTSH4R)w6rSOeVxp`wWWEE z%kma~n!_zznk6P2zNEGQD1J z@Au4l=YAmUXcLi?9(r4TfXmIGhfwSeyOst z{rZj>w?FmxG1NV~So?C%W;Y%7mVLq8#q~k;3h~Rnl^ZRM{{Eu&)bp}a65Gm~JEgY9 zx*uy^yf5^grS);OdqMqIzfaLOt}EYrd~4X0Q(v{N3$MGHe8D^YZ;Ze6y*};rAAd_! z*%}5kSN?R#-BUc_>6*z)C(rn@WZp)-srwC<&0~L6zT7%l>-p61RkhcoR=*GPe<*o- zi{0egJ^r8V>s9wJGQL?*B4w_3H~v-7lH=>t?|d!Kv{tTP$B}$gxZ-7vYUxGe`*$mE zfA^`EY?r^BYarJ6Tj*8ojup!aFHQC>OS~GoJGi%mRmD5?ug-mO2_G@*+J#$IA706@ zXN$d*|kdZZ|=;O-ckR5*VK?(cB)%myKUx0$^`W4fd>;C-zp(rVr(>X5PB+Hs)c-@urp5 z-{y7fv;MR`ef#IY`_-@b9BZHNu5z0{@!a#uq*X6%nzlT;cjm3}>-(AIi~im9Su;uO z*Pq2d%+A!O>HYP)uY0yg#Iaxby}Q;~ujY8G1(&w!GrwS%`duY?22Wkgy@}18YL#^i z;!4))YfdS<9%mL7FXn8Xay$F!_N2T0Utef#sGsdyYS#|-c$FRo(s2y-z$iUh*r=s`xP8r@oEHQ_oq`FZ|viE0o9~7q{k4@fpwW z6DICU`^gb#S)CIikhA;Q%m2Qw%XUqC{hr%nmf@!kFZXjhS*@Cm>i?RinkTsN+?*Ph z+8y&>N?1I+w_=DVJkE^`-b;J>Ts>}f5&r;lMzzv7<6UzX)_t}d+o z>VLfEoAV))@?9}~Ru>$uYkYl`o$}B3^_<6+tIGSOdaN~<7ZyLvxPN`mwHm3%|JJ74 z{0ctja4zEB+{(kZp7mGo^l835CU>yFXrf~B6wNEjw|2k(GUvzVIV)aG+*QUsf{aZ&sEHS1-~$%_zO{OZD{oGyVGZI_-^(ui5@@vb<=*+0dp+ zR`Y8S;xnV~9&zlu9y|L~eIxVB-MkUc_TTleTqGy8zT9```mFs)YOilsPxU?9$Y!79 z@wB||tljIK6+u}-k<*kH-ApoG^5WIR(^HdQUF}SKY_s*vj{1r3mR_!1JE^uVI&Z?V z9YRy=k|Q4!zLJifv0wi8U+dcUPa>!PQGM?EN$m3Pc`_5XPPg2CZ-4Q=bKjPy+vaEG z`7OV{*Qe-_jnR9a@N$+nvsz@s=1-DUI`SmueOa#0YFlf26=PGU%s|n6KizW|gUZ%? zwcg8i>*jmW%g4@?f0>mkB=*>S(~AA?*|j!@9bEHX&p52^^laH@v)T8(irvDhy7zM7 zrPNN@m}$ZLem#nPd8gW5U}ALe`K@QxeQKO7r+v9MI;eiGj=cZp!<#ak4t==iwEpm2 z?L417g;8toN&D|npICIiD1F;MF8L|HjgMXa@m2Q2PP+t?__cc$$$s0~^_u_n9J%br zv*)*#eLc(fI_mA@xHXD_$=9lZI$omnTAU)q-NWYyl+o%c8%{E_N@ zKl@)0-+q&YcV9MD&3lzPZOyKeFE%IIOc(um&wEC^qifg(?hCPZ-z_<|^gv$1^jDh9 zzgsWGyFPal?_K%mo88>1&*?$&ht7Wc`9)ptN5ww-@^6NR{8iOIl?5!75 zygp8O^>6)eqg#{B?aF`MeEpWoFFxYs=kOm-jZ)TsU)E4^rDtt_jLK8Np52dEED!lJ zDa_~iulaq&-+LzXpR&CE`r^k0ob$6^bv@%Vf4^Eeu0{B})1k?qmt3FUb%@iP)A8_G zn=h^9L62TU)n4EKF2}l8aQbd_nYVpaU%#eA-T(Z5mG57xz23_!p0|~syEA#t9{rt< z=dKI-V?SM&5DsR~ESH=KAoCd&^6Y10hW6D<(Ys8SNGz z^=H+amJN;S;#OfBHDAB~ZsYY@OMYk4@y1s*;ZmAw_g&Ido;p>lqWng!>=zm7?3J!J zCaiqALV4D)L!3*4>$We_v(UKc*A`QIDsf@P!g>Gi&JlZmDr2u*orzBP&l%@3HoGdU zEw9+Ks7=7uWIo5zI{6vsh7kk|Lv~j-a zgyWC@)jg1C4tZl3+t#)5we6e7-2N{YEK8i?XRLeJrrqNEJGp&}mLIwkQ#>osC;ZE; z9WVOa4o@r(Sf(;5u(JP;u>QiCs-;rrSievE9atQXr@Zq0rFeBqq0b7t86^|82mXVu0zU#ga=EOuoSlbc*|cvj%iMUt)} z>ynS9SN}gKaKf^H_g(omok^BH1$!6*_s>7$=6il_R%w>q)4+DWTM9v~AFowhIbh>q zSL5DUR=mbsvSw@9ow`pf-aU=w*BGhr*HOH zTfRNx9e2R3?{Q4=wPU9@K1kd@*|~99_JX*zf3q`%On$sv7k_C=+CQIjQmc%fFX|o|_W4 z?7v;E)Q#JBO*hz{ef#%ro!gxr-F&O_>t^)c?b(0$K<<%e^Y`Xisi*4b_iqcT-`TtPZpnrc?aZl$3tw#e z%(&&9>~Am26!pcGg+cpGmE>G+zW4lc=kcvQ@~f+_E8krHeC5T8&1+>{m5a(&bWFc; zhjn)NqOvMW`&8+#O?u&#I;m00zyEmdJjUT-7d}(E{Mrl8$1SD)i@#0uoA;!Sq^8T za`!I3w3Xw`E32y)B~vHeTr%tKbdxBvlHiD|oO6|D_?G8+xXQm?dwQm7shG{j|9X2~ z-dNBe9ccA>arB$>f+ffQo-F)!bLCSxKR1Vyibk_$eUWMO5WmcqnZEjEM{?(pVy-La zJO6sSb}l=2Bt`t1$o%DHD;Ioa^}BXOF+umes^5t#nMPIii_8BqiO-KR|NBm`r#O)H zdAO6_otQ>#`CV1}zF!bbpH(khGVkZPWL0(*#V0Z$EA#%Xcrmf=xz4*&%lCcy&HP*O zQGS_w!f9v2J=RM0s!#VbJzvu8-)HyDCs*&rsp9`nCZtGO-d$N0!7;o3txacu=b56) zI_;qSvUT-qRZe};@Lsq@IqN|`oBhh0Mm%4W)wqA|y7lbtGfl_3DWadQ$Yi{cTqyPI z(pk2YgDK70rjt9%qvixYJ+r50hD6|d-k+}I5{-=+MhWC5Gy)=&FCE-$wi_<8x^0>`+oCwC@JK4P4A_Q3ml_HFx)A6#Jl`VE8R z>OFHL%8YDw91(2){x`1c&&I=zZZ3!4?7k6p-(f-7zswf-<^x?tMZc#l^4IncbThi> zxU*-?<@+=De3-@UK9{e0-W4kYwF#To-7kKs(s?EMz3aD$rJJXU>#dx-|FNuWz2-!X zyO#tLIoCgSlD)dba#~7V}Jh7)r)f<9e-b`xNAa;V*TGVNt_a!wuH@?t>2#BrIXH}&&8z8S$K4>I0MevO~{ zd6#w0r3dN3tLB(DP57(1MN!UGSmGzw?e}|{+M-YS-{*ewYfJllwv$I5^49iM7V&;E zowj<_@qnyz&XM|io7wEo2}!a4-T!;@Y4+`U5uwXJoD;KY_g!5#UvS5o-^;G=^D5wf z5+Gh%Cbi5@@m6T$`Kfb)7e77!(`i?6(7*4mPQU*W?)AUsFZUPqSCe)#N1XS+|9$z~ z>~HDwOzV!)_TW4)NSd_K&`P756WB=l*F$OR`<5 z`n@7uv+KrBJ=5R1^p=P{@k(AGm(^C1!gt`XXwvk@F_I;BpFW%Xez~qylIF@ycXl6K zeSdLDdkkw%Xk2-irj_=}W&Me--e%37b2YoET}h({cBw%x?8Ht z<34}?n&T;SWVzwWPq*%D{-h(jm+4gR-eaa;Pepw#lUdE{{=C{}{UWtXFYkYOr|zj8 z`+UWxn#VPD&PG=EHLO1r&6Aq6TI8bUuG3MIj(N%_zvln>rgGnp-Jh0hHhG@3pDV@1 z&dL4FlbYZ2Kr2Kp87hdk$=0@-|MS~wIsa+Esfmv{=XV}TzJGi2>2BjaIkPMGro7zX zS@Ct(PL)gFZx$K7?~r?IQ5YxnwN-TG%ey;GwXfcXO(5D?^jE$m9q|L37);Up>1>_|o|_%Pfz-zU=p^ zr+!U3{Bm;eyDxiB#RP6Bu79$7&)=l`r=xlI|MN}W`s>4H*}0w(X*VO6eTyrQ@d%wh z*`aUy)(f?Z+FQDR7wfej2o;`KzEy^+C}76Y^UMF0Pq{olL3GdcV)t8L@0?!#{h`i` z!(W-0Gjpn@C0H4i{Mc(Ux$esIKKr7(F>^YnN$h>RG)<31^yUJ|C#nV8-nDLcy?Nu- zYZ3DvsQP4ef1SDR*{uAm=BK# zOh4~szq6Pqy#D;db)H4{G+*_9E;@d`BY*Kb%cIsmV&-SQm3o=-9HBMt4x1>0x7XY3R$?TU+=@M%%FM~;1( z2M-7Ts%~k|U3w1BXMgP$EJ?L__LAd@_ldhfX>-EG4#{WwrmpBV3M#p_qQ3I~itFFa zHvje0?R0;db+e{s4%gaA%kMvz`n#@JYOnp@w_h&{emGugET6b!cWr$6oJ%h&PTzds z!|PL{c-^{WNl(M~XI+0^I6qa@-+nB$PUCpznuS(X#%n8%DW-B;I(@R(w#qJ^H!t_p z0yB>r>1(8a&&|1_r+sVx>#OnacmGm5m%*3qKJC`>J2zjh^7^$Y>a=cU->l%;Y1Lbt zrM!3d&6A${Wp>4j689|m)o0dye|Zzustlt)IU;Wj6e)2WRyULdWi&*zA zHtw@(dH!j)r@^H+xr}P}YWKW4vN`H+gjD|GyMm>=?%b$)@Hjbiy}4fMJ-hs!Mwe^8 z{#3J>w(atyowBDdysUaY{j96>e76J3j|Bb_jsI`=GCEr+lcV0=`A^(?msxk-mpy;0 z)VJz+Xsy-r_abG_ZMlr^El;wZC$`h%70*F~m*tagtCzWzn$NuaeA9C)zaJ-~>?Ybj zyjQL`M^xNKKK$i8<8;Zd^ZGplj@K@lbEGuXam%(9nt$dVX-ItOHSzva+oHP@pKtp$ zaaPHUU4PUis&1zxt!WKe{x7CrLCJD~`(MAyK0Du)+`swbZtIIjX4l@!yycznt+D+0 zT%{j8_t#HJ|9-OiTH+H<4FJ&U>3R?@X(0zO9BK_X2u4&@4_J%w=ZMo?D%^&VgK~pbU?Z5op@BOY< zU;iUCNu-f?Q)d%Z;SYR2(Wiv8|XfGx=EW z;x+!CmumGM{PossS6aI6SE=1;r=FTkKfCVY(`&WU{N?U0E-zWvU(IuWbCk)vSKh1k zz5aYD`kdX_WXqRny-#)O!`D8xkMDPmzF1juYPJ3<_wTPi+U*tnyZzSQ#K4xf5;N;p z{o8f=uY_IN&*R1CpS_B{BmS%B<|Et66<4c^qC<;x{?r{L8-yZo9X> z{Ba-i)_ckItT`o#KWA_KA^opTU+DURJ>i{iH_q#+`6PC6ZZ_xfC+Dxp_t;;Y{mD!I z&1|_BJA8asPBZ@Vdf~E-r#NOGTRf+0o%K_tx#udSzE)G7H9_RV? z=bG5EzUisIa;{geWy_fU>CKjPcbUb%RZh>Xt(u-aZ{GROk;PwMfA}|LmtNZP=I8o} z_g{a$)!nDF{)nHnjN1nn>##C!Hd%ou2V>svjeh$k)c%@b_=FhUzR=|Lp0iC?>dyEc z$NjIz#m_HQ>cz#5D`$_+w`6P6C|oG|a`(Oii=Wz@z4+==Ye>e+X}8KRMcsdLB>hWGR5?f5P=*z`gUo8(U{K}SkzsKx^`3|p@E7rFspAbB2`F`T}tXEAs z!ROw@t6A;%{i}Jk?`6HU3+CEOCcUnDf5JFw-afm1*~=yuT;DJJyseqf=6ge*i@S-#qO@4N5)TMw73Bo}UCc{k;+h}638@jrY`;|@(}KC|mm=#I(i%Q+$^ z%vFrF`D}SKX06=GlP;#0RnKh8FY;^Ky*t70hk(fT4;9M$Pk+1r{NKDO?URF=p9=?P z-C$jC=lk6H+uOEbrLqu$S&axDLe7)c+815z_TbqlznYVoqn|*u4L{ZI}Ip@WR=){<<=k9;_DJ^~&(q;;DHr>U1CP z%6!(8xPR5W-Ftr-9m{>$w}1V|xQmXP-FhA8zSLY@o)KTMZd3B&Ro2>R7C+riT5i%W z+u;$zecnB1Men@%UnlYXw9dRF@pNLoPyCAV{L`v=Q5y;uNEiD>#m8?c+Re7)8ivvb3UK{+$CwgpQu!ErOEB{UW<49=t}VK+371i@%(ckj-dXNf4%u; zL@tiIT=B`K^4aql+E$lqI^BNHj>}BCG$-Z*-(hq0EzvxW-imB5Ucc&)Vnk?v@vXjN z^Y^qDUn_2pyDpzCd1U(KH-)S2n&h`zx$E}-X))fAcDC~V^plHim9+|N_LSZU47f5Q zUYKqF^15%5FQRPfr@Vg`eeC4QJ>UP*IkBo7b)IzIdSIo`;wq-?`|2c54?z@INhev&)vdurkcB zpH)14v5d>+V_heLEKeuq-efQNDKFr$d z^QNzAy|VkxKo^T;krBB&)4uPFx_Kq^&6y{!9_*c`YCmDIrTM}X7TMDs;hx(!t}~SC zE0bKJaiXWiROeOmvn#yi+q|uw)-103cDJ`>|K!X2e}4R)ZtVH0;Zf%GV>{o+Y%MDF zD?jzQQ~TSVYei+fE3)i`HfIZ3$ClaZeHLC8oLS6osZ?G2=-6KWX$_TXDx-rSSF=uXizSH+DBI-@N=;_cMv-Cd^H%<5XYzrw7P& za?~zKG%K9nC}~&rxvOeZpNylt;mq2Sn=$@-9`ek)`ue%sq|Pd%c*gQ4JLfN%|0_$T zM7lATX_?EnMW@fp)~$ccVII!0$kA=myVdNE{*)~f`g|_=Y{DY;^0<3~XFbZ3Z%q6l zyV+d!Yvt5?oR>Yzk4U+%`+D)IW3Xjb^2c+LGN!KuI_sZ5vMFC(Rz3ge`qyWAZwZ$s zo)rlBQG0oN*^i4mpQxwZRSTYOFtOlJ+1L3!)&24bLAfvIT%NpU<>9ya%(gQp=8OMa zv+{lUyNNz`FD9wEe9Jp%w(7gW-4@XgU%xY#J}F}V>UQO_fk+jPESGL-PnoD*q+B*Hk@suJSj_h)U+A^o!|y`A}Cvr}ese0*F~rrguJ zAti3p;V(;92ZWi}> zm#ot1mj(JIN7g;fs4!iAq_&^?tgUk2^C`wH7aNlI)XsVF#i&@vGx_P75ob^g%$%=gLs+VqJV&35yA z>0ar+k*nEW@N3oOH^$H1-7enPXg+Oo?o@86ngaVB9PdO-U;jPRygu;!#5r}pzgn>F zw%W2NdG$5JIqFhZZ2qq*|8m>=>+U?)*Av;#f7L+Px8YmS;jY3EYthC(qx-l z?VmgEx8E@FL8zy6*|oW6)-K}BuUh%)xY_f)>q;(t^f=Y}`fYjE$Co#ZWX{|-y{G@c zA$6_w`_exwQ)*31uJWwCZ?S0Ii(fBo9vy4k{O7Ap>Hg1lK~_cUUu`M!nl``8Y+14P z$2sQ?&Hi2ywtx1Zqe^Tq%E{fgdu@BXbb->hXP@%}Eivi@cD{IwMK=a1{ViqB4YYPG_4SKmcD z>-MdATeCC1=UeIV#6CNDFOV(D`Sc2>bGM>&Q>?F?fB(Moa^RffJ!`f!{^QE|@gUvu z?HO}j|CsdhsJm-tahFWzIIgvH`~BYKe2-R%<-BY%?4LXFyNmH=x5FnQ{%(<3aZRo= z*Zw!t>%ONwNmJ&9U$UI#*_ija?v!uNvF|R@CC}byhh0jvDo9&>Utr!B*`T`frzf78 z=q+XS@UHUXpC_-nZY>X;7QOxQHRD^!GoH_nZCo8y*%9g#W194CNzIhWucv+3W-4$z zHhcE#=!LQU_U2zDcAuF(o8Kzm=fLY zd|mDKFTJLMMy#`!Z^^kfH&tZuJg=?1>0O4as(wA*SLgpg@86j|zgG)F&B7oBh{sTK9V{wsc;m^ye5y$Bk`D z|65jTS&Iv8idj~{bA#P_?v47Slg|XZ*f}pq&Yxc}_v<_tq3n~-mG`~$wNvf8GXLEi z+vT#8(|7Dv(rh;6ZFn3p>3(_py$XfeaH}bQrn4U|-SK^2&jIyv`@PrI`)fp5F9`lv zS3dW}d4GkJ<<;9C%*wxDWzhK8Zu?GSm#K2cFMs#hyes&6{;!C>w%M2O*iL<+q(6Q4 z-IvoZE?pvd{kY_rpBZsqGX1{!^6tMJulV$n=KH*bo3gtKQf8IUT%PzWWx?Wu{%y9B z1u{?5bRRb96&QWuP}5qxz4?Mr^TYu2GbS#}o9s?^OI-cAdCyme(@MI&k_(Go+g_{O zCnxu9-5&Q&Z*BYYt~~GME=_8^V|jX(Z_l8_5}R;8Mn`Jz507rb;W)S zpSPE|ll!mjK2|KVNR}b-h=feBevV4u6{mL$OOsi4MJ_dVeEMal`<*DIx~o0qbKIA( zT3s`7uWrfO`u>W~lBK5`7ye@H{?XOi2CLfA7@4Mx>qVj3^w9V6+pG-c< zyjH!UPer!$-}-o~Y0*~A3%)#4dab_m@x4!R7piK~9=P9FUii9f#l0I!JguMP_%DCz z`R*y*HEA)+ERFs1H!IgjxcB_H7EyHNNz0UT>N5*gDVrOdop%25iK(j3TPw@gyt*b) z?p}56Z{^od)_+ScMKZsfrI8-|KTbFQ>hl|ccIPF}m$?VT9rE(_-F9A-@%EdlvifPe z64&|M*cK+x=299d-fPT$ijU#*hrRMG^K(1mzkOzTQ?sFOiN}E)TT88{FRQN>F66(W zYn7&QlB@F5JlmISchs&W`lhdWu=oEK#dF$;mYr+FE4ce)CJ0-+zWA_Z-rtR)TB^>= zCoL`CYFQ}de#+pwVc7jYZ?vql{G>yz?nb}9AQ7}~qy3eQZlxB#y>vc)S|=lT&M9b> zm&EjvU(5dZ-tF2N`nufd+D`Aab}P%@e=?j_{$+tzh0DFw@ht~Stfa++?7l5KwQWjd z*@~TRPIZUN7tXJKqOtwyj(uBx8_axm*FU@BuH=ulv@?%wcI$nLy=-3gBeP-anyUx8 zJf5nYcI~|Xy1q-)jd}0KyE&h)U$|3R^=Rf6pL=b_S6lRyEavVq&Tq;|t+V$1%DprF zOWLEed6&Xx|Jl;q&^OcMU+{z8sp0-Y`_%2vt(8(XY>D}*mt5*no7L;B*;g-~_-1j` zt7pgUC;zV#>N{by&*wyRXtLXyM06*YXy~ZPl`}(_C47-sZE7y3wipDT^NEe6rSDaaZ-}NB?~vo=Ejy zkkAvoxTgEqdM@?{3g?yhJwjg{iV3@ClDlF35sta}N6sJFeB>^t`t#?)Z&&MmV!4$4 ziRtrV<9Cz)eaT$-*EH^{_1~{SQuoiZ*}MJ-dCO+6J$+?eQ0(M~bKJJBThhI%cF**y zaaz-7nU>vn`p)WL?1}8fo8Ld2oTZ%_AK1F;eaVw)79aL`$nfS{K7R6H!{fu7x4R3c z{=M7z$mWXEBUHkE(fgd>l_J{jG%O)!Dr-T|R%~;}uIHLi%>Sj(z&vs;R){YwxEW zy-q2D?>J;qZ&;-H#GF`m^Z2Zl{cJio#Ytat7<=J+c+EcE64|vGG2q`mFy|&rZ(~{an#=oYQK>!x_`8&Q1TEM^{pX<-FXQ}9ar6B#eAi~`FE+2>hx%}PAjc1 zJh>2`yuIS2<;k9dyK;&?)|^hiH{sAvO$iQl^C<@WXWPrBecW+_%W8@9*$u&Y2MuE? zFGT7WZ!LPF*y8?qxwZJ!^>Ui4ryBI%czZ{W*K^+VyDt}8wPxo>&EWO>-moVyx5DSB za($}0!NE%>(}j(HiadRPWb?kn7s79EW~{2(ck1|!b5iFEpI!0Z6>P=3V3}*uJgF&$ z>+1^R-cFq5sVv2P@ZjV8qxEmE7~lO8n!NtDd#JRrR(mchw|wX{*;xLUZ!1LK_zF%c zK6dr}mvGPPAFND-HGfVvdGYgi`tv1M>)uzcF`c~Mpg&Fh`fufXlQ-X8y8cJWx$?6b z-gVYu>la=#`8dtSGEworbjI{OD^`7W+P3oiZ1swsJ)0I?J7!hB=V{MbUfUuQ4WZfZ zgNhftd!x&9i9JK`TKcsV_p`de@s0VX{qw~3KHC24nMc9rr%wN-WKJoIo%|;G_@A4v z1#P|Oq(|>$dmmBokMmdZd!FX1qo(K6|5blKJmtyntnW2@*UMSUan9T+R395Iwczr_ zgv8r2`HxpQFS@fc%{czUwtI8qY|BH~P312B-WTR|I`z4R*P<_Rc3U+bUXGHroLw+= z%k-!2HvZ2omH)+D3g}O^OnPv+@a%o<+UR!q-VY_)mYiC-=eN1>w2O7+jkn9!%u#yD za{fs9zU0|;+vO!+{AoGk=X=d5?fA=U(<5&Ft2vd`we0Y_kUH_&z5Va1!}F&9TqU%= z-Nen;#pUd*@6S!H)jU~vBaWYC-~9U%42+t8oc?sI=Uxfxa^rWAeFC>xJExia7OMFA z=)^T^nXlYuE^bkE53oADYk_C_TgymOL!G&NOAJ=M|1NaSxN!Ym`=3u%DDi&!=X$uP z>FbxAu<~yg1-&x-&s{LS+RSGEF#p`DcV`~U)-nJ6^WaJJd;atJ$KUbP80LTCw=}h$ zXT$F%+@MwZ=GMZwXMWH8{_^dF5UfY#e)i^Zly>5rS@xL``iwe z@VYauTY6LYWOzfV-NZU0h1kQ^`7=dyHQ3wUnJJ%LBD~?+_obq~kDK{kXjy;a`Z2XI zqC)-ba!oaHS5INHcU|kA7_10w7dty|=Bnqbjb7=BZ(64B`rxm|#a>?~Bco{M3HN3P zHuW5OIk9Mo<@d1v#qW0Lo)eU^I0 zp1dYgG-dvrg7Ce{S>Hu=F8{O2So8IkS2I`3e|~xUd}aQr1QElzd2_Pk`Hx8!9$#Ty zTa@-ZaKbd#o%?6sUTx&%`8OcC(kEoCWkKkn#kYQMoU^jAHp=~tU*S3(3Bj1RKRdr) zG<^PVhWf_3^&S#|Gk>1>`K(HLp2PBV|CZI#-$b_F=A9+uY^%KXV#k$ge~DiYv(5U_ z{!eb-Q9tQ+Q@f4Z)+KTWCfy6U@YHSHp5m(~--|1}t5CTg9$TWt9rW6vIQy`XN~y{# zW!pW|f5bG+OB_x)}E*7;ebXIK6Df3H4z)6eo>*-QREjQ=}-YRv2_2h#u4UMh?H z_GRDo`?nwRyn8w$t)^`8PP>gpbTEte-CTd98X)W8j|GE&?HtlnqNov}P`h26I5$A{dt_idLdTW7WX z`?Ql!X8T=Z2+I0$kIU}il78E{%`)b%-|pP^z-L3S=3L`Ag)qn0RdUf6tVjZ}HADKiKG9 z)rL98tq!YfT%P_uY<1n+JH37peGzQB6T_AmtM;ZCJuSS~KdW2pg@)dN=_Tg{x5d5v zwQu+3_qVf@Om5U0O|ri0e0^?K_08bEb@%47YRQV-yyW>~bFTA(|C?E6cAPR+dK)}{ zw^x$*{6fXY){&=dkJ?!p6lc}s{SKdybN+U0dRLRwuXS^hZT##H{&QQuVvT{PrG@1u zzX`WiYJ_dm=Z|qOkKnN18E^S}x3%|=>#nBR{?pdj-F?;6cjU=IE#b#cxB2%e=*4@m zf8FBn(e}~y#FwU@6{5~wubsDH?YfvZzkm3j%#DA&J^JZG-4N*@TjO)PxOT6;A+3Kw zw(fImrMv2}U9#^zt0K?kp3$B9H0HLs&>NF!-vy##p4ChYo}!ugd9rdJ<6oWGKYh>F zJhtoTv)cc7vR$}Q-HXYM|I2^P%e)p*?)Ou2yTlBqj1P;G*2|duC}g~~^x6UALUl|2 zvd*KGGgqxw`kHa(wVS2w`x85df6eR8D%n4=K~I-{?s@7n<#JSD<7!>k^M2CLSeifWf4*Y< z^M9u~_i$`m|8d=SnXk!v#OEu^U#lsY-MM`3zT>C-C5w39zk2_ttz`Z=?#ne&46Mzj zA?H0WOTRz1*k||goI^K5UKcEz?CIn;ef86a?_Tfw^&+r5w9nwFjM~~uhLfT}(#@|`*BLJgi73dedVk`vZQVpR`}s4I=BSnJ^;-PS-)j9Q zH=UDw7aikOcU?FCzkJ&FgHxmer37wr^N@ z=IfdkKZ9?3{?2}uk;QXlRmQw8FHh``d%Sf?$@3g*o#f^#|0iF2^JCt`=v@ujCaK1& zwjQpX+Rye)>Wc9}t4nr#SCm7)m;2wp_OM)C@KHy4Syth%c}H@0ZORjOHP`&REBD$Z z-cQz?6ZeE3Vp_NDPnEO!l#uJ^@+=&8v|PAcqW{h8UVxd}hUNEdlRD1Lk}R0>;CcK$ zX^VFs*5zEA^Il5((fP*~Sy%Q(nQwljV>w+kCCfVa?!zbF^~82NXS)2ix3;f8s$%gf zw&Y6t{d2X}Kkt2Q)AV3Jurb%_xc&C~!bgMOS$Tc@%_cW#-?MA`>h_D<_Ac)ewkg|I zCQ%+^{A!Y)|F-$(Os=WbIo2r|PV`%~_O0Qoef^&*kFT(MxZrMZ<$jN=!F_N0cE{V! zcE9sP=SF33_0__vqJ~QsGeomwK7IW$k5BVx%_p97NrxtPe*XEJ``-Ob|CK*}ez*9u z&Z}8G^HJ>YrfHhIRbhFiyCowR&f5E8!og34|E5fLuT|f7YF51WN0TFWZ@f{x=}@W9 z6<^BO_GZ6$oi{CHvuB#QR$(e}#PUUn=&| z&F*geHfiVgK3Shl6*r4$hCD7@bM|@NMoIUCQxA7oo=nRDu3cT!UXt^| zVvqEy?P#4h$l6UjvC~unEm0#n3QngC% zqx*B7*K3SqZ@ri+=sVATUgIk7V=4WCx2=rlT(_AhX!L#a`i-+05C61X6?ggk)bMl0 zm;Q%t{~X)5NndvE>Wc8Yl-telhc2T(P^*Qs_#!TOO^{5(|i2Z%yLY>Ra1C+X4gJ#DeE6PziyaEeE7ZZX=vrM%g6UORemV{Rce*F zb8)S|U-iD1J65?b__FJK+uzB)?IE6ZX|>B<&(vFa^~|}+T3!XLi=)y@-Dh7@nO2tk z)H`mjADjEcon^L`PolhyJZ_oW7dH-!--4v-cHyF_&%|7S%KYMCsZhsuKf2IAe-V~k1Ex&)1#+})jmihj- z_3qLcdv?t$denbEd{cdP`~BQQ_ZBzo=y{d%;!nQybJXJ)T4kGvKaJ?SN%_Wg?o z_FcEq?w_&5V2f<>mdR(-QZ;7nN06Su3-jdY^Ur9`{?Wi!~OjODpA5 zb@xQD%&A~;cl^Q|HB0l>pEX^5`!5^MZkAIwe_(gk2Q%h8D)p`&D8k6!gsE z`|mKzCmZU|U-@sTU)!^+Wa^sgk6bR#*UI(xq$SRM?RWZRjj5JQ;cJPQyQUoOzjyWL zAKJ-#T=xCL%X^k3X1YFo5VwC-$)6WDv#*A0pU*qCMfg4UoNIlL&+j>SG1ct%#Jcs< zrkj4*dCj+5tGtU%G*83(uKfP_p@Na#Gc>GE-j0l4AD+7F@jSt3o#$r$QfZfxMV0H1 z2j}OTP>h=2;H*A*8lAn9O_NsJo$rhtY>z{1-9&Pn8&*EOU`u@eN z-|wW~jcEVJ)T&{$_^?9UhtT(;PyZZ?zWA`WJKNDYeP*G1?%dUO7gIjzKhC|*z9Z`e zoBic^$A7(Ro;UlPX8x9wE|2}{scj4ah#dj9-iB_N4er0lSmB%Vgt1p)wPd%A+q*2+C+w#-pFD^DGjOG*+{aJU- zUhPoi)YVVz;{MDNT)BpSYNt>hWzBT+kIWfKZiSl>zSJ85*pP8;D9k=;7C;9o;d9S|9F1F!*f35h% zh1Z`C{waO_@VX_c@;Y`lr8YZq~1OGs9EVOi_N~ z;nc~!KW~ew`Aa=Ee#><7$^DNGi+9g;-M+XXP4HS>-M!%1-!_$9zEHhb`V0 z7teaj_M}d%d&~D%M|HCbTr@AAcim|3(u3=_>sI77PxyIycZSto-}LpY3!iRM=6z=#uU+5Y`fXCf zaV4&<^`B~{Y+f(TbF;1B{A1JgKfZjL{dn<5rQ;`4pLJ%}TP;`Uy~DiY*{5VbeS49E zD(**Xr-v_F_+0t%v9$|tJgC0!9QIHqpz@KQJLe@qi|jQSd$uynwLRp0?#QVkQzrLp zM;60Lzb4F$SY<74X_>ulqEK`0w~|@;4@Fi={(bp4w*CIGpX=@#-SXLgSN*!u+Gak^ zdHEA&&8+^Jcitzr+|o5Db6x$^=Myt8q;;)dak#ue=v>c<+aFy#;@-a4ZZgF(|I*sI zkH5>T5WOn(*hV(=`twJ#UN4Bef4}_sL&5FEQgT)t&wbQ)$W(7%_4y04U`wWfp?UNM z)AR(z^)k(e1eJfK6=$8ExbR#4y$}1$xpd~eHZl?5lJ9=*FZHL4z0XwPw8G=r=U*h8 zyZa;mivMP*OpmX3=6gm@3a_nu^>;n;>;eO+1pFjnsE?27$~U;64EewmkieUa)r>l=s70JT#_cuB&Ks}Y zqH%xq8v*;=3%62t-I@?{ikD}aVq0jH&|-$Kef!Jfyk%E3)p=yU`CRepPyGMO`|p4F zYhC-@MeF69k19_?j~PErvAJ)ld;0tPIZvlaR`M)O_0acsk2^nqmfCf(pXJlHH)}q( z{L-lUeA44`y}5hN`OlcXG5VeRE3Y-3{zgF?roU94@T=(F_E+EU%y9O85>vURQqq3q z`{1yC-dDy`L$@qnp1wN3s^gf}bg4E&ub=PFuao{7@msG{wsES!ifdc;PMkdNy6WA= z7azTQ0_DB?-rT=(yxcQ1@Y>Vwkyp}9e?P1=R$g8sbZOD9b!vO&{y5eXH)GYFs{Qi| zt52(YpIYf3b(W{b-zGI))z?2pU(@*Wj`M$)Jw9{RauQ$prB`;zD=t@@<6O5yA#kxW z%hk;?|1baf6Zca8!H3h1uYBfQRFV5+muotsR@24U#az0kXr4r$U)S#9ck7HpTO#Aw z?!GcnURo9;{CM8clhJR(-*vCkz5jKF&LxNUb~g-_)8pUO-}cSP<=V!v&)@R;Z_eU3 zUnHvQR~e>X*P59$|D1Z^%o!&RU)vS%^7Q3Z@zxis{>C<*j4S?=xi3j~S*fu{U$;z* z++(@kADO$#%kH?Y$Y^@|e&W_&Upv`;Zn56rSN=m*<1xo;c~^ZY_5EpA#MnK3zXwm5 zzj>AH!Iz6|xhu6(qRsGKG8<*jh<$5?Yp4+ntx-%t=}kBHj89w zHlFfqmKWa>_3FffbkpcNKd(8~B`6kTi(T*fwKz#D{qXLRmgnm}1v9-kXSB4ud7b?0 zXMcNFrj_fy(CRWtu^39gtIZ*7zcJ9^w?7Qd7w@ZA;7Tees2hczA^(XL+A4;RyI_b>80U@Qb@XuiC(_~vyF5ImaNFd6;xdV=|IFZS=l*wapSu5q&v^^}?T)>0%S7hiT8_Pfe(7hKRg=@E|2VVz z*#qNGd-iX-Klx;3!POY|`mDNnw=@qNyt(n+2NwOQ!N<-NFCQ1Sdd=dcXUa8S zTAcsubKbLh`Bc{1m#j~^_v`xFXflVa|Mx=T&rXHv55c=9UoJYo>G&swpW3Op{RVTM zzIcCb`ma4{(Xscx+^c*fRI{_^y=}hvvunRx<8+K~9?5?eFva%$>W%*%hV ze^_$z-TU_}nRz*vB*#0d4xAApd$*zg#my{N6nUuBpwZR>a2{osWGuZ&%NL0pY^IzWWmL?^MCV0^VHRSb600z5H&l zcrj_$s=2~**7{#r8I{stzw%vE=9)b}Pim-i9iIFnb8=Es<|WQcGOEFW^@ra$Ui1&o zKD~dd#|!S+a~aPca9j22cVPS6I=8c5{ZDyYMSe5kzi-X+Z_DH3rfRXOtA(V6|GYP4 zw==wOb6>qs-W&U)A0tvzgBA<_d~)Gd;)%t9xzD85o|&Jx=JUdq63#jOakdw0=Koa} z?O)_z^5?>-43le%|MQi9@BC*fUOMM_`te)ye$7$I`Mb{Z*}w(|8m{Srm5@rpU$LxNyma-dV4K;cqORFCg`&D zp4Tf~WxnKmSlzHvif3Kp>6s=BMnM60{)GKrTX8GHhh1W6rPk9ho7xGd4phta-hBTy zF#bxIm9xxI^VQc3<3lZ1TYAU82+mJ_ZZLD*MDO=<)iPfd7rpp5Z&t|E(C**6`#+Y5 z1gJfW|Nhzc;I}wFK6kU;rypj7X8W@*p0KaY@LOy3pI;MaEf(3Ea%-Zn+xP#iOY+Mn zfBb!F`vVJaK{xM$pLe#uf8xaZBWgpsT=tT`8K;)SK9}e2Yn{Kzcvf+%&4VSGn|h;P zMM`fETl#Nz$@P+Zq1vxrm&7dk_0M!oW$0bEyXV^79FBZFV7$-t?E>exZ*R-Ep4%kV zzF$@P{O;~!MPH7-eE9TZ==_@YdB+n1&z4Agm(E=LYT@Od7Pntz*58fnd|bGmF{*CP z%bu2}u~p{vU*_6&HPy8@7wK&6Jl=UN_*#YK#ig$+ua+J@m+W?Ww&IjC>s7Ta#M7Q! z-dx_B-psJwnajWS__w&}A7(Dw8zArHf$C9`?b=4m;KBIuKVx&U%O|P zdC!@zcP`xsJ0bS?;NQ^NY3b{hyN7IA^J`sY{8Z`KImi3lWRKrcHnHk|Te0Ky$rEQ} zXW5>VcrH52oaL_h`sdG5Z1oRp+FrT*`sa6htAbYdyqhWV_r_nXcNL1;-TG~fe1o|c zaL%6Hx2C=HW?tpum?+Lk?rP`CX6F8xQ#w6xS+@M|%KiUW?Yy`zq001**Y|~wXWTzI zd*$Y(K9-07Ti4$IvVQ-+z}nv3-Wg{XU4BviZu;tp)|NtV*ED|q`Pc7QvHPkLzlT5l z+WimBGPr&9!oqW=ef{6RVW^5*pe(zD-2WTju(J;|Zs<+02E!}r|1 z+84ibh0Mw8|7%a}KV0!k_rv_Uv*~95ZQO)()Yky8-1rH$zp0&c3{P*nj?1T(Z|hXnm;CYa(i6|Q_Ue1)o-d6npS6Df<#^p% zqaT`IlLc2#dbHNy-urmd2P%6$TYXaJty^{2Eqv9kmwBtLr2hmp-m%}hrQpbg*ncS> zg6-b_DtGaCzJd9D)s-Ww-QFAsk9+hkbfv=kZcXowk|z@H*Dt#GsP13r%yqZYw=2D~ zn|ZX1FSKyEeE%Qez7m<`uk^pXK0di#kNt@8xnc{c{5$^fpR4*9z9fArJ5tG0lJoGl z<-34_yM7Zl?mNx+X;%2zmAmpkH}`S9;l7r-qwZ7OV@n~va&EnJ=c`6(mug<`3r>C@ zbf7|*H(Pwc5>f1-*oN9PyKIqKTDr(IBD4=_PZxne4k_fs=r`j-)@sn z0qdguq_*ju?(BZOP~od$Z@!+P`HdfEbyfbp^?SVLYnfC0R5trlS2?>9>j8`x3+w<{(Du(^!K`_{Y4>ts=w6# zZp*Lt$o4Lp{-n`ndGph~2cHBlQttTU@y;N4!>#>ExtC(YRvA}L_kVgR%2RK*mgUtg zUk_M)<(ct|r|ePS@oTC(Z$5T9zvp3N&D9Du{=LWjFWPQ>@#;MewNnYU%~-m;oH=TLF& zuG+5~x1}%kS-2;BJ;UZG|Kla!{_OdsBDN`i3;PS}=Te2+Zi`--zq%}HhN;1|y#Kv_ zPEFqXSnJe}Gdojv+-p34FSt-4d8zg5JvUpE6aE=3%D?2a=4guT9QJ1%SC(#?yQFgc zLf6nG&+Qh;Sikx**I7XNzF}>0`~A5)e9kMbGR?8w->xld^K-BEtmS3@b7m<#&QYA+ zb25Qv|FVfTpJk_6um4vnbochzf6w0UjW;oT*QauDp5mS3yPn)Qu!&@b2x^+bk!*K0ereB&4RQ`Ijii^}<7@nW%6ye{%u28F zef~@D?BDa-hi!lL!eg=9V>&KANLQBOjhd6cFT3AsqY3lVnMbP`)(YI-kd{1q$&!TY z)em?5pKHNmf3mUEM56l4?js_1)irOwpRxLusma&e-h7$$k+1CxttI7Tc&uG(T0iVq z{C!@PB=3u4ZuzwjcCLSKy1v1^&(%`n$GwTIdGE_CZtPTg?za5TftMB6E9P+KAJEZo zF}BSz&i0yfN$}7=f#*K8d)}9^WvD&(%VIS%SYDPUHK(+%WOnMVM?J~b)8wu&pVbaA zub#QZiuwO5SNpP(FulsmSw?%3WfwlL-I9Lx(BJpD;(d*!d2SQ67QI;(ZM$1owraWA z{$nw}C+0lZ*S~x2Z2y|Un5w_Np>2cgD478h2zhJ46Losm|l%rMvbj4OMhzW(y=!rEEO%dVB! zY5lrt9r!d{wO8d#i|+AFpKr!zM=9U>S=g}ev7+hDC&E3aEx9KYq5U003orw;eltUFHy zwmd%fHRi{Y8(q_jlV@C#p5N5{OVB(a<&*Hm`0|eVDZ;*Y7jx~{^ZaOL-XFjFwx#Dh z-u~d_3fshd*xzJ(+49&t#ZQ;7R7Z%PUh3T7r#bz#(N^mNLVBN9wy0fy@jcl2#OLjo zW~}qymHHy*2JfrgtwlC>n$Ovs3Y;%hu zdz7h;=Kji_yrchjMtQG2?paWMtz3P}SBcljR|?O3eG_o{mu>$H>)+d^`^JT(R$0nQ zdc{5K&9oDpWW4$OfB#*-%02Jjd${}w^TxbM3p|%}^Q&{6kP9`}y0}?*`RA`kJC63x zmGPW1w`Q~2rip$xc5gnCwKegBQBru``d$4FGSY8Oz9?gNxOQbOMwm20oR-d3L4^tbTb z?+fR&zD6s%wBNFy}%S!+1*t>~pR*!#gOz^9DapSC9>a~v_o=)83NJq>TN zrxvcXs=IRM!->OF_cL(&a&7)wnmnr@utNW7#E&bNS_RAP)z^!yFBOj{Z@9y^JN=ED zThGPBfY5&7_mR_V`OK_O>6~Rhb!APPxi!C-db6=(WySRPtGaC0Y~vsI{kV9)=t}PK zDz27Bv!b4Bmy*REd@FjgB(iK)`j>?-mCo*#`d_l3^5kK|z)1_IpVNIhzrydi!gGqFY;dJO0jk%q=lzb)LNO%;KYSddt6-)yrEj;rn`ZxTxBPn59g^QC9DBS^%wS)7uc)K1+)|r6 zHd6#oO%qpFxB6=BHedSCl}HxV%)F0BKgD=zG5FWoRhL+7zbxdp?Q|7qa{03Q@5u-1 zme1Q|^D655@}S2P&eu523ZHj*!p|?c>%IN9m8@Rwe9^|>a$e1L8=pKM=c-Rr-z@&3 z{%Ycr3nsU^_m{5Kvb6g0;Oqa;TN^AF*IYL?4W8V;tJd0S#oX@io8(TdyL-{C)AdBC z+G5MA%cA|<*B83j%yzEyxmtIB+JiEl-x|rscddK%MrP(0cg@Sc9e5q0>JQDoH1FKY zVtMQE^+x5PyYDvIeT>oW3qKrOo>de#_u1SJPQNT~y03H;443)8ThD63u5HgZ?h32( zo>+dxbMDm5Ejwmi^t1PNF}YlQxKO#4)4g-$>si}sjuoKk4;_oDP&=Ckdhw%RtxLWp7!%?<+@fUPn12bU+A+f(Dc9?Gq<&i zd7ew3+q=s0`QK{Gzt0{&c%5^2v1a(o#A~l%YXO!T9`lU5xW4#R@VCjErtz%5?jBRO zZoW@P*O_x>emw8$9wiG!EY|FMqjNSyefh-ckAGj8zF5CM!}s8+<+FTK))w)d{qa4n z{*7+7cluS$w_aKQOSU}!U6|GFSF!qeTz!`s*98BUE0edKH(Yfrw0NJl*q*?}$12YJ zT6~;GBK_v(C7FkFC4Se=`d%&_#+seM-_C`f z+h4zYf7Gw|f1mf)@AJItEBfoWv-X{ZzRmHWjjPt)_^VT-u4f~f8u)r|U)*NrlibeI ze`;QC{*>|ZkTpl<4WXR%>{agi9rvZ4Wp6bM|9@q=9Opx2?({SBRvTS%e)_vG#3ZTu zStMI2XW`+w$F|H%fAp6(+x*AUZ;M>=5}cbppOSo5SbwUw=fTQVvo3$1xmUgK+stxr zt4qaVveL#ketdOt{HWn1CtCIX^M|5lgFUmA1KeB1er@~J?&0L>x^!ZA@}u8>Gny8- zEEHTiAzw_^e)AT0Q_K8!f5mt=_W8GYd#$fid9Z#F>&<-`OIBIiznkJNn)UDboau7{ zOgc|>@)`Ht`Jr(3wce_I6HH`k^M2NQyLjt7wCbPr`D1g|Z&O$Q@89S5H}6V*RHD}T z%kudO`Ny*5KleUh*!_O?ms`!hYfpxY&3h;k{^hOsoa$Z8A56=4arjn!+Lopn`^(WJ#j?J(Oh!<#FA^KRi6T9u|5R=rZb8*cIF?5zA}ubE5l z)V$vMpipVw)&4Fkq5E^v`(oy;=KVWUzA!k!wbs0^>Pp-1RLiWLYh|9@yylznW!~iau?;+ZPD<0>TEyqwa~qqj zDND_A-c7r5Y3Yu+CFQl1;tO8AkZP;)USZ32gz@)w@BdTQt9YIg=Z&V_{(JJ~q-a&i+E>3M7}r?Unk;)- zwRRWRd#zK;^maYok-zJ-pk%k2uBh&L-Tj-xJWKMk?9fBD{0@mX=Uom z?wy`k9HcjCV^5V1?@>?V<#Vb}nZ03PiD{d%ahe3>ReslJsVm!A zn>1a&aM7i}D^{eS##L8t@w*4gy6URWIA&~n_HcckRoayMFHhXu(OeX^{Q6|)v$aO+ zs%IW?D?gNVuVnMx@GtvUuTPIy!gIlAe$7FPH(U077Po)>S&=n+ef#4NqP+i>yq{io z{`U)BNzW;lJoZcfnQ^}B{@xS6EB-C{c0V=Fv2;qo`lng1ySFp$I9AM)zWml6ZZ9Fb z=_^crgqB8qJ5;{r1poW^wW5v-mP(f2E-#J0Z@;)kuX88QEAJj*^L?*B2fZ|LyBl~q zwfEI8o&L-E7NWo2yx*VRE6Vyq%k|@ud7F3CSs%-vs&Dx`ZO{J5ZT+8%w_N)BukX(7 z%9V>Yu6h#^5HjD#uqSTU1C=G$js?!-<+e1NTlG15TB+=v?W?Nnl-#Al(^FX{zDh08 z$y_&oa$>vm?GrY4PDelGkoK~x{kLjK(8c{33%!l3<#cEJysus8CwouR_mF(DUyp%zLvh! z>+x?x_gH1w4*A2c1wS2%6ur2{`P{Kp&u)B<(D=0B!oE3wx>#b4w=v}(x+QznTYSRY zJJ)A~D!;$9x%fcxX+aH}+gr=Gz5Twk@lfB~brWaGxp{_#&UCvmjeqi~WE1Z9p<$($ zHZD*9TX)_r{)LS7K_mWD3w{;jP5DP;xBtF-<@Jm3$8)2vasB-6+`m@)jdZ<9c!g2$99@rx%+pA7*A6-o90U;<_#AtPFv=!J@#S8QyY`3GTwU) z_%t&!5+Cfi{NdkDg^wQHeOLO5-b62(T-1_nb?kS{JME=UwCD6&ieG6DW?B8wV$uAn zd&yQ?UVYtTwtvN`v(iN|-uqXbvWy7*y8in5U!L_*ucW@u&EVNzKfCGjh1j)oWLf@Z zINslT_4SqY8_)9I@1J^S%AR9$g0ea8u6D0GGO4;YRJ63@T=H8r)8$u+Slh#e?!56h zJAJ9OUh&eYQu_)fX)vSuVWQTo4#q=Ht$16 zF78_vAhiAbTb@aKcCz+-yxJ5gxMK0ug;Q=#NPIg>&GIcnpVgcaqkWHd|NrIXm~87+ zyzVsD_PJKg$AeAx&0c?~^1E(C_o=ESvUPR!k-kba!=@Duh-(etLE*VowE7eBjF6&KikTw&v(__=)d zK7M#VVc*un=iP7KRXW7u#60WS7wfOJ6J++h<0#ZKw(eYPxANDgWviL$_HlF83V%F1 zi@k03_p7CiS5EGqyst3va!cWgu1_T*=lG;wy?bn?n`zmc_ihP?^Z7RyU(H+*Z*XhJmY%0m+oJvz?z|9MF7?Nb zftfe$&SuN7xW^~GjfK84`(MA8%H)s>EzEha;x^;LUG5e_&%5R& zKWV&YIqBuXgU2^2xHI?5h0MI(HDy-0$io@sB^TF(wq*uqpE@@)@^N8b#T)TE65+k` zcG^EbQ?c)PkxTMy_oKVquS>W2@Otly z&9gmII`%j0x6|)+&D=k4zh1mHyXv>~4-dy}S@S+{^R0{nmd4?KPX_;*^K;I+=*+OI z$19X>c>Ov4+2ym&2m4ocn~KBaVpngI7j2#8d-d&^-x}_pXTFPd`_5X{e7i~VMZ{*V z@|FWym?w&uf`@5lJsH1b0pStYFJgJZ6a<5nXn;d>= zVIsTt(S<=~@ggrmw#@pxeihTU@V8$aE2i$ZJ{MZvze~GDz23lQr_u%=3C7(!pF2dC z|I+w4;T%KynM!Mp%ok@jUdlL8`SNjbIs1lWtxExCwsG3auFm-^Tu}0FVw+9>&c0V7 zrFC2GNv}8h{L^lKpw+9%tKEwxR;yG@YxrDja_8EC&YoZ$GuB@WG`Jc@e{CM5hb=Hq!o`opC=iPo;nfKoNx@v8f+ut{D zy!GMEYVF8UMNSb?)kVbz3D~Q`^An^qK=&mJicp{(6Nj6q~FO* zEwOp_YG3xL*w;^Gg!68Sz1F^R@Y~JhoNrXWo4=DOoL}o(^JcZg_37m~Sv*f&>_4{0 ze)js&63E8Zskh5`%lG)8id@c|Fa9&nuWg&N`iS(?4gErAZ_X|540*NlW!aVb^D2Fd zH+<-vW653gZ<*Vp_rI%VO-S2UyR2qA=!n_037aKen)6#uy0NM(bo=Vc$l!8|Ih-9m zPS+jIH7K$^Ik0@;-S6zHdn6CTg^+gjyPVA0g&r}z%X8mKSl z?*Ak>&!4+kUiHwWqusZQ>)HP8Ew2hq{r^3EC(p#m-=DDfX`Qa}tNk8ybWzIr^yN8Q z|5Quge12W(bn))|W686bb)LW27j3x1;p|Jh*XLHQ+h>_I>2pVI6}xj^>*qNdhXQxJ zi#3-`S)VJE*zfmumg%wNeHDFkuNrP;JiJ5e-I@^J&n9LwOYD=&xt1-~{n`BNL1z4y zd1b7Y_s_jrT(#(YFt@e+s<+mm4Vxcbt;`RXs=qXU){e)sk1Kwh*^_e1{d?fI#v5Pn95cUrb@8oF5i-uJZ<7?i_a_SXsEnnWRF6HN5@a}i<+9%;x zALmpb`!4YCxX0GO&xK5O%9q~B8|Re$TRHdlj0;`KOiy0~v&?sK&{0~}JFV+bP>{%j zoa7nZReSfZRPTLiXEn9>k=c{mf}yYfcBG0I-m3q6tNPG&RfEOK<`rXsw{vD@Ompz~O>V)Vahr8uB&p)q-uqsG#37cxpMWnl2OF3B ze@#3T7#Di_;@am$FXrBQYCCII^4*Q=%6;~$%Nk_1sQWMY{QKE^y9XQPAHUMjzy3LJ zz3Xam3$6Y>xeWiu>XMfW&sjg))$FxpYT&!fHlO9EJIjXdoY}JBa$)to;CNlBNuQ=|Np)Yrzvpq+!EF89k4uv$Y*Kl0>QMjV&#uCr z+1vLO96h00zm&})3T zJcFukCuCXey|eo2#w`g~Zocf95`7|E*ZwQZquth4ru$Qs-@fGxzoX|VIosmq&x>_E zD@>P#U##3Oe>wY3*^h7k%6mVG&M5eQ*>Cor2X*%0`||Y7?IufKVVnMZ{raP)b{^;D z|FU+%{%1XBKmM$HdE4sGix(>%U6^TeH0|B@n(83s;zjp5cMIJ3Hn-mVfw9%GHy_u} zF^JJyQlV7r^VL-G?sxxpAKv-DRCvud`||g9PprPyA6L8|nz{OegupK4SVpg|zq|Qn zn5=%?vuCyV?xatuHAhuDS_lWtkI#M`|MvP{ zTHlT5kE~VSeR=bn>(=})rHc%`-8A%qB|MdrXYNo~T=MGV|J6aVTUYtkJ&?S|TNnFk znd8}0Dz5|Wr@UttIN5OK#gf|(%C5TaeWi8o+{On+Jt1MaY3rA--&5`5zT;-W&huuT z{Pz}@lwG;8;OGgRz0ZYQ&fBpqy`d*4>S(e$%g=gVNSmPTuJRn4!19mlYSuh3x}@yy z!gkPb!@Tp$V=WciQs*>pIj;5DvT{+&>AIflR=0w;D7qhcUgM*>d0sO6`+s#k#}9mH zSX%w>(87%wo)&XHM*2sayjxZ_%jo0g6oJ&6hxBFVdcHN8Zr-x6_+8{xmBM}dm5b!| zgyj8wXteos`or06>AL+}<^L)_D|*zrL#V#+OYk92cc$Y>c@?JeH@||)n=k3->KnV?V{SG{wD3PT<9xbm8QpEw>+ra zd*1dWpWI^4U9a3ZKHc!SG|y+%oi|2|%F0(=qL;r|cxTC^l0$XcR`2G1Gd*3?l)F-X zT6IqK`qRBc{n%?TGrZDEWZ0(%<%tLol z+xB0!nQe8!|JP-qQtcu`>n9e!`kpL&eALE$e_8F(s=t5jG%c=k%i`Ii6okJ{-q?KhLW;l!LQqOVFK_7SXnzx76L|FYkW*-)+nNhp&_R{tCQ)w~@{I^yw9{d+T+DpPYDQ=YueGmdB3iFe`s}S<-F3O zJLi6;ec5bXaX+`tg8S|7pC@nbI6URYxqr`pOjP@RmQi-vllAXkF8DZ2zv$nR_j8W9 z3En*z^42o+e2iYtuf1t8Qhz1|zh|@8U-UjEZjacC+d}&S?6(ROP7KekpT-;T-RQ&C zp0NG%j~@E^LjKtmvmYN{T>Q>vUzGCRPd@d|Up;y4Eas0f?i&Ip&CGwcQ04cwzNofp z?~?t&zj6XC!*6ul@@)6=>kcB% zR+Rp~?lODT=cdES&x_1`xymXFOK^hRic=C#$?v~m6Cl0 zpZY?txxcTScKo06E9>kq8>f(2n@?T7Qm}vXlxP2Lukru;>GI^u_l^GM^eAPiE@{nQ@OOY_|xUsY;)ev z?@s@|nJuYo|6KI@pNoNuetn*Cox6DZR>P3+nb=mboeR+gb9??R&i!&CYF_Q*p}E zd3)gXA!Z)PQeqO;*P(nw9A!uzrKn$|q~ zz;w5FcP-EQ7u!f)eO_qj|A+Tg^>)doi+#tQ>N4w!2hBVC)q1Y3-0Qm&e@y=OL`5_1 ztB1>;$;!UQM^xXOS?m`aIPFtWzsBd~&;PqvW`{o05iap&Z?Mq#>ao|{W@|#2{gLU$ zOeb$$%d=g*>S%u%-{*T#lVVQtZG5uq=5yKQ$AZ_ZXMZnW&-(r6obn5IrJBQ?qAXSU zie;)_ML*c1di7S&bon)#y&pw=EpT;Tdr!*oy3Wt&S&D^+%k-vHrmMf3b?>C+GOL}U zQ)6aqm@Q|#ab5WDc?M^B&AbjCX+6H_w7ciyd+#GVPhY%uTGRc9Y5wjlSIQq&Jy*YJ z-sivdedt`aZyT4dyZUgsa3R~VP3w<^2UYV=eYx7~o9A20@^fyFJ8zWwt<&7cR}z?a zDP{V{`=+(g?eSOjUVVxc?_7TH>7;gRS&t8%4)0&ToO~wf>)yp3izbvW<9+gE$=f5p z;$j4Xy3-DSt5VaJWzCyiYY=?e`tB9yy1rG7nH$e--8KKT;HAY2-YMICo?yC}$2ao3 z<$S@zG9NF0Kf*QtJM-Z;3^N<$S9&HN=Kpx0?Atc3zppz@oTt9}`p4MM=%%1a-+aH_ zj{*zSZn3P`w5t4l>!&v*$I4^!{HOfz5-5D55mLV9;=`4NRkrsv8{Bxe>^Yxu*?;lP zzSoyieKsh(_Bg-r#D2c?<$tg4ETlMtf zMIU!*DI2ZIGL|Z?Ob(rCoU$%VmpS*tZ;j6mmVA{<)L&0hJR?|dcJ9~q{=Unf9E)?N zFZjIUPr$tJtB)s0U5re%HuDaS9P7RxvCiI z!q@XV3?CipR&+DGs9|MrO3K=@*tPgd2PgB^eV1OA7Upe_HCO*vr8ohx#$!XG4+A3L4!ZFj{A?^AR4WlSx3*Vi9!u`aCQ?+P0ubJ<15 zGnpYFMAllrPSv?TY2e3qo;dTW_qc5GpeZ+}E?w=`6L?{VO|$Xu;U@1q2F<>Y_t zu>7XI?{v)sKHmMunQG36CVHp8crV&p{e1D}h~n*_cQx0uzvl3%NG ze2z;MpF0;m`)7%2hrdvt^z-#buIh0;?X_nvl}u;v{rNYiM(OmsFAu)yHg2wU`ra7- zX6myhzg&absItN%C$y`7PZ556UZ0G5yz*|K0ykyvI$|eP7p&(D>O^LN>RQKXs*-JxD2uzrN=D;=`Y& zeadT(ewwCj|7z~zl;sRo&s(_Nssokp%#C5LwY@sMHev1*k*wWX$K7kIj{eTMJW1Wu zY@238XES%|7Q67>TZ)%%d6_&h=u}i(mQt+IvpXl2l%>pm9`VNFWK|@4p#k61RYjr) z(_^CpZXDtJ{f^^qI#=dFONlvwsZmAJn=i`jOw966_xpJ6V2189x#FwauTPHn@Mndy z{eJ&n*ZAz!SN#pzy4!2!>7G0FK3gZ8=@kBM-&B7wYO$_Kj>t?_PY6J(b_xOH(S$>M~e6C7COs(z-4jS39pMUt3Ty-&3&=( zlf*wggX3>!Sj!yWS@%7?C~dM?+u{$`o}W0eXa8)Ae&btTT*|FuH_n@P>EQLb9qLiO zGrr6fobznPdgi{>R-${uqaxMu$+?3=_ew(V69_)8&)oeYj`uzvzYkoTRas5N(JQMko>}$48 zlRc{ZajmlHN$={Pk)r3Gi`!jZ*!QW}MMd}hygm2t3I;upfv*MFx_+iq^Sf88cl~^4 z+L3#H;cxfnKMrmE$vpS}*8|qGKF|G}9+F$!anAJPBkTFkv*z1}mN~`pnr+RzHS@IR z@=s08#i4sc{=eXu-XpBD=X(F&>)#{q9r)AF7+ZvWM>_B8ok z5wa*X`O&dlkHt%#2>1SqaPQsxYLnfD_chOBiq53TJze$hZ0M;HmzjQ27uNfKIbdR{ zz4FE16EPXDuTMJi?Bg=ey#L16*k5h&)G6ibFD+7%>-XH}{I~T&y;Lk<=EUahWesYk3U zMAG(s-(7P|(n_oHwk`AIYm>IGj5)P5j{oVsT7$2v*M&XPa&4|$S`z%ZGhgh}4E1H3 zj|7&!EHb}upJ}IW^D>Mr>iV9>LpBqu^m0=rug?9vVSeSqI4Se@mo#2oS$>u4W9W&g zcM4?cqIY}rUYvAd&L-!ZigNAWuYCBjX1nVSlXc#~Hdjt>i*K(w@%UuoZw`-d^X5MP z>6cqjtrTup^Zw7ur$L`m<{z83-h0{`$E=N^clvHrPk8JQq50R!_0#6dmpuC|auwf9 znwo6ScfN!FmFtzb-!<=UZ_;dBd6bLo)KR^IU+ouvyTM;~$?xvg#80>09Ict%UgBKM z!#ruGoakISN0owM^^Uck^NPR!6bQ z=_l{XEPrWxYxlnRN_GG5PV-Azzo_20S-6?|-S<~TS7kq%obnUW;Yo~q@NbsY0fPv> zfaRAvH+=EGdTD0xzPA&nb;bO;6?nOI)-79o&9dW(>(xK%?s~N$HNI#0X61KtwJxum zb#Aub=FoZEu`+j0A1eMmcinD-}o8Z-WTVV41Czi$h$j8W%t4LS?2Hd@}1wY__v+d ztDFzT^48)nva+Q9uqA9Vn;>&|vzjGSI`?#m?Z0MuAHUKTouv-coA<|tEwHbr z^!b85=OvR<`&LaXZx8J)y*^7u^2v+!C!24|@J>DX^F52&7WbdboO3B~ll}FYCxY|5E|^k48<{_|1&)LZJZ>5Ga# zCY)=Yx2w%9YWC9=c~AeYc)~eFb@9{bIWJc8%CWCZe`z9BQFd%^;a9GTnMO&M+(T!z zKM9=mZ04jX%0IX&`)_&6rDv}HWR|nr_xi%3OPp5MHLe(6yjIimu`Yh;3;%P~*WXX7 z++rMVv~_{E&!v@b3KtpL&*e1v;c1s~W=G|sqkL^KEyFKf@?!@QuC4`jS=hFM*c`QTt5!js-gDn;kIU2II+cmM3GXI|?~t52TgnQFP={#WN> z$;iV}XH?UFFZn##xbxDc+YK*Ubib%=bv$+K9B0hAyqaRGr!N9$T-jnhN6S0YyQ7Ll z+`Vy9&AL4=OBCHxW@lah@#>Po$62>>9=T5pyL9S4Yv6|Ud*fxzbtd0l(9yiVXo2Ma zn5{7t%U#m_o}bY=eE;sGtH;;&FIC}q8Dmg7JAIwVoFJ~!88+gV%r~fCy0klejyq4o zDrdRN6F=7We_W^g9z z^1~Lik?*F*dPXn9fKs(NTEbk@e~8Zuy((m;SO4FP@xl(>=5jfe8A(S2zPT(ibAGGV zVLbEfx4ifxKc=g{KiODXbZLq3gCi6C&(DwFaXUxpRKESSf^Cz&u5b}A$k}oCnnl8M zZP941L$4=X_m-<&#@r@x@3ukg2D^V!y5D2YSKpthFPR&^V9s&v%V}b3V}D5Pe%YW_ zDjjwxG4%1jXU?DQX=d)u)SaAG+`no|!EM=O<9YWBo@~B(uXxVS*%FebtDanlKG3tu zGJMIsXEL+*@_tV=`B8n-gni|l=MAU#W|c>k%e*PJo;!Q%-!!|D9e?wqp42wA+@84X z$)vgeCoQttV;y@T<6GXgKTF=vPJ4O7v$%NGyv#fP>5h8bF_XNNts~L`3cXy5TP7dW zUo60$r7S;(_ZpMV-Nv%#zj>PHzh0==6V-Lg-m~Cq<+@Fr-7*@r^$TCitv$Q*L7;uy z3T;C_k5BtH^*>ztNYkj`?#%WRviFXfXDJzdXv{w&YN^g_zxe5|+H`H9e9ISK_Jq}0 zTfAY|^RRyHx5)K8&0nwl|LMY{m;C&KME}%u9e0&X&wyEcxi=&)KG*6OKK}pF#l`%* z22#@|UH`JMZiju0Th_ffJ{r3lJD#pt*ng^nH(Rn?^U`IF``SBYJoxh!Sc;g+?r!|d zbS_acX|>uM$<1|Bk9(*Z327FFnl^2l`ab#2*Om3me^u+&InUqiru)Kv_hiW*Hkorw zj{5wGPu&%&BKPv2>38NmaVugfSIImy&(?7_k4-6;-YV0x)NcDeoq4;yew1AQF)BBu z|HR^=siwzbzJD+*T=wGKHt~el(r({Yv@BuFv)hz*&DZ>-`U{gn`!_xT|4Nn!yqjac zNOkMq$YmSPZP#T!7@xgd{&3vH@HCyf?aO`^8|n3bn_g@@`N_p>Pt{Lm*2`yH5x=^2 z#lzKWl#R3|ZHk=m#c)O2Ye`kpW6Mn^7ubgFHM&%96HvmQ_rCl6Pvi6DZ+u?ezmixH#x&7qB|E_2Cm*!9K^HT~=Sr?+aKkdo8*+ECt zr<}e$F=Oh^=bGE)m+73UJXOkcUH12>+1ZP=?ia4AymwvWU2xIXyH+LET{(`j6RopX zPhehi-u;8&_N)oVer6S<=?nkglWeHy!RaQq-s(xft8-odEW2bfuFtrsxBXN=RovQn z*;}hG)ve`xS8KFqTk-p7g{SJrhmHf-MUDZ-P+fsJ@F58@3tMtBPyS>HV*H*_Z zo%eW;^&3vsk1y~4vGy#yJpcB)4P_Ev);#y*omYA8v9p9f-^P3Ug4VYuE6uR#En8X5 zsP=Wg^`yvudYiLLWc8w?zEyoIRJ~i6S|z3Z=u}PUm%X}WKCCTe`n!pUl~_?PCb2@ zmi=q93*R*++}j>nwoK5cLU_q8asA&3*R&7YFMe$$zM~}n=8JQ7?uMFDp5-%Zd7MIb z9M9ho6X<;Ug_7&@TAT9MYfmhCp0`Pw&yw%?tK^0M4=p|RW_{1uu4xNSc1pR2uB}X% z%piLv^xC|v)zMFPdmi-DlFX7!EndE){de#89aVWc%XOaZIhG~2UW##IpBFgjDc`RCf z$NlZZ4Z_LGZFXN?^h!kXcXmnN^pcsgc+D5zxUB-_Jc%Vsmfp>Kk{RpT}I^H}#jA znY*S`uvzkLPTN59%Ig1L{_kW8jdXWPU%w_k)qidK$us6+XG0>@EnmKC9jekXCwiP>KzjNjFJ9g4cM**Ry{ z0_6?M?-WclsM%`U6y3ifcCz>L8}Gh;Su5FdW0Ug5zqjY+{9T2=4eyy-o2X-RM3eBt`{9~7hhX=TP-%VIolxvj=b z>tWKpIpMz}zHbZu?NN1l=cDs{{!^FyW{9)kvn;m~sjYU&53QMci~sZ7>tgpcYm?jO zv%BidT2s~JkoEMEx}+uNM87t>spUcDoq?{~7utLe-k)rHSM_3|x4Y`?B^T?&8~NwU&TEq~-UTW;?Q8{=P3FBV)d7L~mG z$BsSo(CdZ)EMSw=$(<(M+XtZ1z)kUVU?Y(SdNwuzne*D;4i2tzXo1{HbU7=AARjeqYaey10hp zeBOu4OjhCt=5)T9oz68^$c!oa?Dosb{336q9IVoxv;;Jw zGFC~22A>MzPBR`}vQc*G-;+x{q)JTKDns66JYF*^$oc9ekJ|TvPFHL~x4pl5X785T zyp)i1`ylg|m)jokA2{iM*8ZKIfA8D2rsA||y&Gb?VoKdV8wPoGe(t%r=83iC{5$i^ z*b831d#v0mo%LP$la+sdxSrI_sibi z?_$XLp7?Fa?%#R8&Xp35kUM}IT6zKXS4vT}LBoQ~uEU&^l3X_viibysuoT7r1!cx4XvIYTi6E{rxIBJEw^0Y^d9wvp;HVv-?{-b<;{# zy?QWldfV~OE0zAYKHpljG|#!BIGORfU0dMGLz~ytmhBb^&zx%>VSVZMm5#gR=cA^Z zp4NA`ZpoD(4(Tz9*|y8Y^k_p6PvCgg3uzjVj?eY<$?@NM#2Yn|u1 z)2idAh(&RI(Nr^~^}jrR=uLT5`%1epxO!dW)5{w@GQH0J(T+RwR%+(;w;r3No<5d8 z%WWervGCZ(v;XFXw>B+YZYLjMCi`UPr}won+RfAYcL?&m@VWc;!oO6hCCq(&_jOY5 z+GfuEsayJ8Y^7}cTDya{yk}(hw(74xHYrWmc-gDXai3x@Z7=?H4ugL40t@_^DW2}A?W{KWg_wVG!Lmg`_yWF{{xqq&GaKMu(pD(r4-o83PxY7Rn zvo*8sm>OuwHtd!7U}ViK(WrZ$wR~1m?aAt<_cn%~@0sgo4C3_t~OtWyV|3 zIs4U;X}6c(`V@cY@1OlLwTt`s>@3z^fB#(n`_zM-cANI@ms>CVM(%&#{=1C7>i8~~ z+>zaU^7fqfUq4*1mH(+}uJ9(S=W=+h|IzKwYtvbNc;2`FtN;Jc`R-X6I`DXpOU~CzDy6;qO8$J6c+k2x@4)I)9rD+fE{zDi+x91s?|}8kHysso zdOFxb{)#^c2#NKd-|t*t$$rt^T|QFyVr{)?wyd_+amT5BKj(b4d>{CyMy8tE{uO_p z*&g|78L@NibteyG-|}(xd$h=Y^{0r}yH%c^{BXkPy@^`VX8r$usX0;-3zi<)o>dp> zdL{nd%w;)|LRD9fXqewSsh-~2^XZaT94|9xr{WUfnths!mu7lhT65XL%eMdAjCHE7 z&e?5S-eK-4uy570%fG+NWb=LEh*G_K|M}{6%jb90WS`zyzx=o9Q-M99bF2A2{X4Do z=|OwF@8_$b{ulm5yuDx9yZrun+XgTB#1E@O>#iD~)SrK1?afb9cs^(H2=H&4-0@|` z7K2kIuYARq`PPY@x{$fo+99S+>Add$IV!;?nnTO4$_Ad>r1$*O_unQ*dH0C>-2L*q zbCc-LtcRw)SNEOnGYa}J@!!jo?Q^^=dd_FC?;`gpx1Kx?+vU9HRPwjTN);>REmPySdy@TPJ=@ zF6qozvg6^&;+uV+|Nl7ue|6oZ`BQz^=U=_PTG{SxfYjUA?NJ4;=dPMZr|$j!Uw=(- zMEEDA>GMmkKA)9eZY>_=Yx{A}(FN9O!d8Fv*Evc|Vh=tPIVnmns_3oT|B}2^`K#wn zUUPjJ`om<+y5+^XS(Sh03N7u|-oEbb+bE{g+EvX_tLJ#ApS^uevUu^E|NB^1Xvx;E zKb7pqnVeU@`h@BB^0|FNW}iL_*S@ZNmO4+ielFXMZL$^W?E&8wZ@>KdiI~l!nnyn~ zd;C{k4&Ro$r*GQg^EUk(O}&2!xbTNgDq6m2rbo6Ex7D)~$|382Mp;$-uGt-M?T2ss z*Uo=8=Os!-TbJK1-h2MibJ4lK+~rIHuXDQJ*RPFkpFhc0(lXM2%@5g&Z_n)2o@PEX z;_cr0&sFZ%QaC0(yl7G|`KfQhz3pqSaL#{Z9POoAvt|3tpuO+?E=fOo*E8e50YhE( z`@wndni5~gZP}@R|CvuR=UjogO9hU-JF-IKE8jii(1Oe>`(Jw;y?gWG>$|Pc7;d?hn6m?tD?(m)0Ntzcyd0|M4R{)YE9W$>V#D#ZjIYW|zHBwoU!8 zxvKtpxpwd08T-~4^VY3ToikZ$2HXC~9-TeCe!_39x=#H0ES#J1QL$NmeIF{yti+wGwf))JdzTj`ue1tGKWez; z%B;gHdVae2Zi)JLduHi<=^vczGRi+g?zc zH>bAG`C!o%zGclGn|B{KuUqwUarIN3Jz3Y@&$RM8r@VdXbNw^1R}HUK6co4r_FFE` zyUCJiUh`dniSKQWyBzOgNveHz+VVJ$dF8J)JxL;ZDvNzSPjhYE^-Sw|tV zi!0qXUBAWV)ut=6GmG@3{hlg^d)lb{7vXuX{BOpdzb$)aH1hW>SyVRjR`Atz2R}vL zPgCtRUwSuV?|HN7-$EZPS$F$ukl(G36a6>y*4|g1*>d>FkEY+(_$EExP;a~b-oDA6 z$-Uuys^N9Dr`3zLKwRr?n$_LFzszUB7q*j3g$xeHRV zMJ+w+=jQos>Jaf)zaDEg_k7FWB@189HQoKDemmQT*!jUevga=`XnedYF2C~j@xLtH zpW-iSKVInUe78Nyb^3?pQ9;QwrSBW;-#E|w)R(>e-^+dOUwe4`;fhtCit5r=hJAd& z`E2>5=?_n`y;oNX_m>t9>d(2Eyx4@-?aJ==b6%|aV!8CPNAPU_Z!Zspss6gmd9t-Z zCcD0{L}fd(y?YIx%g#ZpVfKgEU(S!jpfz@AHs^HOl|M{d4$%PX( zclFI$ci__13)@$oX=T>>7jk{2>4ykk$;T-yDJAU*OBYW#rh91l-0ycgJxXIezqf^6 z75-?Z6twbu!99J|nWEpkW!yoJfdgh+~nmXUtdFLNHudHc1ez0Q93V!n<`Tq%|{>7g(8IrOx@`>!19 z*E92&a^{WCdsa#5e{17;d}~uX-`==3K1a7rM*YV^ldnG)Tl~n3)~jDOVE2-;Le-gZ}){& zXZ7wm^ZB;TZ>GFbmmvF+`V6x($x`#tiw46Zy1)cTRFEyQ)m#<{= zSS>m~VOIIqt96h3wl1BPRP}7tOl_an^1pwDRV;clLD*)l{4w#x0=l~=CD}2mepH$> z^H}Wv{3k;3=_1;t9T`ob&%q%7@ASmYA4Vc`x3uv%hbL_b)r?3BMH&UNJs% z*ynKgWQHg0Pkye8H_Gat_sZx~(vW&%7J?gHPV_-}5*L zy@OBQ&wTDPbIQ8+ub#hOpB1^9#i4XnYF_2vIX{i}*)Dx#r|*`q_cHV8^4_4&(~Cbm zxgmW0A=kF$>u&el+WukAxvHIu_S_EsaLW4Mr@f%A$;1slZR$)bURf*s>G?WG?fTD~ zv0cL5ZoiCk;=d-`uf7@jWZk*%D^=KM-aM5vS!Motjq2-jC;am8U3I5+lJ@7%|2iMc zF1{wQ_*=J)+%yLE2OSrSQ?BhZU#Y&@Y7&R_1166?rZ<|3;)%2Ja|8I z)9!gsA8#$Q-!pHX)xN&Ih2J%0XU&YacvWq7|7h)|Co*3#;=|&>-t8JnafE{HDI!^YCN%oriiH z_a*=2Xlx2xtJQyZjn&yDKewc=yf?k{(ILA>-oF|W7f9U^J+w}DrJvOI(wO^4zSkX> zyR2`)5r1B=S#a&PKCU&htj=xtyRyle>DWRwqG zSAX|1x^M4K592%a-)8kcOfp#2xhMYI0TT&dx%jASQpYzm?)|an>sEIb!;3N|UAOCO z*t*12`R-@NEQz%3V=wm32k@?BqM!l7jcX-se7L zqH)o(20>pfo~ zwJg*9-ORA3E_IGz4-Ht_Ssz7k1Hz|{HnA6 z?0vDt+<(FBL*Iq>dD~q&vqQb!Z2z}8%bI=PUi4W1>G8ssa;0kzuV+~~w{6jXll(Yd z|2JpdXa1{_GJS3CHcPO6k?q&m<6_@@C9}>8EW2jE&BpWn)p;9x-ZP&uW54&5%X0B$ z-N`m~Rm(fv9{pG~W$%$y?~i!9>-;WUJ2T^__37DMH<+XOc1$Yx@3VAg;^C<3c`^^= zmQQ}&6?Ky>^@Qht-`eIKWk=E<**&}${{5A)Id7@#;(V!{h51p7mbU)1$mb~UU$dBb zPO9w1>*m=T=T1qz>$vj1*Ia*t%EeQDYMh?<%>USy^|}uBFRRrqaapdqmv-a=58sDF zw^HR^ZFsV)GNt^*#DAZnql|vt>X^=(+1!|&TATbeF)z1B)a_;FOZ6Y|(UMo~8kM)( zUznG$c2tv#KeR2U}noZRzGM*Z=3$+Z8cp8BUhJvrz8#98;|CCWA|fApVE{`={D?~i}p zeLq=ELr(k9lWpIh{Rj@ZV%wT__T|4~sj%v_ocg02_YFUHy|26;V`cs_WcTM~%}?%x zU8~@wSIUvdebN8u2UL*t6SR6<_Bfk7=AwVIo46aJ$2>x z>~NMVO0qR#Gd)G`y!T3yO z*^y;_QQc>a<2m=b_ix{#m+3g1`Z_g!jpZ_xV>+^{3i`U5>*WGivGJGqqTi*(S(vuIiE9K8K?{Qg>rDNeY=UUr6lZc}0RpvidzT13I|Mh#B zY5O(Br%r!YBlpp5$IF%zlJjc5wE9b(Negw^^YW*A_lJwS-~9+_2@GB9;c$QT@wayT z?`A)K-1lN}-=y5uoTqnF4w?3G$KJ_^O7kq;nYefU=Y2+2e1|RWJ}^<^dAyeE=8a-& zj`^+kwCcV;WG?;fYtF6O|0hRv%blnD5}yjkmKS?m=i6E8ep=T`O+xZuvi{mo71pwU zzExYybb@qnl{8ufEeS3Y)9C4}Av%T>e?{{YJSY=T^b4Bu#m@ofA4{I;}8T#FD z&hlKV@YU}>7oJ=Dao+C5wjVTZt!aPP{_(?Z*RQn)UhezBn(^mx=bE`4A|`R^S0A4c z{(t#T=r7Yt0ZB12(e_IBWxl@d-179|?6Mv2t(u-qeBS)C`yE@!zVw*3f_XOCA2&UZ zF4x-}yUls8i_QM|J`2j%{IA=V|12PeLpe)Q_Eu%pw9-eSD994=2JdUE6)p?4L!Nu~(VzTpP9X?*-4^UwL`Xk6AL+Qu&|uXU+e; zE$j2ub>4zq`@B+?=)C8Aw^8+&dIiIW|6MUR**4zsowa1)>cpPF{mXy;o&0Z&$>~ii zv)LwbzWm_7YIo*Yk+SEtwk0~p?|3>F@Rsoy^uN6G_DuWwJ!11s|Ib-^;!#P3x_a^a zKTE8AD|9m2r=H{acGJ?{{HIgzrM)lvj>KwjKC)`s{_L$MO~1VlZ{EcB)GznFkeTVF z?}GU!1LG%d&sIE^>ejt%$#*T~+kw6Jj!l!wIT}$p`%TZMCCA=)%AY;L;+|yk^60&H zPj`t`U3X|-pz9*VeLnd7>b-jPMKzoG|MJ~)s$KqP`F(5KuRmp0CrC&_tl z|MD3X22M!N{C>`0pTdi0LW@k~y%K6o-QJ6sot@=(HtEp!?{(kjWE&hYs{d}O$s?0~ z!owuAj_fpf_tGCqN{ra=)a&>viq`a?3 z0ylcSkCBL-@P5KOuQPF{|9^}B_q;szujhS(!p={t1dso{`M~|B^{dATA69?*^yFN2 z^ZdH*L+gy#*ZjKmK)rd+j%Bwu{ao(-rJT)v)lQQici%ppYok>hwEFq4RMA^Py}H8t zHP`M~@-AqNdlyHV<+nXLl_4+6uFL#>W3u>c!IHHyQ+h9dpJiMAWN+G|nrjs@vPDh` zxA<~5>@A3}3k-d|Z&TuouRiWvuXa}_x6AR?U4Oyt`0&ElGi`;k*H_$+yLMsc)W!Sc zohC>7du(5>%q)5JrfERdQT;s|Kbo6fKmRFkkDb9@cmAUP>uxJ=OVOFTv_tiLp}gvh zcB6~Dr+#hKDS5I$a}rx_^7p@cr)514U2Ny}=v1v_w#-rUy4-V5+2=j9Jn}f~_=3y0h`VY5uXW{s$L+Pre!SrM^ncZW^P*dYm(QG&uCo06clPl&Z1(3<*Nf%td8u)s$KXL$ht0J=f2V!D{%Yc}%X180 z>m0Zkz4B`K_s@ClvuEE4dZj<^9{JCjboq^%u#_xwpZSC}9>(*s-%Go{ z(3yX}W|GY&J=J~lq~*BIw>F=@y8HM0@Tai{ZTO$6)Nb8)q-xgWTS9aH9Fho``QF=n zFW-!%cIq{IqYs0Y^!)q&|C7D$E05TB^Bf;>&$3^{eaUR{&ze_CE00f>?vO7l|NeK1 z)wA4{AAc(L9A3Su>Z*I`a@Xrxyi>j3eF*UOob|q@djH95(Hm`77j^gEw!Fz(b$dC7 zLe^IGvt4su{4?3EX8!i?HkGp27X783_1h0We=oH^?($u)yjAv=H+Oy3KCZvA*E5yv z)v_m2EB3B`7qsrJ!Nj^X4@=J7FJ3-xVy*BR9p&djTYtSd?DBtsp*ufs+u}hYs;@!)V|q#wr~BB_SYppOV;h)7At-8@`~d4wJS4YzFm#nx+!b% zcJJQSS^U3O@6WsHaii$o+z%Swep#9KZ9$`<%YIfi?R#{6?ykw}SI;_CEVLlDFfH4- zZtk?kYPov)E-Lcibz(LeDNg zmcF`1T>Y_~@QO}L?qhnBCJ7d=ypV9?!@~TR7iLAz3}Glb^779MZ<%TTy*MrRp8a>} z(M9=5PycJyhXP-5v`$f;(*Vq3iPNSpDZ2TKmmzg;;0iB53jz18kF zLek4w1lboqc~N~V!&TAtkK^$IzwfWpZWqfsdL--hzmT!;3b1^lQQ_O)cJK7e6IEfe z4;<bM3|rf2K}sbC)rS>JOO`bjf6G`Fox}R|Hnoiu<(e%s#njVqnjq z-S(yb1G6G7?RswYX!7x#qK9sE5A5!ouebl~`gh5;7tRyrZOo0>ROa;4NqKAf%HvEQ z{4f0f@cXsodwz?bPk!7gd~egUXmW5~$ibU?X9wQPooN`e+3why`~F|%_N`vK>Z!u@ z!dXjtdhW6QyLiKD-R5UyD!K8D7b91^*jJ}MU#Vca@ucFf4;O!*vFy(C8(ds&9xG*z z@9f|B^I2WTu2)4O*@t}HW82*~r7Fcg*r{>b;`!h2jekmN>fPq27nWw<;0t{q6i|{pnk-{Ir!#k=y@7;92i9?V_s6&B1-0 zh2B+qUlgDBzWS~v(6_VS{o1pxcvDAn>$jSo?2_&F+h3lQ>FZc~weQu-&ei;%n2W@$ z#9N~uwj2+7&n_ADFZ0j8$NT?2PnNI0^xbE>kKZfFA7|rFI-iWTI9-1H_PV`y=f^Qm z{;hjLYi_x^+!5aPmo^^mhqivYQ&8>~`E;gVpW4af<=ktf*BGDfzN}HX`(fRY#OtSa zna!#U$}W?ivqt#Yu?n?YQC82b3zy6G?cF|{G``MfK%^iF-rt}kIb z-kGL8oAtFW|GE3MmCMU+?DL=YIPdqH1Sv+x{nC?_>(*YX&ABss$=sOU&GC1B-3z}t zH;+fYwDEO9e5hqMnH)7-?#B<$eHD{IWmndnmjvD zzI98M{2Q5&=kI)UW#z3G?#SC%q3;)?{ChIriG3UjFH>_h|J>)^ua$WA{%+$#@BP2_ zY+`+V@M=P(y6j!e)){<8$_VQFvfTy?*J#MN6mu_LC8avud1tOV&9^d;h$c ziSGWFZ&rDU=ruKQdC&UuVn@~0)!!z+C@*c_@XSL+Sw3{?xt!X$SJ!T9T5X;1(#QYu z#ohZRyRUq=&f>(&GX~WU|FlG3pS@+u{?)Gx6Jr7=RV3HuX#c(^dTRZ%`_@aXer8A= zTsq?h%ct`6gZ{tdUdms8Z!UDasMoFf9q*jpK9Q%6T?-Gc_uBondJ4PvlJdDWRc{u@ zoi{o?#sA&0X8$A6HNjKLJA!rV(?57;-G6F#JJm(RGV0N3wnP1oif##9{%};%pE>qg z_KjU^p{dJ{hL%sc%zgap%Dnqi)8}*~TiuU2&c5zr23C#}x9tGev> zSFxH^;>T;kDxDkW_bz=Fqpa+8CEq#2{a%OF9*>yE)-C%#-pStfIPhm?l+nGDlWoH! zB~#A^y}WC*`uoc4Em!94?s;+hnM?LHor)#%qZfs&W?e3}s-TZ)U;m;yu#PT$>-)6@6MYPn72ROElMk>bgHAstF5Qfc1iK- z-*DHpx*j+``A5cGQ~&n&OXl$J-7h!m&zwc)Hy+eGF2DG9TJO^>rdhjCN5qq|9o|M?dsKu1@olczN%-gmhblLEu41z!PQrGYbROwz5jJqV^_85 zoWPQ*pXk@o?$o3GCPyXwb$E1As3(r`)h z^0_zbt&P9uuKIJVp-hSDq{(Yv% zyN}!5d}}(US*6Z5;VpjCvS`(-Rp(z!SH2K&m|OMNn!OX$U!R*;a^9+B-sP45zs>p0 zbN_d8)rtd!&+X%O1}F*p@74X>5R?5(=F!Ggk^b`S=aT=O`}3*B&*H7eU0v1pb7s_f z>poOE`}J4cipRf~<-h)LJJdu~us~=2X`dOVe@qq#l>P0La)0s3Ia~Lhw#whMWcAxR z@2lIUTl=>Cj-7S#T$8Quhgk;yrvI*u@h?w#BfR-*acq_GqvC68KFYkeJf{0*{lmY7 z$rl_a1+Q<=d>&B8b$DOPi!P5xD$!ocd1dAEc0Yc^le;Z{N7?cv3t#)6{TFI1`R3=o zZ6#_OkCmSa>@!Wgb^q;_y0V0s)82L{)z(j4@uMWI&erzK+<@e*PfoaW=6r9eweNlC zc%XOnp_#nu_YYX#ceFH**(1IGd+qh@brzEo-~Ijm=l!9dSI*bmldTUEWP7DrFBqy; z8svMka81l|+ozWQh5YQ79_&BP{dJH1%k$nQ5B7PnS)4wbw_+)?Yh_&jqTiA>O0pGI z%YW-0*(zapV(zUa-qO)~Pk#`9u&nR|+vQstGbhTwX$}ciz2?&_|N4?($t>xjmJ^i+ zBbO&Tr)s=ofAL~&!Ewo)X8DJ=e=mE#Ud!dYE%&<8BM&0ZZ4+Jkz2|7_{qO5uZJfi! z}bz{&?c_c{8?`4yQ|Q9nSivy*$xt7WdN`^V8W2GF2XLIW~EsqP2Sc zi$!XE!P0@t=T;SHHHy{hJcyN-)$d_i9khg7^V08=SMAT|$i2*-vuvA_#JpW?i#saQ zQ?BoMap(6}nX5l7wflC4w%k{jskN?coc6jf$A9&6Z|k~!H8#b|R^6I<=h^Z()4LX2 z{j=lw`HZ)hb{4unU3I6ZuP^FrQBQjBtBG~5e*69pKU4qFZ0YRd`>qLISR^Q?yZU|4 z9i{ncEcZ1}O|I#CoH;Lh-Z{fZHG*%JUol-O-B+@y^IBT(wm_A$ne%zy&3UXTT)8A| zy6>#@i&8J`IwhWP@lF!|OP>_mSx>Jy+18ux=PuBQe{^9}Yx32XkKbMHJsSVC`Q5w4 z$?<1zzJBa>c71Mv*Imcb)k`XSOIZ6F?{C~16FJeWnngam^_ly<^7C~y)1J7U>RVTQ zW6NBTf15NlP_E3-JGKw?zDX0 z<&!tgo4m|@@iSBJ_s+y;*GwFp+Z!tr6`!vYd}6g&zINp;T~?3Ozb;dI zW2jK`XUe>@TYD02R)0KHQ*i#qw89JF?8g=)*j}Gn{LE?g&Fxo$IX`p!x~+KDZt1y0 z^M3p@UvBr>@7Da+i`Mw`sKtNSye2j5(WN^pqj_)eUw>}%`{1WHf^VO${JvT(OVV1- zNBX9C-_%T_6Z7g6B%AT<6FI` zSUTbFqoDoWnG-|R8>)YnrU|T5J-Jm&c|p*MlA^EQCFfUF+cG&mEt#^wSALE2vNO{B z>0&7!WsmBs45Z|46?PQ+xqO;AbE#JHild({8P1eA5%sI(%@29q`?mW^8a(DI#qBS< zHeun{ZFl6ZDn3)(dhzBAlcR?3);;oDz5MU5xi3HM^eL2OdwN2!VC6lt!V06tRO|Zw z$Xj!-KUaUhd9l=;&_^*UfCfomSm_InxyX3aCFX(|&!Y>b%Fvz?U3v zl5f_h&)xj@_U$V7$D1c1ZuB%i`~I9_RnPR}DU8&{K75pkPhN^P==h zt>dA~_@#`ds(k(TQQ}XE$Fzg}-fmKVGIZvpHs6o+E4bR^TDn5c+y3OUn0cocoNn#7 zbn`*_Teqh#j|Bf(W0RpWebLq>>{p+yI+vREdj9mAUi;DwCl?%6=3JfS>Tve?Z|-{A zla?=7)n3myUz?U(>QFwZ(D2)=a5wR*6-slTt?K4ua}&R}=6?Ci%D~S$3m>iUm$G*+ z^;POy*Sxu2RbqKbyYG-HXC_qZ?L!Lsl8occi3J2lNfh?pGDC`zJouv zRMuDhJIU#hepcP!{FLK8t9UQX?RT*Kn11SE^}OId^@Ec6OW3b3zrV}AcXsU&$4Zr@ zN`G_@w(4(p|B+`?nJoA-UbiCleCw~v2bPwfyngb%>P8tUYO^}``w=}Y+9i8^5K>L*7fI%PjyurPx@W4)olH&uhkFD z%@bSJHU27UKG2iwuX#Mg-akd*ZqXh44=4A{l{shs(%-XEwV~(bFYkR*%=QI7(XaL9 z`02~~_UBI*JN4;btR*+{uKc<3)0r3Tzt!DmY&G@VeCYj6g+%-K6YKA7SQpn;`hDNB z&E0cO&)Sf89)~?O@t-^S zZFKeAAM*rHc?zmaEjyN&{hssHy!hhVHV-%3R8{}~blc_LFR7 ztcJsCQ%k}MjF{|;rWw5IbeI2DeZJ{$T5pm2i)w%M<@fj1ym-26);raCvU6k_B~y!T z?s6_k`YrQ)r)}W6%~b~tU!Sk2pFej&&i2c8$GiT%c(w4uM(3seJ3?tE^i$l^vpx5evBv}LYsX_D1Tk}_4gplOAU;h8Tw7#o{!vhxb)R|4|bCnLSe0K4{aodzfB~J|ECI4(GzH^bG&HHQm zl7lB7O!qPqcaLFN;`r*Fa(>p1#I>fkdFr<*sL$i66Q6fcz7PHEmwT>gZ?VnRS$=np`Jri_#r&KP+i%;=C;8E< zUAn&ec@4|Ad4)nfhQaf`dxr)5H(37G#OLRvi)C|?jcjM7Z54c6e$#Ndecr49-ILeT zudFVb8~1cd;-i=+wzK3{1Xn(hc;mLpX?OX2W3D{0_g2Qd8^r$k-&Qn<*};# zo;?iv=NTPpE1L8}N#@D%7VG~!FImr|%>C!aJJav@y7Oh}(v{)6zVZ|wd+zz(tJzE& zwiaOFVPkWtz_{g0MEPu&aduWtdOE$@{KJ`KljyrG3!C_}Lfv=d+n!6Fcx`e{aO(O4 z+2>xh^q2fTk@=wa>-!xuv)@I@8?}DC!hXp6*VKDI&-d4_kAM7InyY@&<^Lc5|LYG; zeYN|#My6No@#!Ydzq;EV?wfgqDW+(F-{&)3Vn^zythavQcIC~_n_Eq?KkTgf#HC@` zeOKj5Z?^4f=b7P8c7C3@dHx%r?HBLOIr`(#Hg+qe9MM9n;@eL?y~)?VFDp8wM#lcX zT*FH1WixuLz1MBrX4?}sZ_k?ir#4%Qi`)#)_vKHwyE}hR{xkLeDRbl8&noqnTl?GH z*8H?CJN{^p*=pU-nZ1pQmRIvv$F83)ks72Eru2LKK4ZMC?B?p4 zedl+)pSf@C;e58h(868wuUyufb16}YX~!v_g^S)eoZM~dCvNm#<+oqZOk>IF|7)Mh z2!GFda=B|$?R=I0b1%Ex-!XsJW4+UB^7~n{dtO_v+N{<0^UjA_b-A-A=1C|$vj1JP zeE(vf$+>CKk}u1e9=}<0^SIu_*M6I#Rd@a`eY&uL**!CEtNSiV_2nzh&S6%sFkY44 zK5fRW*8#grCP~>{FD#m;F0=XXyOrlTgAKf6*=GdLn02*SrNSotZ1~MrCR#Gr+CQ&5 zw&Am>?CkXRH<{;_uAZNE<6QigCGL#hudvEIeC2iPz@Ar6gBitSFI{|IB>rhb=(W-! zrd{tQC;0ulF;#W7!T;y`|NZ{uS?{-~$vgFD@keLNr+Hi#KAjU}tG&PY)z|-K4{lD- zILs&h(CW?WzCYfpo-Jzny6SHK(d>O@KPEPZ?KS@Ka^0q=(u)fN*WQ2h!Q@pb@1rd> zSBvH6rmC|%U))!*CMd-J+R_tJveqXu1SH=-ZJASQEok>}&WsiNz0O%qnS1Qdy9=wI zo(YcA-}7$P(}oNGl%?LT+OuHgs;51xCn@LK35Jq#`Ql~%XCq@?VBe3tVO6W%Ag?w|5@2)0S>|Is6JrsjPyd(Zy7H06CFJB?Pq zlIpwmdrs+*_>6OhOTsiB%URFQSi9=H;*+V&`A;-9pTDbUzxvwVsv|72EoauR*jIP_ zj;!bksdqK|pNIB5d1>Odo}w z{CxiLp4lgkOLa^0edH*T>0AHE(Y?UZtJ3yh52sx4$F{Wvu?MSvpYir}&iu3Nj9udg|xy zpz|+g&t$u`v&*mQ5{rBNbJ5VUUl&iFU9ykMFG@ONkL+8?(*n#fl0xg|e@S2R|M%zl zhU>0GUk<7;y(Lh4%XE$ToYTIKl=H1vOvGdBFU@`*w%Fv9rFGcZIl7vbX$9I|eHXKg zb4m{Q9+>?#->i*Bi#pTrN0m^5NxLFEh$NmCQ-`G~@I2eb=h4*Kfa`y0xP4-29FA zzJ1%|cd9)uZs)52_P1 zjdlAdt@>)+^XIcn=B|3eb>{xp=XQ4QR==@58QaOf-+t%%U#o5xl#W@%MRa>+8>AFWICvUB*aQ?R8 z`}w^yqzlt`-fc9}zWVU;_rTLX4Fm1xot^bs;(VjVs-uUNFYjwU;@{=RcqoQx-|>I* zo<%(h`{{9_{IAXOzjC`KAMh4Sjasznla{Oaq*}}JL$RxEW-g7@fBuwvx=+hFzavo* z<#%hJ?OD!i)n;mSr_eNP-Tt(G5#AtyyYCynKi9Y_GWmMYhO?i_+iyEhezkQ@eeG(S z%X3b9T0F1&lUx4pWn}wQgWHAK%cU~EF6o-v@BUZ&>FK~lbNjyCpSdFM$4NW6>bbJZ zLT-JoTqYh>`v1?{#Uji8-*tWO|LSCsQK;?eOXZs`cb|5a&aqGYu-j|<&!7G7J-!!i z=Y8-_P7(e7uUjtt!fNrrxCI58ht99(sk2@8opnvXtha21#eFr;I5_33SA4tiPRE+V z?$*bKB8EMaZ<%LlbznO4pbBT%druM%6@B_NVeD4ERe~mHKw)!CaL73mX=X2)n*?M{Iiv6j= zK1U|cb$=)SeCkK5=<2O?)@8-}IT{Mqms_Njg*^IkeTK!h%RgR6MfXpT4E;K5*8FqD z+o#VDExwz-GTGGs_*1R_?p)6?(z#U0Lx)16hj_S4GAukY$yW-hhNJtHvJ z^ZcdSL$jR4UoCv>Pe=a9KRoN5yyPl_i_7&c z2>AI1mfYQ$Gr1|Fdrxoi8_}(2R&-18*;|`VF79|<_|z~=vhZ-$Umv}q!$)meW*RNs zW>sx#x%p=Mxt&^G9ouUk%zPknE=RrS$=%%t7_DaTxIQocUThV9^kUGV_kDcR&sN1% ztg|~Q`Kjs4=dKOes(1UG_O^Z6@j3Uo^3!uKS{3aqnf;4ZmacZ!F4eC8W$SJcZI>zE z*%+gH=l}kwpErL!m?z;aX`27@X6nlH{iR%M?|N+gd+*4-^KsepFLHjq^M(2A-3>eJ zYxk@^m~DIV&!cr~Kl2^hVg2u(>OJlgA5-3+tG!X$AS-vaec#%%#qBozwQG}WwJvY{ z0&Z!n_e#0C+-<6_wA72so0d&jE}UZ*n~r_xva4a)G&X zmrr`hBia)q^pEOLGd`r%zK*cpdVNkwQ|oc=Q<)cdH5bo$KAG?E!hX)>MXx@=!uwD!bzTgBayU8<#Bn=raGVfdk(z`Atur zmsDMxsB&0usm0c37hh@G$h)51HQP+a)Qi2;+^$%zZ0(s@2P3}zKlI|{gHy`JvD?4q ze(iK$$0_%B<$2N4kSkS(Jf|L?{yFO6irVUhN?%rJzTmUJwDd|(_8q_Pax1U%imcBJ zof9G)_1fe4?!^hUTh{e+)&96tA=7T0y7AYI_uMH@UagS)p0cXeGUd%1ml{T;;%YBt z(ZxU47)HlU$e)=WHpN*)`9=8qDI%7)w&uHqM{Ga;SnR35gFmm$_ZI)V`{Cn@vn3AR zo4*B~7yZa}?CQDSCnp;lsXXt0emUYj_m7wEZe`8$pG`8~xa8#t_IR~tiL<+&cl(Q0Jz`GR zBIf$-chl-I1%JThHGqu*|yVa&KMwn?Kr5kK6g3akRYfHL`f69oyXa zl)HP^=B*biyR~na+LZEDx{#7Z)9?91gdyh+5wclSLR;YWtAPlQF>JD)pysokuoNoK#{n1&Q!>yO3Xm9*8n?1R9_w5`VcMh@X{a+n*I&#u%-Wrw}CaOl; zcOI1eR?1R_G-dk=s(m{p)+yndhsrA8JfDNn2iWYu{5FEZga}h z*eUgbPu*oo(sNSQo|$bc+$+4lN9xU$dp~C!f54r>0`{fX~4 z{s)>oc-HqPvP9vA#fqr>$9sb1mQ6MYDhziCJU;bO{@v~2$*vC#zaCvKQxW=o&-cAa z<&jn*$9Kp!uG+s!ps-}e^7n;2MGq^tKmH_txcgS*;;qk%YB^7pm7V+PVRoqV({k6K z<0^BR7C%dN@xAO5e=O8;))lEW!o4%Am&D}FHMYGtV_w^X&i_x>Ja|!bEaq+J){{23 zE^qFh)#-I>#>A+W?zEPwKLAwX@NwjLF{ zpJ`E48-69*>xA|0ReKUUW?Ss)JmfcNouk_Nu=&=p{0C0d)nD<=-_IDlT>SCG|JQ@} zz4m-|`%HD$yQ_av>vwoIe*JVnM~>0cQhoX2d#ioiie|cZlzrLl{_>=NR@|bG7h@xe zYPiBIFZ?>OBR9A)==tU&H&++2LzUOLFD}N-*2dfu9xo;i$Z}PtAU*E6W&zr2dBGbCl`hwPncNyn@ zS5N7PTq5&n-p2`d=Ko@#uZl zaJ$Doe>QJ&+Vns7{N}wWKNa#Sy}bIK#LQW$g`eWmHv2wuJ#THk>}ds?$}Gz@+ZV;3 zv+XKA_r)@d^L3>q*XNC|)I!v=zwz98_hFY`R>G0OtUYq>r&5YVPOsSF5F!60=e3AO zjqv#+@AcmQx>d35S5coJ|Kh!?!~U&%EPQ{bq~g}5SgzvcuxVcZo^LKZck9x3&-=F? zUcY>9+4GON;i>+I(>G38vuOLIBZc-0JLLRjZA4DE)w_wmJ+jB&^pN{kqv)&EcJqH+ zk8S@Y{o_l~qUWXDe{b*Ft^eQ_>xt}V7pLuQk=1;Y&hsPoI};|H&Rmy2Q-klk$>%?E*Z+ox&faQyKw8xAz_TyLR~B90sbIf1 zT<-9d=P%hDe&@**m;HJ7beFRI@#lG8xr`5T@_oyGfB$z$6w8}0r;q;WjIX%)P||qy ztM7kSfO@8Z#jdr5Cr|xu$oY`GWUiQxrlPC9Emz9c(i7gt8|H=2e3$WM@xlE5RKI3< z-b&%GOAqRQEQu(Ul+>kWT<=EU45eDbCbPZWHKnX3Fq z=YQJow-aZdpIh~ChK4LN$K@whdFv^W2`2iWjlVd$lZozPtZ@Z|;Ig zfu?TvpYGA0Rh^<>dZM((x43WCp<`j|il5hA=y>t@$rNkV*NXpQ^Y;ZGe(>oe+y8Z~ zOE%xQShw@6&)?Is2PPT6+spIsSFru%1-E25j&Z--umADar;XXXi{GjkEuH zq*h#(_s(7OhcYVP#O`O`HkeRj!|FB+bo{+>_$P;Gki#GXex?ijuJb=hZb`~UJ_p|f4J&gXUJi6q(` zGY(zB%U`qFOZe`&XrII9zGnR`IUVjhCn8~&$IJ(tYD+cdXiI%!wJ2qIb6~zfj4J!4 zACEJ>+qx1xT_Sy^_PW~T z&%e7jFL-QRee0FvZ<~Lf_s##-Ej_l;+b@gfnaZ5%4nc8^!woijpZnwrGk7v?W1{O-!zCG$!pkI$C5ET(s8 z+w+jQa;xvg9*nsnZuRW4ma}`$=Sk^rio!lU7d3se_JZ$Zo8F+Si*;fudT;;Co4Qi} z>oc9*(>-T>%akmeclYZ%!LZUbh4+8VsG6D>#2X_%!~OgL-o&|q`k5QQcQ5v}Rap5X zs-&!cZq&lQ%hg&n7u^<4({rfU^d)lJ#hWvCyfT`!T5{{0R8RFwrr&Y{R&EX5b9wt* zGtRjWEqW*3KDqJI9ZS{Ak!)Nk(#K-u4+kFM{e6gGR%7}7@J02}?e{aK-t6D~>dn)u zb~%>1KkM@ReVjtHjrT9wHpTvIQ`9k)p5m*M&h2SgWX-D;b;_>vzh$IH*ZgyL{xz*Q z{`ADYlbT#V-266wwcJrrR9)uNkz1l+wdU{7-A_FCz29mt^D^S3(l^z9JAbZO4__{` z>1$HD`r^tm#|Jsb=)V#Al6Q7}%GEr&v^(@+-Us0)CO=}oM#+3){<-wd ze4aX=n1<4oM`R}({aSg(-E!KT&rvcz9vixyd}$(}>+*J`x5~ppKYf#w3;$he&*{6n z=t-w5{^I-o%5avyU`6Q5gayJ69`Bs*f1h*tbd&xv)@z0Lm#0tu*JZ_Wz5428_CQ~= z9Q&_+dWY6{etT?PeMMlY3h#-#P<-aH<65(0Z}7=ps&V&? zWV@#`|GUenj8!j|^))VNSF`neZ(SDUNDN*JBPenboY6z z+{ws?6~^y+XZhD>{osh1wtkcH1i`hd+SMFf+0RLRo%egvq&-jNp6~q^CAiW*Qtq(# zt+&T#sP%^I2@d)q`TmB|+l@TEdWSeae=!MOVe`3EYDwVPs2?|8DeN;a@)LYF-||(u zcKNkey6URjzs(#D&Uotfq|pAY&m_N>Hlfodn*6wUFe%RI?mOe=`N>=-_lNe&Of^cq zonsd5Te5DI{&$Ve{k2b5re~f}S@TJDu}tm3139)z(~U%AG85$z(r>RzoE`skPF2nC zJCZ9Us=7tDM(4=|h1@#;g1# zj@kKD=E`0DyX2I4TYqaU{`qK`$<-UO|KCe}ZGY|mRcg6&dHu5Wv)R(@OWn@ff9%z+ zx!dPcxuoNu^z6y*vmVWuAJx86t8&fjg7ZP&Cf;6NVr&{5{A$+Cm9ocftEs2`+?RFJ zeD&scvtRGzZ#lm8sp)$^-V1yEEH~cInD^&au4Ul#A3f90Hsr5;uNnQ!(e10~?Y}AO z*MI(Z?)y%+v%Bs|{Piq<`}ORJmm3RY57hiCIeTk{>x=VY^PjZ8GBKMaHKXTq>%3QY ztDj1~V7A=;>f5r7aoroA%Wg1=@r;bQzbRa9w_??{`rftYe5_@zq~-r?={}}?{qn~w z1$oW;RYBW6SKi9>JHNBZ?&fDJ-LJ*{WjEf`?C9U!f38I%+d}OSD2`l)_@4rs~UX%)4u${jH=(?CFl*cfQ1O?wov8;*H%m!MStJ z)tHCJuRb`T-r6~=?*BWlDFxqj+^p2fINt5FY4_Z@d0y@Z|80S)VrGV?6#UyDz%s`CMV)1QB<*}5>}VZIuW$>>C5}y zkN&h=s&zs1GaDEUhlr{c(5))M>srY+o@A2Qp&*-mprly z__t(DdGmbBk2Ak2cDYxxXxgU-X^)y^c((_?+bjFj^1+J&|M&Nc z_)c9^SbpUA<1Ga$(+eNl9xqZ_lX`8(=MyVa{ib*4zT5Kl@rk7m{ytxEA?Ds5FSZ|1 zB~I^F`OgYmqrYtO`Q!U6<+qo7IkMu=I$``y@NFl~+D|X}0r#*^zI14_(=n z*30&OxBUHi=K2R_RLm)P)Vdqk~^eXkjOQ9E7F{ruM5_x+qRUhUhHUQztZ z&Ufo~!?!!a=C{1oD!wG8yy}Cndt&*zyXDO1jz|7KkaF#jwAZWt7rn>l-FwaWXb=Co z{jc`+afkl2?#}F+82)|Ftl!_PgHwOhhu-^YcIw>jeNGS5c&u-&e7$sY(~rdTBv)DW zvu$sU>RNF2|_WInq@~Xz7 zT!Xi2e!-uQOP%c~o7+G8Sjq>(l66-nm9Kt1`SaIxuOD(RcI@2R+gd(tZKafBsJVT$ zUPzE&#i8u0u68q{!&Y6*I6nKHrPuli`fDYR-Cy(5IDJ+HuYLSfi<7@vF2}})OE2Mc zPhZ7%DAMSJP3WcxMP20|CG~#C?pk%+FaPmf%|+ogPP0Qa)PL=8`!nzD+e+uh=f7;d zeB4BQxnsr4IUCtFevV(ADYw~kl~}nzzQ-IB`NzlDg0Dz_omb#j^I%J9|NLdo_At)9 z^;oA*{q-c3q`L1Pby9y#T$KD|{PBa3gkU3qro&ytv>ZAM`+HZONZ+ph2r zxE(CJb7j`_=`#GL=iYSx`=3)gYe({*$7+u2B=_7ay(ehNwZFKI&F<>ub<$t#~JRdz*AnEy{*QjhFo z*T-jyuW4w$590e;xh=L~%cQUBHpPdh%`0|&wdqOb%K4#@{7)@1(r+fttC*Z>^xr|x z?y1d>y`}4)sH`)5IXCnD`*5H5YY)Sxp1IbvSo>tmrYE1CK6z7cH$A-LpTAqhVx#Fx z!`AN(Q2M>c*XX5$L1dJRLEzNw4A11Y%Iv@GlYXGJ$Ru*XoOkBRzoiymE9{WDdB)J< z)A`!SXP18VEl*#5)Km4B&e>0!mdi)(u+F}scE2<|VVmb1uV?dev?4#R^Q-L7(Z79s z^{=w8>sMVfewVsDX=&K*lm2TXX1-SXw=S{0w4L|ibgt{`HK+d6d+o7&`rOdijNbd?93DFWtXz| zy#9Xu`_Y?ey}#o2lpdHg?M~nE_!8DzY;n?a;=cBo=A(R?qThne^Hy@9e6| z!(Xf3y{YDvC}CK#@!zEVU!TV5J=+uWX;bH|ImIt0KNJ7@RZI5f^q{^;8)p08xV~@t zESvAKc6<|d9MX_GS9#rkY3u&mn*}S2AG$KH>wEuJaD9GH*_63uT`fUtZ}RJVRTf;` zt@SGO-@YBEuO7~Lnt%0ysZV#)(`<=V_osb6^W(pv@Be4Y<+kff=cg=N{Ul@mXPv5g ztGyq7AN+sbWL;0dk~D+szn89lByoq+{kgBa`sc&R76%0vE_xri*z(?5&F{a>Zk9`T zU5coWD$!ogvuSf)oc{Csy|>Fft@gWw-xZv*k*7Q{?hRg01g* za#_^GrK$J)mMfaB`fl9z?!a}47YQPK&$BAcuiRLWY!w#0_0-IFE0>?W_54e$c%3>A z`#i3B*TW9KW!aNhxpv>ln&N)D8*y2e}ad-t5uN3&%&Y^}TO`C{KhvD$LgE3+o3AKGufXW#YL zzjVUBr~k_GEdMd{`SOSV_wDw6T@t)$@eeEa$6mXWH+%oSEWK-`|IT+;Ccov`b9&hu zAKmuciSpNt*Il&OZ+dBpS-mKnZ55KAn_V%rJ+{|B|3H-T$zFvy?6$t{Zrj{4 zF4Y}0k!ydlPF!!1RI$uS;onk6jOOP09BBA(^ZIt{lpDco zm%D%YxFqz*8Eew^4>o}D=Vd|`#r_QJ20ei^|=lE*Fn@qO31ySAeC zazY-DUscNdZ-FXz{8nG6UAHsP@#zh-ukw9!N`l}1j97fqDDM2SZHo<`XA}v`-JW@L zn&-pacAgcp++l36Xsq$$IDw* z%pLmHMrh*h#3`2;Z@7C0P7k6qn8e7wv zk9BpTqObTEw|?ETP&nW6mt1P##oGC*7XL1-eD80&KWzT_SNH4wtemgDukhdcA8%f6 zd3fOKqCWYFd{*t0-`_XZ`Y*mcl|B6@Vt(KQ-RBoOU>bnoi~L|xu+xVEphtKb8Y1XIUi2{ zyP&=lvWhdeK1hZ?Eu@ z6PE+?Lc6RU*@k>iigdRXid&?AIpv%6*RCbvk2V}n_KDhJ?h|}X>aBr9MR=+E{=IHl z(ejsf=k533EoGO+cwKSo^3(NaHuiit5+J*HW%c)(Gr2cc?st8&bIrS#A(30Nt+q!O z_ok}+xi`5y()NSQKL5$JQy+h*>N_3#d*z}(5y^{^YZu5pjlS5pKNNRdC^(cXP@ALobIbqh))%L|4Bv94SHJSu*+us#h?lbo*opc=Z9&;on00@qc8natlOJV z$@@=q#A;TEbIh-~ANwefG3f5YwPqUbSM2lbF5Y-iabDTny{EZo?RsU8*H!9Kv!A}W zcDE~7BYW5UjL*z(#pW$%41K)p=lAqqZ~f-C5e)|3lT!&GSm>_A3`Qn{Ch4 z+wT5B^SkHiORDQtL1Mn<&L%uJ4(CYTxr2tA4fVe$QUM zux@(Q@#2$_bEi(8b0S?cLVSB)aofZ6*Z24w-TcFz=DaW3wSRrXS#YbxeUjaKTZN|n zFumf)*3@&2+y9jdiJkP({uFt2zc0Jq+(UOX^HsgoF1XG+V`gb&I-mT6qp-Pz3YwDYc- z_C>$m|M)#~vHsjYnTyKiMeXr771rlY-Mz!3+~Mzo&D-v;{4n>W?$jM3uR=rX|5Yw| zp0D*cfB*00vs6>JTzhm>;(f;4-`9I3O(O11GUX3_?Y-&F){5u5&7@wq+o`$=spl`f z67*N!{73IC%aacCWS`%x6XmV@=ezvK8WZLV58UH^N>%4<6PGNn7foHh`=!UXF< zsrC5}h4ZJJn9Nq^wRH0}wdd*UckB1P@%dY`(BrK`#ChrFlnr}iE9aHF$t(@5n{r0# z$s3*1ty`;Gw&uI53IcUSn%`q9h1!NhV-i6dcU{8 zf7hYb!0zo6gbSbBEZimC|JU74_s5%aCob+=da(bo;uLGXlR}QmW1hR$=6QVXa{2nK zdr#%=RZQF6JL~-|z6!ao+Ox5%V!d7F8mY;zF6PXgv*&(Pb!ea4U$zGwZBhPRoo9e*Zf7rR%fFoBmGZ zE>yK|dR5Kyb;(NX7QPVZ~Ou^MF7EWldQn}tft?*jXuF1NkqU)mmUNLH{I_468Q+b`* zizR_;zgPW?di_l9<@Dk`pLO>wthw`3`u*p%k7V8`@A*8pFK&Ib=|dz~fyE;)j>r-W1D!`!|o@tJ4m(>b3zpO|-A|X4MK=9sB>z z;_00w-<;>nTKjHw(Ej_sGv}yn3-&)B`8KLew$O(2WXaLq9lO`fkp5|-T+cwp0v0L}t;(THKwq*X}$)+_A&na zUU9qcUscXr_FTDd!qe~0K7Jd1dJFm1wzWTda%;|(-G{fG>N7o*cEo)53Ls zmo+_|Uc&UwuQ(r_0oUMO_Q_t_wqmAcUJye^w%=cj0f|7W_1;3D%?Bc+w-4fpu+~&Vv@ll=DZBi7kx9&`-=GR?LKW85FzyJEfocXs7<~{dg zoxXBasr`Me<`cUoADL?^^U?hLm37JN*UM!Xz1nB@ar`m6w_3jG)$VtXt=}h`zQ1Mv zZ0kFL?%#j2t~itggjzOvnx2cQtvG*sp@urE@;tYz#Xc)8AHOqw!upSPRw^88<%?}k z*?K+c@mjHovxV)+}np<~7KYGdM z_swzAgdfv%!)ofPKYhOEGS%aG_NA2TK|i7e>)t!xyIfNy6_G4;tb6H1UGXyrOpMS0SXrXE~ zcge=)_gv@Qzg&N*eCzFMdFfS4u0CH_xUahBoXhKwWr3HR^AFcF)pXvzv~Fo_v8v&% z3Xf{7#V&^>-_PH4CT;$^FM9J|I{sX_`(MSA$e@%@*KC~LUb%PoRQ6UUxk;-tPv6}6 z;Gjm{?=fuxB7Q*?KY45^kVINmUUo3y; z6|22nu!HH&{;Ew;=Y8pQ(ycvH^DVE~C+CFSGq*!ec1C(F4w+q|_15^c z;kOR^ypp?f-S^6!Q_sx0UvTiBy33jUGv5Rx`P;|9W+?C0X=X}hZ^DX%Q$MALQcG+ydvh1zu{p{dxJ(GHbQn)8woGbSGR`WNxYj-nE z3ombTvVS`*@m0FkV}|uNe{6YPu%*hs-XaCeVuyFZ23k_Vg5+DcW-ywKkItZ zJ*%MSd2HN~+>5i8RUQ6W^{;f{M0fW*-MpQ}HcgDrz1Q_bmMkk_zn0E7Ij5U%0$;V> z1iRPj?nj#!+noO$^EYb$j1>noV=o?CmnL~VXsM!fo%_DaH_q>`E{e^$Tke%sZ?$&T zp?t$C-H!Lkiud|gwJzU2x$0V(N$&p3`c)zSA5|*KJ(r6c_;f8w+E`Z@W~bLA`FtPi#L_n0l3Wues@6n0=`z@-mgW*$6$WyyQ>=J@MYX-fsy z-CFMT@rC(J4hcr1Rr6MC(Xn3j%38VM!u{+!f_3r|;i0X}4f`vnU)QjTXkK=V%7)44}AJ8@9+2b%qshIwW9Cm>@uwt^|q7NXSsa2n7zl)JjUdy zP@!(fyt=PPMZ_J}d$BJ(<)u`R=%nm?T}b=cl^=znS%*E{`~JQD@%WqnMCE0ok_YV# zwl&s--nnkODEHy*?G1}EFR-O%J-TaS8dmozYTy2xHFhTjPJf(Oej;&^m7P^zm{pz0 zHod32zD!p37p#5vJ2=hcZuYLci@i#}XXsflzyFo(${jYP_CZ&f$v*Qw8C|On4+GNc zeHYg@#;x|P6aQOw$G_4qIpz{)Z=Q*iWWVgeZ;XehiT{nN-{Z)?Z@vnzEC1ZZ_MZEX zEnJs>qA)g9=E7&z{0lb6SMO>)Y&*|6)h+d|@Kdof7yXy^d)X}OJRew7{8~8Nxo1+a z^_$;%3ybQC`*Pn*4lZ(=`>bE{ebBA$0&02mAlxx=4{W` zc%>~oPf9`dv7CM>+hYyO11)p}{+qk|Uw+lHsVVctUwOB=p9^_kE&4F&ZtwT~MokxXfMWfp3cF;e z_usFpBLDv?{~uz1IbZv2kgcxy6Y078-ldnBoH?pk>VEI<_St{lPxFnPA6YbGy3C@m zzrTHF{NVwndiOJ)Q=no<4N^Yr4hFWX$vWX{JVM0lD7$4)RkX7 zC_Xh~idNS8{_;n*^LxI!-}H=0_#YE}y-9O<(c;(EJL1-527h~ccJkcizBcbGW|W?j zaPOOG)U|rW9fc#?H8We*w@qC*e^X@Tn(ygGVHq_tjD-gt@0_PxvDUss>U3dx^vdtg zdY1TI$^2nFLwM4qbemf-##({%AM@-Gwe%}ab+K)&Rrt4Wy6%N40mBD}?nth;TqgKf zov&n8^4lwqH?IqxE9bb*(M@uHYx1|V@Tkgx%{%JSnR>Yd+8TU~JmlJN&bMCx18Lt6$k;arQ-`e6-a( zzjJ4H_m^B)^{0QX*Q?<2vh@0?>2{CTy}Gb^)8Uni&TgEy#QD`{<_C4QH(y!>%%3*d z%rn%kL?cG@BHL!U+`v$r{?MM!LkL_a=(kc=DVj0?UQ`^bFs@Ei-#V|OQ#k6 zUD6yf{rIWLJ02TWg!8yphHX5TB_4eLXqnNENI`=sX}z;HznX7fxBu!-w4=_1hw>}3rn308caQs2(#e`mAwAFj6_)-C=Y%C>(>&l~H+ zE$@$nFZ$f>b}i;ls+DU)=+&Y{p1WRD_{(=%&Re0X_u^IK+2HMckFQul6UJ>eqtcU4j6icQ{^ zc=V6_iqWV&vi?rj(aN1#@88^dT54;tZFaVroqOfKP<>N>cgLmQLauJ-T=~D8&+0}6 z!;}Y~H}1QC!B|$HYUi0v(~=(Vn_oF6wyO85jWYk#_Df;8tJc2{o9E|XyVzy#DkY|T z+0&6*l~^oatH1m|uk2ptynW|4F8ckh`un#}cO@%qc@hsYa=0As`t`diBmM5pcIB$d z?a#z?Blz{~znuJYUrzmZb>FXVE)2i&e4j7Q5ziHLFH652@#p68TV;37&i(%CdG3Wx znvaba_k5ThSbB(YZ~2xOw;v%(i~DPnV}IFc&kbEUbG6;&`!97`v+j4k5B+_yy`^{S z@}31t7CY@ZQnjW3Z2nbj#;U%130&+;Mzo zD3H{)Ec*_xcUHB%(v|n+|E30ry??^i*t2PN_y1M?rw&_bzW@4<$>rCpl0|Y>Y?&cq zA?w5B{h1Wv!)1H)FR5vN@_(&RDL((0FMGVb+q5sr5(RNL_%DSqPCu&8kv`Q=d3&N! zw#yTPv(-}G%X7DehDM7l_+8=rXMKGAs`)RsPpiz{jd3Wv-y=&myOSRnU^GAp5lJ{wf)z5#V>O= zo}6p-j$_%I==*z?d=q|TU30&}*<&Z)_SjUp2Vcw9SwFjEC1hX0P?P@@T!<`oC``(* zzL+cj?4;ncU7dU8rhd2EVYm9h_r$4NCEVXl^=|x~S9(X)FU2a#Zd;z&Tt7x@rN91P z-=-`KEZoTwG-q?xiHL&GUUs$f&)*un^!^alH)YT2-bL9D%JuHw-2d*xi=HXJS6daI z-M0Eu$I;0fX1vYMzxwl5g?9Svy+6+cZu@@l+=k*ycP>0RzE7z6_^D#++jG9W-g~c~ zx#vWm<#hEwKLd^IB)??_J*j);x7c{W9OV$%n7;p3*>a`3rWd*X`grr&vHvlXDvxYG z_Ce!%iO1{N^UwYgJooPJCNB4yTZ!*#%UyAJvFS5 zHEHw4Z`Ui_?Y3P%ex&fpZXM+vUb81nS)Lg7RC4Nc?lpJ*E&G`kpT1PMxma)C>YAd2 z?;i!F;{IGMGryek^__t5Jwd6s1t)(7m0CB%9X1sT3+;Tog!zW8mzq~QOr1Ji-OmVEfO}ei8pQeY8dp_6J*V$)>Z2is5 zI=!_2{^z)heNwM?ud@yctN8on{o|MG-+lcOk$?DPm)Vg&HPSY(GUhX{+tJcobfnfs zN_+n9ImiDneSb9Z{G-{^#LMEiuZuR$x|pxtQ(7%=n#6Oca|++FkKw1Q4;x+QWwt!y z{Z?h!pIKAg#j7rRzlv2qd&X$mmx+AJ=QG=Po{k7NzI#HTl5yS=F3Tj1{iWvenWu_s z-pkMJuw2z58!j}BS+4!o%Zv49UP58DPq&|+lR4XBp3S`C8rB$#w0`5KMy9i)R71G? zt*_kA@A!RF&NA$>k5!U|{?0^? z;z>nUjCQYgvj}_0v(S0PhR|2yov)J}r@X$(7w&ZVi`E?5^|?XbFLr5$-(B46w?Vva zN4{tB=Y{G2{MMez6%d+hXYz07t0y;`EWjTT4JPx zzHG~(v*lZ!Y+CYg?)KWZphYI-w>r&FUdU0q$*OK17&yP@-RriJRlm0?Hc6FeXK)j@?*m*H~Cqu{(9%!$t5RmCYmOs zNw!B?+8*AW8*|?H(&c`cJo_@PcO_NluKK#pU+#Cm`oG%0nCCOCqt0H*@BF*DSpTQy z@oUegbA@U#?PZzjt$##y$JamS-{GI>_fq>k|6)SFzbllL^>}(&sQK8mol34# z+O(oi=9$yKLkZCD~#|m>;JppapQj7zgb&-U;Q}qVEHGbGfSiL`|dCG zHUFVm8GbwVTXN9HvmRPn50qbhNblzeN|od+Eq=@Gw=MGf#krxS)^FQnlx}b=$XHlb z^5XcOdCDvsr%2CuojGH@C4b=q*Pm-PDt#5puac>h|J-F+VPBgTdHtJ1cF^oa*D~Eh z9~p_?p1E$;`HyvGdPYJe2Nz#tSS-0}*ESbh-KAT6!t6F}p0{zAoEx`SQ02#$Hk*$b zy;#NfEqMMNeg7Emn$3$ptm1sWG1bTX9@qYtF6uq&W_|T_kGxiQ=WfRR_ztP7<^Q%7 z|LS~{T@XF7QbPNAqFrkBl)E|?4^IAG_-kYSvddRiU46GA(v~h%D!oI#ek(n9cfA1KTO*gH*Sg89; z#BbHQ_o>QVKacmD8qV^a`dy@R)%*9SWWQXwCt13B<97|sr5BHFday6y@tkWPZoL0J zGxKIa0*m5HrT)*p&G*l)&oPp0=>DC3{PjDIkR^$39A(cfOPQ@d6mMO(txDwof%%%p zD^~rkviiSM_INE@vcjq;*jfOgzP2a#{_VE$?%9)W#24&+UFL#Mx%ImprTrEX(ju!K z?eolY3EJ6{wNJSJ!Ik&h!_ilgn8rsace_@XAhVaSc6Z|69;V+TzGo z7gyP>pH{CE-_cz#w{rcro{KJ_q4hr`AAX9^d1sxBv%*)L`@y*_#J zwtLwkZQmC#7MXd;Y(MyQNB#TSa=Y(3x9=Bchs1?;gx88JEzUafg!9Ucvb%jHe|MhC z`4RMOh0k-xn($Qi@cBz`o+{DZ`#hZgw;IE-of~7Fem$!W|6uNXI{TrPtLNNb3-1N+ zZSJ4b|AzZ?)cpS)HJQ6T-<(JnPA-XGx?Qt=on7$y35#DvS@^{^{(t{x{*R^h>ulE; zX8p4d%e|8_??Q>ZzrnSgLhs$91M>Et{?)N~@Bbx?>&0)>Exh05vnTPbOGMGWw^M8_ z@0Z<~a4s)hzi`|7mnqqvFD)1Oo$`Hb_c2rKW1;^YIfqvUW|yy3EIhw%@}CcRGYkCW zzCJcR5bhCw=i%`Sk1mGeFoUmJZ;_c!O zlhmgdrg2xDw|$~KLE=q$T1UMW&*F1_ldTWEx8wSlx$%A{Thb??^S0lE+LYyf#9e)^ z`FqD<)7Pi>z3H1#d+fWJ@UuVvr)b~av*=#6<&DK_*5%Ht+8=y!^&-y0ozIw``DUz= zKk`BNiX`i?WRI6Uw$@9nm0{dCuZ@ZtoF^q;`t{rX?`!!(57U1|y}bYb;r_6xWxdanw0Y~yJjz_H%J<(_O;LGw zu{cDm^2y|Ww~zCA>edG=<1W3MyYF>Z(dL?zE61ynn&oA+W%POL;wC(~bYtV)lCIgW ztG-uW-F~n8SxrlRv(kJI~j`w8B3A>f0UB=X|deT7P+0b9ZK7=xNClt`Rya(}Vk; z?pbg#hEuOEF8JJ)I=e1u`EzXE@{Y${C7vItUzNVC{NbEcwS@=j&T71jUvpU5T&|XR z&b#z8_I9=IKCgtlOBQ;_=V}_6rS$L2Y$*>5ik|QPTmQ_{D~7XPU9b3MCh*n#&hyas zyOQ}+PxBdHy+8M$kMvywSxRe%jqXy1dn!|L*@BZF|*?QEJx>f9Rn zhf7K%RlokM?p?f3DOqa%Z`enr?rq^G`j0&4oFE`|5wU*Mr+L|9;Q^A91a(qcikY*PICZEH|6-@>e%yYt@50 zKL-V0exAPVsNU0EVpIRLbs9~3d2w1`Q&m)v)Vjy6)~){6)9Vtw6;j*3aK65^^6B#o zVXuF#FOPgIo!$J~=ifGKqh0TUTs!+SpA z@?!1V=`|1j+J>>M*r7iySNQ(zXZji1s}{?D^t8S3_{cB5iepn(-P(5c#oc-3E1q7f z$XfEa@EfPp-+TM66sYav?TMbfblt7z8<%gq8ov7L7oDD??pC%Ld@kknk*}gIU%mA@ z;B?(Hj}_OyUJSgyU(4KkY2L2g2zO=vJGXr!zD?U#_UjSf z{@F9%Xk{$BsJ3Bwr~T9N-elX!uMd9>JDs@fb(GGWo%ioO`rh&)Zra>ifu5UVCbB#4 zcw2H}>19r~^wfkCRST6ZkB2%3)(Gn)+9b=)YmWXompiYeC*k7rl(wQvmsg(O`@iIs zq}iY8ra>0VEt2QnJl1n(@AAmg)^7C&A0B=z`hD-^y>7aKx)#9mrslGnjHQ9`Ocn)g|M`3?@4ats>dv@&d2j7Xu|KIvQwmZS z9WJpychzLi{kh*Ot?yd;RH*T!H_x0ekQX#_mxRyN@5c8Ey*y{%X{?qD4o@-FN;Yxb z^Xm7%&mQORhe(Bj2JH=Ql{d>@4b;CN;W?c>r9x5hu}{C+icLi)l5Osveh|KzPww`y zqjT9a0@1)txl zT)*lz(Tx#EQ z+v8pTb|3#4_x0sFL)Xu|GTd72r|vG_uFSvMs7qi@;E&@+4^*p#FLj(PHT%@-SbG+C z=f4qa@4e66F_(9K(C^D1r<<%0%0E}()0;7!y~#04p`3U5Zx;8n>YI+7);TSA@wJYd zPFd#ad;3rOaXd|A5&FH}?$U|VAGzh$ADo@_ENgi{`=a>ut4e#)LUrAx=HLBM{djH0 zqE&}hdZZUjo%^ChMen%DyqEJ%f4rhtwP6szl7f}E7m@%*LNwV!lvx7xa>odV`shg?7r=PSg>$OfB$O5Q<82+C(2)H zaJc#8?{gwOb;`=HK3$IJ9VxGPp3`+W(Wh2l_wxT-ts(ER z@MmB*)J3oSJ~Zlw$*2==9+Jr zt=6(G#kOlh=P|jQ=70Bok>;bi^4za)U0(m+xkkyV{NOEFF7@Sy_5R)XemU-y%HCD0 zEbo7}tqTo(_+#;G-&9wNmZvV-$&P1w9=HekEq}^(nq$!}`-|_{|J~d|cdy*HJKOHB^~6N3wCyKa*F@jCs-^3+ZbfE!!qNhZx2}ox?}e8C zd$;4wo+S=J6AOOzY=3k9$c&%~w)^{zm-MZ=_$w>>)2?=-dD}hqPi}s@IVIHDZ=d#u zx92t=_f_HhQ)M06c6#PD_usYCPyG5`X_sqcaen8iNpbl+=WU+Mk4)yeF}bPm`Kj3J zW;$o2zLxL*bJnbF{>$v;`~Tjx-zIyba?k9Zd5_kc?8_>Ds^h8<^7Uw5|8P@o@}0$-uei&)sy$~p9dOd;X_fhpn-^XhdabpU{Ik!0)vrA5pH*I__neQ( z)=e?;IT`xtXO4UJtKh!9-uDGdmnXB?KdVq$en5NK?-SK$pMCy*?EacS(7PZ{MRqUKb-xwyHLS43tmFR9ea-!w!#CHYyzG$jNxwU1 z68E0k7~5Yi_wCazncY8oxZL%{$A8vxSr0pGAFC;UeD^1IUsZ{{*ZZGSB#)h}`n7G& z)nLEv*C?cSCaM`WKl7$vuguB+Bzjh!_l0(lfXOx4TElmnoHM5$ zuKtwtta$gU`Yf9x@>T^_`R^wN{wgx_ewnxQPH25+zWnMxf4}u@+ES=_wm7GHo#8(3pj#&Mq%|6TPd%Qo%J*A&`M#68 z9`riQIlubrw;o;E!9T6VDtUvu8GoOw<5U$Zra^FL_tZkn=lin7*3zdLi+eev1i zF1swM^6Sxx-T6EV4w|R>T$=w?=N0eD$=e=E(W)YzP+6_`-0^8ALX(6+oasH?SDt4 z&V2qyF4-;T>8@qx7cX@B?U$9b?)bGGyF+s?PV{-<-m_2q{PuSlFK?v!-&480^@DBi zkNd0r4>lVVK1ocP96kARhpC{k^)ciAhb(U;lVwbuy5^f)T$P>se$Cs&xq8v`dyAuA%`5ma@BHeX+c%pYcl9S>;L3dXLX>-d5ZA z&+YVc|Lr;L^;UZOvwrbf{8%`6ue0AZt&;2ftmmGtv8YjR`&=az%cm-T zDncAJ%Wr-4KRjnEZ!w4DQkAdktHf8HnscXZLA>#gm1lO>{@Zm>pSMS*Jl=()P4jEW zf97PFjVtXwdiY+Qds<|F@RoaP))}1<(~LO1&^*h{W!~Ik{(6TglV#XUF7=prazl< zZdLc^6HgXj^^u*s`Tx#ihxE5OW~Q|_6fa@?S~u-t@G`}#4|l!%v9nrv&NjEw!!hm` z$}C=7mtHLNcgd5}bsq$Do>to)kDX+9%`17H>aq_X9~UOnpZWbebKlhe%oacDPOV*W zeWuCsB`Xf^-n;i3=hu%r({^87Xcn{o*8c2S-Pig)RArR<8_P^QBx$7>UnryZb3-q` z-G`IEn!`ixO7d1*d&g4mZavey`rWqHe9!0naSX53{;ksb@W-Wkk>|RmDLa~$zU)d% zI5qio;f$M%j}4>TX2yq#KA5E}-oNn5(~nbE#k=v>?mMuNMf#N8(Oq9H7fuX%dv@ym zp!r3e1~&ii^VXSP>j>6(H1oSj;QN%6WflD9(al z8C82Bf9wCis|)7sm^j<#-K96|&*Ofvm#(~>IHw|<|D4vW029yfR=ZlA^h51!JI{5$ z{xI7(%K!G7eznY3$t#ne{#hZToHNt@^{(FubqT)`<*x*P(#f^?G5h}i$7ZYMzsy#D zTv%khHfCX^n_k|PeUrn5e@6b8^Y(ALr%YSW^q}sqlhP-2tAtw?YuHx0-_%PF()Ye+ z|8dT*=R6j>_MHS<_?D zlhjo19Vj_$^>N!{1KIbXt);tut=bvV*%)Qzci!lYk@@+!asX+vSzn5?o~Ku{pms9<4f(9VOD=F zPJ1d|$>p`aUFLV|bGUc>orlY(96HDJsaR3-+xwH-Ui)&M(CD~v7-d*_T^Q%pI#q7KJWKaqq_&Mzdlj5BCNbeA#by6J-?{8*!o~Am#-`T zoQ#~8^mqwJ`tR>KMgFh*cB}8Gxpecz{q))gzt5k#zkknkGjrY<>~-&=PS6%SeMpJ(O&-q~7SN7adO4+wuy?Oq0gXd4bZ2!3PpnqVTz0r@Au}k%?{(64$ zf%)odAA7Q6oNMQwo>?e=eEQd(S*I%(?2PbhDXYJsnagdqQr^^MGR~oLewzt_9$f~I>Ecz_HH~aYBx;^otiBmicelx@g zl)ZYLZEJd#lkb;L)l5eDhv%!SYBoP(NZEP3Sd>+;4q*E9M)8u9f9 zzMc_nc~N?r-mMABbNLSEZ3wiL+kIWzDl6PO!Rj!p@z?jaE82|%-WEJ=eqOyMBkue| zj`oE;FRIqbzFMC)rO@7kds%yb(G{_|iHD5OZah_3_wHNJ;w_D>6%KXp_vcMp6x=Xt zKHq7p%#1thZoOAqa;)@v@!DU%3Y&Wv;yxU!t}FV?sdzS-C;!*C8L1IVcdDGfaj_<5 zs&>Ka9+~|`cQDNT8_Acmi*s*;-~8$0-5gXdwd{@Z`x7UUF0xeLS3J0_PVVK;+ur|Q&i}vdV@FAA zgz(F}Z+@%`Wo70CZ(71OGy3bUw#il3?(XORay@t63yaSy{FmfsMbG@T>X_6=Yqx-> z83yY<-(*{SMPu`e3D=*U5#ThXaab?Wk87xtZ%F?@bzb;eD;-(A6POU`;&6s_GA z(*O8p@!cwmN5IED9mzni${#AD?nOa1Sz z?$5rud|zpt+bPS;_wmZLh3)a-dpmyJW3S(D8trju(Tp`#lXnR&c>ns{nFifjwFj3^ z9=a56<9$*8iT^T-+utWow2KULzt(qP_l2mxl8c}1+MWNaZ~w!>Ow9^=@1k?l{P+7E zxf0s?M_2Uj=g)cbYunZxV6B^X`P`k*{BtFC=H8e8zkhVGx9ihod#f3BcjULeNadOz zIQ2tf$L=mq_Kd!7B6CmO|NUo9f0F7IKlUR#`M0|HOUX89L@VD_%U=KO&p*ReRW0%R zWzxT%s$KATtM#vQe5QTr^2Uk2?J06kex|;EBR_9E_Izo8+u0=t&$}P3$@>s& z{cG)>D;@8w(x047-jeV^y6i!rPR|1ECs!9oiV9XVE!t7qewNk!sMO!ZPA4P}nYoAV zonQUyjYGlA$S##h%Bc@l_#S?HE%6)2DkU3{wLiYZRqpQl7I|v!9Lv1zTeo}j_I!S9 z_~vuj_UWltzXwVlO^#9cCz0QoKS}10>@3!@^jkSwrV0w)SLoi;v&iwVP~x=S$DOM? zcfUJZajW?3m1(=DU3%&9_T_Jl!~O<8X8fJg731>royY6m#g-@BukLE@pQSwib>D$f zAC11vv0pyy37@jyp7z;QqN=N}-79!f*mr2fv1Cg@*VX?@(`OatudzACFI#lRH9P&H9<{f-FlU+Xjb^09hix+lpjehE@I(N1} zm~7e<^GUpI9lzbG-j&=}e(~arO1@(3q)~hFI&#&tSNs4=d_GlCZ^&%mF2T< z1+89GceY-t^g+Y1iW~ZOXKK&7&uezYgLiAcv)$KLsn431B!ki~?*H1jIqXh-X`I=| zZI`FKTb}Gva=oFMeeF;0yAEH!^V)`PjbT!r=Xu=; z&5x{-ySqH9c3Jz*30|Au`K5mUo-;S7!LM1;^4EzIhG!S={gxCNb>f#+o!jqapUZnX zZOqJP&b>VM@!cH}UR>*MTSQwv;#+xJ@=(kx?XU4q&t_y<$xKRqC$?B;`Y-X+5AU2_ zxi3n)|9xxg!wGMtxsR$RM*?&#{ z;*s5I3eW9|{}tbPml^e`SGz6p+8x!Ir=pgh6n&NRbj`}MCnio?uajGK>ejblE*qi4 zTfCoi23cN{bvhP(_)5(JYq|10rSn%VKJ$F??eD&?W7A*#V*agqe0S-Fx#m&FA8?)f zyDQyA^>^4j$>gnZH@3c7KXu=Z!~Pl%nI-)+ik|y?dENH;U5TgTP1mEIALp%}_u20E zzm~+4YOD3md48I^@o$DqNx+*WcLmF~yyxF6nQZxU)v5XCze_IN9k4ySaaHjwcgwE* zQzisOEMHZ>`gQrbJJHrrJNNIAJ-q+$y|3Tu&j0w9_iT%u`AY`7gAYRXe^_IzdCB=| zZ@Q34S#oRenz9uaR3;UhMZG&;kTw7D?yEflZ~WFw&YJQ&)w)IFMQqa7cEP&GCgnNV z*ErMv2`%4s-<$K%!IY4hyuWRCy}w>K#o|c)nTcO}b~UIMuU7Q#IZ^ybR#tpdxvcz> zWnYBuNa`M}Rh-UK7P4p6v*Q1!V;{Y*|7kw|(985+vtHi+_fP)7-FKDKg4FzSn(xOP zGmy+GYMg4+S^xgT^E+K}3nnY_?oQTRV}5SeoxBgqygT;%i+B6t)ukl*SCwu5ZoTQ# z7w#?=pZZwVzv`ay(N%9k6v`K-IlJF1D|y)1s{5I(??Q;|-yZ>1zpqIY#yl{+_qxKt zO>Jf0(~mf1=9mnc60`YiaH)|J-rs@BGU57iWK4 z`u_fpM=!Ky$G>QJc`W>@y4>Rv>rGCp{yk z^{cdBRoi&%&(9Jw$D+rww_?|&-kwsu()PXf3C2FnIYE5iJhqlg=IuKp`E*U+TDJba z`n>zK{`=Pd3;G@Ww(QxPOOyQ89a-0NeErusGw#n#Y}xks>&zSXavs0mlIoU2}U)`@&7KR5U4@`SA)JQj1v zPTaltVNc!Nm(%?=-j3Ni{jTQ(KU;IlYw9!qDn4K6H>-)|u->w|-X$!WuBYGTtg3(K zH&G(s_vOu<{@+WEoY}#;_w|~l&u->k^3UJB@X{#=dXg1-tT5zsu)loCoELZ3y%$^( ztuA>}!}8fVi%*t1GdT{+uov>3y)Fb>3$S@}z$~t>Y4?+-%vf%xyQA;U_xMoLFFeyd zWse(vx0{!-{;|mSGw;q_DW78e|HVha>e$;BQSo-=cIOU1?=b8Ay7;N()m2q~&sMLy zqQ3q0t8SiWk=0tyLY~-5-=F_%d%UgM2hdz^|9X4f_E}|xs&khgJTDk>%)w2>uu#x3 z)$hH;&P)2`c9QQrp6ctgtmueuFM6b>-WF zU(S@_&(~j?^I%1f*{pMme_vdcWyv3R*!@pV&~csWtN%Z`{LpQ_Uvaq8@R7v9>lN20 zEMELf%bZQQR7UnGt3iK`a=zE%wCBO<^Gvk*-Gd`tt-o0L?Ku6kXHJos?9-&h#6@BX@XmBpfu zi!E0QeNV4Zzaz9x`PP57<&ymmugF&ETkLZY&iWp^Z2os0>m3v0+16fPWd6O`y(Y|7 zaP4N9r{Aw=S}oWd2Oo1Cj^&1=5dlP|BePyf4Xe$JHshpKkQ zuk!6rWQjeUc>KhE!Q!JEwY?^NeqDERL6+RqqH}KXr-WZs+bjxxylHV?(d|D|1CmVY zpYiv~rv~RemsHFAP`$9_*RpL>`irJ-nxWkzS()|pVTIbMQsI*659hm{|1A_mNUd z7R&ur=XsT4|4rI9ICjM)KsPMd zalFMd^iYM|yg>hiD+@lJ{d%!*`TcX+oX<9v|60bo&Gc7KrugUj)IjR3g zxast;;EB_-cfEV^>euw&NijnIKNg>#yHzQ;e)?^h^7*=b-!>~Z*xJ3?x8~~imglnt zD|gIO5ZTqYFficxm+hB#>~jOnx6In&*YjY{2djzmZ*D$mASwU(9p9c>&Xw=OpFH|~ zbKX0r>AI6;H+|*#`0gCTr0YGOWHYUmXQsY({U>+y`OS49{l(m7i{HMT8}j2k=W9Em z;Eg=%CVwvfm1nV`*YAW_#9c`zb;;ti`{#C4tXpXbMMAfcDKN+mkcGmjvCk ze1G;7$C0e$bG!MszPa*z=CQIwo521lad*Wd+MnpV+RKhDG@0zBhRH*!FAd&f@)iS7(IWF3Wg-qt^cR zZHw=pi+MJ_x>D(>$2aBp?iHyYs;}SwyXW|O^Qr$n{Q4~1TJ*T#{bMOd!o=e?gjTA-+8^U@P}X5yvc{xtqOC=iJw|yb8%DAy;^3u;LT5B zr^|o7_TI&xd;L5w(XATnJNhnOm93j~vR{4HJF|#5LEqJzmaX1-ENrXwda*O?i{JWk zzd!XW_}J=m+AsQY*L*weH}lDHvq!)0ZH@YQ?_$=a7Y@=r38$WaUw{3T`>ZV4$sa$= z61xB9neqRXYx5T@KCpQC{CoS-r50XJ-nL7VdH3RV^7^-Y4{U$t8J- zYChOCZRPhfCp&FEMwVLX74P4?@w2;oZ&k>g;*X|MD?74xRvw;m?e?4dN00B_sknc& z@52R8L|<2|{ge4hJ@)P9XZP>k{D0`qi@i^`o4?@M6I?Bu|HU)5anGGiCY3U`?LVqn zoi|nc{z&d;HuxMH@V;OB|DEcmB&3UF>n}a?lj01vdUx*W?vg-#D}JB8{B|!do1_iz z4|}DDf7|xB=F-~J)k~*^wMQj;v^!51-Mw#Ot%CouWfiWs%^s=uuMl!y7j%SguAg|( z$}2gx=k8t5OpDxTowsRE_56T+zm;##lhxh1%KP|){=08h+a+sm)jjz7)~DxPEBafW zbC;-lmX};@I=Q>Z)$Y^=-}a>Z-YYKVLeE2T%OZB|bE=CHe6m4!&gGYTx4YWhczMI( ze8dmC{jo~Hlau>}*_N+0UU&Pu=Hz!ATd%l1Uv>S<{{Hq4%hXOj&%6FDBP&Rz^m)&c zc*`Gaq$T9#rZA~6_5Wc_Gv3UF@Kef{rmUtZr)S+JvFJ{^y||2^SS9l^M8C^@@q4z&1?aK z$E%{;tCD;sw?w|)`*7Fyby5H9oVuPBFS>BHFspJ^xw^-{6B9p0_J2z?oj+T)=t$Xf z-#=1;-)t@~m;2&x^^#+K;g4w%zxWRB>2IHLLRo9K@SgkXH?vR0ho4<0P;j!=`O%XD zZ$wO)Rz>$szFL+leY9X=$+@5MxBpKJ{`N&rHsg%;X1=*guYOY7_sz<#Sm<;~Qs42L z-(^m%^b$7ZKd+)wUY_m$WcA7=DSFndHtR%IR8HZW%43vQzzUFVx`qOGU`u=AkSE_}V-dV)>wW{Z|q;`e$#(M{AHFRBO-Vd8y-fi-ucFn#U zoPnnD&GW0LdvA8)eYbwYUw1Zp&DH8BPb~d&e2-Mlw?8e?n%_$TPMSV@{72$z?vjI6 zJcl0dUDWAzR@89IlXFamV)`bnikj#pwZ2by%4h#`c9w?sUdwI%xuN)QrKOq0p&ggc z?0-9Db%)56-FY7t2hJBdG3!B1!VI^*x{|pGmffGt`cl7Ddh+>zeC{M7xIw{L6} zmY1xsKJ8(CCiv~mi1$)G*Z)?mZTO@kGq1Gw)}pwt?{3e~-qrv8qb2{6*C{13eXFv| zbM@4Z3JYpKU(kO>Mlg1D`uB?G_u3z{9=qsz{A(PagB5?W@!`w4u6o~k?VgnCy)U1{ zTvPw~=f)rFKJEFqTmGtgl)$>m+X?TMuTz(=Oghf!&3{nw_KU~K@gDo1ye`VpSmkAY z@4^kQ8=hhl*{c8lefI97d+h1R;_dai5q?*+KX?6FXSr$4YW6s@fTBIuA7AwC z%Ehm4&&$_q+u6?h9ev%ym-pxY*8B2Ht;>%yvrd0s{Cnm>{~a}-%X5PsME7}q(E8#k z-DIV&s^6|td#QEXo1S?MQi^uli>kD2UhIgSdMs&{u_fQ0PJ<6&^$E&MunO=%q|9bJiS6@#r-}`6gzPMjcAD5pu z&$}#DvFyBDXZR0aJ=e3pKd<#V<$bdJzyF-gHec3XJe9iJ=8{1yvvptb*>hr-FJ;U- zBz9cu{z~=IwOfuYv9p|T|L;X}_amCuZ(cN7G*9rW%AB?A?~na|H)X>#ZC%x!j_=u@ z?znY+(%zP>+~;c!`Ngci_FKzS^tDg&(~ZJ~TP}Y4_w@apxQvap|$* z!;e!KLuUV-E4!`L?%AH@UkWq(CM@>kUFUuwZSNcT?K(we&zj!po&3A|^wx{7CX~GS z@ZpB-^q>2J<@ygVeUiF6ea6l>+pU|Y%;NU`@_XUt`j>4*XP*U^zumd-zAb;tJC2N= zYv!*^WMs`d?q0d1oVXvn#_YVB(+P8NZ`rjXe=k?f>f1AS?HPwD=eS%q++lyUZ%40+ z{XaG5nIB_)^5pa7+j)Nd?zlPsUtZm(+A9@GOVh6Iy1ahg`>L|%&k9*$ZPJxw{B!H# zCM6d{T02R2**@NEf4-_Jzj){KIkj!8b{yEXuwZJs&&2Sew3Cvv`L^Fw_>{a!*Hth*DWv9Zg`kH^gt$nPnd+yGwlNNv96Xd#=`-bLT znJa?p46|Lo^}g==Wqswpq>lgj^=9FoE%EF^00Sg9@~DIY37W|y6juG%C9V$^mG2dFXqv__Lr~w*8lyrbRX}`ud9m` z53o)OIeYWo{nRyEGG9JsmEv{Se(=24T;Ew`pH}#;KC-iA-qQ>Q=|4q<*DwDUXR}`# zbLsNQX>7Y{>z}}YI?<+IzICy!o>xme%U-6wqYcjWt*yA^jmn_~U1{GECChh>`^pFTVF zG4H(ImW5W;A*~;tl^whLGVA@0?>3g7-(68!YuM$x~OJl{VB^(yDV+_Vta{d%jc_JCEr{6gyl~LpV`4Fe4*FWZ$$*IJpVbe z_{Ya3^-yMNA7-h9<=2KTE)XEyG=w{FhqU&3X$ht7i6DZwYyq zzE=40e&5%b@SwkD?PI=h2@|KE`e$2Pi=I4|4fi!)nQ8p$f31e~wavn{)oy3X%hRP& z7b*MMZo5~1eO}s?5)G;Ers_R^LThdRr`Mc%&s}EzHk5jNxlEI`uhC(rFYJM znR==I=hOQkL6z6}R!>?SJ~4U8<%QN9z1DiuL!9Kw{?GsTXh~s_-#2&5)j`|dX+CxQ zw!nLPO#ejp@|j6{*GBz~o7~ABwNK;Ku?=ruAJ!_&J#}kIbyViryTv@Q%ikDRem?SD ziv6iouIQTCQhmQ&C4}d#e7Yp&?DHct;?DoIJKub9zRHh?9cL~+vk~0&JL|<19mbWF z5<(>%Z)=VH?vw@|KVded`%B3rtyu1q+3zB={5;d`t_AI=%ze7~-Kv)G*-llYm(R0P11kj#{BRDYmN8Yr>~dlzx%M->&Q=^tM5|ItF|uR@1L^jQ+4;5 zl}``U>4(32_-4)Q{hfy_SE&?P_64>0E_iHlWy%MO-lF8V{@{MU$(HF3r<0~We^+Ml zYku`6ZIkCmHmc;<7aw^s_u-WDo8Q@elmEK3>-5nSelEfJ7gv4f-e>qvyKc9h<5uh1 zqV}AwpWn643kp4|J$C=<$D0-ulP9q$P2wMGU^G(e57QrJ`Xe z;dD!;YZYO0tj^yJo_{pYV2hB^cB6Bz|67ONdv#*X|8LLjUXJaAN?=#E|QVEI`ui{lcFbg?Sc>7E8HVHLGgu-I@9>imUkP%WPh`Pix~D4NFP4DSO|)-#yP( zCj9D+ew!)9{0|4A6j)Pi6>*GG@n+%{bC+)n7C!K{qyMjCS$nHb#; zu>Np6dGWK!Av^j@uf2^}ocY%DlE>bP13oLmL%%XH%`w@s@zYJmwV$%@bexI)lhkMZ zYkk(;Ku!1Cr);w=_lw?)+HpMS_pH1cbJ;%TOI?0f#V_UFS^fRMGpWwya_?gTH+}E0 zDesx|^0-pf#kqY;>Pl3$YPjy$8*t4c_vVGUd~s84lUdjG-dfy|qGVyoZTrsV-Q_>k z*UGolMdhxvw^@)G-=Lf&JV`-Wy8PzE)hi>r&WO%`IcryfZltH(3bRS?Z_df;oFLOC zb$jopm$UEaWLM}UUuWc9Yr>-KZvM!q{M+GWCd&$c%ro$L^*wg!_ZyO}bI$GWn;t3s zTeoiYo>ON<#Y+XgPPF1Iebe~AbQ+hU_soaAuAKI^kKLB*{f>Kj)Bp08*H6oI5Bi<| z^^EUp)Z$aZEPt+_eyeU4ux!Hek{y?qWK^vDfA`?Y^xcmOw%I>8T5YEB{>tJ-_6qB*y^&82pL5i>EA`&@x#Uxq6?|J<_cj$M?cez1 z=31FmKlk$Wg}=R9c4wit#Jg#m)+wI2XcYbP$f7$%ry{q0QQH3fnbfwNis+^9eWcllQ3G3@ri-d+`4v%h&n$D0{wEe@HyDrWk=uN%L-k2+Yf=4QO= zw)Nk&E;DN`aV-t@4eCi!Zj#FMhiPYfpQiRJqxapqsm`T2e3kJV+X4n;d2`WnA5 z_R67+J^z&dzo>bee0JjXC)-?K@60?CxQf~K*Q%G@)_*$sOy2b*ult>A_j1j_{b@Gm zzk3GE^b@p77f*5qzHfW?Bl+)JzWw)>$9voC+G4#c_~DCF4$mW(f150x5xIZ+;a`!*xA9+SpVq2X>W4a?J`3Bnh&}U7(EJ>u2TYe_9xkppa;wJT zf8K}W*`Z%$Ja_8P51ZZZ{C3sL-N(b^<#W4^r!V5OW^lJqUG?V7?tal)kuMLc53LgM zO+T9{`8Ygf@`DFuPxeG?nDqIv*UD{hh!68rO;#RZItrMADooDzI4^J<`Na2J&%iwmY$y*ooik7yzkNLD7OCl zi^ZJQy41w*eJariUT(H0!{ycSLzTNlo|atdNsIsfcy|BE`Gh&YFT@CBo zYV-CVQ=G(qpWW{2z3PWq&kdIyUZ}B$@txt5E6ak@bZ$v4{bUiu`riTK~QJ z1)i?&PHq(Z%bz!8M_lT2gG{fVlleZ$nVj4CD&)8P`OW2_7fu{0K6kU)@kC%w)7RBk z|7zX;f86@ij9*=u4_yPLx2t(CKbg67q1itDS0ZnwoVVH6pQ$AO^rXd<{d4QWr>s4t zELhnh`0_$Y?&a=hUqo$v?)rWelw0_0JnZ~t@dT>9gAzfV7Qv94dZ_)hKD z@2g7eHrqZg{1@}F#5YiRPwGYg_WSwTe=mQ(AD(6FwYzQVvBdrNd!H^>`8D^g=XK|= zIU)XbRfb>1*6ojcp1$4l`=6Izp0Ul*r_{tD_DN-NU7@c=~5fN_QsqHIsH0xVR7A*rA&#FS6d#wUi70Ue9GLI!gpbk-t6n9 z`Ah$9)h=@iJl6O1-iKFFGe4L9k^T70@5wIPYgOBd$`+mH^4-sIx~Ilu?T-C-;yf!> zuX%p>(hi39#`4%t@fCivf~$+a)~?z2^qa!7liQ{(ldG6ra&+dVIAf_ZyKL0uo+`fo zUeoU^S-B%V zUYbApaJgKma#`QL&LVZ!zWtv#j+oegnYQEktP_(fg*)%4uU>8Lb!o!>_b*>`X6!cp zAG@G`(^3837OS$(MG7BRIJZjOE9=hr>~%#d3(E`BkB3Habxk?1Y;pd^xefmB%iWjX zep`Itz0Bu(e4!@Wp3ZqG7C1$DdbHTt_gCfZR)?OydThh&KWla^mCO$h7BZ^6@=tfq zt`FtkUHj}U8PE6hnJ#NN$9$28{0hV@Z(=I+3zvLg^MbOSnvDa zv8>J|`(?}jKef-iE1o{@pM30uUF2Gsk9)NPUOrmALcMU+_s>0nza?fIcJrM5bngEx z3hz&C>9xN8IdgITtaYpYJ=VAH|MF+;(*Ljf{}%?PO8v>XAvmw(aL+WeuYWEXJ$oq7 zcu@FfYqe3tr425npICeBWWRoKdt2MS)3VIAcH5ryrps!7IycYHJi@l$XY|WK(2t%=~z5%%g(&Pi4Nu{M@-{+6#>(#({xei!1Eo*S@bY_nO$` zFKuz}^V*E%>36K$w!FVl-}_x^_OCCsajWl}#q`hEt@Su*{%gt4557NHRCR7eS3ZCH z?-jQ@eR7xRi~gJwvHa(mwE-*Navk3}=ljIExP;6zwqECF`P}n=`Sev!(JS-Co;ykw zA3N)zqT3pJjPFnj+jq|Jn-|O7KO8(_uvS)QR@8yh)#p0SzyEsn+?=cNEBHIFZ~YbE zUt4m**WyMP{}Th3nM*qty_;2FbuR4q=bpe;b03>7*V7hkQv~aZqmK2>>J!lUaAUds z-ye2&1upl0e!S;?@wD4|eiuta4;_?|zn}hd&g_^M(ZY)!d-Ab;zrW*%=z#;}-wlI5 zH8K4Y`!!8l|CGA5S=Pnq>4918Tjm?3Ofz{u*?5}Zu_uL|H`{D?PI$KF^v?cC55HuY z_IVs zt=YE1>(Ay+KE(Uc^Hl1mQ$4x~H3y%6bgljD>ULnR>Ceb#`Rmhj-Z;zNx_V5YR=)JK z-udR|8A|pq1FOH>48NrE^q?H;p7SqT_bi^|&bi!1FHfsP_T`Qfyz0AM-cNY)U0Ue> z^ZmbeJKvlCQhWLTKd0|cS*f_C>v{3CyPwpTw-@a_z#953%72RX#-Tr~cC=*gF@ zQy2EU(d}D%FXy%2?_;NSPF3B%^v=p@-2n^dO@IBTFK z>uuj+^S?!ZNZJ2o&8d*7ewWV4ho~JdPxQ%|Ts7mj`>j)7bC(BZ9en3*RkL}|u}O23 zx4yk%Cwpz;uie>GCr|x(W4Vo0S@{fgbCv%)3J-3*n3gHG!0hD2eOaJ=cwZ)1mj=Y~i^h)c6^poDtg3swC6;Io8+w7tKpM}Cj z?TY)q@AUrVp}wGK$*!MmooCZGXc^lC@3pv?zp(A^?n|-7=4;BCW4S8b@@L-9 zXpF14##^`e>i5&X%cG<1FJJfj|9$_j-KNX!#B%Phy(^w)cP-d@^NNPuXTGn+kT#NzOAx;lr8ex+ zdi5f|`>XTR+Y&&~ae{W~_-9*Lqhoa|>S!cbhwW%u56`jZ7{PpF&#kuQ}1;73k zV=lkf@AdrguG4Q;PA-0Jc4_5-CGkD$9$HH!?ArGIui?u5T^D^%wuZjjvghsT<96Y% zuJ1G1Y&ffC#t+j8>E@^2^GUmUa88%Fss7^Rja3{5`rB>H9$MeNxcT0-U$&g(^_QP# zpMAf^yg_04^W8O5RzJ{s{3$zPszhkvo#%JU&VA3eoalb`xaGQ!ljGj42tU2^`W26TKHb{ly=%{vO+G<70o{c|81KC&uHWUlI|R@4Ht$F-7y~ zuW89*HH|j&0|Qn~ubp^ik#PMrj&!fA9VShV4NYz1dr!E^(?SUHTt>n^X<*tzCgZ~isaofFqQez5P^+}peVe+aLSx4)dP zzW4bG`~CZ;ni>?96<52TQuWW;+8C8K@s?lIf;qf?niD;^uf=|yXA_p1zB+SV)QOF| zAD>%%b8hjJ_*0W-H*MA|qfZ|58TzRlmeN-{iRzQ%o>lf&{viCK9<+Nsjm_8eEa zM-7RV6Z2Wpzh)e{XtQefy1G5fzi!)Ewa|R|M$b!uzb0G1iz+&mkd+>4^U0ua@&%FY z+nARfZ!cfF;={f$dH*17!^YYT!p65h-8lDc;hD>ssn5S&v$e6GvPj+cQuO{i;x9uU zF}`=U{HC}ysekG&?Mja0>+Lo?)7!mC_wlv8MvHh=a|`x$>t}v!YtJ%{lbF6oY?|=Z z?00V-cf9Z1SbT6o%)uGAZ+~6!*Cl!d_tTw6&nR!xyYc*WHfS6r*z3_!;U$~ZHeT*Z zPifY=eODvqT2H8!tlG+V@9+KjXCJxe_f~6(Vv$$JH7^!EG_y-)JAZ#p=;Kwh^4-6j zEx+j*v|af_;k(%8bE{W<7kPN*TCgGiTdj-1=X}$jwD~9U{IcaYcq^Dya^#6kSBF2- z={Kh%j#&QG+1Ou_ow4&@T)pkn+J?Czy9Hi;Hq+`qyo5uZ@uYE!WTSb&bA}qfuEldI z)DNDoS{F7iP0`)@-FMDgC(~C2{$D#i=>NP@>FK+<7al&e%6##J-79A%Szqp4UbAk&%CePP)RXV-ZKz)#bmk$4 z#%k7TS)*y^Ppm&5Z&w#yU$_4i=dXGraV(%E^7X^VUy?%D!Jt zXHUi|@GHbmj=Jk#eE*}xf_2}fq^;7DI&FErNx#(plj5`WN_JXOeT$1Xtt+~I;O(lC zEJLObo2MRdh&*@nNc{BMwVyd&zco7We$DqQ!R=-)0p~ULg#WHBo!@8qc>cWFEqgqd zTONS4~T+hE*#giQ6c-Q;? zvmb9i+)OmQrGNdZs%yK&?|tt3t~Omv7fh_Vcl^9=fbEJUpAX%%oB4txc<+%dQ%pKv z*T&S8KRPaTxx@bO?Arx5zOVbZ^x4em+8g@frhm#@y`Cxf(-nv9yOWil&%fAtWr3T= zD_OSh|7-nT?09eE^7T{ob*oin5ifVo&HcM0;gY=R(HQPCSNC5mIQzE5y8N5!d-jmM znr|cT-__6CTeLSe`R}Ti<_|thEY<~=(VJW*R#w0xJ+{m#ZT{&Qz_&Fz;jJr`Ws;vT-_}(&@MQg-sr@Ux45&$7_J^EzO0=bWriE1uO;Kcw`<|j*A2Tkj zT3WYer<|eQbN=>w1(Mz++n3vA_e{HW$>@%F(XQQZ1&gz6eCB;={1rNnuO;}=o;fC) zKO5OR|KGat(=?d zelf`jq>220|4Asi((c*U3+<=(q+9vEPoL6XUj6vs!{0wn=j1Ownz=m2cE9A_@WW5T zOJ<&)d^!!-N8!os@JWV`Rpr)!+5H2&z-%nK^dDVeqVW%q2xnEA)9 z&3z7U?TEDy}PCnFIX!-8*$)ECmG0ri{>x|$1uPf@_kCZ3VD<|fvOzsA>309|$S@^{Tu z`~CId>U{a^7d^8|=4^ECdb)P{OzkDir=NCye|Dg*?)$rC-;UhM%S@DizN+=p-*uha zw!Pth`Yrv}oL^;)#vA{yDsKAB^zb$j`~eST(kt+|?I*1l>zTlOh;Vxxp7 zE#CX`(viOtRW_O}+O>|?YU`&@m4{}`sX6j_@BH5q?+m~He%moMbMl!g|4CQBW~9Vk zekU}|_KnosXWd`R=G~b;H_W%()>8hZkIJ>D6_NE`=l|Zl_v&A|uHNhSPdRR9J$-NY zeQowi#X@e)%QlCuJWjX0ws6wpfa*8Jwcm4d{u;fVcztHo%Ng(fv=}Ut`xv)p^J|ON z`>&?IJY8DA_igKeoXUM^psl=@eikp^$Nbc#C3&wm;~66n%g|&)#l6$F|8sXa_p5h} znPjQrRY9%Swfat;hWDnQo=Y_?dH3qw zs(l?#0?edtdMKY#+577MerJ0FwaXKfG&i-^u04IOK~8}CHPaD0)mN>N+X{2$pXqU6 z;A_ACfY1HGkI=Igf39zc(oz-O;JNkQajjc|66fTmJe#^L=)kM*a|@rXRhnV3PkTN? zd-_wJr90m!g=K9wsJWFk&-{4Rx4t#U%;x{ph&Xrg#hv$O)At_xc}|e?jJ(L)<0cnB z@9kf`dqsSfuQ^M`{wdB&ZpzxPGMvP={Co`CqboN`Uf5)(SmhI*>Sp50baFSD_8joN9JDf@P@h*z0%cRje9o}TZ`HtFCcwrzqIj{mDf zp1)|W2svx}K;e!}T3~a?fv<7*-->;{Tea)@6wSo*Km1mEyng-3<8`6WtgBZZt$$RV zrIlr^w|o9op0KkG9^CG0HJq&9?KnKg?+XvB;SL6ij7-JoUK`tARa}1s%47tqJ}%g| zdEMLT6K@?mv+J<6>QcT8uEvkYYtrM>KSbW%eCC?aEERsc-PV87(&T(TByEd}J%8a6 zn@+CW%g$e34SThh?d|#grT4M##beQre`VPk^}o#!lfQL6vNpR;LjK9aifebj?y7LN zUm&{GhlBaO_1)fYrLQHQ1@yQ2YG*uhe%F7$Aw08Jdq>G?g^ot%-*>Cj_i!yw-%%MG zbKD|=f2{@oi|-}6D{T%JpRee$Dlb38WV%Ie^-8~FtEiuHcY^Dt*9KR5UN^LpzqI;Z zs2tOg6`cRBM^NBSBb9s(y6o4`Q3Wy z##v{@H~U*^rF`5uZ^55XX|}Q+u~Vr>rC;pzl?V}kc=C)$ySDtdy|=V7rW;t*DV7U7 z2(LY~rs(`1?|-3I@!nBcKjxLPm+Y_lUHtda$G^+wp8vEe^#;SNhbE^^99wJ>#~c{C zF0=ZM_48n_mtK>z(sw4?Sk_%hlD#E(eA&Gyn;Y$=lV35$9$a0!c5(K#q|Lixk}cU+ zzHj)jwv1){MWMLVwV%w68>BGWOs~DSyd~xR>zR#s4hlw^%NlbNZ{b+ZUbOT@}pR~&}ljGN$2ghSH;-}Vx+dh!WSnC~Q>9^T0@4c_L$MKUNcb0l+CBHrMWC3i#;kw@su5DY<#}n@wkPy9R%MRo8uN~)258QYZuHCik$oq3TkM8^w zT9S3P`GD}+#&GWc@k9X%T<3S)8@nLN>fE6sr2rm7EuE(y;Wy zv)XN2f;D#Uoxj^~!@5sW&0AJk3F(O*e&WFPQBUTD;g)M37rYKzt5XmgdUf}O73|8J z1B!mkdG}J}6UU_IeCFRvUN>G8)tfG><-hBprf=B)t?{#d#4MLyG|k_BU7qQ`-FLi? z@2vBm>?O{=Vzu?Ri`UAZNB_M58r)quRq#VGm)nH3U4B+inXG!*RNsCNGvZjjKhtlw z_6f`8W$EkF`0PuQ-pjl^$$eo%=BK(R9~QSh-2JTokzivMqoM#K-?NWX#re0&zxe>3{ zd&%jt7fZTyoLVpGGKsJy1+81P@0Px{Vf>3|{>3Mk&XH4GzDZC|sq{x!W!l11kM92S zo6Ea{_e$x6ueP7t{w}){rf#3H_H6oJ2dRYib5UC+Op}*a)0Z?DN-;m!8z%Rh=T zU+sV8-EiSn=i->v6KbD}X>a<-mpS|3KD*nqBp3HqIPEX)*&BPay_W4=K=|hW2ZXC? z)^2Nk&d7Z)f9Ji`OMUKq7hJH|=HtE#^>T;jK9?>z$a%PS3+uJBPOm2};Su_1et-R} zlC|v1%ohjBn7?eyuDdUKVP0?-dtC|NLHA03;~G)9Kj(BbY}vMG#me4sS>)(*CU*5C zUd=j%b?K_FPIA{Ctj&GKR8gv~bKH6N_H~ukUdF#{9vj|X7Q8Gxa@)fbPo4`ew_RD_ zkR->%eBEuW$%>cS-n`F}_*RGAyzqGY{>kT_*Y_OGT=J~=Ro&&DuzI)OcUajN7jJ)S zCH|Pn)TaB-iR#C@Zn5+q=uDGPvwitvgQ4f|qZU*DnNIevY_gm^ulS)=*`NDe>H4xy zO}zIQ3UF9>-TIh(Sm?9m=kz=3C82xk{$8E`dh?$xr+)uj@&1{okyd_Kr>AsBY3!w) z*DhACO#d-Y>+SW@h2Pdq;d-IKe0HA3shCr0yb+-*b@JF&-=4nW^=kIKOWB`n%+g<_ z@m~p;dDBej-tA9YeLUrFnLj)H)w;AdD^gZ*{zZnB(GPU)r0wEPbKJBs{oA6yAHPRt z&V2JCY3m75xwZbQPFSx0WckHG;hC%9LMe;2GP(K7KW^}Q{*x{4`tLVi1>Q0C`B$g$ zDlLkOiq1G*`iN`$wd;?h%H+Q&zVW>keSd%D@|~jRt>#((5IKHoteA5KQT z4cq=wVq@7ghmC4WdUmR=P2KP#Pwrf&_EXDK!9RY+NLl)-#T`o*zV))G_3t6Cienvj z?VGQ~ZQWCG;5_fo(7i88Yqf5gat5m3{9W+1W6RH!MIvm~9|Nvm_S<8vmil19X?y;j zADc|RCxvZ|GFlk5de^=DYtQnJ%ipqJC3?Tv&7<^u*P~O$6KhOV&!=Yd8K32Db-P+9 zdZvA2ir1YrOOJn_o3twGdE#=bnv~_74!jJ%?%dU$yJy{LKU2XQ?9-F7o>cC?=X_83 z?F+d!Te~UyZmidK(kuV_R&>{u#}ZdcVwkU49pAf3)=;g{Grnr^yfydS)8a4pY>#`q zB5G-%?Eif!3+6r!tzx^w`TX7QAA7kwtaVBjTJh{XwQi+l`n$Z@`9&|?S=nyN#`k<& z7VOx2NM@zn+hdaPhv#Zme&^fY`2GF7_^aQahsR5tPOsehY4-Ym5&fQqHR1j3J&A`V zHQix!y%pI0sd(GNnC=BfHqW{s*L_*bRA#P+LHkM8y=6f)cP=upy*ixo)cDCY<#(I+ zh9=ps`Xh00QS-j*90Kzu`L?`Sy7?AQQi$P#!f(lJydTTGB_|2E5qC$w_gl@`2+SbZyW{jPgl`qB2duX^scK5@jf*=&)q_!VBU>Ga;%2TNK0xm&+p zv-sZn#U+9{o6DKHmM++_SoOqXTTyn&5c3-b>%-@Y)i&1IoPPI6bum91+p3U#%T`Z~ ztdVq4?46eQ`rO`y`$gq%@xNPaf1+mJ{&SU9%t{9&k9Yigcdz+)x`kQ%^JQCCeErz7 zK0-!`twrOsqrMf})b*KPH`UkOKWO*mx#HTFY^`M{XCH3zS?i(iwL0Qp#_g8=l9sCK z*CH0T(kplV%XQnH(feuUmX(_(y{$f=_pM9#+@8{{(LGsw>hlcNgLVw_gXUeYxmOvSTRF95bxzQo6}^`0WIj(XdK`I&VbA5@ zQ~P)3UHWIS{`>8x5$@sXmg`o98YTPazFM*LoS|08E~^DCEnoC^?w6MR70;Z^^JB-< z1(lz2lD~KEE7ewdHhbop8nH7U-ySxS@rr*b<13n zRdNkq7N(wXeHb!x;oEn|4CgIf>L3->zv}KwblS7 z@b6lfyWyO=k=^mh%eUTtQh&4x7oe>rhj&t2i%Vw>vu zjgvN4J=8caIpGCQxYGBgB^&&NKvSR7ln!+Y^k-OmrUnohmVyfN3# zJL1~j?93;pzV>~*|AC3A>9ea}_}*o&dj4*EHgiUa;GNU0UuX51H~+6r&i;Sy$ZSQ? zo{iOqm)?(&pYcTEYOi~hU-Qzer6=cpTqrZqVE1Gn&5*g>q4TybJ+@jev}9wGS;5;i zVgJ9j=bHu8ObgfhfA{?V?7iY~Z1v|Xk5?~xpmS#NtO*OhtG3^tYj$)|=~W)Bo8j&8 zdfc|%t0VWSeJ|Bto;US@oX0JJT~AIp9WOg8`2N_+gEk^Md*#kfFP-Tb68bsAc}uHR zzxIu5tDXhUjGZ^?auo4@k0Fs}dgdBx$MJJ@~(wegfrxOqY< zVAiJyA75p={3d48=4<^Q_P$v2xjao`p6dI1B0oDSYh#R}jO%;;tJR;H;q%y7 zV}WZWTgd}==c;H9o)DYGj*7dEhMBW??aC2R+InxoQ{Jegwn?8Su{C%l1kG#s9aOmB z=Hn?Zd5)yAC7=8&I(^I0W1FRnWRe-zZ`SMgT9R^gYWw9w4L>JXDy~`8f9uWs;w2@_ zF?OjkdyTpyKi)~rQMCxZzGeN2xptBpyyq;;2>7`7M^k?d+xzdiM<3f&Z<)C3W^Vhw zE!E4<-+vYpFfZ-fth)MXyGy2iE1A>(ske+Poz2vN^}UgBMtkYSc(%or@)pIrd;c`9 zaeT4JW?JyakW2HX#s01{-#AUmIz92~y#Mc>{|}n~ba`mq|9_>SfzKB5R9UTx&3|=; z$9`$)HTM1Mq|a^f-M8#O>7sef8>;g|Is2Ey?#N<(J6T(q_u5L{1x4|1Uq2~)->SQM z?u&vAdL=zsPLCFx%s8)9w|DQ=Q_sGO-QQb&?=o|nqU`TI^L{LT_F-S}HkFua?&h}& z0o$4{-oCZ}KA$VIyccgK<4dk4gEw1N^ldzAxI*oC?R|}H)3;moUETM=s&jYF`*riT z#oS%Lr2Kkm&YRnN_osfZY2E*b`R%$r1?Kzae!FgWmC0jA+2?1u>!pQD^uFpF^G$U= z&+GS$D{JNaY^O`YKV`3fjh(T;d};rce)Q-n+N}AIR8?wjaeTVXZPUw zO`R;cpcJj0>l0_>_=^g2dw!hq{^yd_YId(r*?3wu*LfX^=em<2Z?Jy9h{(<9c1_ij zSa00gH(ye3QqSt-q+PxiX}e2LoLJ#vb|ClRp}kjC+pN1T##UEPPS0oA@#Er72g}1} zO^)aopWv8!`M|tS1-i^z?iNHeMYl%(&NzK}=E6(rb5jnS{q2~Ysp7!!$f7aSQ$W4F z_I_d9xhN@PuBAl@p|eY7ZQ1w0;+}oy_aD0VTlptHFZ(>L<~5^lXjz`j)u41;>!^zh zmc&OpFWdVd$#MS#&n1D6W_?+r`<`dc)eRTp-)*^V{bxnZ-g{Y9&-AjF7M1?ky6V^S z_w}*h1n~Lld_B%$j;%(UKkpE;u=#aToa@~O<*yf3&i4+PuJYqbft?Yv`-A42>^oP4 zFQ1iWANn(Jj#jRzLG#>i))hfndrnSlGWc#^^5g5@OTN=La$L%Mu;@wM?K`jkS{>WG zY{lHj^0F@qeGGdGjE(11ZT{tJ#Pab?g?_@>@4sxV7xrDAwK{ZvQ+t-=(#?!t9^U_L zDiryl6hICEOL$SH)qMozP3=8W3V?0E=*ZEO)oyG zu(Em!_x7{T#opho-rZDp;=|$ibKBWY1co^E?)9o=n^$dWT{Y$We6g4-Ji&Xa-JAPD z?`Q}soUQ)6!hfrrmH5pa{GHsARWV{4&k0|=q2hdXv zk>AU%x<_){^{UDfw)=89efFwU)7eiqRF#xipSkjIU1RpYN1nnr@c)`ZLOo; z+|!eJE@Vnun}^38&*Gmoxlyw{_WS15Ik#S>o%x@*Ly7m$**(#oDK9@wZ*;yBpBcM# z-fhEOjjKGPXB}O>BXFLNZ>wQeT3Q~@ipcwW*;cJLO%|w`UpDU$_pb}-zxT|Ow2lhd zRUZ;G>BG$Uy034==l#`LANKF*@A$CLbyF7HR zHt-YAwc~d(ST)?UcQH9w?>gsIxi0lf-ITmzMg5#lXZMxK%PdTHvK5-(5vr-EaZ;f( zD)d1TzxnaE+531_B(6UCuZnYul~+ysl&=m;_V@GeV)-^VUsTjPV4kDwUA9G^cf`Nf z{PWr?HGQIX@3TsVTg{IPV%M(w`|j(GYyNSkDqVHIGOFuT?$!VLdmHat`R`Yi_S{~u zKW*nmUlsQ|)5G2~e$SJsu3rDd@8;e)x4-VYu4q3|uT&;)v*C}sOKhix{=9d-rTJ## zgfN-VPd)iv3U}<(ZgFm5G-2K#x>obr2i@yO-fPa^k{|y1mFelz?0?FXoSk(`<~m=< z%1w6{k6fvCQ|$Y%=7Mt>?#3H!rdm21oZWEyA0KQjz`9`7_pLLxA7o&jpK12%tVQ(_ zZu8W4aaRS;WGgqXpMNb#e}&W`@3IdKG57nbL^pK4-fAML9Z@D;@af(!@u|*-p531t z#v$)4vPwa50^1xZk4p--Yj^xS*Rdk$K!{?(@9N3v-(#C6Ey<|gYhAVT@Xd1t*_X^- z{GD>&GRS;(Wo+dJPutd~ul6fXZ#CGOm3sT-Rqmee{$647`|h(oFWn%=ujTH^<_4`g_#$j^Y`1>Mw3%D1*3LNU zYPl%yW1XeIj>GTY@BiEVOUHigr*Qk<%@%*$EL-$`eO68$m4pV!UEd!?t@l^;!y z9e=0k)iOT4F=t2iD#38;k8gIlO!zqMa_H*U6<32+C+3QNE{pqmGx)5|^t`VUYc7}T zY1V4`c;$C#>NLNI^UOV{x=1ekM)&(0PPeV!GQRD2)AK!Rn(InQn`E7qndb_kSbj`> zYAsoWEZh4<8qO@>x0MI?tZX-WzsHq|{%j z-247r(aNunstsDzCEn=C@mAS>-qZJ9Msjma+J&C?TJzqv9?qA$DJ6Mu$MTzzaz~PF zFIZQ2zGvpIt=qQa*j3RAx940Xiy4J=cWt=)arU*~%!Y<}Z27CQ34XvL>q+gaR7vjv#ctv;Dc zE;uKd?oAM@|!?)x|L zPi$Dib3*E>#e|i5|8MlY-WTdzmR)}Jc-14{ZL1m0dBxt{`k3u?f5l>>ZC;!2axgB9 z{Iob*aP3@a&I0ym6O)V;l6{%sYwk&1`D$2NdFZX;xfyw1Bh!y9-4WB?$pke8P2A2F3mXiI>K;g`9#OZX&X{5I*3+qm#os>Q5zN) zWW4XPR6tgl)I%H1T+QCJZ|dt_zHgizI&a6G0R8r=>bp^aovXr(o(DhQ$bElO-qf^n z8Hcy)O*uHVcG>ce%O3B(QdT7DQ$*+FhJNC6K_Hx3aF3Xs&*B`&qJHZp6`9!{d@`o3NeYxij z-j(BGNq!e~=le?w&l3h=ea>g+&$`d4{c+iQlRKAVrBtn|_i3#ER4%$|mQT%#A_M-7 zmzEmYdET}@x+|JzYHz+Q^Ymvc%1`WhAy>WJfH$FXHlL?<#h$bRtNV|)Yf5I^X1%xS zRD$f^Z@IQXzY_Og-we$M@+V7Gdey^Om|IaJ_?#G!0*DC|RMK1pn)_H!d zMRoiA+oi333(aQPJG^5FTUpb?{8IC&ln_KIN$7W;@0VJx&oJO z^YF>Mm3jYrbJbkOgKl>od@tF&WtO{H*u|gEPs>CZOo?9|az5eMmJce`-R`fK_Utdn z{u}Tpao+oBwM)F0%ky5!G}s`%xzeG2@2w|{I=LnO8};g=DlhC>Ql~AuUw-lH$Tc$a zAIbl)Sod?0Sn2Xb#J;1J-7V`?jo-)L5VNY{9g}A2W{SY(H)M{HvUADN9zQY@2nq z|MvD&h8?0zt~-`B7AzItvT$a~oil-(b6ElvPMba`ox;Zd#Wqn?`6lZ@%WdhY2U@mt zC`kVbmz-O1>D#=ci^bS|<=Mn5J}X)rc;(Rif=m3tl{Z^2&oRn)u8|VGO4wC)&GR`E zOL<%5?l1ecxH-MQQRvT;Tdu!L_C`*vP|0N!dhfsRZ27^!w$*PMY95zf($y(F@h-Wt zZ4>*Z;HUQMzE;-XxvcDd|J3$5lcss3pK{hXz;E>TeAacrMRhT2*}i!_xW}5H`TwT- zDF)tafvbshb0(+4 zip$-XYOfam^D~RRy0S!F&TYSSuT#bQRQ|Qs_3qbdUpQd<`upttx3)wtbv%0a?~z8Y zoxc~|y0o^TzdK9h+~HUDLHmAslrf*%@{(cV?U}#r!sH@eTl1FuwEgvXRlrugh1srB zCk=PR9XCC{#anXn=aoNveiYyPT7B(ec9x{-onqIJe~Z{7-0!Xbth?a$*_X2S-+U>) zbXM}ds93Gn_V(3x9-fL?`fqy8?ElkFceDSw#@Z$}!Ao>m<{f*p>o?fuFN`QuQt@8X z6yY1QesusdU+=Z_z@=AmWbXNGFI2EO9(TDTQ+rMD`U$3`*c~uu0=*Cru|J7IP?A5 zdy$%5xxz`JaRomu|2mm${IA8kAyI$hZl)b;q`sFaC7Qcu3H*o)JOAzS{eobtc^x}> z7}}XK?2bq8Sf;+?>Zeb0R!MCC^ee98{krV?k~1zx?V0{(=X+=7s@-OPV;4ppc3!&U z6=P!jne`@R&F6gsFVB6u=Gb(-53{c}?!5H;s)_c-6UX(6EqJbYa{T(SfB)ar@~q#} zE9ZV%y*+<<$;wrljvwroNHHt@&P_yyCu8vq@Ig{BX6473J~s_pg3+YRN8>2`NvnUR@UFtRP@9_hy6meq(RW-1$cQ zXY1_WO8B1(oSL0mYV+mYx%{Z&zJ+r0SJgh8&~BY1AF}f8`;xRQ1HV|2JjETxk;V$E zZY?oo;V}BF)STLKdwR%f*4f^Qcc(dP`ipyZFL${APsB1dTSz^$bnoUqgO?QrqBFHT zSNEUrIr=?4|2qH8^?EiRc2qD$mbt$UwNTo;_L`$`M1SUuEvkz}Z5#9_vRc2mcze$J z>-%Ogzc-o9os=ebw(_ISroR z<2jnv9_+bzZ?nhcP@Xk`Oc@FXo8@0VlS*#b^8IS`$<613{*_c6HkCadc!uMPgNknX zmgtN6Z{`_>*>1b`R&!3%1T(>Ze5-l)Er?^hx+3Sv-{Pd!{PV8ATY^=Y&Ezh8n%CDdYX>Zf*>qU3mKfL|DYNs&e}y>N;+JpeQ^HGn#J{gZ&Z)1yMa z?)i6#=d0aGY4=Kn_c|;NJ9t9GPsu#W?yQx4 z+gV))$y}c z)YfG+mh3Za*S#|Im*6ivQ>Z%kQklOwW0TIh&;#0;naY#be;1s?9{=**K8HQ9ap>ac6X{yg5FxHT?R-?M>yJ54I*PxHz}EmhE`u#3G({FQplLIUnY( z$dXjQU*W)O{FagZTzy(RU(KA&yu1!UFOQnf#Q&<$xc7YeWc$*! zmU*?+>N>T%mc;5Ux#MmxX`{AwaqK1WFy5}n<%atr_ns>4>I>ZLvij7IDZlhL=VxxV z_WSGM_ri&P({FG7P3IS%S~t1Nwp#ozQ~eR$OpE5%M}p3M+GjeQWnH1yhlkn)r6zrE z_JP(PrT=_6MgH9OUx$BRe>%-){*`5S_HBN8aQ-S~#gn0B;Wq7;y%p4duJK~pc=_~Z zuE^Ok6AxCcGYzqR^_f{}`H&@*XXo$GQ} z>FoF&-1&Y}T}_(65mWQr3Bd{1MO%~HHdY^t70KXOzRK+QDu0V_5*Y`#e%!5Z5mBu= z@8!!M|GS2Mg*+SU-zb|D=&Ec=Ou5|@7J*ucgJV) zYS^4i4NcD8a7jfc{65#-$*O$$pZr3jKRn-dF3QF+H8xW7&8hOJEw$6rwe8=9mCmW; zZ(IF!*<%m>bFaSpzMi$=!FN4@zfn)OF1*jtB%=6-?a~F-8QRC^o+vP^apNtW5&SdZ zAVhAFljaTQ1qwy$NBtr512WS-DH6`rt*A;MKlj4>AgB z%RTy%i^abb99)pRrt`V!h8Grpe@OUmdtDx)xjbRntVNxR51Q+(bYr-ZnIeAR<07wP z-xp=gT{36ZjIhS@J0;gDimWy{_FI`_i6v{x)6CQGo;ArM3m%Y`#M zzf%sm6|%Fv?#H*jT~ET#W?MbC-hFkg<)aYUL$4&l+xMP|J{7aQ*l|10fxvC6g{RG8 zPJR?G`jXq^l^E~ZcwV{6f~dk1+eF^4>^>lVrRtqW*mLVOhn{H9;7hl(k4X5lYJ2tl z`!};con9lacCzMv%G_zP9gm&wt7?b+wt2N?`)k>n2aF%2HpPZsp1=3%@1xlg%6%WM zh*5^SaP zSJVHc*q+_?vYYGFYcs1oA4{ba#%_2&eeaXNuCCV7*9vC4f9wiAZnw@zgFVJx?cdDW zwLflJPGMYqN^EYkX!5>E0p{ki2P)PpX0QC?!yWcid)x=+x#O2#Y5%+E_v`*o3CiJtEuys0ut&3#WSmGR-nM*;7zrB%1zKVEt%@|XGk zU%#a_>`$+rcK`2(v(L14T7OmTT349Zy*2VabK?s3)#>saOU`dmuSi?z_YKz1WsC~#kzZN2R6M$= z+2_9eQCHsH*yHp6Esnit>fHBQPHe67t#Iw9`_?DdJ^$QL@N`x6>P=?J;ivukv#ZuiU$xZ1H?+_@O9azHPf^H;b;C;&#$Is%q_*rH|dN<)4$^yZhgq zDAzsj8Dn|3+&}+$^;B{G9}DkHwumr|G@1LVYPyPd`f;sKp%3SOtmapof4*Vn<}xE@ zeyhT?EVl`I|7O*C%|7wz^7pwf4Lc@X-LCh$#u!t^W<`q=MK$> zC3RF)mw#-|E?+uz*M+j$hP*GOua^8QO}ij;R=_U#N7nUxUcd9x@0rA1KEEz^>O-OZ zch^?d#}_`x%aGuIbt5Yk4^8{&kQb2kZNaC7&XcapJ*N75|8no}#*9*n zKkv$ZXsZ5Dink2*6^q@I&DUoo>9%)q-S5Nt;yiWJuIv5(9slR~sz-$et7o#U`n)ql?Id$m||=elIa=u*q7Ez$O`F5J`Yj+&Z!pZnQ=Y!rIKCK3x4zYm`_yr5 z`5k|DwdQ~+SNakkq;6ev)Be5S`#HW*_y7HwJ6pD>?7@xHU5}jqf2t8%YMQeA)s2wr z)32!exy4I--`#UH^$lON+!DF{2RG*~+_$zJ@4vPKfC;%Z)yL*t$+XjdA&dO!GE3gv31}7ng?@fu3tUva`}a@!1_nxOZI-c zl~_8(UcxQYv3}pJz^oK`t*7TtZfx=Hu6h;q)No05K+#pVjO%Yti|*5kT9>D|#ARV? z;S{!WHKvE-ZchGp%uDn03eokopXVeUE1lFIcDs2h^N&!yJBiBo_b+=KWf~`Tj(gsf zaLFC~ZC9TCnmw~4PyflCcQ4bImruPHy!)=`Qv1I78}6ygy@*b_takQWVf$+FPaVIe zzDo$Pi+uS1N948*(x=bu+IimQ%Yx*7sqzmy*Luvj85aL;HP7vrr?-?%S}ycY=Sb`R z;7iX74t%)iCi7|AX``q_o&{=eOkZ1U$=dkR?ZkEd>3e^0Xsr0NYMP$u-3Q+lxL&<@ zRF~oqI7jxV-PX5TpT{0ZX}v105_0wKJc+L*_VULUADmsApgSdL|1`z$ZE>;hA8j^n z>Duu!_V)Tp-D<5&$p;!N6*@u$gDV&O8?pg_M z`{!vc7uh6SQfbR8a$s%uJDYQ7UY1?wZtfGc2>4-;{rj%)pM6q#1v^vjHC$?V)ZBP8 zG$mZ{fBxFIMkb_jQ)z{#8-UH&$y-cCb7fcTZ1RvbXArinz?huGOZu zS96zJU)Ju8HBA(4*IJ*IT{CUVXVt?#s*kdmR%|TR<7TqWQvdkEZ;y%SgB#6-+>6<+ zzZCd==EHBzY5yO-{=aDJ%Vb&B3Tdi7K`y=i~vWV7a;;&*8bN6t!|>MfbQX1{vR^O(5n3b9>0AZ(iw3tutoF9L~3RRcJGJ+sUVVuhYVmU(URyeyh1A_WtFz zpV`HKN={757T99F#5X~#@$D50NuO1#>*W3|NmlWX(d*r2Kf6J4CkaZm8JFY_;`&M!yZ~o^-agk2rNT z=kJYgJbcqTI#s3bdn((EFY2GUZ&p5+@nl!Kb^dA(+cT3D?N&d|eotazw@oPj`9_3e z=368E%C$#}Uo4;cS^0_0vBj&U&K_dsb8|S&UFlxA=)9q^b3yI#g^y&6T)&EK&K9hZ z_V>Lt>wK}>7Y?_pOV9AD_pkr3{=>yddEspLHLrItZ;c3+3p1?Xh`Dof#rdK+Da)2# zT7QarJ^QY2Z+=}VjM;0^tEpGEWyx&of|^aIiY_VNj$uA=MYD##;MAY5S9rdhzjng= zy?F1Wy4yL-{;#ivZQ+)fDt2XC;H;Q_-mARQddweYT5UM>lK=1X&3iWguHC-x>iH=` zODwN{kVxNVc&h%#v-x5_>`!Nlr~ELT=$&*c>}tgKM^&-+4_GhJ`}%#Qoaeuy^1556 zwN8E&|D}Hal~|2ktn0jMtM|&aE|94 zU&8)3?>l~*ro79bZ&(I6X)#OCj)jP|j4D1=A+o+OXzl#EbYshZ#S2zGC>h^q(<(=2+D|@`-a@#JiMOPwq*F2dV^S^1iWxJp7 z*|05d?)Gp0wn^^fNuxgDbCrvDch&PN9-Dmdz#QeM&%bwR`{YJ7tImJ2E?iGv_QP#` z=1DqbXI8R2_P!J9v8vPRJ0m-b`<1gx4`wNR`I-N=(pGKChqQnO)#EdhJy^r9>h-(6 zf4y&)<)&vocUGM(|Gn{Rao2{>m-jaAJa;hmWGc(m9yY%+N0HX+A1Cg=**{z3R@Jwo z&(E)1QZszhYN!`+H{S69*A5}k+!TrahbQ_tlz7beGzEY`yjij zSg*&92_|zhAS?vR`GuE>)uhPNe)X6^}SIz?6g{P zh6CF|w#Uy*f7Wd&X7f9fStfBB> z5VNpaYJWaUd-dZFYd^QgT{(MD=fG4o26m2kf!W)lX7xQ1h8|4tm; zVRd`8$NF6>WEw5yj!fC`I=^;)WYor$vFD`@Zdg3y;4HD1H;>CVC*8ZY_^TC*zz5cM zXOnaFjhVmCyDM8)AwS>FzA0NguJ!)0iwovPmT@pK9b5LLbAfepy~Q=Lr;TfFSgF~k z9^fcgdG!05j;Ka?70ZdC#>v{cPsuUvZfBP&1qT`sE20Ct50AB>f`rM&DfvChDUhi z?~;o7zGM4StLOKdS6a&*s+j+D58tfwi%lG#FYvvzw>~Yf_HoqoABWmnWaF9E+31Np zw$y&wF}kPJmL@udT@-o{eslKTAM4ZaoXj=UD>d4|xFcp#xZ`ol zkS#_c);~(-HaySBefnzo&ChNl&M1k;QQc*=OJ3&$bYEbKY}Q?!vvUjqj*F6fD|8$ki*IMBNec|7&?p3Zi{@rKVj>m_uYv{{`+^WrEQsTAVlzqR+ zv@bJZnOfQp{pTv*XROw`IlXk>-+6j-B9B=!zc1We{a~(d|6z8(WfAzY^bScIZj5yWRd=wPTYVEzUFD{kXGk`Nd7#cTzv- zzswQ8qqloe+tPd1F7w`IoR78OEB}-$70q|@)rVldG94RztB`gn*}4*wLr1E#<@~3z z-EyAtJJS8{=kNRfC4||Z)}9s?y1(l8<_ur+5=ZrwjW2l4zLmUtkN2C%<8a=v(nDKU z&0M);Qqb3});>GGSg46Sjy!wHp;kxzpz`jextm{~YmSn?sgoWWx>)Rp@XX$}UFj_U z`c!{sJb1mQiJLz~+wpcRWBc=WH_nD#{e6PTMc{~ReeJ&I{^C-v^eVR$r+r;`cGWCK z(VFYecd8fYd}i3aJ8_Pgh5Dl1a4>WFU7sJ_b6^xE*0?~hiQqx;IkP8F{;N5|y`ZTz??&t;*W|x5U;u zJ;%@b{XgdXm}MdrRdY$4`QZtnkjpGLiyka|%%xz&5aAu@$#kQ@=k1P*J=X%o-?N-~ zZ1Hf*^37JigQKqB|F^QjF>vl0zq(xGhZ0*HEB9`GVq(xIb>hLRt(Q3aT0(wIUS9M6 zqXx$z75_!o&b2Yu zt;y%+&Ofn$@$_EPr#HjiEo0nkxS}mg*80@r3*DZg?OTrgTyEE%&BgkKp>pjymjIT& zQ!V!{udTM)etywo?hlF@t=C?ZJ$uIWwtj1PhW7)@T;az~)>Rx+ZwaqyFZ)|F@#?;U zGj^xL4f9=dJ1U(Oc#ApiGSoP#D`@cUxb!vt>A@p5PZ=Hu%nOkV`paT(#Tr?^)*+llEtgy%t`)xpBH--?A`uRwC=6@&+zk06JKw+61RO%$$@?+$@`H8t(LagWqi?x ziVZeOUbxWgaOp{0xkpd>2N{v|Y$CNM*XDVif8)7ux6p092Tyx0y{X#%I`pc);#Y3< zw=)dB{%n%H^R{$LbLrb)e!G*CPWhZ(^}_wygUE=W6`7aNd!+&$|5Kda}{9nVhnul+COb6a1Z#q_}R zb-NlLJ`tYlea`t&nQ30Bw@c`u{}Y2QJKSCnv2BX-TUX|rv2P>){Pi|a_%ToR-r~dW zH@vQ|`uE3qhyCf-Q?FJ1eHvar=h9-XFI(9r-_N$te|W~}S%X~W=dgDXk1nR`Sx9Y0Bir>1M;>!svb|+_uk~8Yv9F&Jl=?0AJX>=8>bf0stmj|*{>RX` z>#;*o`TAY=j+SNan6_*Go6w`7yIn8G8Lhk=XxRDKWV7tuGY6jU@t=AxR4zs?_sSNg zhhZ0=ioSEc*SECqRal?QdBu#i)25_t5cv0T$*I_>cYb^>FK7(^!+U(CZn?YVBsB7;{NHPiONN{Stql72zc>twdMP@#{w7b z`c<@i(Iw%G-kTvaZ8@a8B_p@W8P9q=_jAf;qf^yukB4sB&u#vx=9A8ynRVyd)&<^J zeQ5D<4=cHw<`t|WhZx$vUwUFGE1Mx#^Ts{=QS7Nc_r4hxHc2+k`t2ow;e6)Tete8R z!u+*}yF)g-Zjtk)fbA0*<9gdo6VE^`{W3$&y z`SVBY+QB&j@~^D&g!NediukcCn}ol@l7zYv^#Q8!ZZ%w<%!O zC%tVd2Q2IUzq7Y#bZFl0yZVgr{F0hqa`sa*PcF`6b(r+PGHSPcI^V;atBho4)$U%l z^YgW@R!{u2r;776vd<|?-o?LaY1@Sbck}#2#oDKRTYOpI*v02_tYvCno_;GLAM9zr zAUyu45F787Z@KqZy(|;{yC39sam)ljP{pYiqF0q?@~#0+~9IHfUCO8^zPe34kEul<*yEo zpZ|u_SFaKF|66E_VsVN{asdPRosU+T->)aKd#R^zU)g#P=0<# zmgK5=)^T?gzJz^|?D6P-BsrmA=Mz55OGg*iI5$}>2&wx2@$Yl_xlevY#%g)UZ zkI}#Hc1a3oiB1%ZiuN_i+J8N;|CKoJtN8Y7S^asi;z?h1Yp5~Xt}njs(UbpG z@Q8iyU-iVEi_uif)~O(F^b`z-gV7IVGV z`n=dCoHH==vuy)M$`dC+cZI$+T5J&yrnm?=&AqXKBkWH=)ib7$!b_`l-+Ld9Fpbz6 zEs?o^Y4Md@=T(X`YJ<7ou6h&QT)M^UYpu_2AFlJ$K9reu=gaD*etF!~5h=eb=GA4U zV-xeO?DQU6{C{g4g_Mc@LC3;uIn*QE;raphgOvdt<`x9H2S5!=1aH}T&-m#e3 zVV;w794gnxP5ym3>urqJyXpJStjfLmd~^QWIeQus{s*2ZbN#@75!)DcW>8AhFRo5`ixvBr-ws)8sk5c$=r|6em}W$j>6pR15U4l<1BKU+Oq6US0)G? zxjy|>&$$Er@$cK*uN-lkq4sy~CA}BUiNTz=o_b#Jj#|=gv4AaZ#_AJg*PB22H<~pc z)RHgx`o`!~v(EpY`Q|m9aVFZrM* z<+t;%x>FNhzb0!zY&$oZP zTYL?J>Fdk=W@}IR9O}Py+3?fCc**Ej*4F6wllVOJx-JW_`=b+xPV*sRuUarFLX};fY%pomIj)+fn6Ce(2{P z_N6~I#@tk$xX}E5IGbkC!WS3)xZNJ?a7^*-RkpY-)7 zNxGDA318{H-D}QPca`s2{BwU=-U6B4_g9?4lsBH-R`QtX){WH0tZ5fC=PyW<4c;X` z^XuYCbKP$~bCR=ZdcW63I&kv`0S34K4<@SZpV_NmB%EHyx)5!JuPyg-|DnyvZVs+&zr5+*(*C&>2}^bYpwq-3LC1j!`2mh*h-xl`ML>Lw3f_0Qkc4I$D!LS+h*;!WVlnie@|1TWt#2-=eehVmniC+6iowDy|3&Gf_mKCA9^-Mjw0y*9)5o#oewi{2T|E9nDmjQD%j zc>dE+@Aa$f_xyfosAar5B_Px;t*G@)@^4r?GY{T1r&n<~$ zp0)Z+=EvCP-Zk?lq+8EAxUKr|hRYX@9~9bu%js^A1YtY@W5X;W@vu_LE&(gNp6upWIf< zvTobQmVU?E9+&64n^x`b>o&W0*PL19)89`qCYA3cZDmjCaJ>w?aeZ~qtkW&Cu7~Ye zlN!39tNX}%y@)Mwub=+iSx_9aTjEem_G~`I=`(-4`v7lg8Jj#12)ol-Ik&q| z=gIt1AH9OiHOKo6trv*P3Ri^9y}-k;X@9%qg2ngb@9qC*81gYPZq1+m`+t%{dtDo? zXYP<-@(r7MVRCU-QMZ-t!N?M&!%rRyW}mZNb$VmM!{47btZ7NEwD{`qT`%?gjy9kD zlkS(B?7jR+?p1&F-cU~lLHB}373bq}yG}V9HAPKcT=z@jf92lE`Et8&xFxI!ogZ1{ zZvA@Cy|d=c3Zb7RMbGQ~{wa5`__LqGm7B3gms@N8kqqE@_N$WBZ;DvLxA#>So=&kk zxB7>k63dq_l5?ZCv)wAmQJ5s{OT3l~;=|d-3^%mbA<#GsUE~ zFt5AhbgF^v0o(ozHSM35n0;2Q40yib{l9rWw$aT8^UL=?Dcm8K5&84XM=#@~Poc@P zKmQh8Fz@}9$qhR%nZ8<}pxuA)VBN=CuB%U2h*-HM@F&+~`)!=|H@&fXdTRTNOS^7e zta^1OBz@m5rpt0Cs=D59mui1l+{}`?h5hu;nR+}dT>VAAY*#(GeEY)l61mC$r%V$` zuW-BDsg*8oTrU$uvId^B%t2DQnqxu0O7yZQ#6g6K?Q1^~zP_rqSa#{@;Mf-e*)yE0ZroN5-B6{V?0!&fySuE@`CDylHWCs) zi(W2sl~v!Xk^AM>k9gI!>LvkoXQp=E$^SG{dim}c>94VqGwyC#6nNO&|NZf4xBbJc zXP15pbGe-`r!- zzazrxJ6{={*v|dSaK@A$PfzuJTOH-Kc;7so0M?&xKbT+6NdHo#^Y?Yl!{CowrJFBJ zzvPs(MDp(@+iM?wURQ{Y@_2Gfw0#QquAdL~y?OZcxruUd?X}n2cb?@c-nuz&@~==f z&GU@&bA$blv(CG9)^~DQiR=GcPnR;+X+63AX6D>mF}%)`8rkYMbhCLMzv}aS-|9ac zeqCvy?^m5F|ib-SDulZ(FRC{r242`u6xo#=MinKCjqt;DN%NeVz@upXGjVmzUPn7Vf?;(6DRg z@rt>uOZz_VzAaqvW39=_c@GyB~>#=(&eez z@}ju;=Qo`#`4O1i>5@_MW92a)&UGKYCpo;Ayy?dgGbg-FI4aY$N%CsQqmaGvja;^U zpAY=LT(#Tiua{9jgZu19l8%!%f0h+IA;6*&s&(&h>YeDHf^%8|RaabUJEdydv}I~K z!`G}yve%wi)xZ9|!0+ekqzj7Q1I-RD@=jYSea$khe}jo2&yDR5ciuX{dY5~`)-zQL z56dRI$Va@Ib5)OB-?aXcI@7$EBUuVlP5LLUcy{oQ%=9e(d(QG%)*5U3l{G76lFz$x8x zP;)JHH~Yz$X{-KD+$84OEMa*~#`)j7&H3AJh-yEPwPZkuQo_0?kiZXGtACyMLO@4Dc9N8yTDZh~`j8qc!T zzE92i#O}V7Wtpyc+O%5aez~;ghuPPwK0Np#|K(9O>-F-6!(WA;vK-%X-s|Rcx%ofV z&4^TGn)^aaylwK-nkVlQF1>!TCd}TtZpHpTXFmKsId%W<&+*s1!q+8VHDlR3`CoN_ zqPeo#+d#F90|xyZy05?P(UJSIa#!h>hN(w`f0gguyWJ^v`%A8t4RTBOJT=;<`@M2* zqh2iM&NDaH?kNk>56@qzyJcVA#t*+_{7=o^_H*C1^_vXes_M_NjdJ7ZS+eHlNjb0N ztr}P44(C^;eW^OsG}Wj(?fBe}Gs}Xt*%-?|MOPQ^*`d0^*zwK-%ez)f8BJL}lq{a~ z>FI_!J5Jr4+q9sn?TW93$oGuE#9M2%ZHqU1&z{W7w-s(;ta zImD2D)~+~iOKp5++R^EMKU&VaGrP-rJM*c(c@ufQ1;}PqtXw52xJr;`QQqh8dWSQ% zTzE6RZ*LyQ=7$>oEWcDfzt3?0T6gaI!j(5ZZd-j$^FzqVH$AWato!ki$GqN{;Z9KK z-6c@?JZ9UD#}#QFjgL?3tcg8oYaD0vc-^#JSx!MRD?9eft9G$HJ+}Vp zg`1A&tZqs%2QOYGS9{>WqJ8lnHJ;lp=X*ZWvD@8nv46se&s&uav@4Wm>s@-+^lsZJME9 zSNs+@>=AwJ+(xy$L5y+vC#|GRAdKOigT;!EFKOM+*f3$swZ zn&I|=rElHB+zf`-LCxMSuQ)6g+Hzl2ZG5)xbzqd~`i&PJPIoiDwNIvwqenE>_f7x( z`%nI+==QxxDR|4}#i7Ho?&Za%s4upuruWU==J4KL*w2u(*fZ~VQCzN~z>2>%ANJW# zEe~YB*$~Y2#nA0+!>mS^iIWc`Pd%lPrm#{i#64qmT>rE8#V&h!~tXgyymZf8N_RQ*-C8KpW|>&0PoAhfb+{RdbSI-uk8_XE(za?RMVp zK3CtWZ7F;H;qp}8gs@J=8v-Ae&ROzzR%G4^VX5p>E55&clC1X6aDM#LWv5O0guj}4 zM|~_iQhu#`R_HHAnFVKM=h@yq_cZCyqHminsr*uiop9WA_Ux*QKkueC%D2Zo-LvxX z37wB}AKsRT7k;_8uIlKDZ*#84F8*1y>a73K5G&v7i?2RdkUIPSU-SQaWIF#v#_j*} z{Qm#np7J~rJ&UphV;=4j4}Wn&ZSKeO*SD-yI2rDG~FJ8GnP05Q2vnczpvE7r! z@~kJ{XC9qnCN|eS#aq4Z%BDv@=Dh0LX~=B0Y(CS{ziM%v{_Bs6ikoK6-z2ZA{>O?v zPhb1(nm>2b??*ZJpY^#j$2eloE6=%)<*r{>xWlKu_}HrZraNvd@ttovo%^2K*=^^4 z+W!8rVg+xsxBLyit^3#gtv;W(^4IeC{g3a5YuL|hkQa|QG2!9&*Z`lic2ZTbuXdbX z|15at@q9x)*FCVc0LOE5Z-u{z$#r^Iu`M9$<2*)5qV&zm@2xjy{xm+SbRWnU(n9NToMZ?{UR4UfZ1 z!Fd+fCM)||eTqLNyVj$>xo>fN#f?up&Rv@(cD-;5=i}J9b-hQMr@!2`BI={N^5pyz zO{YFLyj{1K=S9|szT#&Srd>(h+x0Q9u262L%K2^AK0Xxx8Rz@9ge@c1RQK}@VN-@L zf6794RUYYd-g+(j>g)Xde<3T?-d_Ko%Jy{CiwUn%=^NT)eq^*{$9k=6Gf#M{I+LMyPnfC8?ZDK7dQ&f1OcFky@yu_!gUfpD z#p|`2N>kr+I?ui}&+<>y`bj#=PM)6qAnEGVo!9kj%D06#e9em3{N;k&rnMh3k86bO zE8f7p@B6veU*%N4Dwclb*i^XQ`!DysqRLk5o#qoto|u|utSO%Lwfxe|T!Hkg-c^?+ z&Lx$;_?2`{e8$UJAO0ScP!_M*nerud8v8MIpWg72H4>Na-pjkHGh_2&w)Z^@-&~o+ z<>h>hD)shNY?)Ql^-1lZZCVExPx!IbX|H+jt!T}kqEzTUALd9+TxUOu7>}kxw96$Z2Wy$C+gI~xcuJt>_ysBJ}-9df9k_tuYD@*OyaJq z*A#jm?9o`P*#2>zX{_qp&}U&j-9Cx++WQ^{KQ+m6(0|d^t20mi-Qys4-Mf5!wh1}g zW#1V5DcJf{?*z{x&3ult68%ES1ue3dn%S<02yL-i-W>gOxs}}|#wF)G&iX9lb)R{7 zD#!7=i|l@16g6L}x_M>w%D$zq*ZbD&PIHaUV}2pyr1#qE2=kRGbE}1j?_>s+zdvXhGw788{_(c`juBd$^m-uwqtUD5if5!awpSjWM z;-~VsaLosg%QPRzoP6DW)nB&bd`tF~vg~!CSMUFM^*-;xU(h)L4{z_kae{sM^(&$a zmL7hQe?HOoL^Juux<5u#&2rZk3GLIp|YV;+}5}H(p%Q2j7Oty z`Tpn=-Mh~APMoZP(dzei9yD#)KKcEbitNDoWs`4-wfyIq5mdkHZo@~F>DdqV=EO}& z7ctsC?3}gFf0BA#$veNgwe`N?^KW^Qy{TDuS^J3mhkN5Wc*d8Be_kg{;O7CI?uiu}*n5Xw@wG`J@|H(Mje}BjNR{^2? z35CI?)i!H+cg-nj*=y7g8MJ;?=+`qgQ!br%D#-sMCm{RQXm7OfjXNO+OwUgI5U^@` z$S$@M&rZ#wo2k zZ>gI$UBCYGS$m&bE2VDEUl5koRc4$lzqHMweA(iFOUov2O0%`#bu3=7-&$bVs#md1 zxmlaav(L}J=$z}8@ZM;l>h1KN%BeEXOIsAaORwsgYPRIQTCUvL%Cb*!%a_b%l!Nj1`-)-LI zJrXDoSqV!} z+V{iLJ3WPAmnhGTQXc+;cQ!LWH%)vjQ}FHT#(xbbtFFEV zg_}8Q9?wdBaa3@@gQJ2kR#%$jUT#Z$!|`V8D`SrpZy(gwGM_tbCR}H5>y_W(hOJxe z?r%N5Yr4%uox9g!t_zhno_^PE&uI79c_#m<#Pi#jY#ZL)ds@k&R(7s-2V3R+m+hO1 zwyZ2UXtjFjeAd|}az;k4CQj16mnNFJV)ti(0+l>Lp6h3HbKRNsLht@?+q|dbwuJF# zwsNK5?4#AU)|Ony>v!(_92eqt}Ae(0Q#T6$tjNpY&dokb-l z-lnXTt6uqKhFQtY%~vG)Kk1fb$yU2P)tGg5xyj6E?a=ef&RpAPvf_cG(=9FATcP(@ z)vms~Hfak}?ZTONB(xuX?3H`YH2?N1--7j97QD^4P=EEH)$5&B7ha$GskixETGYp;V{`>SeeQ_gK)EcXXi;S^nyCoF4_9W}4;by=!IJ zm(y?LST! ztx4FjGwrRV{pvYUmHNukH~UZNA9^Y|eT#1RuE@&R-{jcSAOi0 zp0JwpvF0wfkQ;a`5WBYi1R&|9zMHi&w`fhqm~uJb%v0 zeT}UPy;{9KX5MO!@89nzF4<`u{?4mAzJ1GKGouC1Bm$J3Z~K_O z=-*Z{ed4{#`=jRFo?2>lWyi<4J0*0>Pi(L1n)qc;nc&jH>rWf^XIkt?Jg_TQ?yILy z!Iu5?|CiN$KWx7J@lT!gk##@6<<|cFvG0Is1^*L`%qsqI_9I#hOM+1)0oDw&5R6Jp;BTT3}xaP0e%q$bkGncM2nbK7w5t#3D6dKQPuyEmS? z5jrW`_h|R_L#&afWR9-2_7FW3IAP(&Z|8QE3t4QRa`2H$!g{Zl*K`G11rOT3?d}V0 zb=kbRCZ~&?Wntq%GkaP069SKZXihGTT-6=8WiexQ>@LM%-Iwh%t?wFrt?KQu{_yZ- z_?#@amxT{w*N0xMv6uhwYeI5XVTkUA6=jkYt{W|GDW47RO^~gSK7Qkog&)67l|fMd zzR>4C&RpC1!Sud!g`+`pzfj$SM=~4MA2(SzFMZ*+iha_$jOpi-3>-dAbuZWA{j_0i zX(!+B1y6RL3ckvc>1yA#WlxlM-dUsKJvWV&Jzmswf6QhOw6XZG*xgz4{^~i8JYx5K z_@I9DVPf*b7zXRAmc`a#uU3_IFjCt`~EN5XMcZ{*IV!JYzs?% z+S^Wy3V(TWZNa*ap={aL1h(wTnjkmHy_7#O^+H>f=Te6}ZiY3hQ+LG$zbKayyA+ss zb&y?K8*BthX<=y?0^4llQ?J5v0 z-m&k!Z@n<{P3f;%rfP5Zh1NZ<;GCUy+kE9=`&uXFJd2y1jV}&Y70C#2ZL4OhW9)t$ zdc7^{f8W{1HU}HN$@uToknUu=RT%%~>w}p#mnJvvvU~X6P5H|jYq?XuGK8&Io}bu# zD_(oP;Gt!;jP7z%ifeuA*ze>%G?r~<_kLej+{Vn|gnB zPqP1%si9u+>m%aq9$Yv3zdF11RUqdh<*A2Kr)jUj^;7FqdHX6aB{bK4`&54W z>YnpES>`5st}6&yWW0Lo8*}4r3~wJVl00AG_;8bF?#qWe9(>|5DVug##w4HhxZ6@NQIw{xi257+USz<+3eb7 zhbq16z3JuIqsRSR{i1k&3?%b%ir0YT)k9s%AwUxhimrh zJ^0F?Fpt$YAWkd4kXvTn@%f()Ovqh)^?6J7)Xghan=CkP^4L=3=~G$z*M>dsmmUw@ zX>;~%;e(B`J!^k$HSDZe_+jPWroAVQXr?yo63+C$?D=fnR;_mz?z2bz+*6k>y<1tr za*?~m5|g|TF49$`m0Wr-a5zmet+z-rfr`yQp(@GE?yPMc6{qnvyAoY{C{OA z=vl@HoCII`rSmU3$N- zE9;s{OmS4*8mOo)IN|UO)5R0M7QNiXZRZJvMkx5ejj z?YY`djd(XyUl7kzJJtJSXFu<)(7;PPnT*^T#rwCP;T4uMWpAG^=Y43g)J(}8a$DJ1 z&n(`5EYE7o@7wZqk)ZQi_tn+J@2~t_+_=klNBjBm#c$1Iuf4qCrY0g&S9-VgXY|r@ zhUJr1KGA*2ds?Jmk(Y1zkJ8omSEnstI9_>e&1=@1ReNuhgq%}$Si0{}ND=Q$o7^?P1Va@hd;?ApVhf0_O;X})}Y~kxud=P?F8Ok&w}E%@`>-aTAr|8<%VU;zr``G7 z|8~K=OLF_x>&fV!J3r;~g84ReA&FNV?yL&^Q?0)|x^H^X+-;qQm-m@i?X5~#yx6zg zY9&w5^Fs4I?|wLzF11=GTh$)ARd(aW)t&+peAa!;79m~AZziGMHPk;N7L&C4q`J+SUZM3%*@-I@W(x!JVqV!C8vVvuEtTXR7t};xNzS?P-oo=?K@FS$;CjXm_neM;ZY+o?Q^+19;t@BiOF z{p!Q*USd{TisMRrP2T-|_4f9!qmO_8k2k2DR$u+}yM2xA^P1({fB3FTd@)#I+0-q3d<@};?gi{|a!cWatdDxp!^W@wux$UWlI; zX7Hh$EAEQh={2X1u>JM_#pi4&^tIMz1OPNV!y^b&*rzy&)=_^4cV=8 zdO7zTo(V4|OL1Ia)tc^JR~o9w}uP+%>uB>Ode0t^EC)P$G6E8m3O{=cn@s4Twyo<+oWiPw$o_zQF@ol$s=gdi; zC9KySL$2@P+4 z$r=1RoqpiGdgQ<9@qcqa{@{&2){|W%lQ8%5--#<$x+foexcqeT^2~a91>?Z5zmrbi zoAk}3nCBKlpPi}h{Mh?UjZ8b1{(X0?-D{@WOq&TZpJ(i8TWr2wSLsvTCgH~ZlbiSS zy-{M}kZ@S>$gqWd@*3A5L2DWAhXFgz&wRSPtz3MMF87jYMfT!1FYVj1{Ik=`Dbr+R zjbDT|=kCRPFb z?(K|F?*#%i&EHv`1#UJ76!;P>=N#~H!h@}PA1;1-va+*UZho}utSf7FhSlzSt#4e_ zQFv&vwB)nG1q;ubewcSKpZ`^snuz`8gl5)P4Somv`(MPTW{Lh(`N>f-XJ+k!xjEn0 zl%;z7j=v?WReZI}{r2%?y(Ons>12I8)2IJSrvKD|D<)dXwNqVYp1xHwE91em+N*1d z<7V@El;?QI#>}ygTF+CgDpw+Q^)FjZMceXx1?AF$7&(EfkBSzE_DiazeyNInBFwx+ zVrAZ$%*}n)AExRZU#7V2=w#*{qW)hwjJ92#S7#jcwbyuw^QYB)&gS_U4KXj{pU2Es zy!UeE37#v)AG#k{|MvZN^YZuU-d>G+uAATAJT0qr?!U&v{<2+u-*Z?WW~VJX5E&Kp z-~R8b_w`p^*qzRvYX9d$Y2m%8?yE}vt$ca>)U;1CuCz*Jg+BUKnQNn#dr>QBW|U3MaGEs<$5YaxY$dlm7K9`Q|e->v>PBS?9_L?kRj5 z#%6shjdv@bjlrhV@1EOCQl91DaP!rVGM!?cJ6}p%_U6^Dy>`RO`b0``?S$K@A7#!5 zEcCH>ye~~)k?Z=$vu@_fZ?9gleCrlhZQ~Yp-Mz{9vf+csuFHLju z@Q!nLvihJf@37m7Yd^2q&Cq@6UR+eVz;*udm{+0?);_wmdfIfpAC5gAtk2vwyw%@`;uEcZh4p>sgjlPR|V8@qY)yZPxhgtLqk99~Yb# z`k~{C_U7|0N6#?X=oy}W%6R;3+L?ZRPV@9$N8h*kvhVx(^&V}Pmb`b(wobNB?Ru!> z@&&gKPMTRKa;`6Um)@Kpn+41A{Zjnz$oHm7HC%YrHp?r?z#Vc=f3jE*LSe! z|6FV2%F8)bwcKFo!CLlYt>dw2J*&Upx#&Cj;QY!C>(jm)3rl8Lb6uUWrs!~U%%Z-) zo?r6&f1gc@ng8_a>Hoi0@4s#Jr--pB|NNsmJBwSF9d9!G1+N02wA$kix6g~}n zRq^eBQbzdF0&V+U+)o2Vb$4r?HrSVS>h-*oH!m+v?@tN~cyFP$@oc(Ge=eKO1jp87 zx9)zWX;Exe?J|G6Je2MI6{dxvg+3C$L@OTd*&>ww?aU>g-);NvKl`o!b4_Yy+ppQ% z-kKf=GwokJ_runGZ#S<}i*1@;y>%vUhv9FpUj`Kvv;R{wd#Ak zWb#V!+l+OM_6LeZnqRzXasOLb`yuO;;gySTEblrrn$6|kn_(6kH6v57Y-N1m+|z~6 zm2H<9zU5+JG(EsRXNhP_)y-pkVz*RF0=GQc*!{|CDa(h3>`-C3CEC1O-t(z%&3*Af z`E2ptt0{X{GGFDpW%=jM!QjtwZ;Y>7O)-g?{A6Ap+lo%^q{VNxuiwR?yf)IR_(jU9 z2JtVw2WI671kaq;w?J!pyq5nl>&C0=VqRLNTEAu8{zUWl?1#HtWv9-ck|->b09&%1={-e+5mRB)c5}{Iw^`P?w%E7O z>DPx)E%zALs?!%Q@A}BI?aYIs)!osgf0wOO_We|4`5;a(~VB)hT~;k1a0o)>`%8v+0l6GV}g_U(Ordn0oC}n8&{F zak~z<+w9G%eA#f{-Su##%Cge`nm)E-Z|((!UF9r$>QP?&ZMB>AS(k6mT|O@@U-k0d zqP>DKzpH&C0`HYy6L85q$FcX<8J3gE*00HB|0aA z+HBtRXy|wToxuM8|9nC1uB7N?zJ^m=K0EJ8dEaWou=&{>);G`2&i3zbmRtV)UiQPq z0V}jbRs}d{Y~8VYV#TKp>%YC&IA; zTEFgFOCB5MJ-c7^=+By31>KUmGi|s1o?A_eTX&khRA-g+_Wrr=ZeP#*9I`(@{DRH$ zxt<2!=T)3N{(noi-L@E?o(Ls94ew1;zdUVR)nHY)`lI*M33_`=7m6763jcqfe_yt4 ze)6x=`TtG!?XU|Ixl-J_&%LE6f4bi058I{xr0wKCxcJEmzTK<(Tpqvoxhrw}Z|c4~ zyWZ^f7Sdx4$$hpv@4y|g15aHzb|>e%o!$7)y(nzQQl8gS%RcvMzwc_PD!uZ2>g4LH zicPx;dJ^>_9yA=D*jREx_g}2L zCD!uMVwuU-p{Q9-Ish6 zdNr@__c`f3-s=~Yhlwa2i+|cL_xO0x_Py6#lzD#}+i!l6c;0_k?H0r9cXlja^La|% z4a=9}s}v6h@>Jg4xD_5M=5?fC-PySo;rn)G`$ zO!yN!KR|tcU#mEO9S7 zyQIe5*DZ6SyYA5})2zG)fwgxf)&?C}`s1eC2KU2XcYWyTlj&VlxV#~YEmr%Tae02} ziSny|WtZg`f&*zu*e#cJJM&gPPvM+Nrf3Y=THS?1D`zwEp( zo~`#2UY^W7*Y0D?T#Kk{sfy3%CGNf2tN2|i(P~P~w711vKihJv_wJs@RC9mfIfDn$ za~G|;zG|Ma;?>>y*6&U(jOw4Z^xV^3tG`cPT~(@)C3n5aBtK$*h`jXazb6d?=Dk|H zSnA8`-pb#COEsVFZWdduzkKP281>%=Q-73Yw`IAVy8ry=uI;-&+g2(q{_GfGySt}Y z&hB%q$o)%;9&gxl^vg2Yy7iuSt|mUS@vSdl(b~DwvUa}C$roAYJWt!+vfgKF$$F*b zzOR@1;s2SO*MnCvv$!jUrQBa|dHq#4jj!|dA9lF!H-Gzm`MMp>Kh6}+I4_a<_3Ufg ztNS0HnXVP$xop9A=Ia?{ODx}gw@lls8{4H-`e5fJ_SUY;?cCCOYXdL8>qwI85t~-j z6Q5Xhb^baN&1HLZkBYtH3fa8o(CQf<%B~5=-Q+N8EZ&_-+?QY_!Uz+VDP0wz=zQq=7ZX58BU(@}@*O`yQdkyYhXt}dX zS$1M|ocV%9-Qm5d`^qQAEb9_|9C}sqbJfj;Pxe25vFjJ@S-ySFx;>BM>z}KiwlMF# zsjO6y^Kc3OoyXUeL**9QNIPwmDs;Sc+AV+AhnI5>A6@kCom=pLGaz0P@;4{+$M%4>`kH!jy^w^`_KaH)9O{pXx+N8cKYy}Q=^;o~8pQ_1h9>isEp z*`gXgZDROKegkdUY`b$|-0QEl=ZU1($~U)_=v2(RcKuET=i0B^+MhlY@=@M9hyOuJ z@Q;@~se7|~R%IE!>W_RaAt`_Te#eRx*R@}$9I35ZyePuexsmz&yN8R5c>}8jy|%BO zch%CCO+0YJD~%;-&yTFRxN4=};fEH7C2Ax33f(lnS*s5vs<^YTbN9rwP}KQ?w4M(TH}8Adp|9#bKexjAHOj7s-nS;Gtbnx zPDROSzp|*zG5AsbLHv1}$sdKC&bcAC)$N*+<^Epph%5C9(hGhze@pe%`4i&Y#j|cb zk5Efe?O*$`T5Ou9Z`WKCj`GfB=QBS%j`8Pv=)=Zw(!c-5=Jo#yt(X0=t(AK@f8W16 zmlf|yMeW^O3^sZ8pZfgu;Dj36!nk|=JAyq|Uab3Ef7Pq}R$83LsWn9}JlFVN&yC&x zI_Om5Ro^38iZR)tJGSVZ_m|n-yj1$t)bP^PGN1SlezoI2``>c&OCFc@OB3G5E%%O= zJ8actyxqS0L4`)`ikwetm0IRYSU%i%-+39IknYLv+rMmkJgwl&&wF#7^Grj}6xLlk zzrv~{^w5vebD=f$yeu%ufmaDRW=+ z`D1QTug%h^=JkCc^B=b{9i6#Pz3=dct%u(vzp$`UKVZLY>dD)F`L`a5FMQ(pu`KG7 zrsV1%8{hZapUj#(tJ|n%|EPcRP!(K6(7MAhJE~jn19-wpU(XkL122n{Ko5=-+^)f+ZJTExG>i zz~{}6!fV4;uW@;M_D%Eo=vvX2;!Cby-Z)Ra-Q*`%$^QEA=j-3Uz54Q$`j^RvH*DW+ zA0G8KkM-M(lG4`C&fzH@*}seSp6;7jZmCo1S)7=9#lT{XT)y_9?+1RpIkap3YvFp?JUzGXn@+4L|MzglIl+=P z7nhW~y4zlPy6HHord>&xW-;%ai1~+mZ}kq`l{lC#)p_DmcR#yqZf)Trp;e1!PMiG1 zMEb8*D?``vvX&#bqA{r8MF`xn1EA8e<}6X<^2&B8Zaw$wg$ z&7bD)Ki3*9s9akAWan{i-yoT4!OMy3p1uf)Y1_|Z_1fr2V8!&udtdbxq~BSviaEXJ zuB^oLp2UzN2{SGWeRa~7k$$JvpP?dZ+9h~sw$c2uvuAmWH7oBjP7a#C?#z`pk0-85 zuRVNw*|sw~xTbHMA%A5fdsNqjWUI(+hxzU-y|OYlSnYsig=wwJ)|BIm-LliSTJ!M9 zRkTWpa<4dk{GhDyt@3@}uYSDAV4RvVJ>s6;hYOWAx34Izti9Fz_O;ZR*A3oJlgw8* zo?Bt;Gq>Tw4aLVr&C^z%4qduR?&W_CjyYjpE&P`Ll{+ZjUY>dXe7Vb_n)Qo6Pkh$i zx8&Sj_ZJlw`^#?blm2CKTyd__qrhF~d7i&7ta%rm>1S#D&B}T@)2e^G`>XB>S3j64 zIlH)P+oO(uKeyjs{M+vO7ykW!^9o%3e_GhAeQWIGwbu7NFl<-MT{bn; zy>I>J_Ny;Gx1D=6VbiLYnU}2mmpzP1Jn{XU^pVc#hqwE?iu{t=FJFH0-j0p)&o}C4 zsM%I&CS7^TSv5!A?8XO_reA>6g zyrN-IsWR!SGBtauz9`4~S+T#EmTS>vmA0ksl9WQ2%nrLxQ{rC7JT1Gj`q;O=(`ifQ zooN0g{p0HkyQ7n*CEvHaw#v5c58vt2ajVyU=Q=K1krwj)*B_QWFT+f-Lgv+Pd$#3` z$+F_DhgN34uxrb+R(rpLZ+Y$Y6Jf7ZZ0sAWR$4cAdLQ7DvHU;BWY_hJ7c~mS^Ruq3 z__kyE&pDT7m;KmVwxV@{@qc$c^}liFMJi|9DpwDPU$&voPw#Hxv-{Q}QRn}?pR+}- zab zEV1T&|9+WCjh4_w*=*Tme7E;Cd%kAoExp>QR1q#%`tzxK-@IwPD?Ylo2cEyfxy@R5 zE_eIG*Dj`ex4Tzez4MmOe(mfXr%wGob#VFp@_n~{Zs4w!dwa7yb*0OVhc?zfP2R6Q zYOsS*Sh47i?(v;D%Ny^mSyo`(s&M=zhu`1YNe!`UmvDJZ<@)KE81e4FgQZ!j*$F1i zT6`@DQYQZ%um7)d@AC8M|32NeU)wP=^TX~_FP68x+o|%T);lJne5Qf$jz@f}W*SHs zo!wMY@Sp*x8>99DP9&1YWLQc=BVw6e*fU`$Ci7)Ras3IW$nG5ap3;Jm4!3*Do!uC`P1X> z!COz+#KmK^D&tNaRLnqPv?XZ*iB3U2LFX z`^#ve!I#ufHd%pJA~%Gi8SXX8Kb4eHxE60DHK)Y8W<~N-lkFk#?qO5p-fuRZy6siF zFkh|qJz@2^R?OAAPIy*2_-GM*L<8Hisx@ymEzQQ7b#cWHLRs`~u zTr*G3ko+L@B0#Z4`GaJu*W&C0-np%}mVOfO(RuOzxJUQ2Il1pA%AT5iEC11yituLn zk8j?mN9TQ5yyu~DR=}@2pB2}?Gb@ja_sHvu+x+)*e6#LZ;J&T8jH5#8)AjjZ#j0%GIsYl?E8O9&Gf?|27_av_ zMsMB6(;f9cuiEcvcyGJ+>6gdx{|y|3tscMKJXLDL%w3N?vtNWUc?sIj({D2Ru!rl# zua9>>&G{m8b#?jQs`K}^8uzYp<$HfNqjbK~*MLjCZ)2U87ZQ8!l5ALRI*iv>uZwrUjIa47XgE{G(6Ms5~JCvL%>k8|6`J?LWy6n*JaCx9IMlKH+oUCnx#)86Qfl5^`Vce;koI%Z=gHn)m05r*_N8 zUcdP6g9Afu{L87c?ug#YesDAVVlC^&`~x3YWgV<;l}oGl+y(Vyc3bmk zrMJvFm27)+^6JM~5%r<>7B4BA_R>3b!>;YGnp(1q?q}PVEq}af|G9lp21|_(*&O>U zSocNo_N~~&T{0=_cO@UH-@oqtk~O=PQ|nK^{BiTvtCw3QSX@0TRedwAc~yYLk{5Bo z3-mXBw=3P1Y_;)*RDY31`c)(Eg#3SY-%R=!ouBU&`{1(U&gVa;6i9RH&6rfs^E&nq zd)~=5-qM-x_moJie`s*~;=EsZKOzEj!#+QKr&Is5=5cj@T8JpqhgCc;zFNw@+3@i4 z@o%F38*1~HUrt(X8O}9jRlMe}+Mf$_4bS`i{X4I(BjUL3CC8ByT5<=xm3RPXZH`K^gA+oKid+w7BdKCyxtkO(z;h^it~Zu zJeKB<{Kk{t9SK*DZIeqdT&1J1aa_MDT@o1~oH^5D?Tsdaabw^VvItolE%UU5~OAA5(?v{1(L zp>^gu?sxe;ejb*wowfG(-sGKytHK`!JYToJT$1Zo;$5p_bsU^&VRgHj`;69|54d7+ z!M;6T z>pGu3$3NW=->-N2$!;0TcIAl^?}uyeRx2|4GTnLmtB*!D?=H(K&tiYPuFq!OftddR zu?&B%n`dgA?eFL^dRr7GC-f5|=a`x|_-W{{7Y8t3UMzEbev-N|+-vUGvZU#usPS z-4yDduv~9zNd6n;bz8PvR(w_HF8^f3w99WNSGDLo2>5wpv5WJoWL;|>!NLNW&lws0 z7GE;%&g3V<7#oO=sKFNK(Rj-}*%XnSFZ?B{+=g*b?jXWL}e|<%u>7%P^xBR95 zWJG-Vz3p3MT%eQLS{pc?4xqY&P&q?L_GGVD> zd$-6v>@zke$XSyOda^J#6}H^ZXdOP0Rj{(+U%KZV!(#s1#3tMlf)`lPE{ z`Hs$X&-r$heeuMdtF8+Aznti%s#UAGW>=!`&dT^!VZOUrtEwzs+q=FE%wN8F{ukNR z{#qMFjn|v&?U@TIOG3Eks`~%DquX(QGN<&ay;>8tPg(GysPxKR@z_7Bc6{boIOW%~ z?{d)%d-ROl&&2X6SNwUXHGOBFwM^-eL`OT3s&DPN?{6%)aiP=tO|RY8OFy0k7S3YN zTPUJa_j&iHs@tm=c5XT*woc)03464QeDVyv9ZTNm)^~j}S;ck!nS}N}(WH+3yRWW( z<+wPy4G)258ve9)!=o$ZpyU7tAcfU zq}O%Wq&_rS9-ze#(xX;ZxW89wLE^vj3j%{gnIvX?k=3{C`@z5ePq%nQg@3-~-w&tb zk4!C|c<{t>o#fY^R=4pJwWPiv`R9zOF(3rABIq-J; z4xI-^$95g||7h%Hrmm`bgrj}0`>)LTA1jZp=-B&iL-LeVv2$DHYu7aV)(Z`NEV1!& zd)Cy%w>*u<#ha|MUnKDg%6pY7E-hgTOx`$)>&gYWCh@!-7OvTvynL_4x6JJ@`ElV| zU;2~x9~@qPTdG!UW^>E7a^swH-1{EdFuIq^oZ`1E`>fSo>BaK8iMRau+TFhZNFvTcPZ}a?k5f}-f-2k z<(p>hFT)vv=U%t;{V24Y<;1*sUB9E`66wS#d^c`yh(GYGUBb0Iw)hwu=bqs7McZ1f zN)Jb_+5SteDCldq#pL|n~?5Ryo&w1Xv;ZK#nNoM*685=LvM>0d<%UZsP^=? zty0GM<+m65UE1d@^Z)Hci+k^bXJ>tQZQSK|3K6SaOTGFR8EJ1zRuRqCMiQGdJ8+`!Dpw@Guwt90#NzY}!3a=@zRxz+RM z88r|8ygnZvX&drAmDBF?ViC*L-*)fXVt2iooJ09Z8eF;@f?8pV%o0 z!%2Q>uNbQx&P=#{?x1~@%W|tt7v}YE$a8ol^}5q7?yQ;S{P3O{4*P1m2M)*6u7{W8 zF5D4h%XPm>Wcf92tKEm!rrr{(R9b3!Y0{$!0YcJC{FZgL?>p9VIlKMf%edzOu`_?% zt-Zpt_x;XKic8wgReaN38hdKSWx@F^N00Lvd|&K)Rgkml#(N8!+`Vvs!;-3qS<%g?^t)TlJ) zxX~wDei504?jc&Xy%GyA&vGtUWSuL2(zmWJ@Y00s~bRER=ICnlKb9PZ<#!KH=guroxjVDH$Yfgo)%Cmk5<}KJkUQ9+k$ya) z_HwJ*9OqpZiWckqzP|X^t{!XIziozlpID0@)RMPNebeWdd)ikf%c1??Tq%*?o$nuc zXx&`i{buHlyB$9c&9_om@NwCe#wt0(Gb^t>-G5Fc!~0|7whzA*&t(QZ*7@EO&-*Uu&+tZ(d`qAoz3FzI20Ac`R4C_B_70V~uwuU!UE*jnDry>}KjMU$W;~vvS66 zP~zOAbL)O_i!a+^zGu}(QJ|Cgn+MK>*4Zqmi2Hg{4Y)8t3; zZ4*`sPC8zY#q=q8vbV=y=U2>j0<7zmFTZ5_f7rpYa2dP2mA+EqWZps>7XAjC$B_cT z?}L>e9^T+RC#zm2@5{{n67CL?*CwAjXZ`Hr9Kqk;+|NAsuUx*Ialw2&{<-hwu3KUJ z!>0AmlG+`N49ce-2p7eD^s@@I`MPu3ABP#2e=*Lu@=Dc9E*zOg-wC{WSPo zvU1Ul%T-DlA1()e6O`v|yXYp#W`C)k&97JDqUM_OS2q9M|L2|m8tZ z@U=ZpugRmcM+Eofrq->>oVCAZT|hhU(jRO1KVA45__Tk;9=*g5^Ma1deKSEP{7Yo} z?afoZFS70Sx4V3G;;Z>O6Q^yK7x(k2-=`Lxmv1n?UA|}j%X?W1)?BkJe3)RP>~#E~ zslcW5`8$K|?X(NJA@SttxwBfrbMCDW&#ar57%Lx8q*f zXk)mBZ`;aEP3PMWx=96};4tjF9~RG=sKh(bUc=pD)w##ze>LM*{aa>Hs_2~XW|H_*jvEz-TkqTKC$W*^yQsw@t;glxmFqt4Uf)+y>z{A^SKj`|>_?nWPgo~J+z~fX ztXy`={J!$9h51t-tov!O>n+>MbE!QOKG|G#N?^jMZgYCnLf9cHPmEV@1z?P7?Z>ZXmVcliRe-Nmm}6(ckX!X6nW0K9$-hdu7bC z{j@jEe>#KZ_~&~jk1oyS(<@$ZcHw!=&8i;-N|(pQpLqFblXSM_u{ED1{nTqSS3O?8 zVQ1jf`5g%hS1P}eIH36Vdd0k+jeQ?WW@rX;Zg;OrIUC^NUnrvOTEZ)JtIaA?gumRy zhW+8SpU%fGZl5rr{eZry*-JmmqbJw?y!`Qhgh{-6?K-(e@p;Ox*X^^KW?XC7eLnkR z)1^1Md~R>ET}1w_3g&;SRAe@(BA{LEC7arsjVbp<<&Ve6)ysq@DD$|z;wua}HOJdd zikn}`a>c}kjeGrn@)pmUwzPTHhsW=>uJ|?Oz2C&3#QlOxx$nK)6#kl3M(g_Xiifdz zpW+KIC38B=?*AI{yxsjrW5SB*#gk@l6;X@5TfiKAEB)djt+|EA+qKrNmWo|}hi&5Q zx{z#T-Nv{n$0Qw(`Eu08T$!+VV*QV|Z2Q;j=ddj^<@I|Se#+s3Pe^UUWYd5+8?EW< zFUT`lRs^5@P<@8W(5rpjc}0&Y-20@S&S9{Uxt)Lg(cJI`Q>z)F+|Ot9g~dIW+VcF? zUi-!8{9;!eZv0lY<+0uEpSSnTvaEmQQTb-E6tCn*2fLTYpI(fxcylxFL-C!`U5|Q> z|M`EL|6lT+<>&SP{`$H0$KAgiMQ>%-xxReH>Y=vO@YtT$XKtE0Jh#~D@$${haI3kq zLvJhf8m}zreqp?L{nRPl@(=fP)ks?NuRd3~X?ak+{I}U}i=8|2XSrn?!`1?947@wL zir-xG<;N~%rA-eT-~Q+kzbdsoq9-dpmDA2tNltsi%=>eB=5%kJFWdjZcuC*-Xj#9x z(V_ciEMB!b=z8cG8jioM4#w0?C!d$4?nwdAL%@eo3C}`mb(pCMhSm+PNJm(7jgZ zJ!j4e=g*7#4}=6By^tHZKqF&L?D@+#y|;>8PwKeO(R)R?ZLiJC2vecbw(5J4+b^w2 zx>0CTZ~Vx#dG@6(zSF+;GPGE1+oqU5XW5Nur;Ddf$ggfbKfCnD*(JMu{a@Ysd0XRQ z-@(_r_m_zCPA{D6@|~6O-s>PHr@qqn?}SAowBr1@HVS;U+7>*wRxpz(!|v39j~!c8 zd_B01`Gu$6A9B}P_f%59+Um*6WS7vxvWu$!S6j}qawwM)<*b?i@yDr& z>odz!n*VM6w>LyyJannY^x~?tFIo3h+5O&|xIaBsT$U4bv0$?Leb*O(5`kOo4o_v1 zdC2Lt_i@y*O}l%z1)s+rJJH|aWSaMS;=KKP?T_fsuP=~l`~KzF<@mo3>pS(=^`CXT zxHxKs-0Q+5t8%4P49E5g-mTnx-sl1Ep35FnC+sObv+T<1_oZrQXPj$Q-2dCBa#rla z7q3@tzpC7!^zDVcjQWa+#oO;>E_1JTJ8*HvRCTeq2QwUI2gjU$UT`Mk_Rd8MAM{*Y zEPC;K-I*0y@5^6v^BjuVuzJ&Zo38W~|0hh?7xH0a=;1ZjJd3;a40fG+VZtb}Aam6* zBPZUq**%A3bvp`N>mQUP9$9t%*)E+BnLA&7(^)<-%q!;&sB|*D)&AwO*yS)i?)($n zax#LYEz5e{H@y`&Zl19 z`t(9tX`i3X@g-^jRx9RRl5d}GRB88oVzcvysEdo6p1*rjaCXMmN1LC#`nK+LTK~RT z7FT57{)u0Ff5Mf6{y&}1u6x{7bo8uw!IxFj-tJt_s{LN|q}E;Dh5I7CP517bRTwqr z?N?rohWmwfiWf323j9j^qV{{?V>aVoB}?WVoAOTf?zN_EA&;-`Vz}x2YyBth$){eq zPhbmVe-NT9vq0hQ!HTCQi#{Je^7UUdZ`6f+kJXE1UTNKT&ldi3K*O=z!##Vy{pGp} zsZTf4FKoN_JH_g0>8zzb;k!-;%o3YiIAP!Zl?TsX_ljLs`}$YzpVjaGJ^B9SvF+ZY zUuO5mpGuQi`jq493H5qk%>|ZM&Yt^P7+<~mac|qF6{aQgOXp1cX?bYrrOat{bMH8; zTX}o!lzvUdEo)w>zNnscr1O#X+d}`$OSiL^wq~~f=d#x;=E&ciH}~$9%=UjfT7q}D zA9R!1kgt~?!G8O)(dMt|8fsPhP3q@MTbRFcb3di=;NDZ!-xg7O8&0Kj=T403NlJA& zHn-~W_pHyOlzo4#OYQEsCBIH_ym=A4bMC?^*RQc$?T?+T z9LKLb$4*Pm(aUD;vxsw6?zUT`ITX!TWxebKh-xrRsY2*SgYk ztjD8%^6t75T=nvA(aN3Qx1K+F=HxHato(JcU(b1~T~FN`yR@|Y(R(YNem2z_|JrvmecmL?eDb*Y zROMvHgR*B2FV-jL*gm@CzuZv#&yRm+6Y8e=aq;|K(6@B&|6AAXc#E1oZZMupJp1((eXLr0ABZ%T|FzpMr@GVq$5%s%_VQWw+sbXSrYdb# zKVap(WTjtiNXOT&A^mS;*c-J4dw=ywO>bYb=ihc8 zx?g$fCwubgmv=K;QdfMapOtog&oVcLKYb4l)orP%&Na!gIjqdRE70TW6CSCR&!^Ny z?p_i6{zvx=FWY%DHx~DvSAO@S!v4|o{lC94vcG@1cDeh#kM^}+jg8xWPO7Y1by)9^ za*NUf3Byd4?{+&GFMoe_PUgmS>m_0}bt1>Z=g&O;uzY^xZ=Dqd3Qt%47i|9i$n{9O z%%g(j6xmO!i&c^%j>s>WE_XBX{j_4g*QaHkt+`-*EYEgQftJG5{`Vzm6W(}AIw{Z7 zdfR-?)3zuurTuaAskPgs3|qb}WL)O)+b&r6)5dAOiRVlH1nkq7@HZ}8u6%a&GI^Ix zhyF~M>fXCB;?f1fhi+xP2ZBF~Y_;6;+F0~f_#GRT_?|7Lx`i&E)*WBq>An5x!^r#V zgdD$$e*b(|uxEwyKbc1jd~Poo&4U*9HOf!jop8Rj{|>L=_XvxV5$-SfR!1+6{CKzg zw2)uT`L0iUwf}dlQ7+1~D2beI_~>!L;b~Uo$`;R7nP$iJK6p6eo?GyW;JMPZ!G8B! z7C!D;vaHRHFUtS9@X@(;)~?D%m$q5YnREZ!jP@;dD}F9;&)?1V*23!WP1&X${u39U zRPHKKWq3RP>m%I?PQPl?2fh(kH<-_7@((n)%&QX zi20l3)x}okr#Bpbbztuk*(V%6p?>apQlC6b4~ZJSXZ_NVGr#(`jsL9^r<(U!_wV}b zv-O8%{|Afb+Q*90`c%U`n@dW5AKMXpWbNl&+r+ot^ek+$iOqYX{dixN%-deO_lxiE z|89CxbLBQCe;TTzbY}{G+!`^V6(#u{W$LAN&7%F#pZI2j9Q^ToPaNN2{*7 zK4O0eThsgnjbAMNQ@K-f^7bs)a?{j7MzS+~7W>J!Q};3bs?B^JXvH(<+4Jw|dvEvt zIL~V?8)kKN%bZVlO&(>>u98uyTfOB{DML}g+=dn3Ca?KW7_jriyjZsReac@FzT8Of z))RgCAn||AvBt$8?J`8)aVW|*{EN}L7gXet|J%p4rmTYVa`ti0@<$8#a+Hiu-ST_z zs7x66hzngUO=Um%KQj=d_)3SFv zEbm?#GPCw@+_57sJ0d1_@NGWTFlAEsoM$W2w)!7h_*rR-<`o`mY0cCl6L|T%_~#rJ zofbW}w)HNr*|jBoc_&tJu|b>sa$l}AQ1m{gUV*YeH` zFL9S=J*oF)olw^s!B2PH9tgzV;tyS4FRxsaW%%IlyB+qr()O|G+tfqW?OOa?&uYe_ z#`eaQiYEN$zi}L?-NV>==ax1&#gs>$DV zC+DrVW-v^f<$cwymHF+2ZBz1gwai}XSI#r<$HOTZ9uJT7L|t`wDxA;ae&oKU$Yn+L z!;14_*=9;lT(E>^wR3fAdPZ>nltl;iAMgMBtUvDCPusn3zlg{G)d}fj|C{z^_uI^% z&}4PhB}M;&r|jN0<#L9I%f#NQ=Q2^pJ9=+?+Og&N?xGV*=36h=^T~0Jq-65d`5%u2 z&Up0T@?sWAMf1zde23-)*nC>|ViAYSpQF3ddp3yG>$%^bu=~V>QxO{HH~$l`eBtM2 zyKhR+WUn&$*McSYe(-FSw$(^&Ke0>ThD@1l`hv^dr%v=(o-??jwfEs}w-=T+|DvB( z#hte&0jH6nYn=Bxeb z6SiNs{$YyFRfQAWRdaMRgublvGvBh_z1q#i^5|c=y<4ocUu)c2I?HB~yJM`1!(vs7 zFQe7wfxsc~;_uYejcBzu)?US!9(_3`qoJvym>+E>$j90%VXWMn1e=_b4A?ld>-N zTl7oh;?bp&^LJHnDT;2J!M58kf7hJi@-&xaMx|_Pg~|^&8YPHI?$ZcKoO9A*&Bj|c zmL}_RpLbs4IA)_Md1CRQ$0jc?Z@DI07#FNxJA&wU?|iPSVhYfys^ zlVxqbPfq@N+za=DkH0zQE_j|lUnADl;qKoX7IMsNhb5;n`)s_?YWMnqqJLIT zdrP_Vw>8i6>;Eoq-?xAHdBwl0-~ZWbVNv#SrQ3auf}87vvgD>Lz1S`DR88K^DW!zH z|Gb}xo#3+5N|z$m^*lR#Ugg5SgC9Sfh%#FHY4M`vMs2d96-RFzdDpQ*!>W`ot}I;g zU2eAZp9eNEeLc^2gx%I!{H$1}yXE&^w*wnDr5sGyyYvTK?79Pj_$eS_&- zssAb~a~|>6)&{HEYTUdNHy$~XeLq%uk>d_|h9}%MbLE}wtp6rVdv9^U=!c*3#`9@c zzLf0>p2Z&0w>VO&k8=w1TYDF&_?0#r&igR_2??3~A=BuP|J*CB@|9(e^N!!S+WPK5 zcgIta{!;&YHEhStkM+Ix)X%9-VhY@J{$O%BgY=77<&=kK+?LE+CTOj@=wDA_`JaXR zIt(JWT-KWWc+MxG#YcZ$`N`uhj?Fq&m{FGPfgo=ueZoxaqTOGeV1=t_gT~Lzp^)YS?RiYJ463pw9{OFF1`Hn z{IZ%?5oLcK)Rr^3zp!1tOEKxbZLE#>9gT)vAz@#gUu=<4R`Hada(+qs-Hx4?nRYP! z(s-Qv?78usPBBNT7oTgl)ClhCOnM%e8($jMZms&BX44RYq|{%m)C@#X&ZhZ!MT z)t1`G{(qMcHe-wK(iOL}F3();{W9bHR(Y#Qr)+E8<`_TEi@E%>g|9vD$lMCG=a(a2 zd=BK|S-1CvTE-#rjMezf<~RCx5JL3Yf3-A;$Sl@v>J3W8(`W7q8w^T>oWm zf1A`lLvv*>&cAPG<#^m%`u|kU*}%o~S~rHye1C3*;@&c=PgXMS6H>c4r%koYTA_C2 z(~(A}r9VnFSI=?`T*@|&neX%cf+OZ|q6BoXE^Je9l%bvUcPkX=Px6bbk zI|a_Fh3r-cTEWOXFX861;5}UVsas+VDx|eCO8l4EmB;+p94sHd^|@;C>t?5`^Gjg|K8!n-HQ1q>#L_^&OdSYqx3{ImCJTN_i9hen7s2wcC6U`Fz(7N%iXqZ zJhys^(sR4~&6?9wS4MkvM7=M#zU1Eh>%Uf=Gb~*(_roWxpL=U$-pY#aUR1v5;=2vf zZ|^TZ&bmKy((T0)0@-;!*1n0mxOiJ>(55ZZ>rSt@cW`-ITc*U7$NDdRrR!(Bm@kmw z|E#!NsmOk<9Q%Z~#YgIDBG!NZ|L^MV!|#iIjSux(e+=FDRhd6MX~}^b83LY`GN*HF z{d`{T(%z&YTsTd}`QGb^vzFT)y30|sYV-X_Go{DMeYZ?DT55IqzZa?2OF!AM<;1>6 zk+zde#P!&{%; z{WxLU9og%)i?}Q2#!tH=*Rays&+~P-OV7loE!Jnd798Y1dotYk!mm# zS^ZdWt;`eIMe{%M7-;mFzFOD+G1K+_OO{l7vwbD9N53Z2uKO(bMgGIiZNB?HKAyMR z=0$FdbX!SUv6prI{H=4Y%}(cToxiIn%KE|XYm3>E|FoGr$k$!XW`E+4XJYx@^tubr zt6T0rpZ)Lj`udRjClCAW);qboIBM&$$(^FwO?Ig4$62KO_0 z*XDk)Dvt|2ykG9kozD#2I?i(PY@#x&Zv0yq^>4$!!1G^qCG^zYvza3bmM`=+JhAO| z!onDvuj$jP7fAO@^iAvEwd+=(O`d%GrKq>bPk*(XbIw!^t^e>X(BZnuqbri%Pd$-t z4SDZzf~4ZWjifd;=9!@{C^{$ z>E=0GxyV)2>djt#zD4VNEH`D^Ub^Y?-1k7GetPWvU-$c1-X65)%JhqvW8D(HM(3q5 zue|L4xq53K2mZ=&)zS*t-E%j+F6;c9!?Mg0-nMG;rU7~lM!zQR-Yqk8@l$m+&}N~9 z`@Iaby$`-Pw}k1#n!Z&FuAU5;ZjiHeGw-b{D|7r87YVKN_WEzvK0R!!yY#Ug%@YGw z#Ct@{QA_4D>B>nps(at`e94;kXX?CG9POWbMY>SH)b;t<<*(jy_sOn%r)TZ>W@30s zh3zw8zYCXVyiuFZ7ahLugS24M^=sbWR&}rADc$jNwa@cT0BJ8~M5I*H3?HcoY2cNrlSXy;{4y zSMa=De2K-fuso};VB$ZiYkKUS8&_TF5K4KUWchnbkKck9qA!?sW*j+GIKS5EnDyKX zu~#`I*RJ!r@ZkH`&)q+MuiyWF)BpD`-!22Mu)8?je)`Ook^{GJco^e;SIaN+p%{zogj%07RZ8Q6DJTTS<&-BNze z$CIz@K6UT)i|8q5XPnFb;L&pVX@o(hh)&S{`}-je??GW`X9-5K=>d9d>y;G)F*Z$}^#$kHw zWz0hV9p?@Uw#%5e#=iVuq*3X!D=*;Ws_6o*I}YnM2~Iw7@qK8?@@40aA4$7zCweXX z_u8px5??L3)Xpyc(q@<0eM-Dy{a=@mg@@LCS@ZUVaqp?%=Zh~*`ebi-=wHT>Co2p; zBv_idlxMM9mw!mS!|Um1r#vx! zCO!3ipZ32Or{j&BtH4UR^$GtDAP_ zqdhOnpKJ`DHT`c$ZbPxgTY*(uH&5p>-+0z4uQ_;YUwVN0rz+81Ia`0dF;2R2)w{gF z?@eE4v!85k-Sib!-^||bp1))3HrqAX~<{jv}zjwdTnhD_tzU{btRmb?zrhVe6ON*>tpX0TAwD&dtsb0$z;WrWs zlc&D66}_WB9&y|(r3n|q`@+1Bfe>gSbx!Xn-Q{el*1g*}4FB{LMa9Jp0-&MPV?ILk1sOA zuhjfJuPMCF|GfLF5W^LL9s7FN)_pImvCVt1>~x*=k>5r#ri+j0Et`5eByxh_#bleO z)z3n|tXer+!yxU|0o#w$kFQJQx?U}Pv$=ME-*=zHmtTJWmhGQklqFoeB>LI%H@BvK zF0P&B9$m=1@KgJ=X2XXnl_85Rz1Xn*dT-}}Z^307S2B9>&fyO%xH_Tj)8@Lp)0^44 z|9^R1|B*=^oP_=_-rvX3U*dFWrqnszrQCP-O?32Rc>Lg;=M}j_pEm2-+O2bM{xOr` z_01EhANrbvqj~)_ldsHen4s0aXL&Ho+eatPb95>^S|qli`h3um`5z*ycF)P3wop*e zJNY`_1BQcv^RC^C+H!_tZ_E$HHE$HZ|FDwt+mvnhHo5Gy_1paA5-u!;{ogs~_a{u5 zJ4>@_3HzxzCYEwaMq+D!giT0){ayEIfc|@%NcM~O z`{pXXPgAcguP@!Q=D?+|hOzTjCVR}yhzkFDcF|oWyHg*hSCy+RdQ&ky?nwL72YnIW zKOVH?vzRvdqhgJ~!54PE%8TCdJ~3P(%wWAQd`_D&SNri}SDDH#2rTD2Vr^vC=V`cS z{rTr{rf&+)g~>{{Y0kPCu-)zZ%Qnv1a(Ah-N|{%d+qF;DNG?~H5I$wvPoBOBp1W7Y zXZ>9we`VpV*|P;Yna?pNzh3=H^WBms(^?YGYi))z>jXNdVYjxF^ zy-H)|tiz$v?)O95|7w)Ht(0Y#n(0+jxreu)`JZNN+2LE9dZl)Le+v2*`7L_3KK9>( z;Mk}o>g^cO>uiH+M~!9)l+&=*PH)m zwu9%rReKukwBm1BoGEF2bt@`6w~%k^rVU4}=d79#o|<;O^4y0hqs^}*rQ3%MqoxKjB|Q=(cWa@+UViQl%*-1*LEvB12W>kSU3S#%^-q-KaG zuD>%emi1rB|8wu%3hH%QT8*~(Rjz;aR_W!OboqAKPaPWRg3(Kb4Vd+I{Iu*l)teMP zba=j#3RZeLGr z&No3zU&&Q(G7hzrvX?(e*|UiIPuRSj_8TXt{CQG5tGTi!J7mAbx99ULdl$XoJQi%X z-216@xb>cr`;ihsa;c?ztm{i|P731M@;oobT%%~$wOff?r(d{j;t6Lul-1YJ$ZY=Q zXjR$uz$oQSeY|h)uq}SJuX&#Lto{FpZ*uFYovL-!57z#(1lQb1~O?scQmj z1upixEm@U*(dW`Jo%cdL?k8SOYmz%J7b;dS`P;B_xyONsf~&T*uQx0G2%A}C&{3T1 z(q-&osdB0^Adtz^H*L+X_gCNblO zID4~w-vUc4-nMSAw)cazfXwp+_xk+ix0Rx1Dc zyIsvLudQsqa~Nk`mAZRN_S&wQ%=2Hhgze<7>ie)F^n<}EZTTW^!AleVTe9t)Q}kYT z)%N1aQ`{zK>u8i4{ZL%gu=V1~6|?@>xE_=}%vIm^XjXwESMnaiFsY*}1+y|fYu;J$ zxWkhFc(M>vUXwwcu+-u53x`$bzuAAS)bG`iU|EJOON+j8$*o_xT63=WpA9>I{!Bc1 zi~rJmxtX_qnyi{`|alD zWdHku^6MwN9m_C1g5|K7X5x8<|#-nU=M z_y2nQ_3b^CeMP%23Eo>6Gh@pk>!}7_zooS2td(1yyzJcG2G6;n&+T7vKboOA@2hTm z_5ad+JKmVj+xb|a_~YFTOT*UpDL*p})=K`aaY|dDw}ewK=$E7J z@ulp!MlTj$W?p$@tLe)07g-6%x8yB){>qzjga`-r}#e%Da^N%}n*}gLFi*Zu8G|ym|e|jMQn&X6Ee5&o@auemms= zN3kB)*0(|d&rXC?I-d*Kvy)Z0z`nS)%x8v}8)9NzUtG(}c`Pj-HFjSwvX40w+@0{mNIv$#+ZqVv3>y`DX zc=B$oOM<1(C9|RgYrgul?&g?hn72~@N#Fh{&kx^vt+Pj)zpruLpE{F2^XAJTb~f!{Prf`~GeDiR{x9@2tAP$QSx)LvjX3Tdkwur`oQ? zrxO(ALVKJA_f+3&fzNLn=2b7R zt@TyE7yo79Wvhj^W%obdW%qZF_51R6h5N6sJQj|ho;TkpH6!nB`2B^)S9}AYJiI#L78-6S0oVj0|)@21H-+wt*ZmpQ$v}j(Q8LS02*yofU2$wfL zs@m`UnRV*P?Sn~saEnrN}K?$UPa1_Sq) zsr{eZ9&!F)TQ^Vn?GFF<-+lNC+g7SQH_(q@OMm5V*&}Q zADFH<*1vS#Z!)dv|GByY5gqQ=bW#S-!VL# z#VnwiuPmN;NcfU_-cNPa3qOsy_}0Z)%csk_^Q;K@y=zI&rImSg54Ad_)?9A5r1iXD zs$-XX?+td_m%BMGt#vbCj(Z=!r>6eanT71TcV3=Unf&*fM)ZYMul8%zi>mbou=;Do z8(vy}TkYGwH-E3(IZ!ZP)_=x(p{gx5zhbYK#`Lc^xcB@wzqO~tZ^(F*Z# z`D|w;Klic?|B`5qkk8FW3L?&1Z9Q)k>we7mYT$Zi{Ymk^ubRBeI6UV_^3w9>GErU! zZ`QHg-?{!reD&(wnA5Baj9QB~z6vVOo`1_)HorlQ+dX#ITR)ydkA;k{Z=B+NjHlFS z_m$Jn7BGql%x(L|#T?PIHd$$-^yMvHcfX1qK9O%HRjQ-z|HNx0x50ygZ;}(It?~)CMGV*O#mwBsx))3ukx8z3TVh;7hU(rji z3Q9`3wkP{NoH6_9R@tSK((cNXe~mU(ik8nQ=a+l-w`6z3^7T^Z8EtkfX$)C#ZtuPR z$?F(roim-6edpMOZ7k7`K7`J_XaEP+=HyRr zmzwACvI_6+y0!e$hL~Sr-+vrD;IB0CFQZ$6qUo1u60S>lR_AI-FWGWYlzEGqS5fkp zTfGx47yniAl5k4+d?#-1gbvm4R>O-M#6v1YnPuIMANzBZL+e}r`Q3*({U(K<6Y;+KNz|9eLU=b`rR7EML}9vN+ZuDoV` zS52_RlzZ=``2UIvZe6nI7uQ#pmp3x!*k3E3n-k~rW$R=jt{I^-7br)awwyXA@lx$6#mbMGr`*3J*KxSEw{bIuYgJsA zuzc0`^23D}tsE}KC8i8l)*MTfzxcB2zUsPnUFx#$`ab{v_i^=)w|^fttp5Jx+GX+U z#{Zr~+xM^QdAX?DJjoTo3p*DX#zsoK|ba(?(dv8UnZj>r6n zKgYMu+3iV@R9w;i1$wU)vrD#Vwm(d?aXR&4;*57DA6=T|7aLxU?AdkIQ{W+=kQ>X- z8*ii-&vHtIvdkzZ<-uf8b-&~wfpU5UxZ%@ z?n*piu9E2@TG1puA!hrj4~O3e`n|uOxJ7I+*MateMXT>rZ3zsHTq1Fa!|Y6L$&Jqy zC-S)7{jp&2D}8l*lH#tn6Z)*;>J}Jnx<3EmxxIUH`_|6to65H3j;7tQ)4|5~&PLhs zmqeKEzohfL!s4qjmknWqTgCO1?3)45z-w9Z>&(AxgyNJbOjmQ43C)O^%dLL|A zE4))}m;8rV<#G$vs-5dTR9{N=mNl00O?&hy!hikOGbJ(m3PZ|TbGH1CZGBO&>Qr&l zM&GRCPm*7^=bhai?EC6iZ2oMek3xIO#N2x4w=F&V?%dj+(U}eBH^wJjb1rtx|9atH zrc(V^>7Ta+=c}vVzjs*pp4*Pg`Ta*i{>@+YSWdQ5?l;H#%JAgs%5cFw%g#mrSo`=+ zD%0|W_V3@fw%)(%@b2%yMHaV;rM^_$X_b;`+xxulr=o#im6YyB89tZVwz8`R96Pqg zm#6%>{C=Ns{QdYN)xZ7(9qXw7e0RRiP0v=LIR}#WtA#dHz3<&+TyyNgrU$&w*YNc6 zab_DQnOELDnEZF0#K*#t=K0%&9hVjtpF6;~QK{j<7HP-l-L7)7B4sjHBR@Z!agH}K z+V{t#onJJZEk4a_{_ec8c*Fg>?Cu@+?uT zT@q7zaH03Y$=4Vc>&wc|d*8RgT5h5o({j0wmB)L!m~yk?^j05*s5epxxjPc%WK2#@fI#He6Uyg|JU7e%YXH(&S*IP`>yM8 zDcO~s$tK$})ShxLca~Q!eUq_en)HDyjE`^6tYTSv?)k6Sr|Jbidfpk7NWFU=+7K49 zy+H1!Y-O-^%IWEUGXLd$2+rHj;=cXL%c}ls2k$vNtM9n|%lLTHG4rc>otJkf^qpc} z8`k4^)o;qo$tX_xSPWwY*&d6S>hBaUR3xR)iXW+&9FeKuQr+s@E^<-0h4 z&J`?uvh0-A?CvPb-mtfu_@tGpX1c%mY*tb8YRePT3*xt%oeQqtEL}W%nfEI zGM`*EbhcZ+bNRkYuY>fT{LC~{kp0!T`_%c`W!I+elsmumv{%1H!rEBBmER89FAd*P z7wxO8^zYMd`@6@U+1ARvEdSpAT-`kemnYm@B`t@_WTBJ4>Crh+G zS}Qg0=MTDOXp5!9G1B@JS5fg6_uiHpK-t2TJVBrwqRNK?87}9ld_jF>n)dCy6nu4pHbVj zX0Gs?dmyI1)os$$mUX+o8A+H3oi4n-t;6$5qeNqi;R;__U~T6qU%;GZn5NRh>V1+^ZSaNBF@+yS?j)k zt_it4^XuPzldt_d?l-^juzu5<2U+TDI!TkHPrQqXQg4~OY1ek=k7l3e?$3TbqiVzD z$$mYyodQc<#4$Y*Q8aa$Tff|{Eapdb+g_paT_xc&LQL(pmb~JX4XM(3y3@z}{`}8h z;_LM9?#z?l+>!lvu_ll0-uRx=nk$)>CvjzVZOr@BJbU})rx67g72n*qUVHS_Z}aBw zF4ETPe#zF$=G(HlU6rYQ^n2CEthbvk%38C}dh6$4am@dm$uYN*KU(wee)^;GYl`um zzi?zyHP4PuMQG_LsI! zW^q6FlIiSHqwP!$VWnZ=n(N)Ivt}3U`Pt*3eBU|4HoVfs+*at;!5iOQSQgLu5-Piw zvqD8{WkqO+g2Zi^M{3NL!r|1{ZE@#RvadDnpc==zo>xAB5I=9MIlU?U|qd zkhk=P@V8pWuI>Fh9zXuDTW#KBty=-leU50)E4aL5ox!5o_Zu3|RZY=)ReQwXdCaNu zD~rE~FsdJ4etB_ixMzX8#QHvt)%<%(uU(6gTk_QVv374us*7snzSHOGTvTE?R;_Ke z|H@FicXe?@<)4*}!fhw4*X?rl-+HkBpoQh7t0g)wEdtma)pxV{xw$k=^Ow$@Ql}hq zEpv<9Q>**VW=WG9PA}Y&k#s`JP19Y>Bm(#99C~?f>Ajrae0!g7lKx|NHT}@{{d?};|9*4X{D04Wf4u#>dlAp2 zHRt54qUTw7)%QEwE&1o8x^4MByYfC;_g8yYJ)X*Uckc6FwQFYjEq*bl-s=6lS7E1n z&rQ8qbjWhY;d9nMm0t8*t$OgIc;(8i?{9Y+d@s7Z>00==wlaOGQ=dHirrS)Z)9P%I z3wqCerN}o}@(Od0lgX@=4#KamY+`l3*J|@#Xr1?mjDX+T2lQgBfIa?z=4v zvVGm_dvE3~6DUsiobXUEj(g#}%(ohHTX_G~%@yHZcVdocvi?c?(iMCCVjB-_zIQJ} z)h}t{dA-PUn`HjKlt@g8n7{3Iruvg=`Q5hhx$kXpoBnL5lFMzEU+#U#hPN(! zEy@`pLFx;3aAj#9>zJakZRWf}&ybL5pLyzctX^ZMtR3X}yY(@b z=_$^F3>J}xX?qJ!eXV9J^ijX&xAj1rUw7BL?xjKNcmJshnirm)aQ4sBJ2Q?qEUL4A zROrU{$?s6&j`lqtYtk!{B~!L9$^5%^)(PDWOzIKu5}wRCH}l&I<>i;HHz_%)?=4ZTTvNXB z*HN)|U-K?AxW-BdK4s9^(bDEMTl~0Ll*5!)n_Y$N1a@kD{}%hY{A2JViRkHkwy(G= zOJ{nh^B(X$eLd65S5InU$?>jZylYh4a>W9Ey1a0!UBs6suYAXbX;OE5O*p%(%vLYy z>036+tKZlflK10c`HSjuzC|%CsXtpZyYe{eugv6m!0u%HYTdSV3xCavyLS96Q_0jM5srSEs zEj@iK@u{r%pVNzUd$`SBHf;N~M<&SbiSXA2dO61$dMej7gTPE9FuJmgLL%glgj`=kUlO5#lZ(m^*_I>7u(jq_EW4?0PJLH*P z6nwM3TxD{9!lr$4JH!8f3G=mD=J~orMMrmOR`9%=*Vh@ppa1Wm{n79Hetb1Qa=N-I z`=$NgSMeP=mvZZ4cezxvN!iZ~_TRHax^&`c^MW^%W?Z_PzO`d8%yS0zPT;`#lif-vM7=H-(9ZTOq2}Ys`_Qtkx7{hyLQICpXl7$yyLEL zb!1>>L#XC-Y~QEo#p~X`Z0oK$nLjRW zS+HrXaC=MzN8GCQ#XWAX!w)9#dA*7`GW$Z{SIPS~{q9!oI3?0jFzeLbE*_33nb6~{ zb~D-ksE5}{mabb7uyk`{nacAO%2rQTT1p<>7O{NmUD3B0t3!mGFLM8wCm|E|{>a{S z=WMk?PrupwWbVv++*iDRt91N2BABnax3GP_aJ+mJkF@ZWzv1WGY_GoGtm?MxY4;oz zQSrPz)xNHOH+=swjcxDYR#{d<&1)ROP7C5Jb1U-PxUbGl2!k{tgt`OE;Zlvzwo^FEo_gaoIj`Y{(mU`o^Sto z%fGwd|9@-t+<)cij(sunx9@2VdDkaz^ZK?{TkZL&=ld@n+T3H1E}J3oweRb``>x9- zy7WKgsNi_+(qd`*pylx0vLEv06I1z$-`Son6lYz0Rkq}v?Guah?{-`;nziil1h*~E zt^R$8Ea$$*TJG}U+_ob-cHZ1`<;O+UX;#ZFr7-l_g&f|f^`-UygPxAasPEqdPoI$w zT5h$sgj+JhG4oWqsGX~9)|Jq+y`}w4bECVyG!&dloq9In#Ji}4(yOm(N*?40>Dl?M zm3?i?)VEPTiY?E%wahyc`_fXPbQSxFm=pV7t$uO!pvEQd7f&aCFS^z^EkrzVad?rR z;@^qkRx7YpB+g%$UIecV| zTsP~_x}AZuFI;^p8ln5v!fma^4jyf}<0osDZD4-ikXe3j$C`IvKm4$~r1SFH&*0SE z=Q1VS`^sn6Kl#7>%Z~g~mOrbm@8nV07kar(Cv2v*(zX}-W*u(&9C@;5hI{$Emsj5} zzEY<2?L_j4u&d5n<=^dCW@G!&;F;pHlDGpezP`_BH`;WX|I>Oa)nwc2g$;X>=Evpk zsogv6gH2w{mx~XJugYFgd>|&hcBWM0y;{!W9p{U~r|#_emz?eV{K)6KF?;1>jQ?K! z{{J&~%wEvC^Z5UN&o5ffO1` zQzXz+PIko}k=NF#eA^Ew$ZtJj{lLKaZjZxqnG2Qfzt8Vn?(IDF;o_@~vgHwVS=Y5D zbMJTFp7#318SC9ODYbk{YE8dat@bIH7#0|l<9vLgsZNafjZ-h1t=?K3efFa@_QnFm z629xNCbRTiDV#cy(S45mLQ9v4=bMhck}G4do+1 zt96wycl(x4hE2y?+%9=`Y;+Vj`^q|T!nRfNR*#mfe7Rte-BUkv9`;|`W%{yfc>DkI z9qW6XlN^0~zS`?eRhvGY`Tf6TUQ$HuExl(qw=Cam+vj?uw7@HTO48&`tHoLWPR*V( zyYyIC+`&~xo)_|OpJDlOPdUd4Yipg@Hur+lGfutKE5Gko^_Xw}Wfd#oW$b*~XL5Ia zVc`7MvHx!2iKw45zui5V9)Iu0lKL{8Qddd7EovqXTT1;3Tew(P-SGaCkbY>vWaU!v zW}lsRig&fw&7Zu_wNlIL)r&99QP19gp7%BQ^t^oe!#{oII>m<05V$+(vMVQl@a;sc zJvV>+iuhPQza~CV@b#Z5lRs)%eNa{Yy~_LX^&fBkTHne^OXGEGTDIiVutQpg^#Bk zimdRy$zdhvo>FsS_Z*#)c{>hP*|ksB)8^to=WIN$w{*^fh7S4D4<{K;Yi63*`l_Nv zrcdCg;QWohSoSQa`MUhm;TP)!OY>5$x-!?Tj^y_0)= z{=M*7?74#+>x^DBl+>-WIlS1(|2UtL(u~JXZl#;QTDf?)^~_7R4q2?VYsuEG-Xi*h zKQnBr>YMldGXz6pzm>`gp5M5A|K(h{Q#;daSJkj(^w$R8y#Mj`Vuh=kODjTpB}-rL zS+rc_g~s`PXOoX_;q7~wnz|vQHRSQRyJD zwVLyGTk`BU+!bUlq|s-nw)fn={AlwtD`YP3j6S~H{R*S_`2~FqMH0y_jjPu<%>NVT z^uGDhs!xs24p+R`bM?9D(~XLyi}da$9IUF1*)s3qr#sR7ac8B}&w57BsWh55Y5rfH z->*&QUkiJcbHV0S#RnV3+G89AcOBFf76x0pZ@-~&to-J$9rHe}-~W5Eu+hEC=@aUH z?q2`s`ToCoE-pQ8+-Em!v|In}-p}>_u)_BfQ*ey`{&U6p-L^{R+sdab&*};H-F1Gxp7@^?=XRob z!6KIBw^c6~y^bvYylb()tf7|jD?iiMI@#AWEVkeC)MehWSU7jGOXr%E_WT8@CChI* z*jfHER66{wO1pZ)BelKvwjM|{CBR? z7G0mQTS`c4`);1uXQKFyZT!Q;>HfA`_)5k3MUV0t@4xHq`8Cyb^VNKZg~z84E@}$m(JS!xwBLueCsOi9csKkq|WX?_~n>v-CUm&^Y-oOpT_=M zFOYe<;Jf%|U(Vh7ozj-M)PC-{mhe7~yVEV!#0pxSV``5J;!s_*qK(7#NsP7Gx|$BH z1xwaOG-vU)1s=0``1$JQi}N}*Uz|2Q^1ZBi)c2L|f6e*n_v2cO$mNorOEX=TN3DPU zC;B+oe94P1R<17Jdv5Y(j&j+izDE1_RSfqwC;eEt@#f;|e#yeKxjfsWx72O)uTlT| z>fHV_5|8zk$A4X2X0-In-!sQGmd~G6_D4&7^(0%q^YPm&7qy0e`Be3vBeP@6lA5s9k#vhmoS>Jtj)tzEn4LD<8nM;v>1TxrviucFtEXb{S;8#=}*RNqWue5Rh`bD2l3Qu?a+B>Z*M?M}I8%b9~qHOQqf3$9!bfCipLKKInDQ^-60-#N6uAGs|M;crIRjW#fhS zD~f9ark~n(;mY3sTEU8kOLIbJzq=Sd;qfZLQeF4Tz~3vSHhf|&2rV*swo{?*`Nu!< z7BAfHDc zu8V_Jdas1ea6G!ld&2BIlOn0d?dc{jd9thT&wKrI{Q<#SdezSNR@9q%}uNe@~k4@@u=)juhHiK4{yzKX~Kx za*G!gA5KWbW?z`-x1(as{A=r_)nDxRR-@j0zpp>veqZ1F+MjiEovNG8H|p=Zew`Or_~Tr;N4Td;ymQOPtDbV3_vE?VEU_-Ww^0Aw{k{E@ z>n(P#X1>Jx-fr@XjZ4a3tm3`DLNfUMG+{wDrOz7jK5EOS-M-F}v3TG5-S=~N1J5o0 zD$=(tyid6CUbKj0R;kB4A8pqfy*p1=u^taQ#v%9CLblo>YvS?5Z*lz^(J{H_me(cJ zzUEtAWW;x}dDY~eTU#lAYV+Z>G8rd#{|Lyxt63hpb7P-H=p6pH z?hmzZ_^~QwSRM@aur`g8++|T{H>J|o@2Pggw#DxLv%fX6U)gx?!HLTgKCam4@;O^3 z{9e;C2Os@zGyaS7KmTk>eDM9KnfRQJYbHMuU%UQ(wPK6h_MPUjMK7h;Y}P$>e7{au zPi76rnMdg|hSAB#3N>wa$k*=Lw|~;|eAT^$?e`6g9$t7@9-o#pox$m{{>gSl*^8b1 zDmHHzB$czGpYFe1?^K#aplc2aa|gyPLVRa>{orT}`_BB z+rD4?oGf41*2n$o)#SICFU?;CzkJpr?4!8rPDy#x%tN!+JUDVV{}gLIqMkO@kgzT$0e+viphTuhu2*yw?opuKfM|`F8H_eGmEUrbsK99{Cw~(I?$NV6t=#lhd)OiZ@-bM<`&KSPHXbcUQcC(;)8E$12uLW zcx6<#?YoK8tH0$jFKZrtDAdVWzr|&N8%r)zkle+U9Z9a2l&zBwhS_KZ@4oa->0{Ng z6$ejdo2v7E3KdaP>$m+B=l4DEdw|{JRUQ#JYylCC(py$??pb{N%ERE)%a#A%G!@U5 zO_$}LnO=EC{-wiQSqDj(&g~amgPWf&U0$+dis zo4+l;(bCTgA90#DuAF>uvC_*43g#uRO8z*WzOwOx^|2}MUw)DJmh)|XTU^G+BtOC9 z_fl*7SJjK?gx4VF--`Wvx55^_p0l!& z@<(R)%B=q8J45p13-+roXH0Oj%`)SwEUMo3S*iEht2N&XFMYgjw$rn(R71}}{KV?2 z?|h~4<}EhXPv^hi9dhzf#q?b3dsDYn?frH7x0ZYu))zpc2a{Qb-COue^7t@p1i zG=DzvT@P!0{Mt1d9iP}PCQ2rHElKoR^jO5`@V$ttCRaDzGcz`;L_9b9lz84EuVTZC z9Baw!7RwDmpTgw#^me_|Vra?x+Tn2}QC9xn&FX~{JDyow5e@e;No$kup85LY)2~w& zXV)%!A=&YyJL23`xA3YjTDMl*T^*%=`|-#5$~s2+Z59Qr@47a`{Jo@cy2oHf+o7vJ z!sbjW`;*1;TIRKNpOfnprKb8**Q(lk-M8s4?wxyTTTJn~dp9F0TlSq|e0#@iQqbZ8 zwMw=JlgqEjE9S4PcjhjN6@II`&;J!CbA{%f%u0sB*~}NW9@{?m-j2iTwLduT`>b(t zugH~RgEyJ|_w~vqI{#1e6Z&=I#Ccif6|QsHBPVb7XIOtH_w!PN=R$r{4xPszO(KDCfMMD)De{Q$zojOJ`edE#5mX{C&jzOqrSPlXo@lwz|1f(DaNu z({ZzfEb7-C?|ku>o&ApIkIH(Ff5v-DpNjGQ&Og!3XvO~a@EZs9S9^6|o7;AGQc-uKQsXV!mwwt#2H;rHCmCiiT_CjT^cldbM3D*2M?>iqKK zyvvG`J^zF=zr=ifTyef5@Z2#DH&Lebg1Z74veiG?eQgZ?Jb5>h`k6P=ryadpdqnyv z{}w|x`QTkICIxT5@a3rU{qi+iKJmyKPTl!;hJ#J_p~HXbS9jqZxSP+}&zw#8WyN#ez3QJe z{p@l|&Ps?GTK5Yr<&^PrabxQ1a6Qle;i$v@O}}10uD*V8{^ar(SG3ieTz2nU^i`sS z<(sems<&sSdWUV9@@Sp9t(HjXN9#h9sF_>7bMHUoJz?$5Qx9%-noERk&1}1>UU&a> zVeaw54i9^a-*UR_1t&ec)IL~cwevl)@;~+cXPbMG+f?4y$IqPQaOm0p+BVZPhIjLd z&O7VbLh4pMX0F|})@@5=QNep8%TqU~PBaSOt^MP2Nk({EaCBxEZa;+vxr#6~|&Fok@fh(pXNc+Z>!V)W` zEd|RjnQg1u{=%e_MS9|Ex!q3_HgXuB%(iw^wh*eQZ@>9zm8Hu*-hBIMllGof)aIY# zUm8DuOET{kyJxBjIzRU+8H)zTg?-$Xa8=n#*Qju+@Ab{?eJ;8t|LnirTl;dG>`I~2 zbF!TSzcVqj&0^cdth8aFvdp%_eC_fw-}1ln7sU50&h$w(xUeH8rfb!*bBXIU?LCx_ zOK7gGJ>dUuoBiC+Z?|5XvujDv$`CJSP0ofb6=#xd#XDwd-*fnRu&Dh)nquqnUlu3X z@32ca&+@u7pxPi>|bz@$!c5a+XsR30>rE@9G59ueE;+H_xFC5{8|;%I7_qs&f>{z9o2bzXZ@Lz zA+_-1+@MRZo_Xci1YE7S?#Fg*!RK$QGea5zmS5kuW_iQbX~vchF^U@CGV@5QU2?B zag%MshT7#HW`p+ALJ4burhFFp9U99YsA#NFcH90@#Hzzo z>R@aASEtLfGy*n7w+H^@>0G~Q$vuaCJsn$WAFA|*`F20Q^MB1`ze_HW;k!28JhV6B zVo}wS%r*I;vHE(;1Ixy}7yEXe zwTd%SdKGc|Ol;hQm8W*zI~~5cW9s`SZ?Eq8o7Bx8cc<{?#R;z@dGwuFTdm~NVLZ1?t9>c-+i1B_J?dacW--fzk1#Y?WeZ$MDHI; z4gS6EoYfVkXF>{}q^_2KQ?j+O%x8 zW!3*@*W6euHD=c``yZQ8G>#70>0ipJ4sOw>~^KUrznRzRSP4 zUq3NS5TX2uFCuQ#pkEhxpO~k?A@%)Ds)mkPi;o(okr_zAH=o^ zWxIA?(QThR-C%#?v_PBWzaFbI7F+G}xBU{dXNlXDkL?G=uI#9dx%_c`w%=2;O!3=J zd(Q<#eSf1Z;Pb;^)>GXDSC)bnIy$UrEU7#h+uZ$#?Z}3nnRepwObWBsU0>L3|N6A>`Y4F?@=`|T;_t6_ zy_U8spV#9Y{dVi!mwQy_>Xr5cOnw}CZt>CuQO~D$!r&uRl zG+}x_=ktOpw`RplY)$VT*}E+{vHVk$_t)kBK5JH{{bi^L`seX=p4n}EcE_pf)-US) zdA(@Q6vLM3%ggSaJ>g$(zrX$Fs(g)|e#Krj@gB26e#sx!-FfbJ@Uus1@BZBmUdnr1 z^XGS?iGAJSU&P*YvsA3(&Z_@-)cV2qo$dF3o|}K7-f(XxZharbG-3WiX4l=BgF&Z$286_>M(E+G}C?eVRaP`qaKR{ zBZuL^L%aJ}SnZ8CI*zPje{oCf0Q(Qu2PsYV&E;HP`;Uf5FPOIPag#jr0j>{GjAj{6 z1>c>O5n5hx(TzclSNpB%%94vR!KGKPNN#*-c42wV9_7=_9*)L6Hx`I8a0O@E-uWGQ z-%`L`L9^+e{4M)0J8YINWO!F%)qeEo_ga(MF80-*(w}+SIoZuu+P@=u6Z4h+tMzi; zY3>f!zHb!xw6@aCrJR)ql==R8zd!oe0n{;faY(rajdQ zcG@nfakRF1w5{f#;R%jcr_KLdHWW%tQ06Yp@3?bpVcHbIs`o#SNwlo|KE;b|YS9+s zL(VU3duQI*(_pr6`+RoRr#l|l-hMAwb;S7fzUFcszID6JSKeB-Ya{Ef`R;`g`InLEqJp4)WqZQLOQpw`=N8MEQUFV8(o~{0CyuIrDCJX*c&t+D=UnW}W+VNL>r9-+$oSj+f z7r9&2*&;74y}iR5V)WPIa_G;)E4xp;I9{anAuaj&wn|%NmYgq}lpoAweZO=Sv(3|2 zd3Im_aoY(e@32_%AZ*rxvZ<% zX8T&Mq_5Foc%`)e;=N|SuZNrsmC_|&OWX?G&!n<7R&jal>vRvhx%+P3vso2#d%3k_eI>7+dy|{zy!hYI$v%sNzaGmwuT!Vx@SE+h zH2a?rRZWrh2bZ2+?zF2tVB$D+r{2N`FMW2;epta3Wp%-|AR#BUepi_>cc=aXj`O;9 zOR~D&Ppg{zDA3ev^-b+&Rlfa!T2pyG-?W{$LFB0QDZjbipKU&Ou`xz@N6+xCvz~Ii z-ty{ukuRwSHeXzDtb3n5V?ayi%tuAzvnOao<1rNH^;%u zv>|BTt}pFNvQ_)km^bZq{qM%R>dZ&c3CnZWDcsT2_`fHAmtq;)-J9MbXY3kVWH%Hm z1pIupxAC;wmoIl4ZwTiu-zIxpqSlagevHEGgZ)R}EG>NaCM$pEX4&0q-=E^IKd<^$ z@?GwNDL>!6__^LMXo?*xdwJv%e-!SR7ruUJruk*>7585*Rlc{iPcr0yQnJX3 zOM8q}{r* zi^&fSq_j0;4f{j(EJ?X=_Gog{OsiYX><=b?TEJ|nwcBI0gN*pO(w@Y9Tus^n3m88Y zt+m!&z3&nS!@g%1xAbuHA3Wv#B;YC6m+y9N>kr1<+o-kvoHoPf4OYJv+25M*RdoHn zhkt$h7s(2KEG(F0l{x?Mil)Y>FnRf{Ip6O|nLgWO^KW6Dmc4{=_5MKal>2hWW(sF{ zemI(XIz55l2_OEd8}60b7|SzmiISiEDYOu&G&S$L*e#w zTkn5;>}bv57d_kP;nOmyK)tKKz?WZe+RqI#-^IWdj*3I(2XsO2FI@e;!h8_|1&bcvgvTD!S$E)7Gi`MQ;zSjKHv-OSM zcGu!XJ%KfP4XjVoTJCReH)<*szOdoPI)@t^o#v~~GJHs7HsrK>b)&gl%lQ&}_+C9$ zzPBD{%=oxgJpX9Zciy^v%lAd=Z@Ifqm{Jz?@%0biwLy9t-X+PY);tllRh#;JQTVCT z!9T){4)2;So^o;Sne>c#YaSo4UM;+}x6*K3Rm5&h->NBVDi+P^yXwmQ^x=e=o{Rb> zlm?mpZfy8+uxQGhMHd?Cu2x@6a^l~2_ro(rdo#I(t2s%x=T6$&TP}Oy{vNJ3!Y2P~ ze;r^I+4K1x@7hz=xg}ABkB(#>oM`%>Nml%UNJ>i7+zmE5>*PYs5AXjoyZ)Q#oC^MY z%Rjfw_sP%vKFcp&N&aqfcSFmm3U*Bt#a z_ms57YGvj}%o5JC7uvD(lo-x?;J@aNeHhpF@Qobrz6S1H*L~S%IrsY?w{K~c=meaX zzoM^u{^mbEn{R)NSY*y~ezSEyv2kPIryq%TwSS&Cn$I|IE3aQ_gI(a4mtO5|ti=0I;M8r6+Tzo1>MuQeYY`xOx$OzFW#zim-F$o+H!kl@TQ6R3 z<#%bb{^I+M>@ypurtHe7t>>73_w>cL?5|G;t?!7ni?QFFzWOY~0^g?wx_^6C%B_vP z-!%P|YYF@9lyB_pe!E4V{p#MvnLZ;UeNXxRWRH!nw3i)Sv2@rM)VFxvZbUv(NuqXm)fH z^QXS}pU3#k=Iv=eum0yB|9{UNTg4sa6X#zy{_=0b?Oi?BpYIPBn9~=~pyS<~B)4$h zr|Bo^ujOwqchA`Wh)r}UM{U>s<#plxkz3tOzDch5A}2QK(B79fzh_Lm)ZA`k%4^iS zciQgtK@CyQv`zFHQlwj7Wwm_})9uD_`yWH8{k1 zZ}83CFP;b{3U6AKcqw_~3ZYqNes(%+%)Du(X1@B&n&iaT#V@x8=iPksAl_a3UR1^9 z26^da+KlE2(+oswb?nPuzTeQur&J-;WZXZMRsb|sVM%hg0C)vs7^0{nhqKKVxdSr2NE>g^i_ms~O7s zduJrH%el^YZTq6?N$l~erns;FoNMPb@2+2N zLPh+K-ojj$DaYl{7W`}Mw~N}8^Wh6uRo2`!taU|#H+A=IsfhCOxW&O95$b0Y!T;*q zgfD+uSSNhyeEy*+sczlwfO1y3gq6PhuRh<+_~5qiPZ1|e=9d?{^{%f=zuOgXpxx+w z>Px$y%PV#s%I04j(|FMHfpE6UvE4C6bFTb!oqgg^MCH`f*;Af(Og*k8^p~kTu}@(~ zxhPMJG5AB-oebf>!mNYOwUn%E%;tQ9mrb1hRd6z-i zBMGOefAiE zmg~XFQ|f(Z-xbwf+AEmpP;h-^?EVMB$xpYY7(JQ$$@6x@<64~+>fYZ>Y*clh8~)uU zKCOLQ+4`t!p?k9<+izy^PZU1UcuM2Zt4@(q-j^!x30!WhU(fx|?=w?@rHbGCy?ax) z)G+1$TJ!wz-+t(^i-Zt-6|H(J6x9>_@y?p&s z*M=2)PEF|hDYQhXz@k#1M_n#w=c@(o@?r~u;{vw(9a*KjYEN!#-c-%F=o9_Q4 znDnx?+-}wSZ5?ra9~}FiT3GJ-@;ITZH0k#mW$|Jg)+>*0OyP3k{9DJPaVjeLo0tD? z?zi>_1D_bCKAyCzF;7x^clol9vHK_JKfSxWM*Dz3uJL1jR+G08H#90G1vl@zn|&qZ z&V#$X4}w|t{%~P#5bv><`dh&#`OR+DvzZq4!F^JH)#A+Ge_Xw9_21}{FA|1Dk&6$1 zmOaG$exi}P*nz(at@&zuG7qe0pHBBWrZ_=*+^mAN(<@NHVk8JIqOWzGNO-*--+O@g69{ z*SxJ-fyMRr#f7GKhQ?fT?OpDp_NQX0Z&#SD12ga0eF3XVFBG^RyMMp`$G_?K@7~+n zeqK4o@=^V-qxF&!PhYk^PPVq4nRcS!gMalE+0W~2?*3k;9Ly%}QG1$U{@2eeKG}~v z&VNv4jhz(MzgVC^Piflr%NqPPtnUlXOEhe2{Cz6y-iLj&9^Bp9C)BejLGHCApOM-R z(^J8jmloD;e?4#J{AS}Phh#U$NxAK~t|D#{<6ruqxBKUp3yHIKW~|GVbd)tc)PMJh z^>>z#3Eb!ZSU7HVwv~@~bbIWvjJw1EV!+X_l{Dt2*+gY>;7fwjKf9PrV?^WWzEV^84|LimuJMOgP z@<-$3dw*|yZa$M>6UHC>;;_4R^ykpn<4Zqn-nuS2=fTCJHhbh3mi{)J$WXB0_SEHH zHq6reHB(WN<#^!zEk!qtui9MDR?YeF&*-Y; zUA5h-eyzDYNNW=eH|$f)8uV*H=E~PZfCkXHCtP{X6~^{*rU7J#EPRt#=UU7dcvtN*d!x>}`0CsRyLa#k+7 z^|H@S_(tQ$yJ6=7b}R6|znLWSr!oHHVb*~##vX?Y0`0c(~Zr>@(`K#}5 z?4NTb^=YVxvRl{J$?LSQXa(sXkum?=CHR@+#KFY^6SseolZ*e_|H6Euvh0@&(@(dp zFkQ{sHT8Pjsn1jWY#9IUI5?B7MC|(88z)yJ>$1P|eSI%e`N(Yl&&PiU{uGHYPdcx@ z;J7iDkIt-F%Ok(%O@7R;eEr$QjoU7!m??DH9J>)vl;)mf_BZRR)9K$g1)|cW?Zc#b z7>@kpV2EGS*|7U)L}q&B8)c=Ji*poWUtf0qv6Erbk&8>&T$-k@KF7Ub&B=hzMKYiC zZCoG-zi^T4eeJ-G)oI-YK~+Q|~>0f_u-Rb+Rir zX}%Bo6!~^TW#crT6;l^lg}$Bpuwn7m{W&~d+jH(`Rb1X0An5yZ`aLhfn>`jyvb&yK z?~OgS>}Q|i>gnNHEv5W~d=|1ZD~&SC zq=M`WE1AqoPxhN=em}{npB{8``MjK^#`;wf?eBBAbv%V4zAUy4brYR*C|#~@zg~FV z>NR=C#am8fU->;br{vy)nbVim1~vNVP5iR-kw5GC^`F(=?rth&*|q!P`deBmx*0DG z7!^A0K3Dtl&*kZ zQ&wD>cG$EvtL}S{W8B6dqm0Vhhu41dtz~6kQx;pG7?sAt$R%SN@!-&|ZkF>RTeK4l zCOnJE`Z@2Vo7dkoADPq+8zZ+$PPc%y%J(F!EE)CP8x5>>uKCVnwkSupzvjtiLE#0z zZ*1BBYVkVF`3t{wRKJUL{7|-CJ961GUv5=Z|Gw|1yen2a+!HzA{g~^tvc{sPKRuqU zl$mlkST5P??#eHU{!O07{tb$|dbkZ_8`ks*=Jj_&Esm9Nn| zpEog>Ac7~So|J!E9P>b7e&}2__nNi&?BCta)GcICxHZ+7>)Y{t z50)1#`6;xcG{E8h#(9Ye)2p?X9u2)&;U;F$F2gwGO>Nfp4#)2i??pXY)`i|$Xm9T| z_siU-t1Ff>nXc-Wl*v>0;`~c6J4DC-?PHeWaQ^*M=Iov>{`HrD+=Tx-KeeVDe%3Vi z%HDHo`(yKBPV+AA-y8jW*9zu`eD}*N*7!xSz4ER*Kga%rl98EAM!@=Hrfo}B+@7(a z;_F}KD(+8v^EJAU9zJ=$|5{PbcH#QpJ)(QARJmwt->!bEJm=)oQ`PLROm)+j|4E5{ z*Z5#(zuP&_?Z@|Sf4AxK&&H4Je`d%z-7#48nepqj;tNW*iyO)%H8(9bw(F~Fc~Tq0 z)}O~5d1H6g?;nrm_ZX~wf4S-Rv-bVnpt-f&no7{z+H3v&JCEhf??1PJx%gha)1{ti zVwPWY1?=SeJJc3hMXj3CJa21*{P$^0zof4v$4g$WN?q-~KRsZf`L{_u8LIE9+{`)F z{COA}vW4G!wOOv43s04oltP=#^}^ma$0a6T33@BmdC4jxf=MPgf45cA#8h`?QLS*> zG=tFl8FhgSA-3iMc^?_$f>yC_zPO*UCRR>Sd2t5oT+NcIxt`8qFT0;RSEzoO-sF(O58beZ}>c z6KB1;xMH`?$Giuh)#g8qygnnerSi^7oz=F^dlTdqmiA;B)X9cgw>%5~8d;?n`kt%) zegUYD#}vx%sLwjXz_v5$#rbJv?_&g1O%MKzX`i{GpP%wlfOp>9 zvJVfob#m?Aq<6V2sz}@VP`~p_lXv$bS1n3=rN>-5OLC#Z944Q-_m4e)&Z(%B{D1gU z@?XW*(+f5`Uox4QGlN_D%qfLv!w=OK^~KuhHJ^TR_WUi8k?q^Neo?Ik`)@rB-Y7qL zHkmWe6_zOOL(A*9NP`e)n&x4I36)Dl?o>{44O@>Z{kH zw8|%Y_e?X`cj@r^IEUNHg(eSUAFwoRt=_Qy`X$G8t|wT9m}+DuuAURPCCx|RxuwOw z-%bxyxJn)Nei4qEA~y5Y6ppL5E0p(yY`7q`P~pvnlI7_qo(m@ad6&ETOGZMj`_Y#S zEMkRMtz;(ky^meD!GUMriqx0)R!_)0FaG6+(cu*(E6zIa5x;b)H)=(C-vf!u=><>L zY-V;bQ(V2^p|Z`_NpXu`ot4z~`xwz+cfl~}+f1G+F1uOc#}@C2yD9H>fcw4P&bJ8` zKOJs{>t7exrFs8%?bIz*rv81oF(%gb;SJ{-4V%~}WNx=OE>(U$%=FX6x{F`u<#jno zFFLOLp6|vA(Z$h|L!LdXTs6(;i}JC`Y4^V}pRN{rzv$_5g&p5NE1r)LU-A9GpV`}( z-^`8KC=;^4CMmJ|Pk%38L&CYo6Ka+{?cfc(!nv+oX3h<a?+wSw*SDdYTDqWwduC=HAynfAp_4}RcE`AqO zeHxf5g1Xe`}L}SlAbyoy_gS6krr@`XRmY=t{FbiN@f| zcV<2OY{g}~UgJQv)RrgZjZKm)HetI?7$_91`JsHMuWZUP>8bw9O`DFpJ*&F=_2H7U z4#$}aSt7F3bC(u|p5i%U`OWgsn$spv++(^$Brm?6;qfZ?`p)GG-tV&cZ0%rLb=vgb z`Y%&Ln}W<{o!DESCeC%BX3>Su-Ch05bRy50KAO4x(IU}3neKarELPmK?c)?pRx$0pr}mu+%E~)@Uo_$8l=KfQb2cR$@8#04naTCH@k;YcY1`24 zio2rxJay)YGpB6b^(%qd^exB5g#RJ>XE+!c@26FKZjf(3!*N%=zqP#L_s$>5rxxy9 z(G(i^j(HzngW}5!tryFim_O*;a&>Dz`mgg`W1muKr0kC<=7Xvk)ov~Nj}I~*`zvZu z^WLVku4L)f&*u)Vxby1efv{W8v+FEEr7omIc2Ilq*=d zbNMwfi$-5QnOM>D-zSvKvvKELL_+`YOVYxDm`em&KpDJ{Pw-Pf{v>B@!7$w$9l&}Dh@ zOEFZfwyWha>+^~=-pRqNOcu^kO%)91p1tQwn9^)=YV!B*A3k~qA6ncc)m8r1m0`*3 zN^K2`(<%SmV$&+ui1w%T@P1ivU2(6pL*jMIHR`2~@jh=ZyZ!MydEPx`q3R93FKJCO z8Io&^8+F*8tgq5+I&H9P%AxK1I!de}&OAw(`e};Q%5sivu0Kk0bfR`jtS$ek`SsM| z+XqaaHoppeR_NI`q3~(H+|6+J16}I!r{%c6WH)5+lzcy>mARKw)|h!m|OZ%s7?|r$9+3L%`l@3xrqMs+< z+U#^Mb6>k*bktmTwofPO-e!07E3;|7+!-)_IlccNmJ+y#r9Pc~M+=xkM)665>M zRPXddi39ttJ-%b4{i@7-%Nv>Fc|WIAtlaW)j>oU0UA^lzFP@@)w3E$ZM_crk^mWNx zOW#$9NpeXoX$%mmcbO6%e_e*H=E*}o?l3gX{Lc|DtZdKGkt*V`G2@Gnnk@5! z#W!~{Suv$(8Kg4Kvdnzap(G;K(7|q}+{CldVdw3QmH%$K{V&s58NH>(D07Dw+qYff z>{?T=Dk+zUe6!s7MCD$2)c1Sd7u)V_E-8_k8ef~1H?Qf-x8NwTuSFthcO%2&a%F$K z`po$>;jp4r!}7guDH~p`n3o^AU9t3`)^g^fy5~jHU3OVq(Qep0%insrcf%*Eb>Vxx zujk8rjIQb7_$u+{_%t#3*C%fBe7uJ z+UVPCCcmW(^;VrP6RvjZO|hN-wkB-Cc4yOh|F(R2a9S$zXKqQ&sjrc?e>Y6BjYxZ@ zYFmB&`7idBy5Ah9I>)PB-I2ty<@@iD3%{>O9^gMMyhr7@OoGaWne8?u2LIYm>h|Vl z9KCzz)hxGusa;RsPS~UL#llZ&!iUeNB}z-?d4;blIpduvYj*cK>(u^D57=*&e$3H( z61(Yv`Q=wls+ay>tp9WL$ESZE_#fS`u9*GM{{K1o>3b3zKWQ4RslKs0+}q_kOHX%s zxKF>z7q7F%N?aiw5%+u)ZLMa`uTpp6SfHmcGfFPCaS5}=^-tTREf#$~AiUxclbwox z1#4LCs}=sW)2E(i3AC!ebU?yp@%Q^*l-86#^OPZgc;u zcZ8IVh`ig{U-u3su$&MP|Mc=CyWKCQ^8L=e-RD-lUXZ!6aOX|Oe#eyR4ShDZ&e~Q^ z&`;T-&!_3HtTZqA=p&J7>)&x96*uM8CJ=xbRLcSytfs zV(Ie8LlvCsSK8UFmMOfg{M1$au9_~(EQSdhe`kpqaT-LXZes2{b$;IYHH)Lq-faqX zSoS^hlAnLXl(WhzwTCCoW51N%#gJ&dKfS)q)a73JdHtsJyK&cC&E_}$3SM@#H*l5m z*4!!LQTi{qZ2cz97G9x#h0kVg&jOpaI^RxzSu35bz2!k%DXmYns~cieNO$r!f-Y|)lIi(YI$$_HkE#kbIR$gVqf)df4_L@jKs0(t(+0uOTAY5 z{OtZV=hmMoanVNGZT$CE+sVJR{c2r%;bz*K@Q$^~a=-VyW{_c*GJMpvd{6OT_Eiz= z+in=_TT#w9|NrLvzwH(L^YefF{w?_b;ro5!)%G*@>OGnMDw%b&a!8%>jr6>UD+KrH zW*t%e>-gED^7u#Yr_Q^b@4dgU@3FR(=J^HOrP+(W{T5_l{W<$ih1>R)_P^ZoPN*$o zI`B^HcD0o8lBdzza!+|liro^mVa}iYbxs2_!v=xHQx-gks1(;<^;7@!?Bfz?AAWeO z^?d9R_cYRCf?Q^(KGTz6hcgaGqhE1fcxd-rv8rmH+@$!5+Mv>SY1d&vZab0`0`e7(i$%pY%gbMJLxwcVNA zDIyyr_OKiXJ-+|j0jU+s7RpRIr&#nPME$;a$GV&Moo?UgkG=X&+Oa{tB&1#{%>J@q zSpS4-Q}r?;EuZ(`v3SxScGp^-i6CXho;M~N&B?N zKcvm(_SF1s`CMT?qglfv(*M3W|9w|lfxgc4KYwg3-)>_0FfrFntF%Mr(CK}P*F3M1 z>X^f>JnNu9MtjE^$ILcuxoiBpOtwAM+4pw$^jB8}7N?%dsrQvbv;6Wi`Q@po% z;-mxDZamub_eJj;tEpiQQB~K!WLfRI6KP~)K$|APqxpa?#2Y)R0gVH*6 z+X;`C&zP8g+UeH`fzzc|WG)`!u#qq7Pr0&j^R4qDJ1%dNaDJuvNoeDJL5>Z9dow4x z^{;2MWstn8{ME7~&*8mIJlE`peXDKqE$ZT`7sSmctbcWYzjvRVw`2XKy6+SGr+%E^zx~BXC{p0ky=;HOYZ;zky{QM$r z$(6(FcJFeXrOW&J%t!aHdD}T1rOnUo&~uee=~113VeXYuuJtS2<(SOM7x2nIWJuV~ zz1MEn-121)_SUkf2{KGMuI21_&ARBWa_6^)$IMyhos9qX>0M*j7Oo5Xxw0Pa>s$Kw zVW@x4g`LZ%Etur!X|eRZ$;u@gc;@nJ2plwWFiv=wSLrBr@%f$pI(CQh^}_4>qcfuR z>*Y)EmfyQz^rJWbuWQZs<@I|$KDDi}d)Qz9hx_CA?ep|6{1&a=eoCgKbbj#p^7VWE zYdn4(@NvP{j*Yk6x1V;?3YeyA-}6Vt_=374|D~9<{H1s2gu1tS%AB!&$*tSZA8aS9 zck<%)(`PE8nfkLX8P1#4*Nq_f1cUAtb{kOH}$dR7tIs> zvsS!anJ;GTCiAHJKdbompIaxaI#9S*l;2_cM~oha%a(XQcz5#ju8jLD_H`?}U#N5fG@~@U=jbJ=Nn!hY8Mb8V{x@`7K6BNRwyWFa^`#s zxk3E7_Dh|w{uI~{#<;LJws`VX4!MS6R@DRLp07SU*+22nS=nnlq~~SK-^cy=$Yej` z*Eb$(HDugdD9XKHHv3d<^K^r*9;08Tf4?R!S6@(a|MSYN zRv+gwm)_^OP`Qp_+vPLw`EE5G3*WT%^q~&pTc3ktccq+dkUjF-XzKKaWLu*e#utL$ zr-k*d-`VlVeL_M}qpR0@&a4*`^5#~h>~LqWRA?^yafoZ*YId*uuk~Ne_iz08+_om} z;r{ymz7C3d&7 z^vIs8QzUeapWcQ~u^F8ew!s!K0&Y z(YEGq=2!R&H$OF1sf)M!^v~_rm13XMPmI@cZhe#Svz&Y8Rtdpgp>t)=4y|g+y&xMX z^7eB>b@gf8JVC{{M!VaLXKmh1Ilpjv+TWLw&%Zvb{=m0iP&~I`>6`Q=FXkKMIs7k* zk((-4xblAOnZkw%v&E-m{b_ry@oLGoC+ruGztUYReffa$+hS{lcQ!5ww|~81DA71y zwPOv-m5}=Wg1&d3x=L~@H||ZBi_(t0vfVZ2b*+wLW0UuiL)8xY>{i{~%k0Fe_g>+; z_^Uj3>8;{pd)B!0)dWxe8~*>~{_gJ|D%Ts42|0q7&v5? z?>bu${r|(`%G#Va{=X%jUiq~x<=Me|myR#5&NP;tUvlQQt`slVjqLY!*$V;_T3^qN z`(MeU-nhI+(B_{0q5~TnO|<OkkrmuDT z=438=yZWowG)*5P%Ztf8-v4=->V2C)Ly^C_ijwpS^OOuKvH(-8OCN!MQOKmGdp zma7xnM1EQo{(ReF&i%u64x4a^Q>$UZnar-cr~B)2xkN239v{S1-$~;=WALJ}a1e^4jN=^a~Q_d+)7bWVFqEs>XIi!hC-JJ-eN?NtScd1b;6s zDr5I8-?!({^k=n9eD=D|J&TPN|2>pi8L?`w>8^h-uOt<=H~v0R{kK$*+dXRMNqIr0 zXFp9Md*w|Z8rLN5(Z9sVa^+sD>r|e5`A1moV|}i(PF_<{6*76+O5xdpKkL>!|IdGD zecfO7kDKkkF3x=@^{L?{?-{qLxA_n5-Tt?xfrI_uuI<-W?BUQ^QyJe{y+NPh36sUc z1(9JjtSs+6nDn`QoEa`GJiz+y^=m1Y_YZfQJt+7(ZED<3^UTGj6Ac@=-lp$d^H-3? zv{b&B<+q;3`HbeOBu0^&(F#^46Rd-!#)wwsbx9{p%T=!z}sp5e4Z|!qE-ditKJiU3(d4Z41tK>>n z0eChUT))OmHrcF$U4EF`_!%c(sKuT zH)ZiE$mMEJU9+X;&kolM9bw;kryPF8c2df1b8*#??e(wTKbpSpWB5loyZawL)*YGu z|L%D=79CBGrdtc|GQBA}W8pkcbHak+fb+#3@ei&#Su-q>-ccHJd~)E&AGK1SGowWR zhQF2)jZgnuA@}XHqWxbLi$}JrUzxn?YQMPf*V`9T2X?*@bN%$O`3)4x3&-JfjT^HJ&9?n3vwv)j`rK6Eddlz;PD(Zk4ywX6k8-^pa}+H`+& z_`RA#%1=y>9jo4~%3~Asv-oyvPkMH0&nJPDyNp)9Di&Ou%yuEz_WYi$2K(+D6brlg z_FL$DOUqmt`6arm^`1yqI%KNnDpu;;Tl#I^!5=4zdV0g2zFx5>e9aS`?!s?&EB~a* zor>JIePap7e)rcuAA9~>YjX1UYoWJS0|a-kFT9pIPIy_U7I*(T!TqpPUo?fA_xf ze!Euo|L6AnD@j;ADXH$6+0yPuwy&51TpR6J>q}0aU)WynBk_sd`INe{Aj<}a!~61| zsC28>eGR$m(fz=-RO4lD70S%D(HaIn^HI;jWA7)A#rk*Q8ij^3YrLkDzkh zpFdH5K0G$>n^VC*-~Gq0$K5}!uK#~vUh0`|{}sAl)$V`Zp*j2WTsf9A^J3)Ei{2!> zpSw54HflpV&%N|z*N#nf{&h*Ce{s)@?~`1osK>c*WlXm*O?$fXxZ0|AMJ8MJ@cq)^ zcMiXoJMh_(Gq!T=_x?Sr<<#v`g4$QGC(RGhnl7`!tNI&HJm1xM?;P&uNPj=2P-}6< z^YxDEQ-=MQJGf#$YjAyer#7v%HT$W6`2M?juAJvreZM(bz~;4y^R|=L@{vVP%lZ4; zcePx6HR-pCsybZZ}aK(MqEfxQ!@LroJJ!jgP^^oP zUHL35WTE_0x1r8A-#kn6gh=h8FXz&m^1d6Ue-~Jmdpvyt_Y)6+Df_qXU!ikZdh!?h z?)-Owt3SPwTcr3gbY5*<%O64Us%hHnJ-6N0D4J+iNG$vt`8muxa^;)*f+g8I+)t=EB&_Eh5>u>tVjfKBxS-hWb;k?oBZN?03;|<;xcFUH7scYutPN%;S>G z;mSA>zM`V-|EI@YQFeG5w`-k0XGO-myy7qUJ&(16rS^y~sV(-LTD0+BOwsl1?d!W< zuX(g}&s=vCSy-mvcM++Vi~c`&n;^A9%Mq{!DS8LiqvB+6mL8HXhUc zS#0ywbnTQ&e%E&1u97%xy8mZe^0M`Q*|WVQlRbWEZwuy_x|?ZF>Y07ByzLd&zk058 zd~(at?5_ebm4ZIguATX+tt>O6bf>{BEkBmMjNw%bZCo7tK7tCKc&#?B#!rVzT%3=w ze3sKX_L{f;u=NDBYID+0MO47t&%4W-!V4aB zK3k_X^|@7Q@CT>L);;#D8@_~{e0y{6Qu%||io>6;G%5{09yEnr49?sRf zqEKMiJ-Nd65cikIpZhxW=h=(e|9EuU-EJRbwPSqE`+lZLYt?=opQv{G^JVo_x4QFx zb|=I$W;FahoOhC2u40z>mbG53ew|smOMCx>lG63}AAH<7L!sxyCmj~oT?-1iw~L-h*&D(>XL+pir_kQDvl+h3 zFq6Go+7cw-xVQQ0>?Qt-Ld@STu9&XSH}gWiPP>(C@R1cVC7W8SJxT@V&nvbnQsDnS z>s*!C!msnr+n>;{@XVBzpJYGpuHkc=aF?2h52#qdOAj&pp)lId&R ztAy_KHQSt;(R@F7|M8%`>Fz#1uRV5||5)q2>xHPlC2RH>Ub`F5G{c_hxc;WA>v!}Y zFyGr+=|88*{iyoSrO8&}3_oRS!q)38XGG-2Bssh23|#!uR^@W=vIz6+6LKQ0x(PvZq=cGg)R%&wR% z@+(^Va5F=e%~bXbX4|gIFTWjr75e|>#{OCI)48rbVyTspk2|}@$u96eU)#f-dIuQ) zyuP>Zl{4F}-w~CImPS9?z^hzgqWNb3<3lgHcQI}_;uHAP^S@k}|2EFA+p8*G-IyH2 z_muNvsg29e!1vz-bGC;~(ayC~GZoYg|5aN+oius)S;&0uSGdlzO zKi$oIc4BccOF>c2t+tJGKh>(8ynmO!G;8(!fA8ksxbaoaZvO}K_&Vc#d;W5GvwVBH zud_u`YXyS`U{dq3sPpMCas zZbr&9%PW)ewb@th@?AOgBJYC8#^!2!ZQT{p$HVXKw0W7eQSPNDqq~c+V^dv^P`T1_xQJ_Wo^%Fd-3+JT~|lc%$Dgh*DYav8t(0}wQ5SV zR1HtaKZ~?GcOE znZKOPYhUtt=}qTq!tRy+(Vg%1RB_MS8m(XAvUiyc1=pW7`eJuZLVNYWU&}viVfZ!s zwu%RAp^`>kw0WwJafNlfEh)pEt;nDE_hi(;#%+nU+# zO344?N%vab@uzHw`hC$3<5>&5Bqeov8SdH@R)n&fTWomJKG$&G^mmK}Ck{8RD7KK$ zJEos+xb*v~PM0vtzY$ks+2Ss4<_}%|UQhYnq6ud_&%UnuJi}M#W`qB4f%+-am2*3G z2d}IN`d83VRP11H%y8pj@l})AJ}341de->+9i9Hi%zxj%pHhE{C-^h&y7#T3>d}2Z zhw{k_jx+zAzUOV`Zk7a(a;yDTZ=OXi=igtFC=q91VYgXcxV0iiD@r70ZS>x8eYro&4u+z&B|F8|Mw;ua%Cd}lEGT*YW5@ru`Sqo% zUswOwbEy8~-g^1_KR*apFWY-;>vFwjL5_#U%WAK%)U{RL4J~uc`QE7*v#H`s;K7EF z+TFjL*@d3&aIE;4X&HX+bKbrOA#DooIt}?>?~B?ueV^p&!@u`LM~J`ejYEg_&a!** zHsSt_nzlQ0BC#%_4iJhyToIa>-t7fKj zN;|ZF-JbUEQx!L@t9`Wdz}9reJY)Sk+ufy0m-a@ykKLvwAg;$CbVYevjuGP}#+>u_ z_0_hdo=P~gB&X=3o%8z#E#kS~-NI)&?czA4_{qhF)$vQ(q?=)0>bC=r2R-?2Sj7BV zVRD8(YwyIcpAF^9eO;Gad>P2?@w@HY!O5&k;_^I}e>oT|Sm>bqh5bcU1fS0IlF3eU zWeX&?%X6(=WcIlx%KO6u%^MaL?#*v++b$2zQ7G!&()V z4ohvZZ~s$$X)edB+PWx~uiwwO_H(}dEAq*^!T)s7+jm9>gQis5R;*UMXYs^%md$E& zp`!4*i^V5YZ>3jg=xfza)sy`=xYLu@*|A<&Z&RGxa{q<){U0A(|9t!Y@5zkY z)jw(u$^U(;f2_DB!l-K2Z>t#>pL*wp*4idR2p(q_fDYd;5nJH-we1QrvBn>x3#Ueyhknj=Z#lB zh@Ff0m2`Dy3Dd8;6K|P|-ZOd7zTiN^tflkU&C~W0<^5AFbbO!3`NUoaw{`}beS8A9 zSZ7HjCLBH2Z}=>>&Z${{^4GbG&qO;~E_>QH?Rvr!zrELz_jji8%i26CoU^`i$;!XN zmhUc$1}u=9b!xJr|Nn=vVjtIilfK{n$F(*~$Kx1>ZHkalTlF)$r;IT8s$thtrC z!rd8Jb9%-2h1LtLc=pzA;?2{qk4qOGe7=r#zx5W?8FVl?EhSds*J_O1Y}nP# z3Kv|o{wFfygp8nNl1{<;HH#0{McfaUE1vXbF~_I3iLpAxkAqRvs_9es))2uT9DY$(-rNFXE@_f7!Tq z{n8Ip)%{<%+5Ek-tM1gk`|byW?`+(AeQ7v5+mvbkXYaeec%=I2`#v{@^V3_?&)$8; zfAX~WpEB>e;(vbS_%T8T?WUKPe zYt^hQj2bD|`8VHNw^FtCsN>qBR`TEX2>V{6XuL8d z+2&xyFD;&hjY3C%KX`uo^sS2dn;Ykc?|pA%XrEtM6e=k@r)yfhRITi^;8{PGKc4&D z@~vv^z9~U`hnFAcy!GxL_s-I@l}~Lx8W)z#Dce2ey-`ta^U`fE{A_QPZPDFov)#n) zlRm~&wm)Z#BNvi+qA^Y%(-dP%pOI#3qMwUk*GUiN71V4-*=46_KCjG`>CWQ z7WZYw1Dsht^XeKW0{)uk*~q?V(uL+-Fe6B z^5;}T0p1k`;m)(Xz1Tngm9EWt=;d?u!@0)G-#My&l)k&Ldlmb;)3!XT!jAo{J+=ST z##)9shU+dYwl2+hQ}T98TVZ{qreA#;I`s{n(XXP6X;Nzg(In{`U&w zz5duhE05KDM}3!FE1o)Uu6)40OOt=iJiaq!yX?!GjvM&ilx`L&tg;X84_=ySf9uN6 z|6D0|4(|L{yZm=t^Lvg{A=BmVFSsy$(%i1~ulTFZv$tEk{pr&?Z}}~T<5_-sg@#?K zn~u8`T;C#lQGCy24(mx*yWKM{92L0#bdR*C6nnScoW38Arh2c}OImqs#{0StPq#n* z9bfbP#QE1U_UJlA)% z``9X-y4GV?xsd1j#ny*XjqU==8tN9;eP^|=_!aA^ym!w`mHUF43jStO?OL{ZPV}26 z_maDAjj}n*3u_j=n8|V(UOqFcq>j9wtoVxg`#8oq1J5C8db5#J4$9p|pvG45vk`6^-CMp@sIp!8(*rk-BgY@jlK*%@YQewDlV{wP zx$ti;f9&?s-$B#OMMGBalV@qac0eHiKYzEu zp7q?sK4ZPD?wN-tZNK+?oyF;vKEo5wUFku>uj0n>BSA1Yo;!radlhY zzL+nMwyY@BcMIsw`t6cpkx+4Q#g-qJ?k851^&g0Ns>LCxJe^5=kx9+T`)|)zlJYrqwQqP^=p^B z{LAr9(_waKnMCZ9`QN9nF`A;jM*4^O;(S?E z&MtVcdq-vN#8dabdp6BFEqQ6{{#ku%l$raUL_;o!+d_`v(DK(XL!4Vxm1c0gWvC7DD!I3B)$GJgQ8!- zFXme3eMnGht}ynExZ}6ExO>@o-SYzB<@f%txBs*JqnzFQ58Uy;6Kh_76qZih{rzz6 z`4_J444SX*c697(U&ub?>QjBCJK87v{yr(OQO(igDZ}Dr zg*zJ@zN{{cjJh}5woBefcETV1?&S(InnaGxSIJ$!hS%rw1I_2T8!kCkhYso}}feHkSm<)zE@J!E0r-DeZZ{52j_iC<2tjp6ie1AXY6@ERSai**7 z$-U`K<(&sU&fE28jlz8Wtc!Y|csa^1HlF3QVruB0a4GNS_otZ!?;a=iExEU>!@Jh0 z-`O@PV%qe_T(8`knw}`y&P})Z~ZTxumr_;a7)0RGe`?@!4Z;hU0 zmh>*aaL+e!2bK$)eVZ8}-(AXbIqvk2UAOPA3_6)&_1-nl*pdB}l3wxSoZ~OqGtTC6 z{C?B?H^XDyZ=sUq{c_$C{pV{g1@7w)kc_Xdk+lDQxnBDH!_R#6Keq3`a*VmHc8$gN zyMab;uc;lcjOG2LYaaXh+#HUG`?KdQePey#kl}*wQP+Rm+P~Q5#uoM)AFC^KP%P1|Mc)BjlK{hY6M`hnfz zmzjE6j!&!<-uCn4qR^lAQU(uZiT}Cqeb+{(ugiL5A4fj$xhfi;95Gul_J(on+)K~j zt>ldg5lZv6YcjgKR`c17uNtMMN$=)8Ja%qb{ZwJwy!XjlURM3xT>E#>DPta@>-x3+3s0z>iJS3g=GF4S9o zR(X|`lS8f}@6J`X7~M@>zAbz#W9O=V|0OSLoLZ8F{;v-er}i@&KHv0l_3zJba+jWt zN$A%HyMZr-?|^KYQLD zZ547a`rs4w+6TA8jwmiq{n2~jt`y7ZiH9pY{#|+h^UbU+p|$$Qm-kn0ySvD4 z_e^*s=3t<{V1vyRhG(S;&U^cf+GGz)DsJJCZLP>xc(H1+_;D7AiFtmETHlXd-Wp-G zsgGq}kw>lj(Qb~9haMEqeNf`tWj(9r*q$A#`}3}4{*=%4E?gV19N zGs;;`T$lgFaq9T@Y8S?$s+bp3Ec=3soGyB;FLKzGeCFSW6SLi~v~AzN?ex@S>87iP z-`nicme_D!;57>+xL0)@u6+k9D>uU_eFAs6<@pOo~|3M=s$nvm$MbY?>5SqYuTTgpD%sk zsL|SsvgI~fvCrH4K51o3o^$-l!1%pHvxH54C7Dk3&{pHNPBQx`?LDz|Qp?SFOoo#|e)Hr}1m{x4oVkPH*u zx<#s3Xzf3y1rwD0P5b&IH=O&$act8sj}x;m8~$4T^v3lV$N9@X8lK*6-1cN?^qa!C zqZ+#`{oXDP*nYe8UWeeF%xfRTH?1$6a$fWO-xr}v!e*yze|cx!SKZ>|?#Fv~d(V6J zSb6^O7qew`r@&31n< zX=;e&a=SGxk4nByJ3O21Pg!HYXUnGU-+wWoA!ci4xE$~c|& zR4vXX-`n$-eue_W)x9nBJ znq`XK1z&qVl`MK(B-y?^D!*wGU!u`h$GmODQ$Jd*RJpoX-}an@)r6iGwMEM(FFY>) zb-o_EY|mWrhrv(hr0)8>nE&yt^%Cp9>AbmnX1BCkRR3PPRcn7Syq_QZY2LP*jFZku z*{yXyd!gJ@*v<5a<>elEhoedUGa@`rVWwi@K0?&V&vYv;pB_ZI~3m9|eU-PN8D zJxhuuVoH3tPk>%BQ{Z(*mFtg96LTMzZ(S_Yy83U6!k3=K<(!WqFLKCju{Qd+rtjog z!S6e+P29=Vx4uxdy|Ien!qwui(`$;B-kmDPtIoYhKlDMQ{jyCqlf&+Z<}3Yud(ZQE zQD~TS~`GnXl;*BGvRebCN3HTL}p)@_%Bt}otY^|k62 zlX*tw|8uuw9+*tx%aMAZlOpo}%I&q+g`U=DS?liMo*OrJd7`D~^KCwh6}D9QO{#0U z%2HW-**QP^MPLNWtEXK*>Wo<5dMw?le^~Ryy1$#fZ|hpVGj5gpW%GXZy}8eKET&6`Z@!VeGoUXHNO!qV<2Dnky?ciABjhouAK85wEs<)$?TA!n4Po%jkzNXTAT* zTM%r-IN>)_mAt>wu^8{pE#?fSN=70K46lv&F1Bky4_67+$qcl zrgbmriI8hy=6?6ocKfF#7cCe)Do*vPKXx_ZXT3MA+)wuN@;QF<%cpGf+Wz=}>8HFx z%hcdQ4|YGwtz^4*H29o~M|04ES%FIf8W-3upS+b#cJI9={>JL>^Bj3?@4x=LdgE1l zo&0qd8sybu*BlQino_d+Y2H>xxx|+zn1hhgWme zr>}C}zZU&?6K!yJUwQSRpR>jK-&=^SetW`h{j~M3m7lDx(m9l#?p*Zl+R|4R*Y3D~ z=7?2h_m6Edy7GDZ_08KSu9Njxzb@TN{= zZz;;U*sm?|@N4+2FLV9U%NKh%-rQX%S#me}X6?zy{mv8P9+s5cd}nkoR5kNOyMpE0 z-(Q4(CwiHFe=MqWA6>al zYPtTqSGR+I@BIGY-m@Q1n7;3H^W&|an(Y%SqQaW>XwtdkvsM%rx+NEUbY*{2XVQ7e zTIq4~Td7A)^Yz!AJ;1tu%KLC#u14wet2EUOcWvO1`uFK{{_%dhe`gw#-#;wolK&*R z|MOh?mG@^@G2CcWyIxy!@As}uyZ?4ePXC`0-_|a}z2afs0;m0-PoIADH_0~P%G26Z z&jT)9sty&Nm2x(%%#Q3qLg7itJ-n{Gsj=eTzE@XGUN?V?-nv&h4`!Z~%aZ%5eBTTEFJIqWH^IHCr0vO3qbsXFaoy{TjBB=Bl^=7dJ&7@I@!hx6 z1RY^OmSWgD!LVoNtHSkFXI?+3)SR&**Py?^Mds3?qKB^_f^%?OC>yj*9>Yi0r;Z1Sat9_&S!uoZmx{Vp9PTco1 zzI=GQ&j z)W7}A-u*Jo;KI~N?0a_4Ka|Z{F*W-Z`-Y#6=9wA$V&p!DNxqH0D!glH*kO)y4*H8< z+gyLKvQ}=_^K<9#8t=G1Pl5e-`ZvC5OD7%Kk|7)Aw$EUB?&Q!euT`gbiZ0$tG@Smo zeT((}EwO2LOIOY;T(1ye`MF)}()s&;&dtAhY{T~tm2Llje9ZoMSbx8q;D!}xFKRdG zH(vhtxUf6xanQZLB5Kngt$+32Zu7jV$IINKU(DE8wXkB|P20SQ*W?dfI`#fd@_~*O zi_PCl1l{ftjQBsZ`)zkU1Lsv~-}_fL&WY>pn7ZzTfHOZI@1(xtjBZn=_sM8-=m!0b zZ#d9%a5wvEzSs8!-`==z&+kF$^?!-?i%vwcWC?gm*=tSxb^YtQ+gew)Y4cx9&uV|M zcf}gUwIBDHI={aDdd}OG`%?GcSQ~rEcFh`258I?8$_BS4zmv0Yd#N+K_VuKy^6tVL z-~Cp8)2rH$$L5v*smV?d#CHjciUsj^VV3aFXqgg&(wOv$z9<9E5E{} z$=}X>zB0+}&6b^s_ACk;XK+qEP#?LD&#mJ8uXz@mdINlq?)H4Z5WQc!|NM8W-^RL^ zU*2mzyxi)+MjJkPt_}CnKD1xFeP+Jcm%EwoH(xsNE&SD#G@Il5gj(Y!tZyocI(9GX zR51IFFE36dmN?G*o@i-yFEjh~J|V53h0eW}3|9mb-7o4{p4;ePe^Y->>WZoBKOkqJC4*mupWi1x}CYeOem$I8i?|I`h8odB(~u%asel z<;9gsCVk{ESNU*9-2PgM$}>Ngz5%zAW$Lb~#?-|NM=tI$usy zN4Kz+?y`>Q4g9jE|8ZCSXY>7a4_;UQxO3=z-S__-rVDp|aC^`8W!pN{Z>+aA+^_h3 z;;F1^`4>%#rcGC5+64b+DKZ>SXOgIVbZ@WVQ_j{o%h>OyzN&Bui~9QOvTKjkJ;PF; z6?4hz zs;E+JU8RcpxD9*TYOX(y%K!Lcj}g~}>Q&QMS6u&SXFrYKQrAy6KzfhlVO5crf>)Tu z_P;;4xPUp8h4H8LH1joIrgrG)m)czZn6>P-`OY2Tske5Ytlz%vi^VzbBA5LMabFf4 zy3zSje81@mpOgyu%XJR#)miiJI5nC_xyYoxlGL+b|Ly3jM&B(WE28Hg`oH|kzIQXf zY4|R=W)ZaP>-6YTkDbztRQkF5Z;+>A<(5=aBot+moCx ztyEv|Z{>2GSBvg-S4AD!VDoe3woUp=D)$G>444^sK4)KcvF7jBYa6Xz{A#;oX?asz z$TUCp&ga&oODj^dq8->L*=HetzYuxd&s`O>M4Nz2^R1uON#y%T49)XC058 zd|&;+cR9QNAK2~xJgwlne~Ibuss*QN+;qz~T`a#nH?HPQu-3~}%~$%KWhtI+H&0~Q zdo-ZyL|vAj)9C`)i@EvMlQ!-7;_!jx{j=DjzcNfu*c$RBlZsqYWa~A{^OwH+)y>2D zI!WLPPqaQ4d2QK&JqwyoGRxav zbu0ecRr0s*=+C*&`Fw6NFf39QO8$N0!g22D$0x*Vt-tcJ;_`N}dqK-@r(V0&^LScy z@8s~P;F*~s@2hrh$=g%YZn8_XY4`C+-n2+LyeNMc#U<)O~MH=UG=5oC|o6B3Eyb)o}jAh0qDwCI1_xt{U7CZMkym zl|sR~rTbSaZm}zk+O=HG->=#-qV00+qsrwj?Lt$WpECX`NS942%J6;cedJtoaOSF6 zB>@c~Kl_q-8+NW!ou6Kp@}>4a&s}SwJFoI?Ew&Aw95mf&&f_0?;cVL*A0APk>io0s zZou0)-(vF?)xDonaa4K9PUolVmp}c!PiARqomTzS4LLP$O|tgdxV<-?&lekCD*9IU z(m}mgmp7*GmTtbj>fnjit$h13vwJ$C{)8~FPAPb9d%0O!$}f&vL;bM$BRem-sxz@i z_N}P*z8BGQP)RuB=luE)^N&{l_;WbF?)7qbVHA~ zO>0Q^_m`98u6Ew9(n&lb^XsAP*9kSpPn4G5(kNKsuhhNHZMoci%g^`At(aF7Dops9 zoge!4SSR;ulh^Nri!W4fFXU5}zs3Dg{y3|>yz9f6)86v`e6gbH(vjL|od+YTSE#<7qF3ZKAe)*LVy)wM7KPT?`yyLQ&atqHN zERUL=G5?8ZO4p~45#`R)T6finKQQAs!#nX|_1(+ub__q&`QvW(=7z*QZERyYEtI*5 z;SzvcR#9A@VmzupR5Gu)ebXWW#<~( zT%Ku`^37&-r`q;AHWx21IKy}1>#qVIdG3Hawi=f+zW$Tic>a)rK9@kVbDfRW{SiCF{Y@>G+X7BWOrK$G`}gLJd3UdF-a1bri4Ggz^z9vsU&1X{WenZY7^xabDnq6v~v2il-I$| z`MS>C$Z%EN#{xETx2z@zC$?^xmwm_XTM^r;^6L||`&pYzs;?d}O%%|*o-3oyUSZbp zI`~+k*4h2juQD3HirSyu->@~x%qmK2#Z&k0p!3NtNzIGSe&rGT)L1J}nPoq((D7|X ziNKna+10Wa;(mwu$$MT*-*Ak3RY{DL5P!&lLsx!(y3)7zw)K>=*Mj#jKhP?jx?bc` zUvl+I(+k-gbv)HYk6La`&gx%veetoqI<3+9f7YdUFFdELbVWFSUoF@9CH>j^>m*C+ z-j#)}V~Y8AKdxePL;R7PeT5PcwlAirB#CP}**V_}D9w2AXdjchkKn`d6)VdFa+bQJ z$exYda&qbB;1fo#7TsxCxHshTN1v=&0$KmEdCJOsmlpo2zS0tG(iXMJFs@>5^6$Dl z?GJ&DJ8b9Ay%ab) zr@Ga*32RF}sYO?wYrnIvb4kvDl0AQ7Q@?ckosGVlc{5Y`TjjdPo_cmmFPyiW`>FEk z{@py~7lalRvnOu8lokESHgjR&*6+SS4ffw165c;M#3X)eYv|t&mHa}TGMnZL>!r5* zSR2gs?#(>8N-tp_)~P13f1W)$#mDnb&7{2S@|q&!HS)R3xa%ZiG=81d-!EJLaq|14 z)j#$eHn;zy@~=Jq$MxGy@}@br-gm6neJW<%Ek>oq-}g?v&!qBY-ac;!o3sZCOpp4% z-7(ew{ooGE>Fo^Mr>!%64&>#nlPwM6+c!CFuG}-Ldy{MVqLQ}r#B86iEl+Iu-AoC` zwcihB9oTbqv-|1yVlFNE8Lz(-oVf2CWq$kqnZx4AccUjhEwr5Cz9rMwuxfSPo5?&G z?k{{RzSwqEYfOExN{)THTl#u-+XWM^+qvG!y_;8<;uBe^Q@Qgfv;X#sifiv3ef~YT zt(LvxTT2iBzU_UYl{CBNmFwcmgJO>@)t z|6)@cHtl&G+H+7Np7{;i*SOHrj4v4jz7@)wF~9qC`o`DJSDMc}cej`EnJXMP#<6(z z@hR~SKcA~Ts2^3U*#0MkVMf*aE`Fw;SEL1}!qx&9&adw7-?vt5lHBr6F$ej#-lF@~ zn3(;&bULV7_~lf-4-2c~&sDwjxv@5R>(2}9Mh26=Ep>c$HS=K_|BH~R%v&XE&!kts zD7JgNZ2M`8yT5y$`|ewELg-QH?Ehb+?6652y2WG%w!Nev)?T%Ae`;s-|aneVy=h$1*d6dszu_Hy$j!U9Y6^_svAR zPD9p<$dUc~`W1m5(N0VuQ z?=9UUfhA4yRVM1E9-g=p?z|#&?lwWL9|k*~9{7HW^Hp)pV=l4N1=78HKK)y=W!2-> zd2I`-q^@zzTfOvHRg>SP1z!_y-F>9u@0_&!qUztp6<_~v_`dG!HeJus8!LADm9L&3 z?(jK7PKZNVu{9^z@{K{_>4zWGTmNtP-zeL+;m|gQy$(V`3XNBU?yk5$$M&@RDz{$4 zO<8Ym{}6tDC-(ch&DUmamWzyxoEbTDYUm?=&eg~AuTP8p<=uR$szv%+n9Z@ROR7vv z=P#c&LDT$`T5Q>pwy?yqS!+u}EYH*|d3&cQ{N?e5-+t8`+wykhN9Fwf@72dvg&P+J zhOyTil&mSt3n|blx%DD9if8-fw|0BJI9mUCq9k!n_U-z6#YWdN58M%4Jg4N^$CWp- zrZE>~GVZWi{atUDU#7a+-%Uk(-P|m%h;Lc*=t=R>rh>OVkN4~d*g1J~51;AV-_w=9 zJaM>ryR@Px=NF@%ysQ89pl8;3!Cx+ajOdTD>UF&<`e?(XL|(;5IXq#fVzpns_^h(y zPUc?ur!Rk4_TKdipT*91vF|$9=?-~TEX?+i+HOPSvz)uh`yd)=~Lt4j}#TN%%H|Ej6vaBQ9} zn@5(f>4l5&2Hb9{eRxrAK9HfV{z$@7I{~;YP%O7SS#HQoXp_zxLWGB zcTV}|_j~0NJNEV2K8g9b*x~Q)=jUJ8=v-S+{p(1p+}mTxa-Sm?|7hFn@;7JgdW}O- z-&fR6seO5lbIP>9Ew{f<@O+g&ZSqI6t-Vj==iH8|V$3@i{PLjbZ>`6_?RVy^Z@;}G za)bN7%WW)r?UxGPx6M3#>a*nS%ooO9mUo%oY|fs3&iM0>bK5dLvM$2$smG;(d+2xuCE)!q-ZNIX`k}WT-;Q0FdoWgwvKkk1! z_kQ&2{r=@azhtNI^*?`Hetm+4pI-UzY5CV(e#Cs4ZS&~~NBN$Owbzty)@6DBO`F~G zKt479&WFN_H8ST@9A0I7&Ny*-qr08@(~8!oyT#Nm?$}iOP(|^&&ADHl`UhmEzI!42 zw8HKEKX6&*P|P zZ!(iRVH{v$R_R=08f&Q*bbX5Ox=XshpO!q3cAm38?A+5-*Zb;+6J;C2UcFScU${>9 zdgSK*RntE{PWij{w5on^@7{B<7W}Hs#f$r-lY-N@C!eo6n7+?#Vo2$oIosCHTM_-W z=3Q0)|9|QK4DVe!KL6j3YWu(+3%wKKMH&2Bo40E@g&Z&2wMFS|=F|rvc2N}@zrFt< zQ)#SKtsw=%)fd~%KaybHvcZad#U`d@_XFu+WZq9_l`7e=RLgi-nEP8lV!daTTfG7 z%)V^RGpW?4dy7vtUFEl|)hO1>Ui+!mzRXCr7Rs4$gf2r;BEmgOE zu6@QC?zmh*X1@2!8$v!^J1*ZX(DVO#=VS3P#`~|&|GsX1<6O}ZQ|7JC5_-Q^Z+gB& z_ND&qW}~VK01_@*N|UgQE-l5t9ApQz4%6k3F@DgH)~BjxGHD& zj}MuiSFfnAkp8y!+o?^a3!j$lTKtV;A^QfWV9Ar|7XuClUb>)r%D?w?>7?@47bTb5 zuC`pe%BiMkijn^Q%D=k%mjC?3H%H^YBj?G?_LM)7`whB&ynR|3qc(Sbl-2#PUy(%% zRV7l?l2>oP8m{TZboaNztHL`LJv(iRYJM!|?&>;!s?D$Kb+1)kR(cxE_HQgzAie^M`AJl@#Kkv@O(6|4R^%2${6 zS$of!%r-xgZ{CyKI+vB-FHbF=rX2IzX)$ZvWrhgV+nwz{!=%2|tC;`W>=JveGS=>% zkDO+(tb&c(X0J(qHFiCT-~O=e@4C|-ZeqKx9mxMvtS<1oHk$MJ+;{(lbxh{`z7emW zyR|fA&1LICt3^*(vNxZ&{{3%MxydHkLoTz*rOz)u`_D(=T{H7d)4cP>8LM@lmrZq* zJ6pchPPW*uebK^ux3fylx*zsG^WN-f)Nb*A^0_^3vxI`yRUO%#QNRE7G}9M5oNJ5j z$S>tzGQEmj?{mr*i8X7Uxh_pVuJ*oTcR*=#kA|qd$h{wDWKHh5Wvzefar*X+Cbr9~ ze!hs?o_%o6u}O0OpQR}-=bw6@%KX-}#%#&&3ULQ7elR>-_5Sbc(-V)1Np?Q_b7Qgf z%(ykK?eT#pFBN~OwQmbqJwx`o`m7Z-Gk&P8t2ndi`s>uCs}284EdKs^ZGJ?7m6he) zgb$S|roa7XRX;FUzTwtMjlDAU*A(ZZ&tLU&g2n1TCmxp0Tj0F8rPlG;r7cB@Ytql& z>n*GG{kQ4UGM4ha3d*c9-;GRuTRD9A^=9$KZ8wXrxj(lqd{ZnCX1&Jjed<+xm4mBN z+8!p`AJhzw+jrI7;?Gk3|J61Bs`|Ho`MBKv*S+i4%P;LJ)|5Ov^LRWtEnd$1 zYO!xh`Ycg9`xv{WidB~~ts~Cg%GvMFXI#3o)coo!HS?m)-*QgA|M8m5xc}^&pV9lj z&Mw^%e7>SIy3eGcOzG}H^V^2$v(1|Q>n`eQ-Mp13KfPxg-?|m+sKwCUYm&a0lK0cXaiAS+T8qPhVd3vC7xfiI467yEkj1@0D@-OMPDP zX_me6`E#|4(u~f@diw5t#SzD5aoX0)@8N1W_gN;z+x|{Ax2%g{_gkJlZ>OS0O=!jX zO|@S)ZqvLQXfxH+z95ty!Ia=%lRXp6@;9_O@-CQ@c}Ol2Jow z)ZSGa_RX7fa=tjX<811+Bo?+Z}Fml;!>7)DFe^o`=b*}b`T(W)YVc8lT z%el3^f%SYlUBA~xRZVL*2*2?pB%FU$MD^K~>ZZP5D_7T5MBh88v2gN~4c+r!^@yzb zcXz((d#|H`$JkcptlP8ntUB2Mt3$+(D*)6Z^rT=Woz4rE^QPumb zmC}Dy=HzFHTYYp~Jn7b%Z+qWyAJ|{j{o%LI61E5X|2+AAJ@i7&Gns?R+wXmUBC02v zH8a-e!`(UDs#)t7_CMyx)r)yMPcV4jIsK1a`v4WzRmyl7R?QkntWfzoOjAG3YnE5DgB`59Y&c%R11ploa2ri+%% zhh5b>pUt1`SbVt2-L|Ub=7IBh0T<>>Js5s#k#+wH;njUInpVukyXVYzx=?U@&Z)Ss z2PR+Fna91@aP7Ju`o|Y#6)a+W+1%wL<{KB*|Jdx={fFlJuP-(|di|2+v*eJ}yi@0D z;-62F_KtnOM(~CmpI>q*ALne1$4|b@`F!#D#wQ2;Uf*kvoxDOKV0G={-6ovjQeSSZ zu3LTnRh19VmESAAv`zF0e-IrpadNCsnTyd%wsy~5PH)={CfF=mm+(#S#kc2keCF>y z=&$_u_542vH@?q*`PjSu%ij4t_t#zj^un)*U+q%utHjF&d$KWwvHL2To|EVfo znXh2cBlh(Ab=w-**Xs_3E_1b<|95d`T7`1n<&$Qwc0Ss^@3(B`l-8FGrRfRlLM|oU zDgGj~{~+V*AM>vmeAzv$SUb;Nytp1^=pWkg0T4K2Tpz*eI z6*ji(XPfQ*$Qo~c&3}E;vsatv^<%sg}-{>%5P`jtO3fxRV`zP;%O?w+A9BCmd?amijGuVl!F{(@ ze3#FgIDh`6R~MIPg-_Koy7+BNjOo=~rzSP+n5lH~Zqm_}ucLpOzi1IRUAFUa-{+DW z^IxwtS5JMSR2X&q_F}*9mUU*a+rQppL`7k^%2e`E74Ak#{A zw@T#E(gh2o-EvbJzsyf^aay*^YjFyw~kcvd;{PdluvNv&L}74#DMC@BLQuT{~;36w9#sJ8x%n-L+tr z6$^Rq{3?u*axZ^&^2ot`MSB(Gp7n{83oWY)<*f_9;>3GrYvEZ}`TPjk7U^ZTJ$~PD zS1>iYfBt>MdcUiy|7glLor~bEJjFbzSL5j(dHs*x?^n#|U*PdfCe>)iM94V!BJo_qXc-BHsB zy{9uunuKFF)!Ms>3-EvbR{O8_`+45F^p|=vZ+EPjv^J}#bGpedvzmt=pZ~bJ{$Dh> zG5eW4{_ys?FR32OsE4gzc{pW9gUp390rz*D7JYKoi-fGgT zFyABPUl+2uUMaj_{Br)@DPOnEcxg{__AQM$2+E9uV24#Gndi7 zIdAyk0Y=mc({@K{u zU9|hxp=oos%Foz4fBrr_|8HKtf;sBXB^8U!Z&v!vO*or=Xz`q_v+9>uR+PO+vp&f! z<#ABGV&grl&|O@wL>6qkd6(^Z;kr{D^3G40LfWJct^O0luVq{G?8%JX3nP*~&)UB? zHvZA(Gq$p=wNiiDlnT~g3Y~a1J})9`g5a^=zh)g=A1(W4wX_wd`E7}(?T+97|KP6| z&VTvXzy9e*7M4aw~H@6I38*F^1Mt<`IVV63s33xUs^o5EV+(FaxY%(Ds}>)d{1IIFJxQ31pG+WBQyUbi~Fmf0+9 zQ+I#yoPzYbzy9`Y`@CD@y=3IC1eFC_uV0*IJUi;?VpY4zb{l27WEbVn5BJ-@*72NU z^ET6y=I@X9iuJiouV1b6OY1>t7_Z;gmp8PIugxx7Thq5mFIQb}A%|mL&B8e~{o5*L z94>C!c<5))hXZ>|m2}T*7aU*mL*w)38@X4*x9@xUXIb3gpXFZbTCaFmE-SI{n-#VB z0)zV(nktpmKf+^gzKS%y@m#HWE$i9POA3YRJ7Q;t zO6xsuykePsFRilHk85&Y@2a_rY|7U%etdaReO>GPpmoA8nD%<}xo*+e|6}F(+;2zI zC%-ezUhNWJ%4qY=p!7#o{(|$2?{`bv*xn6$Zk(%dcm1o$)=v3<%H#j5|2XvceEE~T zOZ)ZyUYq~V=z{BW(^IEY>#Y_(?Xa-C!Os7=GGWu6aQ6fI#2#!8O|I8`y5?R|vEp>8 zs((+GtUal*_f1Rd^fimcpIOWO-r2X|HK#)Vw>MeEsVn%7-uMw)@p_Bk$}FwA$&YtE zKA-3sA80n$eP-2tZoA;}iH{vB*O~I2JG=X7x^3>Ew>3J8Hw5o5Sl;tM;C<=2cN-r+ zS)lbgNSfd>&piG3i;DIp0r}?+2B=t z2A1!?m1$eot2y{ptjv=7eLuc6?#(~5I|Yh|fB$|WvsO)EsTRwO$4AyYt$QZ-ydGAh7B^};undM$*WxHnQ#dXf}wSV91&sj9tcuBF#;K#(MfAjPIbKU#S4j$xN?f*}8 z->-M<46hCaoZQ;Z*R$C0`EIt2wsP_oFJc1&zG`d=%nR5nBUk)9<@9s!wcDycTgf&B zxCk4(yti+6;@XXM8d0yZWM7z>?|NyGJ0+&g+s*Q8NRMoC`0ll_;UAUI1SziDAR{eX`Y=N%VOZR!&J(o6_ z)OO^cXl|(ZvP)lXu%EGtOEXn|v7Z zKcNx-!cJRx&a@XdCOo%f+xPN#{q+?gu2bF#)@FsTloN1?D#;BmcpCGx{M$meDf7OF zS-P`$-(BbF+vumze=g~tG-tNngXo(5)6Ts+x0%b|i$(V83dyrIFLg@hT5i>{YWVXm z=$iBLdi}4P-{Hx~^#I z&Br_KKWhY)Gkw}#9J1ijq*q@a=Vo47y7`Lv!h%1q{&=y^{NklHf4PzSSB=*@ZuNdE zy;hlYFWvA>SEVnA)i5;7c%)bP`uR@Xy8n+JyZ`v=|L?F>)e0W;gwA8feWyS=JjWBXH%X`5Yxj87L$;oQHy#(nQ4izAP3g^B;(l7G7R?WL{a z%Ojty`5v)~@BXtFTXcKj_)E7{@?mBl zCt9rgYgW~3xZc7m=1oD>&fG&u*SE;DpWQdVgkd{t$e-;Ri@)!b)JQ+>S(jeq_x!I_ zVA`Qe3w#~+34J_qP;TkTy;Ey)Zu0YY3AOxrX0tS}<{u4I|uj1Io{9);JzJu>XEUX38V!krnt*SHod~U8$t|o8p!Q0C&FZElw z#xbi!Mt$v*>fQ=&o7H}QFZ#G1zyFS7X@Rxj;p?}j|EjzBzHi&DyQf#z#;aUOHZgvG zE@%GC-#6;sg_pJ}?^jhlb#mIpnY)-j%Jfb*2wPT{=JYP)$-U0q4y$ekw@P^J{kPZC z(Ii!0r)=GnX~}kXKOR5-y!KmNi0Qf4m-pnlt7-?&3MiZSq+n-r(fQX-o3%dd)_k!> z;!UaL(KiKeQ%~kr9n{+JUfA0;z`sq?ad*j|_-!8>-uwG^WV$eas}4?y`B*4av-oed z>-`C@FC{oNN1FclX}wbF+)b@N>x5K#>}!77{CmP)UwZg$^sgV6uG@XL{c~vgK1q`| zS{94ntaEEFa{Khwo8|AmS<@QSt4d}qF-~@Q_fq1FXyBEF9tW<4x6E^wxoEgaY16a9 z&ed_>&M#gwOP6WZqAzZe4_{tvTRhKwLeS>I$Rp3?1mCdbm$!uEJ(JPsUGmdzX`$4` z)sx>G`<%-C|IdZ#yF3?UamKmjcDQHWbp2&8$Jy=KowiG1w)-Xs%7;hyvCm3f&3xo^ zRmjx7#kYUE@UHZ|QIV6jZEAIBXZa<|2Ag%ocImO@mFGHatS&E^eePeG)U~d*h&f${ z9Xl`mn<84QH}Trv8-dHjUvOM_I_06v=8unMXY=m5TxMzEsIEIdzEx~?uOoM5nE6SM z(-X=rE;L+g!tti~i&mQwT=kiJV;VyRhrC~2@COuxpE72mlRK8N%Z?n`l zk6n}dp4ZqspZdBp^l_>07Ax1gk`d1jW;V~>_xPYSy9K>cNK@4TtX&t%q4`1zvv&;E}~|97mf zd-prK|K6qJ)Bhdj-`6I;uZC}3bGPs$_bs1F0ya-S`FLJ!^5wl(Uq7{K`*iuD!J?;e z*FIm%Z)SW@YG>yj?7jALfY-Xsu(bdiZhvOeNxxh3{M_DC>S_CqmCY_}GEH3<*gpS5 zNz0*E_x!4vBq}@lMAy16U!W53N%_BNL0CnOu>Ew|uh)Lxm}Ycq>QbddzrV`I^(q&i zPSFp)?(V1Evf^x!&7{kfv1{v}e^1veyS;pRv#q`B3Du=aOE!N_etP$zqL{zg=cx3q~mft4yhV9O2fv@i>O0J!2_KfG}(y7-o_svN-vGL=H-*2=N zRsO{Vm`e3>Zr!?T;@>6B9@o5HKdwIcQs?#Km+vFo*Ug%FTsfAppXZLD;$Fuphjz2@ zAA2Vi=`B}#^*LN-R$uHv{k1KD&39krO3#tc`qdy?7do>zo#*Dqoi0|^Q|9O_VcW9e z^~}fX_uc<2s^)ZDzWhYMh3T<2ulLz?znU%Stg`ZK$oj9gtW&>#oTGPGeWv@n`%}5j z|J^pTqZl!&cAj|Ns48D%`_Y?atroRAJv=mSk7BBDJXW=AVj! zZ=arQ`gN@0O`6K4OZ|tpSD{o zv;2vrCC}Z;@afBzm(4wAGHcc0&pUUVy6@+HUS@ZwqW{xvQqp^_SLdo{-KjqIsi~so zd0vI)qXT;j9=tlX)kUv7+}_7QP5tgewv>dGZr=A#zMl}boMHaX72l5@PX0GHBVHkg@7=l+>i1mP4)m$a*}VU^k>8}wzMfzfIj_0{ zG9^b1AD(M>->rLV#aa)C1Pk8PpO-dIY@21uE1RKlF{HR|>u09+VxwnK?N=kKRhs7) zEWKNp-Rb_(A!6aqcYPJ{?<{zp#D=y$SN}QD{ngxQZAPn4JUF-Kmdgck^V79cZ}Bnx z)_Yv>PPjJWe`oZe&m1pyoH$W9;fTPz9gdH7vV6{v_YC{ifAZm-tz8rE-P|~z_poEc zSxE-5xyz0j?k~Ui?8n_H^{WI*nv$))MoE{Pt~7bK_06)VEv9k}G86yZ%+3zPh|e=NgsD*@@T(bk@;X{lA}TQw%F#9#fip$ zGS2-HoVIhHM6$A6nR|4f`1KFF_U;vP=_`EL$d|Y_Eu`OIe$8vWuNBsZW}k|C+JF8C z`(?quOqbSepZ+D>{o$d=#kKoSadB_mqa;7~e+JK=U}-rmH`mQi%KhA2f{e*WCU!yuZ@BcVi-?w`2ww>Q~ zYjs}Ew*PUn~f`^hpb3lRtkAczwHI#YaE;?dqS-{4d>qzsBaRS?<5YyAO{WZT_#FwLa1H^V;g4 zYh>kAPc3#x-!E1k+s*L4`F!H>vb_C#HlO!7t(d##x5?|Z<$spGZQeh*{#TbuxO91C z+1mG^-66T_6kqCX-uLRU_4E9x<=1n2U%kE;R{Q^q=8QXcO!;(vou9=r|N7&<*10Y# zzddF@az1uZu}ti>l>1Rzj_%67f9L1qB8BQlxxvguH_F@Jtkc{Ov-NW5&e*MwgAKgg z550T4K{t2D)!(+aj6XgydG~Qy}hm`mrrnld4f!>MXTP?<{Ka1?H9{Yc^LL#g7A->lQS*0*TtxZSh@cBxw0no zLh#?~ljqw0nq*s?WfKvu|JAO1%bXdjTU_34&Esy1$?~vuesU$K{f9_S(XY3*Uqj|w z=cMn^PQTk+EjM{@>Eel7U+4ULef+|&JiXgjMfY>YmrsB5ZiX+rs@V+VDC3Rqe!hO5 z&9^swzvc3~snN$*<^QzMy1Dz6LGEm&MU$3WRtZhrkbdr9P-5}pFDvEZe-zw%vaV3d zKqKaLV8)XbcQoI*)vcMsYm&6dPjbcottC74>LB%uNXG}l1p7}?6 z{kQA1pV_@mA*$;7jstT0mu97{l$v_{=cB;p0|iMR z>ef$Rx6^64T>rl>%EIz*{MXV!^BCs*%a@OH963UccFKVN%muq1W3s zt;_msK0Pm{W6reWE%Q^?g^DlI`>%37@kpn9sLaHftLN^$d)e;lozJUo6j(`}xSJh) zWbxq>W%?@hUyh#1J-@?JsdBA}c;y%e8;hbmy7O&(iy(tl)o6`g)w-r>)Pv*Is(pv8s6Up*L4fTQ1Kqa}Ati{V{H* zv~S>ywu2?FcJ8}(ZO;O?w$R|dsh=4gj4$x=oqIpW{7swu%#H6t+dnJ`J-$SDi)nl3 z)W0h{9^MJQI;qqB`P6&*`ON{wS(n3S8br)(|Hak$HhkZNO;gKlm*<`O()4+6&pQ2I z#h*g18=9u89OtlK6W1sDxu9=%&5Av_^FQC*cYU5}_NiHOxoX-%q8{zF4CVK4-X5lT zU1zd1yL*1>3Yk5x<93$&dK@b+Z`rU!rOGLO0STtRidR^OK6EJ`XwGF-J)Gf9CIytW2}E)jgl1 zvcA{W`g5(?6Jsm)vMK*gLS3f)J^9>o7T2Q}PyDkvx&7c%?g`pjYZb06-}WiZu3g!( zzVwJ?oZyd_AFJ=LtBkgLnW!0C!`yM}&i>@X>w|0;i3F&`mj1~s?m5=>x8(TD?fPrO z_Gf2pKD#T{dyZ?A>3sEd#c?*1_vh@-%JVyag!QxKUM@Ku+eLj#&+}iOVcPd-cV;L< z%|ELDud=s(&w0Tao&u~ z?RL99D+i~3`C5JUdD7;`vwrN$<*c85ect1PPdluWYHEbj)Y5mI`@yDMY!`|sX{#&{0{+n4}1M?lG zq|e-y@T{=yjjl3RwfOm$8QhZB-}Fm&tyJB!hC^T1VwKeUm3oZdwnvoz`)E5oxiV#r zzWb8UCqj33?l={=>)ukm=Rr|IKiN1fg=NLxD?I1<*^{5A@GX9k{ksgwJw9v|AM5{% zys7%95wYa)2iCP0`cGA-tjLyH(kQO|`Ou0zY`J3QKDs*%cHQvi|)s` z?Y1eI_3f)XEaJrAPJTYs{%IxhJB+UFfptoG%-%k;Nn|FdfQV%IIP?TgIhPe0I&d-8MDxu+jF zLl3XLxPou`V?E^=rte->oVAKqnESCyCZhHYcm1xtE28J!*|6}}((a_a-+7Ze8SCcl zSlr)Z|J|i|et*ugeQ66!`bq-5xXWu^hLwLk%$v2?-%j}Etw*~~Yrc3JbbUI@RF}lF z)+USght0D;o~&K(^X^#M`7HV4-$BitjSoNT*3NlZTmOK6-|y1dg;5)K)fJYR?L7A+ zru4dMrBABV^7OT3E$TnYWYc#_MLdlnUgq7x6C_IV-fGHjKFugqab1$>oZx0Z ztBh|ExrGzn9KFf6z22XfS7Gm-X;CYyUG_`9dzO`KZ@1a2box@gn{M~gEd2sfYE6~i zs9gTT|8)2E*hIUjYimzgopWzD`o2={`korS-+_~^1m&Mz|MkF%r<=aVO?U5oDiLtH zQtx$k?7eXNsLN}GP1moF%HCTOY`SIDMvI)%-4BiLF1_?nj`8KwyEoO|p8gqM`p)Xh zF>SN8ekQZd9n0Q2CnV(SDjMjg&obT=3mv^kVY)7{Q*I&Er zRi~%y`_%i1_v%6Q=ch86(rq2w-|b?&AXOEfE2(>Rjj9g&0_)9Jnp3*`cJ1Wfap=j1 zZ=cpBou3(c=Y09q-kjpWAtNGDGph)Bno01YKsm zJNx*a@*cVD(zMvAM}!}rWewQOI{n5a(ZAR0%U@Q%&409lvHM?Azu5Vr?~AR&P21B8 z`*xq7eEp0)U!=3_`BzugIK4c>e(rH><}*`^j@NSp?b2rb@ALlHu}bHv?FG?it84<+ zEY(;&pZBoCWOw_ao8S%OY8Wb%lCUUKdruDTmNV8lP=5n7Zt_J7cf8VO{)@J?qAeAxs*kDlaxsA)wkB4f9zfK=UYa(&R_i- z7JB=h8>q+ZOP^_Te!JLDp-)T~b}Q*hv)S6s;*(qdyOZ%uM#yFLTmRw$mnvWC|5+lg z`Y6uslFaWbv*Z_M{>bPG`;u%Cc`mcTy{c+ToU;|z&vX6nVv>srCWU<#n0&15n9)9`( z-%GEQPOqwsGxC~V`@OucvT)J91SPhW`wO1DWGG(eIL9M=nzPCC%c-WB=YFj5xw~(= z`kASkTjy;1x^|u3s&m&aevs?gbZVO?d#&yH!n9gbt8>pc*{`lusQ+YTw5jZRRJ^h9 z+_dgj@1)oGygQJ#@{WmG<-`vh_Dh;&F1PecpUir)#QDjF3H{7FFD9?w`)$V3!XNMU zvu~ND`Gjj_vhuBanP>Jd|9$;oY2*vPjasV{_dfp?{aosIUVZ%Kg1Vnp2bR`barke3 z+4oE9UW`_kTvu}Pxn=q`|77-m61)3-rsw|8%jC=WD*| z+upJau)4MT-P6U3^X5)4(RJSPHw%%Ny z$~Hesul2JK-uBC{+c@tq@F&1JLkm)H?CKg7t5Lo zUv`|Hdc`mHr?tMP?t7<0)4wyPO_{&`+T?pD7N2}?x=v2=Pv(z5r)S$Gw9mIZevM&= zC9?%@&!U2J>vrZ@ez`L>zf;@ca<+|s`jJXc?~3xoYqJuf+$+D?DgB#pBz<#l(_G|u@6z$vc0ccwe=M(m zG+$r+%+)hHZ9E(NdcW`0RcB5pF?;{7=-mm+$K?#4%o{`(9(keWdLwb~{tMRw=h?VT zJjdPceY|WJ-^S00_byL&>-%_m?(CjdOaf*M^XQokZ@Oh zE#vB%%^vsW#urF_Y^Z2mG8cUxWFKpJiU)yMAHQPTZU2;qHW)ELgtG9U_?^<^s4%+kn{`AdjSC+c+ zY)Q0GC-)w;O_^<7z3SVmw*q|SYW$UT64}i&Kkv?ZpR?Glb))Y5_^$jM zwsfn&kZZR+b+`8|GE~c zPgl5}JM`=G&WvrB6!|PxPde~?<@8gcC-YX68{hL=nS0P*=J%YVIhF10y1&h|uYbz) zV2N4vRLg#6iu>XF|5n#G=-lo&~N%y1q>*#a-hgQyf@6O#H&Yv;QTwA^Sb{5y}JL?QO z^LM7$xSmm6|8l8MUHacES?@ya-uL*NEP1qFBgj8D)&7%tILF#2ANO41S~_#-+!&*@ z?Q_eUcb?yKsNXuOr8{uhzSsW$_RN1dQ{Vrhk{>U|9oX%?CxV5W0JP7yZ869Zt+%m-A_+%BpsY~ajGBl z);-(izAbiJt?G1j+pbpa^*b-KzxiN&^r=PThwmphsy})) zarMz^OO_h{?|hC{QzEke_6Ef{&3|59?(qHVM-Bgf3wz7iR`1s7WBUH#$#LZyvdQ~O zgzX}pcmDiw+v=ybUC_^)3n$)KV|tNs$z$J>pVl3?5PbZq;JaJ$vUzI9)A|D^oUr-s zdNKa|+>6h*o!@FXS!C}d#!HEh`y6$0u1HRlC=|^2Ig49{J@r~t--@%pgxmI(i_Vj~ zU(93bX1PCW@9#OQzrHJ-pLv`$;!;)rrayW*yElBQDr>B-dbc?@T)+G<`{%0McMqhs z8k2qb7|I#K4j%hmyyTc?YrPMvYUm-k4_6;=)Yx?Sf%$`i3%-OlZ<`nqzCNUgT9O!481pN#t7fB9~6Zu0k^AOG%ne1757C$BP`c^e-*kqMnL zKYyyEZD|~1#<_4~)yda)f1X{dzwfcRtXk7n=W}fRaZ!9RKguTTySMRw&!*tLInGvX zN*x;&$~?8%o$RgrLb{IEaOE=}KNR}(V@r4KR2x0N^;g-YyCdIUHA;HE^toWezBN(D z3!>}~9l5ww{HI>u^WE<^Y;UuOGX7L1{dn4^WzL@;{k54_cERk~oQp+0?lpQ*WqW39 z?)zMMFl^q=HCeuoy`CRx(0m$fyeIfwp>R+As~h`m7G0ix;aBjdr>l=Gb+_d^-f3Q0 zd8sgVVu<9MlZiPevYq;6Pp_&a$$2VnQoDjD8ti;L=j|@z6|Xcq zwezic>*A8LN)J8D)5!>XHm{`UanuwA_MY<(U%e>4+xxeg#Z7kJF2RGD%VzCt3BJoS zdApFIR%Br9k@G7WYnCiNsmLc$`?|m6e8x+071>Sq%6{;^?q6hXx=g>#KK|oVPC?0w zCqI?{^!XKXdg^{FS=H9xJfBTHYU3_P{-1tOe`WstrS+G(T&wdwJpMd~dF5;K)hFlP z5G^az`r16>qiKV|L+J%i=UjiY@Z!#G&#%PJot>qsX>qp0lI`(rak=`w|1Z<)x$|Fc zp1AM#C)S$R?(uPVE~NiWy*BIa9&7vP%|8u`L#5rB%T71#b(+1T;!;nv4gbr%>wI2z zTs}~7D(ETWp2PW;A0}xF|9f|RQ_1^&9R;hCi9e# zN1E?se0we4%JwM zyPv%~KWX{TR*r@ldsI*wqysg}J z{qgNr1a0RpnRmMWN9&Mt!F!PMRKy#+!tyuy;i#UF0GNlZg%eDa$mW=w)&ftin{8*V2O2+e|G)NJFx3~e`$HimP(UHcS~IsFAH$1 zwe60oI@a`Mn_tBI6>~VkHJ_fF7`%3Q`ME7Yp&w-I;vUP{*PoB=QC{`-$)1xXQ4uNG zH_c}rXIXfwpeLQ7@NN6FJMUcle%1EwTlHZ5qJzg>epXb^zwDIy_MY<9Gj`H3b^Y;{ zOpEkYOWuE9-p|>0UN)Vx{@WsP$A_ji-sfe%^7+QUpB#T>u2RvzXZO-SEm`$shtc<{ zSF6)%KUHeUTeewNJ@PTK^PIDE*L0gTH>KS^^~U|2Xm?8c#-~WzxXJftzB(9n#<~5j zar6A`rfCOmK6qYz+#-0D7c;~Emw&}SzOVbidGAuXa_zgSgZFdv(ucI72J?D6im=V>)08E+^abOMx;YE= zZ~w?~v6}ldEq()cUi^pRx|5abXUVkJ!nbc_ zw%1hq4R16SXRO}!C+MEopEJcP>Oc3i`0*}&XL4PwKke(UqLV+r6^VTLSyR{dD>^g$ zhpdUQ>?Yf@%17=ue>wc`R{k>8_*Ijoc767Dul)A)_Tn)4XA3S@U;Lfw@$Bz(*+uF9 zt}16UK8Ri2{o3Z)W!``97^IRd>pt(e^D5`_#tScYteLuJb@x%3<2@Ch3X3C`y;wQ- z-Iv&>GGX7g+G~cVR=An>{<^38bM~fP-`;I8xVG)&73LJK-HY~oX1*?4bzmxAxc=II z75}Oe1K8qw{jWZ#+4qw7I@ja!Q=GjEcLXvk+h@j1h`V}C`jd|Y|H)$Cl)Rm5b@My< z%)Z_JnRvBGvOhq!L0wm@VBSo@l}nDYPtw!>o%7=Lywv>GKj&{3R~*g$U8L}ND>gt>HfKLQH!;&q=q^z2c{)BnQ0y#P?<2yZ4`e ze{Q;Mx-E2)>%Eu%Y)^+SVv+9uH|N{Tw!GLme=~CB*t2BnZsi$$Vp|kny)%^OEGgro))Vz0on&H!|)lu!27CO{D z4(d7|*L~)5s7vXh4gF08>kq45^wjcfR<0`!4Xs?KF8_714|BuaB(^JsN#`buJuO|{ zHaXYy$-W>e7L%`d53>*4_yS*}mnMP3hXm zJqLcrZ%B| z8t!}dF8(g~U|Y;)<-_|sb?VCtHs1}@OH(UmeYwgQT=;!Y-2Znzr_`Tx`u-Nl7vBG7 z^@rNBZJW;YbIbWUD8w4$*&u|O4BM-CthG~zjGD4Z2wcY zZE^wgG;j4jG?KV`A+ADIYT=&R`;70;PiMS)@BN&d14kbJ$lFn5{Q9N%zk}QBzB2rb z{uOcg{?8}hyG!2Op0h)T>*V{JpBMASrm{YnaKSdA_}s^vXo_Swax}iMJkK5Sl)1&pjH)Wmq-hN*=BS!tFaPNi#$#(Ue_Y4YtCKcPAEv?>? z7d!1^{B^mwXY&(Y9h2X}b8~u!;e z88Mx$oL@0pMZj>U>{Scdi|-{jvfm9q`Q^}JGfTbKFMK^0Y-KTSH&>3BzH@tLSjXh5 z8l&fzt!`~j|MFn*-P4ILzMQwQVVfQiTg+^e6#n@{YT~2gJV%XRU4Q>w+4tv-0I@@_ z9!7lnx6ek{d1V&=J+{nER`u?+FFPJyoG_JNbAQIMME|OFuVreB;(koJ{n|ozqOE-9 zQQzfPf}bq881pdJD=LrsKWFeO#Y~L}^O#qM-#T^U#FrWKOI?FZU8a_=^?JK+P2K4i z(bo-+9Q^Sl;`-g^E0;gj`L^%p94~fhh1lmC6QeE4U1U*XXu+h zVw}~RZ~ywg@RdG};=dt#$>y%p=Y?)htNxbuypBoR`+HSV{iO3X$2cy@pMPL}>V3t@ z46f&)x=S=~uiDsCbMBVQ>2SjzUsJsWObbLGe!1x2IsdiX^)-8Q1C!SI*IawK)9xy> z{iid(U$6U6>wD?qhwXMhnfEL`@Au37{x8)#%b0f?)=O6Uhfh2s^yt&%ZP#u-`Tc9} z;?&sMXW6roZRSlj3bJ1QY|fNJy&X4RpL2inGiUO-J*>*P9j{;buKs^wJBRc3np8Hk ze~b6MkJ@3MpJA)qebm1sXI{w@_bVIUS;w5OxxH@t;TLhA>1<*fJ+d`_%jNw-#?t{ha3acGunQ=h}m--$ks?eII@G zi1n(p-Pt=Xr9|A?T6XSlde!mvsdfqN@|@SE8>q+`rcX>4>fG({W!XZZ;LZQHybGwR9`FTAL|4ICRw&~f{qeovx>d$Y=v)EL#TyE;j zbm0VXou6jn8Vqqq^ZS-QUU;_d{*LWOKWBGqf0`#J9qo>=kXw#3{7!9N{#J05v0y&>Y2pfz=`#{RhC{y$rDtr+G{Ew=iw@5Ibq z$1`jWC(q)UcRBmr%IkklM!L^g)^N7+eb?)g8>63xweEbUwOXn3)x6ag@($d&o9`U^ zCAMHyB-=5mov&@DR9!f|JL>~;N8p)Q9ed5raM&$jp73*;@eu`2_3mGXZAv)GG!Atc+}+ElTiO3v zeEn*xV>bUa|J_nmR|vf~SHdXc)%H_e?{$AX4|Zejj^7$u9vgQd@VIlGjhJJ_>(zM? zvNLiGjoRLNmMw8v>fE}~CdSQV_2KC%S@lb@J}I8xd*QL4&9%ts77mXZO!t2g`|$nV zBA=-d-p=nlq9cXxRR<(Jj5>j{nL(weucP$kgcRuFZI63FZjYD>G^>=o*em>Tlk@I`g zdEvYmyW+{c+k>|pbgsO5sAkF4;1s*UXP@0Z#T74qw2L+UgXqb<&uUB4P6?i0%qJW7 zQttb&DTni3)QV?pd9ZBBl{b@~n|yitK-5oYwhaFx&pAGy``YL6{xGmFjn~+?UbpDw ziSOU!FHD@(a>O(!w?$$8p%S5Q8M95xPAf;Z=R9Wk z&>jCvt?r@se@0Lbr>$Yg{aw{Y#?0 zRqU!LvQjLoy<3$tp<}sWxt#T$1ufQ}_Uv6%-LZe?+qZqQ=6!zsCis(ZdDxGxW9DK8 zZ_PB<+U+^J%W=`6h?fVSwgqRm>TV5wq@w)i#~K@wAc0BTi##!V)3CU za#fl7w3Hj6FP6$h)IItq`mUvS*0IcMT8FmWI{9U0Y4w+a*88``L(+SHg;+iBOjuv) z)%H&6Y~1V6d2ggA&vQQZ>3kULy5-?}EdG}LUcLJEt##)WUp_n7&AjZg&Dsi|AFj=F z^m$L-wh^jWKAT^)_5h!~`>t=T?^kLy{+ZgfH{$y|f4(U(?^3nfIRjWtmwmW@j&c6} z*GuhK_pOfIY_?N-YsRh%UeQ0TrRL1n(^)lL=HqNX)&2YXPd8kjo3;FxQT?Wd&q-c= z+m4v-H+JeN|7lz9RHbCBaQI7W6ZhNCD&^@0S0&n4Tdfv4A9}&wTRqKm-u2xgtdslu z?Xr7k9*_Q@`c(Kv#>ej1+}dE3QpFO{22b;qNg>7h^Lc+=-u$YdPPTt)o`wCnzJRUo z=j$cSiQBtxuijI!Ip?y=e#Dx3vNk%!{^@R8_3K*p^?O^_oZiXWKX(-$&q}McHlKfe z>3wxSS$EqN{%N0ohe};CIP(48=a8jK3yRY0jDKu=V=UTgeI|3u?|*+Q|6Kn6g}Z%D z{>x;a{<6pQe~;NmOw2ydQ&&^IXkpb6MT3`Hwile*TfF>Mm(-OorSgc93qLPi-`KJI z=*1w(CS{BIPrttH>;JXBG+rvP!sH{rRB7(%iq) z{mxa>j#HktKZ~co+s6_x``7kWze}#D_+JtFenxg{soLBbkESes-{tdVpW%En*9~nY zJMOLFu)OzXvvtgL#`}E>p9apn`|E|$oGo`x-f@7a0VDEXbg?2aFaZv z_SxnScNuqDTVJYudQQdRV&LL4`|iY9w9IL`V!J#hkZ)pQ<&p*VL)*{aEMl zHL|pN%ck$jna!WvA3I3Y+*@J)uIGGV!R3^z`&eh6dgpe=%T=#6p;B=Fe92!n?tj;% z|LZGbkZf~3ye?d2&6)EW*YnQ5-nHPidGF$cTj5L*Z-w0+I0f}>+imj0W@Sutse1ZX zv+uoA_U+5;-gV4v<^J!*`}g*x)_Kd<{|dkVGxN`jy7sC&Yre=V-u%wQdf&uFzd|A| z-86q$Z}n+c+0)3EH(v!U+ofs5Ya^O@CHQTN@$~qqoAm7F6}Nskv)D#l{`DoZhv&t5 zf`tt3?^%8!ky~R~Z~Luv1rsXS{o=w-ue&&*eb=)qVKZZFJ$79=kvPy-(Jcip@2z+xU)4djIv0)kpHL?#MlBK1cXjwe9g~*40n9Ub(+^ zOVIp6oy7T7(|3G$Zuf1@@=!NE+hdFE@4nJae^#fG-FJ3f;&t8LKU?Q3Po4Fev;U^C zWnazNg@$JDHhrCL5F(?p=3M)U%YW`UwZ9bE81XuJzF!rO*S+fxR(<$B$v-OR&_?$c zbHD0*Jh{Yv{p4%=xVAs@oon25F;jbI_|~GD6)%~~euOf~aV=e5c0yO^KKp-_lFx59 zm#grm=ZP%xI}%)JA*+0$TITu6TPj*F?Yt&F&e!%iFQ(YXt7oCjye8|X!TRv@``3Ec z=E>BBv&}f9Tf+~(H+@%g7Rx^NKm5zs z;#;lb<4pbiuBl%yXwQ6={a)stte<$1AAh>5rs(t7m5YpgA1`r^=k@KdI&R*%dE37| zYot#}ZCIpoC(+#EFmHI7Ua-lmr_Ed4e^{qnd3nO4vwT70gj4g+U$C*uH~(>RK}Fd6 zFMf-!eY{=&?fO5bIgfQ~Z@d)W|HJpsBk}#54t|fsmn1J)$jtlL&rU(9S3>pa%P3X# z+TVZEcwgV}m5Yt&e<7oDjpx?Idn;=1+%$iF)aKM=_co)T_0v06ve9rb>7Uk4VL2A_rDNH?e?bS=&Cy?Y!+vXz;P=ww$0MeB3YW-D;9mb^->qNDk2mWp zW)##pa(AwtCG}19Va9LSRg0Z$KFpmOsQYTOwNry&=gU2-7Oy>{=NWO{^fb%6H#2q(jW-0I81_WYPTeb0A(+rG=HXV&zWUaj3- zcjr~>zKrR`2NLUFCaYJM@)WF@_PDh?=iH>LE)UMX4qV{3e*05<-M@D|=LLSLJ-aro zc8N@C(aor*3+6c3-4;ykl>T>>!$tq-iVds$Kg`VzldF93eeK5H#_us(y4lYdny(3s zTVS{2;?ZZ^4EAjswI~V7E(G;G4^=zn7wyNsebAA_}ByUw|UvPPP$+;4TpEZT*k0#CC zy#8HD*>lVL8)fH5FJBSWJJ);l9M1X6-e+IE<-ITV@*QOfzuX_z=h$6~=E%fzZnrPx z@}4nIvS{!8-@9YfL;cdD&aq9NmtN2Q&qnG(p-N_mX;)uce$7k&kG=Z;UNZjM{$=B` z`hV&6{0^V>UhG-^nXAC--uvR$Z#QLFZV!l%aF}kB+4JhP`6G*SD_5J_y>@t$W@O9v zR?6>KTIH!{uhP!DOD_MriFcRstB7m6{bY@F=_3{kxHW zVd47wk;z*_cGeVSp8LMN_L^D5;m+gp=WXYevYhAlqtNQY=QY<;JwN5kZ=UjL`_;{- zFLrIu@fEwWH~*el;@)j`Z_4%i?zE`CzIe^C{b1pTGn_wTUa$KUdCiw0vH5o4TY-?} zPc(m8m#e&veRVFheZ{WHmsg+PzeaQZ+&QhwjY6k?G+J_T%Y~5LEkC->?G&i9zXMv1 zGAZI)j0X55zSzO@3-lNAdQxE%m2gx^>*to@;Ve zJu2>sXK=Q)u8NFymUEV$?T<6jD}?#|>#Ti3E!4K0Qf13qbxrLb+m_PvAMZ_z5@~+5 z!02Jmq3;r>BTHoq4k)X0y3arVOHF1+$=Zv}y9<09zvrC#Rgs$XW%1=J=kz*fFS-@_ zd`tX~J6g59-*WS}BXAJA-2#yP1@}%nf%r{*P+%^B|bi@~wvA*8BI^Jm7%Ng?azp|D{Pj~&& z8+#=0#~t3fTH_y#c^_8quJ~~?d|#E!)y~Huq0R68+jQ#wy?+1qi_xonOZ)9@Z}r~) z(OGY}?|i!WhB>Lc&OZBnmPf@lg?ZNdE?20Ck3Y@I{rwn(=^Gyj`<7M6Y$!2@so1Y7;Z;&rncLnXGliOmuRfP6-nEOVBiK#3a#EdPRH1tBmmWv=HTJyDwfoYa z%(MP~rER^L)VrrGS6*E04cSn(WOBj2{-3Y@7O%ZqxpYh6y|WR=Cp_b*5A$uSTP=88 zyFW-w3xBYtH!yx_d9$TJVJwGS>_hqfsvD+Z&-MBF?`mc5zWiXC;L7$)L^8Km+4l8B zmIKA?7yG9#39|{G;s0*&=l5y#|MqlkioL>9=)FB{+k(eFbM;zgXKl0i+K}sU@pP;E z-Ty9CtNa{}Pmb`6y|AG-ec|zc)`pMEzZyOYy8qqi2*dv6T{E`q(cdw_MC!OxfaIL{ z!JWBpo!+lAS)y@Yc5`m^zUNmhviQE8IJxoi?te@4w#Ev}9^I?qBP*pnzqqRWnc^PN zbn&cGyEmB~i&m|85#MmkchJ(dtJ)PeW=R{hOI1f-acr08 zfAztsot^x&lZzEO z?|PqKY+cQM&-7*4>5UdIix1}Tm6XSQ{=WIiq>YQu{*JO`>McLz`}|pvYeC$HAIEx} zm{f}I+zj1*_++V#-F^Mzf!#a5ZaAO)ckZvlRo_|XWOThh8ocV+@tqF3NBggpR^Fcw zn45btH}g=$e)r6zJIX4F@Av4xalhJjtoRsv-<`Ui71oL^$p;@C_b_|0&+TB@(f4fq ze|Cxe%ZRC9&t1L7s(rqFk?xG3U@5;lZ?;?SxpF?XTlM^;nM%K3>z(#m+;Hr+?A~>~ zM)kcpyZI{j*j{gWEqLzD#n5@y^}=Q6iX*-#&MC_K@o^bvy!nsf#V6zhXV@&bou7Da z;mVa>|KsL;{+(xWKf9P{d0MIJWDBM{9OwTuHK(%8iT`=$`$uW}pZXuB*;&7gw*Mvc?=k=Wq%GQf z6L&Ry>}BiO{mLriz69U;+n>(vylry5!AyI`&I<8)_cuT1v$gt>^lNurg1${se(n3s zH>1+(zFDt&H-qn--b}MN4)$*04J!}-Np2CoeR{EoCgajVk5yr{d$SIn+Zl9CJwCZE z>kMb~C&~NAp49YPDbMxmns<9Ef1c{g)q2nM(>c9oY?6C;;I?zk^!uv9mpvVIt>Vx^ou4z`w1mn}G@e{} z%Z#6;^OC00_Crrr<_W!G^A-R{xTg+zlqhH-mTA{+&TF~ zuz=TO|I+04`+6p)&(2tO_oa5k{QI}Rizmvg|GID$Gbj7~yVtnaZ+0}dJq9-2DA(Z&pY5;_8}T-%mdaDn0gl;@agOYh}%?eXm4L{^I*Q?i}~Q3AtMNPaW4U zwURIUv3kMuK$rLI?zeb3Dq|*!#7j0E+rOmX*}|U+y`@HWLUQ(XpO<*_Y@7XbVqx!l z8~f>;adJ;Bqj&PXmwDXhYyKnjaDDrnPQ8DT|NnnGUN4^ia`V)G|IYtqw%EU%x$oK1 z>Akng)w#ngj|4U|gt-Ja&k?hkv^mj=SvqWr@Z5@?nn!0oK6a1}STysA&%$Q*2G`G$ zdt$r3-o5+a`t{$RlN|pX3ATN-VVdH9OWg*kOA=>u#Y2-yGc4Edx>=-^XA782q+R>=|GFv0W4`6$ zfsKdd3XbjAwSZ7px|ERw9$G6CjZ?7D-Nn0efx#nHM)`@$jT18A{ z7Paeta{9YesvN_KPJ5W&rSd5Yt~EuVdKgC@cQ*n zzUF5U@lUmE&VE?-@43WjgL9#Ix1#pw<=qYDCMV3tJSoN^} z&&~RhivQE>o_*Q>|Kxq9T=CLruc}S&ox6Eq%Jzlry37o_Za@E3tFXWA+UqcuYxddS zG7bcp?JIxj*|R0s-DhW(U3Q{@@&8J`%3|5eH(&nMxa7)uC+xG(r}q1k&I^h?-+3oR zhka>DvoJqf(d_QeQFg1-MRwF_#98-+u9+n&tA9vU*6Og+qte|aXAIM%Z>rrcU3>KM zBC{)oUMp{`b+J+x+JE-b539`S{>%N(A6*=kI`Qkr8(-h7xgT!wPGGm!zR7#8$V`>l zz1Hs0&b)KtJ$<{U%#X;AQ9j3OQlpl=#rfHmbNBQ3i=)1k@BDV-_neT~71n1xkDrd4 zemm}Nm~v( zJ~#2Io4>O_u+{c&broy;-16sM$`+o`^Eqlw|Jz^BPd=~rQ{R)ZDE05z1?6AoxBm!X zWt%qp@fPmKEk~yxw>!5lX6>rm`))5=7TEoM;aBs2-=!W~JiIcMLww!!u%s{Rj^$Wb zHy7Nv)M;rXqPV?peudFB<5TOcUT+ch{d`i{=;~&^{mMq~yS`||y-!SiV|VTBy%+mm z{rGIT?z@!o{QsrfQg8oS!nNW2a^sp;7uQV*dAhbpPwGI?wbg4AKkN>>m!&1~swuc@ zk?fL^4E8P3K5Xt&eolJ-o-??YDJSfnq5Hb0o1@aU`RHF0yIs3~UZI)swo9VrS5N=$ zzVqOD^$vyy+xP!H{o~#5{hN9(M*pg~yuSA9{Risy|795_tNmJVkX?lH=ug*lx%a1} z-Anjh?R*|vRp>AOWWxgyg|#1Rn@=%B9530l?^;e|a-eVaw2I#sE-qZ%dv2cOnK|=& zmp$9*@G|%A-(^2nzCSnpj=;%nd+U9sY?=4zguQO_ogLLdTP@p*{R@`ua-aVGX4)sA zsfypzT+SH$>2|NQUnP8b`exZ&8D{JIzwbS{qpv0RWXFfN>vg{bJAOv1hA+`%kkdb% z5w!kq>a*&IBU*FMZP@e1yR_)@jN4yl-{)q$Q22LWe79f8n&l~iFIT&5WSUXzQ?$eJ z`^SmTZibacvEKc5_vduA(sQgQc@xS_!ljni+$?zbIH{!Et6N{z=Z-3DEx?(4(_g*C z7i8c3JIBAyYU=t8jGxa1oqqf|c0-2VM4`VCQExw{%dgzLv@2{BjQ`|LT0rJg2zCG7vy$hoD{ogBtrIHU?f2SKcgeOnmRXjGpK^Gd8#nazeNQTXxoJ;<_h$X` zlRPVH8Urof96i19sh9pA)t=(NPhY1hSgv`k^r&Rc+la3_p1l5cXJ_cs&{vbCBUsZv z*+2Vx>-qlf_@AfbAM4hZUHX2%UT**Q^!p4KnmQ(}yIZKJ`L4KFru*iEb4G=&A5*PP zUR$?Ry6Dl@nH!ar*x&9rJ2CfJ^tr=k|L6aVzQy2nkOO6?<~*M{oj1dn)SvWi$G5*r!Ug;5q8hxe z-lYrP-9v57y&u>aJT_oeb4xz+xCADQzO zE#niH)SYqh#6e}B;`_O>hc9nxd;i+$h`8oigB$%89|BKq+xxZe&TQ?=hb8^j8wy?I z`u+Ctg8SdAZh6l?`)9iD$3rhmd0dwU``lXV9_8?p@BF32Ro}n26qf(Gd$GURit~Hz za<|;iF_-P~t4;>af77=ouQK#~o}R7dysdwqg!-Lz4td++L&So@A9-36b|)^=b>_ReEQ{kVZ(TZ{M~00-y}6y>y?tdHt&itj zxa)o7{QKJH(iPtG=YDxwe*bv=@5%e6&wJF%tt@wRm;Iz?XZ2aHcvtBO!xQBtEPac` zj&{F1@!?m+pXJsOKlWWtWU?$`uw~z{Xz7h()^d`!Y8j8VI_UXCzrK7>`8X5r{-ST& z_e}2nAUW^HoTtIJb~~qRUgvmObaEY3U3D8|R(smBtt zIbn8@l!ks~Z$9^}>GFN~hoikCFC+%0^t5T$zMIUZxlI4W!RrmK!OC9zl}+Y}aanKb z-0u~*`RA@pytwb(h9$~1TfE!1D*efk*>$XU;)d^gZcplSil4NO!y)GOpU*B`@qCp( z9))fSd91vg;eO@Zx+kga`BOY^x*X?u8r#Y_;qgIJX3Nz#=iU0+JYi1%gk>{ognO;c zUbH0be$#$AL+;_?zwcWfr(V6vyX;Cu&A*L$%S*2_)^tyIe!y4t(z@K@Zmaio&Y~li zEcG?!Op9?Yk5%UlIigwKy4ttjM{V!Kd@Gk6?b6LTr$4ST{CMSb1h|M#@I)cL;} z{y`;0&+o`ROMS(&;%mj-4dv$-oWCFZsQqBSRr%4w8c#0;xZmH(w0ixqj*C|WOtha| z^4}HufAy2}-TT76=U)wYUu4Q#m-!{s_hhl#x&M#U>*V9BzB_}LupEA0S9`&seD(p4 zIX`C`?&z;?a^7}$&->bYH^U#jy6$JA<>Ptx!Q6(`jh6Fox88}cEuEP6Wq+SU>bA7E zzu#ED7B#%Q>)C4Wlh-sa&uY~CbMd2!-=Cz4CEq4{Zn{zFd{<2E-=))^FHf^5d>1(V z^zSF8^VZj`-!Ny}o{C#9J$}Zd887wxtD|}R`MQNx=f7TUId<@~W`9=7&+G5G&OEnv z|2lJmd)O|U7lCSX7wx{IF!xTziN|_#n`FwapT63>#cM>@%fC0c0P&iHr&hWe)ry6p`tHJuf6s*e5jlqw~IY3DBj}b z@woZRm#mI$oByEgrKR%K-jH=ii}LCpyKQo^+U=b7UFQ#(PL~(G-g9#$x74git8*5=wmi{|`*=lhqO!;1 zuWSC@y~sRgPQ-7+`CoT?sn6r^)I0uiPU@FC#qLwD+`GobQ&#u4BIZG2oqg9f*@VZn zb=Sf|HXFpSI^8~XA!OOcd!ie(UsN6c-#`0KZrIVtYcD=z|9c*|VBU8VYwbPitCIbX zSxfPi?^yjiHhHi0t0xK7K3k7gzicY%2#~#h@`bo1!@8Nz+4{x5S_LuYwlS`ht2+`b zcd+&9bCVyL-$L0Rc76_NzOioCi^(x zJhvm2Q{lEtwJF#U0;pF8 z^t5K_E7h8JY!{yFy`j{x{)Khv%E0x%R_-&Gs7wFbe=YoP`SCT|_1Rw=?Pd9U*52w{ z+LY&}@%tj~33{3@{^7HSef}F^_rf{PS25l-x;*p8qvLJcCaz!Depx^`um4;$U(Vs* zz1gzbuL^$DZpnEVdz<$`&GWv3hpVP)AfwYz9__C@q^u`mc~}s9%MZ>Yoh(6`8#j^-nbzsrQ@QNe{8|?Z9g^@tm4?W z@7LQu8>Fm*r=Q+=eBR2qSBoCqKbb#yQMs<*=DzD&J@<M_~UzBO@dZk zzqI^whoybb8mYL_$u&}cu55a6+A?};*7L-Uss@ub(e@LGXQxFqXEXB&pT1T((`s6_ z%HpqW>+9aJ|H$9>ue!o}{@O3=_y4}!ylHku+3dr6ZDvZp_1|)LCuec zn^s9rxc~eackgS_87@=a1=iW@zP@|a^%Zw|;}p((x@Uj#T%T8TcxCy$fa8Trk9^vl zymxN#tHAx=W1}M7FWn2RdSkkC-GSX!*?T)*|B5SJ!ff@vU2N@gu?JC;@)?ACGT9%z zvikjCYsGvS?&Vu2+~d3^ymnJuZ*t!6Pv5VY`|UcXd1_Ls)Qc6Tg=U7&=6&+v`yR=y z6|b_dt_w9kZ}Cv#-NbJ78FpK~G+O_$Fqm)0v6pAV@@+*c^vsP1*jL4_Qid-YWUL|AA-vlXKH<31#KldfHg!%y-)zbK+#D z+VR(0kKE*pmwI_ec5BrAvV&hkoaW2kzd7%6dTHPF%E#~Hw4+ZOxSRG?@635@we2-u zcKv33kMEXu7gWwyo#R&4RpHlP{V!|9>R0{t?X|0udiH*oJsrw&nqgX-X`xNfJei`y zFDh>rJ3f4Bq}7ynJ4ER2fk|w$&P>itxH`4%df+YI*v0*;ZucgapFI9PZ`F^r`TvdX zT}s#9o2~yte&4_T!k`J3!RyWX1fP^UtO;<>$WnY-{`RHb-r`raR`;*fW)!uYD4cX$ zqHIfP&0_ZuLAhy*Kj(j0YVjcY+;-ufyaT0ifuHT3Nl%}5pty8akjJqUo%AN@o|EVI z=$zgmW~P)CWg~2VG3mtgFGUP0^DE9o9XY>=?|JctZHc8H7R)$kExcW(U8?$F?OTaH zWBc<7GsPu5xz-ql*r(U`)QQEv5w^2FHaW;^`Ptu(j4xZYZGJ8hUgtGyO7I@n%H`)L z?|Ln`dS^gbRnF{lRh=QLxx*IU*JJk1-RIm_aH^;0+nvd$RnIP+Vm*t$^XlcYWqg)Z zD*k)p|IAB%_cP}3_ZJ~{s|CL;8uT)g^QlEuQBwI{bqpQ`>ieUAE}g+IEit#@We zxktVV%R1{@sCHoP#*@2eeU1DTd&xR+&H0p~5_kDb4=I-7!hgG08hyO_;MbJ?i5paG ztZhT%p1qeV@N-_#^4W0R?>pa4c)qGrPyg^pJV0dgH5pT*s4D5-uc{;#eztp+`SkIn z%9HUwBb9R|tA)(BmWelRTWS6^(&?yR_G;JV@57($O*G`4migdp+0WifmwM-}-E+C( zt@7Ki9!b}KzPNHMQ25M-`?a<91yOH8d~d7{NnY8a@;>L3X;<;Aw!Z(rme=vWzr_uT z>%Z@|?`NEAaHRhAw2Jw>pQ9~a#M#jD1LC{cxV4*wGH1{-x>cuQ}@&OCHr%uNy$&vYHokm z>Yf#6n^h2b;M*2kYklz-{t2GfCtTkv|M`XcLhY`#x%(wo9I9Sl>r<;7ms@?Hwl%Hf zP)xh~!KKfhEiIa7efHJ*Q)lm5y?ot2*KRX^^^(~8pLXuqm9r;i|Mg!svTI%)-&=5Q zTC4Q(X0F4zkC_6F7u+~^y!qGjeFuYVeX2@jpP1a!dHlC}nn_ji)OX46svNIwFY*nj zY<}&2byLHn@0L08UZ6%uwUsgF+v8^{gu`#eK78}h_B;2cX~Kdt3esgo{@k88uli-) z+f?gyU7sCh+xnZvdg!im@-BV0H#0d>&0|mA-Hm03F5lDse@8qvu3f+S#`+X-TZJI+ z=?@p^bqX(w`!&zt-NM~XF7vnY-}_ZjmTcd5NmOjg_w!RaYTjSJ%e>O7BW{mtda=~& zC0Y50pEGJ}+Ug0`22Jo!GD`fp<;yJLg7R~=?7fM|oWg`AvvQTgH|8-oi ziXVpcb~YdTcCE}SO#YRjdx%Vo?WZYh`x#$zuWNYPSgp5x>*4iM4qIz14r?{v-xuSt zv~yLw)Srx!C4&0jEyA1UZ%}$1_iX)!Yqq!VSN>%B_dfqG@1CXS!+u%M|6^xYzE?r~ z=%YTlnNQA%EbDuy@#28o$rdwN&04GPw~AQwmLKnV=2iB(yKmyLiSvV<);)F-);l1h z=YONXLL}VZc;}_}e^@;JEwSFaB_#fXQlU%UpNRLtT-8~d-yL5wRnYxhWU0pSPImSF zQ$H&9CwG_bTo~OaHCNrh;KL@bA5Ctb9FMb<-=42gtn>Pus(OLx^V4UR7g`(*s5mn3 z@mkq^`Z8-)Se^KJ-Sv6NubtCeG^THsE^=eu*WlGI_xjz9xi=nfe|I!RM9%*2Jo}Q~ zi>9ff8?4vuI{4@q=b<~g{noGkq)jN*Uw+Z*_&w$REiC1p_ovNCku?fZzV+$js`-AK z`Re=D9$TrmT6FIA{{K?mKVb%=b!#qbo_VRt&f#&OQwH5|C9CS zGNq4x(rZlYyz)dQZ{B$D{jJAuJ#}AIE?Ccznt$2;Zsggz9d<8rf6r;Nwf0EfvybVN`3bN2JJp5)(>G-*qL z^4cFQO3yDz*ql-`(_#(Hd=Sm*p?q~g{KxRZw$SipF%NfayfS$<&;6~^`@e0qKNS5d zXKDSfxA6z~$@7!-UYv#=od15$c?ZV>|=S)_6DUfqO z?4-DRD`2Tq^$it;HnStEabB zyc1X=>>RDu_;-fWp_s)#VuV#}>eMfc^IskX^_<(H7aXYbBUWLE#V^_PlQs{EdN z+?6rQPTMW_TfVj@>-!Xu*HRDl9-DM$r6jNY{6yqTZrMwR)4NR0T}tyW7YzG*>GguI zulb}3Z{0Lim!B;yr+B<_wV?IG%U^rn`1e~b_`bYh<`vIY>-S&py<1sZ|9-W6{o~wU zn`@88e%&(vx-SlRoB_f3_+AQ|T>hAGSoKAzm)iC?;lgcZ)}_QP5$hX#-hI=jJ?l;F+=7;E0;pw|_s^9s8Bj-hBR>&42mo{A)R}MKSGbZ#{QrR!~b~ z)8tc~C04s; z9erQ9WwP`iAv?)G856>HpV4=&uPeG%qP<>nUVYtj-pkS@f9A*kw02Fb@O}UN%gXY7 zz48Cfheb6PJa4R1eJlF%dGVKP z=OWt-Oukf3zm;))TI|{9eLNdwiyXG8J!iOFcd+>3!(ZEqT`o#aYI|=IEmRh-wZ^UT z@Y;`EX_YtS5?9w8-#Wi)$y|M?v<}Nz1#5O@xUFy?-H*S zv+c>c|NX2H*Ev~jxt%UMJZ6XfOL|uQYo_~rHQ6kg%PS|IzAwz1Ke0V{lijjiG4fUo zKjvRfvr;J1yB>9E%aYwquJ4OlJbwqsugHFJLUn*r$n1e^USM zgOt<)>C`X2=MFv5?JHdFD6f35^Je_B>xR9uJ-MF>Wvk}?=+B>4Aa`S;`MIBoxl_ND z8=d{RX8T{UonDF7T?bdl*el0GuFv21!8fI4&AFqE>+>vP6W8r3G8MI4w>jN9=gO3t z8-@#Hvaj5-s&4FA=e?$Q>PF)qKPM*kou4yRBO>5+m)xD{1vj5vuzGVc@fycWyOl+` zs=r_CDADr2w@K>Hj*sivQ|jLv#~)I^_wyXn`RuCy%kD}4o4>xGIPH~3Z&}Yg;{>-y zU*lH%)ACGJUi8ySddvH+U#Htn+hiWol~(iF>-MDd`8D2>2U|04m)f4~*R_9dnLcT{ zw@_#OlA3bg$U6;dvqSfua%HSgkDvN#eb;wJ^2DO+^}G3YW<~I&e_Qov z@1vbl_igmKsvdqP#3Jj{#@A1G{&2r^S=si(&!y>aJ`^w9u&;88w72H}r!H?7tv|Xs zRN~6hK(6VL`Pomc+b%CT`Q*NJZxd(t`*aD*eqZaBwR){GY2R9X)MqwXM;m=rjo)|I zcwua0{r;||HI|0e=RRhrem{3}%lf0DoJOZgW1a?Fo_$I##^%+E;}7Q))vRGJw4J&_ z^<%M_b+XnTXO#V*M?=acfEcuwha$gn;-o2)MJ4q z9mYxLujZ^j&wIz{!^xX!5(3;gSHIlr;_A&{rh56Pk*fXhZonQIx zE|upS^s^$4y`P@6>-!VghKe=%KTDZc-+w$)O0Ke1f7yyf*R2=+i2LJUGsUe$ZobDK z0r{5Cy$2s|?cy&^d>Pm)zUORzqR6>BUmr{~d2>53YIXfPgE^_yyOnIO*15!;H5Ady zf3{)S<8{rCRZAPrr`;_qm;V~#$~4KHKXl>w6Sn07a-a1M*=62NJl?8*=*jnFrs>5O zJhZf@C+2;9 zev+w3s*C?=#V*F~s+PwO&OTv@oVI#?mco_jhqHDp-aMgnH{a3k|IR&L6tOs;OCfL7 z=NXS**Icih_o=G7X?k+aqO-hyPpnJMR@{v8zdH5anN63j+i*=yHQJY8GgVpqqWSz_ zzvX@L)5BM7T&I1hGO9Fe%BP!;zdiW5E+*GhbE(v+W4o(DqD(8)zJ=S~n*Up-jBB#r zJze|Tcdj!2_-lP?`?^d1Yp%3@I`j42F43!gY8?BtGWT0?u~eQjz2U=V_wn5JkKXft zPp|OR*RFlL-mYo=->dGAZ!Y;}K9=)>;`Q zcQ$%_Un{YcH>7TwG{dSp_f%zzEuMwC$bMZlf5*A?JBo`I=a^PbF^RwCz&&u{%W9|GUnlqU{?+GyBXZ}Q6Aka#?i+Xga!^@Ftjh28M(f-+%@s2Ui`$Vs zd9Bzlt=dml+w&zXpG$D2pPC)=+^9upetr6d`IjtBd*1ARoxk;+R&%R=?%AOKF|&B* zRI=QDwI%pu^1Pjs@?#bY=6+jkCU+@rYbRU(J>h#*FQZ@WieonWAz`(3&c8X&JDDFk ziG*)I_UxCN|5mMQYE~}wOMET(ze-NiUa(~Q*X<=K_dkS~nZ@LPi*ei)a&)Qtvt@A` zmmN91>b32&ZRd?`liTH|>)Tg63X%T*j_=fCYoX7|j3M*4e_~%E+{$%$W%=~byslj< zWnv7rn9Z%LRXla@QkaB%?f3g}b~7)%sEqyc<;3cxIk7CZMM9fo>VIn_eBNs$bWlZo zx!2Oe&)6mP!?}(mWS2btmv>n7nW72b7pHEyo9gDL`|`>%?XNA?yUXe!R;8D_KH}wP z-gPHznp?Z{-ha6*ds~v%%pEFt3+KM%7j;&O&{=>9|IqjCejO=tj zb+i5aw&8t0tJk3y+^L!ZLd!TWu1ea)P`Wg8iDRoxyZ!XvTV?7iRpymV;Wn~+zG;DD zn`F3tgXp|Iv-jbbK1Lh39{K6?Ez&)%H@(h$zBTVs2gO%kp4WA7yk5a(|9simv^(G5 zy?@ZZ@3-WhWz(nL+hYCioqGLwi{_q$cLpyqin}hZG@GtgH$^eZ#p&$L`i*^0UpUYH z+jAhP>*(P%r{@Gr-@H-s%Ad8Lu77u1-YNZ9_+HGEq>FP_DV83Je8>9bk5!Z3#N7=$ zuIkO3ZL`Ab*`D>er3F8}OZgrTV*kWpT`pAi`^&|Ti>2oN-@kSDr*|1_lf^P$9j;O- z+FqV@+t*^|_iIA?)n_g8WW2S-OC|N%dgV|d{1xe+SyRty=n3n6Emro z8t%utga0O<-Enq>!&;k3`k{*_Dybai_0N-i%%Sam*8S;ZaqB&j?ID?QwW|N}RoNF_ zwynO&{z~PDc;&J)tKWHu)Q0^kJ$u>L>`AG5$?dN74_x$1n_DxcrP^NFD)nc@`kyt0 zwU-~3zTIBuh~u4TDoD* zOU`19OHH2$&%~Ew`|sV?Do7IelPQR##0WP z_42%*O_n^{d23Dd%c}Ep%ic2dbH2@3@VMaOms?U3rSC^Kzq_k!zCNmieW%koufpp1 z>&vgr-n@Q#zVg*#wHtE5PuW)~Z$BLPYvT7g6V11N2z$l+YTJxZ$aboqY^j3&4K1_hLbu zo!9a=->PNy>Yh@4#ku^T#;c&;nxP!K*8~(5XokNMTSVsOgj#?OL<`?-#T3GRvn|fBdrG>5-YRZJEZ+ z2esGMRk-&53X}M}BdT}f_uIL;+S`_?nc`_aooC;f6;ExVI{oFBcUwF=Cog_#I>WZdcItb+#=P6PIis|3 z>7-uv^YVLdPc1I2zqLhqaf$nFA=Z@rK^QtdrEB2NbEj=i% zWMr$xoqMhC`lIvNQ%Qtzp(XD2~qE%~>_Z`ihvZi>Q6xXHD7j2!p z|E}svIwmm)B`|9kg1p80Fa}* zp3m6JJj2goTH==&7m01JE->DkvH1Mr-*;|`RX4wh-CnJE`NN%3{kZZTkIzXeYwjiA z3!M2?vnya${=MVJ(~I>?T9j|6F7DfWvEsaCgIGz}+*5KZ&rO*aBUNk_KjZ#cu1OOu z#f_}u-|n*c<`I1V#N+J6bDuroE1o_v;#B(l>c$Q}g}&rmf1{YKFXHySdSK!B_U2q0 z_Xn-JXIxe&@i{#8{gHF|YaWUj7q;K@dAH*GS1#eX#b>7e@vXR2lVg}x-tkXn)?Ut* z+&-y$e#(7YeBZYw6wa}V&8V^HdsJQ7AMf^Jsq^*9dfRi;_O6)irlmhsF=z{~h2G_a zBj2u{)i|`>Juurgly`Q`avSSk?Qm{H2#no{%qJYV+u*#DOWXS}Xt zP=3^ZyfN;4Wl2Wt>+SCXH$8F>K38^f_mtvy1`E#=t!`Dx%+e56+99^;=kj|U;sv`e z^!XQUo%f+Qt$%rDU)l2J>8GFUQJX81bNy@cp548*r(Z1DtLl@z=4tc?qHRcN}|8%&zs7N%Q(qzK!>l zul2l**YAb>DyTaB@#kyS8Gm=rn78rp`rG?|mhc3-Ewzn0a8YHm-rWd!&Pz8BcglUe zdNTX{tBDN3k{SG7F_#PEKEEuO^kD08{|)QCz6E z74#Eg?>z4n|9jUR(X-{DHViB#g*<-!#jl z&sIGtsI1-pb*=p2>G%J#fcio5wVz}Ee7FBq|C+;Z&E_3?`G0R5>f0vrK(KY^jsrZi z*rF`?rrhs;>GJX--yzAv8GBE@)K8b4tNujMX4OWiq^A{=t=_v&^{YtdKl>t~c=NOP zo!_(sU)@XaZ{9DuBWIp<`M!gT6QZs>ihAs)Rq>@qddu$|_mYAe`8R&^%`})}{nROB zQvIiw-bZ$ANtEAXZ+-UibQRedea}tqz7egH`&cr#B5mV-yX#5l0mbT%-%j2Ks#iV6U)QPxra&F1hTs@V%%N>g= z51T1@iDj<&{_oBMK8`cnZi+3ie0Z_Rv~QW??1-4p3cO1<8$8Y5{;B1Dzx|TVgNfzF z9gnB|EqvbpjIS`Dva=wv+))04n#yy{bILV^@Ae#geMNA=%M(i~mHW5cTI*->{vG4q z(=8wOTKSiLbHB7uW>=H@A79&onjP~V)vSuH-1j}>fbh#d$@Vp$8KUpVa-IrQe)Ff~ zp4IboN$usbkM7ScmQ;=XY5MwG-PN^~i_YKq*6}lEevsaq>*us}7G<1WS6X|0gWH-N zYizu8XG!myv|^8UG}F18ulLL}e(L+`$n%=p-f@ygM9cqY+?~Do*2j&HF7KS!S5iGC zEZz62;;K8VwU^ZYP~P7pU-kLjVX?T&zm03(-tB+nzwfgq!-d%D>2DWZul{mj;cKrq zbLZFko%*z5|Le**ZCBi@i_iHM|`<>RJ-EFz6TGg~DeBRyJ2MCV4;kHuDJgPobuGyQ7XTDn+LmQ($vxYhrN$=?-I6HaBF)RnK!`z7=)_TQnpmD6n0Ci}m( zn%kM|`s3B!$`Y}(*~d+T`lQ!?-mqz2*su2)#`Q;+KiQ=--H&@+a#elJ*S-^1^N$Wo`FG~bZ zlpCEqJ$L)8m)Dh<|K^rHTl4eRnppoy0SyIHzMM7An6*;Bv~z}^dAjRK6RpDV#IrGy zQekbK#Ac{F!jYtM_{UDxG~;z#dR~Y8xwC`^DqOeeFXztru@A zIcu>;bp2Grih1tcUPk}Z9xt*xDcJ4A-pB3q_Nj}rrShqa3mcz5zm%^WB7ec*{foaY zva{bj-IpV4U2c@^w_9P=;|X0i^ZIhmy!MuJk+UoO%yhfxIjIveuUrSjfh3X;^!5?XNR{(%=~ z#d6PDe`k^xU-x|Pgt{K>XCJ43@2*>Z?1qJ0cx#XA{v#-Xx-H{Cp`|_~lY2~8) zh?kd5k68WQ%R4{#UfxsQS;kh2CZ@90tP&4ge)!6vn^(>M7Dq|sF1vU-^Y@X$T$f7| zLv!5!uG!UcCQByq?9E+HHoVWT%y$u&seTyr`0f3|kDBI_H|>>4J~Y|nMa8wWm3RJp zIH7r_rc~$0U4N?w>Fr6nWxuE92bv#`w+fSLG_tH)qP>iH#;=I0U3U+@o4qF}KPGj` zF~zyva-p+-e15;%)bZ-~;=>Workg4BxzDT;k?H(xY^A?7R;2MwZ{&Mx z_^RhB#@Y9_TUXQ`eH`fE6I%T3)@wgf1LL$ zn?Akn?fpM0%UZJR%JpVFx;WQ3>AY&z@g4>igT)`CE?$v(U?p?1{A8O-mri?Z zy7sZ!^6>6CD>E(sox9X7I_*eh){{Dx9}jG2Zw>t*=T(|}KeGB*-Ia>!>yuOOf2fL4 zU*)bU)wy%%W^aM6m)&Oeb@BIhn(g!MK6AE_`PAoGjO|xLWtUq{TgNRtzcc-PbM!ue zufJk@viBRWzhx&HfQs-F=1^rItaIq^{b+_NHTFJy8!C&#wu8{rM3-8idZ!T%wDs#HV`a15)@*85- z@)hfT2kqTz8{@yfe#;H-j+li7fuXXIcdFOyU=+7L_kwRpa%Jj^>KU~^XQxej)lhO# zEp*GKN4s|47D=kR_WSpppW(`XDnwkZFWkzje|!1ylO1nZcm16^K`SzPW$C)V-@kY6 zU*aSG-|X|#+jIWwm9g~e>y&MI#%E*aIkk0dx}K)_I<8RWXlE<#%Nmbtr!~K?lf2p1 zY%rZSZhn>eop}$o9*SZTSeJDn<>v0MJrPrGF7dUfaGCd@e$Fd1wpEWr`}6KC*tz&! z#QSOQz3=}Eta<;hQT=wE@B95<&b|HpgMI$Lxj%R7b=nB6GIcdFRLY<7^2OfPFJ>MC#4>#}?HMzohdy<5KQm}^YkwGM%Ayqja( zZr|;--{@1yWzyW5pJH;(Ec>s6l?j7oM8<`(e}Se#t}4q}EZ*+@Y?qlHwZvNPw)H%y)oLTGd|Gw%Le(u40-i!M+?Pn?V+~IuVXZ!7Y-jAHPmCpSN<}7=;=KF%k?SG4|RW- zlV+Z|ef2t~46`-S&spZ@YaRF#7am{oZfD`~Uft@b4;q^j=Ufz=`)V(r$CQPqHXbOM zZTx@7u?KVBTI7A5yTLeULQO~NFV@XUuWIr_zjwY4ztkBv-Ro+j(EXPJY1W74Z=e42 z)v6_GiMeE^!OfVOhObo1^AN9AwPq|p%R6XXk)bX#~ zCO@v4O*udR>BOSdikqWckA46DU~+v!dEfiTrhC_X34bpA=V7@W`+{?4vgN*AUi8JU zrFOBbxaTFwibLyfN2Ud2zc{N>kez*Qo>b<#XY1?RjoM>0)t6^CxT+h4OKqN9{mOXh zRFes%w>!Px+1)>_82DA!e9~^=)2hA6&1=I?hX3?!e|LA%n=>z@_4jV)UKW#{+jXF9 z-m}zlcYQVc(v#2nWb!RbTSKLm{abHiBedz1^T#MFtydctWi?jZR=+g;^ZzTYU*aZa zzML}2ZiYpo%G}o}Yi%a;9WTuNym!s=EbmXJWgV|5ewWV5Fg-Q#q~xLAoiygJDH+S*9yvA6&o1ITqc%R(LT+R4c%g)csicJb1R7pMee6;nI;dx`*;&yq3 zgRB|lb5Cq?=c~QlIq~EB#Y_FpzI9SoKT@%W(|P})U+yL%ZIAPVpLbgQEL#-IHz}ZC zQGe*pdzKuV-Hzx#`n)pM&eT@-#_N)`71I8F+UARSx5iXzUAh=-ciMI8zW&r-d6uu% z9MwE?d)?Yyo6mp0m%ioJx+PVc|K;6qU1%nK`qt{a%1>p&bqfz{E%R7^b*20BEtbsD z2Zb9_eO~>(`~IqAxsT1?2jyQ==f&Rkv;SRLG)>A%?)}b{UJF+{z57wVSLV?9iz1JUI3qE=M4?n-T|Ix086))7BZ*}a* z{&wf1^}OwCg>TN^&|h*bkoQ60X5ndieZJ|dpDX%oFFW@uIclQ~mmQ4Tj^L?lB6UHcB zNyXzfFJ=6f-_o{?{iZ9b-*PuIq2U_v`INo?BCIJoVL^TNz~bOzNQTmXf?@8w=vr%QHW3 z3%%xj%dK)+>6>dSf8Gmsz4^N5T=1fj(pSYdem+V2Z254Nz)JRhp1Mc8cJCPok$LCtNXidppbuoD7I*%KhQe}1D*u)it{PVGODOk27{QkFdI~a52md|** z{l{C27sVods`FoY-+ps1>#4=EX2Ycp+l`7EF8zGoCvZ^b=JeUuS4La%Y320AFTdZi zR@&yDo@r~|*7tLqLaXmxOujoqN$SCS)1oPFW!2b&<@l=#?`}GGWR>l%dkT4ze;wsp z{z%&WN#Wkv8@Svx-OHm=mLC73r@qlT{WjCqY(=}{w_CJVUhDTzedqtfQ+}0r!LKuQ zYl;=3Kki#lQ$Fk3kM}=L6?>h(^YFP~cyiG5+kd7Cx}2=}QL?sHXYv+y=it;SB@gEx zv9X)=kKv2=#)y!1Z${6nQNcN}VJRx%+xEV;FSaear@C6^@;O=M>{x%{|50V%rI)Io zJh7U2x$^PMShIHtOPd~eMU^gkJFT_p{Y2;N-UY8uf3DKMZ^h>SFi>P-Nx56!+{LHw zuKr_}nd`Y|OXTYNx5am#{c`5Fjm)jwnaZNewx&KhF*kQf=dR68PU+8IxIQWS_`Y?mS>!>h9LkE%FRNNE+w+M*2W!K2J-+aM zXX4zN_mBSc9r?Cb{)hd(Kjj~0#l=-!e)r@3z7P73BAxdynr)<&Rrl=-cY@qe%jYTi z7VDBt%fCOl`0;vyrOU35U3O8sr~ba=6j}e`%FF8;7d35_5;9%BDlFlzA>Yo&Zyr}1 zFpXO2^h9QAd70&&cT2uMemLi`QT(U*AN@Yx=hsZHuDy1;u<*D*<&5te-E`D-Oo~_W zdA?ygKL7j0rIHW#n@(rwWVRIKe*gaP#pfGJX9!Q&VZ{DvZK`bPnq60Suiz8YwNRRQ zhV^#H;m%~8N3(9(&HA-bFUIotiRsb>X9cZpyg#v9^Zt~bN31-9`EH-9EIXcfI(2IO ztSaI4vbm?smMfNvgdSgPUoTSle0EBao?evnFV*0?j$7inGwQBXKKV4~^L**t8|tSj zPFD7^rrNv|mA>(Q#jTsWGTv|IJve*giIO=x{Pd1bIDAWQPKd0#^z1q8KlDoT9G1i_ z*r^pPSM8_V@!?=$MasI;H$QAt&hI*J<`QpTqh6BQ{vp4s6OY4^(__`yJNbwGV%^+RCnk$s;;h#T;1El?kR0}BZe8f!xjSvs*Zz;0_x6*Os=&NG z;@Rmrs&21-C7aIey>HE&_$e@6b5%_2%+SZ*`?~&Y_wHyh*6g^ymGO3ZY0}QA*KR$L zJj7*KA=R>IX8gZD>mU2>er&pT&zGa?|M9&0+i?2^LxSApm(tUo|E+VCGRps6ePn@= z%{pOUt_wBS3}ri4WEbgA-n{W^p1;dQ<>lL+z4#HITN|q@y5ae`z#k!&N6yxt8zq z9_yaE)Un4lFw4sM?#Yv7VY@@N3-xXG%J#g!YU`ugtbSsJl8^ z?r&r+L)28&zZ`PC{PQhDvL+Y2sXY5}0{fL0x1P_MxAE|Lu4Sigtd6`N`e4E{nhL^LvStytmu> zW&QkHt?PV0d(w#q1uVR0KTE2guL@myvF09=lDzo)=s@M2!e{%x#Jrnl^1L!T;(6Giy|0(g zt|^Xr{in#{chI|u$~(?ghfkl|7QS5m=ZRDL*W#{itox#K+Pvh7p`5Dbmf)}JD)&s2 zJOAXyZO!U=@55S5desiERA&w|P4WtSU|X@$CHSDlqPmqSCEp5HK4@RO?oQ0f-n${Q zwNih6a%A)A{}wn`j`4(5>Y6J?&${FPXV$!a+x~G@T->kkcK?q5IMlvB&);QX$r;9y zOC{FJHb1=A-(mG>soi3xpElFOLnq3HRDCNmU0=R}Z{|tY7qVS+=%~jtmD%T=@a5BE+*!hC%Wl3@JYIjAe^+o>zZp`mNk~dF}pn%&X*g3U(WP zG`XR2dR30N&Y!*V+EzELgZy?MJtymKx$d6*R^`8!eouV+%B5>bdilL&lcTpREnID2 z-SX$D^v9cdvHzvnjsG1E4whTXa!W>d`RXI?_v~*>+_9=8sI*C1jbK(mMZnL7(sDY`yk#@4LUp3CBipv^g+*Vlc_h`w?(mf?PZ{l>X@~kkK`8jv4=Dqi8%FP!q>HB&q$f}@N zr)<^t;Li?Dn!RkAJgFfvZ9H;YJ+F4No!R>B>rcU4PVHNE7oKhAN{_GFdredIXl7CR zhv4|V^NkW@9c9&n-j=vO*05f%Wb?u4%snO_XU0`;zkgqY>+Q#yntgBcKSh~`%TJ0P(cd5+1sv5aq zTc0eqzpc!b79Y2?tS#S|c<-?JJ7yoBRuj`hUCEY>l|4ENrc;j>ht0U)G_}`SJ+klf zq02Yl-q`ngowwX~OR2ny+jmb+z7&0Sd2!EAzLFn?OMJfXH1LT$Q~0QG!r4!5bFWRi zZ2R)$^J_A~KW=PWYP)Rv^c)r5s-)R^>9v8={Q~4)PdQ!wdj7q#!^gFn+vm+Io|XIJ zhnxQ8oPR3j6AnlJC~sz*8@rC#cV2ex3%*%B)82$@Uv+TpF?lj^rq=WypX*(dc}xGq ztPZQaB)8hKYvnxGLr0X&p8g5__sZs3dH)XI+?%&QP5BeLC-n1a+4U`}Uxi&=@gO-) zIa;=C+wscBCPAq&OWmKX|FHICb%f!g%9<;a+?VRCSyy~r!SJQ-^Tv!5`TNS8BTav- z^tIf+bUwGcUHzovPv3-BzdUkV`Y-ES5A~Eich|b?*!5ur@4*)zGXJIc+9rHeiOOO4 z*M0u~uh(~L^-cbsGq3w{%b?_J==R_Rj(t1&Ds`T3$z)g?U%Vi;vd8QAVm;Mm<#+Fg z``g}vm0E{3`g& z&QA#+FV`slbn1P*W1dk%wfb5Ec$+0=%w6_ z*E3%HvwCQ9Iy1SFe@ANUr}UQeqq~1i3c2LuxBka@DXpc?XQ=9WZ_8dIa&`4o=Cu45 zclN|S-CBCrU+9En)XPAFIVZNB>API;=1I!x;*O``&yD7G)jSVudHrM6{C8{8OV)gL zzy3KqV%F8*%Bclg&t1JT)wcew#)la2NbG7St9iCzPqjC`6K8!VaiLy4j6ITT_0pry zsx`P(>KZr1|GV9%@LNmb_kUuS)IG)O?#5Z zqr1w_wuG$jnr~&+Y6srddXc>K7RB0!KyRq+gu~E zt6y699DMiepy~7i{~bXmSJq^#KXb_If=8gM-`a%>{h51d0Hw)l&a(zR_L zEsWbIuIk$m(W|-oKuA=-X|U{_#m_n~w&ZOoJ1kbH+AKd^cM+SE>r%6;k^B13J=A#1 zTj%rm?)uut`FX#8&${>jWq$pi{tut!|A+6o%yZzTXm*pDy8LAM?Up&b$M~O5oVV@* zv%B^B6Z^9Tk5^wYkWo>WmD~H~!{%?R6=RCl`rerSyx8u2+Ez>ci|ae?#XQn{uA#qt z!LK(LwPH^Fn3%WY-uo-r*I!qNPrrV;F8G$&>f8MxC7G)0?tNgZ`0#-O9s5BDAP>NhCl25@C~Ym%R^yi|-#lA$y`q-M!-J^2K&Lv#pM8 zd|tGRi|=`V`_|_*4i*QE;>=&mzdTX+{MXd;s`pivy?7gASW$V7@%YwPzRwF<4flKd zg{0rf3)`6}WNeA&l=1cy4 zUw^)q7Uen@yEt(B=C9i4dv5LCVzK}7`n8|4ZaF-YZ493qZoD>opSAv!Kc6);UGFbV zx%lUjaQQ8pd2=868lCMgae4QIU;W5(oBit3efq+mhpn>yJWqB0=_92_8LD6Zocn(H z5?^Vz=mby6HSh0TTV?%frHR>f#>n#R`_}SlwjcaBclFY}Z(T0!`c!-9vESiU%U9)< z*M;h~zqh>=Hw%5yW=kDRz=P$eUTBc{PUa8 zbMD98wpuT9JM})d?pwFiDzPon*{5pni#&dA5OVj(^OompO@D>$klhn;YOSS7)H?o) zoi-&GU&Wj)o%U<{;^25;59`|(g(hryXmR^U#_se+aP5EXu=l!dD zvqavtA3R|9qtM5wg_Av}Rghz~))GO_#Sw?h6Ta2i$XVXkUtZSm|GoA6CKj%oxXCv*IiKy!|ML0m ztIrnFtNb#rd`Fq0oVTuaVzREoC%La{&-Svq9~AYfo8EHemd&9~n`H|h=bqOU|E?!< zfpH-(FN0EfcgD^#%j+}BEl$1&NtxU6-IMd^kGhK+7P(KYhV{Yd4iWVKsajqcMPPrUT5CqZPY`(z{g{(WW74eN_n#x9O& zmvPOE|8(`?+Rv};ZlA5&d1lq8UB{ot39HF;O$y&@efHGZ_#Gb(?(^F0ahcDYwW9K& z_FR>9)i1scxgdcaQe&+y7(b{o4;7 znC@-)^7k|EzbE?krgbrV+h4Z4b_lq#XaD;6NfAm zR(*Eb74Ru9vuS1TZk{_Qt<`eZo^D|N_hTIMkRi;b#(J744N zzB60H_D#H3x@Y<01MgKz?&i3#{hArG`{(6F{B`vSm)3j;Nj&?j_FwAk(B;=^*8Q3G z*K2v=x$RNzxsNTEr@#B~x%O_7<_v$s`F(fVZKYG}IC?MVin=^rtN-8DHlj>qdHm-I z|H}^E^5~HLyyxSw)+%=^8P=00W(I~Pb)Pi5XU!|K<8W$dV9UX~vN@gIR*i!Dd7arz z3m&B9TiDj}|J`_CTla?GTl#Gw`;Q#tik8jP3t7#ubfQst;L0o2x_W=NzdFM@jXTQi zTWB)p>1C%L{uT0Ou4qr0mbd6;RoZm<*DuSzNcM)i-?n_-9h|%3!pFPSj}3MjN7YuD zJlp*|u6>>*PgZcr#&g=!zEl|d=iRC_`Mts=%dv4qto4nV(R@4h&fcxJRx|5;@IjBh z7ixDO8_f^=^KtLtC6V*l_V3b;+&kHEnVbKP18Xjt?YmrU`a@H56-T)Is#mStcHw-i z@lUVCB(3cEv@CGm&&Kle=0D>9{}KNPDon-T5+|c;gyyP(Y4Zx6Z0hnY*mu=(?*6}Z#^rOacqpme zpJwuDqItyS&0jyRjgGvk{I@eOz{Jw*^!v8LXYrz6%|35lqqKNRyMf>{8#mv-6C}6C zmTFGy58*wiT#-;2(d}*d&yp|IX~z-cz^H%G&z4)VSJCE&l%$!?++mxF&oZYkL^yYkW3Fy2LW_fHyLyZ+{~Y5ugr=PH>mG%78XWsk{K zd|tfu5~p$9{P1Wa9<{qWKB|9Jh`)H!_Q0K}CCeK%e$JL>omJIRb@Ht1bCXjS7pm|c zmOa=|GI`bX%&V&V3Y@q9ZuBrbWW1Q&y38$7?RniFH{sZI{}XhtY`J`OuKcBh>(c~3NNujyvy7c|?Q+eI#rMr) z)?b<{StodKpe1ATBOc%$? zHuapX%%A)AX?NxSo4L7Q#UahFsZ)-X>Zrf5P0w}{w2c4oKMvX^*w%{h4wxzGjQBjp+|If%VQ-yp!F1URFPCjd=Ba-v{g09($hI6dr$E z)lzaww)b(|vz>BIcisLL&ki&85SHHXO~%^JOmFj^=XP3phhOjhSa-Dh)6%70Z?)d8&lD#RQm+~*87L+!p|0cE$Hz2W@1;D`Flpfo6R;K7iD<7I%>Kz?&%f< zsV}*Wj~1Cuil{BN`u20`m;W>T-B>EH)ow_y`18=(@kxz@DIZ^{u3+bYV7t5 zo`2CWNIdUrdGC==zp9?B+0biN_SiMX`gdTo?yom%DvzHlUzw!Udiun~-?5t8+NxZb zeN#8v`SG1z{B2&7=lP2Gh4Z#vdY`z; zI%(K?Fi+NYS;w>a%vlk`{A!7;b2q0++m}1#UHC6)YqvoA$jx=`0>9o%aW>BEp1*oS z`P98h7v4*(y0gmd-CDOZU;lQdx%cmUIQQoglc3Vv7eDUr`}6*>{(Jd5-`<+;-GBL_ z-=BW_fAtR+%m2u;(0H+9w)ekfE4EHtpUHppN%HmgFEui!e_j$V{4nT7wENOWJ!(Fw zGmAf83rpRWCD8L@*Z0E@yqrs)HkkDN7CQbs*NUNdjtT3^6fKFrc3XG9y!q+#FAwaV)BE{^|C;18 zMR!jzPU75mVQI{)c8$_^SNCo6iQWIcOnd>4>fIl8Zf{O1URoPtbx5>x*Y!!|CcC}o z)W7NPZ!EaIT;}kz%Uh$Y-d{_$KK|LfV6A(l%3B#i+K}URc^L ztj=8X_v6Q*=1NyREU!KH+kPiy>-`T7>Kndz_3gI2yMDP`ZaDwMM|Xnfw|bke?0mme zrm%gh^^?1i8ap2-Ka5$PwCHA;Lj6*L?5V{_|dmq>3J7>0izg;1--{`^0>F)$?NXE%dX9$ma-4j<@<}Y9Q+4j$4 z`QOiP`}(hc`FH-l@_P3FkF@QZpZ*doIiqaz{O6Np;^%+=@H<`2kh>>(%c*O}HqJl0 zv&ZwDTkXd^ubQr2c=lVXIA(Qe*Ys}_g3gz6uAONaZ<@aM-4jE-MjOv)NdfJw(~4?q zX3qL+X@7R-yS3KS<^L{N>{)7k=Ul1Q`ZF`%&pE%i>D;xC0DuotK;79!R0~k%zxC@*)6{6-Pbthdg(k);YC@lN4m^a z_Me!xCFxwH+HUvl_mj_t$*!7r|N5pPwoPkK@y|;J6)mnWdP72^${XH14veb#{&#j! z%9fe=r5O^8=I%>1l^8C3XX3iM{MDcX^%`!z zYfm4XJJ~UF^?CpPX;Zw*OVzTjt@k>gtR8=tBfvfN?^lVes~d&y9a+Gmw`aNkp|gvh zlxQ40asGw9{jW`qeFs8BYF8ep-W|4L#j6W~5uz*HwTzDLl-^}|`n~j?yS#SCKfUWP zKi=M-9y)!;<@r0l{@UZ$E}Ze>()Rk4%d4+{5xT^G_uf(cnn(N$8JuPB+wZ!!Ri2O2 z3D^H*V{Y7}bG<*Yhjr53$L62Pi??;GdTAl^w&3K2<(DTKe4hOI(Y14xdo(ORx9I-R zT~t^1tZ2%Gp8BogJ6&yy9(jJe_u68$*x^5t!spATh&Vp7DfqB)`-L$1_&M|2rgMdx zK2hI4Y4MeXSB$57Jkri%>&iGb?^DwTIfi>a?(d&2$r8)Wc-nXER7&x`kbl2XqRo5*am0aNoTNXF(=fta}%%@i!<-752+WEN#^ZZLE zZM)Lu`j%e$I0J1)H6e8+I^x|``|i#{rpKUzAuF5^jc z^ZmeACF@>TeD-CU@paA0>G8KN&yQL%{ToN-OQkz4B_C4`J06<0?tBk-vHQZ0lbkl^ zb6qJBSSPh@{j5uZFHHja7k{miD$4Qr-sKjPsr_-wzST9?HqN=SU)pf$s$<7Oou^Ms zPtWrzC?v~=AKvyY$4Dk<$3ci$oPXOnMyZ(6;qdA849yQMeR-SN!TSieJB?8Vje za|QNI+KH3SobBbB+RwdP=KcKNNA@3U&#&Kl@OX9==ga>6pI4V*RDtfc58tmRZdo3~Fxah))P0Mo@+U8%XUeEXTm58PB|0zOpy~PJNZ4Ldf z`~NbzsLzv&!zDuIpVrQ=T)Vt3{9R1$=A~2Dzxk!SBh2ph`pw2iqJ`Wtm%S9YargE# zA^Y3Y5Bu)f^X=-+NhxcBFT6M`Xyi~k$=9`y_fz5f_|iYBYu4Hn&YL~URr{|u=k$WD zEADT9u(_;!#VYgK;CoLOIxoJJ`)d(I& zx!nC%my-YM&yp8Xc2~O3OL*|ZN=7O(zuVNf>uk8^yv4(cK*YX%9okHdt=r`TiE2ed;V2+PhGBWxBkl-*}8@k_v_c| z9KWA^UQyQb-INE#N7he0`Rljh&$DNa79Wyd5*fexgXx!@+9zfEsyFUS54C<+WmEJ1 zw1Zn;ulczf*XzogGeTKd(x>^iomJ=EGv`M6FAo1|_Qzc3U&&lba?^?Yd*$la=SOxV zc!^yVQ}xOH6mezw%M|{thqXVe-acpe;V?gcvB9U=5B$PRWkYSO#A-E8#^$OU$rzr#_0@Zp|PYE_d-o-?Pvg@21SPY7Y6|XMW(-_nAk_lYXz+yDPMO%f4>8 zFW)1rrt{5uygl=mSL%tKlbu(|eh)hJiDTVzQIAzeOpfd|Tt2_RtnP02iUo@Pe*?G3 z+!yZq6)VWd%%86=w?gAdVCIn(hu{8~z%=)1U#H}mZ+zP8nCv zoh4q^A*dW=v;Xj;ROuA19quy&H(P(w41B^PV>&7SXKdY*oo|ficCLN7{rk9h_jZx}?yJYm zZfvr?=2D+KF>{Hac}01KoyD7?6;HM;7W?{j!rIb%nQ@uxb>>gzPq?O8xyLH<)|91o zd2{qHeX=m06aM9gPjlqe?koGZTPRfO$ojnPxwJU{c*}0N{CVk>YuHS!Dq_=x<_U*= zvbe6w(7RY>$JcM^&lj)LetDmzM%Lw=+8}pa-@g3wanp~hw!RBLZhBsCZP0qT=QqtPE_hAcpOUleiv-(- zk9QUaO`dm*V|Sx=IB)0lQ>-!fzl%;UUU|gPJ?T>PjX-Bx+Z5fm+2Z;4!((?pky$TQ zk!kbi!Q0MMd~dPJNT=8AtT&6r$tHulAO(=TPSO|;Jz$L42!-BHc# zbLzWxwU6CX!7DAS6IhDgy$^Ex+;ehq$sGL?4Sr`OBGS`K6R!RXIlJ*$f&0Sk@jusm z*0zoAeNxnsk#pkqv9jr+@2@V{|4PtWz5865M1_U7T>I_MyYnX4RNAPnzhrg5UqxVD zYyR3Ena5pURv9eKDddRF+Z=zWKvw;Dy}Q*ci*2EKCTjw7XX&1O6*zyj-m@9Ldp=Bm ztZ;noI(8ZUy7p+VeXD}6J?C?MRGBJ$sC)Y4WDVWted@=nY%34FTq>E9*(z@PvU>aW zKi9lx|5 z(r;Ji!#lRWXNa2p{rk?vOBi45%~v=yHNGHq%XQ_X=+@*-3*FBh7t8f{u|xP-;7Os2 z62fK=U+~|XaCNSDu$4ZWXZtjLRhwP!*$eeTk2xGwFLZR&OqYv(U|S+&`aEUoy|`7y zYvzkQPit^LEz>^z=N60X#?4u`PRtA2x>nb}Kyx|o*B#v*&$8{NEqdPOeKK#+`DI!vU;RvH ztrjz%xiX_|&;?OB$ptLtm$N=ZAK$|G<7@sOmVJM}Iam1V8`r)$TmI4h&kg&z-3Quw z7VP@2JV(dWBHvHd=KY0`--_rG2l zFIrae`CqHomnc5W{8R3IfeQbpklx?2yzbt2KL1|Z$-eRZ^1sja)|~xx%p%4w?cUz& z6VL51*ZsIu`O>lS``3$S9j1y}oNL8DswG=izrDI0ciwbL5|CORA z8)y2d2d$Xjeer^_(uMTS7dy^9FS}d6;{KfbHfmE!!z)kye0Mt6XU3BsA1<@yiI<+< z(H5EZUPW+T%9)Ed?iAdrc~&^vWKZbx);{g&lHW|&=kfH(sd{W)`&r`L-^&{wvKOlI zc3iKRl798G#rLJXWfu2NX20H*uzh0Fk447OYUZEblm@fEepEZd^ZVaL>%~kqUj7^K z>mgrWe}L*b+nvoerH=Zc!LiOZQ_GhhUjIHNRpDt`wNaPXqml~~s{B^P^Oh%<%{2?k z{4iNK;?mmN^Sz794YHT1v>n}QvU;XQE2B?@?fFx4I-q(M27m$8)G4=e0#kQJvts3sR{AVzD z|H1jy(RtpRHYB>de!6Yb$@*Q_-&|@ba+7|2WNG64)wOvx<+9t(O4aoFuiZao?Vi_j zzNWT>Z8zGvD(_B`m2%qy8bKm?WtRL zZsFYhTItYXPD`65{ZF;HE>wKfO)S}a_;~29JXz=Gi`Km^TOv1k(pvZP-}h{LbpNMK z_R4cUn*6@#Y*S0@$|E#5Zq_$E&tKsjes%eiME0!wXsD6{I z!ef;eylwFl@!rsTfy$3%%|7W||N45yhNCh39b%j1v$H0;o2tks_FhU|^7ZH6ibJ0x zD>C|$|3z1}96q!u`R|4(o~K*hFZ~m@-g}?&aKDudm||Qxd+P`D|Lru15!F*lsOeIlX3IM$~T&_P~ACJx@(bfFZ(dGpuJg52-}P7h`8JUsA*xzyuS)KYwz>ZOUNEO@xlZWU zgJ)9?UwD&VSM9&#NAb2DMGDNGQkx9shrC+Zl_upAxomp*x&@ZU&b{bNkUBo`WkitE z4>rlzgS+^a2%7YMdpuL#^!hrR?cPTV9tX*}s@*YH;Hk@L_h!le|AzhFbo>9VdzMX~ zUH2}zzDd94$Lr>Mb4nNaACGQdwA#<=e$@Qq>3+xKcE7mQ7ym@CyIgMT&D%QWw{A=B zyKN&T5+L%h)2yH6t(d86XyhyhtvmZN9>)kwKe@ux->4%yZ{CC2K6px%`@n^PPj{g+|fGmPk*3^KQa|Ip30(rT+1Z z`TcuW|NJdaf4(sJ>~iaxjHl(x4}xwd4a`4yG$-Dlqc;2D)y3;4?OSTUq)w4tqFTjW zr1z^4$FDs_u}Ax>7v1@~acSQJ@2cw(p3ZrGlg{0K!@rq7Z-d2zEeb%?KB3Z2H}Cp+;J1rMmH*7IB~y8rIgjo+%S|L!_@H*9^B|EG6iPxl;uv@6pkY~7TWCfBxA zPwp@m<<*7i_Vd=&gqc5FWxsOk``@$AUlY98qp;Py`ONdRJQ<;R*CTgDUly31smE&f zdtv^A<#xZ)r7Pkudwc$WqhBYM|GVwn?L?gii)QZ#JO1gr@Y?&0`?|$0nV;G;b^8Zn z*|=Z&i!JJ}+dR3x zh3Bc+!a2X&Yp2VtyWeLl`~G=VYq7DVY)!Q9b|c$YrFRv6-%z+?P_#nyMnhHphU+se z-dnAdb|74@ia!0M3^-%ezdy&Pn6`wCW-+X?H@ehuM-Z+zlNo8wt{}f$NT(HV!%`KJJ zF}||#OIdy!mae$t@M1O7%eAtc)w4fr{yO*Dmphk!AA0yasdWCFi*`%jRCj7|tU7#{ z^+}&8ATLt@2_q%zGJ?2ajJECpN#GIPj_1PZFf1^)n|NrWvXt7>8XwL?(aEo z+EmcqIag`w-$}{&Ydv>NY_RZtC;INl_mud%_s*RzKlT06^|b#>g+CeUhAmGpu2H>P zVj{fi=gvcciBY#BG}jzj@>5lV@y7SOzdF0Qc$p$J-&gu-M%;WXW0+X>=UeiLn99t+ zq%CgE*DAl>U;OsQKA!SJ+(!*w`#*M_{WK@3eN+b~7;vu3(s zPndw;el|;{$~)@Z7P;q6tSEbR?&Ryw*VYBg>Ih9c?Re_lKej@6fS)meKq26$o8_IGj?{Kn_FdCf7oK(C0WO>wl6QoGG{ND{DrODAv2uym{SuOW!*M^G@(Q*mca%e)iRu5)(dek@l&*_Vn-ap zJpYSYuln=($+ImK-rig2%ksu}K}YgS#YIcROmEGZY3tXnr%+e0+b#50&x4Zo%{=z2 zr=9-wr#M%=GOBg`C%xmFOKhHcwr7{J_f8RPmdehRxNR*N8!oJ0r(#)lqhiV5%2hjD zx9BkoC>*Z5w12_Fvb#3xa$_5NtyZjje}8@3)4(<}#mx@j-B$+3Ga)i#Oc+nv`h z{GWXO^J{LgR*-GofW}1`9W5j=S|tHkhnwB&mHcuIc*m7Z$;dv z`*yE|^<^tR#o6mr+<07eHS@^l%QM+uZ%#hGb@i=(r_!shJTDF1b!Eo=w=++_`Bgn% zhTYThC4=u=pI>ud7d)P+w0rONb$dD2t+L*w6DmLX)OE{!v*SbCztl|K#+v;$erwmd z*Br|mmuQyH;;!fWxNBNz?e*(sTlZKO)QUVg;>-KO<>>6w#g^i%mjjP6NSL_=Hm@(- z{dZlobZa-8D~FZ+y5iYi=WYvpFlSeE^sDKIXQZy^{1g%Ru(~&^F79RR!w;+9l+<{C z{kH7F$K@;6ZQOi9Emix~|5Bf%RnLO>ugn)cB&Rydw%V%l z{_*#=oNqoj)-2p}aX$CDsaq|3)-79es%KwywRQVDt7SFse!r1@CKaU9vA1<$*2Xfw zDlLwbd~5dm|K~sH2~3XqJuhq8FK;a`^%<9^SZ8Luu5(r=_doBCik*An zNbJ2@kC=q+>+(lduGnWA>VCLU+9iG~yGV0$U6jq|ke3^$z7PHSMY1Ghq#r9?+F_M>BW# z-QD=GtIT8JwTrvc-d_AOV|q-%-0+n98s^WQ&h3{~9|ZnS<(?Y%Y>D@- zm>Z#yTP|}NMIH5BQkQc#D}muiW$`|>I+pJDFTdIz-G1`++;o-mpI6w;Dmf`Wsea>f z=10;ovwB^Q`(1Sjt9i=Sx=Vg`>Bju7RXaaLrkZ@q5?JZ)Jwf&lSi#a8uClRoPSdz87Y)mwT*o8KnAm>6#qVIG$#}CnJ-bCpnG% z?R;^)yE`VFJ}4#ml>7Xw7g7%_LVivSjH|u&UOM8{zn|u8;sMXA?mcyHzjXK0i5ev< z<-4o&ul`Z}-jW}eD1TB|BYAQ?;qMNJ)~&c5a@M;t z^@DJYj(%O(^dBdM8KgS-R`ef{oN&(U(dp;8z0Y#L&8ZF7mel3#kndo-6#0B&f$08n zkK1pS)-CfgUUJp^bELUNi?+Q_(4KSG)^vHsxK@$;S`0 z{ahC22E{lpRg*lRbuVPP+kwI$_l!T$i%aLK6`3yn!fpSD{m0Axy>8$4KKb(WeJ#`d z%HNJY)^2Yar1n=^Hx;R!jk`WIKxvC!*X1)=-+J6L=DS^f#CcNL#NFnpY#_rj#$9Kv zLf$LiQ|(*-ljn5(lsk`>>@LqTHkWwt$h0JBQ}5iX&QAqv%PePK(|&(?m9s$H{Lghf zMYog$3{=lAoO5v{qfh$E`;~=7Is5Og$=m&L#pcVeCjKj&k?Q=n*qpht@?Yq>)tAb% zjWbhUT{xJU_;sS%{HWtUBfXfX<&_#Qk1F_8yi4@Yk?!+z?OsP7Ki7XsWZmBNeT`EZ zHSSkGiGNt6YxUeKi>Dj1{IoPFy$}_%Oz`FJ$xI zL)o=zlfC8MJY}Dlx$tp?yw8rG6DZC7S8=@PwJkr#GPitBL&*7DS(?XhyT_YmfZvDO# zSGcWq-{~TwSyn!I2UOe2-HinK%=c9;I=D$qUb8&u2T!3)__-5iGu{0-WK}tS`!wIb z+JEnZ|Gr$AztO zyibeoPS0adUhzlcz!Qr(%sK6XZnZNtXEm4Zo}8`oB&J5~d1Jvt_q|uYMJ{*eF)Fm% zwB~c_r@2y&M>}R@ZSen`K6}Hbo6$Qy>%ae+|z+RDTc0Ap};Qp;QQd`P=c0Jmo@Xk^` z%OqS%@QS?apR9LZGzueb8(pZB`x^MUHvfaSU(EC$OQz0}5S^9ErSJZV{ofsB!OXM* zxuusm!Y+%{m;bIa*6?J1RH!>Il=szv0;9_>pGiw_EWTg<=HeRLS1*O5T+Op7=a2F6SMxyCUyDo9(y@@CDo zV)vc%*1YaKzW2`FkCqyptF2T6gHFGjw*T1UopKAUVxRq7zMfI*ea6Iofw`0IKi*~U zv;KE4eczW2&)2_9UGo3?>U!blH(jbSejWLdb61D?Xy3yxVX2L$mHe%r7jM=15GmF1 z_r4W-^h)NXeXDr6ewD7Cac{lt=Wl<^y{y-n+IQKBv^+kWTlxIf#OJYVH@BEyw+cPB zt8dx&ORhKgKZ;3y3HN+>yZ2LHNdEb3LHXyw{j1_iuN_f4y=KN04pq_0`zAqFVJ1r@ zPQR>tN~(8h$hWh_Dmm3r>aOx9R-9Sm{ll~Co88-$S5-5v zR(bqiy|{3$@Rdh%+E%yS*tpK&`n?RZXKAs=V{-Q&-@N=)`Okf?x6esmwcY8(Ys1XU zdug|1i*jd6{kM9y%J})5&+m_1sxyxkX z0)D4h(TTrmpZg?M_6I1(-I;i4+OKPwQ!cNa^}dBW-Ta-{C0@lt?Pv0CF7(XDg;-^!V!B>{;xyeru*I z*>J_q^fz;ud*NL6t+9Pvncjy^wdOlZ9o+j|=)AM%QpOi{A7?(bDcLJmJe6&K&V0cJ zxv7^gE@R9wU2ti|;>FBYK8OAlOut+n9+vqc{nX?)!Ht!_9H#6QJe6+m{%Rs)k8*hI z{qrfkPMD!Bd7b3k?Ngmf<7drL$e8hcuHo5g z2J2@sDyQGwedfA8%jEK|tA}I**6q>$WtzG}Y4wvYN%s>y*tli5)FDG2AdXl;3b=;iFhDGlg&OEkKk9nK5{rBC;wx`bQ zi!XowGvr&&bcNvES+e;rKimu2{#tt7MJv&acUKlOq}~wR_xhSnKf~8;W#>5T z>u&vicxzeq{H^{n^Iv(W>nP!8nTn@^kcK7sv6(Br0om) zHT467(bUR)Qg8JmM7Ey%Zg;&=#yRN7#zvLi_R_0?&%x+Zh|iS;?{81ApnTPAPV)A~+xjaAQOvBZSmbv--JtIt=Svvpl_)%uWgy}O$( zmR_oId2#A_QO~#6tnVY=rs}?(vTnI$dkxDZwst=KwMC^o7QWqiZ2$NBOYGXJn)UHt zX!Cu^_cfv+vJ9F}rH*~f-TCyvMzyzhn4iWLZFy6Azm9!N(R!QHXWRGHB}&)-zr4TO zzy8DQ3SWKm+Mm_($KTg~=Ki*X-pGbV+RU+AA3*^07(1M|73`uKJz#-jrWB?tYI>=lh5g`SWgl^L2{ey3nUi zCw}vvM-Siah%RL@fA#&-@{NJ9btcOXU&yJc`XIWldQbkU^M#?Z8=A|nXDB>Wteo>& z?a`%4?_agrSqmMOojQ4W&Ib;=udWrgyobuZYOZw1n~=4i_1ed`1-%MuH)ou0_JS$Zzt^F8Z zS9#cIq{lofvfcTq*}cg6>q9Tgdu3VDyEE)QdVIZ+{xfrrqM>rn%N2f4<9~K%bQM3| z@Gbartm%O}ZPAPMz-!y~ht60Yu)gbK#i13N;+L$%)f9g?B#mqD!r;E=iX(ndgRmhYhUI0 zZQru?Y=}vWC{(%eCpdRa$Xlkm<(D#_{rDKEu~fP(_}p~iGt2M(54DtGy7ayC^ob&= zWigJzqVKN!=R4!U;BV^XIO9`fM6Z@sIPcubIU<^^uhK$$r_}H-nbI}q?>nClW_!;_ zU396qobcU$|F7-xA0A)-5_HM_&ztp+xaEJ{`f;)F?%^`cP0uPU*D3Qz8_cbCf4!K; zXwu4PNwuq%b&PL|emr@!dhx>Yx%T`o;;i?rzcb;yZI*`YG_CFND(|LeYlpwN{rtd= z^F3QX&0T%}NpW?jzH`&zuE_Rp??O}O?_GE}Fm;v6`^oh=TlPo3-**D1YhPc1` z&$z8NA5X^ao^fs?^MTviU48FgrdYrEF1`D*pakEG>Yc~)4_#`LdhkB)?UlQgvAH|c zE;QFoo+f!zu|00~#Kx)rst$(M9?O5%QB>vM>>*oz=yLkbtCl-X@mPI-`x3g$tAw}6_L9+>)^d-jd`W7e)uks zjQjP*yLG<1;^up4Z{Pc*P4$vr-q$im`Q>>d|Jlly)=rz#_|;ERa{C>LHR+;q=6V}@ zq^Fone?86qn^WlSLm34Af>7R^jkoEii*>LWwe`}{3*)3~1Fxf1i!+poYd(r>z zwC`(-|8-}7OhS#XzV_c&;q^k3jVesiufMlk{+n})_x4=&I}6)?`hH$h>Lp~q?DEga zuX!F_$c$mL*q{BkI@fphsmZTDMNj2g9NRCq#%%qR=X-1VEMAqWh5gi?x$`+=)ApOo zSg&p^cKI-O&dez1J=ZU;xce*S}AJ-4DQ74JUU5VLm6fsdJi z`l-#gKEHMBl-9`?P%X}Vt~}8wWBL50YXra8JzHh^bo!^aDX)XAeg>C4_~kPzXX^a^ zrL|r%5AWQ6AJmt$R=>WwuJ68=y6C-CjBh@vx_sR}z4D6k-syIWYNC8C?ThBtFHd|b zGx^_qzMS{&o8N2yo8vXJ-hX+u-{fg2&z0GCe2tj3`nF!Hw56E4)q|?GPoZ`1if4Ve zB>Z7bY}$F5U+luW&)2h`{B_T9Vzd5Jw;&dQM|0oH-Z%WY^Rh;Rfaaw|m#W>fd5>@9 zerZx9YhdYIwzX>Rg3`zh|K%7IeN*>-2{hoCw(UX2{4lnuZ_XXi*UowzY~QooldJPFH$?ZamsAVB@;eb^Jhx!P`kVQ zmvMFu@7mbh4{`g;7L@M}UjKc;{f`>QmtQ)qXZi0_X78d>!~KWfUS8>V?(nNWr>$w@HdV{XWO= z;>(BM|Cwq$I`#8l#dPBtPg5F>mZmIzcIob^x6@LDr~S-*@^H^uZ?pcI>L)VmKXbnL zT;cnzVN&0*FH;YzUf;Voc6+Zz{ZU?7yFxlbp$c5GKTA(bFu~U)%$L)(m!bF-%@T_zvHHdmDf7qPd5supLxCfd$W6dsBdhA zPclcwtN4ZZ#Gf|uV(wx8RjB~fQ z34~W~Nh&O!DV>wrlP6ts^1^EM)nBq1r)L%I_;Kv(`!|KNQ(HXWFE8db4>40&XS4sq zVk_BgF~%#(IT?fR>Nx)M*z?q5{bQdy|C`VM`?l%j3(%=-@BT9XIQ+hbPs8M?dd^kJ zn~V$QXVkvuT48LUyz@wA`LAthe9zskMifW8t}}98Ju6l7XVB}y3Xzjbzuf!WG-=-_ z=i}k`e$BQ?d|G&>{7luVSce*+&(@!Vw{709c|UfSs()siwpV?R}%4b@8FI%pux|4XoEcke7+*~V{KL4acJBv2o>HPiGGk%}tn$Xv!b5s0d zZ^oCO<5KSvpB}t*Ua6VY)~oj_tS$XbqO(h`X+0L&{Ohe%v;FPf>elS1YNB@6P3O1e ze_vO$?N(fCyZ{%Vpk|7`&`ITeseQx0N32>09eBzbc4% z9V08@ze>uxRdL~44~u!*^*)`Ety|6Y=5pY<$)?j;q`Y~{0>7VJy(}eXpO2K-^wm6T z^*`%vv75j3+J$O!clorrxrYL(Jq&+Gc#6gR+o|UIv;^WO- zp8XPEqqeVfdAo4y!!y+-cb=a)rtDk1Zq1G>^?m!(9xtlqGOd?8n*Zk2{rXEfWfF3m zRTdcLZgjY>S@3o9weXjJJ{}6+S!87y#lgU!z~JfP81kgdc*82y5V2Jc-52S28}J{! zB6~b3;pyF)$}7(-6Tc<@_!P0B&HVC%>rDGh`j#yWJzkl*gz2;JWb@b2cmKY96mD@% zQSDKacKYIp`&KcSoY}d{O>5~x34wXpPtNVH{GR+{ZvKDXJ%-DBM=jUalFVzZ=^7b&;m;p5n4ezNnO@nW|N4pIiFuC&wAB4}D%$er~bS{jyJe=NoNy z-AXL3RNa+P@ODDQ(#dCDr~h9i_Tqi4_1B*-eyZGe>(&eZlf!*zar7~**tKaj?brJ+ zirQ#~zc)Lq@!RHS%*Bh7Dr0seyXT*DKNcz3Y5llxvv}qiFZbPUXI@X;rg$z={EMA< zt??Brshv!_51)+;oqg}FonGC-x|MndN(IchzpYs4e9mb-KSSBC_QS8YR_e^OUh(sG zsr7Qx^Y71_sAaWJY+W}y?6{wEpX%vNtk)es2kf4^q^R@4>Cbb`VoS^BtL{4*mK%2K z%r(v0AUgxuw3u?9QwyHDW%usqdBMzWV$5wFj8YlbpN#%x}+} zwNo4}OnB_oaZ(=T))=$08 z7GEyG@Z@~|@vNiYOE+vaub&(y#vr-HxsgxQ5hMoi9_HDSlPjak>N>-KH4nzzpH zTFbs`cNKqb-^}oR(*A9}Gh?^rU#iZ%SsnXwnO9kU^;W)g{~+&BZ`*};>Fup*rx3+8OKZYEzmmCPU7oz`#44|Br(k}SB)x0KWsBw8 z_LfeGU0Ss91ap2r(?p)NGw%Pj*tKfOruX}5lymxahwb~_S0?E_wY|d9YhUc0^zG$7 zd)znl+0@_XN&o+O{y+DM+t<6##9uz`xxMUB{jbjdvhypR>p#Dn#_O>8gx$T{&-rGV zE&d_EH|28|&zk^~gwUSPKTYRXotuC1;H)cemj{(TeABaa&h9h8b1UZfp9|c3cUS6i z=kMvuHu-fND?g^QLoohgnbuE@R{>J@cYRUfsa|pPJi|wWeZv1&*+dyI39UC_ue4HH z)yFrL`t?*Zq>MdkHTPAB%jhlU|6tO*=l$Y!b86NI2OXceAwIS8Rri_T_s`elKKp#;@wv@wOn)wN zKJ)R5hj;s{JU9R6emzBHzdmm(n|*fGxvSi4t9-ZSy>a0 z8y?&~?{f8)=*MqPEwovk?GtpS;r?0AKYCu@M4Nd2=53J{5B(GU?cUqx+n(&;Umf?G z$8+Z4*&Y*>bYFY1cIj|;=CW>Ebf7Rrp+jztL>+gN%@h7J&J8xK6W1Pb%jwvqCd6vw zB%`?~gV(i4#Y-mZT-@9Cxc&cPcYQZEnZRBtDTkHS}s|>|KM9iCN`E zewHGsJy~mK@Zb4$>20tjPn2hSL!D8O`^RT(_jm8Py`H~F&8+%x&8hC0*9&j1es$J- zU+n%5=5;&!zP;aE`Azk2sQ34}EC2spov(3yn!)-RCC7eUR@)yG_2u+2!yFae?2D6o zpGhC9Uj6LJ>e#8iT!KqBxqW(>6;e5Mnr~;oQz`Q;=jR$<*nU~HEo8pw9-R*j&o78M z{G6-J7W+83+RuH`sk&RdewzJ8x0XM?q#Lr{dU_oH+&MoAVjFMC{#^IXywdoXtm*5I zt2CxtB=BmchGrMX_0BV1+ILt`Y466ZS6XXiX8(DAUYO0d`sOPO&sl*tpW8+qU$}_x zRQLtgLsPG;{Biw$&F*4{t1ahmf16hJ=g7w$S=D}zom{KPRS!H~?mhq5 zW-H&_=T-}%rXPN}dEL{W$`PfWi{7jfjda;$dj9{7m&eV*)V5k(*%P8A%>4Y``Bf!L zE_QBFj@4Vbxm2&F>8^16L*S>~Z;IHLJ(4onvFldU6vua>@3buD zrHf?kmXLTcVcPSkMgO!4tA728uUWG1%kufFr+@k9CtvyX?XQ{sHJyIbPJcY8vD!>|-YPG( zs|%h6_5}unN_}+BD}8^wrc7zps`%aaX6dg9@qHRLU+w)R%V*}iE0bm4ehz;9^!t-r zCk;#UGE3%o1-PuqV7XR!@bfN#g-ws&-)foJzHXyi|17EV4{Tm;);r|+eDR@YR;oYp z-`&1uw}NxpX|HmRGrM%8N}kO5ah1bn;;e!%D@97(+w1r3yTwp@Z?}Y>l2E~=`7UDeJLH(>`j#)>ljU_<9|V9^>mZV$u=* z_S#x`R?Wd~L$?rxXA>U9E%uJCSw3+>W%(?XW8qH)W$a%cOxhLWJK3(1<@ni;3;gcH zjw3=Y78Gt9EYQ z_jr-zl{bHm&#ifB@s&5}-%9D*B3X6!m#$$wS-tM(%x_{;oa$LSndAc=}(f@Dr>WTVvv{d`=A#TK(ka+5qi&={t8;X-wU$-LtAQ%d&2r zk@CY(4jZ<)=O>*H__iSB6T^pVd8t)}XPx6-S$*=8{y6c{MgQ#1Z)S7ZwN$sncO6c< zf8z6$cYf9vW*0TQHlC-jrTNgt_a;kb_(yIz#XWU$?5CGvMpvC?R$p}sPL4Q!;Op*K z`BQdxpcir-K*4yt~+aDeNz2mk1uUEB7z9BD96)Zi| za(L;dU1GN~|8dGIDEzgOUw9^uJ1+d?yAMAib!NQof9dr3<8FIpe^1*!iD=y~?S9S*48_3-^!WU z`X(hUS2brYS{!;QXUaSA!^Z9kT;`WnUraN$$-FHR`2FeLL&tw!UAs?I|L?(Ke{1)W zZF|p2uhM%J6ShO>*_-28UB!*FxsIND@Ko#Wso4&^Rkv(^yJT<%&M*J5auPSQh|5x~ zn^Dugnyq$z_;#xscSch5)+_FBR!t~vHs9eRm%iQHsdvfol($#(Tp}J+T7CHRp}n-G zV`I1zNX~X7V2M% z$({D_ZvFHv2PU?M8asX1@y`Bq)jw;3&vjU`ve(P? zJ?1;axZGN7^Ip@elf7(pC5x`bUQLTHdfD)p=kAF+xsRD%Utzu*cQ_nE^c3W zKKb~*SNa(*XI$9bw=kE zuZxa%^%;Ly61dT7e)PwE`-1HbezqxEA73l+_FngnkaXEeZqu2JPb~kTD7WLF)A5!9 zVY|1hudQD^;l|U=ccLymn=f5f{zs_diJEy{aih-x!8tk1UtC^=N_n%FMe<#G8|k%u z-=vE>FRW#o-(J1P;F7!QGAp*J{#t)me>qX{R_(8M^XkvxS1vA6`SkHenC|mAA2;9s z-23bH{6G6&tL|N*zyI$|qnj7?ZoRo~eB0suAC>?4tj~`H?paxx(VjZx?KOsY+gGRV zJ)e{nzvoZl`Ffkm)3=VT`aAW>;&YGAPc*mGH{*PDQ@X<2ZiPYNx$Gx%Z|lzSe!C=T z^RG?M|MX=ff6I)qUiAHy;A^RiYyKR2ef+;~LU^Co&V6n_EB5~4+jVx;%*@q`S>Efe z@tPCr=)UOP(M=8dJJ(nx@3Oi4FSx&a)`90<@>AG7yYIa>l6g6M%6-rMdi$^2Jxu9v zKWL_FSH9r|*YArj;~xKBb#s?US#FJcqUUR?y4_n2-{wp2zkTE29FrNw)v=`u?#a|A zBG_Coc$xQZ7xpFe&k==bvSxs6}Kx8Ifgd;ZDfy8Sm+u8K65+^c8$YtE7=zp0bL zUOjlp{rG0B`yrQi*Tkv&}*%{NGDO#_p+hfp?e~Zh4R&!UyAISYFEu}cxSavQ$Ls35tZ0x)%jT_ zXG`XNR$Ej3YpcJXb|nS(Rg+Z8Td zJl8FIIl^qwnzGYN>)m{QwnrYXu#@e%cihfgWW{FZXw&EJ z9E^2d2LS+M2FzMSluC`e=*`)Ka zv!i*BOOCNtfbZj#54RO~$-SKvef{D>)8B`yc0bu&{`8dG(<6oN%%=UYd;a)qoUgmo z!g)q+smh8b*EeQ@(+CL z!tYtcT|Zy{?)t0d?d98_#$WoazPEax6yN^1R^D$u*L7Zhe|qyr+s=hCjpu7#cVx{9 zjgVgKcdn>r*I^&?)fVl6XG71gh^P$H-_NIH>Bh~w*Vx z3wZkd1Y>qV$jh6Yv9Bza_T`mkN7`I{eBf#%TiwJDOPQN&PA>H;`nm0Z$Kw6#9Bowl z&+Pgf?KQvD<@$ZS^BR)nW;4X*bFOxN`o2bVQTw6gH9oxVrAgN(hsfEnM%#U_T{*pQ~ZNKJLp{n-&uQr=zUJZKx?rz?{zV8b<=Wd<5Yt5n8e=lu3 zd3Epig7y0=OkQ{;zSh6me(hthEr-F1+DRMM&$f(EH}QSm>|3yKk5A@|e~rg$i({V) z`r7w{wg%VPJdhBZwCn%rldjKMW%YK%`xLJ|v-s%e7S5YXZMVk6Z20Q8J@C->dv=r8 z&38Y;!qqzcZuk1BH#OuK(j!-|ld0INsWqkaMN00+YTIi%R;`lrGw=LV zEOGVgm%B^NKAx_0m3s8&_T_!t1*MIuF~6dtult`d{^t7fb;POld`H*(zG(erj;?(4 z4x5h`$_t9lx(2Ipt_w*N5Xv@uKTysaywA%ECY}%e9#&R6MOUK<@}=hfCCn{oqY%gHR^W18}{gVWxC)y;k?ThA})|Mkyn7XMqm z{*O90U)-hN`nBJj|cR?}zZVU4DP9O{8ga+xK_9EbQ%SRg~tDPzL%)4OK1-?`(h9J?kwtp459wvAF3 zw;8O;ZZViERC_Koeu>d4HZ?Yv$16BBrcZoPfA8zkKEY33$G1v}G;qJYdEl>Tq56(D zPapHtB<{)0yw3bQeCNcIuPvh1zw%wg{j(;k|E%oE4yK%|uQQ%MJ@aJl)LD02f0k?k1RvhR(wdx8>(BZIOUsr7Z*#0>E zJS+2(mA_k7s^zRm-g45?bJs(;`p1G#1*6t&yu7nz#rhJvz}2a?<&AUwLS^<_W;G;t zoD0i}eZf2La>Mb*R}=0Wc2jzxrD}7Cw~jgZ)tgU;MdpTuJf8E}_s0>7ed%}KvF>&F zIq})cCi&~GVaCVLDNeGQ{rao&@_7afGmb6)JlQ0t;a+(`qVnOjCw9LmS@PLyZc*lk z!^U|Q#eaK@(vLDGF#hTJck0QU+Z&fjMemcoe|5ujz5^fkuXjAL*i`QGMKS-WLQnjv zrp$dF61&&kxAy0KVfRBX-Is3Y@A2k-yV@&vPyXgSS@+nmJPs_vB@t^XXM= ztm*5IR~^spTWQkt_rUMXubWTJbbhc%I6$><`mgA_xjrG!ubp-7^WR>u^WK5FwKZp6 zE4_~~-|_pG;?H8y;|se?98Uy)`lgZmS;b&iUA;>1&+T3d_WI5ITd*ff?(Z2fjs74# zySXc-R^9*fck%f%>z}SL?A>C0oiQ_<|JioAmw$K6we?N8Yx^l}uGRM`*H@@*x+Ior z=(Wb=k>G|^kC)3WsJ(0!e)n|s3^{h)?T6Q{*PWbqV*agd<~i9l*3Z;BHlMo`>a^W# zpY*Cfr$K#_{9Z}Plz%50m!F$6SGZvN`s19UJ!T#LbCqN7WnHK|jPwANQY!73nAIjbK&g4(WwC|7qa7@29PyWg>t_M{*edjYv#g_>!{qt}l!@b%~ zw%0tImFJl^%eSTV#($IvHCVM!ewEGTHO;?@zn6)!ik>=fuwBw)Yp34L&$AYW-Y9Li zG5GTJCug%@x`JC*?Q^~IZJWE_Tvpx?=V^Cz%lowa)~DW9Y?G=F-(-mR@^0~Bi_4Rg zS26Mw6zJUE!~W{}{-2A#o-MbJ(SP}OZr`=n`~Th9zs|qzgFo9{pU?*GQhT?TCeJR=DclTyl-T2ZG+50Fvcgy|t8n!M!4}L7) zV)y>v>#I7S0{S|W$cW~XU z)>A?fUy9|Nm)(2bq5fsxEKg-AgT{;KZXe`)@{-?m?^@BfMMm3sS*WmV8kr7ySNUO)3v zN;Yj$(86`!w~9U$p0G)3?eeFA?OBVSaBDoi6@UNC+)_PDo~$$ea*sS^{im?+-1YYM z{na@^$LBphe)~dQYW)KFOzFh2)nD_ioY^kFBby=M?y>CB9PBvPl|Ko+${CoMipXW%vUA}3DYvgekukCx;mi#RL zx^~k({Yv3)Q#|eJR-S%&C-rB`&CD|0#V4269opIFxopb9wNckMR+;R+d+RDsdu4vX zE5|LD-hEgm{qfV?bDQ=rx19d|UexC0wcBR?t@Y~n>pWn&-|2b5E49`oqUF~vFZ&ek zs9kxD&pzGI%Vwoe!HGL3FFgBR;(XBo_@Z|=S#*hlk@goCtJcKOw;c_QII)s{6}4kw?p{@h5Bog_Q%dhJh?LYOtNo~ zWXx@awGF(lC$3s;{4?{$hc_EHob@<Q{sQ~Su>eRHH;*N3aRD@!kKX!-Pf4SQhKEjFIQ(5xehSImE|<#V;w;>uFp zc(BI6W8XTnMBk}Fh3(}AE{b=T%sJHXclwTePSudB`$OekA2Zwd)#0q8#`-pM6;qcc zr+<%X7VrDB_WV`vDo^=ce_j6``d+{Ap2fT7x~kAs>nyqiIRoo{tm~FNlVTBhDRVhj z)q1nVFG~2Fd==+Ecof+C<9W@olKnlRRa;_b7pGj6p7nQU*1bpd7OzE}pJeOK`>Z+d z;|WJSrY-urPPkOxOLw!qTd-!y6<43i***UrZn|wAJ>mR<*yr&pmsj3Tm-SWZ-SuT* z?AKF)b58^x<=Ejq>$t_leeIWL1bj`}a<}Ah4P_ zi@x0VKE2!fZsvzzt1w;n-cT>g@|mVu=Chw(`<~adLTOKR^Ni%IDXA^2pEt+#zG9ZE zkYkr^kWyT(=Key(^u(NH;%Zrnb1iSs%CuC80WXGq> z(p?MluJAnHc4_}3j-SRt0{cyiLT@|UR?XSCj^oPHD@*-elz6$fpLLp|w9GcuKUO)0 zclob1Q{RQfzwf_t)BKhEh1^B2*B8BXc(VKA>*HzKzU>JTZm;HaNAZq&sf8ONpF}tuj6SfvW=IPH#t5&`G zzW?jVs@i?4R!tEPeSAbIUUgN?%GZ^f%~$GAW?s&mqrUOPQG@aj=SxNlzTQcwoBwn7 z2kv&O%4u1w8kfEM7rOWdnQ5N;bHX>b(d}=kT=HSj-}jlq-*tHDEvzl^o%gFt>eufl zC-1fIQSX0ix^j9&K;AN;IhVS=i|#siXk((+-#HbBPFTbTa~!|z{3`h8&8Ow3^wyRy zceR`wd}%e0M&-H>8|SZDxk)zuZl!eg>vb!4ElyFlw%LE`-kIZ7K~X!x&RqL4w{JrB zZd*H1wb-92Q4gaY-hA4et(_7ziqe555M=UYO2$-qh;XCq=FGHkUN!tUC0!_LuC$>b1QZ`|iEYa1T{ae3?>yoaNp-zGbK7-mA|% zbY}NugNYhlFJqP@FV}stKe$Dx@2>Te3KQASFB_isu-<>AQ5Ev!+FKIABhZZTb?X9TK{qD{5#)% ztM2`OslWb-_SfY6e~F>7#mR^7`3UAtxYP4Yx-x8Pc<=VTtD+v;#>^0x+G;#Ub1{$d zgP4`a%Pr29>OGcyzh$wa!|Mwxwyi3yymtD#8dI3ev?<3vU2!Q{d1NW?vp;^j)>vZ$zJ_e@}5;}`4}Qwe`c61V848C}sPW^yRL=Z}I2uEb+ZB_Gy)G`YPqOYvOW$D_7~gDoz`I?dabi|5?ND z%Jtki$6hGK@6L#uTX$gfDTXU6`;6wRzw4OsG^^fyk(G9d%<3}1@R9>dVqQ&}-Y0QR zeM@!N>hMiVRWfDvUwyK^Z{eqp zldGqM%az|UeroZDW$xCf_Z~;ok3HS`W%g6{oC2*yd@dDcmF@q&MK15pKl>}Duc7YT z&0X^Gt7|X(i8L=x4_f8@=E3!O*4cAk=cLB{nR_{MTFCOfAGe))ws`syyZW$m>f{yns*9UwSQ<^(;GESDfvdbQf_&C+|K53FcCm23G~0GH)vUA1^Q~&m=j{V(-cLp{o{o(Um z*|k!RN?P7%KYq#S=~c^*8(s;O{8{zR!}hpr)Tm*p9J`;RK`vfy3$ zr&jAMRXaR$@*KIno>A{7hX39^Tl#P3bI!|M%k$2E{=05{%h|U%$IbZdx6Zr!-Tm?A z{NIIlEw6{zd)!UEo^~rcd~W`HgYS16y}IkR%}j2$x?(i%>-*s92InB7gwxyqgsgQg z72d!5a;=RvfAQY#{6F=}|4#a!DSYyXSW)n;&tB(mJ$$~#WpVKb*&|a{na*Wdv+&Vx zw=G|MUBa#W-@Mzr>LEjo%Cc*ot`{HG-VnYSe1`F2(JqltHqM1R>1?zV{Wj z^DlB&8A`A|Ii8zn)mN>4NpE3p=oY!d(V?Y&%NB9ZVsw|&<+6D?*;dBCc9H9&dk@vU zFJDZ5pK{wESE zP_1{TR=)k(=EsbxPfPWly^~m*IoERSos+J~>Z0BO^3Rvo@fnuv7Bez8?z*VCjP0Ds z0d<}gp|brk2l``d_Px(+j+e7MUblX?y1VTQr!z*#DDPcuc;Nj#>GKC)S*Bl4tFB5NevU+*xkJs)=^}5h<2M*YhfiZXZ9fa1Wm!qr|ho^-{;T`bu#{ z-Ti&5Kko4i-_o{uvIaZU+HJnydnULhRLEBSghlm-3-1D}76{9nT)9IcXnlHWCyFz?Rk<^nk!Ru3RU*+>*eYND9>ze!`Pp+%m zisY8AW4+6=BUMB-;c4vtT^BpvzfcRAv#GW;M5s)*P%eI5z$>f8Po!Tm1t>R(Jzo1| zxmDw%`F(n?Vh*gFb?(cW_TYaax8|Jwj0g#^w-3+X`}yLkNi*-%*iE`rqUUJz zO6;uJ{ev@~@|m3pFJ1I{&Y|ynV^7)_zgyN8JC&{S%b~T*Qm5CKs>QE9J11!6y3ZeP zJo)bHY*&2MEYy4E8}_YFV=bR5?U2{5+_>%SpE+}wYzzMN*gUb9ao+CuqUxCPx@-4a zQkJu?^DI@=o%_e;dBiR>j{_H_h60lWX;} zV##g(T93;N-oIMs`)|tY)iTel_ME)0eB;w!zy811A+x$mC_Sm}cHJd}9r*_Y(R{dvj|E}2l zZ!?}xnYZ=u`kN1ucCdAa8~e`A{~fgL$=$q@f8VnQtbS=Qu}t9UbS>`NSB}2%Gq7n& zj+OX){au4j-K&oabrxs++SbfuU$s42?oGr^L&Md6ispL{avrbyS^D9g^Rl~v1~=UM zmo7a#+grls{pJ?E>mJ_y{U7ge?z_9MHr21iOSWsz*tL%OH*L4#oZS6TKm~*86s!y4x#GRLaGTL>XcQr;czSntOeB1p_;rlJq zozB1h@?P^v!PwOT2mRJzKY9+scVezv?c2jI`CYBN>MTtQN|x(+y^j@t zHs|k3xA53kY|p-nt}JD7-PW}D1n3MaQ@~t+x$XD*y4EKM2srEE1@}}zaM`38 zF85n!Kup28-5<32cJ8se-74RCX!m!sI`hWJIq3y1YV2X|ckghQ{N1;;@QCJ|iay=r zz4?DKzSYjy*yp)9DlF6W{pZV7LeF2FIB5LGPCc&FnA@z{KuY@U<%ex6)YnPB*zmGD z=KjfTjNYCI0rhM!(p%)@sytj;`jn_rB@x~x;?v+BRh^T~=ovcOFxC_d1ZX~U~& z3~JJki~hP*-pH7q&3It7)YRkoTP}S|2yv-hC+^_iBzLUva74l4#@TLpOGS=N%iDZ^ zmy=?O$DIcUny)A9a+N-@JazY!t5dy-6wH4Y`FxObpV}r(QNwOswMgRr`OHPX8pgE&8|;qso1=og4UH`-Ln=7 zub)_a;H8w{n`qWAGcK0SW%F9O=*rb(m&xlNY|q-RU0>EWaYD9jWb^BNb1v@_J1)3# zHA}Lt{qLFg*O~WS|2iq|((BJ*`+sefFMVg2o3+}wqtn>OQt$P{!ildRzPCDF+V}2R zwAJmK|8`CK`g332&bz7y7D>HdmAzrA+WS&(Q^SRS*15}lDwPxNO0QXe=T6~@%A0Jr zzg#_CAR%{s+s?cntm~tm8f;+w+frH;x9(!On1mI3hv-zzEwh)@ESfeY=JHF1BImDD zZKmDa+PCjYqgnXQZIe5@W@=^0@BUT(dgt9Vp;jj4m&UIO>soD7K0M2qz3t1z`PGuk z?PJ@wstUL-?R^yUd_~ZTTXE+<=>~RPjt#nXe&^oVo3CuDi81|Ox9)w$qOUfaRZa_S zE9rZ<^6;M5$Nj_)F0Xrj(1@G zY2PotuxSU)lY~xw<2_gKby3ItmntDouZLbLeUz)#@XjL3=xNpW`=)jCudXhiq!c2+ zCFL+_qM!f7>sFrg_r3Q`PCI5@y5hjjt>qgu?LK*Kl9~UYWR~Ev%>v)*z3fU=zx=fQ z{ZWEH)6Qit=UV+kA8U11hW*NDG)}+5IbB!Zc{$y&Qr?_V{T$@%-y#Z$gMaR%-hBCDzn1zLp6R4WZCeEVs3mo`tn-Vp=l zozgd-m&t`Ld;9Rkijqq&d2+7mep0>PzbmFk{@c2<8nZ(t8U|m-+znJHD+l{?c##zwYw?@BZSq|MmO&`fk79ir>F{ z{NY+_CY0$fzU0T3#a5^9Uo90$zVhOtSl*Rd{jFu@-~VV>oLd`M3Px!iy}2|9EB3(~w@$ zy6$~*oc>z2i}g`?;--Bau04}3>G7V+wYHDwdpyZIrIhDa;k+~Kk_#tRz1*`iG-y?J zb%DZCDp;NBPCok!&^sbF!wH-Y!eI#q*N0q_W=#?{JuB(Xekr%KXO@m&KO~Y+q!yV^+e?=()SxdDRzM ziIwWS3tD&9-qdk@JKIYxhvQNk8rbDb&0>2$`fQ$h?Re#q8==eR&T_t*vDh!kch&2) zetSc!!*1O<-}I!zYVwM+{qZ~36)?{`{7~BL(n52+X$Mv$=3L3$z4)!&>qF_Mc5RZ% znDOmis{F@kwQ5&;1Q*BDr<}U@Dfjc7*F4`m@2^>$yea3LsJwnD%PyHl=7K4IFZS1L zt^4$Ne>}MNQTx|A|C;>%&(BKRufDnvxOi=LUTVn-8*kMMt8TB_XZnzu?%PgKskSG4%d)&1+rW8=Qu(LR>2 zyuQMA@2y80&Y1GvzHq*D?YpK3hy zS^vp$U(mT#ylbEC`C7W~{ew%ryjI5-H2;ipd0ik?yl-bxm*0uyZHexcg7o#x2X-k1X4;L*VQE zH^o+4N~#{*ynIMQ+*;1n^;_``>2&Y4S58i^y=j^5eQ#ZpdMxuTq3m0}l~>vfFK~F= z^`H0l-P{OGjlXlRP4&CsbMjyK$6d)!#A}@-wk&QF_J6Q*QQ+;;{VEE{qC0b3&-P2+ z;}d`7<9+MeZ`IBJme1+_vAue+?rU|84d)GC2Ns#Xzx;C^SO4K1!T&>ET#i`zto*6( z zU*G+7`@4C2-LAMx-m9dJi~YMS|6}^shqtXSpKP)|yWzdl`>^Ppw|D)p|82O`ebu!q z)>FQ}kYPUC_v9S!^oJV!u74)@Pw~8IH+P2X&iNx%sK{E+ z*j;k&%j#v%=nDU+F>-BC#eU-GlQ9XHANLb*pId?N(y;-~J zCsSwY@7CaV0`lj)%eU=)_xh5`=M`=J-;7_)xl~x{SGsa~TlTf-7mF7t-Yr=4c)|B2 zPaR{@r{2B&-D7v#n^PXwN*8y&UVlfV<=<|fWI4I`l|gs=4WDk`diA)01N*|uVr=4v z3S;_QuiBpo{}UosdtKjh&EtbBT#su!uWLSodjOpILsf&F<-+ zt*&0!nCb9R=`6=e#Vq^&?)i#)SK0L&*sfl;`1H#3Rf{X0{*`$tTe`B$S!U&DL*5TM z-S<7W%luwGX}xe5=VRS<6AK$UcYnRwv$*Y?NszTj@|3W}f*&39E_Z$R*NQ9s5`Kem z`MD!oRp;`0m1bS=SsdG)|GFzPT_8AJW>Oxv%l^ABeX_nP`<~UYe(nA`f8R&Hztijg zhQH3(ZTiK#%6^&tp07WvzSkV?eK1$(^w)%^`?kn5oN{Qj+Fp~ot9!@g$vXnJpIc-0 zFrqTZ?PS*8R~|ln>*ti|E}k=EHcL>o-Se7rEN9~v=Z2Oq+jm&kkn8w~$ALx%>?&LH z4>;)m%*%02;*Wh?a5wC@Z)#X~)!nR_pRAv>zmd#tYonww*+=j_VKUaz$ z_pwjC+)&VUO!W4nBd@jg`xm$PMl9p8S@ref&ZtRC>;G0=`+fDE*UG()-l2P9_P+X^ zyzcJB=T^s7`KrbEU%mQBIJLBO%Hs)-SL~W{xjWhBtM#8-#fEjy_T0SMDf4@$`@C7t z|ID#$I>sE9`@M2$`nwO_s$rqgJ{MxPnQObUJ9z$cKUFL+*X@(3kW2q#;n{*KyNtw( zS7oi?iMyS?uBW3YaZ~b@R|hW5k~4g=T!>}!VYg`uvKYj;?)={u{q60dBiHOUz5V*z z@brNr_m>~AQ88cms`2fvQz|lb>Pq+Q+H&`=ajo84q*L-I^vL=PZ{3a=ni<8uJ+Nra z_pb}*)rHAD_k3>ha?y1!^WDjbf6YZDt!je<)&2=z-z~T7b3y69hdZ_OVg%mE+`Rd_ zbl=yr>2}OVcN;9pdggw5YQoav#!^oiba|Jk{@n96>Xr+CK-hbMlSfuqB(%5%_-3#d ztew-vCR?h+q`y5W#7~ZKx%swgJaQe6LI=KVEO_8l+fQGO=Y|8I@t+NaO1J3e=} zZVz5vsP`+!=jv5)=7@V2Gd+^!o)u00ZhjzKZl`(AeUn$K3k{}sSA{6_JTq^c{W-aSPvG zwf&`Y*m{5dIlIEYHq7*kM$gaJmrf)uXSH3*uv#R~FRA{^}qD_d4FjhL$!lfe@ zooDVD_ZVhOK`jq@I)pISM0THo{gXRC7qOQ*+L zG0AImo(*}$V)xwGYKutxl;+i?=}#6-_DsBF`H|yXY%TLY)l26-te7vp=CWm&n5@Tg znNufjm|n7+8!?mR+q3%E^6RCW8I)9df3?x!W2Tnd@LHvX03+j5n& zdYW}jnMA`*1995`r;JtKmE%O7y^+8FcJ4%L_WO%jv-|BdSXNzltB~d084@USI4b>t z*GsW2n%{l0TIS!oy4=s=L9)4@b;WUGj`(+`@{ead?F@cDzfUqV`1rBoo~`VkzI(;| zeskmOI-3nAUw>Uvy8fj2krQuEP3P*Lt(n)*ws$GxQcsZw9+lU-v_dT=X}phTytCqU zn5G=(e5pScv(8>|JG=N;jg->M8t>A{6D2#Q+>rkB!Ts=5Io7bvd@IB=C9ZDj;$G{o z`77*B;Q3wOte-Qg&sAUh?`O3A*M|E2OTI^Eg?`;U|4&lwzq9K@vaheZeeLzVuNmuR z9j}sGds{a5)q@j{xdZM0Kah!-`akAJwTyA*-RCj0KL>5U^5l<8WUl+|3+Ym^D~f}a zKYq|v&QY)}*%{;duVu<{ohm!?f7@rqmv_IurntrZ-xBZ0>yxVPwj9)4Z`}K}s9|r` z^Ed6;I^uo1uG@dCv+RCpvFBI&;>5@Q_E%pmIrZ?x4aergE5p|=E9Spg=l(i$@7X;a z5-ju7-%qL5eDC^P{sUW;eyd?dYR|z;=>UP&l@qi2C&|~|oc^)Qc}BL$g!Elc*L&NY z3XqHTm>GWk_s7nki_5>I{+2ji()Hp;mdl!aCMWqBQ|wn1zm2;fcU{%!R{p0rQ>ibm z&jmldm>6r|wJh;fT%JJaS>CUkb9bG3pmAmAobo>c>VEd84FB?U+L_B_+Fdn?)qZ)b zJcRkq+Fc^ce_21z{lwHObZ=(1Nm9t=zf#dp6D8DTUPd0}6{W*@QqcShFbie=LnW~OXP>Tj!_mRE*qFWapD(>5WhKP^P^ zt$$x+_j1{Isfxg#Yu`ueRZd^WRkTM)eO_6g>GJNmY}=n#zpPNvwe@KN1_V1JL?h_}!Zj)`de0_NJlDTqyd+z=yE1a?N%@N^+ zyq!CeOCE%Jd#{~P@$TX?nb}XzIbONCs4v^*R^ro{|2MH8x!V#QyEr@KotJW)`y-nN zF$FV!&UwFd-oj}IuJ~@Kiu%3j+s5-nKbQaYm@&uOp)No=$~6Cz_}R;krGI|B{G(D1 zG{I`XbFSgzTY*c8l27jmb$Nx}&}YhC6p{SMr~Ra5-}^Un1#5rZJbCHEzR=b8u4;BZ zWss3Ko&WIjM&}~;3WWsG?FE~@ym-A&?@?yC4P)yHfBE?ncE#_HjGSNAuXJQbd+GK4 zfA(qLe*9hUzQ+8*HcsKQ)^8?TS$r=@yWO9VZne(rgZ}ZmAD`LE$R9srUKf8pc*gh5 zV#`ac)0W6*hhBSq{(9Z7J;Bf8te(%(JXU>YZJ+D$(_Z>r6V=YoYukPM^Ky~8YrE@y zHL=u}I2G+|8CO$VAl6bcb~Yv_$!0^xkY!Bj~?Y(cvUdjMZj|3r)44ipH`TdR%~Ha zm*L*>@o9eTy14o4U#ad@SyKP$`v3l4CsvoM#V&iy>?d~SWtk=G#Detu1vjS1?p|SR z@OsT58Bf*!P04oJr~B_`>0D@bTX0HU-h1X$LHS)e%rOOTE=;`tVJmDcz(%7Cyn6`CQ_}cR}zH{nq4i#VNTx^$q#JgEIZArBCYO9~RN=(H(AKs~TJDB@b zWWa0h;wQ5sKwffuE*u1*RDyV#nLq3D2{?&;KQyZ*8stz!o{jl}Goh82CPCxBD zC3)aaRo?T9J8z^}UU%Z;e!bMM!RA)oRQLIeb-KR#Z&Z$4F{LjCZ)v)R}OUnrta(+~?Xy%pRtRjz7Kc`4Lr=Q*v zSuCX%%N(M&UZf=F)QUS1KQCsroPE6D2J=+=V5=$Kckbq-*3G|oCGp_f6}-#)-kj?) zsawRiwET?e^XGQ=c6$Uoi{-7`75Na{VEpiRf296PRmHt_`CotE{}nPb@4^p9%Ztro zQ(rIJ?BZ?wDc^V3-sM?y(`QXt7b~?sChz#yYc-4QzcZ;{uWYe?vehn1WB1jE*CyJ% zmfACKlKszG^F3?#bVn-ZiBCSw115X-?^E`Q&(KRy<)xYIjbW6OVw8kcAQPNmewp_erc8d z)@%LhH8Q_n`$0_gS;mBZ;+lR>haTd3j>))ZK>O zv+h{NeXZWU-#Ovq$ET5!tJfX2zp5|y`MKEt^ygU6~~rKCswR7Q(h#qAncXJ%d4+5oNevazt5{XJWo7yv#C>O zu*<``KbBEmtuFl+LTV~Sq;AK`D$e|KGtVn!Wmuivu2sw;Ki_G55-ThC@jK>JX>!%? zCo^IfU;DH`rQAbpuI-_wJ7YyKy>eM`<(rr$sNV)KKBym!Ce*xuFd z{}sSkt2gK2ip$O7?!5iao+(d0aWC>Mm;J5x*KIPMmhYe9xS(sL){fm~TfS(ebm(e5 z&iv54z+17uru??=ou&8UzFR#r%xr04lMX$$P%1U(>5MHt#}BQ`yL;EZ_Y~9ZwHZfF zGk08A_9&rTmD`^W8}D-dyRpW>w0_S{PM5tU)qK8F=WIV$e)q+h%Dxki zf>pL=2k&{_HCuAm)`o8fPWKnxTh>CVH9(;bgx{P)h+n{N3eG+g$r)bwM&`c_|% zd0ls~!tz6!+(G$E9p{`a_wVQDdpEH2lLB}-D}g7Sl);}fNp7tDE45+&ZZ z=GAA8OLN%!`?ykChC+?EB)32x7?c(cy zy=yU6F3qHS;dXWO`&ruV+EXX1MmqpDhy`}nVV-_X|p~rlns9}@7&7ncjER=_pb-~zEe0-F>f==^Rum=D|Ivz zPi!o^RbZE8aNyyN3&m3}Ie(J;mQgD9J56P6_TRf{|HR&lgw@XfdhJ=|xA3j?Y!@n6 zo>uq&jDPm!jci@Y2d^XUd#sk%@YzwA-P@b&@ow`a9635jiy= zRz?2m@`bNwIAy!IR=Ds~H(FV6XRL5MpZRC;MLk{xlLft2=gxkw4vY=XQ4uqEedo*T zpZtx%AuDe_t73`Y{podnsmz_(7WUS zvyxo>$F=)I>p#7Vk1qH$>E8aA%kBUDzjFWIk@rP>WzS8kc%oLXiVn`a_Iz*ccfVi3 zE8Bmz{EE6*_;!-@bMefm$>)l#PR*ZYXZ1WzbWzi>{JbKE___6~G?{G<`|eBbTNNn( zr|bBiXHL^TM-*;}4!eKqdGU0aR}!JIOr@(YvmXEWbycDKy-+RX!gF@FSo`v;zARPP zl`B*7_^WB(XNz+}?Vnil*H^|ox4E{t%Wu1sU&?;(4~y371xlS=T7SycWr5n=S?ONBS?*t2%JlDvQ_j|%nzeLJT41%*^eOQ#Y8sNm3SY79-?sAn zZRzB*8ID(bYjPKU?)M9LH20UlbB+F8E^$xeA81S5E?q42;pF`@-gowDEzS54^hx_w zvd`XIqJpoq&-d(z{weZR<-+7kLcAN+_?zcs#=cp9EI*)pH+Rje7ndc=S?2tntW`Eg zsj}!*_bsXChW8ouckV2(n`9hf;0W(5hv+iRQe%5eqc~o6!;ZhTm&~Pzc*j=Ut7QDYqFDTN8QQF)pLrTyeRfF*m|;dbxqxZu(LBi-rhOsO!D`t zD}kS6EU$kxDi-|o)m*mZx9OJs%IDSGlh$nir#b)4!R;>^ylT5{HQQaZn%ZsEFS&=Q z+)zzDH0RxyFRR3Aa?cBvPg`)swp{AKyUSmvO;SHM-Slhk;S-;KPg}TZjrPM3%jGc^ zFOMdk-4`UC`!}!jm-;?=CZ)=K-?g5mMELDKZLmMvKRfPs`Cc8~X*bv27HDOYI(_0u zX-&-=`LiqE%%3LPcdYj2makc{YkxI0ySpz}<29A+{8WDtjQU@yJ-qQU z(WlD(k(YbU;?u^@Z?2j>$Cy1+_kWfq`@BtR8P9iHuBr@~f9LtbH=)0O=iRe8|0Vpu z!{w)^Ow4#Dr*bGd{Z`HW7KS3rwyNt}^x{@$$=$qpc;cpDV~2oUB7x#EiXp5|CT_TN z^x!W$+4&`VUOe$Xes%GaF2DGy>u+Tj9^*LR;P5$R|1E#_CsoO=-QQMaS)KZ_Q@?g{ z>)Q~9_lh%lWkUBB>A0P1nfT%9LhE(6o;>nVzO-eX^Q+~zli0U@TjM2rvC`#v&9=g4 zD~sRkE`0V@=-925k*{M!IUik2yeiQtYqLw;$9vt+YEAnSQ5I_2IrrK_zJxE;b-&Ty zzDO}5H0aF->9(1lqfYgFdsliw)*>gke}$9nE1S!kat|%tJwyA!k-WtC3(xiPTfgd6 zZr%UV;)ZNiw`7sF)zNp?woMCczW;-lS?tK3pxcV)KX(K^a9Hec<>Q12YWo_JOOI8! zG)ev0P`vN@>$=tPKcDr3R+4+Ht@``?{`c9Sxs~QDy-(6wF89wgKJ?gm`fg@u!K){a z1fL$*n$e)vE>SumEcEh;r8f<7_-{Si>?2kAG^nr7^69eeQNCNAn3u#f=szv2$U5`v zcUtM&gpzlh!8(hVR2|GTndIhWIP3UQ8#A^8Pl8bHvtIqLV+-`Ls( zs%I={FT3deH$DIBucE%YyB|F&x^l8`?qk=CbG0(pUtV0^GXKLxOT*vyYt?tY^?RQ! zzdFn6-IX1N@3zQr=051St#)3cdxx~JLG!xLFC4G)*hmGx{GTWzC(` z2mj`Lo!dIQ^F1h+s?O`!Cxf<78?wGvnzrHM+<9Yb1;3rZ}&yTmq?+vbhe>uKq=U>pOobLNS z8msQ+Z@u(?f!WmAbBh>uDHSD@Qdjl%hshezh5Itk_9hn1PovfS>PW@ux^j=qW_o!wvS?6GUbFR z=jV4nId5Mp3_rVS)f)ZW!9Cn$u8>`R+JEC1^J>vH9%ug(r? zIV8k)^;yI{`Tvzq_kOy0xlH?Trp4?%=ibE6o|wIg+5F^XvE|oW`_I*FdGmM~|4WPF zJzmvU*T1mSx1RSsS7p(w#npF@%-0S#p1XbO)&CY;8&xh{NM}1{`!FE4!yxXX!BwV5l`lZ`u6s@eJlUieqLjhes1>jdGod&K7aPLUfl;d zzS$<~yOq<|R@S{rnSKBF(>s$lJ@iQAO;CM&UvSAY@4`uoxlR7o9eXc(CrZ7u{IA`S z|NHdTmzS7`}YEvH{kF>qJ>@&S75NX^wT$k{govT>SjHgdaz@IcY3JX z!_;`=jc@N1dM;x!<_PU9aa+H5pWdEb4_rbgcUS%Ll*!`wRdY>Ud0vQ^wZBDI_U-KX zKlifdU0a+gZ+QKC*7BpD)y|*ujNV$g|B`Revc5nr;ko&`^Rjza)?G4m=?PeRKwqaL zaJE#M$H!gX=DhJHQ?|YecX^Q6W@nSGzx$x;;gxb156;ticJ5~1J1+HS4Z2$jSKBSt zbyM*V)n7I1%=@;Aj{LqOb?xy*PG={(8PvSL#4js+cWS?R?X^8x3o@D~T5)L~ueeiu z@N`~T@L{S?=qm*e;~#PHV=<8!vp9ZxR3_FbF5`0E`@ zlfL66FQ5JLb5m8TcYZWC+T}< z>Z_anFTY;E^(by%WMpizRsa1ZI#$0AF1D6_damNS*ZY-o&du<14t~F=*3`D?!s6!- z7M$qFd7V7*c(HO%)||t zvMlx%Pvw7pnf=8bKMl4obU$#R!n}4?>VqX$f3lx=S+ImTrkAIy`pU|_L@WNi=cCM{ zU(fbse$u%>SpNJ)y)fk}rADiN7ulZuSycXF9X0_@CyN-I0fVZt*BzvijbijMTt3>!sF*-m30;nC{@^^(nWcOZ~Z-*5j#BGvp-y z{FtrYsIpGfc!B2I>TO5nEZ$fD>+t_YcAt)If33P##W()XvHLSVTl-!)S!^M%cya{RPSgFh&P}Q7t%+<; z)tt25uP*Odb@JtnUNfUt`SLR^XIW%-+Rqi&K417-@%07EE&GC3?W(i4s0xjq<=*k_ zcgyA940ThaOg^ia$9~=WebIjRU1>*)KP@x8zwRFRz%KrE{ZnnZgee7=Pc3isn^l#8{kIix>r@wQUpK1J7Zku5|{dvgY zHm5h$sW0bPipe|`y3GGWMG@%WYI!Tr*%%XLjnADHJG zGs=}cUcwf+?c$=h^UenaX0DBLzO8j5?CYnAkI()-R(J78TmA7hnM*God48+TD)Hrk z`aPSEgvQUky>i-X58JH?AEIIn-nO`$P1kao>XoT+H`sb!VtdWm`&qj}CiXq${`_iU z;qwrcyAw{yUHs6sSYvg?n#oce$38!9YOiH}W?)?zBUb*Q+3E5EsoyIO<(}X2Zo~Jx zZ$kYh8vIzfYDu4i%Y%TsXGoDi(T%aJu>;V&mVtnUH`vg?~>_D zUjDZK()(+t|KDpiY=WG9Q}122S$@h=R&W--=}W_o%xMlq&3|@feA=TE9Qw?n!Q|Zi z6}-p3Xjz3Fkk43h?e`LqyiYNA_FnCt&GDdNq4A1kF23!Htr`zxRo`*#)Y8KE zdk<=?rWfa_$j65N+GQ7Z@<_|JN$a2Ps#2M^ZS%UaP`!&ZAb3Q|@MsC`9T~4dV zbN!d;T&m-VZgt-I%3<}qg^%6$zR=|Ls$c)>UYzzRULMi=*8`t^-Z#Z}&fC+e(N4*_ zzn|YYv1GOV-@R6`Wd>@ti zv;I>x_j2I1F7}Bsi|?H)JodNhR@&yO_4&7VzxI0IES+nWT)kDw?62Kz(|ZM5+10~V z$6dWu5+-!JcgG7E^Dp5qPn4|S78l-r*8Jqcf0psmrope5yEq6fn|l6gP+HQ;9 zTHT-U&3xy#i*DPod;QkR`1w{LIZ>R(frZZky}bNZPq<;JeQimfWT;iuo@TEJObfX6 z!c6P*B@QkqJ1zOlW6!F|-F+tOf4}^;`p6N@`#W2n{i}OhZ?Is|FIM(RR??TB{P+>) zc;Ne8&UX`)%j0>ERr<{la$D>D@lmam$x1)NW<}+|->sAPU23|v{&RBaq_p`Z4_6&u zFs;V!=$ntV%l(#5@`?I-KT3Y;Tr~sB^%5nIYm~)rh3-30cO-k#rHuudL7UD$Ka-qv zEzLSz`{g4&HWu?AKP~PZzRf|V2tNiu( z_ws9|f0<aef0Z3Sa+S9Z_~wBYA}g)_x!ICuFtI- zO4W}>?{t1y_cwFjJ^eo>S3Kt^&d-%SbR+I~&8xdr+sjTiolay=kF#3&;7ag4bD1L3 z_aB?n+RI60-Bxz6iN0w@U6nm52DNj2B@+h9`|o zAF9d3{t8+uT@i9T!;tM~@1K;n>IFOd)aNPd2dxt;`*D3^{Soyk-=?mcde1Cv&B@gc zuU9xfJbt&i&PL;T`>QBBe$o8C<;UHY%*|VGeERd|c~>^>cD$yxti$_K+VuS6L9_pd z9oNdT~&rqlC|@7wkISk{{CJd;xy{gUrYN- ztk;KCn{2GQ%U|!?JIAl~?)}t#XM#7c`KGG;z3iOaU4!6HA*WZgb{ohUn^&^l`&}vG z8};GEUbD}aS2e_yY44rP_8|C_Vvv4GuaCF(xuTqJ$uClapRM?E?Nj>Ba~q4f-Y3+& zzjEYd@|_*(J#S`TV!XZnwS=$kV%u-MiaFm`MfaWXxq0bV?c*cO#R0b!{+{iypXgYy zV5?VqQtta7tFspOoLjph*{$>I>6_Q|WwxHStaw|-GWFFBzrCC1>(oEZ;J6`p{MHrL zsL9G+oZK=+mhLyD-(EksOJ9AZ)yu4FJ$3TQGiJqC9xyCoU*&46bwA@q$>!@vBeq}g zPmVqnULzN3`Si&jj=O8;hrQ?W-v8@1f2E4>ouuhiudU9{i>|uH zw_mHPFQ(~-zWk1>m51i^OIk{vwJ^IlFK+VAQ!)*eY#TaUOBZl-Pf=erNn7we2VdIT zu9|yQ-y(gl?K=KG@&4nJd7R6GdCe!uPB-rLvsk~K`%ks0W3b%orlOnme~PA0xc1__ z!i6pWmhjf@yCk!J?e0{E=901^o-Y9x?G`RLap_k0^RU&g$iKAyG0F)^R(0HyYJ^6dgqjH-Too?!`jY6C8BkgPiQqw z-uomeW+&gP$4R#fnGT;{d+zj&yX#(T{y6t|XweamwTpG$efX%nY1ftaOn)MNP20{? z@uWvfBFm&eIni~lPZfL5BX`%5{^t!*%0?ZVujam<;_6|d`8?G5xFVaFtmBktg=u}? z^Y{Nt_LV>HJjoia6cIDoMdFAxi3du3O#TVBqb1Y{vF0S$8&`@MSu{_-u8a z+=;)l^i-p5+2TJF z4iuYrSTEV4*Q@c^W7VQR6uz!DomHiB_e;a4$}2|4>aLqRJ(RjNE2`$aO;r1(`@57Pf7+kcj%~`C ztG9bg;I#Hxs^+(roVgP9-%qI(ZG9|d7tGN6{c@GyJB;(UHF}lpFfuOE>Yn>{bKV4v*#PKe}9VmoyfOt*3aKt zPi%N>_c4C*#Qftj`BM_NM9u#i8Y(L^fk9@*+BaF}pUr;LvNhR>(MS2r+WDm(w_9HC zxV0{_f8DOaJ-5~O3R*qi=jzob zRm1Zk`q({}Js&zwt2c5ueVSfon`|FG>)D#=4efs2qHn)v(e(q_VZjs(cn>kfW z&z}@L-L1`4psL$ZI_ud_K7(zy1Ru+#yi1dKdduty-uiz{vfSeKGSTjS7L}e-YiGp`i;m|cg=waK%$xVox}W<>okrfo?Pskr zp9Bk@zx)1i|M8wyrL?7Gp2y3+{G7l4YjEkebiK0pOaI@$oGf3n``>2&zt`rtU*2%< zuX%=V^0ec{drA)tHNOMrx@Xv3Tc|d5v&D6zk2`iuw+R(;+_l`bl;b}1&U&(f^_HtP@nj+amQY!4NG z+^%MuQ?Mh}g1t5;GGPBAwn+0nrqqkD;6(YH2=-%^EI!$zwVX)bGgb>-}Ca# z=)a%j|L!=!lvTT=IBSC5@1RXDXWc$$rI9tix_05ZpkzInZ#}v%=47!of1Yam;Pm-9 zQ&+8?|8PxkZR!3_F3T$g=Q8$Ou?wAC?(wJN{2OD-10_6X?AHFheE&%6dQ-WVX2l@UM48cBGXaS$55Ppy6)w`qKBb0FQ{%qHEjCrJkNhHqqCb>~TEMEN$PKRH+AT&iv;L z-X4Cs;?1j$-7?+jm+OSSRq8C4x!ze-@jq$){o1$<@7rAhrPj5c^I3l^aQ^l37gI{u z9#>EOWP4RRqZdU{@Y)w5~GQ!ZG&HR0!|-mpNd`J`3NPV>(t zLT0PqUM<*?Zt?BJmZ*!?_nS*fG`WppB|j!BPV8PkchjY=@?(PRKmOjeERDHY$O8rfBn9R(-Mm=+zqL&n95i7 zcD1KwB2!$b#HXF-HXd2IZToHC)q5UoT(q=lcAKbF^asDtKYHigVs{T%+0$i`s8j--qSG(;bKN^@Z+xCu@kjlKT&3klmx!{95o_h#e^~OJ zy!~l&d}&Y5-nhpR{@U@6Z=758vcNiO{_mQ1*9&L=+N1J*N=5J2(5rhM^Y6*Fcg+2$Vfc(PZ@huHp@rJGgyU%4!r zxmbz+HbxH2Et0{IVOB~mw-D+_ae|SYiM1EcI4>6^ww+}o`w0Y36>p_D`|B9RHZ!Kf3 z*PO1rYNdbC*mSmC*B546&A%^-ADw!>_?+_JwU6gZ^IrJAx6NyAglXJWOGEZ4?n!@2 zrj#y@bPLg{yDDIIb?VG75^uM< zOC5cF$P7JpJCknA+NVcc;&qnw>YrX@Pw$yXVR|d)#YJo&7%Rz&XZ# zvnrd@KV5ga$sKEx#So`($w+HS8Pc41&y1em|M%M8s z4qDblf1@Yy?+5K&d)@lV zuI&e3EZe#^?x9V$-BO#kSO46zu(|vG$7E%7YuQ@erxBukGr#N%Eu6E|YF@?jIIBL9 z>rG`t+>g6zi`(q&KVg56d(P~? zyX+e$rajKHdlh(u_xBCSqZPG>7FNW3HT$S2Gxt-Cm4o`FT{Urg-<$T!s-7*8ejHXi zO?JoBUA=ZL&u13Aw0<>5!&-L2bmxLc*O(SYw97@#HgSmc3cnBPyB;z&D|c8oYx_E9 zzV=e)#ZHrV+`Rt(?#m_hGcOyL{|Hsx?61zSXw{|8%~r*~g06drJHBqUigZ%zxqtMU z?xd{NUdx-;j`BF)cq`7ObKUuXs(1X{x!OLf8FFSn=Q5r7ahG~fac`Ml-8DSS0C)J=dve%Hn2E}31KXLM9dU-3)S$5ql{Ncn=Td!=r_p=`-U%REuLm-F;wRQ?M5_ueihc0n?5hKtPX<4oXK(SvP15a^EhXM^$vVmY&lV+yl0D*`o7OETuWO_D$j3R9NcSD_l5P#YR|a^ zUh`i*Vc>P_Gsxopy2jnxN$u_uztU@OP2cN%_IY_%HeyGuVELcG#|O>?%yd&%NO*8l z`Hl69d4U{Lrapc@;p1Yvma?+r?as$NN{`E`ge)kDpbC|>(cZ;3w|Gd@M?CQ(tS8+7h#zY8*3qs^(-_x_cS?bFXytN41C%AR%J8R**H@2>GSBRxD^*TQ(Y z=rO;=kDaPs))rlRR=Py(O|8YLz}rjSO|01c%2D>ORz)@hiO~Ac6s0M z_(M^Q;63l{B zZi$pp-XeByfyD3=UumCJO6u6o{BJX z@uzQJcHH=9N-@&G_{sW#QYQZ0?mwnmbns z-(&vP;_YufzcT*%6z?5>)|LjZdG|UnBfOO(U`fP9+x?se4a<2BF5Sjm?B{y!{<`-e zh7S*U_uE;%D%N=ozx{44Idv&b@{-+0 zp03cCmrV~0MM}S(syF=|;>=mR;?!HVED7It;%k#K=ZaVvRL5-b^*U;OWv!Zk=z}%4 zr+S?h-|mT#dYk9!nt!0=jFqIIr{1Dff8_Ul?)>%F{(s2cCDW(8T%7->^6z*1 zKl`sqAAh|{%k9@x?5=dRA(*CD6n_bc>&#iCDlcm$f9uX-(f z`TohS-Ekf9J30$KIfP!#E}X`ozUnqZ-rv|s@n_q28!H=}Tfn`4^Nb63)#Of;ANXt_ z9&$c}ed{&Xy_0JTJU3o{Ibllpqu|uWR|~SEc077Ecl*x1wf5`P6I^%JEI;S4bmpww zR3D#Cxiy~^tGD#4D2nV%_5HkyTPmXT=j+!(XD0WgtwF< zURHcs+A%x*_dnw$8tH-u#K(D#8BWd8NYZoR@#%+~f6? zaqi@<^t(J8*6sTm{Ct=9ZzG%C^9~5Ts_@l35~H*cb= zGW)hiKXCXQbN*=Mwdl2dof+!CH!NQG^Y8xw|d-5=5N{B`{jxQS7A)p`d7MJYZZQ7THfR$!k8x z{7yV~P0NaZ^~XG?ZWdlCG4;5k5gKV7;eE3&Eq2|O6nDaKL*4O5N2^u3{9mqJb=GqG zIl)8sSDlXGo}w?S{yc|V%^J`)_+#1F|T=eL%Q=E^DZ{N30+gp zF5Jy#sdnavmT=v+Go0Pl7ow7P{}tkBx71e9x#Ia%g!8FT^7N9T2G4olq7%bx-pt9* z-s}77ZD82PgC!!y`6RRu;EMR{o9MA z9xm~(>G@}~b%yp!|GvsuZXCsGS`K`Tmwab%ntyPadr%|#%Hm>{`;LbzrkzXP>m2kw zXm|5>!MWwDjT0Z;dG^UTq%*SHtyfJqaP3Dki*u_C?4+ve*pCKk1n*pIq&Ba)M*04G#-H3aMqg{!D!(!H%1pN#(LXiT zobLR)&s*>LC4-&8zi+Q$H@;-q=oay!wr25@)vuUdSA73Cczs*tweiXQ!S$T}NvS!L9vDe{qoYNZG;zW~Pi!QhNZ;_^zFY^DT z$P>q?9ChVY6BL%eToKaVn|<)W#8+xkiqDF4Qm1CWRox+d>y75FhWWjQAIhejGj}+h z5u1CIcWP))nvK`X=D!cQnyUh{BF-J2Bd_`YaQ-Y`Eis>OQZ(O$G`xKiyFBZ)9+_CWWohe7ZAJ;5Rk>#E%I`ev|w$$6&X_X~x zpR;A7w!8ff=n8WGT=`P^iA~bg+div2{#tndi1!ky(GuNNH?NrgbJ)wfXFuv0igd55 z*3MTuXQMi8&o;fy3~&Ga_5WX1d%ykOy$6p}_ujv}SN>~v{fF&(#!}Cky=98Ftopmh zA@bD5S?71{`CR$zGiSbnb;;Rvev1FudV?x$b$ym!<)3*}IPTBSzW4@j=Y3_bmCc^X zT{NqR-E8(v@cb3KBGHAv_9VsselHV#I{lTn&!4mYvhv#-3fF9w+4k|l?_G`uPcP9? z3VB_A_Vi=z$=}z02@&gEI^Xz~|BIBj={I-pO+NVBLTT%<@1K9&v-)yzbzfW6&;NoG z!}i`{DYxL?t?O~+r|I+7yA#U;FBDCW*DvmhU0V1>-CaJr!><2{&C$rmvz#9sRbt4# zmTR#>%f}CNa)=l_6bWnLhWP=hM3I z{$EdD?Aqtwo_n=4=f#Q2uJuld9~AgyldtbD`NOc?Rf}uBhpq6BsQw*qC)-K9yq?=r z5*M(TRVP9f4XyJVSsk%Qods`{`U1=|NowzKX2>Ni)VkWoUyJe+iLfxz5hdR z-c9E}=Mks8bd`^9#x8x!hmp=fS2ZIxuM4gCXQ$?SAFN}UPpS0(xbl>J-U@|}hJnRRk2tq%c-MT$ zkl|%ZNJZ_z-}lOejn4P26u5lip;N}R?6qkvSuJaWJ0@&g{qjtv%I`U+Iu1>$O%Ay~ zOHQ|I^Zs`%OS?|Y?o-}0Bd0)dMDp?yESye@hy zcGobx)nj{|!|qDqd^U6QMY}y$tlL>B!m~u~^s$Q!F1ufde{p?3`QqGrD_(AWQoDse zYPz(Q-i!Y)j%&@EZIk|lIXxv{*TEjC3-wx}`--C$hjkn+iCGbC&#T`eEW>Q^XYu=* zJ#}Aa+lT4DRDFBt{_iL6ukhFZxPQuK;h&%?t5xCeXJ}^yqzCb}{5Q;Bbt)rFb;Y*s zC8ytMNy**JGv0ULXrk}E60SKNYYxWjpI*dv;L7S#vYoL73vQg$I3U@3qeI{H&vLT| zY{H)c&m=pv*(uKYn6Wo6cj_xEx%90sr(}mt)l%(0_#{bx@mG`ck*3PL>gOlz{=Mbj zwOulcPbNET{4k$wo_3S}d)AWW#X3@NPnsRD~c&1>Iptauj`yjXtgy+HHN zD{O+=lSCJNl@YVBH}G3~jaT=L^=-z#iu0`!M9%f>`c?jB@9p=c-eIz4S#RH$%x9M1 zDcQaL!kxgT-j+_;PMZibjm}P&IWA#JuG8W_O{v$K_(|R+Oh|5nuFHXhf&*q{4DknU zT*#ZX@50@-cmKYvvbiESTV8a2IrDN^zxC}Yg68}R ziO<4US##8h|NZ<^$3J~l!Op5J#ivTkoG+a`x>-WcIxFVKT+>Q<~KSM9!U{Ifb@ zy}Q2`5rLN6&WU7dXFX-_(B- zer?M*{n}!~^|f0bWUS*XShZr$&d;ttr?uDb$$x#%!N^Jfym5c9z{O>MMD~alSBm_Y zvG #UJlq+<$BR)U;jKuiCx88Ww+iv43s!IsLQKSBoFrd}i;pIeqPmPcFT0t(Sc9 z3yV&HSwhw4xu4JNJ$>NHQ?5b-o|h#tFISYm{OPlNW4Bz*=DTHk)j7`c%wMxUdD~I3 zXD57_FYLUtSIljnWYcAyD)GKwtohFSUooeoWN+r_T@pOaaQ&7S%AbYRYabN#T@^j` zrC^5s9kavPvybgkdmQs%;?H%4t;ZIA6+WJNh2_?p^Cm&F4z4Mk&$_0$wrE%C<{iI# z7!NHge5i2yV$}E2TlzPoj-P&U@`&xPFHNa)Umon5X&)Rsb2b0v#ZwpGc;@qHMV8Gi zsnZ$rbKdC~?EU$&*X+mEpZ9-+vR~vCue%m{{`HYn(Q7v`oUt`eSfIG{$mXw{@6+Q` zg+6?HW@2XXZMNphwJRR6{n}I;dSBN2ak=i~h|k-?@9g??=;Q0tZ)O~`m6Ue3T0SxV zz`2b9w*3jKW~)0Szi3(EuKCsZx%un64Qn5qdYE>zB~8`sQ_5;-xAyS3>AQ8~R&DvF zl-b9uxz*PE*pAO3p`m}1bfV<{tqgtYbi+zMT=-Vz-`kv@`hU$ipY>a|^v=z=XOa7N z-&%D3R;1ZplevK*jzOBPsaqdB|F`AV+2Z6wbBr(V-`v+H=+>Xac{qddut2Gse9EzM z3CXlcU6O~6?XE4k6fd#jUj3VF+naYUDwRZOopN7vea`p2j_GqcQ~6(erb_GB7tW4z zsIBs!F!lS2tY4lrQfe@GdJ&hY-G{3DvXS>7G*9!USJ)eX&Du2mTO zs~~v0wBno~tGfsOT#0R1{Ff(i#+QKC3#Be|?3Om?1vuvrJr;+_~WI4}0yW<@>(R)75m@zUgh1gIRrC z>Gqc&)s^GZZ(LZ-+xp%`f~~*o)xG_zWj-FXZ~MB(R8wou{LOlg*(~|zmTRff~Qj?1Hv8tc(F)PW}Wycp*YaXtw z)&Ba^>d&p9*7Nn>ck+3P+kR{Lv1t9=UF%&cxA(JN;o3K8KhLg;h+a?5RY$Hizq8=m zeD2pe#f3$jVY~Y8NS0{tzc&AehgV4O@p(a(eCyNIt}J`r|8Zl|iq&3qQX=0b&3=Bn zfaCIEUgoB1RlXlqZWX?j(|+#Be0b0$+4IcYXSFXM2EO?I_A7T=rT^W~wzlQ(5?!X9 zvs^w=v8PS*QF+_bB@??JnxAD5DgU!k{q3ROJpDJ-?Vc4IbA=ub-kg5->u0%jQ`mNA z%bep@t31T{`iLZN?&XHGh0%vESRGy}B^UDYlKi7~a=wZ=1h`KNBFRVLoDfoho-7q@;&TVj6ef%znEwsT^&w)Qy1=jlfp7ktTTS$1@TfKsh;qm*bC0xz*-u0L?J-fKf z*XP~ENflqZZ=b$=C9a**aqdE`v#_-QM$firY&JGnS(fkE*zcxUEW2&j9=lG9>Y9?n zp{5m2r*+QP?s<9jntDv0&J<0>>@=&#vD))ZLl-YRyC-Wwnd386WrYU!;$>2rOINM^ z@#$V@;z?omRC_r)wWe(KHRWqwFJ!;hdsXMh`bB@N?q9pJj%Qt0;?{6Yfy5I!7bA9E#Ubii!>x{Q<;`_6r+w8ga z-$(Z|>#u4&=L!rw8+e&_-?LbyiOZ+)pmW7R+n-fyg1;wB%2Bm=;;Hd;+Y8sF ze_qD#XA|`@-8y|)_-(~=e}99b<0)umidLQcVC(v_Ink5Xuh=)I{p_!ZN`>O^_tw*_ z7bcfkO?i^rHT`tK+)EYT;(xX}n@{Ut=iBqyrRM9OV&<+V5|SFJE2i*lJXK}2>G=0U z?6((v^!+il=1Ap{eLL2-Kc1<(d;7-zh4OV0$K20OFMcMdDmCv+)@gp>j~Av~4*0io z;?7Ij?a`H`2TmNHZL$2$;U{sEOaEjSIj^XeTs7stnoWDv$tGMs7#?_?; z^*O;NXTld}EWTA5aj8R{>zMubIYkna;;+wpwtV0E$B%UPwb)O$y0P!oi`n0`d9?lK z$n3v+$~I|hP5e8C%YREeqvN@X?@VYDcPiaBnUV9S-<%hkteu*)qck)5(Iq=^%cDKj>BWCH&77w9M0T&c{LSef7c4aYc$%{| z-1hk~jq8P#u}+Vpoi|+)c=_GnQnWzEWha}UGXL9 zybr6Job_}oKb_EUFxn)=P|lNPd|>TD|J8qH>{u&naZB;Ad`;JN-U|W!TR8JqF$=Bp zTD9l??)N9nwE2!b*SpfVJmuQXgDakH%1u_D{z{Q^WkC^Jo}6@V)?1M$J8Ivz-A|dr zdHTk)r(zd68J_oYPY}JYe>iL}L+X{ME2r7reqe3>VdwS4O;wJZTi(1++H%@*_u=LD z?}ztR=u39Adw!l%9G<$w=moc2Ou@wSQxonk7hM;@_-v8_Lk5@mr&VTXQ{iU}4)%^$ifB!gtuGFiU z_plmM6mvsQ^2&w@*R`*oIoDk}Mcg*oPR&-CH*l|c^WyXA>l(yrVx;Br&YK74JQw|y zv;L6UtyhfKI(q+1yW?r1ezfA^A?sVIQ(lYPwq2cBGUesH+f0r(-T3a5EKk2{^Yfgg z-I0g2RhPbI+fVCy-e>mu^M%C1iB`Eo|&X zQ}X7l-l9>N)!r}jdH&}c6QYbuPrteC7d5p;S@P6F<@fuY*;VGWU7IlbUF*y2J^4aE)-R$irzk9!O?@li@P49l)QT2babH*Rh zqF!wq!)GxUcxU*nuG;eAeT?@+i$~EHgZyh=e|~YG^Z%dZ{|xv4@yVgSA-UB|`K^Zj&fk&u7)xtAmt9zW_IkuR=>+rV;rG60)NVMUaoCw- z?UPdF=N|1}mj=1tpDSPZr(<_i`$E_3%spPS4#d2QZw+4hZIaNb^xCl39?Z{9v46=q znsrs<$D9fmf9*Rnx4$(AJd|xUHFVO&RnEuun3(iVx@)spC32WE|LwRgeOrCm`QDA?k5-z>{O!v;qf}S5PT73dxlh+6 zHhL)AWnQ@TDu;7%#^pWY6SR-n$QXV;RIs#KYWcwuDTczY|2qtmd)mz6 zotIXqaVh_h5f8Ud%eW%j`tG6POp~&{Ne{MtegE3{g~|05y<4wsJL#lryWwl(+2r4* zztonR-+6G{Wm>51bGNAdztf&ni7&KzYdkN0^0j2eQsZY^%38ml$z^^xapHM%zFn&q z=nL!p-mz@wm2~O2@BjL2^mnhmeB1l6*R?6?26LA3bF9dE`AzoY-o4s9rBzmSf2!xr z`l8FP80&tmcik%Q&nw*TPyNJ9NBGWO}-zr*TkD9f@_vgO6Lydo6XR^5t8eFF#+tI-(V_lw|4O+aA}y{g+Q`+pAsY&pK=6uc+`eS~-JG|l_fp5FslTItw9o&~GVkR~xuxk;%Xx-|Gy`6W$rfBT_xni06+Jw8Qvkjv!&5FIs@crkS_)_a5m0#MwzJ1XX zT)*7C$?~)8wR;O@R%bSBd7oB0ukA?K&WmwHGroT<^=$gQ`D-}E^zg9 zRSQpUv5tvw#QOz%?^ay6BX|7IWRp3U<|Vm?Xs)fA{a)2!{{GT6k^6tYx3CG_b0O<%&Y6hXN(rPUtV1HP2qU!rogEYs@X5gr?URM_fk;!`Sfb`s{HIv zJAEb3@0~u?|5&W~r%$qpYYX1oE>Yez&v5PivQ;e0H|#s~r`A_lo;PmJ!LxOoVrTi+ z{@{BTBC^e|R^8<(RsA*Ei;mwatlQ~zdFsB5?=@|P z=c7wz>3OO?{4jNv%vH^FuSeFA>n<6+cb$4;Z^+W{bIXga&wqQRY;GRc@>2PIv*n%l z_}pmWe9IL`D|JGinUvw7`Ev1 zOWHhg%nzzM%v+blv~F46)9+Dfy6aE-a4ElhdM7XY@Z^5~Sv^T}oYu*G%bX=pu&8t6 z(t|0fQ?|Ox(1+;c1~f zpZ3#vDR=jAhe@sbb)WY+PVMpO8FzN_syG7y)2!{ZO5AZ|8nh{`}cnSZSk8? z>+Jfq2j&#N%jSKuhh4ATDf7g9!{<^uRPyK1s^ZDALGw+|?>RTCKy}cpj`0p#$ zm!|K2x+iw+<>tx@#;W;~S5`F&mPsyf3UZmqv3}2lhrG?A_x0BAuBxj&p1DfvVVUG3 zskVvl?rj$7t=e7w<=E>qhA-zIu3Rp6{x`#Vo6~z1DPH*LXa7vLPA=}6bNRKO&ut#v zI<|!{)Z)X-3WZDzS7JW5J`l&%^Hea>ySlzhwG#!n_*U*LS{E?pn-W_kiQWPm@E9oAccp zr|-9U^X!A&I-~igRVLY9$^YiPN!-eJ_Q=e!$+TGJmcy@Je z>`#;1mtK9WUVklCxLRN0?}A&mj-8lj@Vh!tC}{50^zGlye|)f^+q0Z^);SiL zMdZi0h1nOaW1Joax~t2aBTOf?>}P)Ex$K8v;d^5^b&E8g6ZZ7RlxNb4^ zPviXbYNM2(=p#ZYya(iUtT#+@tSdq z?bxmtHIF?Oc9l*P`0&nQ>*U-^8rLVX=_sd}xqquzZTqyw;^N}-U)0w83%_@G-<7B7 zs*`+UDwj{sJh;>Fe8%Z{q0E(k;~q}b@=$)e<5_y!idq$ppA!3~?D@X>z?(z*iPvY_ z6`m6_we#8C>k|9+SB>VDU{kHDaaV+oW@%6TlG4&p{iSzL&i}fztACez6^RGs{E>V5 zUbsJ~V56zlP0bxWli#O*QCAdOyzcK;qr($CQft2bwY$D_O8s{3KH1Q+9Io(N=WG{c z#5BIn5!ti+;QP4NSN&0o83U5`r)h+ACbieMW|KoJKzw-H2 zAAQc7Tv}ary#Dvc`A2VWU%z1C`O>LVYE%j(a(gpFilbbk0z^-+U&_95{pPu3PLHKu z+JeuPK0CkaVsGuFi~7AjTkE5yUw1qE=|!!a&4)S*_CnLuDlH+et#ti<)hF)WZlUt~ zm(elHIGOfRg)+{uHrNOqWxq=PxV_P zsY^RJc=i?Uc4}D1#&q@Qr#IogcJ|gwTrU4!{eEeTX^zQ>4G+IA+n%r>yYAPH)&J)B zpIRK^{2yDKy$bSNyT?kE`=M@S)a+v=%cWadKOJ=w zExl{(lj)YWm-+eDeOD))4mi?W#;qB>Bz>Ps{e9jmzpE49-w9Z;@5j0ey%VP>wnXP& z-|Nt6c#&)E=kNtFTThu!5zSIzdbZawv1G6Onaj*-y^m`j`LXZsP~Z1?-|wog%)T48 z{qW0FuT^DVQSN3t>4j0~%Ueq~*tjkGx$y7pkXLb^W_e#o=95_(cQ(l@OLKDaGtZsp zRjZeCy|a({u6xgXijD2OQ+H+sT)8qmu7fR1?r|G$`1Q~J$Lf~PTq*VV`}V%;KlJUs zdHW~dH{Ls=?&szEo#$(QzJB=cdUdn#hD&V!-(8w{?PpY3eEXp%zux#+9baxD)fr~+ zo^!g1CvREX53`r^?Jus6Ijy^oH%?{!fhmdK_Ih+)`#sNnP4U(DOG-UgzY=Gvx+tJy zYCkRG=e6U#cYeGI-+%s}%6Si|{htIy7T^1N()!*Xt=UHpT=KR!*b;WH(&4MptjG0J z?HA4C`(o#;`Ri`pald;KXvTK;!3KlL$FHz|%XD}cx77E>?VQb0ff9Aa z5_z*)c}*=B%y*c+{Na~h$~Dhi-G5jFtHqs_5WQ2oExBfmX-sUKo13zV&6Vehhi7cR zVZs)>VeaJ>6;m@bKc^iHpI^x@^L%=xpwfqc9~&esYE`$?@j1_x=3D>#)aB)c+oUGk zwKkemIYaBt^5PPm{g&q*-!*(b^{djM4fCd{_ZEfMovSo|B2{N8f0tSG#MW1Cha<{Y zuvNUS+U_C9(|Ri=EP3TVUHOtqDee1rzPxWdcwREK+rR$Yf44mfn5*@7s;Oupedf3O7_`pZ)s1LACSEx;4{|Cq}oH&Q_dJ zb>+>OJEtw~?Ed`G^nF13I;F|mA6qQQJbb%wvC!$aAswcv@~axB*8jU#pMF34tf!3n z#7`C{-#y(v=U>2GT|cvoeS7b0+b6$p-GMjmQhfcq=j4|Djq?5RWbMsU5gYf$ohp4| zQNh3Z$L@7m$G=&dB0wF z>D|}*85`GUe8g+%#J=**xeqe8%GI8~_EgdF&b@WLYE#Sk9*3{Ds{eJ_zCnLa9sBt& zKK+;4@Bh>JH@p9@%)RnG^UiPa{P=T4<+0MoTCU4o_vsd{Tj^W;%gR7r>AhX3v&Yi- zHM36@thGOQXzRS^OiLGt{q>YOwQrZ>gNDln=j(ItOmK64|6bPb@vTewzn;&loyr(n z^zq62c+-mq1O2`T5dt@)jF@9ptlsb@G#J2Fy=_Z8_qbO~m? z^60zXoS3^I+fO8`TdT_l=1ImL`FtY0^Yr0Up^pon8ZJ3q-eJDGu=Bm;@|bl6{>I_Q zcP8FcWw>_#?Oc@!U+cX4+AAhJTU!x$igER(b3gxR?e2K)ZB+hPBUR9@e7%kNU)9(X z*S3}|ktmfsbhzMm1(U5!WoP`-yxQYe`gj*yTpTmw-j`xI@_nU2w&VV z`{C5DMePUo*yY#qn5^IPes#|C;=AuHzI~Vd5+btygWo~&h-hQq+ zH-7tx{mau$f6gkG36Gnz=}YGOyECjVt$y6M|JTR(BkcG7HRsMg|HX&l!_w>TkN^Mt z@;$?Z&lxISsWsacUpVuao!u=qcji_vJ?ks?{k((S9$Hze+e$EOFb@nwh2-RusK_m|-w8kxyU3W=&EBPf^Gn z=I#ycdRC`TRc!lo+%oBl0Jrj^sm+Qmwr|uJr1GAYiG>ZMEMG z^^ZGSl3eC5)VjTAzeD?vODnc`75B;C(|r*$)6MIU{q$RJ=}lprTd5ewa5K-OmcXo zWTV*aQC<%)GtU?z_T+`G;LqJ#D}0w%%WH zo_VrKbY#-{eXE4rL++R*X#L^1&8hh~&MJO#W8jjICz?O^?NK%RvPQ~3GCx#nv&!+# z$Mp~P{JV3)!mK&(O|jzS^ZP$sE&tFzzx=1|<=so<|6KkrWdEtL-s<_Z^PBf}UAw;f zSzS>0bBo89_oj$g2?QRBUbx@<>WarRKUsx;F7vDQx4NWj|8T-|ug&|mz0`eTa{9VC z@2^FMd26m)-K)&s9DmuPzI4X1lW+Ea|GKDinxfg9zT<3L%y^2{mhRDdXr6AD|N4{4 zo9Wxe$Kq|Nm&|vJpprO+^bw$!Lh68~%S+cg}8W zJKu`hdncE7SX^6v?JSq|{fTNaYO@WVzl&I?Ep57P-zp*DNfR$kc=2J*?Dvaw4+YC@ zD_oOWB*i@2_)u5fsrfX_1J53{Lb^O zPfm7uKRsCUuK1qeG`S_ee0RK>xXY^eT4CK5_bAovb7h{*IPuTouK1q4JxudE%TiX9 z#IsAb6~Fa8bYfeK>NC6jlU`oC`rbH7`7zh>i}Ou7RKzdGEfV!;{kUXl?&sLlE%UPD z?jPT=D8R`1IDh@?{0G(hKUU`7H{Ltv-_PgvP5OK5q#2%9FI7D7YWdsOEw6RS$@r*n)Bzo*8kikH$Uxulo;-Q@}mEm(q$jFJ)1wT_Uy}oh1r*9BviNTSe#R# z$=dt1p!MjAvWT5r@%vvnF-Ngi9d7x!rTW|*@BFssCg-(Eq+$#fGF7#(oZWqH-Ny}w z{~K>fHY`|VefD_H?C*yx&7Xg-d&s!-&XMz}28$fk((im-z4Xs}xvs4973(U`l{(y; zaK_ulbXT`J@K zZN)psWJWxP>bVz7&ELE4;hC{EJ*ClbpZLD@TkquRUis_v=iT)?2KgT6SLeL& zx%s^Z>iVkUiME!>C1O!~XKz`N*u8w7mxO4H=^54wYK8&QEqot*n-=(PbewP9xG>N8 z+P>cSuPmbVrOi+F`bDV6S~D)&RQAoQX`1x@I3u;S29|uE{*-(en>8yPe^?jj)OrMm&XnJ)%yZ?><_+^c$6l8y zSp4H$z_XK|e^+RhXdb^CnO0?}w(d{o`lhY5`QZ^0H{S48`z#vv{q6O_({itkv+cH9 zOfq<}`b_n)!0Aehrb-39W?%m7xN=x*TjLKiY6e>G2enn^&!yRy%oZ zTE%dC`{{jLS&1H}Y&*p`^trDE`ro~t%-E#-Ui{03w$h`_wclzbxKG+w19GyV3;?{EB*!u(be8R zpH+EnJ^40t`+d_VHT|!TKhEC}_ckJE)#9R%%_pDE%KN!SE&SBB_x2mkNw+)7EZMfk=-tZa59?NL zuvaTTF?V_YavqL<%Wjsp$86eu@42Ay)u*S-%pd*i@YLgPjgP$A^g!pr#}``1%VJ}< z-p`CVQ(eWeJEM4ZDW~(Rx8G|Xzki@#_rd&w&-pJwzaE9(KX(4#?f2W&&+YxO+iT)J z>os?_U0Z0ozN{x^b@`8|yt3r{ZlhJcQ-W(wz6`xrI@2iY+U`q&_AMKp|BG3y>94Xr zu5w%Oh9heezF4!dZeI{HIXl`)W?9Q_JMXL+zdE_3y{E>yt}efM-D=Ih(+*FMO+2F{ z6+QLGWUsh~X6!nLBMx4eA)70ueeC~To7;MKqGothE)7i%I&Mixgo2B=UtVPw znE(7sh;&>tkN1j=M@#*0s_s9V`QY=7L?gK?rmKIkvVXqtp~&yJ*zBpk#V4H0&RL!9 zFb`*b|L-+d=k2unwf-0M4{PhxC_j3)YggIL`-h#He&v+kb4^xDm}s=l^7tpc`PWR9 zn(v0@zu%mb|Mf;jc=cw(tC}-+Rn2;;*Eg^I)m_$!k_Z0e9o^hn?Qf%8nz31ScJ&-) zzwH)crK08~bKaUA?@O+XbK89JuXg%O=T8YCwU2*lUNNnHcJWPv!K;Udn%~V8d1HD+ zzp#C2>N(T+@YYARw|e#`zU(#s@pFOao^r>n$EHtj2)z2qI_>4;wU-%Av|j5gD!-qx zU#c`BdiMX`ZI@O&d3$~7%dYhMCQD9PI_v#vQ}lKF{l#O!EyM2<^S@7XTOeofrQuoSN`#2@wU|qG!^ss(>IBmS6!-6w5U2TdGq<_Yo(WHZ`8Cf zYJ8M9>qu?r`!_sKOa0#8+w8x%O{9qBC7(aP!;yO&Gglw`9NxUir9W?W%9-zW+wWGq zDR?i*v~d02o4@nEJr$o?#Cw;=Gv(gnemQ}VTN!L$Ro81DxpTXZ=d7rG?Mmj)wj0`_ zl5ZcH_NtI4OSy!zed+g|4?TI-M+*q6ocjEiN9N@F_n#tl-*_lax;JxIc>9La%uB0S zcU{c0*{yh3|LR$nd;1@}&0u{sZ?U2D{*rp>`tRTW-8sC^?y@oCf!}@Cf4txScKOGL z<#x;sGU}pr`&iZ7lUA{nI*44nI@Pc6=e+YT8K1tdnfvx7$AcnfUU{CI)8njddKA{j zN67PQpZ{f*VzMwjZdLr`M<;||Ma_<7=e)Cf#igynkMs6@5xZnCYH(&qTPQpff-mbZP(dB!L)Wn=u)+gGpal}>*?_ix4<@7;S? zrhb1T=XH5XN}hyC-kBw97u+)}S==sDvhT&bXNT(B-afgL^4erwkD-UN)awc6D-(+C zTzAyiy|?+dYP#6(cMpZ0OWcT`YP9!#Wx*2NKYi`Kml&E(rl-h!xa)3vV9B(*8B2;} z+D(=&by@kbV9svO#|9QAe$2P7222y0f0~7B`^=IvsuogJfAtQ1jA^s%6V2>eoja#b z?(_QFG1n?~yFXaRZ`W^f`}UE})hc(HL;p^2>`T6V>bvZ{8oh6qp2-DG+4*Y5=cvT< zf6J$?W|W+Gx46IJX63G}pL|T53{;=U9h&x4{oUQ&$DAMEQ+j`Ex^mW+&{L7Fo2w3; z-S_j=w*FT$k{?T#!f87$EUw*ExlUFxx~*sCQ0SK<+ZJ!W`r*Z*GZBKk9v9XsX%?y>9Xo~ul=fv z?=w%bThe&6GRv9&&6W)P#1sF#?wz*EmS=c)qkL`kt~kv%$?wmck}i|E|03o5$LNoH zUq64fmURoqRmu1I$>P10rTO#TGQMLh+4lI;x!vpUHZ~f|u zBqtsEanU4rx#04jHAhS)dA6%Ws=UjXeO}KlJyE^C_oG|(@$V7qT+cqawEI&@B|n$( z%+WbE#39>DGp5}eKV*)7@tPZY zw)$_4|D_%=lOuoI*%rU{Z=RpybbMbYsJz*EtF=yZk9SUb#q8kyRrU-2r8V|FJ2pi! zyzI)hLzf@Lt2;+UIn4d^>z+s^P-gk)vx&89^v=hue(>~A+vGWc&kb9(I%N*K zziqg}c_?>Miu~?d`)6I6>|L?yuZZCCn;%u1ubm5-Z2H#ocif4a!c3iUuRilFvwBq; z9r^t9naKB_KUeNbJo8#&hryHNJ92gJUtH{$IWBho-t9Za2FMZXsLVul4E`81HOBUW}Moe z_O)DL%7Gt2}{&@6R zZ-08#^e@*6kN^LWYu~%Q@4Cf>ZpN%o#jrfqj#XK4eNPrvmA{_&G+ueHS>As5P3(>(hHE3| z9j?27%VN^C>Z!L-C@WY73J2uFqPp{ynYb;JgnOS7sfbqW$CU-r(9`zlexwfBaUlo>ZK~drbQ7 z?$cYhC#^rlEho0+Y*o?QiTd83UWFak@b{0gU$pd>ssC2yOAlGUFM9oXebx8mN3#+w z4d*9Teg4?*`Ca66#S5eP*I$46Dpo6#yr^J-o}j|Bzq7vheOeIgdRFk!>HF38PZihR z|FvdQaBN}j=QF1}KdC>xa)VP|Zkq3l|0Jts5Nvi_6ZN?W;z=*-UbA=7P^J}5fTcjCBJoNW1@aQXkg zD@w08UpfE9XXd}VufIRMZuj3Xqt}|1&0}KFrm#^3P-g=+< z!*-fV>%%I`!YOu7SNZxoUKDuum*LZj>MiSQUQOTk{zbl&L$+o9&6f+dKiTo_;(Xa& z_OLnOQBU56MBV5zpVwO*lHJyJRwCH*J?r0jdp>@dRessqC;4IVLf__FGaouy-uo+) zXkn?n>$AYw$!&=hvlTT8CD+Wll@ZQy*oy!6*K_Hzy)u)_f5)b6-Y*_9o$tcodcQL> zE*^egdikDvo8a`9F**w_lyT zHc{&PtsA9hZbdbo;o186okMfxo=dls&MXX{ckJylD{HkJ9_v+wuZ8z*&PkKsx^TDF z*S+Wem2gkpT@}AQa$(?s$n`G{#W*khvugg0k4wz8_kLuvUwZX|t1v@-Z~c1L+gqPp zIPJ9l*j{!w5%m>od)F5GO>R+8@Aj8V-w?W@@#(|uxBTn;-E*!k0|f^lwb*t%rnz2A>%ACHusto7%^-1_GllQSk} zezjDy6#l$lxK{G(ksDV2X>sPSDkaVfT`IO;tmSx{`-t^pg*EwA$A7-Rw{+HQebuia z7CvQfSKSwJE5F@Tn*HD7Y4~NkIRWQx$eq7h+zB=C*4fTnof2wDHzV7PCB^yUh*O1 z2dV3qE|E?<)&?32u>X0|zCXQcS-H1-#eew+`8AK;_gwzgo9)S#BYF9?)brxp#F!#a z&NP+pu`dGi=7+zo|FiG>rVxg!XScV@`TTk%eQ?)BCN|j%b0dRRgok#>JM3^YS*pm( zysqQB-TNim6`A??&8K_iO*cGy^F!vmnzz4vn`J+`K7Qz@RMdB|@#RDJ$1?jD^E*d7 z`!9YlwZH9P=XJH7{#^!#+7>;0!zEh$KDp%D?thcmL(ZF-vw2Asv~D>y(cSXi>p!aN z3;ea^#Tg!MR_1fC@$S5SQ7QlMz0+qZMR@O8znmbnu|1B(NN$<=c- zMZ5Bsv%EK&W7FoUoH?cR*3s{E?JN7YuNKt2{o~F`w^wOTW$d4?*&jX6W`b++Jxm@g(o9l%Wr13vip))qczfMo9w_zAoGh?=R=0G^Z_6H2A?2rTy^cu9)_xmgyDL3=Y4*xGJ&ST@rdfMh8ZuuL#Z+XRyUScW+!!f46!5qcaaI z&fbcVdVFe^`;ViYi#KI$dtD}V*KIFnZ_>WA&!0s~oaPQjHRsoapA*XufCcj+?uoRSjVxqUfmL_CO&VhsanEO}qpgtECy_%d7H&PAzt$&iO4Ny8THGjbjyLUn$J0}57yo?i|8I6L=N=ACEI+od&y&krGwh1wLoe@hY{HG{a$2ur z3N>5hpIJM-u}zMZ6bs^Fo$0>RM&!;b_vZNm_7l1ec~3C?v3k*DujLn?Rn$dQ>v6ph z`J)k?{^Hz|ee-o!O;!Jy_%}tirS+Af{^P%j`;6vH|6uWc57Pr9gGT z{Azr-`O`ne`V;p5pZWf%{qINa+idHXrGNSod;i1kALs2p_&>8!zq-5m(SFWv;iukC zm42|(PfpT!Qc>31wL+&FV`iIM9L-~u%f04z+H{-2zL{66K7U)kWseXRfTg$Lgq{k;4CtJ?ClvB#R!l9~6KzPuUE+u+$9qW^gj?^7Y( zp36IqUzqJ%yW_j_*9c{Hs|$sa|JJ3y-Szm(t7d8ClmZXuU|%lJi08??${u@ycP{?) zrLE}Jx$-~Nypj$ zi-(Rlb6@=&b-y-u&H10Q0)Go6FK1Va*sZ_E{@o&!=h}Tg|L*kGvwK&qx*}WqD0Yr^M>YJWSUV?sZ7OOrF(ZnNGD$NA|M z2lstF6#ena^1!^dSG)Hx{H$JnXa4(T?1Be=Ka>zEsM2Q?);p{2WOlDI;s~G5`W-W0 zA3C3z$XUz(C?e{c@#Pl}zhCctK4ZtO50By|PJgJZ>is<3?)2W!Pa@@?c9g6&^}1Kn zma#n2c2a5a(zV9h&INkqg~zY^riooyS1WFm?<R7h-_^$qK5Coin!(m!pr{^z-}T)pp^4!ajO-`w+R_~AGOZ%G2vAHa)ilS{PZ^cplz>JRC)!P z9&co9)?F)CTb<@_v|Y;Pd-}1>a~6Er_H}3TndvRxga1nTm)|SfZT9V~+1lW_t3vx8M2NGoL+@dA8mCGn<+ZIIb!?HnyqcF^iP@{YGY~!QF>#ysbNmEf_SHBpQS~-J*Ri)^lC? zqR{mhx)qz|->G?4wl+^DHR061M_I4$O)d^ypJKPXFyQTl11htoc71+gweX#h@~zr; zp_c@XA3A$#PMV9&GWNLH`y))7X{=G9{p?`kKx699)tKEA4yb16ARU+V$ zy0?FI$fV5Yj3?gDnfzw`E4jD#-~N@lv@tgO>zvgGCttJWpU7dgHt_5*>zGRAIIVkX zm4{Sw@44$(sve$GX}gd4^8U)2?$;e(vJTYwNj85uS?-*3R@MArY|zT}ftS{@y25!%26z9MWA^FX{l8iN{LKHG{-ay|PpQpi ztIce6!$Kg-s_%v&+t1ds6KV2z$<$9^-MSmG>OcqqGo2nA)c6aT@ zy6-Y?yzRCsH#21}dmi(B#jmT+<_FhY;wf}o{*ythLR#xhsQe|fpF-jP)?HfNlIQNO z?SAraxmVzx(>-w>ddekRc1%8fIKS_Z?4_G(XQytzC)l?B>VwA92?vUCKlfLsoK$wjSKm+mGT&Kmsd=2?yNyz!rLv#Do}_3X_)xciK%FI@HU&TQ&_w!BF=kmn638G z$!*TUO-D;5J6*yY6OY^Qng}ma`NyBkGrjPrtLcI@x!o4;JR(f5ta;Qp`AG3I?|Rj% zQ)?sVYZq4A?%V$JrJB*hJ=ZR*y<*^-dOQ2a<-V_Gb8oq?uRVG#D!n`Xq?FMA)gO)- z@fI+)A6awcSef(v#nr!Gm0#O$z9scvR>bq#nX4~E*k{M?ONzO={Ji_IlO}TCSNI#e zw0%^q{nq~@N9X65`r2nvk@e4>&nezNbIo<6yojJ+<+J?($a3Pc96WKCOIq+P$e z%k7lM&)cUqA4&}UWOPJzYJc7~r@r+qeb<+? zF;4CKr`@J)k6c>5vsmT5-7;bB3`LvWR|~iFU0ZkmZnfF3JL@+Et2DfrcldJk;kR7O zRVJEq=F0a}s;)2Lx7-nY=c5Dn=_=V>=L__|nqEk*y7DHjdCAH%<%?R|<&IZBz3H_+ zXHP7bch>y4Xe|Fdh!ru+OX zJCCrQUi+i&W4AZ-`Ty> zlePB!Jac7LnCPZtkAP=Y4>wP3|6P^Urhnk)S`GXAJ4|NXDW3B4!R`4+`~S?W|HW`A zy=s}y{C|t{kL1_6@tlZY*!Vr%cdH2YR? z_1o&0$3JprFZbK8XLZHIZl2Zst!9S{KkdG5b$k1Sro#$_PiH+;yUM=z{pLBR-Fd%! zcqx1@am$1`x7V53hAcRwxvOS=MUOyd`0r0^PE~2Sm({wRsQzpB`qo>|KhgPnG$kiA zevZ=5*?xbmuF|H~hoRZ78eX%fjB3rB7RjChqe$`5`ObQK~yY=Gky13}*>3E!nHKvPy z&aj`ro_O7^{L;&ve7{TAFTZ?Uj-Bb=kuPl0f3y})oT$*t+V7TbT)X<~w7ey=T@6kO zuYJKfPvziLjf|P8@jq6#8C4vq_#J9(pW3r>zU_lgYhBiwx6Z9u_w=CEt!?6Om3CHt zzaCb!>YZ$~*CMUJl)GmvdDhJeiJRHf!rx}IYE6mylYpsF)zvOPzcjsGAn3JK<6_B4 z!5+!m5$pT^f88x`LgC8OmcZQ{S+jFh*IC+Uctjs(_qOEsyE@%>{r4{$H$>b%wf$*DQhM#(RcX>Tjt+tiCcUa}QA zvgP>xPc^R>-bjBGTatd|_-u>t)_L0ZSGn_Etv%(F0IseO_c-@lx@@3u>lk2Zm zM7x!*yT58hVd}p8T`Ny4S$J=+0PFTWf}EbsHu;Q&Jz}{}qx@?s>_z8Y{$2N8_krcY z3G>z|eXD+L6Y6iDAaO_Sdsf!xd#$zm+xy-2Wv$74d+6@dzvetso*Vo!T@Wp6$d@Z2 z&R*kwt#gn1yCaSF&ML3-He$FWP#$6FAGiPV?yD;%N#C*2nfQ6OTu^PL`n@N`FSnlk zIo-^WFZkSiv)+qOcD_;F{(INO)b#})?W*nbzs-G{m3LD6PB8DJXW6a)IP&(Ko-ntm zDQ3T$*aZ*H=T|4F?AvV|vZCaji^=&}2TPP3AI&a>tpzxKXW;^!g6+SwdJE*<8w#7a zt^4p`vrhf|&p}_FihVGO?~^}$=+&x8YYs=aUoI@Wkw0DhPVfe}a>~XGk!3SqslZd59 zUp-z|6D4dnDfx+({<>=J`JR(ner`Lue&3d@mqM2r#`9_W^T)33nX*9I?$5dOkJtBq zPXF-lcKAo1^I!5_YCqThv-bX{-^a`6lx|=BZF{Nz_36*`wD-l_dphHe{waeA$9~3q z?hsx6_2jpmt8LQbE{XkH>GMuFu~P7F<~BLme^W~CZoc(0>e7pSmCLQJg?u!g_fl?O zY*hK>bsqCeZ6w@Vcb`!<{#v&)^53U7vuA9w{>ilJ(cE$gpR+xJ58o!Unep#E`ESm< zhsBi^bIaT%_D+3fAufCOP3+$I^=Fdz#akLAdc~eTl6hzUHvhdf%5oQbH%Ffcyt>2d z6z}sR&HtwUnf}?J`sUksThHDwUn%{QojX_AJ`-M=BKz{oPy6Rnt7C4}EiGkT@m=&u z@fPLsJ)B!@L`=hL`ybyszq%ywy@rU&)#Rx6haQX0$j*3l{1*S7i=TB@1YWy0-Tf-R<sg=Qu;uZO>8I{KcYk(k;}X$(r8y~Ig6{8ht&NF$9CCDD=WT@trE3~0 z)9)*rKfZVImMPm>(K}0KMDsRuY|lJUbEV&>zx7v?8gJ)6n~%@kUd!!_Eqx{(KL5X^ zeLUZrBi~FG`K7vLt~zrppMT~{uZ{Z>jw=Sg4tn*ZGxgxYs=VUO_twO4U21un_e@30 zHTL22F57G6Q+9>F=sfsWSO3$B;Jts=92C1|&smh*nto}<35y#Oy?&I6t!3KcwEUTw zXRRlf+r*2u4pK{8)}=~n`6jKAcZ@t*dz|;!s#cUhlFUIU$y7GckP_-p@F(mFQ#1MeY0}em-MT~ z%MLrg?=_b-Vw*EjKeNm{g5&(!wH28YKFzCWxq9;b`sy~nsqVA)e2PfEw7~9g7SrJi z%LQgl-*QE|YI*v+p2qZwAElDA(fg0IbeEY11|BMXf86zb5wqEkwiP?~d~Vx*arLuj zQ@$+w?5w$}|L@i1ui_4uTiq3@_ozEjbFO^Vqr;~+uhkN?nY8Vy+ox`6lVyKY&MW1w z`eJwWTl7l3o><9AfhYI=`c%+=T5MymJy&q`71w^=(q zsQ#6HWnPt$*@ra6s=Qru7SC;bGNbEcXxXkvKKm)bs{5sE7dXDXtLQ9uywrAzi=X|m;j?gWdNzWQmR zr(+Ize+uYJ4=P?et;*%W2D|bsDHY6f7AB)$M&UH^}me&bFlpbd;HI;>P@fg zE12JVt&i2D z<4fhgT$sHfGIn}kl1RYbJ=SZYZL{QOC^||m+GOc2^HnBMVN&6t`txOxR(p5^A6h@R znX!;({htFySyTCU>#Q*|_Y=D+5P7Wb)7hPxg)cX_*1g}&w_%N;o`}?@^H!~%>&mab z+_hQeypHv$%btrLwFND#+WM*R(V6n>$o#dYUkh^&&3pZ7LtTK`#68`e%jez;e0=Ni zOzGXKz1H`%)_TsFc|jDp za#&&%_gP-?xnYkapNl@esdMX@3#(K{t6kb$zUJA#wphGy-D7c;j%t%^DSt6H|zQeFAZnyYa=HFkDa4?MFtHKo|+UQfg7 z3FXIp&raLAy`T5s&UtgzE|1!o*S>k{sedhp?fD-1ZF{A2MsoR-%Aka&93`h8`(NQI z_HeYncTewN>-&{0ODBn)2!3sH$Fop9up`mAw)pAnenqpFEnDVio!|QG;SrT@7Z>|2 z3J5*B;{KY?aUTvme>c}rVwUZ0Nk2~ZN0L*EW-WaDTkz=(?t7k3ehs-xC`Czn)x|^lj$6mruWZEVt|3|5Mh!^}Bq$?w0g3k*yv+>lN2c zoY;T<>&r_bhqKI{SRNIAyDQ#z%T%tydD~MmoWJwft?Ah@(X8H&{m;xPSF>l|*|)Rd z_1hgLiaH{@?j#;FoAUkV%R4IDdUKzem|VHL``4XD$$i2T6!V_6A1b@Go9{$N_^apX z%op_6AJ}ZZ+gg92)L)%H%gygpS1rA>`^t&E-Ta}c#y@#8l|u8(=Tx+syqT!qvAwI@ zs=k!@{i=0x??tUPpMSgc+45V}Dt|v&`|{PfmGuR$Jf8Wh>*k!fhur0Q9#-4Wx%6iH z6*f-WdQBk*=fL2Z?a!*-RZNZ5`u^tfWWEy@RyI80{q2Kb_s_$mmzM?^1*B(85^4`b!-iM-9=U)fbJ%1S`F2h*wUfKJ3mR$Ly z(i)%8`r}sVHv9^eCFue2FCRQ!uKDwn!c;Gp_fG@*N&`HX9l79l=wagdTHR8WdAnye z|JG?{>V2})%DQInwR@qh@v@2QB&FV!iL|fN?Z_c+{k?fmOLliBJ#j1^ax?LO&a_qetq%^<_%#aBC9hIHL$sxHp+67vtIE}i=E z;;O~Zw%8de>^Wn3cdq=F)RO1-zicb&+|xJT`N5@#esd$1^EXtFecsCx9kRmx+M=sH zKb{rGR`RXx4%ngXI)A^a=d)iPmTp0-zfYZ%rDh($Z}%$O&i%^9Db~$Lwp>1XQt3o1Zo9X__ioopi@3+~AIsf?jH|qG= zx^fxgDR~mSi_OF9mo0x#c$Zs4=G;B=<0b8f9(=0a&+v-r4X;oBhJ*YbX=>9nmHpa} z+&krWSGsR;?V0n>raQJJEYKMy@%oqnIO_oAN3vs>kYYtwiRwX&ykhh8~ZR<`odvH78m z>AIVp-WD%7S|8b*mT~Qu2aAU7=hLpYm*t&1z0OcIr=KTR^jPU0i~92kibi+Vsiy_J z`cU=hOtjIKy$>gT4fOD1d-Z{F)^tgpOf5!b;HM=By(!_;f%YLokOTWI{Hr;Bm z?RQaIub(-u`F^JDcz%jg^UtyO2UYsL4_GOLERbBi%)itHlf;2AQG}G!47Js-kc}IY~z|WsCURvvl z&WeX0`}u6k;)kE(|5p8xpa19Ki^s;cm%U#ue*eer-z)dJ%$DLk^Ok;pF~i&RNdj+o zd!$-#&6&erU$h-sf2-i+?uj{B${d@>6Xn=hoH#KCfy{&D@ZER%KpaWw^rLe|c$d zvY(k+?B%?@s^ig|g1u*MrWPdJE|;-b_nVdZS=zDPWq$deC6zXH=UdL5`fE+=#I`+N zTEDr^c}~2(apsP#hA*bEN4#8T^#%Yg}t3FJu00 z=5wJy<3Ha!Cu_B<%{|lXzBBF0w98Q!_p_Z0*4&y|mR|HzTsWxy{MDED%2%>{7XH}K zwBuFAjQ*Y9&HQhCkCfl|=Cz&X18**S1x>G`4;DXWYVzA~XM$JV@{~v?%c>_2B2?SM z?oBb6TxKP=YK`Vgv86{pzPo1i?~{8St9;e-V(?(v%Eb@=|9kTNF?W2e^vln0v}G>* zTC1J0fA`C2!Jlt@4_*HB@R{R>SN(bGS^cuEc7NntYrD03UY(a(o@N?R)Z3f9y?U|d z(&(JZsh(PA*KS>7vg_J|FE!!ppFNm97@2N)w%FwG8^)v3AEb8AD>%7%neXG9CoYOT zR=V%IxT*T=Lg(-I=1OiVd~TVc$eb>5@b&MDzj>l>R2_VjdM7z{-};4ti>fnxpPAp` zJiXiSwr59`m*=^kTYlU;5u0A~De^g^<@IGMw@y^=4SmlTd`{5OI>X`HI>+|JFFrw^ z`>c04e$+{Q9dqyM!&`|b`Of_gKm1Ja>DRqp+j4v-&3zFp_jFy6zir;?{Z?A@Uh$=0 zc|FCc_}tytvZBRX-_BbxZF#<%b5xU7aLk421)Gz3<7p-1~-c7E8gmu`WRPE~!Med@}m{s%F=8+fI( zE04d8*f?)@;<=eS^JAy~{xv7z*3$i_pNr{x*aE7_toSkye?aM#8F0+Hr zxy)Bl^#jkA*P;@Tf2HuSr( zf9Rh7Q?BNl_WcHMCrPSd{|DXuee(ZL=(jb+f4aS^WLtZqC2vwV-*3*>+mk!p=Um^3-P!5e zt~Z4HnppD|9=NzEXa6aUDe1En9fG%>J#Y5@i*?j~n{PoT6OJ#iVNAF8o)K`#N}gX* zNGk8`k()~m3gRqo&)%|D_s`LXkEzzd93>=TUavvEF@-<-0BK1?+?PH_ILPnR~Bij;C_ral_u~N0V1I z|6Sdgcv#xTs6pF#Q;O{B#aBY73d-u*eEo6fe@*T7A9}*<*VjBTUz;iUE9_}EPpk4z z$q!Q^uiT%)xxpqpew9eZYoj8S+DCiRe}~R`A|b?f?s=qW4p z#?rsf&t8rC&+~ZY&-n1Q>(@`w-F@|KT1@!a<^C0>9Cn9VgBg44-lh08zuT}cb(OWy z|EESO#g|Xq^QwHy=&?NZ&-0Ht zbuoseX#Sb|r(V0gni{s`&Beuj2f`Os|J%xWctP{=HSu2!EJej@l0)w|yzulrC*B|Q zk0)YMQ_eRjKJ%eA}V03u>J#$KROQVFgn`gGv;mno{ z@sht&jONz7(<(1HsIY$Xn*EV-<{Nx1ZX4Rx@4CO2-G_14#nR!axKwA3oW`@> z_nTJNJp8pt?(2^m0b)hFf}XDK`mdO}T<1;P!W{*Qvz}f`xpa0);tsy%u5-INe)C*D zIq7(_GfQaQle^WE*B!X_f9tfn*+1sYt2cQ3NA>%+-#XRXX8(G#tF-F7>2*Kp^%Yx8 z?l*jKlm2tZV-g#~%COIOayHxKZG7%9D_lO|`)5U)e<|Y6guI?rH#KH6eIf-<-UL26w4~7p4|S`V&=a2_PLFZ&wRdjNrjzFbo;Xz@9*4Ekg3qM-cu4# zyK!Blxy0MBlGv!OL%)i=lulugKGry~5 z1YTLMzSs6;pY3vWapz6bDwuw6TazmurS&*OPD}6al>MJPcPv)dkJzAo$=S$62!#(p4zmIF?5uV}Y79_%%88oT%u;={Rv8blF`9s?GeEJc&xG4DlfeW*FZ4Y%--AkOqykn}r{-Hye zX@8&fivJ1z$#3kiYkJ1g-&dJuRYslusk%N>QYzy4IR*7!w->*YI&|T6LDVkmmP7vM z6016|eiIh@m{ZxpX2osSB0gO(Z^FbVQ(-rjbvA!ejy_COR?IhjxYbeaz0O>@A~|N4 zzs2W^By4itw_ScBVSaSOvMKw2RgoO6QwurnO1!YZd|Dbo##@n_t*?8Dck z>U#bAbK}Xyit7Da+y3m8pWr#O#=SoF+4nH*e_H;2t@7Ct|NlMM{>S^zP0(ST`;L9# zp8qTF&+hB*83g<#PTE^;zbvuLwBX3Cj2-^Jx+A&6H$IR4*{`v0deZEgXIsKHta;sf z-u9o%yX3h+*Z1Z=O5EO-y*4t)vi#E01?hJ~1?QLSm|Aou@aln^)AppveQuVWrtVW0 zDr8tz`L<+><^{ihHG7rymN)HRyQ_~armf}m_oa8zIh?*9la|zqXZ_Q+SJm{S-;Pgi z_x1i*g#FoPckSU@%h>s*{)asdZFhS8_(0{%&3b!ZN3Zm}NSR(roq z_$f!d{}#`-|H}XTYpLVK_n))p&d>^}Z2P$yy`TlN6 zjUe6w5A7PB9oi}US$JLL$+zcMJ$tr4NV@-9hScS6r|!0uOSd1lJtG&Izq7=+EIDn} z*-4V`dlkM`AI;tG@t!e#x7Ov0UUyA4yiF*o*!(thY0y>s(%|synBVMc*mi2!Y-OFV zof8*+nC}>9-TZ^?-`Bp`)-~z+owe$dW%gZr5VvyokC)l{_g>#gt`qvFUp+pSKnjgt?}5&0Vd;G5gMI>G=2WGf`fVczRiUwQk_?EUV^ z`M0C#)~DkBTYr|AJAYl~uyVcQZR_L5@6P*pWN*d>Zik!epYZJ47*OXTckq3p<<#^m zKK}h)8)F-{=bcmO`g93t$pS4{%N9^g|ghl0lmMUmGp4q-WncFWqwIFlBlY=Fj4W{pL zKF_=+r2aqW`pUg`f0sHuG|IVa{?IBhHNCc0;^{JR*`w#Q#XkRJ_15!~?7mOl?V+|)eBIMF+i9QGk1tcpJw4aBPd!g(@sePEo*x!F)9+{9 ziMPER&#{~}%L`ONnl&zyN5y3Jm>ermSlp*-KxzF@yt-qgDCUK@rs8>?d>t9#<=uUb5q z@ntX5^9S<&51)G-2`dQysARE+@A%Z}vsLe6OE|8ssSFmr9w$}*^yC36p?4RTzyH6i zzFGe7i}eq#79Iyj*#BSN_q*c%zEM|5{T%pgkNUd#Q{;=n&zsJlw{5qT?UHoU$rY0O zpT}7{Ze6=~?Qc_Z4>w?R|Zx za4!E|9Y)Yxi;K-bf-MD`I+hS zgWj(jQzO>D5|}ep^yl|gO~HKOb3-5IC3x;%ab}HNt*MQ8^r_3glD@Xg@(K>0B+It^ z`@y5u-f$1($XdFa-v&9{KC9kDn#BmT*=Z;Tk@z&qT1Abm62ty z%(LpRH#Z*n^X~8S&l74r{8cqq$gch~T}hf(f-8LK>_FM=?N|Q<&;R9k=eP8kP4i#= zpZ-Ny{&!`~i@)<{PvM@BaCgDilUtpl9%uV5d@y6zQ~AtT#YeYpee%ju%)KI;$(8XW z&OPr+!`0U%&2f9b#w0l@m7V&&q;UJR58ltRcg3I2nsOxZ_O`HFhf+>{j?Lbs?tiZ~ z_nBq&QmIqrx9_Zcu4ry8wM+8n9gd0*E0kIKubbSGi&)-1-@7-xeEm~HuP+bgwRtU0 zH{HqDzIgIN8UNqCFIR@CI-4g|WVk=yEn0ul-{g4hpF7>P)9*}p`S>-vubiYc>*mvT zc|N&q@Bg@5iG9j*rsm7B?>|qM)yP_&TirEf!=Y0N+q5z#d@nDLb?$_H zhKCru_+)v4I`7&ZuC&k8FMYqq=X=nMss{$Y_Dnf+{`tut%Vu()K7T*-q57^zS~|T! zr(Ug-Sdt!KyR>h$+o7%VSHFDyGft!~u3cJf>YO|))qS30|G$W%0I1>inEfb>IB+H&z|-6fW-d2%fLCU;5OKDP1vcD@%9n@mGFWc=z&i zw~o(2ryd8r`EItSc-g+@I2+-8Y31FX>krwBN?al6M%l)lTuMZZRs1o(`Y|ra}>wZ%mI17&noZROG_7oO=mx7kY&9D_^PD z*0tSFC0uR$mD@Fi8s9ILv^Q+O`0R7lr}Mrw_nv9hJ>P8`^Z53y`2Rl4BH~}yo%5Pt z`1$(L?aEg}JrZB8nm_?f%|7`}=;bmYLil8GH2g1s0l==qVlTu3TMc(3@$Kdc?OdwA#jRr&Y>}&t{*k z7wnAtxY%s#v+|Ya=33n^zi<51vr@d@#B1u-&p%hCWQvD`tlBNa_gV7&ZE3F!m!l>% z8Gl~BAZRKZkG^NbYOlnORx8JC^JFJiJUFFtzpS^6MOaZR#z^Mb%#24`Gbd^Psd;k8 z{&FkNR;7og&c#_rR!wO78TR<_trZDVE(R|=x99(I&fL5OODD})zCD(4uCcSC>rMN0 zo9aI<<$rvA-v>jR%f_|3FX!H#{?Wev{QX16@BiGgRN&Z$FKV!P zH>3Xf%kuql7Z$(IJ7#gbc>kv}W>NdkefU!FX}-yJPX4#Iu79}0&)Y7`!K_eddZ;9> zP4e{ZS;4=$o#Nj2y`C#A@w~>sdHKIvLE@)FlGo)YO8?pue*UMVDv$i_C)($vkC{vT zYJ0xBf2#Bufm{pytZC<88cuk>Wxa_wBEBDR+WYRpS4U# z_wT43tB+5qdB=82zFmcDPl|5NARvGV`9duo5b z>ejUfZ7y2B?+4?b*ZQ@_K}Ci1DQU)xs9dfXoPMtR526|*b(=gclO z^y-~cCwYF?GMmi1KdYw~7V%%7rry%~_xq=*eOIP6esTM>{m};>&6_r>Zd=ybmEX*5 zyPLAVOd;;)i<#wd<==M(=HDqSzZlu}@YJe3U4) zV4ciZp#DAN=h8>sMsn8^udS_6x{~X?@9F*2CC&Y2vKxOb;jP_Py7i&~?>7f#=kHl_ zSJzu-PJd}&^=(tlH+B2H2if*d-0{@=qEh=>sRe2CINo;txM$g!R+H(c^0d(3Xk${I z1IuycPYcZC4U^w<2fUYkvMr8HQcs+%KZdm>Cz;*3fBCIr)*B`KvtAs#xNiOrALlct zZ%Yaq3BH`V@wrC0(u0ZFpvR0q1-Iu?)PqvKjhmMSSy;=3~;NKx#RoUnGV$VKY{JuulOvR)KeKe!!vMom(e`^(^)AiKNRyX+3k2hV2SyQMc;BZ zpWS!0aEkfm6Q$-4AI*8TU3PD|zsGX!d&c5vDJ@@AmR3A^^oIT4_4|Je|2+I#3#kXA zkIVjlto~2$-oDzSJrxYkV!pqf{cL{*&j+sbn`$Q7_VZ4iXtdn#Iq|d3Vjkg^Mboz` za6J`q$UbSy&e>dj;fG`QlGH_~m2K2t`ziY}7i>vfvYPAL&EsY-xOm%Z-pM@6m~m{2 zXZ^0r0+K%})<1}N|M>Tg<^0B1)Oz#Rmh$ADd}V6kRJ-kT!i+gF$0zFTiLE^ULCjAV)hWw(vD*0<0%PUXwcZjMgq^6p$veJn&e=1UM_iFN@15=kR!56OH z=QE$`z;*xm?n$rau9&$ic;j-HX_b4g{W|OZN3}KnoxF+jYpn$fYp$qkyt=r}eQ$u= z%B0$FPcl9!%wGTB?6!4|>~h1&rhET?6a8~!`~N@2JN69{jcU{MW$8+Y_!W6uov@>dLGYx42LCxi{{Oe!C&vLF-y^ z`kPw~SCx0XE0BNNz_|9It?$}4)uq!jKAn=zSTXyOv$an7;UD{-@2z|x@$enn^|@|N zpZC3fEAh~3{rk%Nxbye#K0FxuZPjb5t7Ws6%R9flIx#c+pXIS@#~KVP4;kHi+Vr;T z@ha|@I%$?Bi}p^jd=_lp_3m0%Sd&WIlxZHnSLf-?mAv+eZ~FI_8_d^iKPp`7l_hvy zBxm)K7ss6Dzc0P}CgGdi)vssn7%5ospMShKF1-0P<7)B5qoVWYKK-tD-fweM`Rt~2 z^_6QkMNaiDOMYZ@bDduN<+>iBuxrn)c{}deZ+q$|{%iYfiH>v6rB)Q*y`Htbj-g%h znCto4&|fyQf9~Sb>yn$JnqD|*MtS?X8}q(5+KFZVKLXyK=*A#fQzdy!CvZELm0s<_ zW_8^^P1owO9_;4+HX}IZNi2ZSThb!;5u9M|Cw@9Xr z!NTi;a`?-XiqmZTb5HK!>^|nZVGWNyr!tdVugS*SOmg#?-%V9ptP#pT^`=E%&F1GD z%(Fi>NZViD@GRhJ-BOG2V!a(7FU8$93Sd+pzhH`xbv&eHM=``G`J?e@?AH>z(x&)vOR=gp1hrR+jNN)yUe z12q(y`Jy_OuDH+@dV7_zpY^RWtIIR%UM&9?`1VV*eaW)9S=QIAmNr=(Q&JLg5O{Ky z<%Ei&lhdT%R^|3@KHoTAxMuJA-<2M6?(b)2+n;~G@7(mio4(!3UcdEQRQ21<(o=-u zG!HCU@NuX6hn*72$NF}DC`i7R(P{nh?uO$rcjx^+qayx^L*o5jG4EZ|8vQ@6%rZ9& z+34o8d*c7LxDTp{!S1Q*3E5fS-UrUxbcQ=Sf6M!c{dQh|>}U(U*waGdaT|0Om*;GY!hvRy}hzGF4heSP9E%VOCl z#;@&ey>hsEb zeUqcNpK!8YHThySbDLU)e#DRKitUTtihZ918Y>Ar3jHi`QTzPq)oi&|51oP@2d46V zzRrzIgLu=y6Ux1_iut^M?Lx%}&vXJ;j-E=gXZc3J(5)YZo0#hs-J zT0!qd*)FNCzSmPGmuW5gv#;og$&D|p)eVmV%Cj|(>m-I=iEBN{>rxr8`SGdixlx=y z%>U1+s$3G;ck9Wl&FA}h>+0stN-SE{6?i>n^Kre;Wh=erzNzm!>6M!IVKJlM-`eNh z`VZFEp6-7ToB#VR`&#?U#=V?n?SES)bk9|8j@+4%6i7`GF1MGXH8fn7x{DyfDu$)wu7o&9m~|YC2+^AzwKc zG+uN#`)l(lo!e7(*R1}qYW3=zzEiIjab;!4uU@Lrwx=DU<^@3mEb z7o0e56I8x7e>wAyzj;TWoU;&Fv)0P}+`hjxiaDiyKb}qF%6H#Zd+7JQoPX)n)_Znd zJHM|o?z+BKs*LgeFGoy;J{10MeAE12$m#yR)4ieh>;g(zo=+8J*S)p2Mq{h*^R;#F zD^A3z^~bzEX_e(Ax4-emB6iz)=5@VXq1thlDTh1a>KG1XPmIfMzkiN%f%)TDx2mZ} zTie_Gm(TySZ9{`ZcHUIQ?W=wDs#Y~8eV09O_sCbfkivui0`{Cd=@Q;hb?;5(+ui@K zecKaX616F8#?FKDtKJEhe5rgSvBkGKQ!DYV$!?hy6{&GY&#qV#aVA2}yCl1Chke~9 zzt^+Mb_CtOQ6F*pYNqP8w@KT(e#^X`+RFI(@X@+u8)Dh#ZrM67?qBt0Pw&gIH@B{H zKbQXg_AURusb{KYndiy9DtoG%QD=U7yZmLXDN{M7O7EHF7@xksZ@pLI-fj_PRxi;D zYhF!gUhjOdVwRvK^IeU5ip|kd`+_D+GP*wZk=FO5KG{WacDsGo^wey>xi6%172gi4 zoxkSi15-?!B@Thwf_vuwTQ{x=c^iiY*kvm`zH;K z=MpzpX?*J|dl+rBS6?>g|L6I)+WyD?N3z@XWB;V7T#7dB zW-3}>d0ge~uZ`PhWzRUrJ1e{TjO_DwUL_YMyBqkoR~UV+WQla1)nfZ<`rEl-?^xWv z+@5;=xy=5j;rA!*zpK|Swg0YcMOIYPz0=lHjBLs#2R8A_u2r0qsk2tu_;$g&$fZ`t zgun4RScuXIxj` zlJ?(Y*UyuDPx+II+g*-le?LC`@!~w=^%L65GL0@;%R3+Myd!YSNmIh&_})3$U3uR` z*}|IVe_o^fDvU*8a=zXU$(nwXr_xqha~IyRUSHjrmV4sOq^DuRDjz*-*W@J$h+SH+ z(>y1v_D1RTZ9DJ3Jij}A>hk4n&-zq>GS%jVcr~&zj}*Ttc~H@&8bU_Kdoi6 zpHlUwlP9Yuq@*@x$M=g9@*a)ABzh?tTAu zKdRuL&-pKIFF)(=7yJJtSpJ|^;`JwA_*CM(&ONzpvC?{p@WjuGyw}f01xY%b+dpOf zBZZU2MWH&GkNOy%ujHM2JT2?#Pd_fjg5a%BO!vtc$A4p;9lvk=rPHRT=lX?~PJA8v zerEecz3bL)&sT^~PdfE|vyc1h=N)I5pG}-Oxj%lJj@y?rkL?wAWiTYXmABFRQuM8K z^Lei7+C^y=cjw5d24?&z?~7XM^XaLWvdi0J8xl&IF4|wN3X`=cj5lpw;<%u1p~;3- zjw`0hRNp(vxHaqPYGEDaH1jW;F2rqZsrbwH+3)_1iyNkYuBq{#`F?igo;CZ+|2CKw z{tLBu<)-{}TJTxLwLg@3Uac=sjo#6B?t9_Q$P+e4%`RJRy0Y)`!WUM)wz3Sfx2@7+ zIqe?3`}{Q7e49nnVm|ITD=HYNbNBj}^*`@Dd&gSOU7>fTYRUSgAN`^Y?%q4#k+l4T zU}Dd8v%Sao?2U57Cmy!EqRx2v8dq9HMXt(P`>o={K+5Rd|J1vd%?@b*B8r;wB(!JQ?|X< zm$ggryCb^f@9LD!llSg692YvYbB@nd*^eB3zxr}dZ?rmg_@%Fp#@Vo@&Fp@cCpg^- z{JSILo2bk(m%pXON!ND`xod2jgk;)1u7PexGX zJxztx6*uE|Gp)EN5whZ<@z%>N7oybXmhbbHmT>p?H2osik-TN~p6-A|PmyN^JG7i< zbmsOO-H|mmz0$jP)?@24?)$^eJ<8hb&ThHAFnLzUakkUoV@b{gO0Z=j&&GyiL3ww6A=ArMTVxiaOqZ z$Ll{jTl~(}**E{?{fJ*5uK!j0x0(OHM%ME^Km53O zFq6So-M943kM-WG-KEY%KASKtWM{+;-QdfGm(usmy;5=W?8zHnWEjr9o0#X-v+Hrx z!pBx>TNu}t?wND3Ui{6{dv&&-A6rGg-m&$vdGL9SefQ4Jye_k>*y>+iZo;E$=U%3y zSY1pjQCP2OE^_qgZ2v7Al=xC_+?Nl3aV*!|C)iDMow{sV377FsJ`MK`FIG8PtiS#* z)_!^78LQuS{w(qp*HbRodt3MT=L6OEGd8=`-d4Ii@2=0bCu$4NJl~(w|G|2iig(qM z;CUu%pKZORqWhxaV#%xBZR&qrwVT`Wq)S=0o;N>Pw_LV&b4BkrL*Z#z?>_DG;_Fv8 zKOEbvWNn$YPJAby+rF2_JG{*cw))@RN8joa>T|9t#){T3%5-i=8|i?4oP z^ybQe`zL-}5x?R0Ln>L~PAZS=;%A!}FS_5|ou+>$V zw*@VY3*Ggd`TuYITK#<$`*{5_XKl4Kt`Ymh`F!W6H`~wdFj=&D*D1fL*Q>WyN3FIi zpKI>PY`KhWj?CP*>ubMC#;Klrx9?N*$0pPLx6X^2P55eI91h!>*%>TRC z_GQrq&U(ZTz6?vw9c{LB@1@wDD)J)J8-Iy@5-*Li`|1>T)eSN z=Df$Z7}=fErv9y5<6QFl@-*+g=X*^fcUc|Es&)8g8s_$)(vn_^ZBoYo;}sP z=RTkF)tyUj|9Dlub$0BYozJg5KK1cpcK=*|{?qlJHqA+X61`i}v$%`-VWYT&Zb0vs3P-V70_Y*nqAFC(C zsViLQG2F23>dBkiuFuq395*w+KYibsVCl~7NJh^Gt!RV`zv}{1+Z7Jx zeeF+QE?t|pe_w|E@&l@G!x-PQ+3WuDH00~H7G<4&_|Eq8u^)DM9=ZKI|E|@6iRF2r zcV8^xoBDO}))JBFB8&&p>*s&pw|{p1x^+MNY8aNf=S~Z}FR=4|QsfTYLTVMavWUkM2gfzh690e0p)7%;TGd zaam~|ajSpa>$NY9sjkzLh>D$8(k&zN)U9RakKc)JnP*(=H{NtXrs-V$-u<_9CV6um zUu&XbGbMeh|7XeR^>r-Ew>x^OAK!R-=c9(L@z(|7S_Ij+_kLXwo%;UT`8lQyC9amn z$8ImVe|wGZ(khAHtJjFUt6}a>;oI6Jqxn)R&m#BpOf$B*;yEQp7=F!@Pu>3NxhA{K zqU)(kcc1R~{pZ;F#~CqeXU|-co8>bj{N(XlFAv== zcDAYf{QG)y1pPjVU%xx&d&%nTs~+;pFV4@BaNfDjsv=46?!4?G=f3RhmFZS*JSRWi zWhH+7s^ik>Z1ep+Lm$7lo6oV>&Yq(?etmY~!=&_QS9QJ?&D-qnQJruooS!fK>UF{Q ztFOgXwy)Q7d%6Aoz8?Gk>~%8te|?>Q#Mt(7_@sYF_gC51J?6fj;a{^ZnAvC6_xF~C z|CTOZe9kbdWw+(qV>yzy1kbN*HwjR`xF`K|9#7f6f{49(M}L3HIllkT&w16=^X6)= zyrm$K7_sxgt$A6K&V>4F>1{r{_0QMW-!7KC7&;2<& zN9pv%nZ^u@*NHK_txJ|>oBwd?hW9+bFKp>Je|SGGnB`&l zGIvLql9hi%)ye()PFHCxkNI6Xlf7C$XN}Zn<*q4WM?bBbU$y1UzCGE_c1&^aS51Dp zKH*}G(7)C1X8-JvpZ@&J)95WK=Z~-7cII8_+PHOBjpqMs*FSMmYmTMa>t#!}T$i1; z{?f6>_m?b|egCn{Q~KQMId(z&zy4c4=bGl>oymRE7ybC5b6rx_;q|`O%B`!n?wokw z_Wq)+Pj<*MR2@I{I)42ZDeFIOpHh|Qf3WM1Zh30#^frCkd!>sOmxO09Wu=-W`8-cc zdONpZ>O{-pkDShIPw#hrzQ=LzRm{!r((8X56$=xzYi)07>H9E8i|LNy=3`8@Ugyr7 zoN;s8t9xH}v$7ltwz|IKOn#tT_{`%5@5(lP`;niUeDrbPyQPOL|76==G`D!|c74;2 zgLCVy9-Q{q_gC%Jd5=s@Lzd@V3!LizS3K6>PN+oaKxSsa*_hT7T?mGgftX9of^_e4V8kazF$ z+TxGQ|9QYZa+=AK#PV1D=8xk&)AfqC{9UY9ewT%(qhF?VALH4(Y_;Eg{0_}+@tjwY zP-FjokI|jyGBS@Y{`Bq@DVBJV!@WH4@}JMS8a*?T?=E~8JF((%bfx(H&G|2VmoqDW zc++wAUbpg^&htIrqr!MiOD*30616;GmA?O3;rs*M-8}oIek`)!kY3Dqa=U+bQHiDN z^8S0gab@qXh+jF^Xt(&87Jpi_r}LtHJ#yl5C(J$f*PL6S`|XtM>C(jn+q@qJlC7PuHG5dSzD4{mn`i!P6z49y5Ks(MD=Y z?v-@TyB_~^FTPp%n)QMZ(|If4UvveKn`7b{4nZGXj*QlS{;2Cg_ z!BT$?`;%RTPkh`LSTl699(kr)`6$z5{^!0ur~KnSno89FeQ`c4tw(+O@0C;EeA=BB zb-mzRy#MN@r%tSiuXz}H^2-s)y@haJ=g7-ra{xwKD`?4RsFjfu13CSS|0p$ zS#Ep}L&%W@Ul-0<<~HwcbY9!MiA~3{OOGsHQusKqcJJyshAxE?-Bs(F5^^(gRxI>= zbIwEMX>4ZZ)Ty4#y1$%ty>>~?H~g;GwdUMrt=&vB)7{(S87`<%tMs#Mt{uIjI9 z36BqYR$Z6%ByO8pyMNWQS1(Fz%^wz3&d$A_t&{p%;+fB-iX~<*41O4|+wisSDqmLB z5zdZC`%8B|3#(5Rdwrua-%mR{b8+76HKj`qU;erK)r!)v-jnGe+UH--DYTrpIOykg z^}L!hrdPk}^@$$6bno?yxa4;E#kE^%SQ_ST&itD;TX?zPQqGpTxr%2qR%&kBZLMYS zI{I;B)z0tVzS_+X51d~ew6}lP`cj1tL9fsJd*9Mh74m&jh3v}=o4~m_Tj!bDCS@i4 zcz3M$;nqzY_g_}}NiDE)G;TO9{v&YC`nFv4HLRXiZvIPzeGKNct)E&bu#C-Zav!^I z{lxIDiTm@mcWbPFdYAK+-@e+EC97FQ?H|YAHC%q9 za&vi8{`Tlh(GNlCQ72uSTUU$udEaB!SLC|5F=bJRo>j>i@wCWQ{5Jn4yZeN(&yp5e zYGkP|V59LS0%L%+vS6^F0MK7agm4?N&71skzu7E?|f4nIBrs_h0;7zW>YD zAFt>C5WZ3PvSFviB-mPj^r~g%llQ%!UB_1c^Lstd_Q$FWo;P0|S+Vh2)UpEqMLZje z7VU`n_O#bT_*{ET*tVVV6IQytzOyE6X4++e+Svkp>Iu2e9p>MEl5Az@l0H=^_>PoZ zUz_C1@YifV);+w&GS&LBl*Yc_q6@D-`ngyBg*Hb%=o)LxZPk>2w^_u0}rDf7Sn-Lb1wbNZ8a8lP_UAMo2H zkijDws=;JiI;n(DF6_`!PT9?uxOc4e{obTq_)I{kz3AKT!1cPn4piT-c-j|vUHjON zq-S3$S5I~6n^2&CJo@gLEwj(Bi{E%px~O^LWe2Yxc~#9am3`V59pdl(-tl6`@h6K9 zm0xY$l)t*{S&Y@|$gS%?YDYcPu~TL*-s;(ZT*mvG`(I(1o->iWMbgb@bgJF%eT<3T zzDd4k(h3pQ-Rov8N>Iq{vzPia>#O6h&GW48$yo3G68!hp%e}j!SeAbIv&*ZpaL*C` z+862{j_-ddKCS5d7oU8yzc1AH3D5s~$$GtYZb?M{QPzU9zveE9icQmf_3*Etjq9yN zi#~5!r}(>X>9_F0gR(J`O7CqdUT{kPME())*y=)_6wUpsHrrMkhHP7X{IpuZ>F8z= zhTqrb-M*lquYWw+x~*~d)}Ot**RI}hny-md_|5I|Ny;T#WZ(Jh`E+fujkJMs(XAei zJtjZyP2c!=qWlIA@zsyLZq0J9y=Bg>8hlM~<)t&Py()r&Jt~!L7Te^%2%GlBKg)XB ztf18&?`?Y;o3;I=!<91+3#Wh8IF;&Zayxo%ujx;(i3UGc1pHp9?z3T^@u%wQt_7bn zj9lNV$K5%$a>)8Ta>2c`BTnQt)%G=daIpZ%dZX%Cg_SxzF#vI@5Y}waW2%mv`iAT%35|>?cq5 zXmb(yzj8Nh@4xsQwcfF+SGMk@$E8Uhds$wX?y#$vKH-g==G9MkbC%0GN-UoCaK{AZ zWShktUd105yB_1pcJ~XLxJqsQ?3;HIH{Ir+pDCJFIrXht%c}US`NuhTR=T~4S!Puk z)N$1)<`Z|d_U_Y9wF-0&xoc^?zEfYF*S^^*@0I$;z}Jhsw<*rOoSoao9scZ(N6X7U z-pl1)vz^+pr6t!qT+TXKu=eBnMJe{H9SV1a{*#^TG4IaVCv5ifua=Zp?tA4^G`0C<+03S!X-|9B-N`cl(^ve=V#6BgzmkqY%ACP} zRoU0KGcEtPIkL{YZxb)W=b87bYwdnlib#Ka@}szUen|AnEj=7I7e6G=|7lk9s{8#h zaO=76+Q-`WKPCTM_+8JmUCsD~VdjyLDFms?PIpjwYJ?#$13?lRT2nF?1w zEp_};_T)pE_W2iK?9V6a3&t4T*}aW%=aK|{vDo!DFP*w_WS5G~8O!Ay`%Gu$cl>7i z!d7zT{mZ$vPd=X5Qzv`+rqsIk-@o2Wa}T~U-;)2h;G$Y9!@cD-?lvz=3S6J^E`K30 zH`@AnIn(*NGlk1^CMzO) z>MpQQG*>ma%d0nCYE5^M>C;ZPl)Fw-XS=QX^WndapI4`iS`h@8#^I!Agq;eQ?4 z_p0{<_Ql8MNszPS&D%jTb#ll*f;T_)c& zbJ^0$to`>sDOc=`IX7|D_vhPJu&jPydrS8I|9$h1%GaOQ*Ew!$f7y8N%`Z3g_X*4Y zf7AZ3*ky{^yZcS|ihFm&iwCk#C=4_HKOD98B`SpJPt!>ju5 z)JW4seT(m}|Hk{;cH@x@zG`Xs%VKlzH@!u z*6urXe#@D=YuBF%U(C`ee?9R1hb1$Y)osk3>rm((wWiFf@4Ng9{)CU|wx_Q8TJGNH zapJ4DtZUT|uTnc@tuxk@Z);Clh5XNBW?Qq~k6(Ss@}D+}eKYUN&bHg8@${9{(o3uJ zbM9upTs-Ce@@=tSFWG%AzBgGZTjcGj>}=iQl3ZrT!v){gO6$h$2lahyo~leTPE392 zz^?q`S*=B+)tOI>5iarU7j}1iGBEnMcj?ui5uUma*EQ|ebCW4DI=IRp^?rE!$*AyY z>n3MeoGyvDuv+3Or&Z&s;FAwyW$jCAPROioDCMvzOSmqq?|J9+$JS5hes5g1ukw0Y z{K{ovcTUgL2t1k2BbVkMe>KmY-OFR6_5VM=Ywv9jzv$+>lmD!2&C8zR<(p>bw0>NY zxbxvHv29mRdi*-^{rBEN*}QKag8QRSRIdx~{iF>SY8)j-!5wav<(l13*mEN2dZV5id zuS;VEtE#8(=`XOAn^G^=dE92@yC+Tk63Oq4POXfN-FH0R;y@F(`48EN+ok_?uAV+2 z(*4|nJL0A7AMRZEXbqY)IKBSgN#3@3FK6D1$zu5TrP{vF{`0^240_Aw*YED@<9oiS z{p>`OY2RDx3vRCDcxd){qu$hO`THv_pL2LpGp}@le&IfisEz0IfBf9%@_fCu`-JzA z^ZqQl{abq$--J^)7`9ydxM};#J(EKw1;5>+^uNuoGqdMu;i8tOZ*+OKhA?W#zx%sm z-_GmLzcccGk-XW?-GBP!moncRzxD~1Qs+A_+nKG7nb@2$iTTmT+DDza*E5zJS>5yf zUu^Iv54XdW_Az}{Z!L5^?b3_Xw|$>|-9$Fzm*Cv+J1f_UpU^lu`>NjJu&Y|d(h;XV z3r~{2`$=h@uzJ&p-pISBesML=>XP<s#fn z)uJl&2qib=2M^l37Olp)LqVp@0~=&k#OU;vJ?At1f3bB3+7zk{#7fj z%6re3vTkMj&}9p^n|(fCSGINi3hT$^zUQVze&SlPKzI}53tor!pR3C|d5af(TygHS z;&b=Pb4F>ab6*%8`u>WocxUOE=e)_nd%a&QnV+?_bf5msM}Kxs-&Wvhp}*g%U=H7m z^G_$QX$zgVb?KVqDd(RgocS6Q>u+hddUK)r_f=-kN@hzRpOXLlNJ?g|&FQe(eG8{3 z*2$FrE88yU{x?2&sn^-h+a7pp^IyHac5mrkt+`j{X6;+p|JAC#a>}df=kaTv_muy( z+x1PA_fq0Yo0o=Xh2*cU^sVw$kNq~YK3neNB_79w$gNMNMQrz|xOd83cH5laJFo3f z*zxAwUcDvpo4?$${u5>3vGLcl$*Uz5;~zd*&AP;A@4e@OomU&5zm;uudG-6ak6M(o zY*);+RpA}G+rq6kvz)%Q%>R{$RPwL66F2KUl$SNXwXV87)pY5~si$mi_OX20_$4#- zd?=5Qe#n~_TRuJ3C_l4$ThWx?e8<0^%W;VCpL0>T{`9OnD(b(g*E~Bb;+LV7#wz|d z=EJt;%UZ6tAKWVR*nYA~WR=X;t0$MI?(kW)GAPnstYgkOj^s=0uAdhRS7rUi_jGUf z?vT(WB_T)Ca$mC5cJpRj7GNuA^Vo5Xb-#4+j6P3$-m4B#;(>CpkF9sz-7u-(`^@Xg zNw?VUtqGQR@|Sx~ci=tIZ6UVT1s5KCedNZ)`wKL>R_#)%E3Mj7EcEE3S?{dXR)1ay zusu4Utgv@)-p?$RiI27SpESQ!ohY(F>%C1xv&rQ}HKEsBBbjH#|Cr1FNWSKmwV5qw zM7H>4hOGUEee(}}uf2S}?}U-Xb^qnXPx)gWeOmkPYifh^n$Z5wQO`HlxvaSU!u>Ae zC6g1*{MFA^?a!7B-SqoSS@C-H=Z!Vim5GP{xXByLDcPvLiE;b2!u@^!SwtS1EB{qf ze_TE11j;$Pen|f(YhNel+jW-p{2c{}!KGpw<66W=ftxR+(*cX%UZP;#Rk8&+Uu&4wh|Mc%ocl`wabi zhn3&C{jW{-o0@ZcPxI6X-=44iwp3DH!L=N&|iC5|H0z-e|M&*+&8WbeL27Gm-3IT_kSMy6jGvLx%oCvK;^FD z@QbylPV}AHo3OLY;KM%A8MDsLnlkHL^`4xopI4o2usz7+`?ffb@sv#*Ki8TKpF*uN z|9wCD^O=FaM8@GaPji^8e$P61w!>kv=9%(s-S*$TxxN;=u^-d;;$0T|ZOy};H=EaO zmh?-Llii@#Ts41U)1>SBio)_GH*SBVk+{0(=*L%{`897?%jY#da1Y+)H~nj;eK_yr z3m<-3zF+NXtgHA=;NHofi}w^~FV3GJc;(8ZsWw3y<$ia*zN;+Wl$|bRI(_m<`yw$e zy$IVw=dJqAY|Q#_PtJSk)T_VG-`UrfSZ!*xVcYIF;rb^kXK^t7pbvTX8t~&~BsU=GJz*#QQw*WopfHIi26lTKl`B=y}j#vt8@! z&YwTbT@`3tmcH}$Z(|l~2lkg;`dZJHA6%0jcdtG){oeYtJFc~}&)>Cqaq8BI=i&WR z%$KL7|NUt**KDfQ<%+QW<&TWbXOt~jc-ehfBtPdzfxF8k%WoaIVshx%4NpbIr*CDd zOLw|9%l8JEzuqo=>*ls%yP(BNXKw8Yum1J*z1q*;UQ=_HzSEz+G3>^w&EIb9ncnpD zoJrxrhat*3D^n^h_r-@gxE7~<>EbE5TX6P^kbC66rAmIq(|eqDO+U4C<3SzUb^p)h z|GQYpb06HpiQ8iR?=t^i=RXgA*A<;pFQ4&odfShZk|)a;`hR@o<(_9X>*{i`6Y6nI zezhM{cWD?zU$SJG;?cEV-m`Q~z>dScrpMlw2FlvY7F8TP^~3YSv^uMIZYmFt&VM_*uBPtWHVc9Bg1LK-PFy7Xyj9cMFQ#whK5w>9CoW~b(f*$~ zA!kj^)vY$$Tn%10toigvu>5vrK@``nGEJ$Kfhi>hVKWz>wRko4ID1OgX1RnjoxAr= zo;mS{=$b>KY3JWhKO@k~Ep~kM4IBd^8Is0(cRP8xwf-};$yegh? z<4cG2^z^gGu38?F-FIY}-?G99d&1UCyX+*Z{5&GB=mRfdq$))n2l$2u)i{?1a?i`={C@O`GX_tp2$KeGRG!T;Rj8S`Jx+&8J@TU-5?mH9KT zJPlj4N_fGY@SRVzgPw;^Qmso9d-gZ0=J?d(FYPVoyb_qQ@6?xnYh==ox35a;VDg>& z|7O1bYrz(~`rn`Kyskcxe&(2G`kedUPhULt*z)JueJj>)?Kt$htm{fk>aAG?vaD7= zy4??a=(xZ+U4G%q`=55dS}a^><6~(c)3t43X6L5N@c%L20;1ks?mAu*XDW4(=YQ&IBipK`8C z-0s_}YGm@Dj6>>H&p-c{mg|b@R*1EmR(8D8{x2lAW#aLNw{mUI|KofW`Ywn)YxBB| zhMGTDsK2y`YyS2AM=o2u_W9SRI_I1(T~MlWrR-5r>-n$C!?(W94ENvrUH5NO^cVeD z|KeE{6>Hu;vtGNJCGghl@RQ$vExUfh=|rl3saavcHGx0TeCC##H_S1RYPPwz$+h;XD>&8Pc?u1v9sXC z+2_;xryUa7ILpMrL+TFW_H(mMujYTh`s(^p%#lsIY`Ae!uO=cbmGFy8-OCYu>d5zCGcetZ+5bTrBi+>@1I4 zPhSMR_^ta(+x2RHYf?3{*ufc<*P0b1?iMNav$4D|_)178*HwgJXPI)ujKgr)zxclb}R0`{o?QSVo%d@r6QYLc@>R^9G~;+KHmKi zU;p-g{2YPvUwrmYFWJ&3UvuC8k^kQJ%h%-}tZWHg^+-Gav*d)Qb539Wp?g+Ue6bB* zVB6n0-cf#EEaQLtxpplh{zi<|sXM#NbK_^8zMjSGaHYPz3)DKdq*AZgFinJZ=o^FRG}?VQH!XVnK^9pnBQd#tQ3fBCGCJ3HR= zal7ex3!Of5{JH6;{tpxP`~TT^pRGRYMV9=D_iOi>Xso)X9=T-R??oG?|H%s9ko3s? z&!4oXH@@wCuwJoW<>{KN2{|Q^Z*slLe(U(e^jkWW-%I>@s`mJvOXVuLvDYTwvSEs- zooJ`@^Z3v9hES8!i**bY*-WmUT@ z$71&0+pLNawzZAUF-0z)Je4`mrOrP7*}7J5vEkIq1=l{_de^>K;QGe7)9);OoL9%T z(sggT_iFa2!x!IAXwJ9EmUybpw(CVg(ry>AvMn8Kb81a_-EYN4vDL^b#Vp}j6!%;z zXub+tcW$+YYZb`{7nx`hRa+?mb006Rs|U&BYE1>ImvF~;$I#xeZQ+LXnxS*v%w5Scdm%N zK07PmmVeDvU6=kJA}?KwQ?8UA_9|Xyzi`j$$DT9Fe-ubeaufJbcw8WUolA+qL`MY~j@7k6v`=UaPHpe15LVzq|HV zuRPwa#h6?9{An4F=FGphwzD~Ib<2D^H*?-9g;US1w<#`PcFAJXrf+vYr*|H4wr-NWUpi4WD|Tyaxy`fPZC>X?jtkY_z4tC^oxj}MQ<1@3 z@h;xh3*TIM`EkX&4UwXfl7DIf9iK0lKJk+3;}y$yRo`38-yb<|hHUANi`nH*{w>=2 ze^$BCn*Jwj_UAILJ#_q$$MDa}?{zkFzUQrI|J%j>Df3+Lb+0WY5=)<2l*E}&>RVcT(*LpGVlK|Z zU-$e@G}FD6^vUu``%<6a((`L|WQBHawiQ39`u?JdqJM(iMa!+Tj=g`|n`}2TEhScb z+l?~k`F$RzIwQA9wr54iG;J@NrIUD8$M8YNiG$fs{A7Y>uL^v+dHu1APxicgcx6$| z7ppyTmLV1E%igi3>7UO(|4U+tjL`hl+EC&0cA3+~Z~7|V|Ea&)FS{>!+SybM z%AB!v9&zehwYqE$-h$WWBGE^30dLL%Vq2` znMeDtFJaS_RV=*l*!-ztrSRvBoa1VeGo6-(UzOl~=4 zNp}L{zaH@tKD4-A{8Yc8^1n+vG+&x{S?aI;x~t9qSEPHZfY7U{;p>uLT9o~ac)spc zNS$YN*6&kSKkR+~^ZAd1{QrXYSiA#myUMz>{?EDU50mHr^EmUq;K>m$|2?U;&-6=q z=UGIX?XM^u>LCj^EM_?CJ}Bl=~#}#Ru6^&6{`T1uoqmEjfwZyIbM?`b)RA|DC}0 zXH7@kr?o<8HxrERIA;y&+faQUYT}e z{`QAyEQX(sUkv{DuXk!ol)Un4n?tAOs^`yl7qYU3Q{Trr=kS}gVV5i?tL=Yf zu&O6Gb&l+H+n9BiRI^Lk_8soF_70zQ^Y6BViqe|w>IQcaxy|b5?%b}~|LDMn1N`dZ z?(y0te=^?OzVz+i-URX5rOD@Se+qcDHLm3! z)pTXcQVVrYD!sPwPH^jjhebA*1Jm|=|5TSF?jCV}*X{SSH>(~tVh)~qp`6FIDP1O6 z?dunZBE#dp^Ha50w|1^IT*vu2Ahz#-@9gu5*LN}tPiVaIdb-!UEVi_ncXtF_v}F7f zzyBY2Wu*3{`F{`C9|IHJ(~6hQ3Y~m;-KwhEQ)k&0uiI5q68HS{hcy!o?p$0{e%YFLP+FRD zS>b)6Qs>3d<9TZ(R_)4mKcZIf?eIGNl{bIZ9r(Ctr(pXI>*dPsUo*W!?`}K#feZkRpz4t~NSo*~z7ad<3lep8e zBWk+RktM}D>gu9w`Lea2=2Q@zHE0+81L$P z-kVqRSzbL()aY07KE zOSu;BGAEt%4Glf_duzrL|36PIp71xGi$|qKU+`1 z`PN2dzatq;{_Otd=@)(dx8?ph>Y*p~ckJ<>^>}s32h&+Q%0EpHUmhyGF7Jq}|B6Y* z;Z4ibV~(eMn&Bt<@_KFm3A?Gb>+(Ox-dz8Qcd?9Y{pQl*FNTIi`inTy@7djMy9HYd zaO}TsRzYd?l@*fLZ`|>Hv^T#vMx^y}W5vB?R~3I|O|73QG-uI@)@3zMwr(r8%w4f; zmc8la+7jW9Z)fKReA-bKm0HQ0kznWlT4GJ{(zDMOm9}p@YO4BZm+Pu+x7VgPUCd$8 z-dFRll4au)rLT&vf3Izmjk}+qvZ^4@En?NW2bbcmuV&sfwP>ZZ;IXW;Wjrg-Pj$=s zZxzFTDXZyq-|VkfHEWjt4q1Ej_KGhtU)}5Dj_<#;^tDmdw(E2L?D}-qOM7c=`^?t~ z@kf^)%{Q;Jo1}fbV(+EwHy^SM&${0dd~0R#Pu9-rn^t6L+xqjd>Slpee1E(a9bUL( zQmNBh*7NK7|Lt>I|8{@;k5yG)v_+R2#eO|Ff9vYKx2Dap=>PRW!;-HousrUyGNaR0 z)w%BJ2kInxlK5U1PRVh<{*!mN`x$ddo`()WlwlXa{9ZzzAYz9{7QJp0wTVb33*)7+8%q{ey16#M7X4nOzi`oH%4Do11Q z>#Ya11h#zfEN$EUZmxCUk)^9AdGS?0wtlyF&Gv@{y9(czNoJm3n)ZHj+TCuWFq0o^ zZADB>vM#=HxN6>fKiGF|TgLg|*u*M-n^Ou;w0 zt(zjf;Jl@}gyRGErQb4nrXJ$p_`YU&{Nu7S8$X?3=<_vAdwyr~t(SR+;{W}r{CfII$6Yg3`WGeh)zf|Mc1tCO=qb|oIi?)!s!hG3V9@vI$;XQ}QJ420FE?*r zIH$zw*o5~T`S*VuyqLhU`NMjfysQt(^H1_8KFzr2d2>Ryaqm?9MaGu0*AKtol$Y%) zF$!WUl*`!v<5kD!C+-H5%3hi&=E$8qwednz?cYge&#yQ9?b(y*GNI7N;+62ao)71l zUC*!ZHaau?#gwUCN2Zt*`DR|ar8Lt>YW|PUKaXwFTP#`oQo8EX&x-Gh_I%zLsr<9_ ztrc75rTKyHFR?Y-MBQC%Xt{4{-b;fszFtzZxmIsUe7W|jWoKo0b(rCt%={0NC+mkB zteiPX`1c#{#}f+FR=k>X<(QWF9Z&VNlEwtnb9|YLtDBRh&c`I5k-PpUd;WJTz2aXH zNx{b({%xpx8nc$oK3?%%E{F59n)lUpeD}ZKn}4+XThE*7W$X1yO={kl?~|SX=a0G1 zxo7z^k6$mFWL#C|^YV=u>(;^W?R&4KWRG97ZOT8| zuqGnz+{OuCSKgH>*l>Hzp-WSaUNO=#t+rnGaoeZmziRtd^m5goTGXPSnl)E9yK0Sm z_T1;Cf^zbcPj#>0_E2a0w)o9wW!bhj(z z`s38SK72F7oUc7j{#Q{W*MB$5{IuX&lep@weM`Sit;~D+Gxb)qwD;qN#w^{ak zmBhuojFKp|s+@Z{`^|@9)5gnZr_Y?n#caxGBCGyQb_*Lr_>}l;J%cIt?~1L9`*8p2 z+n|SnEdOHsc(2;7JLh|U%J+@I%a7(e?LD+`<&I4sc1;Pab*_CZH0AN9EcGS&0=4Vc zZ{NEqcmBVm<+ksp7C$)qd++>BuQvy-ms!=c+;QFXaXXYTf($p@fwvji`U?_2$-zWV+jm883c5Bjt_P)04b2I-alQIKQGNq=ipgdEJVms=Re|cf^n9 zNc=f>AkuV&iq5R5C1-elJ-Du9^69PA@0zjs5o$ znN{3x<~CbD@7x!x5qUx1a)NYJ#O@TPt#bos@B3-4^y}6#U8&vY8vM8DRYs<+{tys6 zuX@wu#Zt|?7Af3`41Z;5D)|5E)XQ&c|Hj1||Jh^G`SRF(Fa1ZcPtq^_eZ{8SuI$^p z@_ee~OaDcTFDLKzO<(7oa^%^n*6UV5(yOJe?>e_atu%0+(#dOrMO9YmoVC~W&AF~@ zRo+<9bbnRZt4BLj>t1`6*iO0k`%M8~Z`kXzOA^-}V5vTr_i}k@T*dE|=hwG|UW<8o zL(wzlx7O*(hKlF&tN!~xWVie9@#*dLpcSf~zrMWR$Nm3Ba6L!EiZ>G{AG|(w%A9k# zUu$AM&b2FcunXMkmT&%4=)l@5Ppo&YTpC+y#U82n-n;u8_Z7Z0x%u;-?3n8Q)=cP1 z+3T-A)aGU7zv!A!z1U^;gj}BT^!eXc$N#L2`4##t=lIoS376772dm-d*lYJo_d8P*_9zmFvxGs?OBN*mWAD% zmhPD^y39xW>ZQ(&m(K`&E8IG{@n7`qPrr38Kf1r=n@3z#=PKc+Z1W~6E3b~2{i%Ds zh2A9jROv(Io6BE$KgzY=zUtV)_?y4Nv}@dhCcHQ#>ve9oT<`b3`DyDu=F83Bef?~i z_VU=dRr70Cm+X1w|Egf#iwo~cjHgyi&5QcD^YXvq)oVWmnsuzMh`zb)a%wkrHO(J)|EPQq6Acet`JgHJy4GB+ zJh@_}d&a*?gcdzWNOjeY_B%Lr?U$c#41%Ld_nws8QvPMF-KWZeYnP_YW{%XU^w+g{sQKoiatxOZi>#D#-0B4R(`&H z;zgOH`WGk8BwO?U{v3FNn^pY&>d*e4mFF%=*{b`=Vsf0Q!24p+-Ju;JtgC`5FU_)k z`O4gKS>RR<&iEzaswb;g-o3YT^+n$HIjN$T&m4|DWO66SXXm4U^4afsCT+ht-6ym& zV_N?5s5h@}yp1ewmS3N7=Jw8KKj#Rl`c0kFSQn#F=;;3B^rD6xTqU=5zxtwDTE*h{ zZQJp=3Pn~Q>q464%h&L)$UE3vJnf}Mxa1M}mC3vZ#NX#1zW?XRcb6&WKrmYJYO_&HuOGc+M`hx+WsO&Tz8e zVP&b+ZBKrj$f%$GwPo_e7wHbZJJtVul3aZMse{+ega6*1nfbCKA$k#~{{BZQr7Q3J zG5%L;_}OA#$oa&2=Wojouf3$S|IOplkh2qJFTB$K(B{s`(oct`#<{<>-kW_+v)TVf z#N2&yXVveT{JgbldUe#+ZCgXXX}$JbyxZi_$8)g{L;KZi1Mdg=Jk5+)xOqbAod?I| zy6aSPS@vhQT|M#i^`xr{IjWV`>i&;d{ojgDyS6g!{QX5Wk7`VRywu;h?qcZcAHwf{ zr~kP3{hv+WH@CjF^r~g%e(Cu?s^|aVtNHkETgAQPeNR3s@?TG8j(xX$;ymfNJBizl zX%+XXIR6YR$~YFjdg^)g>F?vZEWfT_(m1>2X#2I9+ILo@wim3g-7!~5xc}ap&y$^M z?biSNGvl15xc+nL`r+E&u3z z+WJ;5tNo_D3GX|bc$UYm{@Y}`TkeyZX=~bb(@*DL-?;2@N@V%`xqC`}dhC9f_-WGn zot#H?+olMXCUuiCft`@Tt@Hg7h}+Mqs9nEl@EuFrG#?aSI` zn-IMss(UrpiPk_gz%x1$Q5fg?dGMSl)UrEV2ysc=kFeF*fI?k^XYs)9(`4 zTpsnvoIa^oRuN^lEkZru+Rro&)8$2L*Xq9A@}vLM?S1(-r>D4d`Zt^|_dT5TKy2~l z^81^%_MBP$Z1SxCf^kKTGx}0jSri2un7e*I^+?OQTf)0Bcb$)Hj(VO~d8RCDmD087SHYZT>QNO?u6FW1fpynN*~KQ-d;ar^IyHE%B8 zZ%nURwq0p&MmeN`@#gpckAHSevSu*(?zYNp(!_Sl*G$V-UAOzM`v0ii4KSGq3CY3s<$gKi|V{mf-#DTb4zlnkQPh;`N%k z%~gBc+rI{s{$BUe#5BO~?uJ)_U9VQV-Hb``uG;8#@YeEu6Yih*y03&me_5pXGoGsz zJ0Gvj3;t3SlfGl>w-`UJ%YQFrUMny8uvyoCYTF+TzjC47mwWfOESLN1d3V)0(MK-J z%~Srb4z}t4V50o`QnPzi{^oh78~T<$y`m8;on~wDBh{q!vD<|S+e8xIR885kV~NGZ zguABe{;b|O_wA24(WyRHzhB!I{v8)rBa?-IDJz2x?Hn023vl9zEN3Jc({&ft?vDO z*1wJhM_>N_NALI@Nk+at!OfaqiY-2^Q+9J-lHiv^9sx?@POOPOqObT}yjsL-bVj%(QjHCB~qI`H=plx<)V)v985g*{prVE zPmD`$pTGHZ%AstNn;t#aKIi|4)qj@nKHt6Wn`Gcqc9tJSC0hbrC#(7F;wU$GsVSS* zlX~;(;^e#EXD?C?o_nRgg)=c`;hpYMOR4bVw^obE$Gzsuo^^}UQ}meLx6(69<}7U5 z?Easzckbbxv)QIf+MRp+qu^U{;N@j9g?BeBy?VC%_W^#5Xp{R3t``4O+xs?i(V@*& zFG{vN=lXoEM(NJ`TS`8q_XX76{>TZeoyEQA+;P6+ZCvNI6uu>0KDzb&toyPXw{Y$I zc!gI+?ykYBFY9;ikb3sa(ssY&#CW~FSBZRwEh=Vx)>9VTDe?H6_rV8kyDop)trSu| z!`mm#R>Qz*+tVeF?@9DeOMc=f*SU1l1}p0ng_fP0UJ}kLoRzxo*z8+W3d+tu>b)Mw{}Vn|T) zGu6J~%ZraOx*rZ0Uc7cVbo+~^aVE3&v;?-6KE53JE6)9-kUW@MaiuYume*WiOAL*sx$+JIO7lsr~6;;}o{$#;n&$EW^ zwWe)?&rH*--DQ_9`B;&?H}|s&Urg7_?|J!G`L`|#V)$Ts-1|?f{fA_5D+9E&ch#5m z`~L8O1~1Oen-KrRMq&Ha?Hc8uyH_e!ZoGCQ>amsl$)88l|FCUX!f^lYqOGUGW9}E| z{l1a#HfZIu$}ju8rp4~63fsT9eVTiwoz`6wzVz&C@>ai!J~!SLvr)Ti_kgMlXkZ%WyId!uKVhw;c@dSn_-mQ;(2rDvA^!LwyN=Y zy(Z+|67y@XihQHiec6*1eouV)(<{}xu1-l-sy+Mk%_`P4rD1hX!?x~fT%L7f($5)x zljbfu_;E?zm5)|cnVVm&NbBf9%d*o;baDW^TyqG~WA_wxFSm=;aL@E4bLE zI+(Ma=+Ii*^HT7~ z%g^gyhX|YOl)t+F_VM4xUrwyd<2ayL5IO&o#kRfjxs|KxOy2m`S^A0couA)Sef|02 z2Ww3?_NGk!>HTfbv=q1Ii%NmV&oh?)+gNV;^}rLqxh2Q;cP%TG+v&Be^4P9;R_9W- z=MtGQcRXjT+W%f|&ExICTjVtTe}~AH$DFy&dh+k9@3~xDD;YPeZu?qcRDOZ;-qi=+ zwNAWzvB+@ZP8%x+w*431$-ed}EIlTwVZP>_82>$YyK*0kGd)vQS0{`3ZWP|Rd*?dY z?|187YrN-~x=y0<3g?4YWkHW~wMb=$e!Qc*|dFcjF|E zi|qR4?uXO&|MB}HKmW&z&l%^_t4?3)E<66c=CS?p`TsBUKg`XQ&=U2X`ejzz1INkw zIeJ~$UfPmT2P(b^)$!=1Nq*ujH}YyeQJ%fzdIwj|4w=depB!rPEtp>}NdEi%^ue-k zt8I(lG0r$X_uRgi_x;xjvv*d^>D$rvQew`1hCMP3yOmAcOCB9vKkMPeO}{42Z+HD= z_-jJtmXiA?+XCO8t~+CN?)UM)#cwY)o%N?n;?b;(j{szooBvX4Xfu8`o_t6TiG|F_Zq8vmhsgg|(Em zeSTGkv{_clVr#XU&mOi*CKv3ueAnFR=b`T=JxeDx8b|+_?0n<4m(|5nr@pGZJ^M7q zHjVS(@gu?FG5Rait{Jbp>OYrf!z%@u|59gPNH4zD%Vl@$5@W)5xsB?FW35&MzMK1h z>9wz`Ow(f1L;hBp{>Xg$a<+!QG^hUj-Oq{_&kQT5(f;MXyzzzN=QY~g-y-jS^4fd< zze|5)^LEddlPgz$^f{mM;d9~aJ!L^_rwhr=3D$a*yw?8fA>r+1kL-V3uslItBGU#S5stKL#EA9Mr{?z@8p6vb6<$8-Z{r1Yo*1MIyNiuGK zY+qxSy4wBySG!j`>!b}{WktTf$tM&0$GNmbSkU)rME}>l+pqF1kXz1nqv7<*_SY5{ ze2&{Zebr-CqF*Or!16YbufQ}w`G(e%tC}H1xMx!ylxw|lz>m97e%bA7X^&04WNbCrFQwPn`q@_1@nTK9X8+n?E! z_MhLkD&=pf_{{u0{_69yO72eGv^&xK(%D=2ZGsD4IXr2eHJz{fve&hj2G4(}->cf= zxU%@E&AXEqsuuX#rZ0Vab>>>LN&eSgBq!F_Zu|6Q%fY9mm#*g39h|rG@V)C>e%(Gj z<+}RbYttNNF2B3++Y9mF248p1)>YBoZ=y5y{ytK^?fGQiJoWTt)yFU8sMN{3_giWg zu>I6pls&uV9`}^=jz2f&hrLSVYnR$k`p-3ML;a@CZ%F8Z|NW?S2=j_){ZaB@6^2CIcd|expP`xc}o3JxxzVB`p=DbcPrQyALDRumlnI~{x0&N&YPw0 z`?%%gJvYW)ZEuu+e}C1iE~{(INwG&uMK`zwmsC%Gtf+cg`EQ)lIkST^wdU8)K7RkA z!t+zz+Ll3!YQnc`1Watsyz}|)Uz=s`4p=Uh?x{H7yYGMb{9}C0llKqG?mRcTxp<+4`>eCAt3DZ59$D?pEPF~(PUqdbvv;d?D<5Zf{mGIz-~W30@rHYP&PJc_|1NZmlAFGH zlT_j)`LNB~*13wG`)(Vx*Ky*FcOr@ZqF46YobPx4@-4q?|81Acipw{>C^U`Sk+bIO z*PwN$^sn38kXxMacg0&ax#txT`&Xa5^!4N%<2BB^9Ojoki{RvY^!G@I-tjlL4L>Vo z1@B+_(bM{-Ys0TQ*Y`{dZ2Ek2GF{ITQ8$8VBL zzo{J7T)j8_(#|7`{SMDQ{l>&i^XIA7Ef4>GEG%JP=*RHkW@z=x@AHDJMN{AK)Ggt? z&f$4DUGnv@Der=ZO_GgPLw<==Um~E%O56pqVi?-@;fUY)NIZ3&z*furc7bG zK9C!5t5t6BS=UY`@rnD_Wi#^r}) zF@mk>yBBUxcH#ImBj8aPn}dMDbi?Uy-ltm`tT$V#JRwN$@5FB**5{1Bx_VviDnGt4 z`?H=fgOAmuXPPta#zltn?2eC+yyos+Y^$qi+H;aIc4t*_==qv6MQeVww5RsZJY9Wp(Uxb=o!%F_?T*#mn!o*I#mTEtp{28K zeHJ|=)BDExQv9{c^3MWZif!5T%6MJymZ0Emk9R$f{IxYG@anIUx4B<<|4qri-gf@` zDREo(I`bgyo}9-nhbF8Ry4ycB;lAB>kNa1YgqioPa;OadIQ{r_$oh_nXO8Db&oI~^ z&?VoQvH$Mk6>yNojAcZY~_h`aV)R}0fT-mmn&On7(l+!MK< zdkn1B)J}G<{g(gp>a4wX<;&l>9IYtjd74{SEYy*4h5g)KuFH!<=I&~qce3MUMySg3 zU#4bz9@VujJhVvJ`S|DJOZzX|7|zQ*z4oY(bwx-2uI;l=vIdG?$Z-z{G0j=Ns4J`5 z;eD3pyDQh%6-xg3WZ}PcLIIQ2wQjckSv+6j4?T~0rh3a}+bZXaqUT&AmP>O9clST8 zEWdMuH*xEoz+bm{?DweuS<}41&@@3#*u1CJda3^V4o3OoY1i{wij#BizI)()V5g9Z zjNE4a(v?vw?WP)?f7>N`}%{K^Iop?;+3ucad&^y{$CH} zkG`+|__Lco({5*@&DP$DcLF~YT`HNM>iIlI%r@%Q*U0NyANdp9j(oKHH9I|i3T!Pv zf$Oz}@qvZk-nl)GdZPblS)$boDFfM3pYQkFOdfpQb9>{QInO8Ce-ZPuI>mj@e~;-$ z&*xL$8IEK1F`|6rJF_Y0~~X70#6^ylEL1i_(%` z2Nc=JUC-crpPrGm`r5l$>+f)zZ1^P7AYHL%`{`d+YPP@nR^R!XrPwQ=ThaJh`Ru#n z#+ldUj-HhHZh5RlY3|mod&0aWHDBf4Teq>`Pll*M)F+O;TJcNos`7sRwe8DhcAGc8 zy+^Kyxjza%Z+JR0b&2}F*|t@C>Q>GPDP3}~Kc>R;!Ba8*ONR{auU#9aYaRV{O54p_ z;?M3&=35G9&;9r2qE%Y#`HZ6*zbVgu{%7qopYyM`sNU#%A$dWK@7~WxoK|)t^3`$$J-@<-G1!~aEAZtp*D z@P*s!zS)~ecH7m|*6vK6zS51G&)4{2sD6-giO2Ph9C_j6x9;6qv~NkEcM*Rrqznr$|c>DD5^W{ZB?_H-}mD~2HUEqfWw_3Yd{oLad|69D7wcBfT z>z+vc)qa!zzPreN=()wJDb7Fk`h4^Kpmwb+Q+EEF`^s4v7w1(t$Y%e0ZIHJ9`{!_} z+P?nF+qOTw&%CBe|9ST2c>UMK$}g9`nl@8QzTz)vVTbgRDHolrUE_W}PtbdwF?~+i z67}iVoke=A&K;d>H;?aAiBfIosttWh7v0;~Z_1=SS2Z#@v`kBo+4A74MT@7cP->kV z5jfT6T9N$SZHF7xwgu_E`ZXu#$6fw_De|ON`8p>u1T$NVReE6tB8x7uhzY z^Pd3Uvwg>oEdDX=+_h_)?%tWa%5Zh^y-#lIqNxtzbYN$A&-jk~4(hj z?qZ;!~D*a>io{OzwYbzJ-7T-*Gj!hDBbyKk&%@2*UX-+)`pgDuUeHtHtAcx zTepHy&Gq0KzL$;6f#<>Jg2>l>v_E8QdpUZhRKxqK@A{AT|8utQ5kFr0>8No=wD;Py zKTd(p5i*~x?D$XIod5l6ht0X>-DhiEg;fd~5M!(j(?)_U7(D&`n55Jhc{U3YxelBwR*1?t2w)y7vwO?LO zyuUT5eA7}*&FMS%w!0U8oI59UhQZz3GgT{pZ`qag=zEg3PL6S6nB0M5ClfAS3jDM! zOE&$E=ez>rW3^HX=GY4x$)&Mr&#vltEvWPK=ZhVS<~iOeHg)>-U88G?)6TmF=MNV| z)aZP2VT`!9>t@Hvmk0jK)XT)*pRes>A-gM1ZAa~7#@B(elkThE+IrGq!$k8tYvmO~nh2XXby9E?;fjP}OU; z*i-+ewUH}#Uut2y&1c35ZL><6BabIm-Z<3wX8o;8qObR#-&gr*=KEb@iXMv>&X(By zbXsD_YJ*o(iu!il6k>>zQU7;J{?G3p*Vg}60gZ;d`m+CTcmJd9`@Zy5JZmdjdg}6O zo^`Wp`zri8pD!(`>&ceUdTg`ol=8FB--J))ou4Bga>GahAaD&o(oT-~aw;kN>~*B~!95O^z3i z=Upw_R9@=(;6wPXuTiyjg(+d~A73#j|2@H|t?@d?L(+d&akS{`Xhr8M5As&O+Ea9V z+H~LWfGoB+XYJHU_MYcH-QRWZ=E=85LX)%#r=%`fxn^%naNlpP@PF^_um8HN_WaJ| zthj$`>h|j=uGwRJeDS9ZIy0{?5?!m(a$F`)Qsqsat*YD~&Gw{sE`Q^ls??fitF$#?MY&s5*R4yP)6bWcy!sL( zJM-tijhEhE*|%&-^HepV{G{jSDuSopIIp^FZ?pdA_2(vY6~@229lCq9&Er*a(r%B> zzb*Q(&)_h2ktHH$lbhuciGfpJe?n?-fzbzvkVHc#JEd0e>c& zTjl>_#C+^-+`Y0%nmy)IimB3@X*N4!yn2uI&rRER`PPeq8$8oJmTx>KCGoPOil_hE z_Cwp=J8$0q`C##0@%c;tJd1tz_e_RG`@yG8()Lja)~UW~(`?mj;^m5tYaUTA1o?<=WZ-t%kGV>kCW*EfNi#q(?~oqWz)s5*1~uAAvo{xp~g$Q;-- zf1m%oE57sks`A2P_18SNE9*1=dOckI&%Ouy>?8GFUYozu?!qbC`|HoWn>#PM`oS%y zxtjOVT_?Qj?>JTWe0Sl~s>$EWV%BDNc~$dm4`VBR7It{*uSoYnhfO~r*hb@y-AbJu_6|Epp5qwhSpVdrQ6cV_-Eb-Vw*j^AH8 zcvyF=i2QY@ao4()ZBZA$Bx>8ue{bTp{b$eH4PP=h=g<9~myqWzcWvgLR)Z9|`u*Oy zpA2d*^L?IiYHIz9xk|tE{@hZJ*3y3){x5Dr;g`A3nqNLiuCBDv=zkld+t%}EcER?n zbjB9}K64i_->bLiU%jXH?elw{lQt=umk0chH-EI6@48+?=zWWmW zp8e<1$KUO~U;p{kWJdPht@*FqlM>D@&i-0IzkGVwUiH^2G>?0{?Y>riEv9uX=B#& zIhTFfuU=ii%f4xua$P+5IF6o=eu>qBKE(?YSn68$pAYzY@8UX-eb@S4*ZujGxiFj3*^HM4s{1A}eLMMb%ee_(EA@XA&Wb$i^Gn~iuK&Tx^I8Ae?nX@B z8=kuGnck|8cP8(S{&M=ovqd_eLzkYBb=R{A4^D6k+cBZ6d6%__zf9PD4}Grh9|Uh` zwyb;b@ptjm&4uZ;?JeB?o4*TMJi8zFb;`l@{yXk0*!Ebjq3?B8MER}nP2z_xu9dY4 zh^U3&Nb6?!Gv>Csm zZx4P}^*k$yQrNrWz#A>SFOvd%`-da zdDy4Vcil}`ZG*~3k#BJOgFmgpRB&L;`#l1mkPf;{>LG6q2t89&9<@={kXm@ z`SWg%a_s3FOMXpxuk)dLUtay{eeY|1Eh^NjR&F-_*}MDyULS6m1NVMvF+~WVl;!vKan3b}pRsMR$MYB0JC6J~moU%J z-4myYEx3%1zWyTo|<&zY}`%TIL7 z->iFzFH&IjF>OzU7+qzFpFz@(N?-A={c^m%bh=>U)pc91DeraI-%+>q#Oz<|Ukg{C zQG2u1?YQI7^wvAiznok4tWst9(aJE5826iw?@L$Z<|kj339CK$dg8y!JnLeXU)iR8 z-Dlsc2}}B7O69MfjK6*(IC+)wgKe%)Pwm{;Z2vITD$u>`{PWmV7nr8ku9lkf-8OZ4 zw1Is8*Zprn`%u<4uf8q3`tti(YnQn-<@$*N*AGG_Ue`_0_Gv z?G{GN*6)tI#Txg`M0wpF)4#8Mu1;Tk@7y`go$n9(od~ErS$pw@Mz(vTO(5=<9mhPM zCGyrSnf9N_cF~7DGAkEzIiK5PwfSexbepKfiKge|rk_6l+Irz*TmRG1ldngYA3H8s z8K(cH^4-pCXwM|Ay=*I8`{L&xJTg-{_wI^w)9k-LEq_q|YpML9({aj= zKs&O3eVMoZugt&S`Tt-4xK>`9WVhJ);Pi0WB9=b&of@B97r(!n9ro>7&*tq5N46tr^9`RBqN`5#V7^v|e2bG|Bn`s3dHbyw8a)yeRFK5_2jxr#?$=lJb+vv?yB z5bv|ur(KCT-&b#)aPGF+!JO?fYCS+NXHoYXu|C6|ArL*4-@Ap1vb=?jgqG=lI1^wXIGWJy(ssXn0re@#R1# zb@6)JPt!^c_&S$JWv}x-_p@g0{k31??HMk;oRoYZJ9E~d^QW7(PA{lEwX}HM^jUv@ zY6OTYto{5V^m(iGze#g0eO=(bGAU!Z^yhVpoq8_Kn=gCe?au47)0E`G>wId@e$~u! zjJ#d>Rl9dj=8q}U{LXZo>-Rlx@#{_zn@t?|iu+f8xE?P48L&MM~bY|2w8%%WwDpQ+7{Paq5%oi1_>~rL(-3 zmAqbZZ`s$=iK#cmf?o;gJkMS@msd&E-^=ytw9ny{J0@Kze*arLcys0LzMJ<8-`Bo8 zb$JUT)7pnG)cNXuubY2a^TtI3nabLIkKNw$C9LS!$HsEu_t&}m<8JN0XMX&0L$aGf zRlaW3`uM)RoWjNBneQg$=$(8ge#g3o@0`ZuJ@cnL-qbT|&pKDj<$n$DYki$07Pc!Q zarGC4pHsd}=ZiY;+rxKjz2E1uy`O~-*Ra0du(HUJg_|M|Jk-DvvxvsY4s%AVX=`z4K!_n)P=)@!w2;puG7%DKE>Z;eU!t<(e3s_!k{NY^eF>DOP__*JL!(gX88hv;;j zb$gnQJ}i6l@$YJ$x<2Mv?yuez=b!&L(XI6Fu0=1GW*qqP{=-hgIJW(Eyh#nKe>`%P zJ6Jw#+Mf=UaD}@QUY;}1lne^`^J8aS?@g(Xk58?6tR{N9F}haygF%$V1GcRtYrkhC znx?Hz*Zs8P;e}AI@^z06z107Aj{W1u^R*J^zxe#Oy0km4hOz$bVf!Y~Cq_H%nQb-1}&FsfVXK|NF~VY%zUDa~3=I z*;>8(^TN;S(u)VPmE>jw*1SFS{$e{r!ImeYvNMj?e7arZljkz|aX{d~1|=rL%Ece` ztiz^MzK^X8nXd1*RpQC~dgk7Wy{vAxpF|#cnD_AYk5XNo$G5-K{J-m_dOsm(Yks*` zu-nJGt4%!Ks!sphbLDlxbzMI@wJD-CRmL&9F28L#<~3t-Fz2_n-Op<0+?ck++3f=J zrR*>n*~<%`-#>A=;>43DRowkNsqr;iuQ*=!DebCaQCp-Nm;8*`hAE;*Z|?DX;@c)Z z*0|R^GvDD{=#9=Lw-+jh?9DW7+x)L*j?c`q+5Pj@>|!Y8ynArn>(Bd627ears`{Y$ zK;rU5xAwc;V(fon*g5#my#AubaiV$Ey)aW9yVb|H@V?r)BPw(IEEB13CsP|2sH|Bx zeY@|yRqdgF&+JTDXL>}we6@th1M7Q#vww8U|C6{^`1=y`4NxJ!>r40iYWsgr-`6lR zoH6D6UsY)~$ztW}qD3Fup42`vj+*Qx{^e&J??p@NSI_bsCl}wC>^{IWo>znJGwjCD}tkp5jnv!ETyW&OxTawjHD}TA<-?2M_mc-9~dO>QLRJrDC z8UNF^WHZ2-xU`j@7&4tPZ>+&R;xe1wEs%Ozz`0KJyTf@s_PML&R%${_p?1sFz?WY?1piL3iXLy{s zy}@svl{0xl=8j?|nCMpS&|n{H;#nmYaIZODz7c`z^{Q z{=K&H-;3#Qc3QD+-5+lfmw4Cm>#sL!4;STp`cWh6U%q(ruCLnLW}f@B?$Yg50vgMC zbW>j6y;r$^vm587gdDK_+e(NH+Urz;=Bzo3$l{k={fAH2 z-Cvl0OW~Er(w5vE8{f1%c(M6?oLq(Uj>*-3^OR0s*m!*IKiRJtdzUPzD!JKhIZtYK z$xZVgYxXHxwmm-5ziai!CF&B&H`D%?A1~Rd*Q+@@E}(uXSNS|7Y@aeE<$P&vc0 zjaK%mdZw<)Melk4e_sEGq3-qR_n-s*_xF7%)!)~#|JOwMqx*mJ?lJ}_ju>(o&L1<6qEie>59^))hyNQaVG1Zo;v#eeeA2J z-frJw@87)qan|%7YV$X~|M2h?^XK_{CI6TEO{jg*^TjyM`e9?mktxBxe`1Y}pT6+m z`s0XzLu(2rtYN-$bE?G`Us*loRl#fZCeF1Fug!XN>D_m3huY)4H5=m38wnL$QJE37 z#k*#1So>+;>FWP#VWK0ovO7}^*YzuY?go1N}jiQOXeP{&1(r#IhM60NZLs9 z<+@8umD93q(qBs6J>mDeu0}!gK!4%sn=_6*>XI*XIu~wt_AKvfuiMWB9+XT!W*W~Q zV7?~z<96mB>+XL){lnkx&wtywwdcRA*Zuo#`u)EBKUdfD=>O(kd^LvqC!5l~&nl1C zXJ^lOes1xRm5o;Z6>ld7y?({B`N^vY&$)+hhfBr^&&zte@{eII%bCyrH-As_zpi&Z z_QtE{wWTVN)1D;%_SmFzS}Ny_MS{$6!@|ayNgSRFoHT;im|QtR+Pd#N;r9y7bJF8r zZ8>yGP`7tgQnUs%20o#nMm?Yg`1d+*=-U0D^e zx9V%u>g%tr+P>TU`B&8YPk*hHe@saKQzoOF|N6SsIc4*OHrrm69`*E3pa0;?>kaH@ z%T_}i0JLNMauyR%I_Y?h7SvB>}FY=IzDJ|TZ`m*Pu|54$z zoxo zy{{MTlHA($YsDo|ousO!&PO~3zdv3)S6oqcL(6>L{x34te+3!lczih>NRCAw=p=?Yp871-L}8WN2Y$Ox2P+rTHGsosU+uvuhsg9e!nkwANobbzk3>Y^Xv=Xd+#|Q9wCZ2BTwe0`j^*pJ`LDk}t|_|Gbw12j?E1WKUn~2TYz&Ld%5xIWu-8;R zy0G8-pPxmLVatm}j>^TW1JjPqdmnNnNPTC6)Sp#a(|rFtJMJ6!v(2%?`sK~AsoeMV zO4nZGJ$vuz#OSI$VNS>QU1;25JiB7UZtKgt4lL4~&a}>FgKnr(pYQy@M_Q(u;>Yv< z*q-@!sdE-r&Z@5gk}*GXFU8-jyfW=i=;MqHk4wZ~`8Y^l&nmN@`bgR!ExkbPp)y(^Lg)HUbnX0=KXhK`JcDH_U8ZXw313+dhh=6)F!u= zWj}qJcYW%qeKcp*s+#qMU(}Ues%&@L{4&V%vyF+~;pM0F%bz|BzI{41*mI`d|NacS z{#DUcC03uG+16ftW?QqO*5Z{!?{XXQ4F?{Yo!YQBU3N~U@6MTu(W|`^Fzw8w2t4NExAo1$a-pU+#zJM)Dm$4jpzwF3Ik#pIy?jLS_tQ7U* zzhhk2AGIp)$_}X>=JI#DzP+e(m^?{f)1}z;D}+rJR5|uXO)blp?|QL}JNM+=rghva znx{^zc|9ll)4gZ0PeNteHw3ny+OoLtLBjTn&pU1z9=~kae%7bz*$G3%_~V>>1$R#{ zL~PNmJ$`TF^O|dmLxSG&^@&+-_~+f+^?LUOlO2ngj(Li%Zl3+ta?6?XJ8wQSK3BDz zDdF_ue|(L#?tvBi4sFS*^-Qk~UUar-26MxlbFr_M?45N%B5Oy~YWLk&%J+R;{)&Ik zWBDt|w_RiJUAFzZdwF*L*X?#+e80Z2+UD@$RAct_Q1ypehky1+U%FiJ%6Q*Vn`B*` zxtmp%&dJVtH>u>_3f&hy$F#gpTh6~ai?`|J4(r#iRgV{MYqCxM_DJVc^{*e&eFy9E z9=yByhQqI^_|wd?Gs*Vqeq#62EzkYGo6ZmV|LUsiuEUHTw?)2M zMxDFhZ|6T_)|Q859kMZ9jMtX`l1_{+W!K$Y{G!tP%CGP>Z%j5vf39eM{dZ;gYCeaV zwbpMlbSfjieVz7is!e*Ut+`2N(Qc8ST~?R(Zs1)BTMH1h{d82`#buw&VkO@{xG}Xl zD^BI@%C))S{nI}G`eu7;X{_GWi!I5=_S}1UeO3Oe8?Wwvo;@$SJAU^6YlpA9o$|b% zT^^HU-~aJVY^TtvKT^p@woREh<>@)sBc~+h3Arhh&w4+<=-1Ny_Y>cIJYH_2k)b}N zy|{br_sch*@`aUed)w#Y(Y8nK%4OC2_fB?BEK%EMWj}lG=k)DjO)UqaS1+2)GNmB) zfr99og3a4{txU@cw?@fa6kbz&Cx1`4`HOR$EBy}Yn9qy%=C`<1Q}exK*V8|Dw!W?Y zx>@(^;&W!{TjU;3+^rX|{}Z$PYArdYCu-|Mr+P;S)-JcT>sobwhOEht(6>Bwi}$rB zow?y0yF77AR_T!Bjj!&$a_R05M{3q4v{nPq-jlML$&cQny;<*@}EE7s;agz`1hiBf5P%~{H98rH(hy<|CI2HmStPc)cZWw z*zwHu*bXMK2R*fFezJ0xB9HCE`@BGhe z=YHOZXur36`KDy6`X?vOR_fossVCELl|B99?thn_eZG=ZWhJEARd7eqV%}$ubDP)A zc;o)M=={sv<5~$9RuoQkHYqUX-?!T5c5YOm<@2ELLi?wFPka+LS>gWoOUe@2eT`NZ zZq>Xyo>ru}CojqJltzGQ6h-kN>w z_Vi6HdQS_rEwnGxfAgJNz3)(jzifhZgYbkWU5zD6lYMqB{km$i&)0_Roqxg>JD)0i zD(%I;>N$hHmEPWpo;SM9632K;)^4&;PBM)Wsha&LIX3&O5{fBydZHob1yyO;C!O?a7J_jUEF__{Z_pUd4oJld>V z>{ZF}JjROq!JZ2o%RaK-_WYD&9?an9FKgXoRynT^J-e$~^x?cy&+eHv z?7MjD_?B0(SLQv6=~*!|>d>jhzt#G`B`xP={(h?d`dj0(CCew-ZEZ+s=d6D(6&-)- zlI8YkuH6^7RwVy&v%PB1`BZD_h2v@!9xv}NUY_+nK=;b?&Tpkhd%xAnaL@Y`ZvRnl z?#|eGZ_T(A?{|4#FRZG`4`rL2HS^`0*|E$Kg zB7c(J*Y`ht&u=_@UOgtBP5aZ<;+HeR`b!wX{EFw#*{wPC=l9chRc?rWeVK4-kG}ZJ z=ecRSt&c6PJ!oR{Bq_sEX>r}qgVpcLYBlQ=?YWmN=Tej`$ zvz>AiohQdl+d0+9|Io_~?_OnpvcLQ0*J;;@K}Sz>2J3T2UBCNHXX);sj46+bS7pu$ z@1K!!h3j_EW8PCMCwB-6)!Fw*FDrR&aXHaevea&Nfo1*4yKi={*cr0&qWb*yERVQzk{q{35qpfPuZ5!$NrPD4RbwB$)_S0vNLzg@5hi~1N zbyq2=_?OP&%+nta*Ihd9p9_bHVw-eOYB+ zo)^mTMwQC>R+YV3c=5!w>|V7up~u<}Y~O96@b&Up4U>{=5&3$PHj(Hl`dTQ{>_LC)`4vtC|X zcWw2q$h!7@$lJ#H-fV&lEnF4EFe z*=k`^tbBJZZ_Q%YtK|*3`{OgN-al>@aKFw`_Q>5?d!mEPH|{*R-u3OAhd0wp&DKRN zcaz!{*}rXhl}`VnucZx_4q9!?i+Ou#R=$actxxHpcaPo z_5aFN-__&K5{~w`el^TXQ}cfIz3t0)o=GfryZ1FKz2tu6@s~R;SGnKb+s0K^)OmU0 z_0?`u?!VNKac>pUb8zdP`h2Es<0s30#O2>_|>CbLK#wDHaNMy&OX%@le{_o?x%p_=;~c|H#3#ADkCO|g=C%8 zy4=v+QqS*w&gf|TsidRd70=IK)ELwF_F47RXuGnnZ=Zc?zQSHnFwI^2>Xq+rpS_PQ zN&4sZd$n$5yxv!-*q14`J3pQLHo0xRVco3guk};PW8Lfnk16iGDqg>+WPSGPCsXyL z`F<|7ntMKWePXN2*9*%pt$O>IbDPxrU%zXXJ-_krc~em-3k&nH$m{-=q0d-%`bE7C z(0*O^{KlnspJaE2sfSqo`oNQNT2<@zzyGsK8rxn*Y_2nC29I>$?58$hvg9*|%4p&0TZ#MK_-dDZ1lV z;U^^<`DF9fSF2vImah6-{#>Hwl;s`Ym!GWixwFo%emgPDHm+g&R?C`mS2o8uZRq2j zZ>wwb(LS`g+;Npa$j66#`uBS$S>K$fE?aZ>K~Ez+MY-spV`_WbZK^T{G@9g{h{&0;)NJKO`O zYb>srCF!|U`P7RUfm1pzym4(-T39UeJ?V(o>bU;RZ{D?eTjbqtQh!vaU%2bfd?DA& zec@L(zfP{b-@bqAy6=l^-@oLZbMNy~`E~!FO8-mR`?qv|j8@``px~|Fl0Uia60>A| zHe0%AMvuSAwcbCTZ;kmwj^2D0xvrA?GGqC^%a)}k_RkY69`E?#`uA_iyRFyKch3q5 zi>;RCJHU24Y5uvx$IE2-cD*bpSv=eAPHNQCBOd%`^FI`_3(Rqldd*s6YPl(NuFh*C z=|2Kb8xD7Wu$j8F^2icB8~vcTU@MWA9$)MXx#p?yetEnw=Gz-ymDk^FFKAb+lmC6f z>XIbGj6JSWAy*}C=T3=ew(_y`yE#odE3}Pg&ZVnU+O+z`<*YiBhXoAR#E-}^54>+`zH@$1X?JrsX6 z@7+u8nd|mm?XUYG{i?{e$I6}QZcy5k56iClc+a{Qop(Ys`sJH)?;}|qp>-V`H|8cE zQN5P6NAKs_t?#$6Y;~Nl|LeAO%-6Sl)H93NW+qd7wy-vZ97BG$R*rK!Xk!EVhzSU=~ zU!Fg+e3tP%N4J&F=4Se{pS=|%>+_Oh&%dZsueX{l^}J-39kVcT{fgi$E)>w#Gdaw_22Y)-W3o3$1kn+ z|B=0}5H;T>crw5Qm0?8o^c^R`E;Tp-?bX6ncshw?>NlyW1-V; z!KYKdt+omXeD`PC_wR2nc`lafz4aviTm5^9wd$XLSey2;>@lyO-m7|ZGuP}8TgJ%w zGun2hiY~gjZd-k}`OUQ-zZH5M4%feP{u=9UtxGb?=1yAXCiL#cx0~FH&qp1rW=|I6 zsat#L!4pkoy)w5`an;Sz33Xvp|sXtQ~Ci>A)CSUn~sD;4so(-23UUUiG-p>_t;CbL)IaX;4KAyjxeG}PZ z*Tj^XPGE8`*zxM0)l`Ytv>W!ne}rF;|No&r;(LjI{EIJ3`{%E-|2yyf`trRG7cUiA zd0hEh(wAOuGpT1&)32^!-Fa%>+3G)8v1Us4IeOR66@@(flZ3Yp3lag3amI*Z@76xHlm?=d*xB{t_?hACY$1moNJxy~(G)_NnyV z?g-zeRTo!IV_UoNNu=C~r*AcCQ{}czp1taUhRhddi@dFqH?x0PS{NtgYyLd<=S^{~ z(}8_f9ep>egq&Z6OI$q@zO*~m+rIidzUn0Vc}k{m)#|cm-A;-?=48! zEBAW#2h)QMZVRh?t%UDvcw!u<*XHgp4XMxPp`f= zLG5u`=~~sRT8~l>7JiBFcEhi1wH0&spR+%w?#)@g=8N3+*ETixE)~D| za9KsT(CYgR=LD+{0uS4*f2X}v^mzWkOfSddkxkzbaofeQ8*&BO{ddZ4e8a+jOVXQV zZL0ju?a4kTQ%u=qTzZ-#J!fu}SLb<~6R&*t8{gt+VW*i*j=oGzoJQ4{W?Ep=vwI;+zA{%GF!a}Ms_TONA$ z%Es8Jm6z|oY?{orzwTPEvfkGU(?@o!`yO5DjmTI(ReIS$MgC%sqMB2$TrGRpd!kmg zG350!oH<(Nxi{mouges@RkL0Tb-QJmYW@CL*|8_^M*S1<{VVT%=e+m2(Et0FR!*2Zm0L>!v(9nJtLl5RYqwd>X;uDQXeIM}^XGr| zGW?ytnb()R`jy{OwCL2rE2V~RJw7S=H}(IW+ovhFrS3uZrdIX~t95+uIxl{lwe4}y z>EjbmKA-TZc8$+9-MVBMiH|0?PQ`AFO%ckz&b(9M`-27AmFG4VonEsievfZ&vUJu&)TK^{wWe@z+k{>7y&BM1G%rR2%+y z&*7J|H)$oD+P7TK!}hD=uZEA0ZGw6~XY8$eJ$?WBe;2Il*TjAQaFh4jyO;CoYA>I! z{dD@Z{NGE~;y0(JU75Az^&YvMTkq8Ay6#)Fiy_>pWr6p+ExR*becW^Q(>_fF@2Ba} z^D^&k-rxHn{lEB3{@+R7bqzf0@)aMg-yY^J|FkbS)B0Db)$f83^{ltgt6R5~#zs~p znS4C8H)`sajq@uvI(BUQP%X3T-3zwjsR>ov`khv+j?CNmv0QHM)n~?6*3Vv1wbr(T zS7Bv#Z2szd%id4gS8lTLmTSbN`s(U6mrXz3d2&hD-%Bm`;PdQn`%Z25P=2cvk)P?N z>72j!a=PuO*ZBvwXfsQ_I{IR}&h5o--mPJua{YU#zx$Qg$HDj4KX?97zV!R;T{rjb z`IdW}z1Zye_gLvDGjorJ#l0K8S#6Xmwkq2MPJK*{wQ_6{PX*tUgtL+)>l9BvzqJp=knk~)||_?3chTYH7;8C_SCPJ zpAO|;^G|0vk!5Q8R#fuZ`)>W-%3GG}%PvOEd@dIJPWay3DwksmgS$=#cF0&g`o&bf z+N?Y+!^>ED=D!vG{nbzMd)IoEEi<^#`7(3w^!G2HBwu{K`A+?Wcg6=M{EpvxBxHxf z{DMDE1vfkOKjvsZcYf8OiJLRZmrgd#lv~AjHsP9G{lA{Ik+nA;{i&F&sDi?Ob89X~N?d zB5T`u7`Cs9GF(+?vtQ)+l;dlQD(haZ{r8A{f3oxS?Xy?>9tvj4wo zfB4?YkQqfDbA_`U9tlp^^+CeDXkC%``;uj!y~@w7zgV$LX4jXFf3K6z$*i3(=ho^?qw`={N{RI0il@ak%^_`%zgpKo1J9y?=_{HF)2)BZj# zDxW&{)gQ-wIqYAZ%N)MRw62i1=v^0lE+bm%>ioxBq!zm^`t#-++v5U3S@FvLq$Tpo zzYY4!FWpK*Ky2R)(*B|NG|ssPn%L_sYn{nw&at^PaA}3d57| zbN7?IcNXeb>}SKrl$X!_k5KHzhGl| zUAV{k-fJz_j_2>0{r$(mcb9KTPF-#@y;HEMsh7=ej?~)|tn5msc89Umyj*ojR-=>m zQ(A)m+cc@~^WUb(&AA=$$$ICCq=y>IHP;4*Z!w*}vaTdrtST=5=1;p@R~}y}f1P%G zmX(7I|6Ab`JKbKd{k&nxlxN;=-H$V*2A>Yg%6gi7&HSg=z0{kr_hOsUdTRES_I%Yo zf649%TYal(IKzr|sZUYy*QS;|coW_CJ@0AL^GLVK>4$c$UhZzU);KXPvmjUhck%4& zYd@&O{Qmi*SmS5Twyo{auS4g4SvkdOjrY7Y{-(xP8K?GZ)w~RbK=7aMk&#T?; zmGhVvN6&ZF2p4_-+1VvtU2?*iU4rhSNq1j734GqBSHC2&@oM7om*o~_-}ppyKVCU< zPg`f5*&3~oZ8x4=-z7g&;>5n-jQ46~S}`*!u7A3HAtZA#*XB)!MBX&~67yW&6|ij0 zWaYUAVINtlZC7;ZTJCOU_IZ(PHGAjg?4A4h{W4!4+bY86#Gltr-UPj$AY)OtZ#eAkK~&sFDzBJ zKDA8@WBzgOLHW%CJ*ra5zh-=&@Vw_ubg1-Q^?7Q`?LJ$~D?6Xa(pt6tSXAi*C4Sz; za=a6+oLPJ~+FB+Fw1lr1@;sEFRo>S$@T}PCotT;?mvr2B{afUS7ETM%JT0hd(Z=SjVljLae|} zVEco@c?A{n%I{|FJ?tA-kdpC4ZqlivcBeP#eJHSKrt-6}Em&~BRt zm+Gb{e|FAGx0YM#QMo9}+>bj!+D3PY_?!(9*#Y|sKlkcKgeosOa#Gn_^ZDnBuoLR$ z>kHpFT)uNr}q4%3r!zpZ|iB+^dOex~DA8)^ghW&Mf?$%dP0%R&CwFlnqWh z{dS%4aD4PyBZs}obBDq>*IHQS-kIk`u?4E|8`#Y-}Uuz zG6UQ7bdJziZ05 z^3`0QzD$`ERXi>GQ(fsX%eAZYe0!Epc`_^geZU2~-)pq0=iS=&@7>4k+a6Yyn*?vw z-);Z8^JjT+)K{skHu%elw<`-zhOT&a zwru{P_jx{>)-IX2Wd5q#e{Wo0S+g)QzV_RuscY8jzhAg?W9b?7XMwRjaU5ISE?4bt zm%YEC@&0r1lKAUi4BF@C|Gx2=_pg!QY>rD|9gAl5?ag}j#Czh!S#GnQiYOL7Uf?|~ zeEGRPLzR!KCuD7&GpV#|fyw?ii+7csVXwS?viiioyCL01{d!C7<&UR0J-ET*>~1n& z&$ig`nP&2(4fZoF_C&?iR9B`=^Vz3gdu>-`_5WU3u!%mDwW8tPd2QU%(w=clBGt`M4SR=jN4{TExE0_g}q{Jz%kj z=+@AP10ScI5)(DIou$`rxZ6i6Q(dR(j{m*K%U?Nh`9IO9UdOg_uGHe%_JjPd#5OE- z_q9#^aQSBUl4INNY+kbXq6$Ax&5HkyE}4^`>%Q{)+{abt#uey!U~bLg{dFRupH^KI zdz-wZRNPLcZEaQTD*@+q!I`4UsuA)V7bP=td0B-#F1%OD%KS4*t-9#DW?OPIzTSG7VX0p52XWKg7X?pc?7aB@Hk0`aC$BVS(CdGb z{CeJ}zrSYJEQp?WCAVC=)iMA2B@g+l6uynp1e77 zOZ@t5=|Hc#^9vpyQPrGe6?|#uw3;blYg>x%raY=&Sm-_5!ty~-Y{uD#0q@paW87w{ z;5&Q5EBzJjx&ljXmz41T`n-5uXkB2_PP=DCrLp}Q@5_(3p4wNsj?*+Z>$c?&6aT*O zlbf#`37YrR=0uV0KJ7VC=ilYD#{T8X&s%%>+thCk^`7RlmI z(e>MP_m%t$y6$~?*2nCp`zHlI&wkaN^Y!Po`}2z1@3%4BvWm1?v|`m~jq|}0zYFI* zwmn%BtETaC#fGm(y$(%3!hFcVwS}}-)(DGc7Af_rgK*tk8!Ljy?;7% z-|phKPcLgd*~}Z8_VBu5>aCjXYI}cw$lOu(BXEY$_QN$7&+Rfi_vOFvyv2OM?ZWFf z|Bbye&x$ek`*p5h@zzNJ_YQgAuDj&;oJr7q&83Nzy}zz-?n>_B3wC>r8IxJ) ztr~g3y`N*ba?-zrDE|%a|E_g%J{yy5Sl_EH_jIp#v7YScxxjq&+LYs7fpb4wPs*Fh z%#(Q`@UTvQNzCn#tqWD;=M?VBiMYyY`s3$|-n~&>{8#oL`+DgC`_eh?|5jQ#?lH@B z@3pa8w$FP$7YA>h>HMFI*e!NM&0l4pS9e0IKRA1Hztql7n_KEj&3ZSu6fr-vdM(#A zW#zi3r8l3h+Po~Aclp8iA2;s@?*A~;{JQPk%i2@#eYzFD_W#4z`>- zv3-%;jiR+?b8^yS_x2}uO+BySAC!JG`SsGYrE8E^oAfd)Zkl)^U{I&fDs!+cP`V>&cwpmPgmh4=?t6 z;G3$uMEeWVQAU%3qtCOu)Mb|REhzQ7rC+|HZ{PY~=aYMc`@Z@ZE65&xY_0TWYrIVI zeb*RQ_D$C8#kEJ&cQLM66+Qp2?85Ti#aT;D;`cB8?E89=-|LBbc@KPKXHGPanf)x~JY;XWSjxYrX1&PvM($95$Z|um3Avx8j_8 zZOQa|zn9HlZ~yV${?Pc3xBBm&01fxNo?rLWIDf_a|2y;7c|SJ`jo;buuhJ&}oX}IV zB_+?k2dVB1eiypd#%r#H_I~H;8Q&*Ymp^^8JF>lUzP9!!9=BJiK|7D1n7GR7{YB}w zml-RPmdP5QTKDyJ&$HPFh^SGPPpqipvza;ue9Kg<243$0(Z zg+EC0*b;XkZ}al1yq-^K*SoGw-S2I(rcL`+qe`4< zfz2$Fg_T}KyUyHtd3k$|A?M`pXJ6mA{(N(u`r^*}B}bm_cwSrDS3G^~u7z%&w?)0a zzV?wv$BAOQ%~mqiPdsg&{qc+1b4AYW>aQ(+HRp{LKk${5>F)o`zoEQxdhI!@vK>~d zo|%S6Eq~^n{_I_~TTIq{{h;es+ijN0P5pD^`Q3fb zJ-E?h*`q?+8C_lcYk4oG>}hRzA95nat7gr4$@8r%&&$P~uW#8GX}R7yvejUkMXG`M3U^NZj#*XMK0o*go4~wI}Yl;O?|b3zu(5UGzDkaFelujIn*_o2_%j zzG{TLj@WkV?6kxWH!br|Mftb!n+EU}zft`hcjUl@w0*L99$&Kp&f2E0KIs22D)Gz` zes4$TfCa*ThFfIZNBfiVPf0w5W@r?yROrn?Vgz-LYE#acVEt= zetjnYog^9G&pR)dFi$R<|FbfjA>&cev!k}%q6OhSt#bdD8B2(?%v@3bYDS6aRFg$o z79ZA^FWAVh9P7tnP?xzOY{u$UcBPdI|6OAL|5(zn#Q*yjuO-**YnJW%J=Z>F|8rgY z$o{uVld@FqexB{U&D;L@p`QVnvgP+0pHG=`xNvsyPae}vcMMNlNwZ#i)kZDkXUux3 z@~5Rzk^%DXJ~&JD9e&6WGH>xG)n48eyU*>rIP>CiV~)VavYZ!BJbs+z<$s*Fe>rcR z)ZaONPD$;Ydvq#$z4Bc2we>H5^5DO??9kPvb51Sp>ASA6HFnNi{huqQF0d(K`x5!| z_R@+s+p?CdNPi&t>HK01Tc$OBC!f4#>oH7;d?Z!5MXpalcIR)8FLtRNr!}6r#A;o> z;?rdJV1{=-`>*bAg?DeiRpWUSaXf17v6mZ;m9GifQK%L!DpQ}aZJ%OSU*NWrb-*__Hv#j>w3Ortho9@evfXqxtAD#8|lIE?|S1+#n zDx3dv`B(P+&)#2sEoT=EYS4x3`W9yYW8wXn`Fm~V74=;7Ev*Z_c_~G1<(KoOHy?aA zi72mJci(j7w?%w2qqQfLY@2ds%_^~TyQ0@toxV4FtFQ0zmlqc6$h@q&mDT3_?n!g3 zY=e4#wsZgCy_I_dFTJ#_S58{LEct?rZ;{u{ug5t3xAbjPFKN@Vmy*f3`l2lQ?MJ>@ zAz7~0?en}&MF-ya<9Bo6+f~X%Q$sluZ(f%3&$zN)sdoF1b?+}NJ1{NW)-CwdSGD{P zEJkTpUxxpkmue}V|2^_}&}prE#*cJQKPXObFU!4GDzG;E>E=s5{oiMuPu&$g{fgJr zf(Lu;_KRMfb}rz+nptUXbCwkc-M(yR?=tU6!_U2^3Kx~$m$EN?6npCSt=jb!>vEay z?_2kw>_fEd=abQ*e66Nyy{%(1r2XVqAK5u|PW}pB-_r1-yFYubo47()N#1XB#PcPu z%KWW=?f-E(UtqNy%Tu*YtK(PC@=KYPq2%*CB=hpxpon7|Sf-h|Uzyrt)|q6k8OU${ zamvK<|Jx21d$0VcI`!GxPyb(Vs#gj}tZLir{n~+Ly49pGi#d)4;z>`A3DrKiBs*U^ z_02Ks@~F!Cuw}1RV>cumDdjxA?^;b!PWI&}TPfXJP03L&L+93pZnZwO`MCW7%ST+7 zcRtga>wbIc#fU?*CeHC+8eJVdS?yO7_Y#R4-c+g8X7Q7D)-votE<|w z_yfYF{#oPUF~YZfhVuHWY^{eJl(-q?reMcV}VxV%V!UD z)=s~${paigS!4Nk@vAcSKiMs1bMj%)!^RR_7vArgC1*9nr<(2B%J|lXL+8icEEj{9 zkC@H{Us;_s*DCnl_s;dJzc0K0yX`HAQQP}!($ZDWWJ?#^ zK6(8pYVwcF6O5HuOO!rHqpJx7p1!oJ78EPqFJyj5!N%O1Bqw~P<8d)a!A?kQGGp5ZSSsIJ{GUrS!}_;saNOTNA5wUUL? z=DMeDeOvN=Nlb3!=Lu;)r-VE_msq~&=bQ4qMH%jSA0Bf#eLb(YR5W;r37=^gmDA zE%md53*Nn)_wVlI`~O?lub%(=NcZP*E0eJ0Tqy!y80t5B?>iN#%ddQ1i*M>UZ~;s{Nl?un;)ALhQ}AHKPZs+X597uPi%PmE1Ped z#br91-$yQa@bmt~^_$zf<)V&1iwu1<@e*52=^BmDuH7Lax~H<2ZFAeJ8ouRUXO&|# z|7P2#zZdXM@43Z({r;T18(pXLmVVy%XZ_MW?0)B0MXsruWhJq4`Ko6uk-LjmrAklf zy!pQ+b;;dpnrq#U3ssu>&&%CZz5MMW-&W!JoBOXk`JkihY5G1dZrM`JkKY8|X56(_ zpYGJ#)_(RX&sG|l_Wd_w11+zZzv@71n8lCQFs z`R(h*-<_|g7<2J|^}Z^2+UrR~bNHvZS+9S*y`Noo{pU=+y1f-l7k=2(TOImU>A9a# zrf&7&1M1PMU)5TCH(~lvbDisaleylwb{9q=?5$9WNaG(rdw5|NZxbYd(|p{ zUt!rn{@oidpJCbYH9_M&|L>!}r(XNFO_gblZt0GKGuwh{&&&u|rFyqu`Ok~m=3Kj0 z-8fx-dok~n(^F)4e)bnVm+Yze;kPPLCRmiXZrsAX4`JZ4{P0~JeV`}<2-M7tJ^D% zuBq8v?slKis8r#b@uq;eRV%(Pj6HsFF7JjNm*0t2nD}F+|Eiy*ez_es%xw!}8;lC77DpFG>6yfv(S%G!HpD>-(nWW89+D%Mt#zIHYuTSw zs=A`*{AQ^>U&;H|=IrYGuAh0evddjYOUFxcmv2C#UyN$p1pVWVmvz|}JW4G8<#cUn zh2LI-hv%wF?&!_l6B&2=SiXhpY_BesV+aDN9WG>!3dqFZN9<-LHM-R>s`@jNSSdgCD#X z;dOEe7U`SwpvY^k`_G%tl`gn`)_PU$(<-s!Xw2=i-?wHON3*zX`5#(hW_|W&;O1JH z>z4h$*UVI(n{Iu4)+!Bm+0S=_zkhi9vSj|2f6)dNQ6E=qX|=LkZ}HE{JG{}mW8OS& zlM6pCZ{>-)^uk^vuVB|&YqwcnQV*E%)P)Q4oW z#)gUP{CCZM?A*1O?c}WUGWI`0zHgBFQL^lLY)Qjpw*95cUmkw5eEZ5DANQ^2+WqKb z$EOhM8^r+u@4h`dQRKMjV#R^KKce5OE3tbw&(~5t656-;oKR^0ZJqe1ZZ6LQR)(#9 zbuB&i$UWCO#sBfYf99|DkB?avZ z1Dmr|L_WPUv;VSU@%it4_Wiqxca%p>_>^GrDyq=9_nSk1uZygBn{3Pe@?Lf^v;FZe%`gr3GeT!KD}6Jw=8n~x>XCTFZ_6M z>u?_L^Ye^{bDQT&sh0K}-@Vu*E0kAb)qI)a7I(j_$K1km*IFO3dtKua!fpBN{oOMm zywm4+b!(Ug`d+|DR+p{j&QR z6MA>Ya{t#^CPzzdZmYSsIox#7`=~2R?-$;AR#8^8u}*PHVN=9m<2w(pmnvtR<*=9E z{$}$j_E*AdS4HhV^HIsa*z;x3di}3IPZu0SGY+NiX`+m~*nO`h?4|LtPK5J7rX~%`S2fquI^AD{knO$)*!~ROCX1Tzs zb&GypSbins;(6zJPi4IS>VDi+EMOP<%<IHh(yF8k*?gCAaI;m%r{r%ZqI;`dL_^BWK6uUEKXz5DWe6|Os%&F5

    ?5teYhp`PWIgJnLe*39mu!u zSkKkxVP6)azQbr+O4ka_#o`aUGNyfwim)?YZ~a%~Sm?x(Ulm;^udHFNjb429Qsz$i z^JcGKgcjTj)$e|_I_gDH&G{e8qCSgc9R8nr>G{h!(eE?v$eVAlOV8b1Hot7guRRgd zS*_OZx%Sm;dW-4vjhDXPo471z@7bcfoR&s*Hv2PtR~EP(sH^*Q!*APKKFQY9EsV*g zQ}5npv+rlPaANDn;~Iu{XY&2Xkcwh`aPPtMSE{_-tCX6$cR3nrve(wH$UYPH-u%Ok zL$8$mLzDJcc6~qorl<7nk*}%e3hpkv;WwwSky~B+)$s^Htsq|6_2*v3yj)Rve}Vq$ z#3kQaxeETTiL%u$Eokt2{pU@XTd1&{yXmcv#V-RA9ha~Bq7ci#%*A7V8_M=d)h@Z{Bl-8uj?#JSY6AOrh0N>ve)4kAx5YhK zt}%-Oe}_Fk-NU3SKj%tM=`-p6Ko zd%XANT{xwy`G{s1B`{d^j ztG9pGPOtm9gna=|sORs3Lq%2(c3HjuRqAs4tMH@G66X&Y&JQiKd2aJ_>Y~#JWzW1>_$b?bu{C>y+li&RJoU-amw&}f z-j_dn&y@ol?%m}Fe(Sb})~!nReS7F6dq7%xcL@7KKKFG~KM23g`oDE=i}L-V4{wm>g?ut;Gwvgk3wWpVqDlP0k;JuGouDpWr&aLmOr(E9IZT4xN{g$2C-^J$I zA5H#Ne7CTFyXR#q_3Kp`_Yd2&?K@rhTGjIP&()9Kex5xqxn2IuA@zeZzCQi4uXxp* z{n3{>&jgjQ6iIIBURAug)@fR|slZab?D7`or>ygPJ{7ayJgusFx+JFem#kB6^Vi>V zYx&;4duP7od5?=|&z(@lj8!%3*KfK~;^!F9|Lty1yUg{d_g`;wK2b}xxc2JGm49D< z)K#-MdJFQ+FaNUAIjaBj6dS95+m+-v%liZue*AR2#?5A_P-9JY)ZB$&+E7V7G%as{k&GX%T*PMFkp|xr2S(9nXwl1+5^$!|kBGaq2uDl4;H~*2j|GEcT z9yddeb+i23sC|D9?@pZa?99?%mA!@xM=wc)UFDiMFH9Y15W#`lXBV zoR{Qec-6E~)P1_0Nbe%k+wY5eW|rS|U;q2bRO9cfeudAk@&0=^{?{>3abbEXdH0p= z`+n%Z^565C{k3-d?~O$(pIv$ob@-&|b06!>T~p6wpLjO;*<-ssT2}X?uJ-(yy=uuT zhP`k6?3M_&hF^ZUea^YNUpQU}s|lwTu*}<2FQ;r}6#GkYwy#0{dUc(BC7D-WN2aTs zZ~m}zaogtr*@jN;{#%oNGc2#!srU1eLX+~eljoiMcYTz7+heuG&h6{Zf2nVO*RAX> zKbf!S|8d^x<~*C-&#W&A_kUPY7<&HX0^yCEJ-K%6fm8Qf-x_u7U*L1aJ9l3CEzX*s zudsdA6<%JxAD5R%+h5?n`l@Wwdal|1yB@g9#vjoR4}T@2`%|Xipvoe@B;UJL=eCvc z?G1Zpl9u$uwv@@uc@h7u{%tRJe`EBVdt~x@o#f{mc5F=fK7H-Sp9aUWc}$+0WIT#+ zoBh=^Gg`J`flB!bS-1byG6C$#YgZN;OnfVG zryu|2X-Li2-}mkD*ZA7E_t)P4^yv5NjVlx1%zO88s`vjF)9*#f|GP5#*`2FbJMuI< zP6voy-+0b=!n(<~JpacSS3g>|=*i7}Qfe%g&pBV~>T#}9O5OEo`8M6d`(AQw;Z>LR z3x9R}^Ne$GS9e=JaC2STclqY@?0u`G&h0x_wchvr-!(V;zWsSIedV8}an`TCY+Q4) zduP@%XZ{FFub-<92DH>Z-Ma4Qg1uAquYdB{nlM#lUGJ(rO8%*`GU|QH=j}LB#JNAH zI!klQo*iogNKEVn-J(N0ngzsmRRaYHnzC&HHz0A?*v@B$(88 zWv<|>{%QB{O>OTbnVETnY6V0e*Q(4#7~Ar z$K$n>mUzSl^=uJ-!L|OJv#)j4nYb0Rc9n-Z1zz3#<%I}yxq^(rx>)b`P75xl$9AoB z?DR5JX8v3IO|QS{N}!|V-oxi_mrYH-;x1FV(%Dt()k32^tCsA|D%ve_Ti|pRPk2}G z-q$a$?NeXndO*K-O;(HQp4E-ht>gB_n*O*byL@}pmlfX6nHGnOs9oFqo?mu$$*0OM z&Hv9mmAeugs_H$@_ST{MlY8SAH*Wn*HA&;rR>pEw8Rhy|nxOhljs5zyEpf z*Dd{@C+7SP-I*iRw`tYn>tBlXzJ0u&ZSlb%zHe0r-;*;gbEm&MzwT~&{_2HEN?IG{ zPi%63{aJ6nmfYt~qta_fHTK8}R<^kJGp&&-J-1f2Fke35$mg)yd(XqS=EX^RTU#-N zAHOfPam(rBe`=={{#-DzNoKv)bK9P%a*2!1oCdJ902gOXyI6SqQ|Q)$OK$yt`1IXc z+)em3{+i7*lzVVdYiGc`i(i=CE6ephG9H(CU#_aNW};9}$z!(IearVXb$In{dChM6 zc{N*SWFyCqSs#8%T=YFWZ)xPQ#HTUEz85kDpB_J^`YP#sPK(C({!Yferc<$}svmjJ zZI4>lmE51s|7n_gUb2sce#rg>J=Z2)=5uXkX$2zZwd+Ntfw|w%tG;Nz-{-zQM#irMOw|Vw4ZM_z1eC?0a%!5B$l5b3Oe=f0o z~I{~rEon*XB}RAO(vwEy1^@2}-{pLk2(?l>>B+U>-w!x=Fz zE1o>43F3VFn&V8@Up5|H-+c=&&9F(#j}P#3lrUO($NBGG+0%Ev*u9cj{>Js@PV3h_ zM{X~x`_%RM-rlllp_N5G(kb)z|Bn3jVy_5CN0GxFo}gPK3z&Z`VzSL!WNZkrzHEn6xxeb*A}rM8DA z2$r^7S~y?3O}B1~>%W!9c4c+_3Ff-U`ztc-`aQqx7d}OWneLRmqxv(ixA0o;FA=d; zcjd?PL^I6_-xl59`qO)-v)<`tx)to^1+$Y^)SlQ9U21Xuv*B$^ExvKfIVY-|C;n_W-_X*MHF_+ne8u@uvN|@9o*h5TkF zrD}YiSHApy@!Jo#jU^NhUGtJ{$4x8J9LCGv^Pbg=J^KIz7>}m7VbFU zAEUW%$CSmD%uV~RzIqZJ{4CL4rtFw(>|4#yM7!)yo`Jljk7|s|>oXrK9WeX;jZr?k z`gMhXxHg~dek+Aioz)g@aaQ}^&pmhZ+C9eeg~@T{pVqBxDekDUDXXy8nFWR*( z=*suMD_Ja5WHV(Ro+|$F(9JtfZI1`> zUg}?T<r+v`sS%LK)8u6QDPu_oV=J3S%1rIKsEYO=PmEW-Mg>8fIKD*PK z>zvHZ>(2aUmSn6jkxBIt=kNO~Q{dh5vBaY4?(W5ci4x((inp#Q%ZK)vtqgve+h11X zx%$(D<1$?KTsuyz-oihx#B#Nb@$?P53YUA`O_>*x_x{O-Q(iWyTV}c~3FgxJ7a_k` zh{@uO1iPc6>ZWoJ()e^nD( zs+{j^{`1AfTMI&4XBqSw*<9Pj`S#ORrzaT`69j z{lv^~;&$_tpvl**P8ydS`=W97-@5EpvHP`d66RCQj%R$_=P>`{6@}}v-xe=B-E>(k zwUl+~E`eiG0#^F3!Q}O!M@_#PuufKQL zTBx#leeT`L#wCFnF^cOoUtfQFJgRQ`1pD5{E$_Y=Kb^d4zs8zZEmJJl2UdkXesQ+K zJ}y8l>}|FE{BsW)%H*C}D*ZDNTHo!Q?{u~0a#_*&dvdQ{)XE52RWG>Xaee!Z3P+BU zw@rf7Q@Qs&FT3~T@0ArcOP5X9RRYWo$dMQ(m&Srt-4}Zb}l|^MYip& zb&u3PYxSzU>9SrLe6;!7b%)#Km)FW`*KK(A=f%gEpP}70yQDnj zy7%0==RD>9S66$}x3^Y&`c`HWu~==Z{O(UHk3Zd^J(%)LU{_l0$ zBXV$F}+Ow}uW_ON=JYkMl!^p+Rj-ih4beRu8Jxy+}}{;B=8;!UM!|GPUDu3t0! zOF2%(PTF^0;bHXe8Rx^<7jS>QEx0`U(%vU`K3`aS|HSrbd!M?z6|P>%^46`u{{EyS zk@S@Rs}%SGUmtQ%{<+09;bYYCM-HnGoh#Wtx#iqJyZh>8HF2Nbsa%=Kw#WOSgx1}w zMz0?Fm6-nMt(qUYIrg;{-&YUqqqCE)@YbEny(BXEwAZRG%k=9h$IpgJ{pmPu)3*AY z5&uzX?Y_$fue|=RV88Ofyi73fTEjl&`Kvl~|5bgA*d)8obk>R`a>s>_EqOKF{`ba#KShq&|O- zo^tBbin89igPuo~O=>@fixzg5UHrB=_*{VB!OGf*)mJuEOqa-FdZ*8*ye0NYh`OSz zi?ZP=KU3AW>2rbAh&UhEqR- z>mp|U()Hg%wQL`5KUIBo<%ek5=AC;BxAR4s>aUgDZ{#=CWYG-9Ie*?Tvb%?VzH&ra z*(>I7TVi-POJCzx$*hZ|2IvFHoTBK8Soj1Bnb7TF!*^jr+uk?NpTI+VfP;1?J>#wVRWd>XRw(b9Q4_lz$r`+xUUt>^E1>%KSUhdeKAe0edDKfd4l&|7zXr z=c1ZEySN-Kg*G0Ve1EcnhNj|((EE>EqVvU&3&tx^;H)lUtUtrK3CJi%n+<>|q78}vT0eG1Habz<*C z?x{6De)^o>`nB)3^|?F~Ri?Uc1xr?3$X>pA>D=c<{F@g4cA8$Fy7f`CP=eaN*WAJD zK1GP;u7CFa?#9WH=jUy_-^NzmV*0$}+2UX~+1yuGZXevyo_Xa}+D8$mc_-`|`1_2# zW2akjhEIOJ-N(W@Rb_72x;?UGzpr~#?O$-+?fBato|_5UX#Dv?VZLH ziA9I1G-V#lyvUW&>0T1FamhjdsUf9yQ@5}lUcsekJ1y7r$I2)N<$nElZb7g7-W=Ls zIVU#T?hx<9_czu?T@_j(ApX*PhvKWEWNEwWmb1=zb9~GGxK6wGi~`?mi$qhUhR>$2 zzqK}B5>aLh=u6GGa;>m*Ywngsk2{{<>U-py?z5`V>e$MCa!=23-S1vr`#JUCZ~LFu zeo4#!oVIIub=B6(;rqTNf4#r=dG+h)_?r7B@w~h2p4rxgR&y?#ueouS#i8}-$Fk4A z*lnf!=TCX)dhU1cSI_#+uf z$-kOz;}d$;`fu6sl1cL)I{YqWKDhM7mlaI=TdWsI{=2GqY3aY7CE>hg^F!C3cAXlS z(Oy~n{EtV~p5$#OP3A2r_UN6nqI=h|RrUe?0Ww=6!%WSVxF6guy-?$D`7O`TtjK-7 z{x1diwBPC$EHijjG~eL*nc|sGS4zu%Hh;~)_xs4q*^(iC6YYM;{c3mXS~u%S+-CN< z@!2_bLGEiWt^YRv_=Q&yJJnWs&h4EQUdku`T=t9T{MGaJO8?$gV03nMNx6^Rgf{MsIJx84$~eZGp@Z~qk=xg0x9)%D6tXFE(RlTtoi#Amg3mGGu%`*tTr?(F;2dPH*H z|LXW}jlYuL|6Ex0aqD~!llzx#_da@g-0s)cuM7S6MTFj&puC-l`)c#&iJv}eF{|u< z-~UHDRn<&pMb5|jR?|=VUn^hzxw6>J7>KK{dOliINB|%?f1qoxi>qG7q9hxt3A{FcIfluzQq3LzjmIwHN{cuW8TSC ztM=-I>xM19w(14TElbhxJ(bokeO`as<9Rp3|FzHaxpv{~y@&d%@60K4+x7I1*Kx5| z53(BOb7t$`=bHBG65sv?&BEf9Ti1r&Tet7|H?wy6(%9E!B@3VJe){It%ettzLiUPF zhRgr@NnA~u-1qy+?y|=}LoWTi^r(E_eb#Fk_pfs9x?H@upY!;;@49m`)}GXNk9#_6 z=gtRZx##1n*2&g&E9X46xR{>n7PZoIyKj2@-19LqDvghS_i^6!+U?2Y6qGI+)qd!L z&iTtuX~!MHH(FQK=$zkpK0^8SH`|jMTVsF!%29Xt;5YSHT*vZc>w9^tMdM#Rk$%i| z$M&hp-nlkL@3bnSf3NXAx9#Ngi#6OP&-FH6<69o7x%>FnUp5c-#V!+-U3MUtzvgb3 zc=4ah8+TkfzKTQ1J^s||n5tKiT7US8<@A?TYR1K!c;nKcb@*_`6TzySnbybmswPZZ z`|5LC$%_YV0at!T*s$f5Kba*p#VB@Bxz?5yuMRv|ekZf$^4*t@&415vI~2D^dBUCC zy`n-|N0Svd^|IL)M4P|l$=F~lU*GloZqwHD&;45Y)$IgVda%nXnOWX45c*v#^EQ%o zRjBdyq{!aDR~mc6X1CpWo#}PC>Plq<)8cPIi*;W_EX$g%^;L2HfHnE$o^ON{Sf&dSG>9Jy?;3`?&X(f*K0QY`(XXg@9)0#zdlwSe!P5jmdn+Zm#wCk z?7TAf^Wv|S-{(%-J*WJW;@8Uy*|!Rnf8F}(x#8@2ZNckq3eMd--BMuU^6ub1nZ_DM z8Ry@{XEY9(-s+ew^Q)w($>09U*Ak{MO?B^dzKV69qTDu5{SY|4`PAajKBltLiiI|x zUfNdfe!3v5#%kV!_d7qTnR1-%e!j-qbhTaosUvR%tb5-?<(?9~_wDRi>jQ_6#>DJ9 z72qr?v$7$xCMn!zV`sV4&$oNMbfs$c&OYT_O;XO^vdv}3u> zq2+FZ*Ep5=%opv+4!&P8$K=`U9=S#F7Xlw_sI_@rHNhs2MP*IZmgipK>)12xC;IzN%bt4+F2_GtTIlPnW+Ju!uFREJGU{hF zkL$d*zEK{vPI`6V?CgiDykGvge$TS!Ryb%W>$ZKLbM0g6AISb+aPP}3|J;O~prM}2 z?eo`3jW}9$POPUJtK6S#s{-4nGV2^S^(rs)~L3^WysFb8FSp&K0eV zU%sj0MESQE%Snfv<`npB_~rb`WA2)pTN{sPhIgH~mo8$j~>1HPH@ytG* z6>|N=<+B#kPH!%Gm1%k1`r7-mzovhQ`snxYLb~evva)k>KfjirI(uu%`m^Ov0?&HR zkMFuz7`jez`=ZCbTQ_VGxbsSS(xthFR)@*Y?Z2|?dx2)%lw+o=-U>YxIc{bCASbvY zYVD6}A9s1ghW0V*ZkOJC#I^5jp3K(Vw~Nn5Mn0YTIPA6a|DAX1{_8zocWKX|X@A+z zX3W&7*3Jr)UF_-1Kl^#@XY0hfXRjW4z4o8RUsd_&%=n+D`<~nMzuZ~&qjyVUz_TB( zLw!Z+EVT-!l%?4$`h6u}!?U9oC%(M!aC3B*@6`91u4_G?q?T@fd*qJc>5z^o2|r~g zX7=3EZg%V!ca4k{vi`&OeO}}Ay}{2_qa>?cHpi}yd>Em8c|v;b`!c1^H{=(-s_>k; z_2%Z=uijMfwgwk6bG_aw^U{*Bz-otR?8`j1`eXG{u}j*8cWV9rxg?tJLhYCN#+kDJ zdzLqChTYXUfXzaJO)207}#9r7Xl72H?^z5$JcAhP1p*;nSdX(r?p#6PO2KT~GH<*&(>%&z=yYe4}YuTQ6XfXNb` zMVVhVXIYe7442pLE7X$=vAuIPV#cQ{46`p9SZ@_Auz78A?9jn>y916NcfL;kyZ-&} zzh58vL)Q0{WnF!}z5c2FI{VM_-mliLekjZu*!9@*pm~vI+UMn^-4%1akC^={SiaQl z;a8!1-02U0@*QsoySl~n>*u=t7w=iz+T7K*zwXe&?~L1Co&GpqUuA7=EjL@3O6RQ60&?~kR-;`XT*tG^c9+5GyS`-#HxV+&+o7-#KhX7)*)|LwDu#3kty z{Ra&D_a2c-ThIK%aQ42$_8oc$g-^dXnY1|T5zCj(eVc4gUDcYgStDA}UNO9o>EL3A zr8Nx|%zH{Q-iIZYWK>J8bzki9)$-WfT{H6)KKc9V-dkV!#lxg^*W9YESAwq;Si(z~ ze>QA!)t}fW!Fn}z>hoR;zEmf9gxqsVl2a z7tUX8%okWI{O_{h_46A0!%W|E%qdEB6Pb3S_=fn?ytO5BCf!#q&%3`fRmOeyOPwXb zs=T)(C%*lfnzj7jffLHhd7nSn9jbe8*T2QPm>=GmUix~r)jyGB&aL(DCwk9yUlp2W zcV%DkoE6g+J`MbTt6%hy-1|+nrDYE-w>jNyQr@1R8Dn+rrg*GkthReuEAxk!)mKlI za&NL)TlTa1$<@b(S35g*iB4N%zH-v)?y1)`_UwFWdEDT+<|&&a`K^Y>l`fyVxbEwV z&u`=(ge;Fav|;hj5|ga?TA$QqL!bDsUVLr&dy`LFj#tZme-l0RzTt|e<)yKCPi~)W zu2ri4__6L@>4EzUeDS24{n|~_OGAKKqTy$-l@ub&JZ!N!hTvSiz>y@>)&ixXN zxBhr$m*y0kYguP^2HV+weZ**=5+cKHk#R|6+0(n7Yf6mgH-Aew*t}`x@v~BE`_iMP zyDwPfba~tP-G7T2H}!Mfd7S0m|MJe_!zQ1tV%K&_?!UO_(buYT(Wefronmt0+Mmgs z$8;^auXHqb*qS!Hyle35yTQw>^=z;CK82Ys=D51Ed}Z1Pg_mbhW^g& zqMMWRKSW!`&)$(cRrxyWw!)GX=j^-~?|(k_cw@tH?fMDef;m`>({Tu|GlvN{`=3nm+Q~^aw)rh>%Zsszl6WqzW>YR z(k-tmugA`{DLvERzEe5>)5$WokD-wwaiKTm=A@H6k3OXZ(sTrU6o{YkRv{O0hN$J(_%r9Sdf{*`rd zK3`wSjjdABGCbRZ?q^)CTs1AUeEKr)DaRw;fBU*A_S)(qhCWL@Ygr*%w@K1=8vi5Y zOFIwO9en9o+t3#AE&8=uO~HvTGuxv(UhsX?;O|@S{UYv$$f6>~bK7UtUUYfBbeq4s z%JBuKiw_iKt2S@@x-zRP??Lgd!}+@Rr~mq5nNae#f6Lw1fzO=1YD#$?ojvUN`bekM z-M#OBhkC3#U-s+mfqzk-4sP)OW%+FRE2Y_2^LWqBikkIpt^4lk$C}SRn9f_->|gzk z%|18t?RG2G)iJYGa$Y*5=39P_ne63z)xGM~k+)Iz|4seB=HHp?_4Tz!v+ct`XMFLz zycPZT#QFN<+F!q%c9s;*=6rHg@l)%k zD&bid$oBs7&6NfZYptY9eJ&pg3euY!bz=MC^RjlIBp1CD3CoS1JJD($|I;65|COCw zY~h){$2EvH!ADDIfL%kN8fdqKg?6zlwZ7mYU0(!^S6JQ6aA*ip?ZB& zP(f67LH+$dEd?1`M(36amc8>4Y<8CYc=mOHL|My)$Kq#LUv02@)u$Gsmn#Q ze&sx$aOuw8D-X9?72aXoY*inY%E$iQaDBVh`zu~YZSU=T(d^}QaHG|xE&sLUuC@HK zVdC3re0}2;w`mJr>D<+SwJLe3*Xp$|7^a-R_jjHB%4&1Imn>)Mb}&cIZCa(1Ix}Rx zhqN{Ol6|ig3ua&0zbYu0S6}w2>2bZar(~v_34NIIzWly%lOk_jR?gx;jwv=ps{%#d zUs7;g-fzvhxo=eo+t!)fr*=snxMlKaWzZV8m@8##t$L&X_%_d99j;n=h2zhbgZW2W z)tyc}-s1J^3XAfAxl+qsik;rgSN?lrNy_Z2@4tSmTX^-SZHVVykJ=~BkuK6dbX3|M zR<8aVBo*4xaW&3L&!qYxpZ%qTxwVS!&5QZ^qD-5XM$P*1+O*Hz#p~T)efy8we%=57 z^?ls4SD+!usi55&_ixwj`FDK%@9eKj`{&CQFFqM}eBY-f_fjh_%nd)Td3&>+%kbi4^j7yY&J-Sq6< z%j_Z3G_GkZwoURCKFhy~KUlmy#%pGyVb~dFxvSg@9*4YD=C1v=>!15%k(UAHjw^#_ zAGfk%GhqsvTc>?)lm5G;s;byWCKFe4`x@7PC8?Hs`RP!s~5`Z$Mxgqzt#z{bpQUts`}L$!&K*U`OjHT z@t>3FU0b<#d;Qjv-X?SBtc>^33)^b^s{iM17RG=$p=pbQ>w3iZ3Meovmy?;gBD!+v zY2E`o9e$E`u4YY&3jD`*Kl_`G`#I&#FMB^(d`i9;^*H$B@{_79-%fmuxXzxhdSFR* zk?vC=57SjSD_7mjU%GvYYUkz}HXDn%Rd+p~N4Z;>6zzV)^*e9R9m~y^OE#~&YZJ8A zEBp@^zf7Ez;f~ebiQc}vAM8BlwHV8`yn4ejFU0>q@qy|S<#)H8$(`%trS1PRs$#u+ z)iSeP&7Dyz-KS>8R?OeB;%n-qjTi0Stc`ldkT=PHzWo&I64UvQPUza4S)5w>M`T^e z3r$~*zuRtomb$Y3_(md_X;%Fc_LT=k{+(fbE6i5imZ#~61m{$j?u zL+IJE6*7#uo35|b{Uf<_`?l+Ew?F&5TVmmz%G#`br|!MEb?4xwVy<_u!j?bKt-18_ z7E}F+m0ff8Y5(>O{kZMYO8;3;0@-h_>e?wi=a^yn^@`W;W&|_eG<}dHYx=NZBKPqY zrm`#V&h6Qob=E3^Eor*ewFoAqSNX?JhLj$BQ>7u_d{<7#^xr+BA1f8bf5=?S@Vyn% ze1F%8f2b8Z~v+a~(?EKSEyInqH zy45YS4^xa2wohMs>Ntb@;%yq;yGmrDua-o-nArGELgvHY$^G@Ef9?1G`8xX=XwYHr zmuuJmdi~w`z0SY(_VoXslXAA5nf`g*smdd1p|ZV|C4EmP&bl7AImiBf{Ncb3W%JiL z-n{7++k{WX{CQsN!nCaF058|-7N6%2lXuVRk=*m5MDU1h`)-d9VXA)$?ygxJwd9m$ z@0+;k0cT&iR)=OEiJW%5YD)UjHC1a?+dA(L{r1QsL;pVSv{^rrio|25?^=J=m1}aF zjL-vz)ZNd5|L#7Xzn6W(lCZ4eRg*JZnCI-+=jidYOR7oq(cM$(FI~@?R8&o^+4u0I z>9M(%3?IyXUfCEJaV64srRBVj`;MC3J~6e?YOd&d8^Hx>dKUyT^4;yXhgH6l*t@mu zu=QW%B^B>Qj>*Ka?+e_2(9Af&wfE8W&E@x&=SiHej1Q6%*_CBK>%p8Bww=!sIqUptMym-w%*`Smis(j9a( zglL#l=()qIu6;fH%WraVUi@w=``Dcho;StbN7{$$oMir7er~qjCqw4OPgIT!&dweW!pSbx_cs20?7Az0Yd(U)gOt_0H8rS)T~&2M{+rza`|b#uSpXAS0A*$ub4mM zV7~3O%}e~AWV^P}B)bUw+jz8CJp1&%3UEGBY%c`X| z?vDGtXZL%L-ba}MM`yf{Kc#u^>kFfz<9hY)To~jMx`GbRl!`LV{9XI4H)2`yq~vvM z>D%ru;qza2$=X+AdtF&l(YxE19&@PgX^{@Fd(Ho~zV^lTtL%1PFJ1ZuY6{GZt9dB= zmHqy|bLtne{q;7w~(zcF2Z|~#BE5fgheW3m-53d*@+P_|2PkrkQSLp;JQNdfYDNJ|p#a z%KP=7Vn0p}^ttse@Af@CEpAPH?u)xZg0E;CP)iNTzMlSLUEjt@e-3zC2^Hs*zPZ#H zIWheHk?aYFKPwkJy7l(Qyos&9uB)uSHZ#n)v?I*Ymr3vH{dKe7pK6|0^g$_e zzR)?XezDLQ0cPP$mhAKIHn?8S3vJx>wc_%fNi)tRwtD_voO|by*ZKIWbFy_Yn|>Y$ zzbV+cdJnNj=Pp0bmyJ$(&Xk*#h{hfIo5}`v>){EO?vn5 zpnjKtsd(R~tPk17=RNLR^}A6RKKGl9CvRPrfOp@r<5sI4M!G6}%KX<=b3|lr%*oa= zHha;Tvyi#^>XIgFLjM^ zv3qyeLyLd|x3~nQSAKf2WAg8+(;<#ig-f;Hf4K6=&(iqa-cL_iUk9tl>wC2hq$($XWa=}IcWe@g6UY)>yQ{j+CN7=s1%BxMA1aepXIc5Fw zMb(CM_{7sbk7?@oK~c6Zf!6G=^% zcb2l+H7ku{%qK93hc_=%IsexBYY6k2sPcu)N(UsToDyMroB!-X-NQ(`@a^mK@~Xc} z+sD+uv9%A`|Mckh{GVUI1+QIkrEl&3^R>mcyX{2g{3zMcFi&;S+Ewcg$(BA{Aru{M zdhYv4^T~@}Mm0=o3#vXodq&xLlS+BDGk=5r_FTGL-m?De37gpb?AWzcv4U6IU)S9- zT=Z+z6S@5ll%I=gcg-}DZGGb2vi5Di=G!BaA4k11__LDvpu(j0CzJ1fIKOYn;;PQSb59MmnEF8TW4XZDlN|CE#l zX!32TzqNgO@sm}bL*^drs=j(k{>j`&4EGJiOJpuzTxJnC%d3{Za?AdiLHnNMm!1l* zoN`~c>fFDb|91Ah{X7$NI82ZLt4xi+wa5lW(2O+*qD}8s?gni7J z5odCVKQL?c>W$mZ&ncYnBHx$)@3L22&a9t}K8FULjh<^YKYo$r1C6=!LRbQnA4I*D zJO6ivuf^m%%S~=xLglL3zbEx=KJzeVzo@T6=a zwAJcoYAttL*LUTOy>eQWjuzgi~MzrI z8wFndwB7GmT~^h}}OQpm<|EYho_x0u4lc93o zzSzA#A^~Z8r{>Ok%lVGmxGZ?ml9v!= zeQ&aS=}Wc4JLRQM+JEP`5>(p4AWSKN()NU8pm`(HEi&D9P1p3kV-BH4ZV%#?+%X8iLxzjURV%&wQ4vXXnR z2uf_esrD&+<+{}&iwoXme3yH`wx8wH_h&ip>&vYgrr)jM zy#K%L{_*=iPt})xeYLwyJf-5-ABMVb`uhauSN?kVc;+!3$Fj3;Uwz(pYNht)!myU5 znX0{yRHmFaPqzEFt?%U=cH=Dvck?+g)OHl=c<#8n{<^o#@=WVz#<~8#WA5)Xi*ZnA zY^vtnkZjkhUH4`A)bb0pFBqe~UlmooyZiSefRGP9xvCm z`n;z{WbyP*w-is0LGwR~|`@Jo^B+r%ex9=82`==Ax<<6O7S-b(+oPpUqx#K?7X zS@~D*ts=I@44bz3Pg`75bu#&m^^T<;!QJ!vnN(V1zIG+Nwb?N-BZNEU!e{d(TclXb z&vTe(oeDm5Q0e0HJIX6m@(*mgy!`;<5w56fzkcL@E4#l|uX#RCpixj*$Mi=ZW&S8V zU1w&c5W-t`^}w`664T?Su0-qsq$mL}|}|!=3j*SmN~2KKZY& zD(^Y4CsfW2ndY#&YIiSB_3Tq?17E}h^oujRS*+lAFhu&L=fkW3J>jA=A1ZZE_ui9Z ze_{RNd$F`hSl+)Ga@A;ke*ji#@*@Volx` zigj-{k@@~3xBAq#>hFurw8ee<(eUx&DZ@E+^AooJ{*iYp>IuW+^F3d>E0+scl+1LO zeDL_j^vrjmYc0FIuWj@>Z~vTq+RSRx*tE0{OJ{xxk^EP)EP9u_xx&xeZ~yK%vnFBc zo@1)g37>yu{aP&l_T|%w{i0f>vJPop-*w6*8MV(p|1DYbM7rum-<3!{WtD^?-{aE` z?fd;qZu-?l(>E<`*O~Zi&Vu{Jtg}|#cz;Cq>dvOBDZBR`N!;NmrF3=Llz40^QMWOU8nuB_w}2zb;dDSg->@+Etk6$EV83)Rp7M3nD@yQhY!y`RR6iJzB9k- zP4nbE>mN$RNjx;S`&ahoW^jC(@n*BiZ${R?Uo5e?$mU+vvAji6wPfyVll-1+;{(rU z6mIr7=CjgvGC$ut)eFlD^NM5QH-0%=y?#6EZMV9n5<7jvI{O^MFI*)vpMQ+`^r7Oy zyi+pISH|spb~}Gh?2kYp-oeUb*6y=SKi*gehfdP=5e=2hPOZVbx# zPVwgbb_@$X*xLLxb4{?;3QVf_ea9(Q?P_`QFEP;1TvXZSy`w7SWo+}5m7(VS@zb~d zeK7HTVAx-&+im=J%W3D_%1^5L$L`#IV*R`OdbyAN=L?fRnK#vXURGVY zYMZb1sTt4BnYX_WnqqVRCexxzX2$v<1?=tS)0(S8oEx)_EG(bVu)S`|=9PacbCTbt z-nlqGt~9P+^wY)!ssDE`@*U_%3TLx_9-+@L_kGKE<;yi{iXEQ>fcN?bCtm*f^N!X3-ZuYu{g-3)z0>d4aH=z(tlIwc*2f)>j~&?YIKuZr z_xWSD->q~%aN(fSzVh|f=UA6NJN|c(jJ7-H6SbL_>%tXI&y@bXy`s`*V>_$t_H9=k zPA>`jcWz=>{4) zWU#$|A;?xO_I|=_i;A=V4sGd~zF5IqetvmM?JKVmnb)_czPwlf;Z@j7O(Uv$`|MI2epZ5Gev45uL|4rTV z<;$5RcGnAd^?N?J&#yE7_aQi5E;%_mJnufozfx)CQr{ycn=M=RzgqL~wQ#)sm9^jGbh@Wo;~*Dg|>Jty3O^}wv9 zyIt=4JlkGj{<*8z@}$K{c6J{jotzaWR&!^5SN*GeyyWVt1elH z@%Fov^Lyg*ekyr9Pd@aUar+9(3s=9FoZI~6Pf@Mv@imtpGt^mWs@!;X@U-nsGvC;3l*Ht)CKJNpOE)6=huH@tne@WOoFt$Z@`>KS%VbJ(c0>PIY7C0|@h zUT04~*QDywyR7Sa6;40>wED)HpVf9&a+{xRb(q&)Uj0+mYQ7Wuw8Llm4J{{4V12#m z0OO^L;hD#7%RKq(vARr9)bnmq>XKD4&8s~E|37}TAap;!z^-?;<#qkJp}$YY<}Ru| z%`(;a-HFGMb>&}Or#`H6TxZeubHelD2e*P_XQdq9*sOd!t}gvgnri-{L*)maTI};R#LB8(zug z$t*Ow6Dt+C?$pN&FNaq_Ql3}611dbMQa%J%UwE)bPW3!b-5LL{>@0nUUYSf3TAF+E zyYAbfC*{ctQt%Wj9!x_O3Y_&3`;_o{iKOma6kxin7cP+H}=lw^)wRSjom9P` zKMJbT16LjlyU+S}eSYb??~8Y*$934v_qrTnHUIbDyx67F`QzJfZG1IlQgU9y>bC1K z(K%aJN$34i^q&!K`zUBv%O1hd{+shY+b9W7=seW_JuN2R`?>Vz`;T76&bn#Tx8>C> zqkpG=i~Qd7+I5lp${6|Nzjr^+FN{$C|E^(;{p|KDOXlp}SGMwTMU4B?-)FjiempC* z|L0AmW%jb^{F&u)m%sjDk!;BN^XXUk;p;JnpGWDYD|}VHzQ5-6q%e=$>w{naI5oYV z$NuM4`|kXjuk({Kr$jRb6FtuS^o&l(;f!-W*P)|ae;_TSA@ ztV@a2>QL8;S{YuuFZY7SPn*d~UuQmhuXR}O>+I9DCqJ*LwM>1X)4!!(_3p{fJ=UME z&FYKb0zfF35wWuNYlb_44dOx)qJdZJ*2k#*R>-zle_;rUQ&&k%>C=`?mgn^^XjJG>fJy8ws!wVlZk1w zB7Z82FoX!?FH70o zxG&2*zE^*#%mYS-U-3&mdX{WkyyVv6Y&#RHxrS1I?ksp&T`gm?WQDq}aj4Mo_g<&d zK79WDCoAT_&t;PCubRYsjDBoA#4UdO-nvKaKa}!Cww_L`*j_R9`RTlvI78zfrUC)6 z<+rBKydUTw=obODjw<{{c?%uoqyOMv> zm7cra`{LsFub$wrJZ16^js8DX_3N|m@m}rr`u=8DW$+)B4W56UAIyH`IJ4QAZ|6HD z<>xny>7=Pvhq z<)7m_w&rh)eI2oS*CCE)KQG=D%~&;W(sbtEw|D&BC*`wRoaaDp-K9{M?@6VvrX9Y) z6@BuxfxSp_W#`+}oG;7Wcy^f2%igx{*rnxBX(l3@k7}3NnU{2jK3{5LvHw%!`N#JE zy5f)b*F0VSxbdkNs7dhT!_M^hrtdZ%OOM|@_*a5k_VG7y$1*AIIl^~NoKombj1hh^ z=W6be-k&}5^FoVn<w^ozeqrI6YV*7l z!_$owj_lku<;FkDwzWF%{r{O?KYru?m9%x)%Y2u%vG~N^_T|-IndW`gq3xFb-n^+* z_0w11kF-AXqL5#iJ!qHhccVtF@BRh7tEau(VrYLpS*>08LQ#O>V*`tb8Rs<5_1oN< zQkbtR|NQWqJd0;<)153bCg(OEuOjA&PuTe59FW~mc*Rx-8eyCJf@$URy{i^s+ zMw{X*=SEIrzcl4naMeH69dG_NnyBjUU7L7b=8meb?!P^~o8#8)wC3Mz$79DA6sJ4! z+-q~`?>FlkHoiZTa&t`&59gA5=L^m=?!UERulw;uAMEaY_|BFaRDMfuQDD(0&%E=y zeLih1{!#QeNb1YcO4wR}^w)U*kb*?pU=IR!nG_)cd1yHJO75LZPRB? zXg(x#zGhS8>Ee5zHm)wsIQa65r3&x5ch{6{HvgM`DAvjDV5n9}$dOf5ZlxO0J3j4Y zu4T3T(RW`?hDU`Vmm%I=zwplN{A>Pc_uAI9Gd!t#^7#0&zQ22)Sx+^M2W}i>oy<_6EpMB*Fp_{|c zy8krYu(v?xdxSjOr)edY94}2Q*KfM(ckRmFr(=j{fv( z+zRCkjW_mqZd+`B`=Q_tlQ-@K-wtX|NVNWBEdI};k1zH@x4Z7Q8GD2`EELaot$Tjw z#eDC}HQTQ`O2^MSdU;~&oaR+6&twiHo8Dc_wPG3jG3!^|S|6vM&^Ncv=v)0f^~|)^ zS<|aM*$dW%)|y*AIUB3!?$BPGJ(U+Zbb{w7i1Dx=4xPH)$}_U@LbzrM|9L-y}GeNU#W+oZ5J zaMi@C=B%F9LepcHuPYU8&C4mi`}I?sm*k@G9f47glb+PRns-k)Wx~C%ujZ#E?|*pF z{$X+cZ&jOrUHgytdLO`;EODvrSh{ zUG~;^tIYMfgv>PUvUp$h1INDe*%|sVx$0iB%)L5E`PQGv{^x&+9~f*;JKHdmW%BeN zDV2GtOs_u9nz#IW=<~hLr~dKr-LUwQ-R*C4_FUPvMQVH2Zt1({te2}Z>P(v$roDdl z_2i=-!b)-L()RER=A=rp{J!RKTW!B=!`FXvf87*1?-AeBCU^b!yEXO8STB9OyXx|* z;%oVOjaTl){hM1@^l#2r=V?l0ZPjakPr8dPll>O7qSR{7QNF9Kr@ks*f+NaeCVJV1iTo=XqKuf-0P>v>hy^xBRnw9NPQ7lG82l_nL$CUxmZ7 zr8r)RGOS(yb^Cqenc@!S;cpAKgf6Yw#xYN`B{cC>>)|)`>Sw_0}v+IcgnQogMyn)AP8O_p7#u+}JG1c3t*gG4p*+ z?Q_44?W2O8&Sqy%(U~Rrr^x*0n!b7Nn@#d=?C$+iJE?zvxy6k}hrTC1{)RK%tBS5o zIheoZ;8V%NuG{)MS&scOOqwg-eboI!{7-FjshnCj`Gx<|D!ZK6Ywk*THka*v&d%Py z>!_uC?cvvE$4d7V{BG%IiLm+ScYda`>FvgrMP-*iA8%l0mz4SQ`1jJUkK+vYRX^%p zfAIgeBjt~z);+Xq3Ag*e`bRzgU+JGGxBs!meZCNU`1j)u|1F1^FC0I5^Pr7f`)yu_ z_Y=ieeYxFW_ogzW@>mVygJo-9?0vYbuq{+F{TbuiBW00?AIx^C>eO$@dA9US4TtQH z!t(@N};pg`%BmFzm zoxYr@dmghX$~`@KWp>{|%jw6WUJ9T4EPW#R!d|x3VGVnI&OXc8z4XaSu@6hvmb+Y+ zmf>49@41fue$C4_!!-9->aX$k+|NGg*-jRQ^aGNbVcsk68{V@_T3x$(+rnSpK2>x6 ztNOjs=KowP@!x(+YnQ2hTw9!;=5k0ScIo-A(|Bsxf2^9eZ|ZI*w{KT1LVCB{dS=el zCG+_vbJ5Y4$JFu#*H6z*Fk(xsPX2N4ab@gRvl5$651xPge*atCp9iz+*!AllbTjv_ zdngsx@o=yF�O&-2FFrd~R;KrE#gv|Ev=WWAWN8PSSodA^TJ81ABh$U*B!I`Mc4% z+BLtU_MUQPs&)6=%k+_tFE`=Vxn8xu&vq=%xA=59<@!U-jH7}kD!o4YpI@KpUjDXI zb4l>W8Bf~2dOR-;+8wfYMPyvGM?mVfOWEIIgpL}%L^ua zEH3W4o_5DVxp(m~pOx!n+~Rhm8J#}OY0LDm1Cd+Rv;)MRbzKJWf+?6WVu zdg8jmr;77Ry34n{Ki&HLU1pVA?&HY&Ww++|OSb>4{P43h%zb|N9{-g3GiMns{qL?X zsAsfiSh|qo%f;FG`!}!O`n2NQ)AP5&L*B2{U9UAsXu|5#0#of5YtFxL#ap%Wf5nm% z-QsC=b_^U#u6o+JwtQ+>Dd)+(cfZ(aarap)e0M`iX0E$ac;MkC3DY1CtraYfeOcQ| zzR$a^Sy_@95GS=^?UmJ^PW=qGysq=~hP?iTjq=|kU%irRxLY|lByZ1(?_Aq5=lojZ z_wKXx-zj`TO_DM@I9r5>^#Yy}$qQQ^Oy3P2_@9 zryk5-7xwvkvGku;Ned6Zzm|FYci`1E#Wy12CDZQCspaFk6Yz@rdDe%;jZ@q=tG+*B z{8W8CaPDT)o(G@V8kcgeIM=gxUD@+ZvMavphd$oFI^rF-(YxU2 z?~l3nzFGS5hU4D%zsvXEU!TnEQ1}1j_D6f=|F?Pag3@xu!iA4d$9+<%`}DE=F?-zi z-4#F2PG?wg|MNZD?|HeutMjrla^)xQWvsTU`ZiT~U#?wTS-%6nO!@&c^EtPw&IFzQ zXWO`LHgn1IH7$o9uc^}iYUExlmvqbOzek+a1*e%x8~Thm-0yseN{eGT@#7ua%BhbQ zl;~zooqk$je*7jmPU{mT4{n>?nwY+K`r30bc8f1R@84u|Q1tAdzZ0Zug0p8_+VlR? znc^G&;(d**6;3~>a(F8l$Cj-Ywbi%Rs|fB_1=0=azmXM{Vlv5{do&{fRHNtFCR*wf5L9w})v1 zV`1)g)2&O2{->sI{;jh|_U+E;a(*nO=Yr?n*`5DH;4zoOgHs#Ul}V;Q>zgo3@{MHn zy0u=X@}Jah-gzrE^Oe%$%~?l3Zc@n(682jB+vncaANyh|o}V}KO?u+HtXT39+uxqq z$0gG|BBv*ae?D1$CFPi%!h_~}(JQqpcD4op7wyf;gACC_zws+F@Fq`cY zy6|z^iLx)7?ta#O-n}NfZI{!^nrwlB8RusnJMDhtt5GrQM3bfSp4YS7yko3?`9pQp zwMuK1`;lg^UpQ*dEbJ@bwL6`@i^cEf%aUKaS%UW3a(Jm7IA-{wWZlQPij3EDf~UP? zc**nRbk(|Vw*4!=?%|X0F3aICJ=M27k8x`Man6=I`6` z{lUxajXGK@r(`N*by#kAQSy92=!eulF%oxGb*`|T{b9KJHP0VsJIlVt7t1`}&3}28 z{c+>n@7DwNZ(oq<)<5t1zhmhv(_S0S`~SXuUvu3bbNelUAAh)*3Iwc(n`_;^Cr>Zp z`Co-z*>xK6c{^9VTJ`kOX~$zrs%oxp>Sp|z|8(P|ccst1R1_HWXBjiD$@;+j=bSw| zk1E^U2jQo^O((Dkt$KWQM`);?I8_9po(Lw6{$JMzH9Nmtjm9D6*W-WVvdS?FiYPPCZ zyUe%WG%nnJ$8me`_?Sxneq0gue12!n?GJAD3)?=TPV-{YJ>Rgn~W}7=bJ4$ z@GpJu%KdW`VqGRIl>dE~TVD3ZSzq}n{O@+2ulQ9mq5O;Q2b<03m-roeKBaqJ{?q*p zk@lX7$JsxBUYuELQxWsb{a$E8NbZaKGpktQH@8>WXMVd~`qbODc+F+8_~bKR1;5+pp_Yb8dBA-}l7$$HwFLo8MQw z{rzFmW#b)f**o+f>f3#nsQddkp0&4pKUdS{-3$(EQ%k46;hAvWa9QcC74ADkL_KCS zRR3K!)jjt1l&hWhZ>JYZ{d(wGZj+hF{leni`Qn|obDQg5zy7wBQzeICL-mhRhqwxx zU7Ig#JTAN9{%6Y^OYJ9?vD-tl_!he{Rr6cqn`o=Q|FL{(;kl>AXOBKFxG%EE?0e+a zR}E{PY9uDSFIB00>wj)(O#SXJc^_?l-;NOusF{9ro_mw$x=fQE2kw`iZztZrtoY6-9Zelh91ti-1yyY>E?>?NseRqDFu_OE#?DcWJ1 ze6Bes`}zS+J#~gRf5jz!@A&T8r}=#PZVrR`@6SHlIX37X|K2pQ{#>*7XZhE!E%r`@lDyu)`|2JXy^5$1cn-PgH$ zs^zu3m!+MC?B^V(;6e=Xar{&d}mxZq9pmwXS*mrQ->`Msto z<67L?x0`3B+&b`b_ow}T^j>;qk| zhP8)G&VD+XJom|6_rvSGK0MwtBj5Iy@B*i|-%svjZn*EsAUn!C(J#x=8Sw{QP?puH->|6Ik@9EQch zZswnN?V0~dB+ldC>pRltc3+?0tbG2P@V}Go`}yU6-FaQed%a-(q1AFfZ0cTpEPrhO zzbpROYWY8J9=2|Od;aFW`&+(BbbNW{e7Nw)Te163{IBl`SDkhCD*J*H6ZyZ~+wkq^ zrK~Bhf85=bm~`}Atip>YW8n&StoTcE&j!Q|MJCT#U~+&_h06&6}^-lZ@b{OdA@b+Gp9SR zUmfpwt+4&hhlStb4PUWw+&X{Z+2mXQm>Lq_E+`M}E` znpId^qnqlXUl4ou?9L6BHiwx>`z9?F_x24;biaS>magBn_DlPJEnNQLaQr`Ma5(_# zUBw(Wy|etod%OP<_x?UCf4hq@XV0%Qx`%7eNlMmSo84?6m!DQYF=UN4_x!K#mK`j< zw71soTDj%%-|v6r)a6)rh^M{@JY8(vR=o6h!g)!4Y1zH+X-|Crq~PEOU5eH|5Jwd{#|!5a_rOD}(JJGpsQ zot!yy_+KAm<44tXvbVF!p6xySVZB$);oN-AT z*M|$ME(JO+coNT~y)(4p*;2Od$1f$%e^&P2bMMJ_)%QF9oVA&;|JQ>R-eGJu%N8-ZgsP zD)Y|%f%$Ikw-%>_PjKFuI;&1Y(e&B1Eg=;~etPxq6y6F{j*oPZnGzzxuX1j z>k{!3x8Cl&_qf4bd+oQqu>v`{Mq6(9b1TGZ7AI_uynFZe#P^}cZ{@Sd>^6^G_-jG& zzVlHv-aiyFcf8IBG*2!#b4B9aUW;J08D_z8a^m|oubrlxb*CXR+w@y%|Mr;yFEqDF z1x(+)-+bXzIgwMPuMhGWB-US3FzEPsuE)-fd#U}~Z!g*Q&+;=laYDO!e#Ma*v*!CT zU%d;?yKbruuaJ_dJUd;GKG?mNeGNzmy9dXraI zx%DqU$8Rq7tmk>im0z23We$A(6EJV*^~DwI?M_%UNEfZndi~URZ@=Ds{u$oP`PSET zZ}%r0b=t7VyyoK{fqyTB@3)@6yN~610q=KBowbj%<9;UoDbKGr-}iUp_o=@ZSX`6- z^>E34+3z>|e}9oUpL*??hGhv?*9{bKiZvgV6=St|Jl9YKmIl2UUKz7`a7TJ3#)$pJoVJ6X7}{<3r~Mu z*L~|+xb)?HN;%dJJDz86n>1Cf>dTw%4L2^%i)5C&e6xY+gP_HknLRO?u105bSywfm zU(M~NZ&#Q9&19*>gU=o-UZ${m$;_#mrx~|y;Oer7-Tb9t z+xtmu>=v7B|L%PLytJ&~=_K|L=iK_|u1%BYt+zk@Htt@TUwYHibMXtV8GcsnH4m(l z%Y6AVJ?izFotNKjvA8e1;8fkzT~~bOC&?|TJbI(uWA#h&8vdR2-blL2!Q!i`hyw&n^w6ohPDhpg4@}@ zll}J#{r}-#_k!zJ?BTsU{CeAeEHwWkR`+PFef##kZMPv$|6PW~_pA?(_tvMzy*&NpT+lgI&ZM7eEm{vvr(cQQ;uh&>d34WC&X)bMK2K_% zyQ^Qexv*fdO6|GFJnx>~n^Mlj=W_O$;wa7V)9MUAM(%M0`6t6v)Z%Hs{H5n&x>NH9a-FyjW;WsjQKs@zPH*zn^^8 zd-?k3hIQqV9JP0}_sYw@{vLYW`QY3~Z=Un%WaX;$CWXcSpF8Vb#)9d3`~DW)y_4Q1 zwf^y1{r?(uUvl?%ystm}{$bAyi#z4^Rs2@?cisLkpUuxNrvt({xz_fmHvO3M zTy(c`&g3xaQn9o*y%Pd))Kjd#9h@HoEmL(*5N1*_9gd*B8Di&e~jR z)PMVp^;=t>y*2lX+}3~1*j?;!fBkpMecw-gU)8^2-Xv4I{`V%WhC8NK_}DUM>=0!B zXxkjE<(4m&%X9K)vCmomy4l%Y$^Z7bT{B+0d-*24HyubFytmo(F*sWHYao-l_T)ukhLsfG%jDf(nHcWhv;4wwzJS{s-hSNs=Z*Z5qxH*6^>3eK{+u#D?_=Jx zy%y1oDfiD5PX48R`gGlqqFTEzc5iCa((ZoQ#}snmV_jP{{|{5H9HuH`#=1F->-?^= zEAD@npZagbX`a%1j9)gIx0*@&+*R}Ze&oz}lO6E&z(U+-_kM$>R zlkVN{X-@p~DUW9=tk5de+Om1?aoLqS9(C+q`o-#$$`+oFi95Z2J~ft#%lz?x=sUZ1GT!L>S+bb>@LI;kql?!ppYAg?o{!^W+@;)=k*S@h zRqL!0!oNSfba>bM0||4_Z|QloXVqB~_IMq+mrrlUu&w{CfAagzX)BhldtJQv+TmZ` zNdd`$(LZbUGcL+Lc{#OVOP}Bh)p(EnpXY9j$-g;mO{l*j|G5d@)>P&GfBtcyXvJEa zQ&0C!fBdP>A)dMKm-*u6lAU=+ew|9ro8o$DXTgPYpH}35*yrMZxMW{pNA2&HxQv8) z?+JT+A9+p>iWHR-t3T?>f9B*;v&+jqx;!q5VeB=!zW2eMh&RWXUY$Ia`>jvR^!v06 zJD6EicblK{Y5q_%>6K)CjIyU($iEH$_di@Z{}6xu&;7^l*PdSg=pwtlx#oXR;UItQ z-Un~cG{LWz)8jiH{yJpw*n|DUMxFDUbl3J5uAN?M`X;q^^R=9`Z|8N-m&r`Dod3Pg zYWvX_>x%WPPHmijy6(%fOWz~^e|U5I@s!>F79`s+3NTDLvdQX`$N9PMmacEzENvd{ z&G=wOa`no$KUVVPaJLcY%h;>(2?C+W6R_Gpkx%4=f z%mg)d&xqwS-6vizWm~n=@LpxB=dPOb7I~Z*AMe;U8Le#=-~4T#_dWF$&u=d>wmZMC zV3zc=^7EB82hjHzJ(zG?<=cGF- zbh6X(Jqto_ee-DUKPq|Sc`o~vZ=e6vu1VdSp0NJhAV}&vydj4lLZtyTkZ`e!a0A!w;ic<8uk08FIdaF;bT;R&%aM7e~ z+gCn``F=Ppa&u?)x4dgFUDvy8fB!Zyhq2$UnERGw^%FlnqxJgg``;ReN-fX)Q*t9o z*JPWcM$D`Q*}i|bSI^UJw=&;Wc9%PJ>WW<){)#Lz#{)O$KNH+Cxo(wA+LtrG=Q}ez zntfPhtFOC(l=B|R1<`V~Re*|v@O zQAQRT&p&7+R?B^S>2`}vX21T$iwhUqUN&ZO^WVP9;_SUsdp0kfX8i8KYXObvS!KTJ z_nxh2KU!#K9@6~8?A2Vi?{5m2S3O(ZyYH5miQYU1o(xvy;tkCM~6#PDTbv&7z@U4C_&pRbYq@mKwR7yB*A`tN7=SJ^hbmU@?4@qG0^ znfTwU_#a=l|9SmGechYc1##k5zmqTPZ?B;f%Mlp1mmC7dET#@$o1J4ms6R zy=up+tK+7d7=7C@?Wwoxcb9t^@19OJ*~vcjG#it3%IUHriyRc#`EBRd)#S5hc7tjm=dyh+Rn8W)d0oBIIQN!m{xzpf636y)&D+W8ohF$3yJ&Lz<)GtYEKN>&TocgPz`qQ52fC@zu5aweBO_$J^zjKO)3L(Irqt3m|;<5@r19wSm)=PxaT(tuiCA9 zl>L%h=z-Q&iz4}VH3Ye)aj&wEoY{#gpmu$1vZvC&C&$&pg;BA=n|9OSB zUn5B&?6m+!Lw^CtSk>iIS5>mEwI zE6#ZF(SH_~|1sJ3d~1D6yWe@I&05bH8Q&Z)y1M7T)URb`GM_x|ov>T|B&PTs zw@gmCf@j=Quh++BPnl`?J$TyPDL<=trWmF_`Lnz{CW`5*O+dd}nWW;41JB>G#ruU@ z9Qiy=XYw&c1)nXS;;iI+XBkc0^J&*^c9nYl;B!0X-FW1?j`NOnz@=5we`W70->@}# zi70zM=e|(elV4@oD^Hdeu5+C!U7xqM_lH?2=YHL`pQb;i?Z3qz9%3-#@420tvtAX; zUR=2=@cf5w-T@O1_OD94?Zuy|T9@@C`SxkkrmaJuKYUNe_Xr%$FS~^tbKoe?OFNw z8J(c8^8fMHf1jv)#iy?)tc@(6pLu2%ztnU4isEWt#wA}?W(Ti5@|r8a_@_?!v&ms9 z_0<8FrYT1^)h@Xc-f(<*W5wF?HMyE`wW)K{)Rhf&daiF>=upnqXLD;0%jHX(7M)A* zTb$2%-qIla??3CGFSZ@jx^MVl)70;l-hH1F+1HxQ<9;dkJN(?kt-cKJwWpe|>b_p6 z_Iin7@A*&0jO*Gas?VIS60`K^`@NrkWnPW8t^4uvvC-!>%BwEDi&}Nr=JTva@&^~C z71sO?y){w#mEnRow#@dUo)47v|IS|@UvGFkDo8KB&SXbV9vh(@OEtU7@f1H2ZzsintgQ|q};(W7b zjT6n+bU%Nuu;+8z{>!)Zj!*kvW|bzbTk}V4#?0iRYyW4O?fw0!SWo!9_m2Aw^Eqpp zsvAmM(|Rv2IaH#>vaLCz)=h5)TKykJ>h^^q%o6!38yL&GG#^awMhx9CHrb zV{_^D8_V)r}vqH>=sqG|BeW zyUj7*+P%W9E1vD0uN;zl@%xso$Gi7&9a_q`_f)&?oQ6k@;Y++$Yo>iP6DU|;EgYJi zfBbLi3y1Ana@i&Jez)H}@58(Of71S3Oy9=@>L}Rm`E_vlhvxPFbN^g<{QlVN_+N!K z8`iw2l@@<@^i`B}V-dqq?)<$ACY|TG%W|#J>Uz(-XIh^bc;4DR=g;IYdTDIx{^3my z>vyI#pMr{CE!EAnoBw=o{r2By>XN@O7c&%1E`7XdPGj-D>x-+-ek|5K9}_3oGu143 z?@LMj%U6Z0{=_YQ>nVL|>bpSG6;bK;RaExNwfE- zvu{?nc<|{+qw2Jovo!Qx_kZQDH|bY58TT!nV_d^y6!-62k!(b1)Sft>-A6XBIq$Q7 z_RWdHETt2!e{MNC|7`r}C$W9y%h%re@JhnxLGiWoX$=dePcBTG^sKJsH}8+Hw;b*^ zPFdzxcVrR!gTnjr{IhRQGp_A_`{?}Td`0WrvVEruS6>g=yZ$Vr#`?=kE={%w@zML; znp=8B;gM~@=W4d>pXJRi#!D~P|9-G4Q+)OpH~Z;2%|Fjg>FX&M7mqk3k^bdlVEm0x zH*Lp+YdkYn&#U|MYNz>`J-?sHRjezETQ&Rg*?m(P7M;nP-k10FzOnwEFO_Rv-rX|k zUQ6zYi`hqOv?^XXeS7yHM00QORi%9*(e;lRB5q$c;y3?MdSdmV>ZchmRtK1F(B1Iq zhVS=ti#NS@^E`IisyI*|q!Mx>XWV z@|+tkorn$H`%8M_^Jlifl};0`_AcbDynp%Mx~ntyG45uc^rN8b_n%u2mu_j4VEKB@ zcK_pyLvt@Q8<#!5e@ogg*Y?O~``SmlKXfjSZ_VD(ChlBu)_ML>|2=P?e|#MOQ~%?! z_WxW5%+^)xmv2b^^Fi*k4b%4TwKBe680N2xV!m_u%-PQ`@4j{52zdUVtui;T?&qZ5 zr&hdn)1TQKsXX3jf6jlNd)1xbcba?e|J~IZt>f|Y@#mL5#$T1?YgfK5S+Q@{^QG%8 zI-bnqTqGT4Kl8ZD&7_Za%{O{Iw|XATb~z$Kwf=T-QSO?ou&ZaD?3(sV;C1xYe_HMm z{Y6=>+_4L9e>eOQ^e3nE%Es%9j()!NN`cRFT7Jm72{EOA-%T=~ci@=Ky4WwFwO%G? z&Fp`kTKjF!s?XaV)=pbxQah=7+wZXJYxz|R=G=<=7J61&O850e>(yUAdn8_eag=({_#j-{|gd`u}L{{+4k2FCw57S3D0d`|sy@U-@XR z*{PUw*MA0>&Aoc;NoN1cO$UQ_h@1)KxSzSj`0R@86)iW5YuPW{;(PWnQ~#^=vzxMe zqN}zR$(H6$_O;owJ^z24j>&JfS6k;E`!nl&@wTp4w-}xZ-KY$F{$RJcd-gf$=b`!S zT#uH$`M!0@Gl%kH4l$kh;coF4pI#y65R#Nk!YilTt?o3{SZI4bu3 zG?(aN^LZwgCzY;$lKE1=@JcVB_i6fU&&#V{-jO!^IVno8elpwiiMf;7_s1`O^CnwX zFaLEuJKOXhK5Hw&{Ffj9c`E&$U+KJ=+q0*=Jih8&nCQIimtUk-?~PUWl&k#dz}k}b zK(_w3;O2XAE4fu|{Z?=9>{qw5kBqsNE3>$C>VwLZ`(aqx164&zC+E_)l}$g*YHnLdHJ>Nzuw4kho`zPeOaXNSEtsMsq3Wt!M)ROId|6`^=GZV z_H6QnTV>@c4PQRp)|>LqUGls*!!av+IOpW z4YNKT{k-hfq*aoSpYA*8yfiy2T~1%4G=9sEjNNZ%y_ee1Tv~0nmvMLarKIyx+g|pR z|4Y<=U$LKAR+e|KdCkLbihua!|0LFY@$LsLGCnFW?b=6C{ofY<4&JWgv;Xug{xE3O z(BUI*-7A?K`1u_ej!Qh6Q9R-OHvQCnj|4CC)P<}+E&p%b@$h25vI_yl_oum;81kPL z@0$FQA-64Y-!1n$&0N=If{zPX+;ohLt1QjVESguAUw7%j0U^Gb>wa<0ShFdG?SR*A z!GI}Jlb+9kfW3nTX|J@PT=_d@PF zOXC?r#h$t;^w+wv-n7}#_Ex%a*VX>78SL9l?6ht~moA$br+Vx7+WLR7Z{OrbTo*3B z*R$)bYQg->rOR_}ANdo@RKs`acC^%&oh&Xx7Z5l1t}oO_O@??3kjg>#JSi zhqL29snmV&-QT?b`?UCjv*rFh`Pz3syW(Ptf89&bAL{ad@@hVQQ>;EUQSGFT#+~Eu z#QxlwVr5@h_w}UBvapWFXWsr~_pags>8@4KY&4zSd;4E@#>eNAw0=fBe{o7TujxVcww>E& zoS!}G`{w-`ed`zejb7TFnZ9A2*XjFbjyrZo?v2$e`Mp?Xf?MSMvngEn<9F%zDKbuy z`*>&5!9RO=miOMT-t+#WUaHLFWydG#Mdha zI8KlJZOEt7_k3c_$M-9DrvE=_+5Yvr)#q5bhcmxS3XgRAwq9oUn);})JJwSUW)}ZF z_Pgcs<7>0?_D^;YnMwz zwXumDFk-i!amm@wqw4+dP+^IQC+7M_O}7fuQdIscXMS};Z&yxH{GqCU$~UH*uBl!2 zYYAsx$v4k=R~LJqUls4aZPpKiDiy2u;b(3wx;Mpb>*iS=S`uNGnKkmOkK9sXVL1D~ za!UF~m!mV-IHKI*dK(fp-w+LuZIx|m-|*vc#E0~_&n$NAdlp zk4CXCRZ}aE1nX^jwXUdl>dm>%pQcQ>sQbP&ah{!AEa&u&TQ=AJoLg9RWVzGVtQFsd z&+*pPYCW^5ms%RDd*e}oNw@#vgZ$Rwf9lT$WPbP@Q8y)hTS4g2Uxhq(?>uR198)D3b|IEJ}`IH zy`8JuR#!gTm@o5pQ|~?7rTQh4g?<~(t+hWl`RPuTn~!=g^c=4al2$L;?! z#vC@?Gvm<8xgXcL+jq>b`n~_a{hy!Wk2as)JUe|&uSV70PyOf3-tWCD{9(r4K%NJ| z4vRAFo)nwE*s*+m{<;9WQ|F(DEM42c_52yjS%$MW7ljvAd)_})9nUm*nP}-f)!5sg zg1;67bPHYEyKbw_mD<9%^s~`>Pwc+3%StOiJVGcZ`j+GGye@(te^CD0>$UYCz8zs{ztM6F8dG#x6>B38McOU+`XWgS6b+_l)lvJ_R|316FQ@;L>?Tl$`l-HNODgRa}yDeSz_Q&~)O&3h9{?)~Iah1=y zqFd>~TU%8wMLdow%Bwv)!|$Y@`mVFbxo=(RUNvp%ufT05Z@em1J}R+%-TC7?rOIvQ zf9>`z%(`2vx_*y-V?}8HEha|Y=lf0CD`%}T49jjgz4GWMuQb}QMdmZ(KCnve;`TXbcVSiV=Jzla&K|}7dg8$~eb*5EOO&&GJ zehFwK{WEsB{MmcK)W+K0$_jgrgiDn#KQ`XFo|bI;^I4_kiYJ9OOVrc8wdc&Ab3F0= z-uFg&?`?f#b9;ZxTmGH@Q*XV^H`CjqA3d$|4L+Iw4!AZkuJgdNkI$1cukkH8{@7qk z#j&b$HmsAE^XWcp z=*8o;8s(*{3Jqs&z4Uoi- zvRCkm(0xx^x`oU`jx5NwoENM+IWp}_#BA+@Zt?f7mcNv&e_vnvzCeHeqUx~SA-}?^ z@2!b@>~!n3-D&feC%5go8l@m zKTNg?<*nPPfA;gE|Ct{SPn@4*6yF-QZ)v*cx3Igrk5{dVKk#bTI~#f4x~B7?>KC6M z^ZNcNMyL1liSI0-Q^QMs-VHxJaq*{zf-4TxoS(jWhx&sB_CJd<>xKH?+Wc~nPj3v7 z4gUMIaNdLObDQ4&{FdjqKEd_*#s$%w{&t^@{yet-8(s10=5%l+FXESb)ZFIN@*nN_ z|0Vw%cwHynZ}Y)YXKlXw?RUjLFPYeF+nHQ_J=rE`U(USx+c^s7jqHU2FD-EVzT?-Q zr*Y}GrYzcd;d$n%F0I=Z&$k{{ejAc;A*NOiA9qXtu+;oNdK0$3{qy|q*Bbck-ZMqg^H+40eqYpb zv!biYDJ!RQh^3P9JYUOu-79i^&4cbA_pbjHto!pZ{=jv+PY;XKUz)}o?p6dhk>1yT zTl?dTF@JK*<6kn?Q4U3I7bK>XF51_;^lMPfzE2--so&qcr_gRi@$szVxnW(=;d}bF zF}KXRf5B|Sx{LoVuIY(0=QJrdw2tkutu?VSZrkInkcmAmiM8Qm%S1P?!5 z>z%Cd{7Bq9&*wAN?>zQxMy^9q_ALwH^GlNE?>QatyvDZJ*IDYYjD%#aS@OTDN`dv& zb`DFAhwqy={W|{&x$MaIEHyvQy?)yG^se7M>-=f9ep!ms9nAlqeeV~2w=O30YsKfd zkp1WP%uAaWzhwH;=Vq&YZ?CsH@ALm-P3`VY&FgDFxhHfL{w;gArD@5$iC@ndYV$@Z zu8o+v{=5D))#H_~n&yS~$^JXL#^v1SFAbmf*}Z1xYg66vT=BSB!0SgJXS`3kFL~V2 zV7+(W*+@*fnH|GrbSzl7t$-JdIRYUg)1bDdnmbz=WhgX8gw zR9j!E9=%|%t$Q`($ik_oqMk*(j$mB9B-!n|4?|vD{$s&u*+)bSBKO{!6W1>E&Af8S zn=^;|?=5@AdgEJc9z$E%jIEu&Ei6ky8_yIT+WmS)*xTB5PtV!d&gI*hq}93P=<9?% zn_^rZ7qcEMEI2ZM>96p=mRp_o-SeKpwm-6SC0mYMY`5*zp2r(jWJGU}Q@AgA`k|oN zsy`MlO8l8GT~_q#^X}O>J@M}Iy-V+hh=0vBS2@R9=QVxNl>T34ie$f6nGB;WB z#gY7DvHev#u9@NIA20vBvZ|{jq#)UWT zZ{K!t<2#4>_tUR2&iUQMU;FOskDvW}xzDfLXRxC!yP~kgUG9&}zVBP>JLvL*+`xDQ@ zXOjItmvcuoXhm6-)#n)rsPTcT)>Ob$QEysi7B^lq%QYt^Zy6&q^ z$E;odlyWD%*0;3nF1P)r{-bmKFUy+W+4tMSZGW_Co&}AITHaZw{^yqa{l@;9e;1u! z{i@oqE!TFJv{>-gwU3fqB=ng~_e=U4LJ?es*@hLqc>J z!}?^4rP~koeOS|QcbEMCnI>iP?zQe(=e6qT!{-m;riwn^bLPjtJ4+X=f3U?*CcI#i zNYCemr$66Jyq#w#ef#*+b{Y=k(kM-$Q9}U-T_dk9k?qvD< ze3|k8@@j%6TCHrE&kI(Ow=}ezD*)Kfn{pMX3H;#X^T>Nce+p5XW zW;{!OwZXW$`Z!13()K$(eP_O$xVgtTO6xeU_`Q98?{of4l9vqHzgI>6yhLSf{o%94 z?v;t{*KU>h-{)JgWtvj{d!|~^6HK~`i{jHox9*%E$@*D!s}B2xH!qHyPKf9GrDN=T z$+0;=j_I;m;mTzf8}8|}&%E^TAp4`GCpX>-#I!WvHUv2FjOPRUnTmN`6;mZmh zro@=I>&mXK(Z6c0)m_S+7g!(i^n1Fv=GWA}cO5o7DmxQ$@8V}c@w)0d)Bfj=BQ^BT z?EW08zwS#|LeaJL^RxGa>f64L)Twm6{oZO4)8<7@4?iWWxMGlhZ>r1U70jj4=kI^A zpLvj9mF=^L`pj_CMPZ8-4EAN`Cm>xd9Tx|BbWpTIuFS(hb z{km*^sHxTM32fChm9kqN&)m*?y3Bdy=S16}^X}fwJ$p+Vc}%?Bn@dfn^`DA;%N^JC z>dLo&Wy!|+w~rM+Ryupouik&&X8&h)YF|Iy`nIy{x6a9mxZ}(`vNoM%awakgcWX! zdkssAr@pRLUvaKxdijgHPj~8DZ7M5mH9lqkG9qX9%Dp{nhKO5| z_dnkH{y1Cir-5AMhtJ~A=Yj_L<<8X}te#h)e((E}**<-J+2Q}6eAY57e)`7p%1n)? zYx=+4l$f`EXJpi+?9c9}7uTD*Gv2WM_^WJ6diH^TH!p7U_1XRJ{;oaWrZFqr`SiY_ zkLl^0av9!Ly@Gct9(<0rv|RZi`Pgfg7iRy$9n7{0|M#)WVpZ3)|2%0`=G}h}vXib0 zPl+mWo9z@#8De&Z~1-zJK!3J}BJF24)^6T6N%6A!`^~lIC#T1y->`oFTCV@875|=l_m11l zzx<@~lj8Ax=Rf*=UXx$ACf)vfjnIRA@el7Y*V(>z{ak)yb~ZcH&n>gQYns(A3_g2i zdh0EpyR&>tL>`|p6rE@i{hY;o_MVW_EP>lxcTRhnt1;2bO_pPN<6P5ICr`}Mccg|NNX_sE@JdcsQgarOClhr>IjygMvx_xfAQ`q{sd@7%q9tLa|2^}ZyY z^2S<8p&7Rm&fMgC61gu(eZIeBkpA8EYZuSbyLHii*V6ElTlqWsW(pZD?oR!Y{#Npy z((H@vUtUPIy^pHfx%{4*otVXyH*RWDBBe3mu|X#$=QlSO962yiebJsT-&Wk~xHoU{ ziQ@On(;j;FeO<9sdUBThdgB={yi7fnU;mW&!ysw3S3T_WN_+MviO0)IvaX0de&qHi z`hnb>be-cxJxiA#Jpb5QL(}=8n{M<}+y5;0c0S#+YO@P-znSd!#h!b^YF`OfCeN;( zpZ@1&&kDJ|x!6{cCUHIyt4haKScf=oBr2s-`kDfAMcg_ z?Y8ItO7q7n)8&tCGZ9vpc&wV?mVZm2b;`d#Pv%#}@&IFOG~|;*U5=DkHTf-+ZX~~_J zD^BMh_#OCG{r0BV@1jP2%YygLy1Kcky89~sithru&wPDfb9+tL8pWM23wcQI5tsU>zeyJ)n<*iHRz8b3U7P?p?6%`TJW6 zA(wfyQM2Mbhn)q-gQu1My?-w_{!!Fm{?6&M_7}fBa{7don!pj0&AYEm`X+bY zqqs`4EM!Cb`Aznfe`Y=xe;o7akXQbmCyCpZR=1q}^u?;;U+ttav-u^}=l{rPe0=YB zS=BZ%P4Huh+@|$EV%y^6`^}ke@3Gx$Z}H*fgUgc1@xBU~)BKqtjPF_Y-aMXW^WkUv z&x!nBnOKj0EaD7O>-Bm5<+;Vo#(ifVr`+G$|E$KzsyJ@W*)K~j_h0h;aOt;y`+RFV2|xSJw}o}j^7T6oY~k8r zE59NCp1;Au%a(V&&je;3m|*sK_5Ihz=U3Z>&kx|w{dRnArrwL<>%A+2C1)?cD|u_` z9Jk(6Gv9>j#O`f)e1g~T-;~l1ai01{=4O`?jwCO>^H}Ng)9+_1R?3|#vN?bAV*2b= zSNmeWRJzaOseiJ<%xH;4bg%iX{K;(2tve5%f6VE(+N4_Nxy#yk(;q+I6}#-(IM?q* zh1i{M0rt{n`cuBhEqFNf?a`P_8Jp>nO>B2}nOy1F`FGW-rKe?AWoAaKtC_L#P|j;n zqbb(~SN@qUTXA|`@U24jm#^eDnb=$}iz$Dgx0gA5n(O-g+qM_o=TSU z{a#V{TB?D$=3V8R&!W%y|rk?{G|6fb*l`XHQK+H=O^e+n}=giga?N3&4hTKhO`QhdjV*c-&p|)3y_WFQ@{gHuB zr5l$V-o0$+UiBZ>z4+y>@3@+w+FYSuxc~3g_lLLddDd)o=!ew0hpuw}9<1NTwEx@2 z@*68ke>OZ`*&jM(;;YR*Q<=Q1*BK`i>a|;Se=%D2x{QV4_{JH>_gp#8cH`~mfbW$I z5ic2c$X|R}DPs3wv0;BNd-m#0I~e+^=e_1*yY_R_E5}C@U%T?;eOPBRJ>}zfJXdoNs*{%e)uk7Y}8?cSlA zy@x-~zW8YMy|j83QJI>L+a|FYu&;}mw_I#eNj%e}Rc$txUX`wu3VG_8b(pVUo|13X z+KqEq^dye2H9V((USHO5(mm5l44>pqe>A+DcK6<_+?{@(PFQVPD|Bb>)}Jx6f!I>;9(xue)=5dqUNc^wp{AzQ$77w%Io4v+vxV{13__qI=)7e9V(_scipR@eKAH-C4uWmg!sxAnFA`#;X#_pbb-Z-1S@ z{=YBFAAFxz^ZMP#<(2pMPLh<-IbB|LtT28nYMz?`_N8O55t5d$3G!{_D!^3!Y_P z-|)AF$Lsm!dEy)7UYc9Z+WqBvZKs~B=dYG6w)xUC#i#h^RzKgkzWZ2iPUW4Q@{D{1 zEA66nD`mA}r$1T${N?N!J7k_0%g)rT)jrNJzcN0@?d1x8PybbIKP6k&tn|L>z2Ek2 z?5}NZ+uxOX-POIl{2TMP>hFGQ;~Lg^_T2ulp}4K^*fcL+z4FKT4@LQF1mi!SX#d#T zU&pb&>ci*qD?g>yJv=H}_aBnk*E1cE-0G;lo1tO7w}iI4S@QOi`SCB~F8wKfchYdx z)%QB@?RvMLcW76SchBebj^}S!@9bV8_i}9q>+g+oZJ!-k_cbejx$XbjYx9r1e^KVH z;8k@ln(0?aJ-h5={i{g_cAjm{4=&<%dlhHw`Qq*4XnSqhohy$goa}>Fg)PoqYe_mZn$jm+pN(=iQlTtHl)#4Q&mN&TyYTDE|Flk=*%L zb`e5)SFG1+#(kGzzo}?eeY2wEso@gO9`q8a*eQ96+;yYV)9{+Yc9q~=)iNe>av!PM*m3E4U zbmh&xX1jl_Nz+1ZmRZYg?pyXIb;G&G96i3ff?v*MUc$Wg?5%qT_lDJ1?+tM}`&;OQ zd4Kp`@z~Hg&tJYR+8Ot6kL;hM_?LpGkGK5jdYrla{LQ>0-opEfKHSe+;KO`{HB{1y-Nx(C2d5$y3L|DS2mwN~q7V{al>6h8$jowYTSou82A?y}C+Z#^>bS89r;3 z!k?;5nEpzja?;wzk4hIW{xqA-e!aE9wil_*_jg>m%5#(dU%;MxHv7hPru}cX%Rha3 zPyF6*%gGfpZ!b^N|1{yt+6Os173 z0uHzAw&!|OozP<6{^}Sj|2k6-<&~esou?X?ZoBv7M$wt8|7@MBLi3ku71Z5*v3pO< z>9c}0`dpBolBFMaSuV|!T(c}|`QxDI^FF{-IQy&BOEat90u= z>fiTN7GbzyvAX!LSn@U|`S8G~nGB_W=iO7^{IN>{ol23`X8kmZVm4v z&dZcp%#WYF&fw*&+bsXCmRjyQbz?ef^`F$!^S{2?S39Zgb#Cdq+dns7Oa6O#!nyBf z>}~iCmxVw7Ir071cUQ9_EnkVPz1{aiJ19&uUZ&E@!(zFvr9x)l6J@D51H0XoB!wZpGo|jD^xjV z6+c>P_p;XPwtlJ7^XC4gXKp{<7<+E=p0uwYEL9JdKJR=!{o1@M+vf5w_c;G)&-|)+ zFC$<7`MB*vQJT$T>*bx5XTJC?^KH2D+Wc~`vHi5?KN%iNFlyNs=h(>C{%e(dXZxW1 z&O`Czl}*o^J}V_Gc@^{@&;D#7`beZ-}dep6TPV_-rxL=%K^IjFytg zr?S2Tmi+YDy!4Urd3QJ2_IX*mW**cR=UBIBrw3ci(m?-Dv%&@K&3|nC%2|{t{*OZ^ zRCEb1oBi3o(&tvMeUhhrDr}yAz(Mk50MGKS*KfB!V0*oe>%j7 z-8+ewkF9vmBaO}19QTwx-q-IlUGCmIODPVgUu%WA%?`Y)srdYLvDxv`i)H=y=SFLp ziSJ`RbNkcPjay&ry8LlPZaGKYdwyHH?W`|(&()@U$@+AbJ#<}2|9Uo= zd!If%yDVes^-#A*+QH5C(CL&9yynq!wDPz8uzTKHw9Hjj(%M#XZ_kv^TFcLEjhk+~ z#52%u=eod`@~_t`JKSwhx2n|>V>p>?w*5!+?HzCYKDgQ3d{%RE<<|#Vw}a~hF0Gg= ze(9Omj^&LuGO_zsKD#8B6@A`va_-`*XI8X+*ggB+jYapS?^z${wn;D4SnjLx$v;|i zMYpdz?iO37{qa+*f3fWBzdN(6&iGb+*m&_-NBCCuLraV=1ntuBx^wf^gLhL;xXoOD zCGP71@ejG{YwhLgkH$ZG%3t&G+!WBU!pA-|p5MdxzV^_;eRl#B^mp*All=Y1{eGJK z*~d5b?8!@i_j!kDth=%GQH@?x_lFE$qt?&1{qy4NS?2!o4>#AmI$r)Q&y@Mj?DdS_ z_A*U8Zgbl&t$g9t73=P4ov*oT{@C?XSEcF))6I!zZf!kxGWuuU$5lnqcRt*^tTW%M zIOsw21Qvr2)l+qgckRuKJ1*H_@VI&U{5bc`n`B=&9r3k%eXY5tnE857)~%aikL@bW zwaeKK?3mua{A-nZ!=XJk?^Nq5Y-N9Zs+rl(TzmGC$_&ffMA{z!Temx}a*&&} zZ&v!+&ps!m)cL|=k1PAm^|v`Uxm{;xQN&fxaJ698`Co*;f5>Lr_igK+ecB=Geb)E$ zHD;+@SjC?C?Y>t$Q|qb!>pFXDH@$l@^Sx{GOXG)A6R+*tD!=5QzG&LP3Db{d-~D-R z_svf?^qKVD#U58S-?;qiwH3($^Y6{BIsUcGB}4v|qnEj8LU(;LU%0r${g-Rl?5ETS zyfpc@?ZNNs9PXDN9KXnTV)o(QX=gtjo#-!XczeeD)t}iox z%djGEx$G5X`Pip#%I@Ej-~&#d(T+CQk$aHy7lLQ z!zVw@(A}DTy8e{*r6-@2FZb4eR+i2W+$yu+-1jS@HIGmF=y}Zw7PC0JYoYs|hkLEh z{l6%@x-lyC>y5=KC6yawKBY5m)nY&RVrySe`>F4fxANQS7e2WWxU|1SVS3q=nd+<0 zOIkdcB`^4H{*v}zwf)aIPh@^oEx0h>Qhxg4d7M8UJqSLPqx;gmph)d@jm;IiBX{;3 z^Gsa2O-kdH)Vb2VUYhfRu3t*iZ)&`BYen$Kxy?;qHoR30-*@>{YHRhnf};laUp!W> z<8K#if=!|MBfc>Q_gey?-+d2=)KtA%#)qQ7VL z3mvY{*Zf<5_HNA5r(H|W?TNdzy6GQuEZ%Y0{CHt{`OdS?JCY?CQS-S1!y=JNEfcdV|vEv&orz zWd+{vImaiq^zXgr&-!j%^E>Wy`OA+u{rtl>BR+lSoM7$i_nxPuRMzZx@8_ehAN{>o zIWbv4@cidFz0sd;-oE>L=k%wQ6}zkUU2Tedy!qTsGuf@SbJ?e-9=iMKbE_<9ir?YE zJRgqPnJhIPWf{x_W$+*=7pcuzglu{{)LZk_%!;IuK)hB!p^Gq$wcWt zDQ#=kE>4xd?Rf06&C}U6cYnOI)VhB3(_HC4X3VetAHKKye^yz_^~BZZ%735D+w}9< z9t)X1xyLlzCLTItMw=0lZ?Cc4kR=Gp0+V0%JTiZm_zrg-l=~KpZ`m>=FKH(=5w-# z6#u;Bb5HG;-|>&fuKGWB#nZp9fBatmM`7Q`f6bm^eWkbd%w&D>+_-o7fm7Svk}*xS%%hYTX44M^gVq%<&x{%Me|H+`Fl-%Fs_KX{?qI6 z+XV}fo+ZxH4t=gLKk3}bw~ib1q!~j$UwUe5yQ}-i#m%mFQkF#@=1RIe`J80VEf#b*NW=j zT;l!nD4RK&hmAIm2*v=%uJHGp8iqkzjniudv>$zOmyOZKL1`5ru=u}lEPVv?>R*b{&Da~ zT$Ofn`2<@FF#RC!A1Qb9jT!SUKbYGrp7*uj!WlruL@m zhmKV(ytHoG%)nS%*_Sewk1Y=P%?1UcN$^ zIrJ|>q_t4)TW^HcQ zqPv#MzaQ*zk#XE%Xz*&K+acTI;eY4@*3{$>=74NZyMrX9ZcWSU9k*V+{q7wFQLfA1QFZiP_1S3ABGZ;t7q|FI?&FY<-)ZK|>z69qsC+K_S3shN{&G!Qt;v_O zuXNu3wC>x9%gbZelxF6OTnTEH|J|}JZ(7=v=qwhVe=8Grs@+o3t(?SLr|T;be|Yw$ zug5Z%PTc+M>kjLtvT6TF1>P{ZQ$#Bl}>BE zznz#DSS@BCkn!N2XRciB>xpwu-d_K-Fo^kx9OE*@@Lv;c*G|v9^7LNsw5F%6&*$|V z-SlDewi3OZ_Y{^8%hnprCun~W4U8(moVz^}p9^@%|8*0XXEpLlk%wEQVruk>zy zxPp&rTh@$SU&1AQ{4Ra>%QM!c5B%@j>^rw%*(1L-gtOc zK5G3bf7Zw?zPJ7e99Qzc;H!GY*ZJMAPt&D~Ecinf&y;C7!g*G=`km&7>8}M+=Pj6P zwV?RWluKI{q!};-b;(V=wY^dQ?bjLEXSJWjURtnw2Rwjm=_erNG^fz6YrvL8U!Fl3Q^ImR`s>=4>oVud+tj3B&i*Sa5Wz+8$nI}Y=+lu>a>0VKOKgnHFW5#p~ zyXBMn9UZ5Z@2h(C^z{w4MaCfoDkd7e>nnFHTe5#sprys!Qt`R`$x|h^JnfZ@PFy|j zU!I8hiqrQk<1O}o+57oIqw2ET(N*VX-{SedE3)c|;gd3DR%;oLfDLa_CahDq?6)hV z`eXit^six3TZJ6OmtD7eTA3BV8(I0wv8sbPJdW*g#oueEZ6|DJ&%gNO{noXi;-Ab` zPfKH|sj}T{H}7%A|BIX4zJA+pH_!I`TC<|rs+G(C2I)F@O`o>5T&{0UPD4%08u{0+ zq`qY;Ec+JzRC2;k>q(5!Zx^Tjlz5*1eCm1;nT&6H+&-On{p_#v@2}I&ghwvPEUA8y z`SF zXD&}Mdp^IeJT>&J#wx2%v$dXWyuFv%x$@(dyNZ%WkG$6v$melWt_`0YdgQFa(of6x z8^3R6y}IL%-T!^DMQ1L*k9=ZXyX?W$7~{8BO7wp}5XhBzbJZ9B*t3Tf+&*l$&$`OwYH8O~>-&4>htA&< zp>yJRnA?e5smsN3#W}fCdDaM?wmzt0%J(m|S)TWhO_}MtDX(}B=uUXQQ0>EZ{X?%` zofNmVVxD+$-n+jm4y1n2bU148L@QpwWXG;mSvOx)pJQFk9>=&Le$PLqn$rvmR?ob< zL-0euUap(3yBRurjIW=V{Fq6bSNFWAk51sNTTDxn)(J0r8m)Oiy8PYo{~y@@%l-TP z{!jIevUg^D4+ZwcIx~KFGW9wLGcfG`af<&z`29b5Z?t=V>HV(W(0r-6=3e3CtQ_uCPk!kE1iB*n0XJ%O)clfcq zxUb6d*^f%gx%sD7Xy46YWU7x6U+ZfZXY$T=$#d(^sdl%{H|>h6XDGT~9;>lF#?AOG zJL^-^YA2bOR@XW|-|21@@`(NFeeI0%{_cxX`CE>j_By>HXWO%u*qe{p<*L~1zx}ZP zFYwj2#relKj_vPa58VIPEPwQ*j6zk$2L@G(>*ZRvfA0Rv>#*VJhrX9{Ye{$OF6_t0kuF73BX>Wv_?Oi#U zfQ!|)+>DQ{@Y~3BCP6}FZ}qp2d!N5OaINE>(tqoSg^oXMPu>6g#Q3F3#-s0(4d2O~ zm09O-oulKE^&goYl?5-{WBPt6olcdVGyh%UipsuYJCCte*@dLcGw40tD|lo1+t;;f zCWmBJ{M9_MN-l1Bqsb}m|FXY4@9C{Dd9iWM8RyfIA5Z`0yKGs1PJidgn7xb}U?j%)9YPBxZK*S9+7|73Ub4>UAyw_o`{EpI5&&WGVj2D8QL1cKz>`Kbv$*OkCJI z4*&QeClSki|NT6duG`P&YFVW?*!P6)4NyJ8u73HqUC`b5y{3-ZFW6HS-mW`tv^`wR z)%J~p{aW_N8Vb`ZAD!0=`KilNrqj&);SQJN1+KbpOy-ZoTas=!)=gW#|FdmPs_xn) z<+cVh{!VGizg=4V%lnb*hHT!EyLg$rjeSdZ8yqNtJ>*YGEb`{V4 zl(bOk)}8N)E4dabdn}#zN%P8-J?4g2lHO+PJ!;`s>`5hBKz3~ z&)JMVDfAsp$(|r*Z?*2CX{X3~wZBdG7t6_Lxy6QZNNu{iTVFrdc(2y+*w`Qj-dnr6fAz8GOPP_WmR2RJO80*6pO~#VBRg{Mk1hX2 z681h`zv!qVW8d@QA2Y@O+59^-`Tq-sU$Tc3bsnnA|M&fK;_&`{`bS;`r}^gKJH+TgM!aW`A$d$&fEWzbD7k3>DM#nJ&3w}V{&gqWioI7*7UfE z&bv!z%kbK<6F2cH zx!)$w7Q8LxZ{4cE@L*5ksvG8gQ#A{fuPa=)xutWzZ%*mFnipEv@(=F6)BV-rK-hlE zsdF-4d~I29^0>+)# z+Y^2K>71TfF|uu~tT&?iKbd`~ySy-(rKF^vQ9C|3T~b6b?A7bSxh%iFNC~YBUUv4H zRnZsq!!c?;rl(g|YNoG}6boJTiA`$B`l{{m(-tx+wVaVzo3hwtYedVRGwFU$jic@` zt2RsTUFKZ*PTMK|v#a#8T>Hlx{w_VAUvoxff2GuWYc7#pjj@gmPMzSkZj+yN%mZ>)2V- z`^x`avo@AJ5z_Da)!^!WzIV^giq*!cpQw$yecarz$ADM&a^-_x|8H`oi+_l&xOZUR zu769XUk%xIM%ux*{`0%zV$o+`Zm{WL_}o~d|0Dgdu#cW z_6<80U%ODZQh>wt%Z&Xt=Pus%KDbI_=l2_n#1;DA_uQMEeXPQv!HrjdbJpY9JJ}ne z#X1Y$qhJwD04T%T>{IDM6GG@HFty=2VP+d((EXB}L>!2E}+ zonmdst5uGCnoISIuRd@uwYD+eDZszLzdu>^eaVv#JJuNd_<4<8F7?>2XMd->t=li@ zaoZu|z?oOIv8RtZ`G#$LWU-q|YQgW;PaaDzF361*a7ztM=UCHf67OIot*__E@!%r! zgoOKCTzYX;?kr!P{N4Aewu_s?)2gfI{G{KO40}p`EB-l~{$J_eZvX%DcN7`8$sJN; zU|1(}_uzB63bFg&4{WY@`R(wJa)U$ z8C%m?&89l9iaj!SV^8R{pI3NStg0>uyYO>PVfWcx2kqzHzFo7?J@)pJr=n5K$CL|J z7hlscN!#0GmAF4#?!@UQ6YIo^OW$5vSA70Zr*fvb#~hBx<01Z4y~~d`{xb79YiJW{ z>Q_+b;#lV&#kuThz|jZdRXK5`Osm*G&6#x})#A~k9Ut#)c{r=&yz##9+^j=O7bn{k zJ!Gr#TFde1AbKi6L09aUCxn042_ z2Qn6G>wE6MG`9WQAh+a$uY6QKdq~o{6E&?zZ+ba@a4(f$pZIFQ9YKpJTYGq>{NS-* zN}FQOrD9-l!(g88T@?f$pWcw1Cxgg(2y$vmbeu2mZMS0DXewd1LK<&(D$ z|LUJ!5>tLZE#~cSkK&Ljcd4b%Or@^RTF#so{n+jG^81qMZqM##e*1OtNAmnPUk_&J zvz`;JDZbE|Sz}`%|21~g7lrD-R{Ar__Y3O0T9o_Xc&AZ?{5P{}c8?dBO*s9{Fq-ZC z-umA+g1eVqXMACszE^HSest}>oR-bpKc?OhT(x)pYo2+wan~xcmwf5tzM&+myRTnr z#@wz0aYup=sQN6ktvFmXRchbsy|)&9PXFqZEt2Kk&=(cF)Umkppx{2A#hrIpFL^xp zkjL>X)Qaz!qP6a`j|*0>d#Ww_ zyX2$#?^SKxKWPWebN}z8)x1~8k-cIr|7ynVZSVahBi=Ax{8ue+QB;+h_~fYhyW2~S zzkGB0^s^0jwsUQ2EZYCg`CG`cPP^AxTjf6As#S(lVMi zecqbBxw_5nZiHy4fZ&VoZ!-3LxYA*@@?*)C`|UObQL(NUlUK}Isnw_WS#$26)H%vW zJ}&ul@6-FK#+QW4HBu8M9ABzbdvfE9z6EpZ($9y=B|i0*@b+9^b!bDMN!dGr2X9_Z zGP~9CJ;PQ0#m&1e;uc} zzuseQbNjaXZ@*WD%Ym6O2!|DxOJ}g7FXnaDs-3<#~86c^{l6<);ago zv+=!~_%?mKzo)aa%GJhoPQ&Dq$A0^S4flNb_0ys+=G?8=EeqwNOdX%koVWjM_5LMg z0SdEf8xG8s@8?UYJ^DE;Z)MzyKUep?HTm}RrA}2;huoQ4-`(nZgH_V5g@TD?3?_5m2KC$zsauP>kGbpA5KjF_%d7n@vDo!HJ%>6@>78C;ce|XXRQAm z>b~Fq{avg}PBq5^wbMzmrz>p&jb6WsN_9K2G&fU9sQJOfXuKe1XD?=KS-v>YR_heImd4S_xN*2FIg$_DeF4$bY|)Xn%3XDRtfWm%;Cya#Q0=wIj^5 zW|w^C@HpG;F1BgU+>eU4-4@%hzjTXUzxUieU5~96+n;Ln?$xt<*Z#-))2WbKS8w|} z2E1*T+QVrBW`+E7?orUZ_rr4eMtn%~h zw|mEToYsH7o2fgRVY=4?$=bi}wI09ws&-oKu;n^?YWmaW<~ptP5WnqLy)Ue-uZ;^n zQdt%~ zk@fcLEKn@7Vf+n;{J4E(f7ge3^t0_C&$X-)g{@z-`-p$D_ zzIbkDZAd`7qHRi(aRTAmj>!PnnRo!13bGkP0 zc9E0EL5m{eGZNMxpUnO$5y1E@NM1dG!{g5`gY^k>UH5C z{qz4-{$2L}^XcH__X2zeois(i&)?muZ}Ua8=HbHi55DKuG5vpZEcnN-x9x?$pDa34 ztk|D)??my0Q)?|g?WjyF?5yA9F|}^9^VBVS|D3rM=lS00bVzf2^*!#rin~A0UD2!DdsP=$=#RELXPnZq>^% zw=;gRCbo6jgW!9wmId6g5czGoe9Kh}L8<&Z?4oRmtTm5Knt0sY;(I$jR{Qbj`G-rRue-Ww6f9o-wQ{11 z;^)m*PH11bu%-6y6En5*{R;Q4oNTyyI(P5n^V@H^+&g`5pT}Om$jeN3K5{cyGKs9< zz7anC_n$LK0nTEgSKQolqb<{(^`6*0Ep>AHE$=MTRd>CXYWvUi+_Eii!Sk90FROOW zH_v_Y`_5^r;#WO_Wz4r2ek`qh{Z>wD`v4bA z8R^b0{5s=|*8N)3cYA`P8t(A%tU0dANWXlrqeRkZQoLTZiM~SrPbyi)aVd9uL$R}XWT>+UR7S>R=TtJv+O4TEJMvt7m~mplHaW}R=3<;c4Cxc02K z=(VT2xl;6vmlvErSl4-S%Et7YjN1ht?D%R|)E~6z!iNP4Q98>b%i_Iln~HQg{%1H$ z)SAR1G1ES5R>m&Q$^Q0puYXbb>-PK3gS#si-2Zg;Ebl+_7aDi1mj*oS<}rJH>7e7; z!g+rqRy2Q~wfvrpaPExd%ar`>GJigaVteoOGi>n;x$TzTb&DULD2m>;z`e}qeU8Q& zg#{iDyn7R8p2{gW)m2~fe6!p_vCFA#H8$~fpDT`Ee8K%wj4hD$w^q`0n}&C{GuiC# z+Kaw&mAhDZb0TjYqtDTalLFffu9#Vx>VFYEb7_9$JSmo|oAvK6zqmqCR=0MB`c(@L zhQQDKrn>o8Ph=I&&?!~vVX(Y(aA~rH?$sMBPhZ_NZSAqw26^AU1jgPxy|-#2+oyF~ z4__=gKCkaoQ&&(!=Eobs4+K7mi@q+Lx8``BVCl~*^LELd-FeS6azj&X#3=@W??11a zJ{8)3Dz5Xv<lpntmF`W6CDi zDcJm4k$dEm{^`_vn^&I>xvRAzE%H>>Ck=VuQ>Jare!F_Jy*?&82g-1YC-mm=b$$}z zxvaYLm~#G~-AxVe&Mx=9d*h49uSr$Em~Sp|?6=KbZy>rsergE&Qg`#8FIKW_-gDmj zcSiJ8W`)8Zp}xF)ChgN#eXG3g{MpKI`hlQhw@VL6_%kRx`#jBC;?JvFwy57#K3>puJ+|`If!1~Fw(?oY zZLKv~G1d9Dk?i|<*#^_$J!|GM^C=9j9T0}9h`#^vYhFP;5gJOA!$pUkHc zcOqltz3a@{mxcejv44vAymPO)x}U!CKukVSYP==WzVQPX$%e42ZQ<8gW3?iKD~ zp_@L&+-`KcJHye<+bMMEvZ?!G&hM4EzVlLm_b=Wlrkhu;2;6++Y z^R?jur=uZCx(#3R9GZHTZh7n!zqeS{{_~&t$Ls%{)PMM=q{-Q$#aW`gsVny8<94}U zM*IH%GOqY|ZSjv&yX6mu=hex)pBMA$Sq`r-$A>4qTn_fx#c~(VY8JjJ%wTjlu~_+v z$#b`zR@dEqMR>YG9ts}kW!u>3WPbSR+l)ENCCdE$@2>2eeeao#(VW!D$EHn}?n%XNBCc{I8S3 zjaO{b+Q0Sh@lBj5Kc(IVUHd2SOelW3W-jB7N%fC?!zx{`eO6r`RkbeTjmGVjo$7g7 zi_7C)JFd|@*r+A*bi0`OImQmFV;?_1NxLSo=*?>P?H|5u4gc_Rwf@88@OuY#9+s)( zX#cSA(B8`S`SlOk!#DU}Pu2YrP`@vEbNuUTD%0H_&)qoT-o>Jcxyl~rXHNRJ`<$~> z$hq(Y+fSPpPnD}%aZ{MT;oYax-@i`1x_iCU-JhDL?e}KJJeNInalnRfOWI>_i-*=u2Aj# zDnepw_qWgY9^JV7?&ndnLxuGPAJ*LZ|7xQ3ud@sOI^MVTH(B?6cazPs7`qC2%h?a# zFxBytvYis?x**`wnHp2_wc?fQ{8g&TtXUo%N6s2V{Vw;aH{S5**|iuywvEWsi#-1=v;T% zDY*Bm!tozL*5_U*Mnqko$h5TN+m>(Ms}|TD%kzD|b-DOyYq#0}K1tn+yAM4OKkmKF z=DX3wl?VA7BsL_S*>zCg|NG`AtzWz4|JL0!e`N2hsWiuRZb~ab^9ycuC%OeD65@a$a&?xA`j=n+IhC++bjO< ze6|1HNA*9NOOxW4KaFm9akg8(|6`Y{+bN06d393`pSIA9_|&sj>+J9Rh4m+=xwqGS zz4rKr^!Yy`|9)MLKeF_0;dQ?D0*>|xhkw3gnZNIskzMWA)IY82|Kk6=>-B#Gn(e!@ zqnfq+d9l)dXS<^t&;0FKqgZ|FWm`**LrAW}`&+Xc{kH9%{+ng*TJ>jTtldf`Cl{6& z${sYXy7hMYrY$ykw-PO@Ov>V#jKbqANhS-ah}S7 zRdTPZXHHJ4>oY6<+gP|_>l+pMW!cgxzm{&=#{Qi9oVoiU!?t_J4~Hunx?jjP_#vb) z|J?IG`$T{FhAp1-cW#mUb+uXPXO7%lu)fyNtoh}}c@yP-2RxD0p28#2vW;cV{C5vu z{k;9-VEaFT`IQe`Wu`WN|E(x*D{xL~d)B?ZueY0aKbyEbB=PIH+1D*rgg&|8A*2_m zx_;6Q(|_UNuPXI&wD;(oFP;1LcC6dCex3O2N97;(F0t7fCUyM!kBx@S?`I};cfH-2 zSzY(?cjG?((@yJCcRu%C=fD5a^-W*+j6LFN%KUY7?{8Piy!q?@in}xV*C&Nu&bZxP zv@0po?O4ss8&uJ2oPD|DmD zpVeQgqH>i+g!aBp1S^MfUe*IxJQ ze{QJd|MQv6m3Lx8wmlzaak)WWJw-vkW5XUz*HFPSMZfoz8=lSePwr4GdbvMkzx3Ji zIo&vH-*I0Zw z^!@gwDTk*-H|-UlQPrS$+u(c8rb`ZSxt04?p1M|OBYSb@9^dy|LNC%oT>h#4<<;{3 zwfbK9IsKxo=4ajWqHC|6micXLX&~EP+WUD4$JdSGwW?zF(Ubcw&v9SM9Mu->b7Mc?$TOCCf{v7L2IHe!v&>cT#^1lt6sXgz(7#ou3S%&RvUt_{OxdZ3=KHizS>rK2y_jB2XsG_+?m?zw;xcsP>y`@7% z{^db-mwmsj*1Gq8td9J5ZmY_L{sx7^(#NlVD31T1_$S@}pAp|f0ltTa+ZS&-{(PN% z_xs8RmU}8|c+cOhlG*?BTKR*skFyy*O|q6Re{;a=$Ysfx=N@^R3XC}}uhx0CebS@8 zZ8Asq$jaURxi6x3tyD*zMc{h8eYL{O=9&f+@`L9)Fhw@qEWfCNAi~Qb|eRoBt zrf-iq(@&GVpOm-EubX2q!Tia_@0R_qttK9u`Q-hybq~KP*4j;TPgpU{{Lww+&&Qn>mo~3?Qx2-+|Bj?#|n2Kjmr5DM=B(Nz$UC ztiQWzK3mQ6^Z#+YMWI8&vGKb0>Y53ArugaVZ$JAoA^2SSZ;7i)nKBog9;F_++$3{} zVb^0D&Toa{F&B#;aN4-7i$1WSeNC5@g7-VKeZ2>KJ{_%ow<7-87ey2IdkZViC#{!x z^4(7JHA5J&InX_5G9U`t-ii+O9b-nWbY^WXC0@9E|b~y>*!5>Z6M{Rvhoz zCUyKq;NuLB#Re%=tBbZ&+Zs<_WU|lN@l8Yi&*z%Hq558d;jyJ&q0I4H?=P49v%+X) zImiChi6*aBesbci`|PD0#wqdAFYIu{g{{$InNz|-FR}KrNLQ+-#J;|rk)PRTuzpg@ z*M&!Jdd{1?WTnHZ^{e78KK?v$LFBH~0|impYl7_LKc2E%a=hu&dZwDuxf*n2XJv7&MFLU~_ov9&W4?p)$snmb} z&iX${kN;!%hh6@!Xw03vM?pjWH9t0J8_VsjVD69G(Fx4| zZkMl5jNiO6DAnRZ{2CK zuO}YPVlfSd<3HD~DSm!p&%@c}kM>2cjXzVbEE~|jD{QXk@7d47h5q|p*0PLF zZ#K?e8twY~YH$0V()I^(y!-FHKXr@ijP<>69}6vGIh%Un{@6O{`_+FfYrcGvUOuIk zqrHGbUgX`o{tw>zwfyt;{*-vM<8G4CqFWKE0Xx~DXb)=&|i~GXVh`fa>?&}yjePhq{%Z~H>UaR`-#YA20%Q0-{@BLf6 zYjxYxsF~|8mF9h}+44s6McT)t`=<8))@R;*5P$LVa)s&HMN8&4u-AvDEST89`{eHn zKC7!N?q3xP_N|>+S0JrraL{D&?i(|X{e1Y|bdKBfYx>!zXZ~Mox9E$NtlXaWFXF!* zDzcg?x77J}kZb(%y6DRL?t9MG$b8+jJHL48&6hX%A5~aAZ~f%=`atM~X*{2|U94EV z?elJJ+p`)y$M#=-IBWm)$>-zD`|YzXU$h7asQGg4_eYI+%&+}cPhV^EfUPmG-m?0k z4|AQTYSg>e+N$?{PWIbZo8J3!-_a|XH7W}>U3krZo%87V`~BHQr*?~%McxcPI%$=v z?Jows{Ka*NLYA@#MUCe^m9+bbaolWgt$b3%^rC6yfg1beGLg&Wc1Uq<^jTjW{c7U$ zgIDLVuUofnO2_uN8hwv>wc0nP|JS-9UfT8Rt4YSq)E{dl>Wu_e9mwOi*c|J|kg`mB z`qRJXD&rS?dAWkSD&v5J|CB@F(#310e%lnMdEO!VzH!nL5zoc%udG;Jd9>Cp@yIFb z^P4|*e1DS>w@+Etf$6}P{E463+3Zc{u_Zit|Lfk;S3U2;R~9VJ%vUIGp1e0!sP!6f&xT~dn`7W~s&and<|Dod#) z+j_CZo4-_sC1^!7y2u~it;AL;x=?7j{CCyA(TsoYS<6|3Z6=?9xmq(;d6me~}&_0}F8p2)>&fgU#V z{WYg+?%aI5X2#Q!%dXevc3+VA?BKhlU^8cM%K7~%KCT%LE2G_}C1*K=Ri66k@O-gd zUc=Old$ljGUAAsU{i58M=Ffk>FKj((vuJkgGSm22)uW$1%1{1m+xI|0PrxeRMcma# zy?dlNb-r)e*~eOafBhAk9eis_*By>|b;|L)rA?IIcb351UH9*Nzxn$7-2 z%RJlvVSyXss+AASTNkgTaIY>`?CTG`&)OUAy)>Vm**kmR;x%%OyZWxrns@B!tcn$8 z%=ed_nvlLa;$z<2tWe?D%6;$lw!0}5Y->r~RXmR?toN5=oMzU}kL4_TazCDbTUPqP zdds%Uj+W0~W-e%YX2>-6Pn~|g@wC00w{YFbT|3WRu1DuHN5pyOqO->tS(iE=UslC+ zPVBvjbn3=*%b#K%>4SXs%rkF{c-PB=x4^o)#rByTEEyXxZ>rXe+GYRL$+OB zm}~s$$7hpU&wo}wnQ&mw*4ioSYxcE&kSV^G8F#Bs>V5N`6I1+8X|JDr&NOb@^QGVA zvZ8-+`PRR_I4f$|=a$4P`(vIN%stKhZJ{8;o5UmeUt44zi$|V2IIr7w{@sFOjQcqx zLsn)ubnDG-+|%+jDC^1$77e=<6O%8r&1c>Jq}G1%{lI@4++MJE1VtZkZZSDBw>G+D z-nB&k*)!ZG*RSuex^U^r-OA3(VrwUV?Am(r%e8~m`T7f<2maT)FDJaujDq#Qo>(%-?95aV*VkWyPGa4bF5wvE?FGQFsrgj{_nj^t@+9N_OY z^n88Vx`tUbn|L@3KYg@ucd}}ixS9HQHJjnH=WO=JPO}=O}W48Ty&GqFc&%N(g z?ODwoapH4L*_p}Ze@@S|-Uob9h`8#5{$KIu<*Y!|$ilYwFX_j8kf+!X(( z^Y3r}UoJiQcVDbqoPYcmJ?E=l@#YclpWX6*MgO!OuV;?m`;}#0{rf_j&-a9P6n?ie zZvJvF^zF<|d&)j{NS|=?zB=Q0X>xa7(8XM@g`&L~r*>H+uTGD8!9K@38Ep;uQ@z_ll1=Q^k<@Z z282WzTr~dC#h1gVTJwwp@#TtzdrZ z+@b9kpRJmB(Du2cluPyXFz>>a^ve}dcGu7EZ}-3VUCXZUes;yDQ>%Au*xe2;oE~$6 zmeA<${bF13?%86cm5M=5_X|S4#l=+}kD14POPWC~cT>w6&woAFj&DqQVJ@6tyY2Gj z^1{=b1ec$ik-PYh)%rEZiXR@7-aqu6waM#%W)3NjOvOju1 zmtKA2)BB!`-FvK-u90P0)bZ8jU-_0w<=~}nS8l$T(L3$s-EFlMdzE_LEnu3k#gOgX z6T8Q+4QJG~EL_*I-NDxMlz7iUb+*{6eKuPx_=ikSaM8%vt@M!1PWswm^vGQgU+}2LN zcKG%4rtS`N^%kr;q)x7=}O0tWs7-oj?MnAs%d+m2-UFXb$ z3iobur;C3u-q&yQ>CopU&JxLWS##3FoAbTr-cUKjHl=E6;?mYDIZH#Ww)6y88+~QW z%6R$k<@4P;wjEqz*Q3__AUS^-|GjAki|rY;QWu->DP_t@>u!;f}dX2Y1xtge7n0FJ^c)ZIX!L);$jvJ)io0 z!tc7$r}26FACwy^Mhf3mJ}SQa&$VlxV}HnO_KLh$xQ^kW+|Iu%CmmsU zpL*Ra=AMdGdhz1x%Ds|zEgtP)P>%45+fqOGe^t)(rfQRmS^DXnxs~@$-AO(q_-Mzx z2hp*;mr57TcSv-!JNDV*mYqK1swbQ-_C5D?dL2@F-e|S=uLv|c{o`8xqpn{XmA}=v z<&Ii1zWle3>4@OWY}H%lwx@(M;wtu}^Ecc%8Gik-?c`H2+yS#RbS4;ai{E{F&+b@i zAq(qO;R&gq}%gve?0Woy|DaV;;Nq!*=(oI*G0~Lu5EYxlijnL^ZKWMh)HB`m-_Z; z+o}kqV|NaRD8AphS0$q(VpZh}o2A^fUq3fY5iYK{x8aFZVcoKK3qGe`MrPI^O@!7VmFA zuD7=rlEeASzdip@zW>+Zir+uF&KRrqUREo0x?PefXC}5)>4(&}6735XEB2JkZdf-- zZ0DwmAEA}qU0?n7-8i%9#go$?=X`#2b$b>2y6=BOw@m)GlQD7OqHVsM8W}GY>U%$3 zepXmCy?*Mhx~pAZtZ$27>EL&xKv-++O$l=c;pw^!9aL*;8AR`P)$L@{^Afn14R4xwP%8 zfz)KL$C(Thn!H#hZP`1ue_eZ~-13`dv34ukR>|eu+P`;y_>*s`b{i^`e<`H)oU^`} zb@-xnZvWbRo%2866fW=G66G&jua&$*(&6(w9oq|^1wP$-nG&rnU%E##{)dh7cR}6w zr+Z$%RhE44RsN*d(xb2cK1_R?f3%>Calh)5m8LzM!533g<2Dr5=hvL~_BIzi{7Isf zAt~v7;ntFM_x@gFJR0*n$ECxd^pO22zRg8%?yUkWctrPRQY`d(4P+O%}Qf~Jd#IByPn)N)nuK)MLl9%$u z*>fg7eD?C*p2evjrQct+jr@FSs|;gR4!3FYS8djFji--II`Te3cBS9t3X#uq&z*kv z^85okotfo(*NN18Firfw^t$`cyW5Rje@#3XvG;q7`)A8FUUvNPdph6m`c_)==hW+p z7l*8O)Rf#XTJZ(KihX~?_bZbpr`Bio}FO}#O|eZOFfI_+O|K{_o-R6DIZAPSyIN^k6@1yT@1={~tYXET(>PcB zl#!l0KkNANII*<#*3ad2_U7q?t&W|?diU|Xuc5gP=KnH&CSH8RbH->(pI@YJeX-5+ zM(G#ZfAv&nYFa$J7aLX2uKwffL7n&UyMortCQn#rTbrJ%Wr>`_~fD4r$15`&9lm%ovhh%cWT-5`!D>Q&X{_55x2J>&kp?ytjTq3qmIwSk#SoPYI znT}`YuZ_DY-f5bvdL}k%+S@M)XT2NcN7MxoZkN z78kEED*2fOesx%LIeT)S{L{$kzx3CK@$dhp{M44|y3yQJ3G;ib2B*Ji%9h*vytr*C zpElK3!sF@0dl}Z>&KpLo5#IG}X41zdrS->8JaFf_^vdZSm@xyK9?R!35 zEx*n__pgys)Xu-F+3Y2HH}-H%&_8h6#xQ;BzVq(;kDl{U=sOz3)x1w*sotyj>do<= zp6$+jTIyLYVzj?zddO?pI`fIACTzMi?|0%A)5Fh|MOiCf_=FM#m zIn5c*cy6`HHzWCFjkWw|*UoC`N?!eWnev*#nEiu^hQu7jI{E>}&D+M~lPn9Y~k2kmHZ9VF!Ee zEdTqvyF2DrzvJF9(dKu_-kbUVpKWERbb0Q((rRD$0iN5JQnjDlRH^RyB7J|;9mR&{ zm7yP>ERNyof1)~l*3*JnyDRq3zp|W3gY%7a@UlHUmL)0LLA?wo+~vRTJpRky`^N1# zyqbY4`$NOF)%AostrEzw~GYPMeec=rVJrU;v-?4K`N zua79(x+mj_{luC(zaD&Z%744}$@OgRK(o&QYds#fq^dA|{_^{d+ukdTzFQZ5np^$X zAcV!i}~kUQh+g-u(1Yj4l_|Mi=V@28yF;Hqsl+ z?=N`tw}Qpum&MgO%UcZxD(1EKX+CYAwz??Q`-y_l6s5Hto5*p#1mSQCr z?p*Ygb6PiVFPm9+&^6NieUYjC8!_dD(tnH&h)Nrktdx;^zpDC$Ta$<9TAe+IoZkuX zB-h;a2s&8VHcxof!}bsD#N|t z-Rj=YxoqKUV;hr}{aW{Xf7|=L|77I$ec;oRm0j;1Di4~^GPl1oyZpybal3x$-WF`;+!CY~FfUM?N%s z8nGQa^;I@Bgvr>(d;uEjv>U ziau-=xDV`YC_i^@QC0#R=I0=KU@9!5|JYtySEr^; z@A)&YPg=b!TdKS7*NLDD#~7LJYb`Z9Iq`vUN?nrCLZs9TE&a5`C4T(xBkAC{^_Ih_6g39?X&o?{pvm)=5Nu*=RR*d zXxw~CXZ>Z4E9t*%fBnk;YCK(c$<5!}POrTf@!`3y_KTaG>Ea)l#S-{eY}IqG2wNbM zdCSJNy=mdAnXBX~C$0O``~KKuq0cWJU6)*0`}xPjSrfNUGZYKjS^YZyooAM5Xh-s- z`+SdbE?V*JE#T*ywzY0aWcGrct5+?5+V8OJ?Iw3cwv37euDf{R7>z?j@1MJPT3^FM zt}cV?ebpNEhLVCt@*eZtQha}#!ysfBN`iV2B zPwGR}%H!6rs`NQH_(f#0|Lx2ZdGkNjdV6Mke`jIGG%eT2$}1IX+vk|h@)vMF^3=L% zLxuOJj*z#)xBRnTb)T92>R8@Sp@f`()qlba{HC+9oGz(P%zGVBsOIqQ!)ou8m-|Hz zaNTk3Ui&wb@pY8k=@;?u7-IZ*q8RtGROuavUCVgm;_LSrI~T9l`?&1ux_#3gW|_q9 z+j()i)=j>>7c17W>hJ%r@NfD0f7U-|i?J=24nKeQ*z$M3+5UZU z|1ZC%;C0}hg4c$7{`_;Uczlj|$6ovWUZ(eFTs2$a6Hxh9S}to+*Oc{zJ&_q=qE-C~ zIV&F4?zytE(qLb8-iyL~!}heU*R$B4*Dl#%XujpFN5i?9k=uk9@Gv*#T}tGzRemNH z@A~EVr0=&DtHvSATgnnRU_JDZ3`FTdu8mdo|m6iSwp(|9n`R^OCwO;T#iz42uZq{Y$8L(N*mC6Z?mu(t4_@CRYQO%-iPIO&uI0#| zsLZ)(q;ziDpT3BVRcFIiOn7SfrB?Owl8+5?Hih~7j5-z{ID8^t@6(0LpIXIll~Zo$ zcI^NAB>vgcxQxX&#ZHtrWS;n(^5kgMhMMnBf(|t9-OYJ3mKfdrH@*kPZa;Q9%qI77 z;QeRum)<@0|E&4V@AOQad8cnQ{j;-tU(a_S%g&B(TZ+}^k_qvTe;aO$o3_nUc8TO( z`IFJT)(hp!|6R{LnAKTiDSO-Kcy0L4*M)QR^n-uvP5Axgg`YpKa^;G*uWKi4$vLlh z{}rh2Ub-MG-(k&z`SG)Dnorm77w3z(A}*4BV_zh<(TBz<{qjp+?)(xL`B9bsi7soC zSBHM#&!rbH>{{u>p17}JY4*~7w&u&?%sDJ#tnA)iOP6NunwTDWMVZ^jR;$z{{k~e1 z)#(!nIrs0?uKH4HIe#DbG6n4y+plGRS*LA&d6THR!gPT(%e&_nRxWRxbLw$GWu%_y z;|0zOdtbCKF1y22WWR&0`m}aWRL<`A62uPV z^*60d%I)8@WPkYYNah1oARwz$cY8U71C+z4Rm4t0H&)S)Y5s(Qe2 zim1Yz>B)|h%@rz-|7qF2+9%>g)z81|AI<0g^!|}Q@1K&K&Hr~BmhyuZtIQTZ=d1qX z%hl;0U#`|)|9)Qe`@%oBX5a5kzgNA8v8L20Ks`n0xyyq4!rVvhEc#qHd3Euu-J2cz zKbv0LvazOrZQ`GMkHk;TcPtLM+oCXY7Pm&ec2cU4L#T1~nb(Dvukf!bXxi_2JR`q) zWBIAo6K^W*J6f~;`0`hC&hOlQ!usiv&NJ^1PGm5iYF}rQUaw;oW|uj?F z`?)vy9SC8(QrU5HTYI3SG6Ul)ja=i?JYw-Z zKNefeOg5F8bh`K3lsu0jHT&GPiNC+DJI5FOjmNh>Dq!dSbN(+S&R@EF__~nZXQ8R7 zKVx4hX-{sCJ9^~z?=$bFW#3yrucUVK6P5E;|E)TXhHO0KxN7|^`>Osu5r(;IUmWrh zeEQ6Ek^S?ptFPVLzAERYvD)w1;m3bQM`%3S8D(V}aa>Ek*-cqr^{PRQ-{thJZchvi zuSw0=eravPq%6h1&pzH;oLh2!*7dpjMHeK^Ty;0&f@q1WakI9+TcPBAMoa#MJ6qcq zAD2Dd^(SWSnz++%KY#hRK6mZUm)`@etK>g?kE`F-&9wZM`V_JCuUFV9AMp8naa*XB zyIje+#ex~DN>`ltQ})kSsNCe=mbzR2Z^&<%UnTWvg3XOAcKOxOx$oUi|2oDv|L>M{ zd=js=2Nqba-Sep8!Z-O|MfS_-JwIP19^rrHKI_NdEknnHH*nwA+vVA+-y~&w> zzu2!@E6W#C&PiDMuD_Jy%kl9{YF3zgjGz?foQo=(Of4epYo)U~<^Ec5pXHrooy*?T zzNVqa=BLrzWI-04+$~35*#4Sjkoi9~psZ&4{Ap``zS{S2;)U~j_&Gw4mff3qM=7kK zYfIEB+m@rd-)@NR`yX@gn3c2bzfCJOF2DS%_C59KMDBO|eCPh_N=-Nwytutc=hDPw zchcTWpQU$wi@dv`P;KJkS6?eqp8S3EXDf3*>*8HH{~+FwIk=mZK*x?-wS;I==!rVMeqjmhNjfu$iA7;Hb28QY;;@w)=Oex zw(cXzjweTt`|f4=Qc|Y7f-@yWmxIS>iS-XJjinDQ_I{b@`e$8g@<)T1TRCxkoU)Aj z-_L^_7xy9D?x(6v)x(1LONugw_P_dYrFQ*;mA~T--u)?a&t_j+_^!7^zT)P zmIXjh)ZLR*9_0+jh~^@mkw2Uj^SuRuL<1bD8>IJ^Xm@r8#GtXSvHX z-%YuB?~Cf+WwU(FbSHB0PEMb)$UEWwYwqfERZelK8V^=U2Rcp9`ugCQg6)P3rx~?V zuSXqIDYmXppX_Gm7GnGS^E0XIE8TY`f@6l=I!xA(n2eBS;)v&Bqjp;aP`PHl|)nl6X(mRn&pc_leY^Nk z9=ls%7LPp7)V&S=#&upZ>Fcrkb0lrWzyEpd=`E#dV<4- zgx47kcH&P$YwV-H8{2GUwRAoAbJ;kijwedFHSue=wR+&b@e-z1;CGHG{I z-}+qA*jL8S)j2!uY3h{!9d-)xzTLr(GG%LgDkb(xGj`ll z_egjBR>V@Yzc3*7a+>9x%kREQT`e`~|G0gd_)D3m&vQ>DH+gnHfBxzC;7HiPZ$4?tWi|r)Ol2wae9E$6^%8*mH}+C>2G>j<}B;DP-6e- zi?wY?bzhM?JLieIbq539*nZeF{}?-~_?JqjlUrQ&7`*<@Y_RO`g4OIZSA_g@D81K{ z5o($rml=2=^Nr#1D;s&IPFk>a$)o81Ok8G-`?pTG^!MHOzFd{5+urO|V7_qY+pN#~ zYbD;NDyJ-!xpY!nE&Ki2SDYPRN^YgR^zw}T^l6T#r=3)w;=L8&zvUF>Z_BG$e|odt ztxpptMl>$kaeZy=!s(GmlIKmHB4GOX`^_KAtbZ>KH>>&eqkl)TO@#-H%a`H>u zj#lvgs-2#~Hm`}DukF)3`PSuEA1q&L92a@&9%ud4+3Wu1y_MP{+K?4_VC%2%r;0wT zm|D82Z`s<7LW}+L_p3ZlR(Adn_5NP*%g0((9v63g+N-eo)~lZ%6R#YfJj+&o=KH8; zRo~;LHA$&C?0F$}GEOVtY(i}G-tyBE=VZ@c!FcB541b2#f%CK-Iwq*(UM|!>zi97? z#Wv59wVh%!JEs`x8~(dpzWz~t&9mhn;_F{^|2VO9JKI)!(Ecd;c7pKv z*m^OBg2(S_f1Eno|Cs;YUygfw%UQR77yt0@-ybdJ63;b83Vknf@=J?-&rDan`;jey z@tZ|3L*(PWn_Q>YPwNK9B17bBRuR@2^ab`{|VizbW2D6J#R|n`ug9$dzs&K_gelemv_tN`hRczPrWzq z9)5Z!asAxgL(A9IG2gFz`+CR!KM!Ys8q)b!KivBL{qggCzgT6?KVNX$EtGHD{a;gf z>wJYme){db#5-Z48FSMm{}?aVdU_oBbT-?|*K($+PzjLtbp-QpQhr+wPUeatGboTWgZf zbMNJkLV?96{`2V>{n%T2PG9%>&xN(wtKZt#Wd{E1-KKABTWR#@V&=Ef_t*Ea#+gPg zxX-k`v_01YtGDx}Uw%_t!4mN6;{vIgGaCC% z->sN$!F%-H>wNobS292RY}o&|?t+bY@6+I|Cd(V^)Ai@X9$3G`{)FFm2hDqxwe$Vr zo?I76Hc8l%{Pq5w&%Otb=@u-nkAI_mf90wvkF95jvY$EgN&3TXX617EIe)CBT>eaZ zEo9i-{lxvp+9wy9BbDX;USyv!`}%F&wzWOm{HvR`hrF^j+vqBzx?1zFa{m6HWmk8v zm$j9)emCcPjoepW_MeaTHm!*g7Js$(kg-;Lefx1`-tU!DR?MHc>g1ob@3&m}c;n!M zz0dDlSFFDFlW)JoE-{*!2e*b3BC%y8{FUsPsk+*ip5Og;F-kHgX>IZT zQ@Or!X`v2(y-%LrQS8~<>$te@?#C7BXDn73`)uv;X4WY_ZLsB@xcKokllVfLAN`Hk z8g_a8>i4VEvH})o?3r8^*>^AH!r%EeamCs8qLt1L1y55__q}0fe0BEp-|FC#=00o7 zzplOT!s)xvQpWnXvbNk;nGMsP?coS7m|&Q8iCw4sZ)!oz;k}jZ|G)m6f1v)$$NIMS zJKm?t90DC>6j$-!PxX(5?f+HxefTiFaF2ca?cdxL&)(2mL~gq zlrfca?OW;Y*0RH0&urq69=@5`R~IKtwJ13G=2pYG<|}QDl99@4XO+T*b0gay*4Xj> zYZD6(_qw8dX{({B;Fi=)`RiWt?v9MVw8!~V|FpN(TX@Z^A7*ESdiX0(@H=S#%DhIt z@@cQ7-uL5GFWB4L_3j*5zJ70ue_W;L^>g=+J-usq?)|&c;t$|es@bjL_p2rTf5^Vy zz5DY;E&tE8v)6eiRhpmNU1z)MR_3&>T`Pml^LH%i{xrEpS8?HQ-U7j}^ZTAwE{#60 zXRDd_wA7RKeZN_*z4kIG5FpSk9Ir1D`?G&#+7TQEOx(ZMZ_Viyc~S1V=QC4nzRKyGaERTe{G}xPxBdD8;{_|idh2Y` zZzUEs?$h0}@1FXWb;|ww1OMNCGQNFh{TPn`BHm)YM=k@ZCLcl-LyQvoLzmd?Oo@ynO7J5 z{8@2v3txd&Y;^6V+l}>Itvv*UkaP)jW%Vf8#R%d>g`=!Edhi|g} zS>dL$;FMLNzPm=!+#SxbD^?obb?19w?X%~-?Tuqi_6!qwKIK-H<~Da*x=nfJvh7PYAD^b_a#rKi z)O+?Tm&6psNy@$UeJj7D#%;FMl~)Ff+RCo`?h}|RSIJd3H|@jhX*Q2)CH{DY+wm6v zb$!74Q1nFXv#bxZ11{gKofvJmZZk*jk~t0w`uF7g2(#Z$F_Sp9S_UHd){!RA(BMjPxZT1;-PC-lk)`bfmJ$k37_wL=JgP-3&0yUib?Z4gL zQCcJzzyB}CzPjIudkSmpL8rUq-`(4_`}0Mk`ZksekL{C_+h0jt4QknQvV28Y<*{F@ z&+<+_xnfTIw=cn!VL_3*GF_h6CgfCIxM_T!Rl_avi`wje`E2a5k4Z2s%n75(I` zdGcxYj-ry~kAFb2aQpguH6rmfAAe83tp3Sshl=HudtalHws8cUVkr=rHqB$=z8IuJn?$Uy=NC0c5SM99x4(o(Q|$K7ZIM{E@zB`d7Wz*ul=!H9V+sXFNDwHLg@9Z zW54td?Bn_K@{|vw`Cb#I72GR?_gt4;zxIalevj~cVXogHp8MTqtCdcZzx~rBr;-1R z^Y1g?=3G91=+823XWz%Gtv;ncaa~ffa=C~~e@->0L$BlQXxsH7CjuQ3r|nq$HGJO2 z+wYaX*nHdLF6DDA?3kR}h8?HO<#zj8$z4f|cb6l^ zo^PM3?o2!PIj~-iG1S3-|FXiH3%{P0s+_-l+tO?4Pd+X`_`8p3mXw>(r1y87wqA|X zW4G!1KL6&u;vNnADRH{dFTb4SiQZ!&{g8*b&U=HhaQB;@p!pM?YS$#Re4l;%?85!F zoI&Td9P6C4^ZW|-o5!B+aCq_Z#3I*LpWjA_LQ)=y)&CzJTG3~xp`0!r<5;=kVshT5 zDLg5;$K@3N+-45=+b|>h*_tZJ%(IKW{wm@+G>)j_iA=*!t?Z%ni51Ox=_CKqWZY`RknzcLcZKl-9x3`w% zu>W26xvgz(L*eJ5a=B^yOTVr=%ycSpe(WCht@qz}HQdizay8$FU*L}Ndkynvro4{( z9yBz)tDKkOe{=btCFZ&pOYIA+`$`U--}fW^qxk$ErGGv+#~%YF|2cCDp1$DQ_xjfL z53$$xU0YI>^{R)o{r;BY3z&`;M6XuUMayR5rRwBk}F zPxda4hgR-qUK^GlxpV)CFr(MklFPa_H(3HF`#q2npT4!ury@tIYe&|nu07Fx>Pp3> znrqbcT6E5>)-Td}_VR+d(zE0>%_Iai4&bn?@989{cP%x&J>`+~ z=f3-UWf!Y?N{2joF7^GRsLFXe-N2RE?v~*e&qJ3-B#bUPw$zl zd_BQL_@&OnuVn@Y?)Qe7FwW^~Ubo8Acizvb&3Ox7KYxF5&x71G3=-)f_DcShi&ncx z%_>d1T=mu?kbnGAOz=kj`Rkb<%o>(TTLxsz(N*Vu|5*8+WyHcv8J3dYi=TO0$^MXPocw3) z-y6SgU9&BS-hWrR^h&=+|FX+_Jc76GSf{GpUwLHBC&$cB)tZX;JzmG{v-EdY^j=VB zv-#btgRd&H_CLHY`^#=Yt@Hj~hs}ZV<&w)^Zr!`>mEEh)4j=CRZthQ(PZvH`b9a_; zjn8Uz^$Yo7308OCIPBXs#}+&~^<`C*^P8mJ=0A4|d`#6+TPDh%&}6-xKTSYZkJ+NQ zOSplf`1RShmigb$1v0Gmka3uL=|kqJSEt#lXUx5}(0y{jGP|~{i6POc*F)Ov#KRZN z+4ke@@u|;hj_tJEyH|cnr<1L`fB(lP@o)R9jx4{p@UQaa>6gFARTv7s(k;IEIA6uU z-e;bp^A^s}(g%C20((xET)5Sc(9ozmFX-Bna>14F%MB(S+vt9%WpQiw zWg+Evd_C9tzvaCwpQQdf!>-l-natEn)t&3Vdmg>(vN!7ZH=R$>heKA~xhZaQ`((9k zLSE=?G5!6Us$Na~dQ&x6xLo(Ip6vF>@ce_7jBLw;E`OL8wtjb)X3NSeA?f#1!wYl2 zfB0B&Zkm72iiVcp9-St?@MTam2~mPUF-Kwe}Vt1uMCXGUOxQxC1L#}`_B(#j;=2a@Vd1_q4=HLuBq#;Z!KA;ZXy}? zdd|$NF*Ez$@J)8fIdaLeXV=VEu8fCFZ-u@ue9&)tWx=t?>yMS^u4CV17JuPg`<}Xg zu{K2?Wo-)n*~aYuASbu$1D~8lJ@@nF)fS-4Yj68-`@J73b#J#WzwR4b=%R8xYGc}k zvr~Ewe{IZD?R!G{noYI0*H+iPWEG66W}j6xcW;9J zYu4QMv=wi2*%)qnnm44~c3sjLTKyzG$SNXgNzJ3VpBi#4KZzw;vHRA1eYdAnq4&N2 zle;IRvr}ZQTX@aC9{5sb?X{~L>~2;+4UGH$HMP&-P|m@V_uU%A!q2>0xwJ$(mc`G_ z-A1d|p`QOChr(B@Dmkuq6?3QTyK(8x_Wj>2pMPI*_D6aCd$$Ffz-BRy-l_MVk;My-kfw?uUlrv z+=)MTt8P9QXR*6seoMeZt!Ghz*LGjpG~whc&)?ho#ShwE__ZMOab)B2nk6aorfjq2 z5_Qr3rrNE}A1RwGd*$+mvXY+S6JFsp#f)4lR#~dvSlC**bg4?zwmp}&-F9JLdA)3! z`NaI#m5VKFqaM5d6kQi&blsw_SmA@4dzFzJr`;8+!?uCNYk$>UaL$RkzhHOZ;&#PM zU73P)FQcocUrv26p|p47BwH5a+|;xBL3!V=={}V8mWb%ddS5HP^!=N4&9@9>t5g2l z)dhZBeo%kG)gNX{{}^3=^kV~q>K6@v^B*toTDq?|?e}Zfk+(0e|5#Jccum>ZeNy+< zYcIE5RgOA$H8E+;$RlwR~E@>P(^eUH<> z+RT$YSXmvE>!#ibk!n{A?cI0vRB*p-Xm-s<`K;D!?y8~kN%Aob$?McKZ!G_le4+5- zrON>dulC<*WUt&Ge_+Q>z4F*~3J;CkvZic(7TCCQ%a+wO8WD|qOP}XxddHpK5u8x? zbML3F^Q<#ox13}+l=ecis6F8upU+q3f^xe<|G)OiACWF!|7iKVA6rfDg6rhB1&O=b zkL&I0J+8O!Zf*6;zwIB6&1L^^rds|WsBZrFPv)7`!wS3Y_cWz$mpz((j?4Gh^T*pt z?ViYNj^{Z)hc#I;^0LgqA3J%j_SPr|EU}-obK0-gth4*(%LeossXS4+zv$Y8KUE)c z-FBx}><^Ik{^+szr@;o6y3dvor_YyU{&^-^XEOIe%+1Gt-pR@B`@v^ddf)uRiKFEo zjx04V1npa_-*q^K``=0Pe?0$w&h}rlMAW$<E;KHD_WRo#ob zARt%!=p&`Rhb`;8H&0vtxqF@Z3irj=t{&z;ZMeX7&%ZEzd)2L{tb7k1kSgu_xq@A5 z=dL%6`|qs_xm12YW8$LESy%VF%~0Jp&GlBgXXrJFgU^3lTYq_r->m)30$Iwz%v-AN zg{CBLy0oe`dE1_{Z~Nj`Uj8)UXRLr*F8h`*^{n&Uz8Rc#58vi~f~`1#hwbI6JvYkP zZ_IJ~Dpf4yKC8FdEHn0s(W86GeD5-=^5y^TU7DEtb>iG3wvKt?x{DR2Gd}rcG53wU zmbT25E8o2?hwZr-|GtApVmVSrb7t7L?yT80tBpM?ptGbJoCDYDp`gC)qFH_R> zPD{FfX8knd%7Z_J1^L-?cI1>=nc6j1e`AykSmIu2-<$*BZWTZ#;7T zUU~8c{WC8YpL8i+++@P`t*T!=G{ENl0-L1X*20PT#Z4Mj8}g+~zVylNuQoN_|6Rn8 zC-f&*tK|!cw`~P-z3g-D=ZNhKk&Ls9AJ)xeV$sf@q3i1mbBto*|HVmiZa(S~h0 z4qxlZY=hyBr_5I+uzbCZ!jsFZo1OGUOM>;t ziP95>2e$6$?yo$0LL;bawMFXL{W{9W%l~G+vf*Ql)d*=}EO5KCcf0rm{l0%(6WX5& zZ{dz>Kj^>rVAH>x57~bXaOJ#=xMZ7rs(iXyRz$GfIic%U4erT$ftAbCj$yo5<)ZMPB{59bWJCpTKf3Ezv zgjwNU-Rd9S-#;^UXQX6vPH;Qm`&)_eh-}&<*`U=0?@oL^qvGD?x8k+nQky=LS0Y8N zy%Rrc{rI|lAM^KT%72!s*U5^PmqYSN)nRx2y`BAWRl@hn|3)$#c>9<2&fWQk*G}#R z)!0|RuYWw%n*Y(;-QOR6wf_Ei$vd&i8_zynkiH_kWX-*rI}%&spDj{b?#ibarup{$ zo@Jd+t1FhizBo6JiJ@kFR^=JFyw<=5PtaE##pX|+FBC~vD z*sO@Huau5RnCv=}n$XMSM)7nX_hI+x_?1Q@{OZlv#gI$@8k=*k5wE zFy~Rn0__=s+e=JEVmRzto~Om7rp52`N&gTR{$>eFJL#E-H!ir1U3UwzH<{_2nS`mcQ6vheMfgN!b`XO25o zpV-Wt$v1D8?e^`npM2V8v)@K8Q}2XB^S8|J|3c)dW8D~GwRqoUE=zXGly9upn;pt5-|N_?eCfGSV`ats z%l8-WnG=@pUH5rG^344+pK~nuY8Ei_!PjpKHaTBb*PirbrQGIo%Ch{*JD0zGRonJ8 zRIb08%>lqd$}g{|4fnkbTRZmlSNUnZ0x5! z(XYcNsozV?F$>74}soO*tS4=aD~o49X(VU2y>z1=4b_@$S*BpV2%1|IxLn zd8oE-?(Wuhy*oC06~R4&+iG`i&Obao?w8KI%IAg*8{@9@PJNp%A>wb`|LOFPK3k6} z^DD1*Pdqrsuq1YMTjKN;6XVY)mF_*fe!-$EN1YrP)=&95&wlBy4_g-PdJht^jt>hC9A4p{+vs*{S~SDD%TLU-p3mR@`NX}Y4lA#%myi58cN_2JISXdK z<*q6)zkR7_-!1t)J(u?!*s@l(O137@60j=pW9Wd<1IF<|MIFr?yTx5>$BmN+}`C;mAAg{l^3a&V|;dxFWO}06ywqG{$O)kAiI@!@8(UX+C zz(Bw!Nl$5=h+oI)2dkE7)jI|K%>GoZalG)6N@{qIXwPHsB z`>RgPyK?npWbNlzMwVBTTQl`Om9=2iHc<Q0@EeUyERA#_E}z4)4aP3w7j)?Geoce(q=!_sZ*gtJ{MSflSg5MSk!XKnJp z(6>r^+srZz{z}fKRVp%j7uyu3$(_I6F-=;*V5i)H1=l9$h2QGi#eRt6<;SfyA?3x| zeP+)eZ(s_JePrKUwJ>qniL#>hd9p(P=db%ZdGnVYwdu!im>E0xhBvRyS5*6Py}yLf zM}ME4bjTOMeYaI>tcAR7*Y)q3!;oi``!C`sX|MlUT1g zx3u14-14EKbE4X%R~bK!PPgwlU-R|#2l@XG{|mmaKc2ng#iDM#Ul)q?A3LAlJE!45 z_5BUsd8_4bhuXg}uX)#dzkT}sD!KXfkN^JIy8d6?o?jpGYTosJU!H$mX8AHZ<`r(e zD`y`u*En}h+W+pHhqq?w&cS%7FA|j=e<4SP=3)>{BPXy^?SbR)qHtu z-!c7uOUWW?kuNr?xc@rLJ)!7i@vVoME6RkQ>px2m+;yrrW2<0F zC$-JjJv=VH~rylSi8zh0OB@!5B4zs!XdZ`>BX&5*Za_xihY+1mHJ_pV+y)#>ob z)HKOIeoqIq zk2cvmU)RblHg;Icux8RXX5PmySI6w#`(u5x-?`@R!e5JucUte*A-@0A^}Qa>Pfuij z|5keQx{G3%f7Hy4%PX(a@EWzr)SgcZ|%&Ury0fb ze&@%X`I9TptzEZ2XFVK$*G^1+5PIaxq*M*3Czo&i+&1s{ z?8h814R(v`aCi&LRD`x9?*{IWzThmw0Ub^-{?=+orE1bRjd82MAo!s5zI`yD_ zl}B8r|0P|&tMzBEUip}r_f*~Z%I=89^ClSqXV%)eiHGxUy&mSRQ}b)G`L*6_Zujzo z)qXRcI;L?yc+N-Z1se0&ZM^f$A1W{$@|yZuY4-~LP|Yo|Kc>x{y`)i6|5eO%D~-(G zmv^w#pVU78>@|bjFNvEKZSpSL{)H|+ep@fPgy|u##cQv3zXj{E58u{5_gMP<@yNR7 zzC%b)V6Ne zru^V@{yzTtkKuI^_0Qsevetb5{9i^qw&bF#pE>)|yaT`e#5ild{*$@4$Nuni`FY3p z=Kr`f`#s}@52vCZ|GU~=p7@?ufB#oG28Z{&@pTn)Ynk)E^2S$Im^Z9ZXZTw6{^}or zxUxTHJ1hOgwSKOzW556X%~nIc?S0?vf4|yju=w%c_Y&vte|}S%^S1B%{>Q5`Ui>&< zy}xPg+lu>}*FT!Oy*>N%*>1gEFU)=BSH5ljG2ia<+lr@W%e%wEbHCnr_E~V5(a*Wk ze=MrQ{zk4fmb~$)a?|;avXr&PY4VkZ>W6~Yul**-RDIgX?&i7TJL&t<<-V}E2nz@( zS)b9hU)_3C*HiTrV~gC{?u^jBKz)zGWWM8(2lR?}O}II;GVFQVFP(~2YpZ9*KMi{= zQg%L@eg7P*Pd+ytnM{8;AKGPmF4v&?^Z}2|=T90QD@zwPv{vU?3NWs@6|?>M zta6(vwcz3z2E`7={?ew|VZjE8@g`>pO z&tE=h>Fb`l>WXeo#)F?Tr|(^rzc%~cbnh#E|L%Eu57ZsF1=6hFS1kUy^Z0x%;U!VM zt3#VlsN0;}Rw8S&_JLPHn5ma;b5+<=y~v|MrWp+r-e~okU&>h|-|Y9ynr;4sZEe9* z{iixEDcSb3X3xpl;&a!EoLaj2>X#U)w$$1$Q}WmKz6zdlt*=z}LqnEnj91`1d$wIEJlZ?YcEr&kuQkeQz)mEy7k%gn3A1xir4O) zF5kYmeYJZW&uzhJg`P8upDt4sn7Cl_v|Z6ZKHQN~5Irrlb;9R>eA|ZkXV1jP-JHMu z#;MfDwP6cmO4YVk9@_Hj$10gh(X7aI*EP!LEt&MfR-iu6uJvED_1r@R*7Iz(efhcW zd;wR;r1xzfR@@dmcFrPsg0fDkMEbwCCrTG;J+?g>nYxA{*uBEX#Vc~#uaMB$zdyE> zIu-Qi25g_aRO;Bnt_7ALTpTZ`5muaR2n9`{!M?KQhHLw>gG?Og*{wo8(N|R!|P@gMIa&_zBgARN7_SJj~neLzF@X4q5=DVLuOz)}8vnzh^=FGXL z#sQxe+Dxb^TbaE1@wLsR+lkL|l_kFJt`DgWDZ7NIFLZ0n9<*YZqROZ&T4mokVgBi2|H{u?J9LsotGvHUMTZB!n`RxI9(MD% zlw;oP6}oPpgI^R)=_~55xv_iGtoIJ{uYG@TU^~avt8K5I9{)Wp=*6d%=jD2}_IkyJ z1<7emRa|}L;lX9|`UK4?uB^4+-BO`e#2NXdbNaUn8NPo#%+0doUb1(r-@8Zg$(lrs zc0D2PpFL}Bw@03`2~4Z3*muuv=QE3|3s$LmyRP@Qlg@sBqfNBrOqNvF9_QFD0rL-c zc1`%d`S9oUzZPV7r+L2ra_9A>wxiMOzkm35x*=!wy{66QmN0&kD|&PMug&}OJERsQ z=Wt1zo?^c!wfx9Y>;BC5wbm6}!RPL6e^Pik_%7?w@T;#C4wakKJbf7Z!@vIJ@el9o zAD@5RU;E&3>lFQ6FBWyzWxr&8|K}9bq1wlv=l{-q^bDL8x3~SfIsG5QzlZDV)bHJy zf7Y`39Jl53(+L4)9`ARYoYQYSeNT<#gEflF*IsK{V0Zp(wD|s26T?^be)+v|$HtE< z86tG2X`3f7RR6u;f7{UgRdQjB^|=qT)BnhJPvhj_o5sg?`@5b?3lfE5Z+IPzT+STG(U5Cs`8?JXS_wW0$eV%AW*Vpyu?ls&hcD)>6 z`Sa54Q^~8D1dVsZR&Qc>xbV608Dr(TZLMpbe%!Q+*Xy8_-F2(b3&+o&YC3xPW`X-R zvn4ur9zFcJ{Z>KtrLrZT6f>niep{Ow^uX`(WvlqNrK?@r_ve+D%-eG|>~Zh4-p?Uh zU3KR(Tb*+L8r{oS{qf%E^WV=kA6xxo;h&v6hk~{@)$h4(th{<{%HBUyzia*ckiGp& z#q6Xg(T;VQ))AijOzhi&SN&qU{9yg5lmE(|erd(Au6B{s{4Y62PpyjVoqTHd zr0p}gbVBS-?*A0Hb@KYuKR@Pr``@si$aSvm-cBoxJ^v0FbDvnnF=9{nfKOdH$ar>9nzw(p&iwXkS(V#9qnu@33rT8?HNk)Bnt$9UAxd!&>?NvL_-B zE>_4rUmvR5JAV_;jE#O@WAwjW>nl7acbOx?sQL#3vjWeC{sYl*qAMnQ*~S}OddFU1 zdg{oB+dPet=K|P|?Ur^jQ#=~OU*1#9u~qd)lnztoEV1YSQFq0^KT`k9yQlr*hr*n9 z63;Ig^3I)+`eVQNg6x*-e=M4`_3bRLcgAnoQ9Dih6vIPz)ye05vtG1^$Ftd3KZ zwsw`}?h{_2tY2l8%rW`y>*bITaMfm;aPI2MoB1vtws?EFYFB5vtSIxFc0k@#APUL-Fi@ zTy?9wIkk<8}5JTj{l?f=dSpE z_WXCroze6DGUR=@?c3aEnU&GG@UL(~kc3v+wC8I3Z9Yf;TxoK4gGo=WHGl2a=bu+v zx1C-1RqxKWIX=?6e%3McMc>~j_#~V0-Af(Y+ZtO$e*2i|e>yXbb;+l`n|^HP8cyVH zRa}!G*lD)tWBp{;7nOC_r>ArMdZiQiIyLsk_cFPttZ+%=+h>Yp7$!d6_1tTU)^_(3 z#-A46=3MnRefx%8TP)N1noZ_OUA`N)S@hx5@M*JaR<03ADcIe|H2?0r_ut|eH?>_o zux?M-gU(Z~jgwcsHRZgllauNhSa&Gt@#$0Ha(nVjZS%8t9}RwQ^vOHOA?xkT(mEaf z!`Zj5So~SrpuIQUYWLBrW{WF#{*m-|G_)%|ucy2Gdg%6o^qgYg-u4#m;jOZ}Rc9jqcD|PL(}j!e7H`z*Z(bT(x4Shl*0NxI?Gh>N zShic&_r9yu`DA$Nw}<|r)j2haM`q@}dU-*Z?awWS-xn^jl+1K+yX@!`t{kdxdHr%F z(?1P2oL)vUPC0ehzw%`7&M>aKpS$*FpISH}?^46xBP)v6JL}5_cQbA{?J)hSm{w2- z-)8rj&tE;4OS7B(_t~eXlRm`D-MM1Dmb-m*)K2dk9>$C%v9DU+cFEOVc9PR9mpOl% z>rv*ecW1YE>PTEWE%$M8&Ca`P3bnevHp#}NXP>xptwuNYO5W`6TNi!1!MoQ4wzyQU&+KA*wDHJmvH8y*y*w4fzG+uX@nfNV>9?XD z1#~*aJ^m~+Iqa{_&Zq+GWqTvHW~_WZVST&um0z9mPcIhNZCPXZYKyaOx@M`$$pb5! z8U(E~+z%g?x!C42?_`U}=Sn$!nFm)gcl7P~C;eR9P15*)NCrzV_Ua$x@Q`%-EK<<{q(2HU+nJ3Zv#Vb%hsGT-bAj9VwNe{O1f z^7qcGV%AUP-o;iv%cs?Rd2IK`Xy@G(P2U9OZMnZ`?%8SAitkn0#>yR?@o#VbkCWo| zP5VFJtd|9M%^<|zYZvT)z1jZo{r(?wUu2%M-SY9q-R9kPf&KBkb(I?zoOevVw~RqZ z#VoC7#_emxAtyIi?`S?Pw|N6w)!Rrf-=FUjC%rhn`LF0b*jfOeb>C-RQ@dBOB{(H} z^4V##ism)Wwpo2^xz9C`(tW#+tx0`ke9h+nYwwCrakqsQ`5jJPe>>V&_4%Wk;$zP? zyG@HcTzJ}@J>!b8>+QC4yYj>ASbyF*y#Dr9sWaL$?>wFRX~AZfr|c_EuXfpBsX?M-;(fgtoxox?c|2&e{ zn%9PZoOl28oP8fvmLI(L!uGJ}U&b}5{`${K5BEub<7Cm2IBIaFSuXRfirrz2j0cwj zf~M}3y))@}t!B1&`k|Ft544W_aCz;rF4FFx^yk0{SM9rHT=O^*@)8Xm@Y04S$aNx{fU{Ge;1#xW&d|c|G&Y$r040N;S5NgiTyI$eZ8$s`~IJ&?|1)y zTU^hvTVjFp_HYHS=bcwx)GV`bTFI*MjLR-LS4izp^07-dMNGdOnrB>kE@#7=T<^@S zkJs!~-G8jeM4|FGr+d5k{L3uTzc>DFZONPz{#JM8W;xxBQCD}_eB7k&=Mt7UJGk?@ z@$(94Z{1SMP1kDIt-bnsg0Z`~L3QO;zrQ_tU(-I`oN;gU#980(+08l<=={sLdikFh zI#=&o>znU>e?c-YmnZz5Nl%k~rP-YM*>l+>9&6N-mmz4xhP}* z0v(f{d)YH*?ECa4_2J%AVcRdK)E64eOx)^QDOtHbb>%$k4eu0Yeap;$ogSAJ^?&x? zSHfODE%uMEN(?8q(^?*UB9G6Vk-}vLIPhTH=WDyXd>kwf1 z!#t|eB0HZiX5Ib8%U%4%KUnkhJpQxqa7PEj)g9!yepnCE?g}2 zL-N!0+Xj0Qlm31CBKJw>)bg5Q?h`fJ5<=DfuSi?!Xns92}uh!Kpza8-D%>Hdt%pR3*QI=`+^qF^D-TAunDjoLza_!mkD$BipKAq-u z;AHB8FK;4XW9yf2l$@jV%-QOQpG@qC78SjWG3UiGh39)`L*_SQcZrN7~=Y?1vtFSk5^bzl9P zsrkp|*FJRrcrRR7=*Lgddt~(#kDC2OOamLr(OE$bZ$;iMp-S+blgS{6&F%^hLpGiGru-ji@ zgKwQtyGQCJ$(>A9SvF7qM;^QTWaq7|NqzgfSvJj8zI1DP)rErKWoD~CP5F_wR{O@@ zXt9d@H;unnJ<2)#HkHe#VB2f9RMr>^=Bqb%H6@M@&DZw05u`)>D?n(#dD z$akYvF;{l1Puz0v+O{oC8u$8lP4#}Pbw0}M#P2wp;(vSAR#ku4^kV%y=NEskpT5=q zK~MYnT}IWl;_R#bT)%vEPwck-NMVnCSCwz8&$m3W>cP}ghZ{B3`?o9K+OX|1`;$*A z*Zip2UVYyA^sCyA^R+sc>ke-T(VJ)grtYuVlP|05PJ9ThwqY)`U3;}I=z3%GcdnG* z5~~knvvz6Czqh^Y_v4vMZ*4R0ex4isyG>ugV)r$pl{tUnwr9R8ir;#3xud`Mhu3TJ zzIUBE#e9GD@+h`LGK-YfdOiA8m~5B*M{2{z9d+@m<4$Go`FQ_9`ia!z^L+M(TGl#z z5c=_8N%N9wiL6YS4U2-dpZ+Up$?@V(5F4L}Q6A4Zz3;hRiVsd&%-8=E&%Ug!GA;h$ z!Rx7}a#j7tsynmRt&J|V%6R_P^}58fU7suZPZ~{bns8A+M(sfIy|ovwAG)u3>Tt~# zo6_4=YyOucEDPgZyK$26Bk8mpJe?*+^l= z={fdyZ*uEwk7Dgldf7CubGm!GS@qQQoU7cVzka#AHDL9vUDK47Y1V$4V!t%EsbXK( zv`Y00ATw60Gehqu? zM4#8++vd653HZIJbQSx|f9vmjkl7uOeudvKqEFZLbJgmPc}tvkPHIcPEBNfgo8W@H zil;}#QyHocPwuOCu-|sL=fmE|46Mq3WZHjQ1oI!iy*K~x>2>V#zqlXV_+`9eWz4SM z3Eyu#`rPqauF5QvFGhRTAB7yL--%lYMXaL%RcS6 zly0}JdT+J#<)t?cyy`r*MgGaGq8m^8Yr@`!++Gp&ZVPW{?evFRWmCB$`IbNKns(dK z@P5~fw-f(Z{r9@%zm>mgU)J19h3=^k{Vq@?o$#Rm#RGEbL5%N0TTO%H2 zUb?K?*r3nLJ2$%Kka^036Rb=S@W7LPp9|9!qW#T-%RhncldDs&exXplNQffxqbV~s;%kw zPR*~bNV}IeF>m6oSKj>Y0_j>xu?`F0icC@ND91hO^V6vS#cSc-e@?4j1eYbDf z9ey5q*!?HJ!G?wW1?zh^f8Mt3{FgQ>v0AoWx+|yb)-BbooH0kCsOUj7W6m|**N^A# z|5*3uhyGs)yKkS`3op9D>!bXhxQeIo$K37zHUD@d{hskTXP$J&&w1yCCCmI1CC)o* zwc6cq5nprZ+HV`@Ilr4#^7q=Ezw?>L`M=$>CArS83j>(em;0{gEm$vqubNjj(|zH+ zjbCMdCw6CS;$3l0{81;x+gzCJTE zJbgjt>^(cr>J|stU*GgX$Jh3uHIrCHF8#^KIA|yYkH**^G)ww;tL2?ef3t7kZ!Z^|y6)lXl&anR4~lV21YUHBJ&^zy#PpDt~5-Tusmd8?G$|7#{& z^FQuns@||+R{2-eHMjOo3;n(IpC-qvP1m-SnVB)|w6)H>onALDZ|bt;PiqX~<;AsZ zA7oy<%=+iTM$?xpYnu*lVxK&#?g=>at6=+dw{}`zLkL3ym%-gM|MTlN%t;Wh)u5Ol|Fx{Uf;nc@2J$uH=8~*8opY& zy3eul&E04EjfqVqhCBQ32d*zaqPZ^6TxRJZ=Z|WiK5dz^#dr1ed3`anj`8{U+xDK{ z{N=~$%Y7c_Z-42qW!P@^-{g$lUZLaqdl`3rO<%WK@L65OFW2?4EFN00A!M)^V-bD$sYa@R@*GsH>bkx3a|Hqf_Cx7Mwk6A-&qo~aHy!O9m zzCUpP-<9tjcDtks+s}z@Uc)2NYw%I#)0xW;i?^ngRNj8G@^Jc_%M_GTC!x!f!5} ztJzc4Cv0yEx%tW{&R70Kbga|8-#!zcILyAjFkXB8tJ;vGr4CH$55LByss|MXZ=H7h zpr`+Lo(UmxCcgde6Fj%a>o;Fx{hWTo`r2m^)B3Z~jXPGIU3Fa5^Ywz0@;|>nJ>7Hp zt^enupIO%5%@!6p6|OCPw#`X3SNT+bp1xE$Be7@c-~X{u5{*RDQkx@Z>&cE zW9_-!%LBL8u9cp;dRgGsZ2jLi&7Wq1hSYMB8~jogwcK{Uf0cP%=Samiv!q)8rONAt z9@y5V-kGf(wAwBu|NF;i=kRAoY)hLsrk+0&Y`02eHUF|>#RY~9+FvJkzB^hkS)&wh zcVOG(n(K`bq1RF<8c zzJK4v?akJjZHe~HDZ*@4|1Q<#0$|>c1XkYPIW$ULO z#r^wUeSVo0vM2wz`kcSbl_^D`3Mp<`?OX!>c^vwldE!#(x3(&OkLj26Il0#L;DWPW zJN1kY^hmx6n3uq3V5;KW@KtZ?Ey0A_yF?N{{BOuT)?Fw0m8B(p{wKM(1l_00i!S`S zEPM23ao&sea+%jbw=Y<{UT+vP(OvHTGZXt$r;UG!t#qqP-hKWe*Y|zC0uvMDwtt*s zWWDYCoSLrZ3GNk~=PbUMyxI9SyZ>hOmy3Igy{}E-+BVJcQ{lwp)1MsGczSi8TV(d` zYh^XdKHa*gt+VwP0RzW?>wvU0i4nGO~IUcPgP z4NiF3Cd>Gi;R~Naz*?!|X&2f4N8fLpR{H*d)f-7>lRNx!SDZ}u{LbQhVH7;ov zt=HQAbjR_&cIHFEzUiNKsV=-NDywrLa%y~b^|dc|pLr}u*q*(ek#Y5MMbFQ{)~m0H zKCX}snYo#VS8`9Nb3iAMitq+ zRiX2%ckMe9bDPUi+4nf3#M9XiWjfZ_+=_7vwQk&d*>1ssTXjPIuUoz}gofp17JgW# zG_`S?@LKiW^?Nq^a9J4b(YvX>KYfq3yp}uDgj0vx9zI=Bd+hPbqh6P<+CTOE91uNW zo9N!_buo+^?9PQ%PL{YY?w%q4am%V*-wOQO=NUYhKGm)&s`X@m^T*BmofEqQ(pK11 zC>tI~U$(Q3VKz_JE6Gy1_lAomT?(4)^Hg-+_Q&#%9X_f5*}xPx(^%iX&RsL@rs+?6 zi?094&6j20B~ClI^vBw>=bxJ}Y|K3t`#Erf_xz_J*XHCnJdmt=YI|Vw?_;YhPyV;q z|NhM6_2(>4Jm1A{{Yp5h0`wO3fbG`GFD{D{JVEC=;xl ze73ixtll@XN8-HwWUoN(O4a47f4@#I|FAH9f99-Hr*9+)f3B)(_LXyA#lpN($^6Ov z;Mm+vJBDI zU&T}&Y+JZ|^A9uTyBr^m?reNr)MFx6FeBH;fBMf2qODi9#00i2){|oBtaU!V*S)$l zL4U!m41V*<@?~xRC+pX7|9iu2-xV%@uN5g9$t_=Rw@29i;~{s@JkPR~cMJV{raj|j z;9F~d-t%Sev{LiAyN{l6z8@+kW-j;Yk9T^A@28UY>OTH^yI$PAenD8nA|!dMCqXh+rN&MYuN5hOWAVnf9=0n_g7Dw zo6E%a?4^y_bIJ21dGecM%wK8!=kwa}TXDpQ z&$Ythy_FGz;pAewhCO?ipPKjcwM4+l@YExFw(R}+W6_eYkvILm?oiGzmiqUm#_Xy4 z<-&W4*UwFU_HvI!z|tk93m9hgDMsDnEtS6TMZ#R3+0^6r=F=H}`B;9uukFdKjDP%l z^REwOD{QQ1Jat&{owrYZ*7nbEvYlbONJEEL_O!O&i!0@_*R4Lm zk@eGfe;NPb(hKL9gLyBrR&3sPIOvN#{N&UB5 zmT&s``Od!^?O8h{J*VAj%XYZ^`oir$54P<(=k}H1#jYdiYunR9e>e(8FttsOo@`KK z7WH7-C5ic+dycB8uKV6|IM*(@+V4#Kvg;e0I+Xc>_C;&S^4T$Ox~mgc(^PyuQR1)2 ztK#_m)9iohPHla^HRs^sQ)^^jInGyD&a~p;K?#PKnxM}rGC|MSn7aS2h-a#7X|OyS z|CmoMY3Zt_8PQsbk5|sRv{W>uAar|JsO74zw#7CqohC6YasSg}S7fdHn5Ua!7oBq2 zHu|bn+kB(^MSX%Rvi~xC=(|7d^zltwl6RlIc|1z~`H!!RkM90%`(0QTZ-4I5ZT^A{ z$_|It-dI)qtoX>mk2d+&XHLJ|GE?zb4*PZIZI7!eIKOFf%NNE>-Mduev)VPTg3WhJ z80J?${`=#jcpcCG_tXD3T>XjY{J1WO|M#i=!}Rzc3m@;<=fm?c2_di&MTR#c-T$M)r84#Q*Q}`@>)yV7=XfaFV)@y+y>(k_LTlI+x4y54F4mqG zwa~;qKe}>G{9cB?d!zeJ_->o6pD*ceCC9MS&qiN9cuM_!v8%_86qYYeEq!m_W^4U< zV-|mCb_U302MfY0f^A;|e%D?97aiz~! zFCUoq+Uim~d(P99k#D@VGD+R(){njXcS-q{$2R+)cwV2AP_U5{uF|7P7Zf8}uYn4~kUAFtlO{N7qY znTgMi*@nk|Cy&=N)75`9g2Q^>o5|U3{^xc;cbi{tZpdTX?Pquv1gL*!ys}N@y3S;V zxJHKmZ2xcb6wf!vY?!`#ief`@6&u@qme5k|;Af6sS1ddqd*S-U*;*d+OGQ4uej9dj zr61#?J$n{>m=RrluX)b(^34W&z3-mdHsh~H{<`b~6aQUYa6-J%X5W0;BLzPJ&!Cgs|;`%mL8cWJuWt)2d{oil-T zV|?A`y+6A5e>(i*#%cMuZAN=vKwEWszxMi6=l@tbeLrLUC})+`>QKc-~d>?Q1OVZC~h{S9^Y5!&=`7 z>%Yzj|90)jYW^Fy4d1_A^mN;d-`^hpWnj2&`DMWy)5&{(D=gevvxhHt$I_dMk5eX? zsZ7(=?>2wL(=1}%ezH_}nuEF4@|%}FM$ct`<}mp-8|Mtu?#nv5>~}EBD{o2X|NQV;?V05Z?Y#R$rcJ!Xv*+aeQ{IPH@A(pUyP;a+XYto}D?QF@TW{7} z`DRO8NL_mE?2mVaS4KzNsNT1lA>8+T>g#z0p|@Y2h>MB}k4wAOU-fQfO+@;wu)Voi zvBrE8E(dD2KVQDM>y-EJ=}`tE7VGwG+ETZNe`orf=Eb-ERld!2uDn#Tcb&wv+PLj| zQ|4bTdvndu{kOf;>Aa!hTzoNT?GonakDJrvrX}xv zrWR9ra`J<7veJi|S9|Z6=f%U4AX2&F$+eRzpYN;w|9hgJL7~$je)^Xfp)VfNFZ;I4 zKfCQl|0k0pUrIy2{`u_YZ~X1TgorIR-6B^|yX;rTemEmt{EYihRM z?!35#SrJ>0d2P>c{ot#=%S-ef#|6P(YqEErG@4slTXB2k@tBJ5u2r5(r{!8OGxQ`H zH1_fqul6glz3R@qcT2qSo3(52uL}?3g0BU5*n0h9)cgijfzq4m3vOOsAGF55Tk7h^ z>^0u8TRXF^d@{W-tL@rJz6Xi*ZTtVMtmm$OZG1m`323GWGS~X0dUD-2<9d<*hnMdY z=l`v1d*3Da8IQv2_X}SKevbYhe!73wAFZ?JOy8YI-TPf~mXvVu55{X>IiIcEXI&b> z__4w+{&j86=aa_2f7!j?UMK%@YnyH*yIk>Nz3BVhXO&(b+wI|*%VA}H`T@iCaNEs^ zsS66W27dXeQ<5Ifuwv`X`|0QR&byS%v3B~5hwE%sE|(52er&w8Vtc3IpS2wC6J~r` zV53>FU^8#Nz1;kVB3G2--#M=M`SaUkpUDnw*JoD;eYCWdNqn!#J&DB)!C=^GCkfpSBpRIeAw&mZH(+M z6ds1OeQ`*Rdc)24sdDCD>4%xw_NkRq*nPL(F3uN^J8$=HV*4u|>*taY+czxT(-0%h z_2%t~+K}ICJ|Fl{wf^m?+Z+0_wdFRPy7>9a#-qO%e|lUPYvwKj zo{-KJGI3Yy$LFh)Bp$@c>73j1GHk-yyc|)9@?*K*vUu)sx@N>Qxjs+jk^7_|G1ux5 zyNBz~^nL@~#A&TeUVepYbL)4k@JLftKD0UHwxHGNY7&4` zIY*8pcvo(d?3)+y>gcwmL1vt?FEc8ht(D8GeYnAYgTEv5vd0Pw+oXT8e)!VxfkUbF z)$H3^KQH?4u9{w&vcc)9Ztb@7MQlIICPxJ?=8U{PWMU33Ik+d)S25&)fN2?(r7JDO(>~H5|!EJ-nJv_{(nDLW?tJ;|0FF z-gGtX!RdzBAZ-!z-DN3dkc_4q6PeB$@&C7!cI&6oOf!J*W3U9nSXr#|0DAciQlVTm6qj5)J)(_g3b4R^|2r@Qq(pK$-wgXd3*GjA!MJ7lCgGg8h${`?E> zJjT4;Cv$Bj`3~GUR-EeV$Yiw}iiG&R&zS%NK8?Z`1qtGUw*`+N9qfXU>v3cbDO;iRS88 zf6Q55PBH&}ZPgoftJ7yT-|BdrdZi%rrs>&L_H$0&ViZ$gZuU8S&?MGr&BK^)QT^{; zURPOr{7t2(Ky0L)R{x9W{UV(|I?3?o1-Q~T+jLb&UAUm-Rj@h?T*z2SJqU{zOYtVn`4RMwzXgEw#~JP zPWwAe?sCzC@PkI5mVI4Yxl5;Xw(s9mIj&FDztb&x50~@3vh|QWcg`i{-`5-ao9@|} zWlNqvrrmbkEKGOt^}5&TVe@L)E7mVq`Dx|Tid|o}>}0?2yYE_*rAW`~rZ% z{p+=$R+F-c+w;9=GTLah*m1aI&MrByXYEU~;jk#tI>=G3P4_$$e?pI#G6U3GhL_4c%Vdw5y)>##1{vpB72-oJ(4`UTfN zjyu2hG?#7ry%`ca*ypYLz`gS6T7~VJ*9GTAm;HKmfalW7pEZpCKIUIJ!KJPFVms%0 z-yg3tD%$3`sd?o!`)3)Po^qW@Xp74GFMK>RU#<|@+gr4_>q^10Lu(jPg!{MHB%YpE zYp1nI&gw;{c(g)V!c-&W2Dg4M))e#1QQw(A|5IBbpXyZQtwu_sbDZzDn6(fsaL(YrfrE#xAq>cb@LHtvw}fI!z_9 z=k6@NevfV5b#dv(LVp&2m;0RkcEbLKCYGNj^2Z)un}6rlWRv#D6K3;mRrYP2@H=*o zNch&`shhv)@;`t5QtHFkuY9Qd<4U-l$=5$^Oaj7PcO_T2pPE_bnY}E`{L-7{F9VN%wp@2^PSmcr z(hs+|9$kNXV_oq%@0CZkCFd1s?DF0Ab&30Z8?z@LuDm{Av)%vm&FB}`GsTr=PHbt9 zn{T{h&leNvX3NK?-k&?QE~;RgI?E5KkJono)2iMsm(i1yd6%<3FZyxq)0HM^95eaP zMmloMwS2wz+?lB*VU9OL;xwLkH%;8!<>zZAEc(Q}DDIG3=;uP`y?Yfehs_Lmekt>B#;s_(* zweF6tv~@i6a{V@a_Nb6^Pwt;)@O1b5`TCnr<;9{^sy?rS4`;<+sIq^2^mxLtzy+5b z|MW$%%{#`sQ*X-jti*u0%r+Y*0#=c;-u z{+e@J?i^b2SaSYqpA+r<{ONDkM{QZ~cmwmxd;h-3-k#O`an`rXOVoLPl+K%57Gkw` zhuh{8vZ0L2tGdq`wLkvPkaTFX{=2)I-*414wcWq1WX{!$m9H}TM3<#M^S)f>A=bPS`m>F#-&8CsXsN+-PbZS-^6%(Y|f);G<;$M3}N zfBMJWz>fVwv8?cu*Dnq%>UlnCe(w91i6z|r_Z>dRDB3Q+;bXYo>=Z-cW{Z7K6&xp= zV)w6HZF%B4<1dSsT>Donow0<0k*`wwx`B`VvaSjL-77^>q_sZIyA;H4G}l7NAV|QV zzKB!L?YxRUzx$irOK%B2@ZNfj`*UP8+xrGBXSPu8i*n($aY{ zF07uV%#t!i*DM%!xWzu#4Q0%`y>hGLOwA3~e3-b_tX*r|VB6&QJ@VF?Un^(b=_;S- zK4t3H^{MJlb5(9nnznlJ)K@mQy}2bPhzKNCFx>cE#!zp2^7*~(J566)TNK*2`Eyjo zN7>sI=N9`2W?IfTVPT_O@ZR^_tKj=*CE`SH1n<DkzH@MN4oyuWc#N7Pe0$Ew=EE<&ve(TI{(M=`Tx`YTv6Z8 zzuwNqeE#Y>_qV?5O?%qTaoZQ~uwf2r)=GY{X8rOnl4}2V{rmUr^Lw=ea+hCa6yNsK zx?m$$eXgrN*UEj$;cXXg^}N1v@j{jSy!u)Bk8Ymk?{(qTc|v9rd$ z^Q+gIHFHdT-niOSLF{sv)xPPs-=@z@uPvKi{%)%4BE_imeOB5fk*mIUZPShWZPrt{Yi0W`aQ`BtImraNZo0oGyndReXrK@%?O(&yw*M6{Z|}g z5c^e$xck*V8>;50T4ubvuavu6^v3c{`y*rI-)mjk_U5CA&bniJR`tnNtiM%}c~Yxl z^)V4vuf4pX@4xJ|uiy2hg>k<#=OnMYYFDm2jTbErH3@s#%yr_|!4K(Gb@6p_nQfky z@#C& ztAW-lA+rPF>(_ucmA$j8&ge|MBV?=xexo>n{UswIW&+erqhT9XL7T4a_nO7GZY0k2_)=M(6W|q*?JB)kk>ec`K zT3*jk|M#+e!}hZI4&a@3v7mm@-**e!|F+ftc=`Uw{r_LeANKyX7TA1u&40}R@#|LY ze0Qz$kHy^%oOPtDe8NrNGwc@avFSV3<*(Wpyi#>T?!43CAFf?&<6WKWaG2!{$G3~S z^N-n_d-wQGQsC~!%Ch@b=O5U3Jb#fGz?)!t>dKS9JKrkixV~CA^ZAe0GUkt-lnYwx zuPe=tIC8VQ;O@G)`K+%Z+}Z*I4%pT!oEN!M*lFCi{p{w*`FZs(@7bN3Jni80g}W|B z^?p3X{bc8-)d{Ut!j;*l|E}1?ay6m#R+Gs;Nq;T&r@ohSIeu13zdLID{ng4-aaYYh zU)_B0&&+G>RShfute*Kei~sbJhL%r9D(e&UaJzykr{3sVla(4tY&_ zysAb!U~i)C{(k$Yy4>J8yQSNV*Va$x->@zC?^TQ)3pyAP4_LjnWlF&KPJ5S zSF*gl-F4G^hlZGiyZVY;OJ9{OzI#vc=sGL^cQwlWAFP8+-_FS{+Qw8QxG2c!#O!7J z_`3L}gvJ$X&p&%_Q`oK}!aGH@Ukd5(>RR`GQoE^{IzxKmV&BZ$k4;=`eWosYd)@TX zTlvpV_uDQ#X?Ct)W9$76*9}wu9FzBMKhj^n;aXK_bM*(Cd9S(l8=shM+pyKH?Zd=b zRknsa2bE5I=KcHOo%F(Y>@jPEyZWZhyDaQ;UhK9jmtoYApACLr7+x2xPgPcUxc5-? z`Ly>xR%;#CNS;6c5TEUF{nKT0y`FBJH>L85_Yvh2S5@RsIWVqexbwqKZQ1N6$4cBI zSij9W(N)^b%y;GfisWnV)2~Fz-F+8$Tj2B`gXsb+f+s>1CVaZ|Yk`i_JI7T;M`un^ zO#hcP_p^=NcN6C-vEa&e&H?=U+U(wQUb@RVW%j+wN$J*?Zl$iiz~-~wzSiz`!R`LH z_Q`V|md%SgwO3wup?vAR?UBbK#d}L_=iN{1DAhHZzp-Xdx-{#R$NKfE=bxP1H^co* z$KiO{;ytm9vj2Z@-|zbW=W)H1{@#C#F`%pj$xnHU_4j;?tNHTye*gd1-1PztS$8bn zh3`HwW9l!ZhYJtBoa3DSYhz8p-N~wH8gn*V>|o_&?A&@TxUyX&@6Weq#x2Sv;g7#A z~=RRqA zJb0+^a0}nwyeq#?GqRt$dpwJ2}^Zcw|Q?IfXtt||3Gu*_Q zxntG4#;d0<^Rs;X6p*K7%)YfOB_ZnM>6MwU_vSCJ6bpMD^!df7Il0TElxHk^w)DXU z=6AQ2?UiTT>DMr!x%tqow7op@_Em4Si>*3z$KCnPku72iW@xkBQ4%yx2{4`U%qEO~ z#haa_Y#(-9kDsvYxxBHK$J>b#l^f0-4th65JKyd`c(e4I+7%sF)t7tQRR&u=7rn4n z>!kOyo7V4F1#D5}c~h%bzICtW!u40V-%oJaYWn<6@jAxzuG*~1TSmpz7t259Y>zLJ z*kqfX9r(%T=HpHCq@H}g$oKWj#m+HLTwW>4?} zUq_~S%Iqr=rl zN<5R-YV7Y4RFAs1BTV7K^*t+mif%UTU-0JS(|b{~md)#y*m$h?(}|iBuVeQySRGB@ z+Y>hPwzrwYkx3o04{x8UIQ8AQ(edQ-&5^Hn>K@mS*z5P&^Xiyc^$~b?oGJW6wO6yx~ANtl_aWPdsx_R2ACFLKxng?EkM|_xmdUw9gCFe#r<(*`I$PUG>Q9@Typc zuMU&W^PBFoTm6>DE9v`-$mjOUPqmdC$(7!AZfSdMQ+1)w2?p-lf@)&B9x*Wd=9wJK z=X*;x$WVVFyPWvy)pvFz1o1xhO8>U_&BEn!lP$m4-FLS&_tY%OKBum2`CN5Cy*Nw6_H6sb}wrO_{!m z$7g?JOz!kEv(Im>5Ba+K>6b5_=TC+|WNMaoKVO z;mXb*KmRfu3Tt)xeDuuCYTs##wpV-=={X;{r1^22ef$*p`TU~&d-!%KGVG4MH#x+N zu|kl6<;rKxYsXD@o)>m!=oZ<*s{Z6}$A0z5OrN>m41Icv^zJiMyt^UfFR1^jp)NT~ zr^CPYiClC|TX^`2Q?V(xgX|VA+wybU`It?wUcH+0T`ac$Y1YnT%uH93XJ3%J*LWjI zn0JD%mE?BKgd5K1qF*~$-*T5;c`@0qF*uL;)Wm1kz8z)`_;a~`t!-tUJj0iHuUpP9 z&TVU4B){h!yMr4;!Q>C2(U&*fi@LIW+tNQ%JFA}UJ@zu33ur))%t1{Wh{O2~>Y0qL}BsZHln7-6o z=@_(-Z)SRzZf3p1w#1fm+|_2L2d3>6iHd*TaOPzCCad_D?c($2UA%7Su&;8R{H;6B zit|@B%3XS4#h>TUJm>XvUGvIsJI+}-#~DVSV+%DeOFut>@9g(G%S2^dWs5G?%-^s1 zVfOPg{WmYvge{5MzKw13Yn@Fe*Q%ve%W6j~stjeT_tl^F{8-PsnMc(1O(N_)s?L0N zy!5U3^p=!npX~UfGFz-oDUJjXD{8`K6dUqwe&@O(v%%PxC%~ z#;j&?b$;`$`Lq1?Y-kp52ufYe9b=58tYJ5*Uz8M9WbvHIB_p?XSKT@mu$!; z%ilYGS6_2~62h2yN?XyGRWbR*CjMM)w%6Ahj$QluO?L06caOgY6rO+Wy7x_#)SH;h zRi{@yxm{Kyb@a3B<~v(>*JeKVboP+@_NOM{YJZDe_|bW~bGF_NvN8Q;?%AFw`bOHh zX7Y?%r<0P5t4`TD=Nivv;5$}X`$sylET=*(_3b3RhgWoVU%jm#6?eja?}aPEIkUg# zdd+-UQ0-?I&fvUU;Y_jjo+nWkzqUkW$6e-f$oy;QGiUX2i^8^~oW-jyWPDSWwaE|2 z_s(^^TD3akD5Ku1jL!|ZMJqF1XH1y+N%mf~VA_cWH?FmZOTABKJf88=Uy|#^l2w+^ zcF%isMLFF+t7DsXRi@FswWW8S-m&}o;kIBx{G?#(OK&9SGC=2+f&H|#b;)V zWtID@@2efSabbD#muqErs=rKm8C&tEt$p6M;FsFP)feWya(XIi^!PvHJE5#Ii^a2N zvMpb=_WCQm<2`3z?Vj~1EYt1_ul?ssr?dmWA*<}+V{m* zyo@e*@9cc_^S7jZ&m3aTc-4wA27KpwT#)MYH1-=uxAu39V%@^I9}Utn9(~z#`apce z^QZ9++uuF8Hiu!u*M*(ujDJ`4SGdp7aD8#)1n?plRQ z=NFcWJvCeMAa-rUME{m(N4xoRcNK2W5?t5&{F~VRJb~-a9oTl=VW^+}Ty(!y_`HRo zl1D8+uSnynTl=xLZRN`!KJwq@6qdZc)U~B=PrfF{-B-D%Z|l!DT+e0jXnwxr%KfvB zM_PZ}_F_-gT#JImFL#*F++UvbcSZWMn`TqF;^y`Hn|8cXn19N@GVs8frK0r@||@S*8YD2>5R&<)Q9RCT2MdPX7*m z_plB*^r!IUQ}zX%^{Z^&Y4%>7-S@#`it3LOOTWLalbJO4Ua_g%ecA84g|>$mPTTyc z{F>gESo@Sq%X8c!#n&H>w3_;G*7msd_on+)n@%pzi08VuN$UOTlA?E8m5yvVWW6@- z;q$$^4qI(ra!%+xKkLXkhHZMP>1(WaoK5EwcDQX;9WlQ$q3xz%w71*79_c@uTkX#L z6AF%=_w{J;-$%vf2h@em|6F|~>Fr6|*7a9eW*$3t>37HSwQp~JYN_cDy0bK9r)VbM z#Z`?rltfRYv%gwWYyYHT_FL8M{M!T%RDZYNzi@p+*mH|j?WxBKD0vA$C%CcW;xGZLFQO#ji7zEl^z9ciZOQUydmIGc(*#_kWaL!%!Cex|rih zWbOBTtPLDzbZu5oT({VFLZN+w!3 zt|xjI?5|rIWm%Lp_h;msQ2DHHM{b|^|M_YDq54nt|Ji?B$&T+wtioIFwEx>J_7CxY zHrsdl*Zhq4+GS!|xb(u&n8nNgNyp`@#4ee+{S}XI-HY_fz_gad+xB&CD@!}^x=goN zs_N<2h$6FwJ!-eh<)ShfKbd}cc<{P&{oJ_vO+RKVz5lCrn&BSCt8Z=v%fuahGwD{E zUhtm#7Z;v3-5ipeU6x=WUkf3;psr)PFN;73+^Vg07a=rkKjITgfpqg-eJ0 zS@rSuTlJ~oH#Qih+&gwg@%E7`!OM-d?Y}OYU5GsoSE{|Ib`l|6mPs`q~cel=J2u5vPu%e>jjOf3@P&^zF<~1231%p0_Ri zZ}L5rt^V28mr5l4UazpSKKI(Gva}&h5fP2}QnqB1{pNK$pGyU7k7w;`+_S`@{8@e(CXl ziylNB6+d0@?CFZs^}jqOXSanjTzYzX1K$Jf`q{SE4aE+v)_?cG?9znSe_vj@%=*WQ zx96d$=(1z7yGj?X(zz+lVewwVW8<|AQr&K$ceOsgJ;7f6*Is1Ji(ib7w*C~))cD|5 ze|+AhIMFThq;^d|&%SHd#_+>;cIEYbUne5lRlM`oK}Vf%hrM|dp6vS+xOB^}DGRIH zuXhyQzi8<2y!rcKp?yvZpWC!a&blsm@A82){_+o`i@Z<%T$>pdYxiAX?>n(|VMk`} z*G~P}@_Y^KT!5*MCI&BC7;pPv%aPefpO&;7n8TD2+2!%_!}Y(fAFYzTSL1x_)yl)K zeeJ?n*k@jQ+wnZQ{ne75ouALxO&77eoXe?QI{*6B^c6vGx2oCfJGL|VYZcQbnUnYP z79LXGxb*z%9rx2`*l6Yk-(z_?xV)&q}88EU*+K&ZTS02#dn``*FV=S zO#ij<&y()ga>u^SX8d5drcdB-bih8P*q?7RvoBa~Gig1%_K$7zI+bmldA445Tl=k8 zkIZSzU}exeZ^PQT{(4=@<=e^1}xKCtNR(M78b&b*GSy}fYh^;xpds|@)c z-0?59*e=w<#&M)hW^3-kdD-0T!gF>zZjG$^{x(-Sy5f_rIP2+|wQm_%Uvln{FBlh|(0%Su8Rz!sh^?NQJAxZIt!As;x3Uh{aM(6(3jfo|3Z7HjtN(?}Gn9I# z_I;}1z1N{{E%TJG7&#p>y^_wnOT6#-LHqA2!Tq{V`yCj5e%K~tylukU$o=28Y^~7? zpZ_)cr%m17A9ZI>zpd0N4`Q{bzNcmV{QBY2H8$B&dgrrt8vazuf9JXK(`n_RT+xT~ zw*{ZuHrIduw_TU4u6|qcw8XOV{`yk{MzYOg!`ocR69^8Q4v{N(qK`P{58EKl5`yY11=dU=KO z@}HS%qP~U!C^(*VXbOdp^JFnjvwcSp3AY+Y(B*pIraBqV9aVJN&a*6QT zgNiei>b0I1xyi2=waJrs5I?WcJSz0Z%ltSUK5Z9d69 zto^ldTcYpnsT;Qce&DXR#GuXHe<{nmOXq(J_BSY6el2ZV*tSLa?}sD7`HQ;bKP~#m zxmrWxg@gR^g^F7zvfDls$qDFRaxri5_jLl5ZO6YW?^~5qBW@dUaP^|6Zk3(Dp7B!3!sC z^{Q9BEs`(17I=7h+|A}58>c0^R+XqLU#zLyp8jRl?%6(4Ojojx->h8{efsU(=;A#0 z2%){dL}XHaMc-b2{Qiw!oBi`0sy=TuoADZ_vN=5S<*)m

    )A^1B}Qz8Ypl8oD2@5sJF7 z@60KaIqzAVdu_KdmG178E~;g`<#pBO`tx&HDpThiv0lG0nV~v%8zb+B{Dx}ls_f6} z&vc%jJxy`RrdOA=HZGX)`^v(*a%M}yBsYdfPx>tIAlK%kn0QoQ+0O82hj}m4FO~DT zF=#hDl#Ar6%l)+6c$3;g)7aj}HWj-AsyS5F1UcuqSFLv|z4!auB9&#n^Ui%rmW%ry zE8m`|C!8Xf3j=cr>jL_->iAx|Lu4%yDePd!f)>Xt0FhvX4={x@<6BSxt90# zeIIfhwy!IBa`SiJ9kUzDMH+%DEB0ne@e9cdh5r`1z4CO}&%n67{2B3A3fVvH*`&HV z)$#So*K3#_|M0uraM;c6o9U6t#aj0A%lGPrgz4+HN1vP%6Zh-PaRcA$mp^Sgx#zd% zkLAw(6+bJ!&300wS;d$79@dGLa#k0v*UDXU z^ONH%!%zIP>tbSOF3BvKAG2bS<*p+8UB}vFt+$<=J}WEMY}WSp-|bHCKPjvz6<%&R zX?f`-fv@*^)YrGOy;~VydwS>D^jq&Xvn~j4teIIqqeh`C&ag$|fkr zH<^8({Ohj3R|y7xW4pzDudm58^nSMr4U7@(7L)(K+9vV)Dj~lMUo9rDUv+&+n4DaN zu!LCt-kIkop0f~N&l=znDW929vA|cM@O^GitNSmDOI#~WZypLxE!}eYUW3@rx3+B| z43{VC_pi~i?Av>Bn$y`7oox$a!cX086%wL~t)^DEYW2L_GQoQ<)qb>IjmCMYl)XlN@@@}!-o%W#Fhu*Dq zy>YIjsP3f59Vs)Ww!atbZu9OfpZNXM&R1(IuPu9eVQ2Z%%tzG|b{Nk1D(+S^SM#UP z5uR_ZRif!LXM`_ZxqD&M-ot-lG@r-s4Xjw7nYGh2W}9Q`zLIatZ|(i`;=rt1dsl5{ zs$6T_I^$uAzWCPXbI#_>sSjd(r=_3e8{oX-b`!^*5M%kX>nF`^`y4s-e8J5AV;AlI z^4$D%@HtDnRhZ@6sj??Zmp(ZlKH>G1pX)Cr{Ik1!z5JB@eS7CEm8|xm&-koDb0;O< zm0DQq#CVrWq5Slu>+`pt-@NqsRGZZscQKvZdR}`$)YNd#^p93@CYA4NG9#wWWp2N9 zP2xG@P2ER~^Vg4?PIbMXoOCmrDYqZy+MhC-NA;1dULwC$>}v;HNGf%&;7?l(dw+$Z*OfTi!XR0{gXZZ z&-2?=*KW^nn)m+~n>4%B?knDrVbT{&YNn|le#M@7d{$UXTqSox?w!r;$DSzs%E_~w zeWY`(MYD8Oe zZwfQx-anZ#YoDrZj8#>#ms$B^W%143S#Pr+9%_%w-k`i^5|at_2J2Ldan7REc^EqOGd|Kwzhn~ zr#T#IV|>&4(UnK6xAxDA&AOlN&+3mlZoX>0T+^*-8F>l!&)ojvcGon+_L*+xO=WG< zLhDO)X)k|A?XCSZ?f0B-xmkiARnz4e_I-F({ZZWRDD z`}%LUKZe_X{9Ez#?DOZJjX(H(&yn!n9Dc$7tCOAemJ5&bGL9t5W@yGenP04yzWU&~ z-s+k8?2o4XEIhq@TYqW6y7=uoQ=ji~zrnpL=da|;Q!&3S_AUE*A>-oROP77+9O6%% zE;0+ae(qMml;p1sA%|DAzrHZ*u#nPu^$jh-yPIw?%=td2=vnmT;0Zpj!!KWXUdI+b zb^11b^FNoky*^*x^fTy;7O&mq&Cfl`pBP^gDJed@W7^E?=?D1U#BNVNr7j@GG!Pb4B^(%*0d1Z=!y#{gf@XjA?(Un3gsx>#RSSzrR#y)jtn) zoYrN&Hu$W3#Oc@5cywn+8JO((RysBHOx0(eZ-xqymEos7uJV7MyhY|nldby4D8}M> z%*$`*G1>J!wSVgWvz*`I?DhA1`F}|~PFKtNYnl?Tv(|q5zXS6s@5$XepZCRV!P~Hd z9`Bp;`k$@OJ9^TnoO}J#%AA_=BrC40?ASS5%m15I?EjWOyYJ@OivJ}qIivdzN%$O| zG3(El+Gwr*C(IsS=iN3gt8l*f)>bhlWY0C`9nV(ozjw#k_ExGxPnut7wymJo-ZR&X z=GA%>@%=p^*}m{j`zM9wO{)VL)vwsuA68EdShs%Sp-B1F zKe{-be0=6Gb=-7esu6Gdt9P$f`R?p5f_aRuCVTTrPZl_{(z5TSPM!URN$^73o%p272aa3J>efQ61j~horIpiNI)lAX*?3fT>`&~-z zfPdQT%#G)gA2;uLW;Xw+MB(bvriGjGR<&1+5pGzu z>aO9cr&U4vkq>mv-?0yQ`rt3ygSwo=pBKz+vYCBm2lIb?wAfs3{@2HU_sW0D+qp)i zO?`&>`sgjk_R1SZpJ+R*w*B4}vkhBizwh&{d&k}%&8=^ro4Z}C_GaRzYpYBr?3|~0 ze0I+ayIU^t$#W{|CVwf}!)35%>93DpyDs`MZ+NmfI%~dF(~yr()K?)-yffTufo4-p6ymA|1-u9rQUS!5R7}y zuDtBn<)7&V3-+Y^76>@+U-^Dp|Gb9n#ius6XYE^gyGC#0PUi`yR;~|QJ|lM3UF|Jb z_o#Q;UA6pmL1XvX{JY;KZ%v5UaUtdU&T7-mCvBbuFb1TpGhLT`ZR*|=Yen9%2A$o~ zz~i*T@aDl8ybo=Q#HM|}dS>mW+Dw_Jp{L*cG+8sRGfFPLZq=p>CMNZ)GIFyE?STxmWnlzz3S=A3fS!g&xdPYYQqSPmTcg&k zO}uLCb9$lx$EVV~;O6kVx4+q@uTazWL(dB?(UhCb-qmYHjPZvW>i6Ze{g^4((F z(vx>~$l&zx;LQAFeW$B3s(KE|f`PoHO#GSha(3Z}Qg ziIP`CN}qIvJymNC5&iLft69_LgD0%T+q2it+IHt>SWk=Ooy}|6sw&P_$A>OirR2M? z)co7|eb*ZE**7wkTs{7O&z+ynj62HjYj}p$T%Wb-(~I^?x_?3(=KC`2=~-70?zJPh zfr0UHNV@R8z0;q}%3JsUj$YXNpxV`^@|JA&V-YdC^gQ36aZ=_vA6IoV$&jp~^=qf> z;d^h}^nuZ8#VV2c9JYu3)s-u6AF%r@vmoI>xH4}Q82JJv`s%YcTLuU>%0rTia6X=%dE1Gb`S8# zyVx&bwC(ZP%bI=JQb&=yuI)+ikMS5K;p1t(p=O=S^M=vWWoBa8FWq8QV5*ypK(Wjc_9DLtt`X9Tg zI`7@mMSpgbF5I-%LSXr({hqhxNQR`Uy+5y_Z+HEs`RN4*mN2F4{$slH+RX{yq}Mj5 zRfgnxdVXfxR1@l^XYKDiU-QDF&E}K7C$joZ5!YY5jsKo`%6Tu|^)Elpd-z5CL{W*s zqO99|yDH-gDzoR>q)q<(bbVBP&H8DIx%2s5=S^8$74z#&*y#tgOCEh(Q=e%a&doXD z^@Yp!+3L5%5+BC2**y+-*q(TzEm!sYo6i=jH>FyNrWNG^_lrC=t<0sdu1OMl+Fzfz7QT9 zZ5MX@l~u`ahSyg~ z#r~UPKZPi~sA~z`(X9|Rr^ccp@I%Ivr8dq7)>X(q?Z^&wU46cPwZ+cmU$3l+St>jK zrp4o&noq_bei__OZ#nxaFihcZ&A|^Rg6Fj_Pwm+f_y2X~B&%PHER}brPy6%Z#_nyV z9;d$FRC{!D+No>L{xf=TcU(3ySh1>URT>vdc$V(vg3>9Ohwd5XSDpT8S-ZJireFPp z+P#L0d53nd^WHJ@|HOaS4qYgIKl{nd?HW=)U)^lH`r?dHW_;dZ;fb7!*AZy9*6XWE3Gr3O22fpRb639MX{0Vfs#renU_x=$4 zbJo9JK5qa1;)(YWlfL<4d+X}i>z-Y%7qS2QsQfXgW?JZ3969fNlasu9fcUSxJ?gne zn>p|9J6m&$N7&oHUC&Kc#Qm1n)TxJ@Wq;LtUs~F{dga=$wf}xzvS+GHzI|4(EdRFP zy^=rI(mwG%bhTJ|^XUf8TXGAmG!4#iHuj1C2l`g0q@p3bV`2u6#=?mVydX%|o zou&TepX-e=fgwhlodJ1nfKJwx`Y4=dJ4#-ZdrW zweP{qv**`}M78g34WD^;g01ybaoyR+K3A&u zH>@UvoMIASknlZFbL`92l<-oQ=bM89L(ZPPsSe9MCH`N?c>Yf5 z_z#I^HU>{Osw%8gKJ)(8MeU`BSDu_&wKA~s-o?ow-+sDe@4vY}R7{rf7Uz7fZ?f&# z&QspE?Fh5`8Qoa@<<=K7i31t)jkE+xraJ%R?eo98j?aGnQ}+AXR>?+&xZ@Ew zefu{>-#)t9Km2vsom+O7-?;xtxgxmUX|17Mx#Wt84vZxV%eYqGpWkQkW_iu_YaQ!$ zpN>D{ardcL*Gk3TYWm`y;%I`6JhONt0w>8)4MFRz}QEB@wt#WS*ty!1lq3O z@-H?_+GxJr!Ox!G=Ki#|Y1gbaCO@C}+q1SOv+r8{DMR{8{M+zb-xA+*rtO^S zbb6UwTF&fQ^FBQ}eSLNIq`dR5-a77mbLZCMzsr^L&7-DXJ$-E7(*%(TjVH1`a&~1u zJ<9lv{ju|5t@DY6XOb1xSALrPd~xcfeGm6!Rmj`V+}_t6_x?}n?Q0tk9FKhJ_}cgO z)4P{e90*^^doga0-+VFK%meFh9V*hWcW98`Q}%VEpJ1xQ{ThX$MV7Ng>NKWmihs5f z+4{g}_LoiqvCePtuIf0>hT|6sZBjSaakp7Fkz*Ry(k;4|-)%llL1F0{+6 z4)u==jCOSS+IVT()Q84)-S8zDZbi!P`Lh1u*}t6fCu?A1g@5}NZvQ4- z_it(bVgEfJ1Z)0%{mv8+8}&T<>Yx6qw2XM^PkSs&c1Aqfp=&(v!p)Zlr!_8Hcy#5q zS?fQ~ky2Q(BZ_&`UB~;M&+NAOFB4b$n}PB7$33|p`{r~Umv2ZueXgvbwtad$`zCYw z)3bNxA3x_5w@N3p{_xD0jKhLPX_mHUC9a5l`M>e|JNy5-;gvUxe}BGpoK1RpLpJk4 z5uO%rPsIi;Jx)b0<*5Rp6EE#wy-I7Tr*>%W)nya5gl0xL>~%3&z_O&skc;z&(_7|k zhCizM@{d3N`{pJ8=J}E5tJ2GkDmQlZ7ctMp85Q_-l-F+=l;0EbvaPsu%mp!)(5grUX{In=+Q4$H#Lzh z^F`#5swV3Mr4vZ?Ck&*yS3=gbd>*IwY= zd2Wl|)ywTKv#b*>o<7ezAKI=}aPlDAb?IdbKZZWL$F^#d^$hpeLfK{iH1gM#M?JTD z9{zFR`Kz0Qo(3;n{N#PjNz2RE3v^BgzYN>8>Qk|7$jqN-Bz|7{p<{fx(&d`-HO;5% zcP)EqxpH2X_4<;Y(zW|*;^w-a+>|-HME0`TqJ%lGx}Gh6%3?HQ)!&|1TVAy@SDb2I z7Ws1D^^Z55nDV8g#9|{3q~Eg-Nf)-Wue#PC&sVImOZaWeHU13a)|aj`wmxe75O`A{ z_+#jC+eaxA)U7^dop$M!k1L$mx9;+(*qo&$Gw<)4vR5hBVd0rXr`K1OmGeI|y(yF) zH7`bA@=npc)&2f=*c-N@tfP*e>+`o^`+e>^ItUM`0Bkb_=+2ww~O7O2t8NmTK*(>gfk< zQccgSVpv#`vDD`1rKT54MfY5}b>5*scl*}w-CNIa9W#nI&8@v1bggmLWF6=2)kUvX zCp6ma{eET1%iy-k>N|Zax*uLtmrK9Nyz}N1Ltacin;6qYv7+j;xrfizu;wVwXDGY-CS}hI znXX^q{K;?iGm?(|vWm4{|2MqAq4t-(-M8l-x8MIh`Nx&%_nNxlqbdKlf4MaMUeEsT z`{a+VuX%Hq;mSHL>E0#xYF59!mNtWd%QD${cKvKip53O$J~M1*`Qm@(G;A$EZ57X% z@|#ItEUqqD*so|DAih~~7mFDCh3glh@5Q#gFJr2I;n4jtXwL29AHN>VJW;eUn=GVqSvY$_W>Wbg@TI`zb%PA7m zlx6Zyr%iGTK8y1S~kVyR=X0bFzpDLi^7QkY zZ6)!o=j4TR&&;{E#B$s6h^ap>1ixI(wj{2~GOh2i{2q_V55yZcay{uEv&@2_Xw=hgdKnq(JMvh2Y&-SbHWj{*|r|J+t-yX|F!7t_<&3|I!fV@C%ztrrad?lM@p_5gf;+!NI0AG|tF#@T71q#~ z)%E=AdWL211UlA470!@jyld{gm`UHXH}ATY%nZAGcl17MSRY)smUltGbiqh?+?lq@^ep3} zr*~Fp?mXTZcVT}^&+`VOvwtI+kFhcbK9_!y)!?Pa+2M%?b- z()EYx|1{1&u)gMz^@mqa-V{ z%+%I&!?JL#^8ddQ`72$ex>=OB<}7ZX8vk+0XB#`M&z9`^-8x5dvKYS|7O<i$=hd8@5zF1D{yt%-wsNst%^~ySCzb6M%)4`D&f20Y z&#it%d4)`A3hB++^W@ax>Xf@G`bI2Ki2&J&NO)H)xD(> z%WhR&YV0?@5cK+z>9NX(fA#8pe)oK@Ix{VuIqzHFk>|U5l@70znX={1#wDiDSKkYH z62IP5rmNtpWX(Och__=^aea+|(_dyR zZ%eNEelPWg`xS2PJ$spV=1u(*y~Mcj{PcN--~TccB~=v!Octnm-+OoJb|og+J=_=k z_x{@y9yaxuCBJ{+1bgw>AB1^>52~^sI@hcJR%0*one($xDEwIIv-`%oV*lXVmOjf? z9sYVhr(s=OcVv^{l8iFh<{qA^t){Z3hhB1K{QljqYs&Os^`4i1?p8{$hFI?4nz^RV zQEU3tDn;$H!OolJh3UI|)$0}8mbdzqeCGeNOCC%wZfl;rqSx#{zyD008I}x-KjbeF z__-=%<~7+n8u~WBN^YN5%hcW;J1_NzR(AfUDNf(ilI*@8DgDCpbF&PCXzIh)@qZ@2 zedeB8_UUih^?#?oh~79*_}{?t)4ax1&IlX+%f|7%*|DttwWs_K2CrqGx_-U<*|ftQ z<>EJ!_eF1yNUc)5Khdl)FrGhTHrK+*JLhe>5)z+r&#WiU^L1jj?a}M+S#96lajCI* zl%t!qNH(r|vrvs>-f;2Db`o0zVlvyk5CAo^$R6SAnbI$>!@K z>iIv*{W$b^_J_^#KOO&E>9%h>Z@2Gc)FVVM&})8u4degI-Sv$7KTLdo?794X4u|7r zGH0)t?dv;x$n9pZ#P;oT!=atj;XGa%WT4}80 z7MgYR>-+9kB8|@1!=G-=(hjwM_bdM8sn3hjd4BMAXdcj=rINgB-m_;5HlN$JYR8?1 z&uoGwt2sUiN}Z6O$+IP-H_`Nb)FX4JXDbiR`ypv4waqg0#rOEHoquJmJ^9qU z(%{z0E+Yq@i1zQQhmGe|%e~rs{h4yL^{Sh*FTWRa`dPax=jWNVbGG~M$ku+C@{hNg ziTAy5&pCDL9(5~U`AQ?*WrfDdZrk0STr-M$rD3`AO##0hD>I|dzaOh_``Vo_HJ!O> z6$8(-0Q`MCJ7suXW}Ne=_(j|Hzo^q^o~OQBx; zrs`jwRkt=Womvz9ZJPPY`zwy?{q?-|JS*dT=Gxs~rtevjd9#SHHh!dkNp; z%Gd3z>cxEL(ru+a$QJ#0J^6~2(VG+1J};iAy?)oHvwOMwm&(Fa(ZjFfQ{Q|puH2Vi zyZm!_@)D865}}#jCw%zz=inu#Pfx7=%jxj@UE0lKD%-ZUWR3Ft;$wn4=JA)Zv8|Gk zQK(w`VS|BQvi#gC8-4ypuBM!Q3VRiqYiITMb$zx8*JHlF^Z1NqOYhCwZFAWwTm7SA z;q2DyKh5&J?@gbxbbZy*ClAu5&aXaDSrg>mkaj@J|L&`c&jr4QZ&yvN)J}M+Il=wu zp?KSJ-`6`Xm9m;^+s#zJ{UI-L=DgRF+CN);f2%JVuvq7v&^FPRKa?2GhX0m&8hV>2 z^?b?K82^0!4HdVxXI8Xb{4lHSmH6f5>2uoCB`af}zHHF`{9#wRl*6|xDH65I_ROF7 z{OZO}4>o-)n!F{(O8P|6UBTQ}m6wd!{&2kRU1>2(&}09)5B{2bo{yjL`EQ?M)4jc_ zdS%d4zVin~?>_LhWNfHC#PIX+?7fGz7Vv*MBmLK7`8^w_vrik&YW?T=6jOPB@3(D> zywZ=!Em)AnCj7hR{GXjGUCkv|=bS#b!O~u+k72>b7e?t4f447t@paR)?Rg7-inP9) zyPUhy{9jv7S>@!^&DTnfdVl?Bcl!UF^#}W3<;C<~`RrojxZ9@S!+EdyFNM_JWVE;Y zJuzq4XZuv%Zk0^lx5ZD7bDiH~ReE>Vo(cGF?Iz*>zVK$i8mL^#Fl6Tt-iL}J-heHv4BlyA8J){7n@Zq zwLJOH+4FPR`;=uB?vuC8{mo#zc;XU<&C{M3udh@6*UtZ6;NQXS`j=L>-^2D}dV%|5 z^Q%Ap{?KptC${3})%7v=v>z<{W-GAxL}K{U&ibv7MOd!fk6lx&x8aSq-I>EbyA0!O zH?B}#n|0{oGs_*Z>E8vV?!V8d_4y}s=5_Am%4V~}3p?jWXWt0k;k>N(vqSQ`h4R|> zEVN|rwHVsP+rB*ZKQL?A`+L!bi%!b%ul6}7cJ%4YRiRetW$Rv_di8hvxy?`SbGZbr z*KZ3fV2s#%<;%~z?{+VFe1L;dbn42gzKlC)if7d^nZwMb!p>dl=JMLF@#yZQFKdi!Uas7@ zyeY^^`H;z%d#NsRHQSD-+tl0+zOhwrcbH_Bgk5<5(YBhp`LCLoGM;$eju2h7Qs%TM)Ro4K8L>Sm@N6JA>~Cl_wbd3z$B z(QcbG`=Kp=cI|Nd>eCpl+kHCfw+8R)qJ*EHdyf6ez4+OEwb8p3r9Cz;e%AJjT~9st z!%Ou1z5I>qY-9iO?U=sdRK#Q3_^M+K@eaC)W=C0OG6mdpS#{>vb+x;Cm$(1CQWAf; zT4%4l@w#uVml+uE&X9h%x@gUwid9)h>{E4CZ&55fw~}quxy$j^XYOoFNjPP1#&fds z{EF^VE^#j_;@+&D|LBF*9wwQR1Dj|5c{RtqGVH;I^V`3+|6ijrC7kd0ZwvQ=j9J@e zUU)m}`>iG4`~GdM{1WhLVlc1FrsIBW*EWgIZqog@P|o>Ot=)d*Ww%5Vgw0fW{cBT1^XZbSHQ6r?%UJJuGG~_>8&AINr^JVx=S(erh$_UT z$8k)U`23@xUH#nUhW1YSyQf~?n}2z;{+^FFTGJBVUt?0beo1ZSwio=5xEBa}zF}7S zv#V^<+ofmCRvnI&@8dI$`l|Y>v$QP!m;E>GLa}F4PChZ&ap|cx?=IVQ+uJ9IpT7Gf zcg@Z2X&emuf6fGLdTE@0Aiwrm?2Z?(Ojh;Z`~4CB+6V3*?wzmso5=aJ^Y)Erf)VP! zGiDdaIX-u-N?iQLnD5C=GxxySxYewWlc$w3&igDQvqpH!ui3ia7!R0QZs%v-vw4bS zaa7q}`3Eubw=1?um@hKT*}GV_e%8Ai_dZA19s7RVvR?MKpxybx7Lk%C%e_@Ir)n+F zmR$9;cFkm+nOE0^^VRH;EBrmFd7tc(T~8|wW44wqY|B5oTjK8Vy{`_bJ*+iZvtRbG zbNk0qrJrqYj$Tup)70_AnUSAea`w`NdnT7mS)tJCe@A=0SDe2UQ|P^~bK`%9O%Qz% zdA0eJ>-*B#e)`|l>b1=Geg5=z(!DmF&#U-XGZZL%URSkvKhNr2FAvOq-8}8==S%VI z5+?Jey65Pw_d)#v|5;)Gwz1qlxBOeFPq)IfPs=kk zEtVBdHLHI1U26Is%>&QAF0{#rVAq+tg83cin)llI*3Y8nvaWJi|9MT^uBmbv(I3qg zzO9|R`($pO^E!Qn?eDWDc70m-2P<`tR>( zpPB!hzsy^z9_nM!>V+h>ev2Y@9*ge(|={Q)D-Pp{LM*u6HnOX zvUi%tpBJCs^&>Zz`TToj{i)aIUygg>(SGWtEz|8Qn`8c6e^;>Ugl0w3-4#B`8lgu| zhBGetzgmH{qUML#`$sl<_xk;BNyOacJJBy!x-0j7-&+YAp$(bsCpY>oV1MAY!HUK8 z)c-cw>PORZP0S`xt@@&EFiEVl6R@>NP_ggYPl4XeCe{avuC%Q-d z=`?}A2ls}XnpG_NZ+ls(<5~Q4hBsHT^*u@#&vHwM;t!hN@ND8k@Amzlrybh3_g!Dx z@tgBm*Z=ALbY$E9E32)OydOTuyi@z{BkP~-`@f5Sy#N1S|AWiZx5H-7|E^pzJ-*iX z-}U?dw|^+sue0Cx;RjPq&do`!PlacCJQO*@eM+u&V?w6$w#MXg{%5PUy$oJ_R-!Sy zyULVR|N2dfsKaGj_NjkZf0>)#V?kVgE<^L&&B_M@U)N3xdu+^~5m9vUdq`JR$fSOg z7sX3XTs)DtGV7;N$nx@C9QvP9_NK04*t<$COm2#}{_OUzoE4MK$zIfUc^oSI($1<| z@B`P9j2mk8v4=vRuQT*9ZCtDD^fdTq;D_V3-ZP&4eX{devy+{$A4+hT`1x4lD` zrF{>bS!x}zR$6!awCkmp9Tm=d|4f}XYyWqDQHhtOOU}XPBK~ZDeQ07-WNV|&M&j`uln&g?LquB zr@K48#xpp)+8d&MeAc9ObDtO6x9c(J+U`HUGKlN_6obz!OdCQt7A$w0x_pP_Qcr$E zRwZL~u4jzd>T8A0%*~knQB>qqru&}<(Tp2;%nVuIulZ?H@!Gq6O=acHh)-&Y)@CQw z^SO3-W!^lMELW0Rnt87_(#+O&{kr0Hb6WaWKAq9Ge)&S}Ah}m>L$80BIQ?3A$*fzf z?*G!~79U-Gd|A(|DLbxRD?1|5a9cv;USHqr=if9B9AB6`r{3Jb{@F6&hkN+)4W7yD zWq4V~&@K~ac>bV&TUG7mc-{3?+XQ8@0}K>@DEH4^az6WMr0P4h=sDk~W}l3{<9o=p z|3Ywg>W$+|Cf3eNUpD{$h1oJ?;(aUU+E@opXKy(vdYLKiokh9frTZ$e^ZvLsoOhId zo0>F3@YC{|8@uoI{V;FI>-ns*cT4K zcf;?m-)=m$tLWY(G9h4FU{_q7&BfjzrL}j~_h+uISXSFSscz~b-RJWHsy!7B?D2i{ z!Ls2<`Q$B)Z8?lACytj*{Csh}+U=VM%kO`f=U>bH?`QhG*8N|5_qW)858YoLbO=8D zf4aBs`_l3U&+Fe;e|+WlUNtB}w|1k?rl+g!Rc#44bgyUg%ywScvi;RR3wt(tTk*UW zThRBU^v}$6(QB2{+bnJ^SbiZIT5XS9y6XxL{MDV_QBVu#lz*@v6&+%fC(ydp7k{kF}Yrij1KtbMt{&D|mH zoTZhc+{=3^e3ygz#T`nO-6}VfpPKzI%f{~UlCAn3;Q>q$(<>+a=h}05*TulN%{$C@ z_61hk1b?bZt68=@LC9}j_B^{+EwR-*G_P%yppARKdE|>Ag0sDbdxV*XWWZBUu7f1x2|7t=|-2uu2jvRf%{})%I+^{^F@gm=Ws@r9eS^J+I*t(7P>Fd6&_ag0B&o*wgTW#l8nQBvI@OkI5$M;j# z2kSPU-t=pp#fH^Ob~#3dynXlc!e+KVSENtzF3$10wo$t^;-Hyt;h%ZTM*e}RDH*%+ zcFb+|sLh=7t4#O(F4kpbX}2WZjz8EZc5d$TxXKTyKSMwD70ti@eA18K*O_){I8G1x zrWwSybaMc|z3t)k-Rg0t84B6D=c~0g8pTU$RoYfP+qLQ1@m1ajkIS^3_`O2iH#oU+ z$JGkws(ZfIR&UFmQRu&+|ADue_|@&x_w@bAzrpW+z;R=1%Jf{N+coAkOuwI~+Ppoa z&HHKIfxB$-PH908{A_!FynEOoI-Av9?&Hq9pnnmkSI$2@b(8+{nJeGSE9J^~cI(}Z zY3f?HPq;fq*j@f-`L5Js$I=h6_fAFKIytk-EO6SM{f_2e&)V%X{}8k9&T2soMTNx- z+4C*gs}0FlKIo!E#-5suWy+3Xje_@3*F178}>B);Cu0Wed@YkkBYr~ zr!~IJ+OvO?{e$=We~5p~&Hrog@0E2ubAJ6pV|a^mpUun3>-Vt!f5N{{R=(z^?2hle zj4h$X!ikO!^Gr5Z9h%fvd_k5WB*6E0MY7Mv^Vv-`u{!@YT)kB@eeI!~>d-0f8I>uM z)7f(J7QX*HXRq4rvP&;~Zr5%rbIBKce`DEZ<{N$Y4dWMl=6pTF;=IYvIeq=>uUAej zow;0(E128#Q+(=_%7htdA4^!)E983DJe|2{tIU&=>Z^@WXW-Fll(V$Q_r2Y-I9 ziCM}%+(Z)xvC z>;FVQsNMR#Hm9GjVN!nl7lxf_m3!>|RKLEz?78=OnGez;tK1g{T>WsSV8t0{)2(Hd zQo$vOW`a%@#>S>+UpYrlS6z4Y#ijDs?I#`QOkMvf`I&5O%Sk)Ki-E0`6V6_EGuP}A zU;ge1OJ{e?yw)am`Rl*JgG%M!&zzaB^8SzN6_(F`4)ZQ}e_&&4`lnZ`_xua;oOg{| zcY5AUE3Y>R@pI2{y?FYZ&#ABcc8=o2`A(U(OPO1?WaU1wwf1>`;I6^72qqVmvoDTE zw<`X0Yv?^$cx7qTyScs{=AGOr3KMo#zrA=^d(VMiJ*!_D-_et2pC>5x`s%HZlCRm% zKaQ;EPCa=qeWrmUckMLaNjxdJFDh*AU3-12>Hk}e`)@mfm&$(P-Wl-jU@@DiV$tV$ zH_Vr2cGM(Ieqf-tBdWr?(xBJFcJ}U%z5)8DWjAgWcX>yygJ*|@7`k$?XI2F0z@7J0wrkYoF>eAgvqo?jbvSJ)WlXUDGE#B~0qd0gY} zyu!OJrLzxJTfI+Kc>kqaINNe-Y}V~dCxzNn^?!DA&!{`FUt(v^s>b!-*#CUs?>Fn;OFs2HXXT>}y`MIz z^qC!6_UMI9hneZxgC5rX{5I-s!PUNRlh25JT4C4zbz<<-kDEUkUAEu${>#yj$FfXs znECSeez^5IM=JWSESC(?^T(_gpU+DkSYQK!#*XI_$`ONRLnCaU&o83R=+}35X`c*pf z`KPLzKkpsX{_1nFvt<5*Z>jsVVp5liubHdLa zXH;U}vg^b8KP&P=lnYr4&mB0#^(APYEYAvuXPdVjNS``qMjNv|*Sb)Lw)@r_Rwu-6 z{;=x3*Q)#LCTsDZb-!=C@7PtFx&K$))si@E_Ad9*=kMFz?t1-T?zH*8jux)pmbtc= z_kC{Z+iGLW3&(f7nz|T|%6%T+T=%+y`OvKE7GGH81qkRj(Bd+*)5V z-0c`&xN>r6r1m>KP1oIBKVjB~DXI4^O#9NXXX{HVorsfcj8zl1oo@gAeY?!Ig^kaD zvSxg9v2t70?!5ie-cz5qp7?CV{wphCqqohn6;+e2zuLL%mHwN%m$yF9W)WrTy%iZf zjZc-4DNAz2MdO#ZdJY@^pV96&%bauh&z|q)PkKN9s*zTBd}8{6i*+^kUM%f6Ii0`N z@G$HDCl@dC#Vs~Ju`Jo6d(VoQPos8vznM3WHIx77=C7~j9X#75y5;0EhlXhfA9GzZ z$eCe~=izeRf5Y_stLkqiuRmKNBXdS-oh{$?uO%N;g1?$B)Z6fGtNOE_l@ls{^{7Q2 zW;`crBjhpLp~U*kLOENey$sd&3#`wbn{8t{?ZUNhTszDk9eT7jH_DdX{L4x8?H`_8 zToHY{F#EU9`i0LoGc5hOQe<)5tcLFPKSBFfZ@l*DWlGn*_LuX2^UKf6kozvuulDfP z`_1*AzI~tY;F^zvzPy`h26hX z;ktj~OQ4h5=lkuxo{Ij!Z~uk)$4&A7O%1h`EK}!)Do@!F#=Vm{Y4V$Z+p&B1D(%q^ z4%)5WpE~Qw@hv4iPqzKHQk<>+=bACw+LGMp`zAj5doAa^Wbcnrsj2w*HrM*xz1Qwh z?lYf6OwhcUmVAF*dbjZvHKQ2u*lgaOr3(c67x(&DHNG@vx#~0J_LG`t!pr0izszY0 z&5qgmfiqFzRnYdypHEgicf8zn=}F<@zI9(_ExFz9bjaeya%IN(;+CJaF4e@EYd`49 zG)bx3)0;IrI8LU+lKJ>255*rBi?ZX&IZu~Y*~z`Jy?pKMr;@fqpTC-oHxyY53{o3VqE6QSYzn@EuHi z>n_W1OV?)p&VOs}_e+Ts*``%R<*k+fXZd1ru2<^%)Pl%g)0VC}KX1MM%=BMT>A%9K zu8x$7YO@ZzdF)N%yxaiUi{BO*XF2$-_xu^+cJ+Im{=E5Hx!?Qm=}*6@C3|7t^!Hn0 zvufXdi~edX8vo{h$nrh98FP%S4^`IJeOa?pKI>5(XX2io=L@$a2JKw*`Ihy^8Qb!% z{Y+^%c~*UCl%nX0%x}xjsdRexcO{9kV z!>X*FblxrcPY+F8*Z#=<*YA|`J3{4N|1yJ<-jDANZZWE7vwk7F!|r_1 zDK)3~GmVPtFWh2d;+ScF#%QhW;kO;N)9)Q*+*D?>d*SI?9{bqkHKm!;BJH1S<;>V5 zTd#XnQ1yKIDq)^-`z4p&>PN*)abrx-KR@r(HwO@gn8=n(f|ExlHw5$qS2?lxP2D6fwK}*X*ayPtQMXFOs&_ zzp$;p&U}FP-t}$sZaX+LEzr65tl40FS_1Vc=CIknqyt???hSd}6X0l!S-1U6U z@=I|suUkrcRwSpqT70!_4&UWl^D5T={BdMk{}mhkt7{F7`aam*jPG^2!^K|HvfuC2 z_sQ9^Co6uPv+gmkU!JPCp?tf+s$jm77n^st2G7$d|9f?!&XZlIzOQ+sC(Y`tH8az0 z!gIbEAIilmEiNolcI;ifXXm}FxT!L>vaDK)4`ruZt0`ltIBp|qQf}KJnAPB0*)sdJ zyMwEmt7n3_S(Tz+1AzXo?a|_vH1GLPn&P9f3@DO{8HKCCk^|SAKy{6 zHep_SYNWj2)6jW8eQY1?savUkZ~BM5^LbBNyk4|m>)eWYQRe$14lsHhyIi*V>oTK) z12;Z@|Nc*RP089<{Gs|==UW{%na6Hhe8Asvx#Pm7TPqqrd#%!%{V?;+i(~N{(xnzN z)tbzky(aO?#g^4c?izNBZ*KRGo72w`y;dhMDqJCTf^m6A`n~MvgU$Io6=iCVZhd@O z&1(5|&u*?KHpbJhCvpiySALq+7`^YCuC1#4*ALZFKUfbb8$Sy4+qE{$&N0iEH7M-+ z3m%S5_xM8EeNSck|IDyMa&R_18CRvy{G=G|oT&KD&7J**nasxdH2)oTjbbDgSfT8;S3Fv!2cOHm~-) zRb-`bYg(o9`K&xa69tch=TjRN9<)CEJUw!q@;|;j#wBv)6YKpi#X8=}tK7hT)<|7{ zw!@U$8!H+WCVgv=R;Zd*95{33$x99i>a!PBdll!(X1&_}G;+$p>KDHE&X?|GHz?1( znXNZ(PUMX1D#G2&P`Gn>UN;&XL_lKDPrG>A%fCaK8Qv`-l1a{@*{E zE`PrVK3?+k!gKlf1OEH}w}0%n|24Pb>AdsnPkPT(xNgU3=JB>5R_Vq08W}O~M-_3q z=IvcR`{(nC8I!-13d$X4sBBY93;eROucgFi=93Ha=6&GSHVu+2W?`Q4*ldnWYkPV8 z?DXGTlezt?INbPrxDPOX=-vEJh5yA2>vL{Aul-M7RhL(6){)$r#fbBvqr04?H7I6ux9gA9qD5yQ+yBY-uJU?hL-cb;0AXJ*z0a@Unpd=SmL}Kg)Kl_* zZEDTxGVAuvEB?LddqVDkFGe;F9NM$>bz5)qPAD#TdFHeJyYpf3FE(GST+{Gu=dS0I zC*G=OJfjrM#Vc`rMQ$_df?p7zVSty}rF-Yt-(ok8P{{|9vrUU$N)C)S@T5 zE=`{Gn7RK#vyDg2q;*Z*tXH`2Hn>%)e|a^}epXnGS~S!1L(2K{&!6*4{L)z)DFZ4D~iV-=h(8|GUH*`u+YEY?KP$?!S~dExc&Urc6%dh`r-+Ok4&G2 zUfTJcw>tmx8#^J>zDl77w^jGPSSh*Kx8T(bX3I-4w^JEb#o9!cayabmv0GuZa^|vY zj%M1TD#;bBI~Ff1{n)_wd)Cp=r20h;8$W+-(2H+pcptefmt_|(fnOKqb=_xa!1 zeO$Wzk^PUi`#b;tRJQLpZ?}&V-o=|A^Xt!J?jNoFHRk^|-~U%w^U6E_pp{y1_VMF) z8vOR9J@89@`{JdY*mKPd+kCav8djC2yyX6UVs-z++fOvbLUyITy*{hizxd{!V=ON! zPB?BoAaMBh`toWvo`8Jj?cZ}Op7HD`O@H56{B-Tt*h?|THzn@R+&$$#; zSG&EhKxxf2Sw~IQgEcePoMt>xWVibIs`tSO4yjMAUY4%iblLT%-2Kl*3!b*EIq!SO za=o5A``#^mTXW7$-X@v9df(cod4&lN&(E6}el_}U=mxjb(|`ZrdGjXXb;NJM{O4RB zLjPV2t~yk*vj0^7=M~rAJ$+sEIJJ52bN$;ahcj(6Y^$v=?`d44>~s9KUgZT>R-X6s z*6jIKck*}kDc{tUrBCImYL0)|wdA3~oVN89tADY+*Z)#`RX@D8FL>&`&kI4>@UW*J zKl_D=(#w7|t>rZcfAGrmdf)TV_UVs*T>h2(xNGOJ6C0~e)gLzVzWrAAryYA4htf_S zkJr163pRgq3)!IGyri<)fBMeTi6wegrZe~6FN(bS`h2!ob9>QM*$ABux7{+^);_qu zGd<$p?UIy|}hOtPmk`s#_@$~KFtR+&evP^gu^z4_9bQ@<8JoVj^6TUL_*&!=7T zzr-D$O$j}(xcY19yQ^ZqE--f5@6yiOeRG++{HhJ^ddy$C*IK>bYsJmt9yRg2-pjDm zuPgi1OwC`fUavjn_rb$&+D@C@_@FVbf$PBPldInzJijZYR(peQ?Ac{i?*tt} zT6gf|VB{SUkK_cH(g`TkGpp69~%TdL~?xc4;8YRK8B)g!i8 zV*BNG+bw5bpLMg2*%IFSyyS_XvX|aI?&w*kXI>L5St9z!-qf(%jJ?Qj?@Q0y4OO=% zM$7)^*FX3;_WH)(GmIbntgpQ(o53D6Wuy7jE$56&j~wLlIDdWTlu|AI{@c6$$SY** zxqo3=VbmPn6_0h~t9@_!{EjI-{qt(}{2aT_1z8;Yd{g_MG5!vn(4F~2b+z^cr$xsn zEI(fG?%|T#9P2(ytezM4_M+|CJCoTs7Oa@{;rfnw>(4(7sco$Ky5o;ct^ac6^KnN` zBu$;`_atAe|KW?Jp^X#f)j#!pYLmTph0ZF=lcnEOUT<6$$XMbN-Y9%cHT6)g+1DD! z^~$QxV@t0#TCtuqnfGcnlV|Af&qbkDPb)uPcfYvK_|~$S^QtS>ex9dj9c#6E)0GYP z_HC)Ly1ca3Ve8zb*LJ_^X=~gQE)f4Y!HPvW*6i-R)p3*gZOyl=I_=I`AC{JI)%e+M z)jg+XCz|bkC-Ha5v!@4Uf7-6NO*z%-Pw>sv%jaF2IxU*<)vBI*?%{7&KN4Q?d(QG( z&pt0o=l#(-YvsmJ({G#k7%s3adcNXmNk+|6FaG`Wmmm4DWmAgrnkx5qnFSYRloy1} zJYpBRQnM<374MzpzryXdP1*ijn{9*1j)!-@Pw6RgPKjWR)uO` zFJI~Wd?4?fj_?!a2Xb}1pZwg^On^9xOx8>c$dq}S|+Z&zr8*2it%Z)uPOx z?Fw;^>ZsiCJgHrInR7SP{mp*$v+dl`-4*s;KPLQgxSngT99W%gT6nu>@x5*T{wCjl z#;v){d7X4a_&0X&a_9fgoa-g$*L~G4gbufe|NVIR^!k00|35g}H_Wg8SpD&pobdA4 zHGOYtpNf>Z#iUM9U$a&slF4Dt?c5p_ZqUjyGSeIkzhz zWbHO%{&r`kO}x*axz`dn;)6B!Sg zr7n`2balnYm7Jd2(@JB+!}MR@5x?rH_4-Eg+4gBGp0BK_h+UaJ-T$1?ny4?cZP~AN zKCuovuln4zvDf&#{QL*%^P|{(>#j~-npJ+ze8S_`^O<8q_xW+Dg(#oeywBltdrY{3 z?BO3}%l2F|JGJY>M5D`lJ*^zh^}n<|VXb~`W1ixQ)UXLxriWT z<=@r@JG0FeYF zicR4>_6{?RCuqJ{Q+$!%;mB&6XNzu@JS?1S;rry7o9kD_xYP2MA=>#fob0_sJ~*cO zwQbS*)YrjTvfw=j^IpZq`ZN1m{{-Jqoi6nvxS{{{ymitST~}@jU;Je4n*D9>c5aXR z#3gBg1tFS_>kvwuY7&-2cc%}#p=d}y=18@%oCoRs}WS-y_3y!?=7JZhVS!EGbb=L?Yb0x{yjJ6HW9mDy&vbL^OkvDx0T+#bYVffk5$iq z`6wTb#-g0BA9}5P<97df7x8*}(bbnK=CaB>m&z8IxL!@kbDw=}t;gbX?kC(e)1Mq) z+x&ac?%?A-g^SJxiYabBvt2(fqWw+v{SW`9@0a_3vHHL5pG)$!=62<|pJ9hm*6Vy} zJ#PN!|DVO>kN4NS?|UDd$@oQA zgJg=9-nqc_a*`iIht;c)eOHApefkvc9(l^we%nQn+xv6bE6UHvYNY{}W~N zvOb%C;k@L#b4!(`mI2R4%UQWP?^o<@GyH$ywpyXvxpBH%C_le-uc}sbl%*0h0`vVFMM0N>B~OH+tKdpvY+~&e(t>_xopWb z_h(CMs^T2(%4;;NGAa+q-5!5-_RAMMPE)sE>wUc-Uv^id#P##D_crgz{^a+2mCfhC z@7AHVOp$VYew+L+?h4##$Pv&|o`h|X+_`LX?lsY7wL&&IV^(&p?+?kjjTGmM!rQ9yfw*muTX zPjlrzv&S{={LI&}VKQ4RInSM&gLG$VQQ`ajm1zF87IkfepcADMp6H`{E z-qYSMa(16`!(Qc(Y)`3(ZBH|vevZ*v+x)6>c4}Ao75l0GFB{o3oBk~Ont1a4it88q zn&#j6`fN){^Ny=Cx}&%@Z(%!jX#TWa@s)Qoe2*=w`LgfwEvY$gj{nZhyT5Yn%v+WX z>b3!P)2oH&Z9RG{z4^lzkN1qV^IF+c1RPEaPdfkeWqPN>#RthRD)Z|1Ju;f@o6WzS zuTaTnzERNRmJRv`cd{5n`j^b!Xi<{OzGLZD>m@5T-CxGCGSoV$dO=|OZBN^~8y@%Z z^55t;dMY>TrH#y_o;cO@(^G9X+H*_xd~)6SQgZ3Cz^DBCW|=A8HoKpF`r;&8RyH$^ z9qO5H_MVNGNt8>UQE|-RWV8RJIZt0G^0Er&=N`XjZo(*EeaRrt?k(J!FB(#O6~g$U0c^p>Jh9x z`pfmD_wA=*3pZ|@oL3?HY4`UNGpBWbyE3uck3G$HestHT;29|f+xULp|M%echwl0> zcYl1p|JD1)we2-5;^5n&VoNUmxBv1e{eB;~4n6u?dZS+hW8%?Eap#nk=ZaiWz3d<- zsP#4TwuwMT@dowi3PUIU-D~~1mn*&zvVE*yw^+s@V&bfL-^AA|O_!$g^DW@L@X5U7 zO>XmP<(mO#_ujw7@T<@DkSxQkjSIYO*h)=SCwnfCzuA)hL}zCOU)t;Xmh;z)?iXi< zONq{?u`)imsNE!fA~opWmBWWGUn&ybvGUx<-+ARoL{9Iro2aQPqvJ1^gu%c5W92T*IU2KSF$Bsh`m=m$4gxD`fuU=Y(+agL|?4>^r7zkn;7T$g%6D9 z*MF}H-+QaOAj)s*+G%Hh+e}-yN}tvF{4buhvp3r{e_yA5&)zt`ZRNiB^ZoNGIm436 z{>%@5))IAOT4!mNVeFl?pEggwtoN`~`na)jNM=DqdyKtaHPi27U#eN{c1=%YGqvsC zn%t{vyx1jgSM0Kl^H9?p;gUzpHd@ z8MW_c-w*%zJ1Fg{{r?l`|Fjhh=V_a~k!$1gXF1*@AJ<+bP_fxYw&hEI(lhZ3Q5Qs; zA6q&ukO(;V)_Gp@&eyS0cM^NE{jzjQq32p-?H>e0Fo#-v@> z!j?MgueUJQcJTdsC*<{+MPJ=cuKpUT`*Du_&C0)FQ>Hc?;kEs`C~?|Ru1gk=^}eq< zV}7P_MRe}X7`+3!w!804X4(+@m2J|o$4_i5`f{Dzv%3~Pe-Q3yV>?-(V=Z5#{g;+Y zyE^WtotG^+Qz-H#P}t4!_|CG`rFWv{MP)iLrL?ujHr(5M{K>UxTx-6{lxNHSwP0TV zormMx8G(eP_sl;6<7A%PPLV!$(AhuzORIal4Yz>L_4f6)bMlMJeQn|2#6QH>e>nc}{@;834;IJ&$b#SQ@&Eos`MQU>KW>We z=ePfSQ2vPcJN<;Y?j44a@oul}I!{b^?V*;ldR`I7?UlaWauU{VK<(s&2mUn=XeR`bv0jc|I{U(stZZFhgNbhbL+=t4h`XV8~iEr=V}8&Dr_UXMgy@)&hJq zI`K@t_)PY9iH_|T6J}<$ygZS8e^%@H{XGk9*46C%D7>`%@}l!Qn1674rdqOn7p&7= zd1~>}^40ZDCnA??uKvVyc+35uitCM!w~IT^-N&4J_{$e>h6fX;*-iRYVr+FiI5+LM zl=XE*1%>7{ind3MzfJzPyT(m!RqTX6#_aoEDIQ8Iu)cox*0!Vx4*qL=voz4EMvR$$+{+vJap=OJ>aPsW%0$JvFW>zIfWeWVdeVx+lweza81rZx_Ay!!MSC zl8SS?E>8Aa&Ut;ay7*zY`lg$jydU(|8{WB4`2Jt2RQM~-6MICy%zpZGXM^nKdr_yq zif)pe*N|cH%&TvgSpES9jb;&pHyM{_8-xj@+jf}UnA|C|H}i|)x%3&k1JCn)sQz2= zoBy)KK0m=p%a;00cqwjiYvMNMtJ?1)YptH^?eUZBx>s!dphG^DS1&X#^0saM)C)gs z@_wB4ujjt^`DOmW_{!te9}dU=KL7F9TS0iuxnHWPwEn>Q+CR}B{O!NJ&79NpIBV{T z%S%gnHs5=GbkeVFvtxz2PafJ8`de!a*Vf(9iT*jqk8HRl{n|p)ZIgDnT_negYx55t z&%5S#rcfidRwwJJ*sK>PHf1L+?%j~vQ1s~F@)$FQFW+XD-C-2iwl3^WUmb%=;JL#Y zexJ=|ZHn%UQ}w8HziFT=7s$zsa-`{Hu5pL(CHEG-gPqMZMdbLY3ty7TQt z7SS5(&fDy3s!C6s{YO*avCSQUXt!e;!MB(8pUc|&jsgPpPK& zQs>=E*B5SCXJX50VCH@Lwe!!=f+OcI2Ic#Fk5bCC`*)_&X0rCvXH_oyBJ`d{KQ`_? zwR^1+@8YjZ7j#Wqs5Sd_Z?g(l*`zzt*FLA-ebsTRbo0&ovfBOWo4$N{z5R6M#q7N8 zFH(blX2@|xRL(AS@IHN2)$i)^72nrfUw!>|GK(}e|>c9iG_PM^nWf}UF&<*-_Czk z!rye~hkH%VsC>vWj;EnvYzKuhm}tN>#Lf<+4zpFY7d_ zw!gONjjw&tkYST`pe3 zSF04hf3mjReg6GbVZ$>oboXAq#lK^bk=U%G-8Ru$;hchj<%Hl`;yW1u9cZZ!c6UV^6#lr7k_+W_mqcoxscrXig_}hcgU8%a$RimD{Pk4 z1Md873ud24YUwQM`?SJRU|tG~_T4urGvx%l88nP#U+rGGLM|owEZ^_5dV3Gtm}a8k zb$ueEXZ+`r#=>`3Yb-y+Si)0s^1E4m@@dHh@}IiDCpx9%JJ@yK*_FY-S76ZK)l~dN zA>|gI!ubY-lUg}ECN}r8+FB6t6_GXNFCAwK9eAZXn^VgWSZS$WO62Hvv zyXjKCCC1-4?p$o{w_)(LVP#&i`LX{&IlV1@?^xcvmRRt(t#5Ds<=qz?Ep^xDxpK9r zYc1dZWp1744Y50iH{aa)k15iDc5Z@~s zW9Reoo9bEXL&^qG1z*qd&#ld{-sVk^!zGwJl@8A!?O#I z$(Q_@nw@Nas8F!5;G8qR(Ssv`d3x%)&U1gTUK3P&yCc+3@pkNw)80E{(j-mJKK^-P z@vJ#-KfV4eVYfe^H*c%WoSN9@T}r%L`>sZ8oOjfwnK=IgmvIj_qKHqvX^7-kM)ibxp30VRb@C(=YcuaSQZ=KJb}HJ<6^Oc{#aQ zS@BZ2{+c&WuZr<$ty@)cW%ik$tA3R1mtIm*G>Ih=W=atJyg8%y|VV$>)_Om%m=ae)>tL^Ecj#)s<2Uw zX~*rtwX?6e%0BtN>sWs5-)YP5etjHv{dq9+CbjZcAB7$=t#~D7{>Yto{@k7ByT0*A zY*p^5KJoSO&d=5=+mmyp886t%JV>nBbZkSX>AasZF6U)*g&mpx_h{OGFR^c%FiS7> zd33}lWB2zCU!86{T$ub(BtiLyDZ?EO`6305>Fg8uzVk{IF5btn?bAQOWb5w8~LZhEH=%agOJ@_!uG-^aWE$Hn(Y+U?D^o%v?i ztJiT__(QsI&@Y`eVoi3HbM8FR`*x=B$<2+PSvB9T{OB)i+OJlbVt02@;tLzMbJL3F z6)y~reU@%-^Rw@d^|I~v4CeAnzu+*w$G+kCroIokIX^4sJiLC9;iJ$S-i+GgWgCue z{#UXj{Jd=F^?xR7wrfPUyj5Dgq0~HuVZGe+=dCrB`&MpycI{_ljDOVgWS6c@ccPYg z@ulB$;H^x#qtjz|-81uhMd5^nOqz2f&NXU&TB7WdyLxX&wC;y*Cv&H2&##WNds%nQ zZA$$8SHYjZPh3^~Q=@);dj$WUYn;_rMdz!BNG{l6$NXMqj`eEeIX1!jO!coXHJ1C6 zV>Q?CqLIU)Pdl6Be>W z_vH+u{oHFsuCcZM4c42kk)B{u5>@5R8u)&n)Qy+w*C)E0tvu8t7j9U4HsIk}v3(YE z;?CV`i+FVX&&Hfv0-HAOKlaM_o26}PL`dRXegE_reh$aw4(8mF0x1O-rW-8v+4ait zu+3(Fh69{mRC6n8d*eT!Ei`iIjXYenev9And7mfTZgM(t%TG%n^me-+tNq#X)Q+!H z4o6Mm$w_AjDCSyld~3JxPpi&-(Yp=?`fOugAe?Kk=g*@%I?wj!-9Bz{QSF84;XOs~ z7v0++sBTxRec_6rZqV5Y1{XKkTuBK`_^kKo!+E3dx0`Za{giP2V|SP#x2fUP-x+65 z#;j&ET`hSb=mw)+-=25w-r?&{C;!m>v%|*tz(tksn?+Z#=$Gt1^C3>gs=)bL%&FMd zv(-+;9x~%ze_MN(=aOeR%on)*t<4j6zJ0cL{`XJo)(c;FdHch%*Sb-A<~(NK!l}WO zZMWBaOWPMahJA`>qi+lIf3Mqee_LJd3F-g*2MYb)M`&HIz3R`tct!n1wd29EdA~L^ z?97N_IiTsu%I&=G>xG%l%Ack$7cH89#B6@)GI{6S7yiF^{%d0T>;;Lli+c988gUC- zK9Q)su|mG&ZGD^OoYNxR(mz;t$^P2>y^X)_o$L?&y6^W7?!Ny^5WFJ1=IC2dc&F0; zviSS_Bme(Be1EW8zn(Yl=6#E|({k=V`^#}hsqg-V!)|XR3Qg_^R(C$|Xn)MOb#`X! zio0&RyQhWPK3uNJzgvxAImb)k^7MuXx$rBW%?t0>Ud)qfl(8{c@b&kdbCVtJJ#n5S zW48HBV?q1;I))b8d*%$4YlC~{k-wRzw5FXzRCDx|ndUgmTyTfZk$F7#%od}#Xd6D#}P=XyVV>oDc?r#HKl^0l=l zZ~hUbKEdK1zXeCgNypDji)wfLTNzUkraJ#MN8ITTQ+)Qm;q%b?&oxQ&e)=z;pnY5B ztYZHD$kOxas!!6J125jUSo!XA+;5F#p^QI5_j6SqFWT6D<&R9o)jhH-Uri*#em~*b zu(sr8u1xOwU%nsmc`k=2>^-&qQvUySw*FPu8sbBkeJ{+r*LG86;p)8oMs{Chc5+2n zFXovLaxC-7Jp1Q`(-Vchh6W1aCli0^D!<^0r#A`Zn3j*(?goGUL)xVhoW)Rl!tc4j3{ z771A|BGJ>RpuT?Qw7m7p=NawXeQm9h@s7pmp8_XYS^8;OWoD}in&ccR^f}aBF2ZD@ zwBJv0^Q!ho>UvQ}*qA~ce}10+wf&P~#DW7+b#hU!Z)Z&EUsYbx%eF{P>D{zTU#}iY zwA!L#-=uW$u#1)Q-3z<#?3z*L6Pz*Y;Cn6gx3>8m`Yrt0Q}gYegPy*$-84J)-A_}- zxokFaa^WnmCw#Ja_4~!CGKRMt#o5&r*JR~txbD4WFF0HfEWgA%=f#e#jAsnjoT@QD z(D%~H!rMRVn&8q;7rt38HT`7wDs0=|EBZ{Q*F67aS}A55lIQq3+<}YpE;~Hu+-hOzMyyLLea~p>3AKtJn z;kvNgk|}qYWJ2N`aemF>&>((y$>)aV@156KtqQnp?zZr?(;Xg-*DG939{=?(=6>k3 zl+gHJ^Q@}3Z;*<2kJ#|x6m#Pqwf#QMj@ENmTmYI~=DOZl4W6BUtD!~d>L zS^v|bD7cp1DQw zy+}xioy{Km#de1Bwd)_AzqQ~z!;bd(um9buPu=@@X1f;ub^EukWoPV-lv;N`{Yyxt zslD&%)168@@2A>d|HxkbEI0OYVC;3f1D{J9uBWbhkT{Q*W9Ge$uR4x>whQFo zkL!~>S^ri2<73bY?RH&d_WGmtO@lQ|OKO(e?A9}y%bw!zJm0k>VN!aPR(|O1kNaG2 zH|YNh_;>DB;nzRl`AoKziLcVma4lJLHB?f5^} z;r+fz(&o|=k;UtF6-`*nB)7H2uvgNKLF!gz@Q#jUk55bvo|}EoH^pt=T&=@>;THv* z)g(PG+qi3%cnI!MD%3X+3V+TR!8h0H<}>4J{;-DVwV9Q_On-13Fi8-9b!V4Ufp757 zi2AA1?<{mT50jLYx|bZ9xQbu&r_|O5ieYPc-WKJaQ|p`eUF>cB9{K%u?C0N(gP*x(%3lr? zK3v_yAuP4%_Wz03ZxorZ{e9Q?WXZy>-IJCsI=N60Muw2;4?!Te{+vL9<7FAd+%^#8Pcjr_ll z^8aT4h<^XewdQuTeNrjx%))xBm5afXn)crxeSbLhFK@b-Nb__M6%+B04kt;sc$f0`lT_fP1+#j2p!+iwmp}YF+SpqfBK>mb z_nyz&75zVL-m}lVi%H9dFTZlAOM)z0Y)6;GeJZ9RYE{0ADsV(TXDY%82s@&5DK zSDFzoC4R0fIedEA;#mFvR)^w$uQdL)ADJ?SC0D{Bh!}TD7I3>fXf{ zn`0inY8On~xIXOjIrT^DZ9?6GpG|t08TOg;pnYEU&Z;lD$NG!6X%(+wIP)nmzNKSo zyQ1U*uFKQ*v~a%eJ*!#%tZrTGlfCB!9zLJ!FBinWKSKA#voC?$g`Z?c9I*TT!MJFH ze#M&Cs9gGFY%XOEvVeN&Qi+e*b&EnTe9uAHn?VAw~`L$XSe_RpmUS-v!V|xqQzdl zoDdbyb?V)XwAyW&&u1Jay8k4< zx!F(Z`?acykE(V>{bzN}Z%S`vKBBC#*juec`<&u;hWtf7t2dhMI_jLpB6N}O{h{Xn zENn?tOm6&hs>P-&u76)^eU4>H`ib~G&BQWJJx zFip0qeab9Sw=|hc$)WgK!i%&koCixk?QHsFGEsES`M*lx_|xk)qff5{~whbUV+hXfA z#mwS2=l*(`++B6&YD(-mRX5X)!urXZOeH_Robi7Ke@5)IC0}KCSFtWS`xKD86Q^kRmv0X3RBfqNeKO_uq~L1{XBeK`T9cOQE;Y61@7}7)7oQ(2U`t)~MOJ}% zlY8Iu+fVntZe_~=OwETMhw}%L_Hq8{mP?KaC4>3E6b^K`r5xgT@n?>?o?{# zbkKZKRm9xJ_L^fgS{K5eE;JUkTNr2CzGPu~o+kgS{%h^8r(RqC{N>Zc3g6T2fl}AL z_9aSP`!aLc>z-H5&1ZG?pI^NzX6CwUcO!R~PKdo+EL$>RrC0E2&-Lp|Rpb&^Z;N6q zo9AAtw*1tuoJ5|}3m=BwJJmkz@NL#7wj1Uh9;$J;J137svq{G8`k#q}1YeP8_+o__O^T|;8$r_WnXKI>Jn zvSj_LkU!`1Mz%chc~>{Wvc&~5$6RF1g*5KFDxGSgm z9bUe?Zgcg5@xA%Hi|5$%#T$p*{kZPRvNz{T{Ttn66Aa3)Ih-qGEiLvj&oFtzgM2~v%cjT+cwR#dUE1H&%I!_#I6g!Gh*0ZOjPIJ z^<+82+F2{EJSpsppU1=T!R#LE`L`O$YtDT=$r`J-a6!?R%?q`^tJb~nwd2-p?@;vl z@VaV~eE7cB*PHIG*nVlti#t-Ac^@n-UHzN6M^Yh9Tr+h8|CF8cj$ZHornx||FQg*x z0iVqCnF&==&q5E*IB!)jM^YnwyG(4R+&-QQMcJ~mHMjpd`ZP}KaQm%3r*xycOU`Z0 zPx#SQlRKk0{A){2{Lk8N*RRECojQEaB3f~kc4c*}if#8k#V5k?HL+_p@U>Q5e|T=y z{Lej?_W4Dotj|#So47LWZvKzE=j&wazHg3ifB$Ed_{Z@3Kc#=n5|6W*`Ww3Ys@5{l z{qXX*pI(11+yCI(^L}YL(}(q?slhA4<0qRh`BAifa@1?_ZJ$CUy*@bvGu44)(ReRMjo=kcC>Yx(PTos&Le z{P)wN;JIfxJ+;@zM7^B+&Q9y`<~8iO^W@&8uAjGY&78G~C${R%-*!4gKZ$Q8+s7?B ze0r(tif(O*S^ddcKK7rMWmeVML#wCqq&Pf2bKCXwl0EjJ%U0cqt`b3Z@df zU*Qv6A7}4d6<>9}vy69jO-O1;L9y{Xk(x(;7u$SKJU=sR!i zU2%Sz$&<};tN(3}{^6CkZ|SO2cTfJVIu?9$)t@hMjj;-^H-37h?3g=$L;Te3*E>J0 zE-Jb?=WB52O<5nM{jf6?zk0KQC;sEZ_fyQT zYUY~XJ@mso_I`HERnvU`eG&^UalT)Eck#vFF>R|)y{_Hy`qtfhmHVH+eSF66!~0IA zXG^lGA3yhu7i+k`U{Bmiw%@D1zD;inoc{l(%DY!zR+~h9ynQMlOYN9TI@`o6n|p0c zyLSftYnb~pz>;BVWlZ=Y*LhWMRV%Zmx^4ZWka9J>%Jjs`KRxf%XJ7uhOsed^)C0L$ zRh4Wzt}R&oSN&>GodncF*STZ#g7y+iZKe@G_rWUPrH9viEtz4I%fK0=W2O-f&xP>R(VE z;4?+|%PG6n4|yflN^>>@3C}$cy!rPl;}`SqUvO!f?h#b%`?R`AXq7EX2;=>#$I8~xe7(`$;o6~F$H`sn0+`{4JojP7sGF8=QQ&pdb<+;jKI;_; zK7Wzdc)P!5%e3b&jbaNH{JAI9*ZO|xCYfF36}s~C7Rt`}WqSG5t)^?KI{zOnEq~ZN zzgm6Y>so197jNEl4MS1er3f@l zzP2$&fBDmShNtZ7&mZ7Yn7@gSbGh*8Cs((hIK5afxBm5=sm~tT{BYTLYw`G4=hs_EzsVtGGJdb1eO%bo@t@c3zexmtej%WoU3 z9tGBY-P=DQWWU+ZVuzz&b^B$m2Z~+(SY`Wq`^lZf@&W?w#uz6m^%!{eBVYXmsqWNocx<=mO7Ac3!W2ey%AA-k&JS@Wx^C@>;e{ zyZGjx?SHM)x$W|*{a3$~u{Ks>2djEMzI^U0%tNt6LSNs=Y5IVMWR_xY?j~x1# zO|~{J{<-Q>wH%MAO$u}2lf82p;@0!0oZ^ys>5|-Qa!%BG&u^(uFCDDDp0fG#XJ^G` zvtz#=-(B)%&bj_Xr;0z8+jn+<;rlaZ{x!1_sb5F0$vIqG&Gn@EZ-V^g0%xHEn&-7Y zL^8HLdD~N#65)Qf_N)KpD>h%hJ}z2!`(hsxLzeNpef)hPm+VA7mXr!CfBw36(<_x4 zo-KRWIDgnA9AEt8w8`8n^6Cx8W&E-Y+uqh5>yK01wwom>+wQK~dgc77Cx0Jzouruj z{mkkg`JeNq{4YCFF~#VI!v3=oQPb=i?Q9qK7alU<4bZQduBCDHq*Cyu7+kSYP4ez5aMw z{&(4)UH32DI3zxOZhudyk?-2uS${aHk8LUc!hE4aaDv|F7~9=O0wTicTgrAQd+9Oe zPOyEtE+IbRSfc9h_fdVDe~L=n5Z|nR@O|L6lNS=-Eb!g1fjMLE;+d&e`oD;>$b2_^ z=fdB4PUw3~v(@6umxOtjU$!zaD=Kx~R{qd&V{@BozTjE!_j$?g4Hds) z+-+yAyJ!92s_weU`+^@tyNB<4EB{!d;?k4r>OWRtJ4*9q-YobIpwqPF@_)|CU*>}P7W9aMild+PU}hb- zjMrYK>{CBpdQ$&sV^zxA)5aY6&E3}@DT|mpEWa8MVr;T&=8d1VPqyk`=UNx4@Ic}3 zi|oTrr+9$RUSwGdYc`RCE{|AFTcMeS$JG*+V7m!cYl`!-4K|UvnTxQ^Cfl% z{6ntA)a`o5vB0mz{vcEKKa{TQH2lwVPeLFgBo<)k0E#uCs%Nr(X zt!Dh@x_idUlIzEv?WLAl*DcOv@i_iFlCR}kZf~x)_pVp})4s0x`t;Y*PghN(f3e&X zeRBH#sdldsyuO|J>$;7YWx};;_u0;j=Ecr(ynmWP z;(fPq{!j9q_ms!J#Be|V-YT0fFRuP&wEutc{qg&i_x>xBvQ1X*sBpUDT~tRre)& z{x7#b;qU(%{<-A7U$~$BhPaEh<-ScZQp+a@^r?Roy*qD5`VHQ!VBXmW)!&w|IUdl_ zZjM^BCCTgu%j2>o#nX*mXxQuDIhDz$J)*4PcIi- z_3%}H`*r)LH$}0DQCIx0vM&q%y7r3URY%_SsX-TfzOG_2F<yjoU&~XHw>yW36F8iy(+|GKxK6rcTwAjPp zwTG>m1^0yJeqH0gzM{Y zFAF((_T`r^_ttMQnYgI!iKeaTi)X2^KZ7K{E`400k*Tr2DIm$s+5Ez48-8~SbB8^_ z{eF6W=BMSa88`3>HT~RmeR2C5Yhi_*n{}$M$WF3MJLFt<@UrEGY4e{K^%U8?WnGyX z=zF4O&AqC9b^4!z=Wi3NV%W?zW&NdZ{n4uDzwRtw=)hnoxccVqKW=;TY}}_Fv-4gQ z=aihVO8BRY&#!HBbsDQ*u6-_$#((I;yFi15o_`oGz3o^ybN&g=7q`UXlO~*A^K(sh z{Gr#H(-WV@M(aP;cu`@W)XFJ+_(MYrXA0Z<*ItQC%xl<}>B~8B81y8}=bP|z&ZmI) zOJ$|yHpn~Z3dPr$|G3}cJS#G{XvKj`byuc;^H7}cXuXB?dn7+g&q-_F*#?@<*4vV+ z{Y=X}zFc`6HrsqlW!k*D$P@M1jLUpJ@GXv?T`7Oy_Pylpu(iRxw-s*JY&(%&@%HJr zL&e{B+^Wu=`0B02{`LL>2A}uK->Yq2fAR0DE5U5Z%tyW`w$&#x%bZq|neVzgWdE5L z^GnXoZ|dwhZgc2O&pz+z87}<$qxg1xXuNLo+4#Vp850t3JXq4XDBDK!g?+KWA>Cd6Ry+7pb|2Y46>R+S& z@9p}Zxi#l++jW@d^ux}cd+yZ#n|J@`nfV9S*Z-OQu~UEF)*qkvrNZvYvOGR!UNir? zVcO@3OQQbXluD`T5WVwewtuzaG|$qL!p3tqsQsz06%KPhGx?2BTX@#QmzNIa99;WZ zLvigK{;m&vT0G5Zeam;qE}xouYTbLofA%)tz9p|dcf#^mUM8c;`LBn~f`xm<`vF6vs*Gh zEf1Mn^6usC?ZTJWJFGE&FMHkpYr|#1o#&^9{K>GjJ`nKn`Q%?qBxbIAdSTm3Ww-A$ zE`B-ptZGKt)~7EecdWe4TQzIyzKSY6>E73i)AV;=2re=QQJeJfL_K+~Cu+tBpS~17SoCrzS>lIwNu>FSQk9&dD{Hu;n|9t5C z)VSTpr@!8Q>cr`HiP{0-r=RT#)cqRz$!uMXkuC4*ml^k7iMnsNwf(@Ae^dWhUU>DB z(e%9@^S__hR)tz${pLAukALY0pPy@gaa~nc*si*s-S>9mzs>JgFh7-=UiI*Kjh+9h z3vKDnp`UY7A6s_w&N1Ee#&`SD=kG#yT)OFg*)l`SY45F~<}(Y<+RfLz5c+gMZ^~24 zd+9S&>Q%zdJ0)!H5B(7M^l(93^u+$=nTbo*$xVIrbNQCDK`n2x@~yjHrvEtk^~~*t z1H}gUy8olh7w>s^c&hEctXj^waf|^|lX>Kfa;`Z3d?xjLN{LPX_K)I~I~kY%eExg0 z*rIt_Ub>ztCKIDrJKfKV&bzqmyhWz{fi=0$R?bU#*ZVyB=f`_n{r#_V%u{A@lx2$8 zeTVsHjNLK$2ETjrRNML(w-siDXC6=6vuda4*Ne~AGcD%2@p1Z|3H=7jwOe0t)NkKW zt(E%Z@TXJWd~t%Y6>P8ZrX7_PkkShiu~-lW^6_uAPm(=-U=Ik&%(RjkNcAhos ze|S~S+POdZ{p_<=7qkFkNI|QRXZfM9J^x7k|Ec>M_kTXSzvH_4jq4k-6?4zFJf5Dl zVfWIL$}*<%R|9_R_O`L(zMC8`da}%sZ`JwB)$5&Y1r{$6W|0bIUn%agIdA&u)o(rG z`#aJj>*FiG7gv5$l}@?!!KNUoW>xupMyA?Yx#fi~@->r}+vNDYnk%PopQsgYl6tpK z_uW;gu3N2Hg{$_S@qfPL*6eeqe_YSYGvN$DRzC_{5J!3j1eHZxZ!d zzP&WgbLDYkS#Ft-H4e+&E9*`yZ!V6Vmwi9yMA5Rx+t`+d-+p%L^QqhCo?f^e|2ZH^ zt7JR5@ugIzC}iU#yi1kX)XEH zzd|4E|Mr!u;_HIXGf#J%W0VW2+uFY?#%O)@@3#sIwlDr1{B&~RjWDiL_ak?$uCnj{ zu*UY!uV3+veH`KQ!YAHRUs5rxHu0FXCCk}QtEPm?zxg8>Cb@81@19EkxGNV#&p2P& zCc1p86Hmx)*+ZwZ{}gT2{~h)8)6{D|;okFSC520DY7&{3HqY<%w)*R}omEd({F}c& zRJP3SbNA{f>GEG&w@saYaLbC%JEs*kt4pcZSY=pf`b^F|J+EuGPWJAU`|`DI-GAn1 zO}@MQg7>-mtN%Ulf7a(IU6JYciplJ;{kg{9dEYqRcIrG8WZx7yU31UjosV|Bs$BO^ z#_f*srYBG0WV&w#=2d+E**i(HKx+Ty=@I*~Kgd0tyX^9lyE*c6>$YwcbqU$E{u`eV zUva;K>`aEQHrx+hFzWWIG5VR!%v;PW+vEJpw1}U%@SD@?tt5HtFA6mb(?MNvWL0)_pzP-jy#XM z=C|DL{HGbFcfC%pVKDvP^~v>#TBeEr_q>aC&u;CyG;{k;*8uIeS&C7Qe{9y9@4t2J z`hXYnulFyE`f%=6-In8doGwvs(|`FnS}YHL{h<5JDgJ2-}%Wq-BhukHJ`z2~d`yMJ6+>+|&5Z^hHk<@a)Ky~mf8y*HL` z_tLAIOy*u|EQvqa+vMZl+aGElDtT$&s#3-N&wF-XUSqS`iS>Zdj_V7*v-0{CUwuF4 ze7Vs1pANSaey%w4GiFJN=6Q+x$E|tKm&-niWUiB3!1S#%QLFI8t0l|i-=F`IWADMw z(V)g`cU^Jyw_4j^RSWJohRRuT76yMJ`gT4M^R7w%)v~nvfpC|0b#?7tF^Bl4{qYZ< zPvXCPy88dC2dTzukB6&T9_PFo9&DOD*~_xBNzRn#+4pNjyR$uio%|j?um0cMKZSC~ zZf8vh|Jiah{pazl_67RdTrscSYVQ}$>#%sRyIT0w_qpe_P8z1Hey{j!yV}P^(^p(v z;qLg%s^7$BpJB*BVVgsNj4I2!_bRM@cI*l$GbpI#oZhKJ>Wf^u0I9? zJ3?rcpGV8LI`gwqR#D7-_olbY_A~FzmfcfvWbe8@$$q)0vn5CPdvBkc)|%$_o``&e?C`ky4%9ppzroB=hcRDjQ>g>vocy8$UeGn zY1XdU4u;+?H}6PK{&s?+z9J@D>i93dsP&&*>?FU>eqSe5|N8a*rt|xMu>Z)O|8M$_ zpW^=+zMt)H+|?Sr1B`x5=H~xIJ z+x|9Hn(=_muFZ*C9WUn|jD7T$d%C;*#puJH`3{{Eb7y+2x4Cxz35V?I`LUO_udS&If6ac>db_|+zw3tceyy!le^{2h!P{%*`*+vGx2}>8`LZ&7^5sC?L)s@6 z>`{<^@iyqxOMNIpXi3wnRB0MOFn#mT*;nQV9ObYn#f~F36MT?TKgX`tt5`VZi5WMnAtR zeB65P&%4L*SH*vG|^SwQeQsx2?bC+y8El*87!a|4;Irm-@i{ z^y2q+ON+xhw0=1FH)~Iwm-Xnbv?a4`T;4mK%9Z8*Q$L?x=xf!#^vG%^Pgei@1FJG6 zPTfx|J@++uL2-EK)z1^Yyz4r|=fE~MDopkSH><$Zc@as^-`m*icooYko$$<1&XH;U z`J$&W|4;3Hf1I&icFF2T*5|YSeGNVTLo_vGugn}CW{0ObPi*~jqtw}duPf_+G9mH) z8O>##D-9SdS^v*DeX+VY?)f6&*XDZ~a3#R`q?Q z_L+^&4;ExqmDeXd-LO0`|G1ZI_`hHC#96KOgobXt_MAo9+nT+F zns+^H^-OqjCq~!G#A~b7Y#->frK}>TbvI`x$F`w7o&&KWnBXB6pVOtF{wn-Vgku)pllM)@7H=by>0IXCM} z^#i_=4>?P2MEWj@Uc`F&cmMaFbN>n?YjX$T1WBZ^qZ2zPZ(2 zV$)rC>Nvyvow2@Ql6&WWnkshemz}kaLCArOrpq=~(-gjckg@r&`+W`H{_p3~KW^mT z+x-7g`hUf`hezL61m8KN3qgOR`R`Z!4*qfV{(tX^*MG$e=DGWn8CAbx+y3$YjJH>r zg0rPE#p<#S=ErY8ao_*)-15^7<^hH>nsf827H^N=<`VM$>z+G@1Ku|B=!72BRk?0r z6d`Qlzv~*`rYv3cdBnDF4(<_Izv-0qre`ZlgSwTj z+rLXa^Xp^Y#`k8z+pnf=Fk9a1zx1T3dA!2)J@Y=T`si9e?J@W2yiP4%(S~IUn8d5D zO0Q;)uHC)#qt%C*Rf;>W&-nb3%i+r|!;r9~+`xB6F^wiHF*DlguTGpRx?t(~Dbu-{ zG*2vhAGxl1rT1$0yYnX8{}VjH;r2RjIldn4^$l~=tG+D%ZaJNiZQAiaTl%7wMb&O7 z|Ff?2!>6D34!ZZAw+b;@U1(FE??2bSrsj&(jyJEXpYPoN{af?Xr+zNVSxd);jdnK_AR`{{p?lMkM@@HXA>>m-q!AqoU+B=XV(!) zt$(I9qK6}<|5&0^v+z^k)Tu%{KU)@^TcE1>Xw!1JM>Ddo=*nMPqUD`&ak0(MyAAeV z`mSjueAUdej6Imldc`0+)c?V(b1VDzOyPU}yQA=t2fNp^O=S-*si)095o>tbremeQ zZDy9oG=&Qtg0^Z!viEmb+`D-F&^EnG<=W@>X1quZuav*1%dvX-pQdAPYOkwb-;&B+ zAi9|KvvqpRvxt@L@7{{P-+G*VeewEp)kUQ(1yf_Ei~Xu{FHk5_tv|0@cjr-|SFHQL zo{iIm?zyx4J@n)1Z$u8JFGRHmGRJzQ+<4Wo2gA zSeEhnpV{2`LDqf&{0D5N8K-qDcAd9pwg1Ac0r~5X2gx%Y{&QmS;{LE-amVFDU!GLX z-G3_NtKcr9Zl~C@#!ITW+VAwn^Lo^-{r2_w9I?fo6*8YK9_?#5{9y7WL2308$Mwlu zZpv2Ox!kel)idUE#`;mSbFJ&|i+(zqzGw6KpIftTex73UB=5?v-tTe8>c3n6*97Iy z2dC%%;M(`&l=-wXci|azHb?*81K0QcxBPQV`aj>kpXZhz+hf(Zh(oeNQjvji>y@(X z^Yee{Rh)QV`%I-nOw7ljP)s0w}9p;dTpF#c4jIW>lba7$qsqWHQD;{5UDp_*+ z{9d(>vGZ5dUVD3Y(~45}Ao06idyM+)*1can=iQxG4%TU93zuuoOxN^-mW$8 z9M(Rc{8LD5>b1M6lixmwo`qzJMJ|7aDyMSsPyKzPEErt;~^Czl1**RPBicop5h4 z>zM7e5HXu|%$4m+L*pikO|RAUzyH!UOWtW3ufpf(+g`U1H45K-7kRSY`7CpNz5e?j zXBb2B!`Ih8HCbyz75GPP==vdTsNwwX+$g^q(qbs|~w&*2XX8 zpJu)2i;q^>u~WA5{+<@U^z8Aj)fGL_j9%f7SDjkl&p6@!)rfaSwOcoO+~2LUdi$#F znoqC1{CHJ}_2b?cj@WzYKhE6VG0FE^2ug>^sbI6$ekCW!=Wk+Pz z&sy?#JHN}UGX1B`HoMndv8i^^1 zm6Cf-7k^hQjO=b)JIUJKCNTI?yVL0tGJR!%|DMkXZ=N^(_>IL|EZFkyNAGyAp`x** z=47z*d{e1l`}b9kH%`v2+J2;X+KK}UmT@MmP_;1Wo62Kw?w~8%*V$Kpzc%Tues4IP zuc|-wU*c8EPp>4$JZTJ3zvi@Vo<=lS*W zZ;iLxbJ;xJTG`tx9X~q>^SdNGwzhoK9r(-o%3+Q6xViV*<+`^$wGMw6>s+y=eAkyL zzP&a4YRAQw?LHhQ_xy*K{R0pFlzw-exD~hVPS%pUxAv5B(7dN1#}Ar@eLWLypJefa z;m&s9{@5MaInS(5h0Z=7@{BbO}W=+x&P_o zLy}3-?=NVTb8t;k6Z=zDwd~vP;McrUw|h-l@Ka!dbXio*`H#-uxvbS3T-g^Sg+7S* zXvBJM`l-0mbyu`Ca<4k(e6BlZ{li86@!ihXS$&+B&ZTpInVtXGxMat^Th`&e~2{ZjeEWAjr+s;bGh5wON6uXy6^I_?~!#2$TfZ*x7PZ| z`&#M8a{m2NYqFLcKe)2(-2Zt;VL`(Et5Q>{Ju~NBUDlTO^27 z7`UgW?^ibn3n<%lGI+Xi-L5sS0#`+`%kSRv?~K2rXkGmVlc?)lEf=@w)r;oOwZG*i zb^YL(S3a{>-LJS^^>5bl{>rJ>Wi~X|-n(v^&wlyGo>}%=WetO-W@noic8(RnKUDf+hm>9n2U$z`h6d{?sU10%l~nXc`h z9<{Bx?pNIJJk$8rd10>uuip5!=g?-hKPB&N=KuID)w5ExJHYYfWykefWz_4}vp9&p zPBUE5u~pY~MX~dSogweO-%d^N&whHU|Jj>Uk_Y%A^}DkyXZo%BvSc%xnyA1RN99Lb zrudg+=)La`G4!mQTdG-{uNqplx^vyM-nO+U@>ejMcMZ4<6=tv>zc!X6t|g>0d1p!r_r?d!^C zcMKvQ%k7oQ+F=zoWy@Dl<4+x#oAMPBB~D7ZTn@Xaskh^nFvoMptJ!*QR+p6Xs{1g|5E&Nc)}Q+pE*n#TaDX&bjY9P5eN6%`L;EWeK+p-zD2$Say9{Q_D@~ z4f+R;g&N7qX9>jE7H`(EUAL{r&T)hOr=yb;zb<+FUZQfxOo!i*XAWdpeF-&Fvk=ea zN|Ai-BmGy)ZHL6o*)~saJouddMe^E1pZ7a-o)%gZf8XXGY=HTHsKxKb^)>H9|9m#Dle=H}{c-U0SKgXgFBZwCzSX$xmR>b$ zt#Lxcjw||sV4AO&BVB^Nq3`GcE60hr){u|`|%q2*RM-21YA8mzq;C-<-x*_HPx9< zS3W8IZq`s!zVEa3>lY0Rw)<|jkj)Z&{_B_1{^!eU0%u9eys&(;d)m@@y*zs>mKjMs z_Bt2;Gw$RhwpiT{&!e7gnl|C~yxbGNG;VxuIOA;pFZd-(*@aWb1E+_t-Tis%q~=v~ zW$qNtRL$RYwD@QE&43A$OF|e5SwH-gS(9qXPB_V0Ukf zY3pAcrGM3a%J-`2E0D=dgw2rzav($tg zUnF$>^5h*$yI$QkRo!}NBm1YlnH$ z%2{2WW!_C)KFcI#W%#L=mrIv^cq5#%CBu9EEVKO|t=v13V&+nI4vJLz@?P?AG&v<2= zaN|Nje;<3Mo>GzbUrAp5bFzj zcDI(@Xa-k{;_cwLgX-ZsE&DR64fHa@r+V5t9zJrT`pvqa;4wHY>h86W#?spV$tcg?X-54bFLUdq6hNtEZ!YvVrtx0g=`Httzq{mU)-xY?$6 zU;afOH(jK={^;i9D*m=THeVQ7UakIJncrDB#^YS(mhjGWAv{h}abLt=8^?wW+#ajRG ziu8|uyT7x4w2JR5547ft?|`wxqlokkC)`XeXuk4-@MuW zPTbzb8Unj)9S-zJWlxWsWyKuO>{PX(yk@o7uD0Xi+f7@|WUnpCH-8!t3L=Z`qI@HNWqT?Q*fi zqtm%=T&a-SQj_~%c;>TLdRAA@G{%(cy1#z<_MmIsvWsR{L)n)4S3Y{MV&C;oq87;k zufKD>_|97IyZnI0|97hT)1{X#Wx6)Se2M4dUx919mfPijJEt3%>wlhk68rpW*_->X z1Ydo>c}>NOT8H1Q+Z8Wcb-dnFRJrQaqo=WrTh-^~ai1`rYB+W4s{h(|H|*g1BRh?~ zS&lifH+k(3-+wE4G}p2eecgF#()M2V>E`p*Lyv8h)l{}~3tO=E(z5qo`Rt$1-rjz> zJ}PGI`>Q*uOqXQ_>+C3p8!IL3@@z2$H z;TI1&Ph2OmAj-q(h|!G2=VM%p^*3g(Hwf==ny{Or_`X`l$K74LmCH;|mtK6gQPHoAXTo(E7iD>_8os+XuFN!7X<`AejnxEU9cy7-0_gmRs%|B)} zeTnDXT_5#Mcl}!ZV_ooh!|8J_Yt~<7R=Z@){-cIxVq}r5#-$h|_d_Ki6VAWCZ{2(7 z;_t^NWcGj8slL5Mr2oq0-+c|UFMV%lNM`=PDHq}p&&GcH+a6`+lrv`!x<0@BV7Xtj zt?%Wk`uG*o*X-__@Ui~R_~_J^d&$uU&)Yv&sxHbb?U6aQ ze!}eJYY$vxIwWrMYTe7+x6@W6;9{n1z|W4yK2y_cuj(G#W4CgJPYPS;&aF9YtR63p zmNV^`pU_zqu3Ea`_1|fSKWD`_ud?nryqHVaCo*Bulxp+Foo{?CeqPgfZj)s4!o|Aq z(&>CA-|V(m%7xDH3HKRF()9BVYM=Aa@n(#jUOac>p7)_@o-4|B{doHGCy!BG`Ud+0 zhXaB?XH3WzNuF56@~L{oJ;Qr*FUgm_7IX+UeE<2`jw6L1U5;Pe{L|&@yvogIB(zKC ze2cD7`(O3%Z2C(-k7bb!dC^5q58m4`o{V^K*NAm_&PR)A*8av9?XP4x817enpZr69 z|3B>?H`?zVjQ{;*|AFcCzqC2$>;n%@?`VzwQ1Gqoe#Pg{Kek@q*HC`%_X(EDWub?v z?_}7kExo(v)V1%X!p)m2t_g8m*x44O>k)hNM?@j#oz``AOP)WDj5cX~#;x%}yyVsQ zJ+}%K&K>0NZ8dpavpau!U*!JVmoJ=C(tmoGo%JHGT0{HGv+k;&Uu^W`df_at_W#x& zyD85fG*y&ng)&aFn!8(9qDJk87&_vhclI{mfUi%-9fURt=oZ|}+<(c#@w z^y;$i&RuW!twMf9#+Qr!nOBYctNp6xUORlrYWup{)lcAgx2AhnxD2n}#AYjwm{Jybi-y>V ziSJhJnAf>)xl=*o{_CXbudXUe;^9LzLqTCKcJ zFuo7`)w5Hk^ZVoN_YNMl@UmYp&z!4=)qTeUzBlFVsSeuJ-+p{qVzT1m+f{K#E9alG zeeqUoNwb5X=A(VGOZC4=w2KQhJT;ZbD&4YiS$gH2`#zpeW4lkqFAJWjkRb6^_TKD= z7iS)f>XW#-!lYsPA3sKmzAr3XuWM&dT&>UYW1eq#^sFo9D}!uLE6x{wpv~ zuM&sX(meO8-!J}g{r+#sKfk2+H*CN6Uvouz_-y0PJDAsf{>b4ec+>POAH&-`Mz>1E ze-06ad1V~Y_eHOmQ1f?t zmRP9Q-BnVlPkw3k@45H6_Vkw5ZuiyVYM<{poo^fc)19L(GrC1}r~LDkrPr!9ymh)P z`%~ag=)MhW2&@7<4PHgkr~)9HS1^ZteX&+nNpHy_=3dVlsUx%-^rlLe4i90_dokCSecgK1A40XZ zRO6&X;~L%<BctnGJJS98oiDLyw%{^GRd6E7{d^?Tj^ zb>*}CEidOfm_|16#-=BRxE}D|DzG}KbWobvbaA?E6SKC*oC`KnTY1J~?yyfPv zG$}p5-fOA<@AfD2tk-(8FH67kg!7;=V~`oYmgemDaz`g~Nhmz9+{^s^i}C+!;vL7U ze@GqMy!)EC`>rX@4-C)y)iTvD);lBJx!rMl-zpyUZ#U1m$N4Y*6E-<%zUih}r}re? z;m}V~=zGl5pY(8cZMo>I^ChdhsyOCfaxdNZYR09Ne`hXG_<3&9k63=y^R=O;g@0LH z5U6deSy;2^y_!n(i7svTTDfOy+bxe;1#Gu*>)tKLsIbTNG2iLnOIbDyo7~+`%Nx1p zUwgmrzf#>->-|0dzw-Yx+V`h({e%2{zp_tn{sLXE_3tfDy8Va!wZHWrnBV*HXO54{ zu^nDeb)}xcQr9KF~Z@T}gy_C2H8yKS`@`=tCT{r9#0U6>yIM0Zuz^q^*L ze!ow?r726TH40zPS@`J{=V{H1^pA)90MX7i)T zm!ccjZrQfg_U>%A$5#Fgdyd{}jADP%;G_O#=INcM<~Hj_m9zWK&C@;4$kWFBdt%4E zW3RS8HPI?q`ZxG<_$|4&vag?&g#K-M|93^~^Z2RznDXbcJ)e1LY0-5{ztTVIOS$Xe&ph>74EtXfT(!8^ z5Np-)YeIruqFii?{;Yq^Qt{JItoYZqON{;O(T1W2GnAydgMP}{>v3vbSTZHVD@N?s zo3BqVN8Jue6J4V^Z>71@5hdB{e|GM&-uUQy$6BrIEz?(R@-x3QTV2G4^;gB5<3|nW z-Fvp1^T9uf@V9=J$;F&t&l~r6{iyG-JZ{p~*OtHUujij< zv*#awzxQwEpAR1o-@NyF)x*x(46dE84u`7--tLqrWJzi8Xg}*1{%y0|b;;MP;U-T? z*m;79_cvalns=#&guP^3m^|iEp`76Y#^3AJD6U8Mg zZf#ktE5QHSHb^#fIxkmb{DT|^VL^@+`uma}hhMQ~wYZ&jTy*)erRO_AKLWAk)pFPQwb)ZpaLhmHrCrz`9= zKHnIP*2W~q{|biZW0kF^UCo02v?HA3cjbm;w4 z(R?><_x@b;g@BBgDxUaEYHet7A{qPyH{qpeOD-%okC#bEBg zvdT-l7d_O~TO+M~h^fkcY+V5)9d!c`QE2De8&#T)MAJAv< z2z^n(9-}Sm@&2lJu1)9%%}ccxE>8NoU{3MMz3Yq4)O6g{_^x#~wDaD}PeJhqY-8u8 zNEz=~@btN}(~19gU%&t5XXXAr`_|uz(7*p@T$#)HVwY4%#D=}yS6}^H@ht6VHS6!9 zy{~q$)CRVHT+8$?X~M||c_((&rx_G|?@p}CS`+d$L|D!Fklo2Er%ud#WwzJyg4wFC z2g0VkQV4t^$o)KP&C2Hz^~Dq8`WLAL2&e_Ity}!<)K}+EOEZNM;tSOFWEklepQuhT zz8)i69J+P+u4kE(3L~!bOnv_CO4XBV??2BwRIyw^{Iz6FQ2z0p7tVFY{{n)U?#S+) zwm|-OFI8r6#M*CxNV?w-WlhBu9~ zlb8?e?w3EfzW%%ThuQakSN?hAeg9be|1bHEiuLz2iod&eKLfJTYe(yI`MNJZ6#qQr zw{HUvmHmpI&$T;$?vjLU4jLBUEVp)CdzQ(Q$k`*qai&muZq)VTv#vk>w|${uU&K4d zg(iXf9}4#CtY2ERPA8uAF@wUpgK4`Mer=MQVV;z>dQ+}pj418KM)}`~n_OQ`nRspSzFfUi@3xn2?mhhLqOr^t zQ;{d72i8q@XxNwkvN~@%N7n3j4e?8tmj2H9=5za6e^SYLL3Y8KjXO8xU1e^6FPjpe zd*}VqqSI@lF4(=5oRAqDa8SSYLeZ+zV2pTKg;j8(`J*qcCsmJjxoP&UhBdCbIpM$+onsE5C1;pvPhr3 zBPM(P^?z?4H*VwJ`^F@m)nNUeJ2G>W_eybmGt^(Z{8Yy$m(xj=QQP`U&-~wV-=~;W zBRh80zl%D3+qRzC*!;|DpVr(c@%+`!_g>c=D(CuR-uXVcrN4RB_0az-GcIgfo5FVD zPvyLaGnwmlImG*#?WlM**`S!|%Z=VOkE$d~?at)he?6^n+J~Ui-tTw!J58=IQHuJt zhc7ZEPl`Hj7M99|5!#Xd}q$I(9leyVKKMr6XoqQGv>cK zaeVEkitzi7mt`eu-+Rd;zp6UGaQcF4#!NN+9043#`G1U|Jv{dHG_n!Y-x5poSzxQ)w&7Z^hk3p+X{+;swpM6Ju-v-E< z>;mrdhM-*)U(N0N?^itj{NrD>{-cja_UzUzJ8AxfQBLs7WC>D>ZFPUP6lA*Ct7Z)AK8zT-iJ0=*GI;f0xex_-Br#>;>JHnVT*+GrjoI zJ3Ei{isF`6cV96Y9JF0?ziLbRbl+Xvf3k}fbyvR=yp!#IXMM)(y4?)5r&r}Yw%Vl7df95G)%aoD0WU-H9 z-9bi+*ahEPQ~$n`%H8T$7;4TI8?*jZ?9#wliG{1{)^^`GrGBjR!im!X_kJqvI(|{$ zcJ1b)4-&NI|5mEL+E!&Avq|OY_In$bmVOZs3*+;hC(Kg7;Q2Bn``lBLqkv zn^#Z%jQ8ycm74L9ecL|nJ@WBeu|Zhlo>ei+vcH{Utd%`~=X3Z|x76n3X`fI0zIm1F zNbuu#opaO9HpjJv)?YJ>JpE^Zp?9kMiCp&T=btSuYx|eH3F?pO`&{#WOY*UczZs{p z&zru!C&PN@pPe=@cl=roT2ZFY@AW&R=BnqaFAn<-p9y`qx;DgGHstW5*gjdUh<(}< z9$fsudt!1NTbCB&8j-B!+Lr_)cpj`@e_w7>y32)im8r9;4z6DA6kk(d$Nr<$Mg3a2 z1Ec4f?LlSXawn|6zYA98lg*yK{ND5QRD01s73X7?S2@+6(l&a(HfQo_E$^*0;ji{- z7alb3tu=iZqkT2`#aFA9;sOhfajXo>*Y$ONuy*Np#yz?L2cps{>l(OU2`_Lk>lYPK z$gp@(D1U9icR5Cb71M8@P=3)Bc43};sr4K4``XuI-d?DwS#^GK_!3Fm`|4$DFW+;U zVN)?B=IZDChBdeDS!bNyWxVg+MseF%cePVV7fx*XnRk>SukyNL=Jjt^1henAPqkfL z^#8`+m72w;%FT7#yoBTGrbK-|arxKkEH8&6j!Tws`Qtk5tdRdq|pgL-#vfeERr_nbT7`7Y{& z^ves%nYBxb^RI1|uQ<|Z|LdamkK6bE8T~tdeP4@y{UhxkkF@U}NRR)K_lg-hmiA$? zyp>ek|A(i4y!vj}9$)`i{KLD$?vI{cu~%TYB=xj1My3DjlJxmmwZc40Qd{N1!p>wr z|8+&zUipaI;g6Esft53Jx3AsgCRDmKJ>iC*^Xic3teRJaixw*XUS=MDTER9_zkK$= z)7-VTKi2Hpd#hhi-pPC0M%D8#-!4xOZ?vuYTY6@(O|rSN*5uE5pP->u%AH|kjZ&GFh*Vf!#X#p#K;Z_5&FKA*ok>rUprC>8a7 znFSZC%qrhEN?CrswEKL`$61bzO_tuX-Le@A%tqXDS!%KNRswwf>*Q zo-d#7oaPma|Gj-%^Rwl-Zx;OCyJV;Kr&Sqg)s=Vp=Jww@KDjmaNVr{Q&D+IO=4!uB zQurRLd-{0D)AnnwuU9>__O)6k|IN?QW~!}xa_Q&B{%GHSaua_~yWXE%S-NC>pKVnC z;ZGMz!XLL(mC1>1mzqC6zT#TLe7O^BE3~*`_^0eH5>$w;;a|V?#A~SoyMhG1<(*#s zFn&^EYhPTzI<9AYcC`Y$e%arePs|VGdRaKt{d9lh0e8 zT;BixV)meC(tLMb&V80QRxO)5TkobxCij=;>3W&(UpF+B3Hrah^zo`M+gBIXTX*7D zY!2_O6H{n59U89G+DE);*IXRC(LH&_t?!ZEIz~} zkbbY{{ddoxX^n+na%SIaD}U?4Fh3{wrbp6(uebT_TmL`i|F87#U3NX={OX6kf2P+z zlYd~WUjrL5|1eoT?*BtjY49s`&%eXdKiqilsF3kOD{JzZc-haz$1>;KW&FbMV}Z$@hH`FL%|&tS(%(yfA*-yh9I;cQQqMe$uIY zlvn!L*F!bp3+v5P=H-`O|KVQ6l)zB9mg#K6;`tVw_tXmbi_XVKc&<&KcZn}k)?CY+wG&q zYxQ3*S6K0x>&ET2@PBD`7onk!gB5P%ig?wn)|rcGxfMT zOYGVYRhGK5`kSra@H?=TnC|Nr^jZA(K!0Rv)Z5})%ct0}c1x7hTrBj;47U8DyPEI9 zq91RK)_i(aSeh5UE3_^2T|%a9J*(5+ev5_(#%)r^pZ?|gP-+nT)FJgizs}xC{?}q( ze%l>1`^oYxtLJ3czqoPx%x}S;PdCL>ZkUv(>wSCUt%L_}e}Gr3$%J&JI*WJ7yxw*3 z*zOO@9#1MVDSPV~`h5Q1GAGHir5v}`-^*Afe?0qK*al=P=(x1W=qe7%5p2n~Oe@S_MC5WxnTl z;P+E#o=#3^)k95-<@YLLES?80_`=Y9QS7~uyGOIvhI=>7>)y)*L~XrxYNy@f)Z+KQ z%udfpW8X1tFUMj&tF5m;w(b1$!v0~TsDEilv1!O&_2VH@aW>2iiTNqB(~P%sny%ur zc@**fO0fQW8NU2A8O7$kPJK2n_Pq?qFXOk%+oF)ab?>3cTCe_e?AzD=J#opyPc2M* zHfg~>H}*MA`4cK8!?8!|rfAQ@yGF7%U%z_8%O$Y>)6DG+T7_Gl8_qvELttK%;IB`I zq!@bdZ{*lg^8UWZ;st!sipRPcW^FdtSK*8HxBuDp{qfPdJ#Q{f%XXc4#&~+)iSWf+ z`WF4NYo2^j?UuErxUkF;o?|{%w=@5piZ;5@{<&h2xAE0ArYVZ2v+t>{dsX$J`#oES zd1`3ib(^#{&uxuQuU0KLvO4W+)WFDP_T=TZvqf^^7H5kZe^1*xLGpj$r>zV91qx2E zKj*r8*;zNGv19MUX!{>3|6Z^E=lkc3d;Ia~aX+p0ec5>b@agaN2Xya%7o`4q(o!xL zcOZPn6OyQT84 z;+B}JGBqE0C%K8cH=F&PyIt$4#T6gXe@`~^yxaPv?#ZL?!ms{+$@=0OvugX>u)cd| z#s6?-tqf54;Qj8k^;wsvwKc2%NPeH-#?8(8`NlcH^U0R|>A-VG|m*1SX{??+Xh^0JX&;3`pE)fgPxc#%jbZcJC z#K@l~T;F9KuK1wyd}U(he6jiWH|Jb$tlV9C;73$ms;kBRl@sMwWPU4L6!~kpO~|35 zljm*ceV+5UhdsCaS^d|WZ)biNx=|fr^IrOv+(uUOXcfKPv$lUa@Ko@}gI)0#Pk;OT zXGXee^F8yBcc$|fdlakA-uLOD(X-lGx_;ic{5G#T$vdaL zUN3Z5Ufmt~aW4;htwj9mccq`I!fmb=Hr@{vlXO4sY(K3;{&lgO*X&ap`mVAZ``q>5 z-u`u`u9WPGbbS3fbJm|sxqJ1oY97sb`#ya8@@eLLroMaft1B-*SD)U`RTIARYTbt` zJ3da9pJ)0&{CH5`hU%r73FWpszfW;$oY^1}v8dVqdSd)8wOlW69^1uh_U(I~y5p|& z>sf6TasDrM-PfKLG1skZ?wW0V??ZkpE?(Il&*nLEu{L8vbNer!$CH?PPnUkH7!4ZGDNV{sFO$ z|B~yMo?I97q9)+#_umhEDzCRzF{vNW<7ByWW8N>G6AL&U7gf)xm{GLixW%f2iw`K= z?|sfFn(fbJuyVP`t#1G7W53E0WWRbk^l*Rw!+m}qkHt~Lg|Bo)6?d$@=eP5_wuI=O zj%kkso47b8?c;L!^hY#>M?g2}gP&28xZmDY8f%`*9^v-6)mz@1Dq!|%{bJ?UXUY^T zmjAh`+ATXlF3s$q;#$$upKNnqt@h4$es;X9sV2>Il99#L9=T8Jez$!6ab9iz`!|-1 zB28@!)1C`G*?X?XXYRXOOWdc(%(pl&A@KKcJCV31i`uH6Yt1G55RA^UU7 z9JBM&HXb>=@32&XScVXLz}LHs$2quu{j}x{EIZO~sC3L`RqM?)J%2w{*MAALy|;-! zK&5-?nA*|=%N?9NpD#*Kh)%PY)$ReP`}=byZ>BRsjx=bPP$6wFQ-C&e@ZVu%Tm$#SKftNM?ZCX zE40?uG3u_BSof5u^?S0G#H_4{wvC>~`i=F=o@WcfeCy=@oT!}pY3{WtOk5NGtgy5S zcy?>wr>OawXSq)OVyd{RHf#SidGSJR?M2G-nICgMjMB^e{J_C0^q$=<*7G|J-ZdN( z_3+x4`8(z$L*;>@T{im*a-W%AU`>YiD<3ruH{=4^m>wV_PX(ckO zW#=y+wv%NkpL^)1dt9X*Pu-k+_h;doYfSRjwqNHwHb3qBp4wWwgjro;&zyIxzO-DX zT;acH!#Bgpzf5hG|WotQQx$k(ospGYsSK?yidA?@u3lHARfBIFp5PKl&4Uf<~ zdxi~Mb}yd#-FuU%eqW)DYkv(01f ziBmuI?BrwpU6C)JSy=G?ICE|DzG-ax7l<+Raqg|C4*xW(@^aXnoNpQ0^D;V@`&Mk$ zb`neu*rqKRK3QI1lfVOsmY}aIy63K)shuo!v;Rr`Fg1`H0p85OR)=#&*t6KM_ zx##hZ8~&db*=8TT&%!AxaQb)MqkH?=R65(1ls0%=?yvZ1?(BX?He%(MRauu_zYt`M zvzpGlC-`f$X4avZ8TXkZ)pi|WEt<>l?a~SLC;C3G)N&=dIWEdozW3`<=4#N|AnATM zO)hSx@WpCTo) zZaINHk1w217J2z~%Yg}%`U|Rl&i%}B{*3+0$7j87AI|dsXjD?%;9$CedDli+mGAy% z)$hL)&$?5a#lEc5?D~$}tI78N%%7M}tKU+;;`@SWoSy3ymdbIi`g(e4@BJy;g=O10 z+WY$LR%x$zzN~@ia^;iz+dngSlz&aEi+gEpXthN(-bPDI$NAlYC3gbZ*njX?#+m8= z5G+^{em}OmZnxdj8#kZa%(8j#+6a?b7< zKesO3urhY>=e!q8XFf*!Y!d$jpGqIcvK^E7 z;#Ycq!BW#a&*Ff!+9vr=7r*War%?U=uKDN9c+OeMe~z=eT6pc^{JqK*>!);| zyT$w=r=g+tz=eNb`@VZgU$1)oIl}YC+MbyDZL#g!9&3IquRe9VG@pHWVaBpb$GVL9 z*9#NoC$4l>#pjoKTPe2V?=U7fz|x{pK5YpZ4K zEvMg>*PT%&e#0&dkA5d8nX)5lLV2C$eC-1w-=aTXQvS1QalC(J{92)c ziT7^b`T5|>gfiLiy?(dyp3Gl%^^Zn(rOfSv!qfHT|A+J`zMsSH*MIrE37=k8!cCTV z(G`KSWHLf5SEmTBNDWLq>aKQa<@W%gFN>GYo)%tt=i}e25vR*O{tBs$d>z`D9XkJd z$-ZlAU#>qU{B+^;(~FI^=5Cca)qL&zaen#aRU2;{G(MIb87lw!(>~=C&(q&_9(a1@ z>8Vu5r!zB4F0-r5Jykk=kA^!-g>C%$?R_hwwp~8BEB@rS&s^uFKI~?TU)32nfA^xL zcFKm88Ud+V`sTLf&N(I=-d+;LCiQBuwW_PVYMJyoBPIqjlP`5`$K}6$`|)7H z-Va6#Rx-Sji#ayed>6}J?Mn`->6UH>w0WPDE?x5Yk@@HB*O!;}O}e^(A#D1jW~=X9 zPd3giWJ$Sm{CI`UtI10R|8!RWcKd15bkUt#UQ$jhcBk2sJ#xh_8R9-De+rrUCF@GT zPt~=%IT!D4pSiz@J-4x}`TV+hE8e7qig7&nFkv~@l%Im?Kejoqo%NQMW%xYup)#xduius|_LR>RH?Ph#w zak%Y;zIsFT$5YLFx(%LIF)9A~mZ5&GE@$^0>j^eXl>TXWzfX?NwLB=YELdP;qeBl< zvF-GW4CfSot!3ukVsp!8*T%PBpKMl(Ii*#Q)5`FzE=2c7>iRuie{)`%pZ@qKRP~w1 zyH^|f(q$?a>ATx*5|FQFy-96>swlSohO3dc)_di+j_5Bl8DTY%2t@BFrZk@ZhUw&E+ z|IG76)68dGSo|f%vj4~Xx$=kJ@B18C^Y^a*wXyid3SsMLHp{z;ve5VZf9I^PNukan@vu%V)@b&XZELk)%#raN4@a# zwDTMCt*gRy-AX?*TuzFfp4GasbmQ9etxG3tf7%>4S|IHg3{g7j=1ErFQF1zTKf|(#}t_c&mPX^tfQgXt!W(#p{l9p;d8bBXlpG z5An;-?edDyS={!Jb5^QvxXi9vx7jOerDsQ+GFXGF)zv-eD0f9FMlw3+WQ4P%anb8`7AxW_ew(H58Lne|IXEK zDt}Y*f@#yIzFWmxKiqvYvzd+WhsIl$dndA+bfe@>U#J#K+#kBmv-{Z9UsgXBeB68g zz`WHxRxeg^e_k{DS*gj(XF7W#ot_0#Rhf0qPRycW>D#vqAFfI)IzP)MIj-)^Q{}RIua~n=m-S!%*knTG!#|d9 zW?pkmb*+5!Ak9?lx6Ba>EqAMJmGPkl5yw^D9~XTP)mwjF-zNLO`KhNro}Ti@SK+nE z&sy*IFBG@7uloGM;o$qqNBo-;ZSr5rhRN=U(d*S#nEsbzPM?k75uxxmb*nYj>@W+t z_jlXcGsa94!?_ksJDKcre&*w?-;=IPkKz1kdwG?~*;yqCYpmuSn$=cvZI0~in^8K4 zxBax6U6aLimD#~=mC37~qw~EIKYg*C8qThIcb^a2&Ur=-6(Z(x4M!DEC*gCeY#FSqs0bIX9~xa^Lo0 zjEtZ1V6P&h4~K@~?a22hy^jazMHv+w3^a1vVPT?vX7RR+2gPjio{@TwcXCaBoVu0u zz^AaJDp|?fXQFMtUy)w#DaRn>;r?KKcl)Is<@zdb=eU<%n%s3bQAY6Bkw7ow^}EaZ ze&77ivg=0w%=en#e;(Cwx3u`(XlBbM|GV*bnchzBc`o@S0n28|%iJlBd=MRK`u$sK z%wEZ`(MES_WSJ+iNj5B#|LEh9K~>6yMuk0ksr$$mY}@PaSvRjxrq>9p9l zwx?fws(b6PU{iMB_qQ?SFITS7zOiTZ?`!Fmcb1>1m~6KpW%tUMju7)R)jxktdVDKd z|JhXG-*+cx=VU$aIy`f-LgEt>v$=CJxOHm2e^mZ)|NjI1N8shNpZ@Ot;cxf-{D-CC z`}UnY2OACecsP9Df8!t3_kRlAtNg(sckb4*5bkN8W45tm9%khJ@_J(0oPS2o+t!uw z@9$cB;;}>eKIP}N8+C3=t+Gv7wfVd31o1gjdiER*F4dYQ{&7?3`d`9p7v*ei>sxA^ zvV@f(Z$n_TA-n$RaQ-P}PZQ&W101e?ihq9S{Eo}>^8X&W*~j|f;^g%k_cDGdd+_35 zxZJ~=Y5Q`IW*6;Q9u<`+p7M9&&El=6jQE}OL(ls>=k~tU_;f?}RO`I|Y#q`+joy4} z@4X)0{ZA^KQS)kBChxDnxmkugO{1qiEV0y&?3>2fvb^WI^V#T5Y@Q{B7$nPNRTp8=1MI^3S(_y;zlL zlWWbvujMZ_JvP?*pUWp33^{d1;c(R-wd~CiB*BjcxqESCqZ4 zu07e5ZH4*V<_$f||6a~4_kX~3B9y`ZpfM}k>W_i*wa@?TySFk*{rz>Tbs6(QrQR0L z%D)Lp&DW(L3*U=0U8C z*`uwm9>g|3mYsTSPmh>)t5w32sJ@bPud7QJA5(01oPOz0vOjZ+imt~N9p$yz?$2KT z%!|FGdq4U^Sfefb-*rw`*bntTNM?QTbOHDEn|D?>xU*M>9#fjWE$I76*S#lSue@br zdt#!0VvPyQib=^?wn>cE414d)X6ERc7u;CO_@>od;?nO2G2e9Fa7VnF6u#tSYD<-n zo2lj5#SYq`2OLl4%=jr=zT4`6!IcFX$3uB@mj(nI6)gBJFZ3h%kM(26ZzYX?*O#6( z68iqm_3qU0iFRMZHr(C4^r~Rs%PNts8{3-mBM%*Z?77#xI6-dK_9k85iW%zLLch;(jy8_Gy^d+Ub|3<~N^API@BWu%zn#s~-n)Rau_D)Ls20?&R)o-lybs zc;6qX7D-qia?R^>$|C6ESD|xUw@>~B|Tff-)`z<#e5zu z_Lmj@Jnx@;w0+j05q-AdqTKtr-+wIr9(VBnhp+Jmm)rdjt9v;$|IzuqUw;4i(_KH| z)E?;I!0Qh;_-kIz^?y`;@1M@TUw_X(tbV_jBkxeg$weKKrY}2$C%itZyV^4A{N-4o z4VRN&$336<>_LpiF3<1ZSIHjvBXDcaE3!qo$6@R%JGStquNb4`1*v z-PT```&WMJr(LaKr++!tX@^eT_OL`d-ii4{)V!(ptsh18oizRUDcNGSPD~l&|Fqj} zeacc^$8)atz54VxqM7k0p2j=ZLM7h5$`x5Ufqkp*lKtO9rH|b=-||i|J8oz1 zYKsXw^kz@F9d?AVEPqv-EXRu*j84ZwyH`d9gx``lK0o~U#H>GkuaDL&mp$Roae4K} zz46YET3shGvVU^9Y<>6Yw!pey*W%fpH!i>a?ee!Pt)JX~{+*KgNonKu~&*p zE?jtd{e9H+!;|=Th{M(b+4B zJwtrF<%gZUsjGOhS?p-B^E&&qHduBYSIU%*EvFtv=sxT-h^KtoHol{z~(ur+x;1e&t_R z@vI?!h4Zg$`GAde?bk!=*|T8vBuV)eQ+*~=$pp#E z8kLLE=II!4e{Xtau<29NzHguQye?(P`}x7HsnSw^YDJTqZDU4%5dYf6m!$8=9(3=^ zTCU~jc($8iUeS-hQx+{{haO0YaIC)Kw(VfR>SK>Q@BF+j_SWZf!-s^PWLNgH{GL%I zXI5kcu3wz|_nK>mO;#}vNAonpFaI__IM2b7`9gJR(W*@jb|x(Rp>r>kCG69=c-y`D z2;VIqDc&iU7p&@DC0xfZe|a(ET7S_s%)WgLxw%Z+%UTvy{bh`}SHp78BZsFp_i44y zdb_uit4cK92U|x?bH6v=&7r^cDa(Zl%KrOzPEK}yefsm2=Ze#gZ%di|(&osNAi3Bxq=t} zKo&P#kS|CZrQ%A?{&wVM=tK&cDam0LG{+flrulp z+)DONeIla8{@d&1)l()vcgH7OXFl%=uRWcaC^Nlq?dPe-r+r@X%K7S#btR#H)*o}# zy?^@>qYmr&5}iv{hUc{(oX!m1SM@)^u6)|De%~)UPyb$M_qpy(+|EMS&&)I$4bH(&q%13Il{g~KnF z$M;QJ-!lZZ_Pq~1dG3Dp1%2)fzjcoM|2<`C<&kx|dM3YY>vz>ioqk?@Lb!OzM@G|P zKl{H61eZvqx~5JkarGAcc5t!@n}*b%wB9f8_Pr?=-QyU3z}>fH<%`Y#UUrBbc^`Jt zXPWWU=7qc1AG~l_)7-#y@0q~Uumy4VD?*$5XQr1{Pl#7k*HOM)ICayz@W7}$A%X9W zLmW0NzwgL;*-C@Op|Aal&Ep8O`x9Rt_k5LPe_GX`W2PVD2DL)>x`&y??HQ7+2Sl!1 zvi|p{!vEU*RL6V8w-Wt%O&6&%tl_Tz6TPBPGU4)V7lozfUsxk#ob;F5?+d;hl6`j0 zrtrH9!f#tWIy$j$@tGNazS?a$bKmZ}($n96nY@zD%dh;k%GmqX)eG8Foo}mGr}akM z`X_UB)AxX9eoL1veIBbh`{NUj3%fa`Y)(z=W_fktnb9GZHymXf)*NTeGC0RFgU`g>5%@?`b((&vx};BzYjlS zyc4?i?3S&O-OReOpFZDszO8@S>#FN+(rcbBsI*CsQ<5rPdGGf38_AMk{q4S0fv=VR z+sdBz%nv-}@SgYk+n9SbFK^t6JX?G$@O@k3_oI)V+?Dw*`sQ&=fw|=|vylA6e|a5+ zicz^&o`X)N`v2wZe*yh_{~7GRU%dYDX!yQ9{e7Q&YhDB}e}pXYzrXLpzsmOYb^k;E ztbYGj^3OwlyT0x6aSo|FKia+f7?ZwH^77uF%XFVlySVGx!&^O)C$Fb3$$ZiD|EuZp zzWK@Kwbyp6JosLl;g{~SU$KV+-tYBT`EB==+?U%}Se0cNFHg(fmgSYZQkVO;M^*ld z-;xEv*)zVRRRz?9l@?~(7bi9ry*_#8&yAG3ZM$oZEVE}h6K(aK<=eCUf!iJOrXT6O z(--`QW)r72P;bN1n2fY07)h1pf?^EpQ_KR<7J{+w$zc_J!{h61gyyD-Yb)C0f zi7}I#$b9+NBGdUV3o9M$uKAq~{HM9zWUk&b>xM;7KUO&R8&?=jxBc&*l7o7d~aIxO)EQnd6?%?O(1wrnh$a_hi-^ zd+HCqTJpB?s`?Z)S@x3THm1m^a^3dAtvcVHyQc)~n8eF|s5B=?s`RMiE`|R6 z!nbqo9b^B`YajiVS+wW##;vnH&-br*)-azd(zGM?==sUTc8iQc{Mmih9gx;v926eo zW9%w9W6>{Jx!8~upL=cNjxTuWCCGd5n~hY_+>ET0_l6C1Rui+mO@^0(g5SiSnf$9>;z8v0n@8{d8WJ;XOF!0gq=&s?AW9lviFFw@0! z#*I@Je~wPtYoGFCyVM=6#ftk%yRC~jPM#7ulJs)p6SwxJw#oGgqDLZOjmE=>H zFr}aQYK(ht=(Am>e+L4wjP$vJU>!O?OXC@D80e1m6EBm^@+jks;uPj!4+K5Jpknjq8jXFabPO$nQ-(sbunO~vUxnJd$)KKh?3+!t_;^H}!Z z_ZQ5oW>_^Z*sLq{=-w>3BJK+|GxofQL&g;L^FDO%mp@c~zgjT<@4wYQ zzM9v|*;oAdP&2u-nIrtx^uCvo%g=5uZohZie9wU#HUDEjw{%vAW-SS_ZH!v>dcs22 z54CJZKJA&DEBm}TYWr^6RlCe{!+a0(9@^7x*3h@2`%|dynj0L=k?gw8J34agv!sps z*VJkr*b(IGZ+qrF!?pbDpTpj5_N`2LzN34FmA>Ze*%zMKHssp9_vY`q)$=%R>)jK| zd5oV~&#hS~D&n+u|D08d)p>ea+y3l)weVYC)3L34_nBxeJeXN}^YgC{bMqXp9?g0$ z+w=T%_ZffjnB9BJtIA%RRkwt8KjCAr*l<-<-*@q!3p-9f(#lwyYIM5&{>!JOPoLk* zSK?MPk?F0QQIR6+7g4X&hy{O9}qwkBJwzf$YRs@mYnMJ8Fc z+B3gbY2BZDJ-l$sySO&ygqr7D!fGQv2iyIc5%kr1`!m~+_c3C!0#`RBlwK&B&&4-G zOZJxDuei!b4AZZ>9*On*LeOx~A$ z-hbEqeA&kOcK3N{qw0HC)^BKzR}K+=ag}B5#$7eXKFw-2pAdh2=acVtbGA(lUs2B` zrnx}){rRuc-XD@bXw7-y@`5#6OcCJxwhl?gY|_!*LtsQD?IsrXUmS{ES{gaw&%4vn{}sr*cW7e(p~(`=Z_VMhjtyA z%xCZRe#(wJt8ZWbK5;u!p|9Q4TVAP261JuBHDRSGKDM!S?EIUi^M~0Unw{U`zOtI_ z->0PV_`*-WdD7VWPrSCyeA-v&{y_PVz1Po`mv>i{YP~wby=btI)Y`T48@pQvJz=be}bKhwIMlNz%zO>U)v*^VXh+ zGbUcW{l@UD+2zG*hM%paKHO+ryj#tnetX|ycinHwX`H{l9+_hFk@2B<|JrZ+dY3!sTT` z^8K-DHEB<0eEoKq`^WC}e_8)5w*RFRx9h*+z8|Nqf0VCzwf)1TzxEFxO`#bLc`?tE{^~1##HkrmnXL>9Z{v20){OR&(+c~W@&0*{pQZ_%okR5d{_3s-^ z_mJ7H(a!Jl;w@!w@^viVci^=7RNWoXSy5q6W`8xRzt>Z|G0^*SF!!PrH>zKE`f(-KTMN$LGHuAx zKkpzhzcS6gA$4cKN~!ECY#iMxDR#HFb%r0yoxV}#kDS)^E@xqWsj24$7_Pzd4QvjsAT*`a7&< zy%TFuR#a2Ky|mDKxBi_I-fHk==Vy=9MW@TZDg^zSVzxcW+8TJz=#Lq_m zT)63|GOzzhcl$=2%W>uGsxl@|(^)fKEU#PdAn-OgYogOU;~#s=W{Ee;Wv=-1d0#AR zZt|t&-)9;2oi@3>DsjK^xyCcQyUVA3jovDL-&$5{Ki{kH2b;IORGjayZ1JS#)gK)X zCfRPfaxmk2*tLHTYzh?SRUWz&lDup>d*!>AHg%?XzkfVVp7JTwu{h>Pcva$jJN}h5 zA+rVd$XmZJX?9ZmZ@13q-skqy^D23F9QgX!XVJuEVRb)z4=%5=>N2@{MOjqnkVl$@!S{1ry-K^ys!7MG9+&KI`g4$k(=d2Eu=iYVK`BCBIV84Smy-zS63=44PlnK7TSe5rQ zS-$jPbh%TSzx=;zaSIb>Fm-S(Vx6nV9{#xb*~{-ancmN*onJfo>b(`h%XPw=E!Nt4 z+43!RWi+w zZ@>NDQQyDs$BG1l&*{H4&gO`Wzz!rpFe-Jnp67m z$2{AoM;U|`%d#sN-S;<`aJ>4{i}MU@i*qF_md|5ax#zY2d%iOX1qJT?9Jaq3cbBc( z{Xpef&h!c5r_O)nx$SE8Sns&2d5rFN<jaDdz$vYjrsnL^ZoP1ePZR`CF`%L z9eT-nznyCTYS+JW z)pv%ke0pPoctvKW*4urRdrp5|<+HWm>g83+4&2jT-%~%c{C2)>xaoPW2RY&|fA};C z^RAN(-}L6sYu6f9d%5oSr~DO~ZN0juuPqnS>i@P+_Nl=>rV@u`zqNY%efb150vg{~~Y2owOo67d3uV5&g%04yve0!?ZT-n_`LN88EdpOT8Gw7eD?Drd~VUKsmXf8Ni z@nmCFMAqFoe)8U1*EZZ)=8)H%RZ}YY{JpjJ;;)y!U9E}W&#!-*yy5!Uck-q!Y z-;foe3j|D`9a%b;XV;b>4V(J`a?Yjy7l>^13E`Lbz4S8Zuc)n~`xQerBY(jz&E4+N zUtWCoc`q6?uYULS=p$Jt*1A8noUI-8JS$>t_WS1JQ}}Lg+$nr@Te4lXec_hE-IqfZ zJXXfF+kVu$o*eMZ`}d7UmMfkwh!_1ogL&&=U70;10%t0BI+ZQ8&`*o~uxP17rN;Zo zlWIa{RZnEBI-;^f&vN|?xvQJk+FSN&$UcubQhI*=$9KE7Ye&5NzUSxPSjHnq@7By( zF3)=EK$YgxGuii*r>QD6OJ3YPd+PLlkE{8TELQ^q#J68vyy0Ps-1ij0`|I8DCkH?rkluvh`iJW#;rFmf^=|Y@Ak}P$As6bsEnBhTMxBk9o7t zB|Av}V)>nRKfwRcG{%XtM|$u3pD)-IVHBl&nthp!q23eT(8yC>Q(WKQV(9vOw{l%6 z%i7vFXvP0M$FJY36W#y$+iDBOnrF)Q57+;>S>LC> z=g-+Ek=2lLVY1A*dmpxLw`<@3pFRGNw0)K4*-GVraEp{Z_j8XM*3B!{*?XAb*fFQM zuWFV7W6QELl2519Y3<#; z^yp%%i?@E=dlE7)99WFVG2LX}d3q#*N@M2xCMXB%7qcESX67R%F`ti`8P~oTL>^0iHQKws%6wZnf{w~_J!QtDMUwdvF+g{o@iTUaN zsEzE$iZ*=ma#VZXeEs(OkIAt&+-lx^db-6nlgFL%iQI~JJVv;&i?M|yZF1Wez%YX1i?j>4MPwh+Xp6!!BE8M@F?>dX;?Q>a&ivJ9(i|b=UX3D$m<= zHuPG}(bJ9r^Mg(JE{D1w&zdP(`|q~n>D9X}V#`c5^0n?Bd7M=%*JW{D-KP3LeoI66 zEwwMzcVt%ZJYRYs;Ku566<=?Ez8hL7p3UUK_h9Q+`^RN1<`O;Yw538SSMu`d>MvJ$ zU^Xpzsy^cvThjxXz1*&H))6lbNECB^HduW-cWI~0qK39DO*ff6Vvg6?2}T94ShUbw zWrKcm*{yS0_KM*#a!l5|?A|c~aQ-PE{;WJ$Tb%rHay( zi^8u$r-k;{@GOudl2zTonmZ6UiI=awHcW5|*bmar1! z{^eZS-TH5VT~!#{^@RH;Pw#uRK5NqK+KZ0_=gZ|*x@Rw&dtSQ2COz*v^TscS%H(sU z?oDS2*b>L5#MZC4NzjJ3)I$EUq;1OquHXKLZ6BSGv%MtH5$zmto*{YD%cp--p3e+_ zbM=h*ypUJ>zpdCaJ#X7j7MCzNrnZz&wLLRAj%2)^$F`y%Fp-fb_S-D;iI>y1zKOV3 z-*b7vyueMTt7MmoxjuA8D<_o{II z^C`T0-6uWW=<|;+^1{+77JX9}t9!3M(;?wo?%cH2IZEbE%HI|SN#0P{=-|%l|>LfBq`jBL~04U0N6ZebS{3t2RD67*lm->zunX9Nc!RmM-~v z!Y1(DPvhqedDhc*`D|FfS=W(ad#l`qVy}Jjk}K98`xXDu%T&EKzLGVgbE?|%Yb*<- z97L~7>)UoGeA1`w+Oxh`Y~3LDy=+g^mo%IBHR0O9jEwh+m%J<~{LOVBsdC?rbw4w1 z?$djCJAO55#@hI+(Q~J1)h`XMT%hd2s`2ytyxsTKO#?Zoc{3r-ZMS+s(;SczkJ=ly-;!8t zvHiTZP41cgb+jYQle|SQ8yvgfL`to z^A-d@I_dQORA6oXjP?E&>yEhW`?YVq#gF|rt2d|l7O7ajQP?*-a^}|jz5eCW?Mr%9 zvKF88(f@V7>SD9p7nPTtlTJwTwcB1c-dnC4J9XyN+kcs=IAnf&WbTjFo#in*CvHaS zy&p;&EM)lFnc4Y7_M9;N5;NU=FY}(m{`y@^1!d;WPwp4Zb(hoDITd8QR&v5>Hr}NX zmEqUtzR%+5xPNEA0=xObf?4-xHojqgcI((h=aM3!OG0r8wGAe-mmKN2A5>?#_F94S z^eFjxsiroPwvmS!>yAE|+083mc0|c}%F2>m>5HD-dosPM)xaQ@A^%C0m<bRC`QS)-iVHgXK1}7iaevT>r9LPV%euZ`I_sKSzwZ{jJYsEIKJYuc=mZx}}j` z{ZYFoSI;}1<`=d;aDD=p`F{8M9NFvhUM>^A-`h~)E*-$<+$Lr4zK>TUHR#3KHC}yi6Y%Rc{x+JYz-z0Y=_a&yjdewZcvdD7I+^4w#+OcOZX-`-9 z`P6F5!`hps=W;e1_UCV7y6mP|>z=>ysp;7t6+J(TT9)VRl96k9zUN)1{PVY$H*Qm$ zmcCWfB+s-xWsl8zK5e!34e$CMa4*Z7Yjt;D0N)(_MW1HhJG#_;1!JMi{7VZJmR$Cp zC8`l3b@%n*+y!bcwSKS2N?yOZesx;@R2d767YjZ2aD54mtB_`RT^sL^m!8Z0e{Q-6 zrguH1d}z3Pc>g}e!1$8iT<*{e;*<%msgf~ul{woF-rIQ zo7tD*zXo0xj^mH-FTGXvyLS4!3%geO?7nj}EB4*zdGSZ}_m%(J+jr0Z&Ts$Qoh7^G z6?B&YcrSn z(CxhK4oBjLzSZ7)c3!-ipQ!u1Klh38(a7Um94C1Xvwh_V_TTa0L)7|9)s%s_qXTRBzCSozCq{x{e(%3K%KXODHMHfgp8Qt4FYV~|YiHSI=c}|RIv227 zh}{%DartPjf&<@~ZD&87>a3ry+3dvo@a0jt?I)}EW(K83_1`?h{Vivv-jvLpRaY|h z3F~iR|E$C?b>~~*S8FD6KLD_;cm&&Y2+Cwq3!RwldteG@)k*fptK=H2(7$8PU9Z+2-` z*s>nK>35EBPyX@bp0n+|fWFHq7VrMOKBW5ac0eY}eTE+8l?L7~4=Yc2<@esq`k&YR z7ZMB!8G3EZF^Szg4rMM6=4#onP5J)K)wZ2SPPA`zw$leZk8@ zi#P7Ik$p1z{a3Efrmvahr|!}J#j&u;_5J)Szf}!CUzn!4cPD>V<-%&?>5=~z+dOsD zX?wX%|IuF30`u2DQ3m02;T{&$6Z@xe^s`vZSfykmZGyKu(Un;tV`<{fWs zTOd<(#T*-x>CEa!e|}mR`3e-Ed7!wx<2}Z6$H-A#w|?m;@rk&1Y_lj)~tB z%DwaE=4Yj4_h&}ksX1RX^?db2zsKR%wjC?)j=x;JcXex;{izG$cV(wsX)S%W_~6fZ zYk%m3pG%*vpDWGA{yn1YSh5xSlo~<1^=>Y4yxQj*eB2Lf72kUn7k;Ap*v~_jP89>-KA}n?&Ed7F+-8-0s^_MUrQxe+-ciS@5du zjPQKNYKz&jyYFPkrB^X=>@({=z2%nviTJNA!F3vE_1tf{-7DkUS6ORn@ps=!$KTUm z%P3s`Y%xE5?djO6^Y0f}GrMlxr`LXO|J1UlPa|t%*k4BYTJ7C$(p}GXC2P*=C(qw5 zNL_d1oRwb1+{o>lx0PGooS3=t%ZJ&b_c9Lf2Ymd<_#~&{OZu$Y`+E4dxLVk*WtZP$ z)T`ZE_&i!Hq`kPt^JUMrsq;RVb@RzszI?Jc(#wy%OnZLY^O>8j%(|C)KoB3d0ti4B72H1_=nA#`@8my%GCvbR^3|89q+tMYiHNfgI(u%EPt4& z_~&fZKQbj@`+CC#UnI@naGxl{mDZG4fpgEEAH1HEmR-Bz zv_Yl7vZ#j1PfqYM)m%trxZ2UMt-os7g~|OJjSfgHJ5bo8Bp@U*Z{n_rjW7FIf9S<~ z9u5@0_onE=%)R`JeXo2D692RJEZ@xBj@qM34mV0%Q+E)X+9}J;o74@*A0slncLm}eB90|AaO^|=<4<-t}YI# z(mnT{P3&y{^1^WLms85~%Nc5API^Z2+b-m8emuLxZmKK$zllM|HZxzk^=#Iu-_)Ke}3-Xf6Tt}`}H3eZ_j^R-M{aM@8^>r!R3eDpL*`?f1B>_ zuaMvW^O^FWKQGHaeqMf`w_3@KouS?I#P1h}?j^;@K98=twlnEQOJeJ>KS#vXnBQcw zykB5e-QUQ~TewBNA&$AF3?5eFjgT`&l%2 z^s&4@IdhM%XS!R~|2LYsTSCw5iWJ_uxMbhzuct$v{SV)*)4m|_TrJy*<+nYa&$!KU zV#@QMYu`Vvvs%(HwOGe1i^?&n!`(dv?*WW?*qKbI6e)HISPp_}b=6Em4 z{@LoBcv|`C(~jz2{VrKq1S~p#_md^F_g1@oZHL}Rg|mjnJmU~?tP9^P@~_nPK+WE{ zQepF6pSju?wC}rFiPVf^jK*xNDmJ#aFTP$;lO`#2Xc@g>71wzwSLf>oQaI`Cpm8 zxOAT7e>b`OEs!DnHS5oJUqTvWKkuHm5P-9qb^!3}P^7rlz zc)b5+@oRIr56m}0>80LTCq8apF5>PN?G=0dy-v#0 z_5b`n-gQ(da%A*aA3OUeV{FEnim8=Sj=nbx$~N(b7=29NS$SXSWuTWX@B4HG-s1EH zl7c4RzUmu%e)ZzB-F}<7Z;lD8%v(3ddirYPNN*F5yG&n-kFIb>{85?s~=G`CXOy5hl5x^p@XOU2d_=SnRmw z+a=1g=kI*qrg?nNRJ*51(0o;GoUZ z)Dr^F4Cgbd^i`R>j1T^|{h_1P58Hi#_tvvklsB|Iw3In}z2RZ+shSewX1V)kerflc zw%ENg))h!@>JvZny=%hyHk-PXyGN4OtnBBL{SfZ|kEj0c6ZacY#}B_X{db%Hzu5oF z<^N3Y?X8RpsE`LYN}fNw`BwRl{Qm#Xf1I}eBeDKld%L;argPr{Dt|q_=`@df1+T>C zDSIY1J)U{)*RCU%jY@1-ET(IVb^KnqaB5%45_Ruf-dKjikKdN{xZ0L|Umd$VoB8MV zzAbi>zaPD|qWX_g!ID3Bp8wtu|K)`r>yb}y^!rZUPv2K)zo^LM^H%A%cFN~wCmjC7 zyLz=~ee=7%X4(Arku&rq zjwRK4l(L?g;Qr^dnf2@FU5aO3{xGx4&YW|!;?5~%gYzZMZlx0|mYRHe(6lAL`pd0s zD?4p{$r8qx%#sC4(OXKTHF@Ls|EVolx|w;|bDe{YB1rybMt)qU6h?Ra0}-16+^liAI8H&m=M)|O1J-4m}F`!D+StCz9+ zo$hJd&RTyj{KcpLX|3i`9~R%7H~qZH4yKMNRp0NtvMpu%cF`gBZ*!RADdsAPo*1pZ z3PJC^bz1s*>#I}OWTf}c_;dHz?5V|f|83g+#5362=0r_b`Cq+ONra_EXaP)7*CzHIK*E#(r}0^51oMwy~Hl$DX&7l_$L zCM&l2`mNK8cxz@kEO2iWeLmNJ&)n(4J7#}$-+jjVhuhD?llx~)$$jwbT9Nww2Yclr zt7bm9_u%c1y^CLdt!RFr7`@l`{BkoRwGG#o*njx9`Gsd~RolhI`V8?Gjhg4N+>v;H zLur+8g!|L|+Zy-T8z-C2eI*j{C+3>qmbY7C!-ePVQo0oLB)j3ltl8gWede*wjpDER zmw3WP{OPYV^BE*ozI1YC`|~+)VyX5CH!fSF;+n6S)2n)3#ZKmaf6Q>po5f#5SPX1D z3>o*XesXwMEZc))Mw}|gol@uDYg#z@)`{Y^Ynsa4XTQDtSpQ4e?84<@b3P`|Q4qNO z)b_RgX=k=Qp>DDEes>!*w3kU$8n?7bzi8`P(|zLk^y}?E?%V(8{xg66e^$H7FQRo{ zeiZ-t^7j6t^Y?$7-rLR2@E+8s5u100}drX_N zwjO0V(PMN)=)7f`_NrN}8Gnt>he;isCgol#cXmgAwUl+#`y0{5=l3T*m~`po#^XEN zFRfN}&Ak~nbN=kW6~=S(&c}3=c^f%gwXuG7M&b7PEcWyZfv1b@wCn$RoSM3QqeK(|Nm3A&a3&F$hY0M&1=tBS-!Z`RpOPrHNhr5e_H$ZK-P#ab=L0> zFL6D6HT|jWea!>}%+sl|X{hjCfl$rVT_r+3*nbt+p;k6Nr9&Kwq zju&ZtXx+b+zfwkj`K9*WjX;_b%P6=e1vcb^h}#ozMH$ zl@>JkR4%`l>+_r;QPq9bWi2U*a}I^Nmm5p2y}kWvd6iFQ`7N!#hm2zGhnr|}ELYH< zP&)tmN~Y;|e+Rr|yk_WE%37f3{Qt*cY2F{Hq7j;JKcAER{@8Wbo-09&VWJa4OPQW6 z%W7OU%b%lR$FV)LG*}tLc79r4o@aU~t2w5Y&FHC#%EqK^2w~LUU9ncgy-wM zr`$GwO5S;^cdeFvefZK9WiQu#jj0Z7WB#(vUSXNbpZJHxbGI1D^0$O+@H%LB>A^DY z$Deku>c{(z(>1RDZ4+g%Y>1H$aW0a2WWasN!)_J3T+rOjCnxax zsTCaEcKxxv@r2o_$~K41GWktQ^WMHV((7Kswc}Eu%*qpst+)2)FjZ|~%Lxfo%Kpr8 zY~p>_#@TAzZq8@#eq&s)t**k&vr@L>vG7#&#ZF%Qd%1)6=Qh7T8rXR-e^%12DHjja z)mrznruuG{%j{TeQ2R@gJ>|%Wvb1Gx*3Vhh=5KrPenNuYP8XS`GgAJHpJW$me>$=7 zK-QAIPVQ;nCiZ2wzu$gchU4Ezx0Tkbv=-;` z_a_{3<5YNSEBDy;8J>%t$?zcU3xmDftl5qw&8^2TCbyNET)jVq`P!Fm@%N86i_1TV zul@P_1w-AhZ|^_q+y9dO^JMP*hi_+3uh_A7-(>ag5AE)>+wc95wg2Gf+uJ{Mr_X=z z|KF$OKdze3SLhdbowMrX3)y_rXA2Mhx#4HKZ&H-e`8C@zSC^kI?AzqKwsphre*TRe zOTMp{U4KmC>aiIY%2zwC^Xu#F$VB_@VUr)<)UCFJS&k)1F*On=1cl^zPFBe`v?z7V^d|iDc zZ2g&i%)aNEUdmSQKJ(?EVaJ?j>2nWjOx=1_!nk$c2lv<4me$mrEWF&NvheWJyse+6 z^ko%Ze%dd#MZY0yZmrj@L*PZ#%mz4`jxLGkT-=YE-MSH5OX z%7q;sgtIEF(}-y{?@ru1siv0vCr|%mfhoPy7tm7opsAT zmX$IrTeY8ggBO1@Q;*l`<^@x0UfbV4_u`t#{+&7tJlt=Y8uWhZEtI{m*ZW$G+NzI9 zhrN{Rg(rObcIDGt_o#cK+Of0TmwL-Q_*VBeVRe3V%ag#biR?dP%vN7DIkvJS%60aq z)9<%j-XFK`^7>E9HZA#*5v_IL$d`M|{N^wFZ1v+t)K|}|o}sof8KrhRbY2y+{(5C` zxv;KXS>WFKbII>7A2?Nfc5)_1*yr15`)-$q^REtyy;?rMzVv5+?Xx?@>+WrDSAAY3ernaU_p7!yg>SrmMqT0R zgO~4rRxe$o|9qtTh=^i#Lc} zV7;mL@#}6jzpR(0OWm8;7(}M8(%y5nW@caceb%kDQ+7@hz4CmQw#CH<-%mKIJ*d6c zJtMm7IE$Raoz#NH10FuYzhq9;blh=xKdE#z^XY590)<&uoRE8VoZVHr#qz}NpJ6)- zKREA~uTi(JsE=p+=M)t3|H;vwwg?mTA0j4e_FBI_rhF{*nRrb}tX#Rntt$(&>lHpY z-kqLW+N52UKlAj3zHKrKZ~QhpxS)^i3&Yx%s>}X%?^@t{Pve1E67Pi+ck3&e+)^U1 zEMD{;-Ob=u!x2Tw0`&F zGcVUGPwDdui|5Y&7k8YeX>(PZ%eN0_cDeVj?!7mqbX%Y3!sjbbUlZJ|d?4-9OY!?P zUG+bnSyyb>d#s&*{=>`L_Z^Dg^Pl_A(dzvNn%{~+3XQV`yW>BY``0zp|Nr{^(3eK4C|uO3LfoQmiO1_-M%9{8_e|Y9G_cj)c-F0OWDjVYmV12J&x$Cx&O%G zS@CPxYUT^KGyXrgYG%Xo)6Ok=D}!R{Q{8=)@4WqfEen(1J2m{dtBzdJIW|vnqud&fI#zVfXoqsrt5!=i*knZ;4BfGl&Y)eq^;` zN%xDW<;D#wM9)vv(f%y*>2-=F3cYFh@~UHxFswWFuQV;6rdI?#JCv!vkO=?e?~1bsO3GI-~w zP3PapT@B?)KVEJm|7q1F->ESgH`jL-Ul~+*9*$=T#%8odwTSI(+m4wH=Hc@dCW9hywBj&CqKEuqS{ZBX7Qg1UGXC1 z7Q<3&F`wkjzY#o7O%DClndA1;ZT-HTi!AE288{xy;E)sMXZU#M-K6QW%o*?fD%|+4 zeCd~UsVNIK_}Uqy#H&r`J+`thB9!w=Nu*wQ>n@}sVjJQ-!XUnmsHg8q5Hb=lZ{LFpE2$`#BCYG zrSH_OSCfB3xZ?VfzKu3Z(i}3v6i!PNE9}_e^|Ok>JvA$HclO=YwcB>RFsgiaToJxTjmfXw zm}gyBm3>7$$uxGZde*E>WqC!bd))t)a9y}u&Q!7Hie6lmltwtqOO8{T9A}d)`mMhz z%v(`g(JE)vY{bc6{??*S_?4*^L-Lox>Fz8Rcg^4QCSO{pU0L$B^v?g|yc~PdC&)Ed zMuz^bwmTQBEB#f*-Ynsb@w(F|C)%k59`Db3>H5^PZ^kpWeu?iV*qeIqUE^8*o&Cq% zZvKxqyZJxl@B5`G)lmQGT>gji_kN4k{rHytBW9e=W6&et5ya|aZx*iKlf=RC0pvOnf0`?>7rvS|@~3**1P zT)4cLnWulf*?9~3$|I7G9bPX!m3+>8Wx(%EjIpop>h$$5d3f~1`bxenidjph{XJD2 z`yu<#W3$Q~pQhKe*Ixg2qWtsIiS5$w4_)JbV5)K1N`J9khGyz*)3lP%>UGn;d0Z^n zBU`yWqGI-(CxP>7r*E0zev`d}{mmDqIS%V8rAu=6%4Q@xZqVL;Cuq%@6{YJIEoAe% zX_hDWq}SnBT;;?{KX1pi|2Mo^bZ6@t8TZWc^W4X-9}PJ6^=NYZi|Y>##BJWQMQ3}} zpPfuRTm0hES?8MAy?*_6;k2o2^BIqwQJr4zy6m=Y<=WN%Q>F656IkD03A(btBy`U@ z2K}#PAFaP`naAZ}dBJ@`_+x8_M;~X^wl7(4HgU(F?8skhN=vwBq*`}8HG1)PL6&>% z^7D22bFZ!3wc9_{_4e(?vs`zIcKxxweE;dfCkm4UaBO z$?5UmJC^>dId#Xp!Ut#GzbTPa{=er;-{kVp+4TV;!cc z-YCyMp0(Iv>GsC0{-LWyeBw{;%(E((ApPlg*rRyC2~%HJEWQ1^dHeorp)VZ-&zJg} zmhHEE*vt0kmhApl5B??GJ7Jl2rDTV73n-(I_`3C9B# zzC0cu%h8{=|7^q(=g-#mH5X2oEk6A?sZ%=j_>vCyIj=6xd!qJuh1C@!iS^8nJEoUa zyf1yo+5c_J+_}7xKNh#kr=3z;dL-X(Zwc2{PL?UPrdp|jZ{Jp0et5pmqovkp$BpN^ z&**yCx$k~mw0nE?1+yR9H1>Neoa9|_dg(E73(uE~Dzd`%u>$9fBo4k$=-U0)XsT9W zT$$OSCx<&=YXL59^?52Z{o?g4$MZdEOCOrqn9I!IS>JPK5~G_YtBE?(8!LuAwcmKm zg*RKSn%9v#%~{{Usd$%x?*WJR8-f<}+>caabj>o*b1UCa?tXjIaru%rlbbS5@7X-{ z^sR~M7d$VdPp@$fI(%8JLO5t*zvG)`xnn8+9(=UZRFQzp(eCn9TvuARUdCr%6 zY7Q?pEqi(-|JYT{(0k7oyL+tuE^qFu!TUtmL2>Vxt9yHdt+Z~reO|Cf)8l9P z`F-vCtH0UC-0EY$Eh=wY)AavU^Zdv0H9yL~Ke%7JgFoM)qUtwC{nvK+$Lsg~GTc}7 z)hzEjci!)#B{R-zXWGuq6;52E{YP)7#i8J@S9dK{yKgJ*AhLFa&8J^H=})fzmN0jF zmpj|t%x|sRds~x)zCzimH|n>_Dt;Dz=XhT+dH4OGx6fq@5>we0oV-*~vNCFc$Dh8L z`}-s|KA67UA!%8lo!QNAOLBKLHC3J~yutdUy5dOTvbAPzHyAC`=kH$kspv}b)`zbw z*I%k*6EJ&_k<8Mu{j}P>Eqcb0^$ktc*@rK$=S{G9_TTr_<;2Oy*ruwkm!YsCvChsO8k;YDK4co2SZT?ulQ?W2q35sp)@Pb>FqEvvgN&U2F7e zv&}R2x>fJqiNzn(UpxC)=)Lf_FE)p>C)pURlY9KKmhZ&Rd1vo!`MY{sqV@Be&$*^$ z?wzV1RsU=yLm2Cxj9RUoU+peEjW_+a;@xGV)iqoAyp}(IYjxms`OHsND{Mjz%zpO# zsip0`W9RChH-1;uoqX^mQ`kPM8_)lCA1qZDsP*ob3Of*(SvqgB`7OV7%vuW9D__-4 zcs$|M&)K}+81pS2EPwVzQ0wr-_sV{3PD~|_c8ls9{PcIuvMh#BE2#{%RVQRm2Oj@t zoxoal?NfEt>}IZ&(hFbztyrBuU3!+6zs^td3ic=WH#d5!^TZVNJ~iIQ-9IDHm6tpKr|j^CsiYAJsamk6M5I`RU-{O8?9I^`E9Bl!G@c8m2Zq|8#uXmUKX0o{&Q7X)zp9Q zXT9cWRS^#Y<@&REE^k$zW!@>i?3`fqUW-FlPRwgO6=~bWE41Hpjb3R;)XByRIXmUD zm_AAWoWQup=ek{H*gaO+KXPxK_Oa(zMz56nzLTly_~oiA7j}k)KJe?eero-+$j9>Y zp^n+FOj7Tb++T7p@zl|UJ9sZ{o2CEw$KJGyTr$;tbIKE#xx+Q`$Q|__EHHaNI-_(0sYx_cP zr8Nr@XCzytmKC4zjXzQSHk_sDP_xPLz=qyhZ{PEWWv(VSiF)+>bC{ss*WGiLnK5o< zU08zcFO8pF#8hy0ZCEY>)hzcB|=)v+ZWsKmC8p{7#&H#lJtoe_s7m{}EsJS^s0R zd;Nj$^7W1H?SDP`@%xAO9TVGs&+YEC|Nb!F=*~Cpy6=CO|9t!D4sQPJelGvuyS^QR zfYrmAxES3pS3V2YaZm8qRXX=TFXH_V?%OtQN0iq)t3S(aw7bps*YZ=Y;qKY@pYMIs z(b!e;wXbp#H@gi})vR^ln?pCAv3ff%!sAlq8Nq9=S9xw(+<2v`CGqrg--axsf?2uY zi>vyq`9j?Gur<}rJ3MQ9pTkY7)!x_dhaLKGCPntq-PDGn#q0J|uYY+%J9XQJna?)P zWxf%eqj^@`s=hz|Zrxhe1e80C%_wTi`nCBzOFW50Or#n+7|kLR4tcV3ph`TaTZx0llyHoOY;eP1@^ z^arcmy&ws$!Ev|q$j{MDUIr@2QrmBeOWI=po0i#0d*zv$<@ zTX)nbGQQ$^T4eJ2|4&Xcc3JJMygskFj&sB2yK^~t=2(`>SbK#Z*!U|}H`IE;vHzU{CcPT$mdmT|713+M?LOl$~e=xbuUll6Q^H_3nh;P zcYe)(b#?iH=m430ru!mRKWLfF=d(IyRh0YA#R~GTMM}AO4?XDK^Q*5?ONED}V`*Ar zQRHjmgY%ate%@PM>9~Wl-ucw3$G-VXw%jmXb1(PJ!ovL`J8v%OTbIvq<&aMC*ar84W)p_R21tc+>9I=h{y9@A(teH|*#+e?L#G?HY%iU_Xt=cXNc4=47`uJS)w*nPc3Kk7oI%vuYE!%PJy zFL77*mA~Qtvv%3^PeHyLExgRL%@i1BExsF8+n_ps$LmS=o&2{vwS7?i=o9bCRfeJW zWvWzCe#~HUy&wGRT*)MVMUCH;4>jH$U9-&K^p#zk-#YWjJ}BO>-uYI{yVr}SYotzj zzi#itOB&68C!80n+-~+Iu=`Kt8Flma3%`GAef$xds{K{};fhx)Ka}-~oeN&$Xr1&@ zio@IWsp+0ypV($b-MjwM{Hg!(_RUKrm-m~d#5TWEX1Q=<$v=0^H}?ChKPuM!e&qZ| z`_Ioe*8l(PjeoTN--q`fE|=GJx8K&yyH(os13Z@U|G(3F-tB*zuK#BJ|KW`_csAI+ z`cw0g{+c_>a;KQrt=KyIc=Gl&A_`qbhj#0qT6jI4SLkSu&OO(-S@*VIa@qB=ar>3h z9=Fqb-yGO;zTY8n`p^D(AB_A;EKey2%=r4r@bK*g*Us*8)OG8+G3`YS`zMV_-knzS zn@jV)vKLI>KY9K}#}(fDe55y)iY=MloaGc9uPlzeWu%=u$hT zzj$ZhtQptW)|B5Yl5E)XeZkxHHQ_ri8l8JmdH7b`y>;mcYtHk{Z2vU-eu>(;1iLjc z@7LeTbI^64HT`pkRayDvkBXGbkoLDDLy6z>mu z6H;GW@jF-e&g_>hd`&8x8aX@lWx9X6+j4wMeQR{9?La`VX3|`Rmw(oO-)=Kc!@qd` z$pb|`&CSnW3+}0$wK|w(ns7tGJN=rlde-|+&ijtW?)A7|5|UbV_sszdD=+t2FD zn7hYH9ou;A*7wDCzJz-eZ!XXNIm6#J?z2@&k7NJuIhsdK7jLimQZ8S3OTg^Z1GT@3 zjQzS#CMJAm^my+s^V3gu@vb>WWsWl0WwLV?olA`|Qg3*2l{;$hmoE}2S9c^fr(URb zXIr%Rtik7t|HR$J(&Jg?zGK>%|D%n+s>HlyU-Q+eKhtBceYo!bkLUlpll=uZ*Zp{L z(0I@P2a;O&uE+lCUYzte)beSdqwdvEvnKQ0 z$}m6n9oL!O%+59Dy;(Uue!|f&i}g#kdS2~&=CS;7b;H?%+`LnK*9Sjy^{;s$r2U=y z*twc3fBtM|i{BHHZ5rKD`S-Zv##J`#?@LZE%Qx)0dE0BY{QMW!wk*G|<9GO#A*<*4 zU767#-B0VzELoPXo>?++-p^g;N$;dTPX8|wkU1^vIorK`d@4U`yF~eadq%BYefho3 z2cy_JiA|=G??d7mLgTa|kDshQ>(0o;UbpJ&PA|39HTe@N0~n9J`dM`?FKXJUMmgWr z_vY|rm3S{N(X#b%uiSU)ci5AKZ?}6&v7VINqNnBkXIbrAAN~*ia~!S}ydHqF^FXWq*z`K!5qZ`;1``f?`kyQ|MW zt=*n}K05W`8lLC7zqPLVAC}x!#k1R{>h|G#uYZJo6<+FZZWHpj>3^N^VQIb}JDon9 zYxo)NxU}@ZyAD+usTQuT9fvM`nt5E(x96c+Jcr`_?U8vuCR^BEoj7Op!m^SBH9tc1 z4r*TgJ9Bkcs0Z`PKfgKx_C@o~-m~W3o9KWA3K_;#u#pMOUeWwS~d$(w5S{aTym!N4;yes-l>tnQI+?#$FlcxtR>z zXVx~gU9V$ssJim7FeZsRA+SOE(z%+(zUYrniVsMwV3hQ*;|gP7*_^~~C9o-E=J6+U zX4Ty?Yk%`faO&%}<~@4^N((N>{pS3<+--Tx=Y4kHW*Ug|pOvw4vEAqNdF6GZ1+#gL zWOx5rbmy6J^5(i(e>8l=Of$chzhB(PwyrdxY6jDU@;kdz*7<^@&hnslH3=Z#;_-`W7%{_VMK_mbWj~4_BVpe@pOm zu3r4Mm*3_beE7m$@pYlj=BScg^XKQ+MypQ8 zXf8YYU9P^f{@XqMkCV68x0mP7d;IaNx6QsiT06?*-yN>M_weXf#d-Jbj%>c|{^O|m z{732j`}*(O{x7(<|G0p37*j)ltWf>-pSosVad_n54q2`J@~bI+%gw0l+QrWs zE#B|h_p^NS_sXM+p+2A1xfN}l(|AkSozZ4}d(?5+O71yL{`=l7NDbbm&EVy{^}sFF zy-^SLdfZp-e`RO?w3T^r^v5@;>!*c3xjn&Ae0lf#QnU5kpIMAecU-;xWd7&lYmXY+ z9xl7Et+?SpxJ*b|jN7cgp|_-sE?j&%pP4=M!=F8}pL{kv+kNTvrd6dDyVZj-OBZZn zx~{#mWM^4|Yvlr)l?M{n&;K0$`NAK`ExM-h?8$rg*u<^5zwOc7buyL(&vT!@*9utn zia(0|ME=w4tMj$7Aa}&%EQ5H0$HMWAF7|hNSQ0$-HT&^m<0XSNUg)jh5G}IJRch`MomC~8#&aB^uM1`f_A~@$p+8AHQ>%Uitn-vmktX>fR~yPG@*azc7kDvFq6BhK1XfUt&*@EPDJ; z&sja{pt{b)EZ@ZkLU^`UrKIZwYD~Bxz&(%Q;NEFFob!#RJ>2`tfc?{fvy0uD``)y# z+W7T^&%0o?-k6eJMJ?vYHM>8jPcP58n$De%;az{_=;x(B}9DV6uuRS@mxhnnVzbAWwEoZM~+^}l9oMUjTO#ITg zYUk9vc6gVk!!Dze6R1@ zUoVwxQV`L@=7g8JRwWuLAdKe4cU;ns|9J(=Y0%-b&2uO)6iv2>ETDYa>O ze-iJ$mDiVTSN_T6xp>*WZ^oAjtbYZ}c;J3E@0fXy)r(8=!RZ(7*q-QHP$XFsIAQbh zU&g)Dj@ZfB>gr$cz2`CeJqLd%>x}2M6W=oMOJDn~F8Uz#UsbrgZK7hP;U~Lq_jx*B zH2=4K;@8YH5Cb;0Z-n^5pUtRKay=O+Z@9UXi>hj{b-g)Evi^mJ+ zF_z{|`)kAW{I^K$$%R$yEq54>Puy_!)D_iM?oIW*mlh-&GG@Q>dG-52ub%($9sCUI zL7k(s%YQsIpT8*ac=Yt^6+2=-zB_CFWBL2PT>ro9jep$UZ@1r`>5JW;bjhmxA7{J! zKWz8k*FN9=r`)_dcE?u#Wm~__{IXuq>9)P0<|hS@6k2OFJ6HLrZHO}1=OL##@l#>! z4!y4M<3+3H&P&&bVrNxU+&axtb$$GV^&iDwJoY#znSSo!vHDv3XU&f*{PPlKZB~#I zzUjVG_)qYLHM6uCtsbo_R<6BP{&D-fx2*sB{yQh9ZwNiOG51*iwihSLCnjIBKHscV zTetd?$e*~^i+=u)IqyCBr{eo}hwXaX?D`XA_sD$yelKZSkC1#QtoT3dgpKdF1v8kK9e<@7Ek;7^U!wv7ukPhUDh#7-rSlu z?ctZKxijazuQ7XElVYiq9_{_OW^IE_ZQ0Lj zo4&}1pAAoSy=`+gZ;1@6=bYy?%eTaEk->&Ugv;MM&ln6s{WO6|4 zLYu4ktD5IL_sgGZ{`tXfuYX&4_nyy)YMO1w_WI3n=cUf2*VgZ`y__!UvE=+Z{Z-|^ z;xfY|ukM-pd_uWTw-Rr&Jp1jp^S90a?Bi&oJN>=ro6BZlvq~;Ee(Usl_VZ2A!apmI zNu76YUiZ#&!>NFeH-COfYcrSmu-eDx?VFn(-1GTjnV#pHwrBQ)9?RCV_bPOq7hG}u z%HN8KukBncnCsIUgdcBNsvP1`yUhHI_pIN?gQiTAthw~-O^_UK2rK)0u6tsuFL9ld zFL^rq`IP(af3`hYX!FupM(Wwqw{lV5nP2kHy?*z=Vd?YEgUWa3pPcgR&f0zHKcAX) zPP=Txbg6TX^sJimTjU+tl|%1j&$p81a^9pIVl8v~&uKIM5AKfJD*9(W`=D_9m{Qgq z>FYthk&EBFUNxa!r$DaqMVvD0nk%!}EEqidg=5&i%s9(1``43K^Ipk4a4}Q7)ggaN zqis$yWAuBmWEs;^vrgf-@{4(e@izjGJ>0qdeEtke?GsHQ{GT2qU68!()EGW(_gQsT zZjFOn7v$c5vD>Csx$&&%iwDtb-`l;CunB%U)t8esYS+`XQQM3*m(F@}*~|Udfv9DtlCW?EM_LQ^{b~(Kb1CP$Ge>(%U-rk@RrqF z#)W-;r=8MF^JI3Pc-k=UQu@x^W8I6}xc5i#G~enM?djgtTX*YjlSJBX z*^?_9K1?<8vRWGR^+$^Qh21~D+5K7}uq3YW_XKCw8HSa+Q`aB3((QKJ@0QX1&l^wJ zc+DvHt&EQozt_0AS9T`fR8Lv;5dGH+9qc}>iu-iG+&4Q}OL}i$|NO7ax1INW+IaTV z%@eb0UCzf_oC56_%wNYFzrU_0-u^$!|J(2XN$=UZ_t^6M+TQo}|CsLAeo?in`ynFV zSO5K?-5<@Cz4;ZNei`no`pUPj=Bu7v^+!9<_)pEpPqusZ*iD%?UANTM&n{Y7;{9R2 zYrNSz-*4*IUa-u1@#huKif>=&U6>lRsn1wJP{Hlb(KWs2%Z(xqSIPaFW^Ux}Q}snN zRrjCuscc=@{}u;r89uMuH|OvY2ggNI&mWAw$;E8D!1~!fJFiQ>0`FiCdaoeu>GfJMFeDHGkp06`&U;LjC+twBKO>(;Ub?K`c zd-%TWyc2$Z=Jmci@3-jx$YJ_6ukv^KbzZIcQrCa?es|2(pTBd?*SE%2HuJN5E(e@k z@;r3uXQQqA(vOS(-rPSs{p*E4wQkSLzgj*xQ#8eHs{T~%+I1-*Pv=&?F1xZy@0NW- z@y&)mc~0@#_d*YtUfyNC>C#h%IMx32TCd9?pGv3a{XQ;xui!v`T2zUc>D(-3<)E);IF3NGfySF@~M3{hj9z*i>aBbU-3WTle0PbPoUx5)+;uf?z3MA*7C6X zBj;Xuts%lx!lg4Re7-?prP=%ZZkrO%m0H^w6R)m59#<|GdFtWIZby?dz71b82q*Tk^WEQliqjMh&4LeQ&r}CpX#-0^Ue)=_reSI=pUH0>gu1jMq4ub zpZ!&x5!VnX-oU+;q0!-)yzOn<>jtMEY_U4^-!f({Sa@mcapCuOyURKj z^B!h-F}ba8$L@YxrMBMXes!kidFN@1 z@2a1Fy3d|T&HC1tUAxMzcCdU~#Gf;%?$90E@48JL$LFR^Jf6x>bX{(O_TIG;eKo&N zq)V@w?B0;n)Hw71@$U?mov)|7JYDkb-i6uQ@_SBQk$+_?eJl9j?l;@#o2nknU@hC) z^W(HxI!EOh?p(%8Eqn>LUwm4|tTnT2smkX|7A8LT)xNB+3j8@|=hVYfA8e}l9Dx9m&jI*;D!-r~)z zzo)Nwcj4FWGr{E{)1ugZge4SB|MhX+O}nh)7FIz4N+(W>|91ZK>8JXStDpVT;-vZV zAI;zMIr@+I`~S@U9yQk=Sp4?ug~q9&wes%{+xJ~KE_g)$JNu8<>+4$f|NO=NyvAbDW9`TW;-x>@B9qaCqL7-&Ahvd^TIqSR*vlRrmcN8 zk?<-=TS%3cF?()i{bLzxR)$f*AMK|8Or275P?K20Z zRQz6lj@!fk_Vw(#A8Q^&PjB7Lv+7k%s{ftGH5xk0Wwol^Z{=Q^Xr7b8_Uv{{_B&Up zX_Jn}FXuh*;gxjZFUEWCe8t~1Jg(x^EU);RTYE$KvCI4k9XZ8YmtMPAY;-qrn(~Wl zZpW_fSL||oUHp`&xX}M=l#8Algt*%ob{)UZCU2Moo|)TpWXM9C-Anf_-*NPl^5R1 z3KRv%@~_x*^7-9MJJe@c_4sYMH zzM`6qFH`<`{)0U>Pp3|c|C;`Od)&U)61?XYdzsIDdUnBqxvw|n6hD1n*77=obxZ7f z3;Qj7>x|zqsh>Y~rmKF9^2>`R>#Frn)Ve;d+{d-)RRv2*T#GA9^R}jd8qF){Lju($DPPv_pGM zmqN3fgUq(+rxpH-{J7k#K0|mffAREkgELc`w7I9r?I}BOHTkuP;WG8mn~QDoxOMwJ z*a(>)@w@QnF5}G7^QzvFw^gfqH*Ju){{H*wTji|ZSLIKUox1fG6H4EjwO1@O?SH5f3Xs55eW0|vS+?-D&62<9ysP%pf+L&^_YP-W`})N3!Qxep%i2f4Xl`yzOM!19>Ml`Tw+S*lx4+N`_V7uqpP8222Zs zJ;F`-&Z=&i*uQ9QoiFb#zFfF(_t&oO+ZXm9^XtFb zKf3r-)UNIa%lmsa$J_bmKib{D?~ppU`SXj(eD-^R{h*^2>UP}Kza0GjyT09l@b&i& zg2s6cuP*=a=$AmHU*+7Q_w`pFgB*5zc`>sx9wmP%azsajpiI(O=~ z6W^vW&oq4WyIO(Sd(LW>-pafc(^iSyH+Y{p|BR4#wai(|$Ewr6^)XA_DxPPQx8_=x z{<}%feGdNoFf;X?;+8MF&R%;SyYkVsZI*F!iVg+Is4SZsefDtH1mp7#tJ0T;*Zz1Pm;`tSIm zym!@=hDPTtS51tXKlgo|$^31Ln|SW-%d}dnd{9?E+|iYnFCk+luQtO9?gPBq{C{sY zU!Q2Qc3OSi{%wD=O10U1NrN*p^|$m+KzrM zYS?O%gzaVdtXm~*1ko~^~^hU`WNq-zJKcUsO9GRe>fTHeE;p& zE~z|qXu{c~`-UM;3-g{_IK5l$t$W?b99+x$+J!n5e;Et@ay2$|13Yxl-y@TkR_gsCra-p&inVp^W>TIO*ZKnGi z9q!V~uR$}fU2nWq#gIAe*lDI1v*=&Zy49<%KjpH2K0{Qsk|FTcs-Zss*L(GTvMXFj>yh18y;DDPhWzEPk*_~6EMa#pX!+TGeXhLhi+go`%~ho@ zE-cwEYLj!~@U+=$C)}6w*sZr~)0~Wh4_>M+y*ar&?uv2Geg?PMA5_I8E51K0T@rbF z_S56L_gs*@b@uC{S>CgACw$d?z1n(ltefKf370Mgvrgu>`tv;5?fkNTKIJL9d@EN@ zJGX`Bd(W+>GfVG8$!q2G@E?Bt&Z_U3%8lgi{yC3)YQ;+rb&->=8 zal*(nF<92HV(K2YcE9%?4D!)=o4jwG6>pyt|GGr+fCHPU{Nmgz!XNI)r0ml=p7$y1 z^>GoE{K$nncl66hy~vgN?wD=oxFGOB*?IBQe1{Jcaz%dzEZgpx%*L=du9C|+HcGcS z;QY@Whk8X;Re#>`;;XI7+{+6k9+&7S?YG#r{?EBz))iM6_w2Dduzr5MQYp_Z`??>d zbzi=v|M>S<|HI+q@eeLO6_v}|Uh(=97yq``i+;a9T>B&0$^G!#x`U@*Gw->T4=P*s zSN;>M`~64x&#T$~AD*r*fAB4T-rJA9-~L50@^8)D96PCa6EAm0&^@)nA0i@}b9XhW zKbKqV!}jw^(VffNci9ETZLU~l|Fdpx;*~N%+%8>Pc4|wd}Zfe8I8}b|IYN= zMD0Ej^LG2Wf7f_D(|;bR)(zh-aA{St3~T2dt(Pa}DLDFXv$$Hdj`7op&w396Pk)V^ zpugi-&W=ltg65}vx1HIW;~RbU)*Q3{-gQ}bJyuVPy&C&+MF8|_pfi3 z{nbai*iLmZ`JFkuH)qS5%tGn2|JJ-+@#V*>_HC`7qS7nU85kz?Yo+X*wf?`lt^^bnemi))UVBcn( zy72y9XZbX7h830a)!Sni%HOZi44ePEW?A9My**Y3Et3i@EvD^E-nqeO&uycQj0;cC zc^UlHdHiFw=Jt^KpatbWu6hT_-I;JnX6`(-JC~$$OWw6oBMK~!c|XKXl7vR!uV9IX9MG$Q5fS69lVK6QIpTk*um&i?xZ{Zj$c*2{dkaqi@IF{72< z4;-e=-?Kn$-jXXXt@#xGENe}-Fi$KvGg0ecb>NEy^B%=c5ZC-W&+e4>or@B`m*(s4 zJ9UxmYa4Iud0$QQ8|gKliu})4zKq}dH)PvqiAT!fzf~s5rPbvG=5YiTSU-Ass9Y}m z_7aVX(kq5*cAt;m+YiG3U-Q@ZwSiU-=jX2f@S>=j{dV@B7jMshI2rB#;bnCE!{zV) zh<$%(H>Y)f{kK@qSWeBqPqu%4&G!FTb)W4)c|)DyNB-TG*;-peU!C>)HG5X6|EBe2 zoWJF&r`>uf`H6e)jORR(EL}#4I~8j`8_uYFF1S0|QqcZhR<7)w6%G66%zt&N?9OpB zwyvK#zqUE{NQm8bx9?2N-n7K`#M`dUKb%2sY?S~+{ls;^zH2D14c0nhjg zB5sC1TpuN)rGJy{#A9B~voSdj0_Vv*)-zLo6_n=A`{kAXbiM8SR!Mq#l!VHku}ZA^ z`c>?!6~loaySJCc-0ra3`|C&S^Y1s=GG44bnWmV_J=I`s^S9=$_pd9yNs>JuF>PBd zo5JVq%0GJa&l_bqJm1iBm?>=67QVVCi_Rte_}di|KkcUK`yAW#?@eT%L{^?mXWuQd zBtS~0B57Y;|Fla?-LJRYQQe;YHukCX?Ugm(0-KMm*6Y~M7xm5}zx?0R^7*M%a$eob z7PG#p)P8?B>CA&xrhYx+dGnvWto43+nela3-16e9J7+%A-gNzC-g&LvuNI!z^M%iN zy5jTo-$R#nZVCBXZl}pBwda0S{nt&g+pT|;sy#myKV8;8`0LVD^6QH`qr$ev^cR1N zIa*vBx77af>p1zPw|}?2mbuW@~q@`pg#aELi{9O?KPpg(h?KmR5?^h`%yRes)18RpLbKzxB;c z4e7hxRt0GOTGgC*?Xu(6T*(@n(xq>Xzvolg;IGC}eCpzF#y@An4syQVZ>uq3<@>M= z>m&c@biWSDpXTWA-g)Vu$ZEl|)wPk^xoSez0h>bJOX`9ac&1L_(w#bWn=aip|xThUFdCK~DyKZgx zOxKH>AM+VbzhH2G&-~X0Wi^+riZuAvPuz23&D+Jtd5o@eC$Ycp%VlcXSRg0#TKLZ6 z=-GSjE&XE?$S23l_2-M{^5a+K7Tp#%sGO2%Y3%-Y_iQ0vraLA+2}`^dt0gt)K9S|q zU;1&+R=$qy!h2VmF$R3O;rI0zcff~=jh>ZJi`iu2s{Zb9&UR=1^+Hj%Stqbxg5CPo zhfk{+T(h?ytJ+qP{!!~^@dAr}m3=cCUW$}-3%;I_CwqY7{_g9tuPdkSo9g~FhwZ&k z^WTo5GaI#k{g`-MbjH2dSAUl#_#P3ryjoX`jvB%?;^4n0rFz^Uh_D-EPM`2r-EI zIzw-3?5%lU+>fkoSe2u>bKa%=obbC6kLJ~#N^fJh7`FOa{@cWtEWLZ>xa2H6R_vW7 zZMv%3Wb2<3(@R#%O=FE-apvW=b&Ky`e0~1lfm|fRqLuKDso)2{A^sa?ef-h0&_c<S+&w<6KwQY9oITU?6`%b(4+z(mx z4dU0?K_k`a+w&jZe0{v))302c%D)ov`>Ock_f+wpkF#%z=Go%+dByYYtabX%`o>$n z_$kghVP4c_sIxEoeSf~_fy=_VRW-|=Pt7&I`backV)b7ux0b*DwwspQ807|9JDi`y zIXk9trJ2pIExQ=G7&kmuKD6StPS7d61Bd=hc+T?Ew`OI7_tt%e7LI4H_Ld*l|2pf; zp7V;IC*^vdR?27Zth%`PjmLEJ@F#O>O;Tj$Mr-hjDoiZS{adwV_Q&2_pN9T&BQu7z z??1oWm$9p@cfmc4?5c`wj-K1My^V~!ed&Z@()N&9|9XEMY}V>~RxP&6CUwL4#tWre z`u9x|S1T0yekM3|d;YBD*AM>Q86`JwJF|?|Z&^$E>FiUL*^k~4cK%%Eu;8ZkCr9yv zwFhrB$}J1-4!d6|Ddm1})2V77@jlTPg*#V12`K&Vdhhk#>bU)(ZJ&)_eyv-bZkqAi zvVYaDmri?^JvVO(G8byEKN%gr=lXk%f3M1Om8Y%GUgYp>Y17#a z{FUsR*sY!p`{#dktS=V}fBho+QRw~E$I5lXQyoivSf6Cii#xx{)?~ik|C+;X&wL}7 z?hBl?s?hDXMyjk>ym?ee@~nRDC6ATv@6iu&m~+agK0jjbjM|<;+f^m|Z$9*A`H;L~ zD%13;t0Hzj`cl(-f=iFtJ$8{y_fnb?-naDhEEC!OA1xX$^owgwZ?W)Lu|MmmP_z3F z;gEZ&wNKWyOHY!|TJow$^Zv^3w|-e)X3tp8UHARq>y3rK?thtz*yelZkMBRO`u@~!FG1z0@!K7j9h@%Cbj#_K`V-q}`o=CI z8?Spd@c+t|J*QEma7tY6=R2iK$IBl|O6=eITq|79vno>fy{4A?LC$Md%-%PzUvW;2 zn~=OcvJo zI9I-0_O?ft$?1Soqxt>t6_;CAsz$j_UTnEr^u>X@Hm8bZ)}MUN`R%9SoL0AoRgu#F zOP?9Pcxhbk!>`M06J%03?`v+w4Bmepa{Cg>8X`U1E%PiIWWuhWjd<0qb)lrhpXWa2T|VnA>#N=Gx6N?xks_P5;=egxum7d5|M%7H7sgt6(Eiob1Qmg%>&T?^>nwx)E&*Rmbk<(J58^;gVK zn$y45aLvlBSsQk<-_>PqE7p0((ab8rJS$_#mYv1t3mX}QQa70PZ`3h2+0~qtH}~0Z z!OuS)WPai}_5G{Vku2dgRY5Ov7iAh7?9~7I^-e-+OK)stcf~9Z#|`@LuH9xk|NFy} z+s~@c{OX-m@={osrzd^y?1>49XV{I>7wMb3a2K(pu3%8v{<*g2lcd83t@f+;!aTdS zRF-_V3Da+hIqeg_mEqO3*1n^=m##f^y+~H&V$F|rx67A(o;gkLiPl=F`5*7>x@h%b zZ?hWLn+j>Olvxd1|7p+ItCuu6ziRs2<<`+A{kffA4^9wm`*~yC*Q+I`vakORonIP#^7P~Fve|W4cRc#L>C}3y z{fh!mUo*M7qip&*``^z}cjn!DJJ&wkYA4s#-&}Xf;#OSGy83TlWQ)zpcNebMt^T{~ zQt~?HE%RShuZ_1pc|P3Y{H?~n+cs_7GH2DkGl%=n#2x=*uKTBxp|0HYP^_2AnT>Ol ze2!Y#zt?%)u)=L?v-vFZ?^ClQcjY{J_Q>n<%u5}8SDu$Ih^}FuxXSj5`>q!nlJ_3Y zwvjk`Hht$ccdgdil3&#_0x#a4w3u@)L%jXszAfA58E^Lyczf6Bt=I9`!o6o-J@85n zRpR@S`HyR%>rCw}&w|#R?g~tDT`Zk!`u6n^wG}Tu**XZZuSz-?DE@Tnro(HlvNkGj zl{SrcLj{DR=s(?e~i_xEI)@=i+|8&t}S_9oB~LeskYzy_WUj z^5;o%DyO{J8*4lI%~-Yi3~djdVhEbBCF8@Ks_ngxMOo(vtz9Z-@nq+=nX?{5${#Ie zem1df?fPf^+Zwa=m~!i;-+W`uHp9oDupy6^(d1iTnf}532bXgSu$5d8lnZ;I$Ss>& zWhmsKl(4w=tB3sTTq%S4Z0VJfXMSH7nR3ng=8gAT-v8XqGigmi^_JOrMk{Wo#9w;x zA#Pr4KA`LMNL9FukD-f9wK*n)@$L%&mTTnP^oxV`6e6l zcDrA$x7&NZmiRx3{8c$+vCP|B4V+HeFUqF4?(DL&v`xLu$QP^XFK61V*!-$<<)`Iu z-@BJvahyx%pMCOc*54F?u;XmgR_Cs=ioG3vTJH>Rm<$~{P zBmM4_$fx>xx1L+GJpSQmE7$k<&_e4SjJn5OChs}jKH0tgwrcIW!*+R}y=9)CHGKF( z_V$KNtXCT=!!-*Ie*M<8zw(pwpEoD@gRAZLRW@$dU;p95CnNZFuGQUZ_ z;F|d_Z129NZC|(h@a{KGo3i%L_nTqv;u{=OJ-;s8mUp7{)Q(F}l=WU~{K+tSpFR7C z{MQA`<5xXCvD|0U!Ak|U0lOZ zwA<>$%ZBi+0`K20`pRA;9Wt%(E1%GQt@bUSb~EkMN}l4)I{!}cq|~?5+D~s_p1jKV z&+cokPa|Hgf3-XL>nk4VG}-H>^78Ie>P0h_o6LW?e3i}Lw?*$tSH61pw&L4%uIKj; z@g?rHIU8wj`_IfX_W1f+tGnKRs=97{HGbF2gQqY4`8&_SAAQba`WJq zReRFj$A+(rd0EZ=;ruPf(ixYZ@7l&?=l0{`b-ud&GeJumV+!^zHuOtfQrIMPS;k>` zT2E}F`P7R+Qq-M=aTtBt?ssoi;DWoF&9#53buJg2)Vg$+ zwIl1!ityR@551lwEOP9bU+CHReEhRdYum4dLZ6jZFAF?BgPGy>@!I^I zbDW*RGj`*SG zs8_PFUwX@5Gws?w+4=61)Q0*QH63Na4#pZR95;k|zFu@;%=CR9TxkDo!hwz^?+JVE zmV|9qdK>*FviXzj?S~&6tZY`PbzEflGLPZ#+PCe;WqbTcGG+%C)e&2$t1!;vT46>gse0^(gZ^H;{zA%csUKzc5dHjhE(sHmOw_rc@(-BWfc z4;Ji-`oTNl-13aX+#_4;OD0|N{kP-ZbzfnL_czlu53;HLJ<@bJZ@o&5SoYpAG**4- z^lkd{uKbU1exFkCx*6|*d6?e441`AZ|$8Z1@+*H*In-vz60mXAt**3YgrJQjF&mC$#);~u-b z@0`+;vRd#yS zxj&^!-yU+@_H*I%Z&UP6sjWZxTcTL$h#Rl(OQE-4o=#LwleWy;cJBJ5+#XQ@|Nnmf zwolml_}{+3_ZRQIwin9DlI%`&U!bRQo;GR^MA==A2jgceajh z<#PwN$E*JpJy4839ksnQZRNBA)^8axf1eqxFOB3^IR7;{Dt5(Hi(AXLyy@GsV{Pt> zr)wOFr#;S6yz!G~&4E6BChhxDVf!pUy!;z+JL0y>L6@g{tG-y~Z`nI@eslJ|iuaG_ z|NGkdMS6|Vr8oLdCsr0OjNhxUb$@8lgPK((+V{2RCw>e$x60z48DE^1tlxb0wf*~w zZG+do$*8@v+3V-3)iU>vf412CO;O>y>~h(Ny?Im1Vzc+2`dxZuk z`YK!0Wlh=i+qUntjz6AraoXXTK5IhOii8w?f3*8M=iB@9{!6m2-W1aw`qHM~_(H_j z0@wF9XB@YYZMa_O_j$(+^YiYE!A~_G>NCBJvwv&u6Mym7vlh@YOP+XsX_=0d?>}{a zKfawSX0=t%>h|K+i#lzWE~?p@^#6RTR~p=!b0=&0Yoi@IZ*sB}94zuYZ1(c&%JQX0 zLOi!b?*B2Hecsji3&RdY)oE*Z&QUus-OhXo_qv9!<)?g4pYpCtFZ^6Qd;ishj;9uN z_fOd2gQU|yh}Y^K1Gb-v)*igOWlrzfrBo_VJKYrze3G1c8u=ASid zJA0}mc*^^TZ>)-vc>*6hd>D-VV;R_;mgx!E&koAdn&>uH%(`L40?!wsSuH2jYv#-p zeiF{StnETBx9o-@lQ;&=9ObX(c^nR{-FaDF^5-uuPv+cx@4oY{b*wkotJS`)dFi@m z(H7l3&vSFPobQk>{~`NvJ@bjv4DolSnuQ&FHn)an`Zj;Lk}WHRD${RGd&Ix;h2zR5 zjU~z1zl-)uZJyC!-)}j!?&0wRX}(gqVKcYC*<9!HD2IRIafSy)^_O(DZcUe76x%Q% z@oJl6xVI4p%U;QZS5K|aHmAn3v(|-d_;$LDVe8Ag;#<;c*(;w%*)o_+J^f?f)<1G5 zyaoAqm<0N5&L~HJeq^+a??ZN3=)MYlwbW@0Mh!FT?=Y?^mA8>A{A6PGx}c~-LE?6x z`D6|IjGcuwfpX7xf3dJzJDY7v*!9U98&#u)ernu2aaw$3_-f^2R)KWzG(9|oM*)+IUSeU+E#1KUCeFw z{iHrS+t>AZRyQ_2+$=87z)<(ohQTRz(#>0a?T3XwT>K`rR`&6g=F_?v2W{@;H9q{> z#a8p_!|Nsa`ft1X?^R9u!f;w?y?y2D*UT1Me!YBud*8#))89{jd9qPIexEtR-p6n6 zN$;!pYWL0Y+&%q@t;di2eERj_!qZkCvg$k9Wc9zZ->CMva8>zDhWI(BL)*?O1T%P~ z>rVg8z;$ke>ZV@ddS_u4j?l=LGlSZA3RdV{viU0Uao(erx59fOemkF-^*L?p&#lvq z)Aj~inzR-5z31Z;Gs_g8~<+VJO;a5`+TlQu>%(`1%&7Q*Ga&Upy^m$vG&p(@8 z6MpOG@1jZjBBR)*@0`(iz4Xauwyh3V9e2n zuCpWK)UB)b{V8j{Bj>gI^lIjv_wJv2mtEozoB7eI%65+U)O%0OS#STietE~;;G?U5 zEv!zTdoeW9p(p(1#L_n%5wE?TWX*lKYtppG$y3^^RB}$2*RH?y|8~)Tv%Bj*o@@G+ zoWFi|$>P^tRW|1e_r^18pLlC^Twk~4R`E}l^i^ucpnS>StVvsaYy|z$?L$vT@kC?+-IknFI3jQpv`fx^WeUG<~(Q+cQToR_K+G z{E6?=Cw`LZu)Fu8srG}!%i3=oZ$G$}C(Ql!a`V0G?))ouN|^5Z_-^x(zLbYf{eB_m z58Bn`Gk;ic>yh<-_VvBx#g4mJGZxu~UB0;5;MTVe;d?E)GEZmn9`_Xfd3(`%L6y9Q zil~8|7r*+HzD9Ns~Z?b3PdtH8aj&ohUg;|Kre!C-V z4~~9Ke6;);)1?3BKQzyrUVSfnR%xP2%E8N;0o_J;u_piQgW#o( z=Yq^V-(Q*hKf890UeNwedza=HKb}|l#P@VU)ic@S)_UEQ%x@f>E80)m=56k?+IME# z%av5gx_p8|E6wx5+c^jb1N z!6sU~=2ll!nE#XM`@5(7Ja=5L{OwUUfn#}pwdU10tTubd^zdLiUx)ZJwu$`@zi#K> zS-9Kdc8c8pt~7PP5%N^@p{>?L9pB&0I z-;}>yskU@*D3s7iA}98y{mwYxUh%Je_i z6s1zrr;3KQf6w}R_4gTW(LYzQ^zG9vt7NL@>^?M;Z}qLsubQX6S-EEQny}23|G&;| zx_-<2g?eny(%X_tqbL(0JCQT4H^7+d8 z5)=JYwz&=RPb|N#Ty;Ki>uiHLKW^QhzG-=Vq?O<|zZ08_Hu>9JFF(rN>%8-Fij8Ju zTA%v1JJaW7>B>4-%OuZymp-?z=S}T-o7kJ4X8$>5%GhN-*Y(~1eqUYfw)%|k9(7^y z{(eF458j@BXzt&|Z+QM3xOlwv=!!tAXPa+&Zhb-4(#2!YTl}-z6Dx+Z~peUt*D;( zdhfkowu|=k9aM}dvXNxocfPk&`;&Jm-<4#YU%Po~_ej4J>HN5IrzOLhpjqxI|BLqf z^k3fkYF2gjj{aWd54#OaqiaKL{kBMJ_uj7KNtf5Z*gEfTgZf{Qf3fe^^G3d< z&I$9^hCbv8xqqy<?r8n%!fkpND)oOrZ9edS(z@M!ZG|7!|fMenw?iF_g?amhEvk|&oljh-z{9_;h3FvI^<5465q;|nQL}> zu2^-t=2>d|4xN9o6|0ullvfxvP567tGC$_`%~|fLGU-RwfB2CZVUfA=)x{&~I~|Ii zu3KKx=k6u)w)WPZPsM#33jRd@-M5p^HS6{6#fR@yH8Ab^c-iuOq51dwrH{{>O%J_g zP-1(7FKn+bZ;ORbmQPOoV}Vn){6Dqkt=_8lpKZaL(yF+Ecjt8V3%{J%bbR6VzWh0x zcl1Sv{8{smZGGkqzl@#pKgR6{JfNk_y8Yh!K9k3-wdwkMPcH2L(Kr8(?YzfNF9l@0 z*m5`YxcX|H>zc<@D;K1v$UnYUZ998wu%`C}<=u8xf!8;GJZPGb7Z4v!+gau+F`{=APOJMh`zD@J^yRD++OvoGffJb^b>{Fyi7Pd zg>Uba>0U2ygv9kRAD?2O`1W1YjlVz7-gN(QMQ(2XkJOArO;n|^~*FWFS`*w}#%M!6?naBsy=SS#CZD^H8J6|I8XOr2~ zx5pP>)pB36-0DoAuF-)eVDZD`|tbh&Xqi8c-K7t*367Q7X!6ziaoz;_TSX8ENR_*Pj0$q z$W#yZ$Zzv4U!C93eA!~#LZd=_Puv{vPd_9(>UDC7b=j34-Bs z&cC`kTR1j%RnNokF`8$@x32AF&s0+WKZ)_)v0qv5Yn~+7zx&cVUo~&F%{y6jYk8l{ z)b_8}*#l-Dn&Y-c-gwo% zJNrd$p4<5DMsTj(w<&yk`sA(ik2Y7WuH`#*=KJ|q6XzBmV(qV->pIifwtS0!|Iu|5 z>&5=e?Yp$Ffc4BF)y%)uuQn}o4t=|m_fzSE3cqE`ZOlID*-m)A?DL-gmGP_*w|c^+ z-I})4@0{&9tIIlydRGpFGTblP^EIa6ZB^L()OW>w|Cd|cow!`(PHa+Xy07f-f0aEJ zOXlBYTzc)!`pa|lzohCHeotNV`N-YHq5N~Jxo1Xr+X~iO-79Q4T(H&LfA*Ob)}8ad z?F?5g3pc(P*m+{(=lRVygUyE?4H-9b_r|G6|Y+6e`xNG(^DqOKe4_abjbd+ zpUKymlPtDJ3x%%<{yNcr8C$LFJ=ObjKF-Pg6H@*~a9zyZ`5&sh=D(U)wR}ooYnJ=p z6|XA1qJH<5zx?sgdTOHdk^WueG}v zezbVs`(Mqk6P^TFeOpy!+j+dJ=FRIP>6e&Zd$M=Vdp>dQ%aVIv=kfin+^3#qb+zMs zRrLMN_1`w$EA9Aa`}=S1yFb%QwC0=4cw5`tyvKQy#aHFij@c`pmu&K@n|@yN^rUZ- z+*bJ^7QF4dN9n)NQ19~I~LYnJxjxpQFW#68bey_<7p$*v>Gn$iFMec6BH zVR-4hf>|!}H%<2Ey1sVR(#KEk%V<`Ygr_eNzW=i)=j^I;%MU*A=RYlXaq8FSDPC%| zNlmqx2ZY~kj=%X%l5eK8@Vt4uG&AkCcK)o5+84L`!!_}%o3jqzop|uWjPq{~y?<`~ zujR~s4kll2H7OC^qcu0`?5);HzsZ{VXXWb~`;;}Gyn6YHEqdC=7s3V0Hy>l$pLfJR zQDhMLE??xVw{i^kOW#9P_%S&$puKu2PZo*_Hw|2H(CX>FjSBsy#FDp8?mRI`l z(x_V}R@)TU_O<~!!4CS+)8*UcA-T1hoXzIp@2=FNM-` zPwaS=_T_HJ^^dbk4($^0v|9A%+`4!5kVzrRwpNLD^G*DYwD zbbl%1lIBy-oj?3usdvbG#!>yRm2C}G=kiZxy5{C=k+OfW)6(L1vDaqD%H?$}KXQKd zTyFfnZvGDcm^<}lFE_o-dOL^b;T!w<@;~14*KW*_G3s@{e@DVL%`cznb@JZz2Je&j z_s#EExBKOkd*{E4ek|8LemOQxqJ@q3xV1#Ypk3zARI!;9M8=KXA6>$9aF5=0q=1?S8u}@M_J!JV?6dtlm6r}_PFoZ}rgTM1GPoZLh2c7p_FlAIf^h^5Z3xyL`Yp<>Twvu%te`o#GlOKH~g0r9J|1%7f_K2Kc z`~3Hu(<`|J^6KV2>-wy6?9bdiKb-!V$E`kJa%0}7zt_wEoBog9Xa47Z^z3}2r(gcH zO#f$B+E_mK|82EK;drkKzt3+~s_pcj`fZuCW$ybgwri)%iC)sV<=>MUi<4_E%bcqY zF248T&59?H`8EIEd)1qNnXR-SeQxFb@&_k5C#gNw(rYv}(!N}`;a>Ht%c(Y7C(Fj& z-dxp~-Tu<#p#4_i0=Kresrm;NB%4+9oXJ^Q{rfx1-S_Run<8HD?F%&8e?R$3`KK(& zd$PHjcAs@`SMRGY{uVk_>F*c!r~=*e=LO5>u73L0Py4--=I#H_o}6Ccw6(OTp>Gm* zk3r!+72~?(p5^l{^h|u8a%RqJKKbcNI@OieZKetS_y6*6pYn;e*(DLZn>J3+J@vy> z`TT)uIn%1|hi@3Befzlc>KVqxx#7*bx}INLbo$4Vy0gpgnP2@OR(quHf!LDT_RaHm z_3)evopm$(^x>kP)eF}Ds=NB!a@U8=$BrqNeDAxca8tfBvX8q^Y3uIy(#AP&f1>0*`CvXda`8;H7e@U<(Hcuo^(sm=kA3N+erdnOPyb@yT^NFqUU=H z@d}a0e$P){eKyN`*5oD1+mv^tu6sOj>*I)Hd!8+-TWcg`R9>#o~=EA;BS`_X>pQ&N{Kf3ap>)jPxc$5-9I{QR-=>&*AY zch>dKeVfX%`UkgcjdlJ?_WZJEA1luKJo>pmSLavF*5EalC3}x+eU$$CYVP-p;Nu4T zUOyK<_lmi<? z-+u95l`EH@UG-}Buluj>owYkO|5=39f%+f3iEz%H#xle~I1 zsw?Y~kIY#T@XFWTbW6DxvzGnp-u{el!F`#k^OdHm>U;cq^mDVjetE_J*$3adWXpYg zx8m;h$)!;fKX+Fh{+p@0&RS!BZ|&mXn`>58y=yjZSavOP@wCnUlE>se-n?FYz4&;{ z`ri9*A3U+P{;i`JduqMVx97>T6t9X)Mo;GiKff}QL;Pc|-#h=Jy_ct1er=CFWTez&+~jug&+1n*{Q6dx zfB&}V9=rE7zUjXV1J0jxoN4i};-!ASWr)(-Pd860POeSaS$}x_DZ#!wmsbAq?9Siu z^2?WXf8W|1pMNv_o8fke*M2)MZ%f=ZvA}R*+|~MvheMyAaPJGe{Z8tu(V@++Y}E2A zKU=?i-fRE3iSB z`m6lAXZQK{f0env=ImMIy#4v=in>+5ue_^2d-zN4nTTUWhrfyU9k$srp~BWONLb#} zfBDB#&m+%k+CMMc=09)Bmy>5zHLWeuKlcTFd-~*s%+qQs|Ji;T&LwL$K3iDfyzOWC z(*1WHP8W_o|6}&cFy5Cd9;Vm5SM~34dHc5KrsdwAz1b398znn~%b50cJ>Pr&&%bqd zN=%Ed)z+-If9C2kubYbH|Ian|&e^QLcK`A>{PX=as``#xnezT@aiKu_x<0VRd>_68{ z#9UT2_UT-^(JyV>`t8=c`j-k<&U)@Yow7)y<;Yr%k}cmjCL3yg~PdBe9KQtvE#5iV!_((NzvosTQrq|a4Naq7RZ^4RKA47Xux0j~ZMTH$_i zg@58ChIhLT{@=p>t=!V*-7dT2Z5b;9w<fV;C z(|<;muHR{C(Y8FjY~KqBx3BRQ`xpQBxm|Rmcb0!j;(Yrl`?St0=N7MFDpVekL{pFHpabM?O z{5`w4edSgAw8j5R`Ja5A=NBb=cxBPzEZ1vGcZ8NCh-OsXnR-8Pxxf9hhz<8seZybR z2;92xrj3teWz7rEJ`GO({hv1* zZushP?Q)~5`?W{yrl;Jk?!B+q-syV1caqx)?iIYL_5Od7ri;di&6@tVc!F#s|4+Wx zVSCjj{oR*mO#ktdp?;Zpe`i0Z-0kndCF#dmewQ3lu$(*Z?hUp3_p7g!np^(*@ow{i zyT?mhY~@;8!q2a@o@cVs&N^aV?XBB&-rp@Mr)>%iYLzj)%UN;g+H$ummx?*B3Cjt+ zs(CKD@%j3tMNU(1<&}H9oX)$%JY{9D*sYT3&rV#dJl6L8-_;efrYAPZtSa4p=e(2u zr+s#OGV$N92V9U?H*@~6g>( z>VN;0!<`B0AN*ymR5jhc^D_3h`0QhxlKYoW&JJt$EZA!q`NZO3#ZqPe^F^gf&xKU$ z4;?TwzNPfC>E{%qD(%;2Z89&UdR02AM_sEd5}KC~dhf{^Uv0i0ZcjWTKOAfS`CH{? z==n_T_tLp5WVUX)%r@oDrdiR!tJuFb_U~0Ce7B|Vn&EphsW$zXecZp-KYnhxv#Qj^SJv#@B)p%5Qf*%=^YHm2dQ;&?jfk-s0Cc^J`!EpVh6u zn$gFzb%EhzQ41C8*QWfFTcL-RC+CUT<(3c^!e(IHuo+stBX6k^72Z* ziOq}Cc5AFR-21z`@MCw-JlVS||Ey$s z_Tq<~PW`eo@vE+u)&$i|ldWC-?)cAT9GAX!{wWi%o_Oj~r2DKr&sGFUKmGmd$&-&0 zH+R|>+3gRP-TdG{+)tjz?+-JJF06h0>uBp=bI%&$et4$*4V$vzIWT@yQa8xV)9(++ZvW9 zyZHp$ZufjUcKb@^izmB__qeWK5*$%eIAzH+!^-c^_LK?g*EY|b)BfINcI}lb+_usO zo;-U0I5;Td z^Omu1zAt?5&bo?6RyyVRk6(VBC&QwC&*ANo;uU(Dt?NymiQPK4E7E@MEaCHh(Tk?2 z%jWE!^Zu{GonN&@%Y@3NrtbftW2(DMSmw;?e}!kBKeX#6!2kN%@^{aYe~bRy>zkMV`HKBZUa7_AGJUs{>oX=Q z*7^5^Y(4sC<=2hzo}X{tznmT_-@kohxL=mV%B`E%UHR%e3_U3{87Gi|E-7DLrc`( zJ(Ty=csY08nf3F3I|`~RE}9clC%ua?Y(dA?)q>$#*V=lI$G`g;{x#P82itTu6`IEcfZ*qCgs(cM6-o2%HC|+{U}m*h1#d{pDHqb+8pElnZ&+OTK1}5o&BBb z+q;g}A2~c*`NI8Nx!ai=R$aav>5%rjTH-@CWq!6yM7` zvGVQi2c|4_$5Kz+HrjtatXuh=v#8w}S(&G5Ht`MG(>=F)yuCQ{*3Wut)%>2H93jq6 zRVVoF@msw0akAT7mg_o_H)Dgk|CqeH`fw)C%kY~g7i&zv7yn;PZ}quD7r%sG6o0(x z!@m&zhcc|kJ+~NU*`1qnJJZR1_8j@5FBd&0eU)pTxjZq_Z+cma^5$C{S9{m~{k{BI z@e+-fO-89^F)L-=7OjZ!Dm|xLeDhHLGhg=hg|_`Gg})~mEn0V7^JLldCxXpIM-0CH z`^|T9b(KoM)P7~ThVMu8H|4kdPycbj^wYk{PyX2$@Lag|cE#&T={|>S&+;?cv#wV3 zKEG$@$`%$W(?9F&y#pmDCVYElVlT9ZSAR|Y*UBya?mH)y-@X4nIeh)I6_=keZq2q! z*{3CSp>TmZujlzEK4&=gUg7f-npHFRmfXjuRyFFnw-?+oRlk!e^pq|A(%;?IF}7}6 zh3BW#g-5TI(thU8)D0P0&uBX+HtI8dE z>UGQIU*Aidu{z|wkDGGy(^L22%#{j!PfiTCjS1fsa%!JBJO5(+a+{?`O7^oRTN#|= z>ut&bOLg``(a4zar!7jIiqdGu{>oNTp> z=2yQj>2GK5F;YFEH?`{L*R(j(`PJWV#de+8UU&ZXMswy@t9HpY6l)k8_sK-@byiuD;l0so8?``4!(+ z-V3w(|3YR-uV!W7wz+%@?(Ca&EalLo=ybJHbKaz$OuZSuZRX#gdiJ{ImwP(@`d3+H zrZ3<0MqD=j$ib5*r}`bcf9vD^`^7J-b~1S!&$0@hI{(AQT&oRJ=9`PCuWP+O`OhNd z8GdYb>HoTFUY*b1V}Dlk(PNkWYi5@${S_)cw{G#T9UJfGp9@?ntmo0a=C!YW;=JHr z=5>2NFA}Uzk289F(=%+2(0$?KXX;(=t?^yGZtiDJ@fYhpR@CX z-STA;*X^BeJx`c<`T6|E`5NUib8em7c<-yo@+~!mGAGmh{%knB?Y#TdrIo%vUG7y* zihtstnQ!0g_{n{$^+ogNe`lwDd+$-d_3(S^z|2i$O|Q;PpWLuQ>iEiLt$?C${I;23rZv_gSc^@b_l4Oosn?8SxG7dro>z=b3FQFTeS}f8Y4Mt9;?b51jhP zzOUG;zuTgAasKv*i{j4n{J5m2Fv^#XR^P;RZtJFNc*}Y#v4E=p($TVbCUh`K^DdMr*^-t$a$>Oqa zw;reU+(~vwK6H0dU+`q3k}lR ziR@f*>ucr0>)v;-~Bxk*hxF z+$ntiFJ$S*dtc93?)h`gaFcT8j?V{5RQ^kbyDaNk#!?&lup`Qqbya%zJHf45KUTf6 zy!Wlo?5y338GB~4JumM0@UEhIa#=}7XShdRNBYV&$JU&(nL9gFB6O8epGZwXyH%C_ zzQd=Uwm(fc@6YKaslKD`bb-44k{*RAivmC8W^Ku9|1)jx+s|tnZbz-%5t~1ASN5eE zYuAvzZ@JfbL{wF|E=IiQh?ToPE9$MM{DX{=%7<1h@qJTGimzs$&05Yf-F(|+ORbt6 zwU6sV_E-Aq8Za4Dt~zt8ENk+#qQWyDm9G5rWA~iw>2JHZ%4No_1smth(Z9oFI_uzi zcekMMmwV4jx~lc2aGUY7sukGr1 zE*+c~)NZ1-a_ODgJrBKo|17bc@Xp71rGCk}sEqr3PKkH4zpVC1w`|{S=b}4L=C{=s z>*KRBpLgt4-O|5XRrDBR-~c=^rS%Qw!Nz1ZVr6*RZLf%~BApO16zh0n|r zI=;vKb??8>pNe}DUT#r^Qb|GP>`*$gv(A^2&b0>byIga#@bR}v?3?yXs_^@z zIEi1?-|yeNnn_<@Otwf|^5y=_e?{&0>pkbrwBB}9ZENtCF!S!OFJt|EYs{nKggNI% zRBws6x_pcC=Kt%-f}&1SMGb(tDO(uZ7A8JF?UW+x?Ae;t1bIsq<9kek)1hZc29Z`?}tmF)#30;o?O1ry>VkeQrq9Db5#Py8kODdy@Ga%NO^y z-a1)kAL?@Me6#zzDQEvZ)vHun<)_XZwLf#2b(`PmEqYy-7TkQ#5&TQ{(T?lR%=6BM zsBb-WD$M@crKc}C0_yIbHDYG#J$=5pu}=P4jEt9i^)161-5q!NAD(ts)jiA*b;q^7 ze%+p(JhMvWJ7;7alU02xI8C_dZgg1fOONIfHM!Y0Z_i(AyHQ2HI6`pmla5uLHm4V^ z=)Zce;#JLu-!6WdM&0|r#;ug@d{=MjE^+hd@9WbVYtEGBJX&|D^826Jj(0yFVw)Fo z)vvhkedmd_{N7v-G6_ack=h!<?W_8k0^lX$Io`eSA3u#lCB z0)OxG*!kH+viG01 zT(*+bu7|*}NzTs~B>UfFQoz@@sxcd5)J#;(wr_-){XSQXL)cmZ{XKj3+%a>km z>kr&_|8h-J>aT-8ls^@TbQoXtcVDnL%vODg`NTHsT(zyehu?RVPupgkHRpD^FMU^YG6(lSiMUOiI0`?YXk+#ytDWCnoLj==}ccqvccit>*i-%Y2RK zd0G%`l`C{6ee2crW_hz-OYgX0f2rBjCOMXGh2Cb(`9;AqA4VFi`+aZS@tcc%mR#G| za%#q0xybnC!cJ3OhktUhI=$xL?FsHS@A{r*SuA0@{Brs0r)$;+TO6-hp7r_I9N}2) z7uqxK&0iP!<>uAjcW$fOuTZ^le9t^XNB;Cnv;G|ue)#>0>59eirpMU@n+`><-Dv*Y z_Mnbu!0XND<$FVq&yihcYc%EW^Br@aUFuUlIQ3%8=LyTRrYpQ+@0~bz^AG*`{T1_P zDSmX3;5dEKazg4R{czQPzrUBH_}VDHQRnSAUpH@mPtWAJTCyfh=CAF(`tI=lp~0V0 zub1P7{G%Cd z)pD!FZT8!G&+?J-ma~6U+gE$Zv#&I7X0VsU&zXP4?XLFUNtpUo)&9huGsX4tQ@0kL zJ!@#w>woS0+q>J-pS+>>Xk=2Sy?^& zaogfU`M-~QkNxjC*w_BVeDA!!+sz)S$_K?N?=#Ndw(@=Wl+(Nl^Kbq1Irm%m{kmHp zi;E6z+GjrJ@BaD!irVGpO3qxfY`^cLJ(J(0|~Q&-Un( z=ghutSpCMb(0}(Tkyi8T`iH;V+)x%)>Gn0_@Xk}^#TPOY7r%c#tJ?BWfW@NAoB1wq z)$5cCwT0d`oR@sZy^+slpYQd}`u$neWktuV-Y>VEp84$lyQyc){2tGLyz#PG?8(g* zpN#f*YRN8kVLfbXvs_OhMZ;_1Rd=Pc2LJrh{kiP#o_)SpW&KybosyvoZEU)H*&Gfo z{A9Av=u&^T+4c8zb9lYV=XU+NA*&kOGPh6ZZ-_ZZ@RmEP67IjO3S$3y(ss_~T?eoJ zTvO8XNrIE#gzH*U?iRzHpX*+2uG?L|>Tdb8TBSp&3*z4#%`Dq}|DL~9^xs80{0pbN z_dnYrXFB6^!?y0_`2XOajn%ztvKi+KJN7Kj zf9QR@g73n+8E@A)Sbtr2m2G||zl$-8{rPo2d#sgMN|(II@H(4u6 zO_o^hOaHstK6l@*pLXrDPHrf)QQ!Wsa>w%tfpJ^sedEl2cH@bq)Sg9=?o#ES)t^s} zn)kZ0y?c^^ug;_5-CcFh|5j$4m^jaj|G#3d()rM>b51UjfA~kZWWr~cN|RsZUlhcv z_r`C2GeIt6dkeSAVl$~DeP9%_%FF#D9P4XP+9gJahH?joY92OHJ`9koP^m_~E5mzu1SzR;JB6eq)kbvAfOn zNq#pz-H_atowy*(ch+(#N4f1*r;aasl^4?&oA*`u?7RK8`M-`$+PU}qkM={$_eBf8 zwmO)3XR6VoDZe_mIzDu_(EoDm!lj+Zw;idz(|nn2+Lf#?bB%3~_sONb zoqtXFBG=cFZJF=&k1zYM*L!};4dY`HudJUIzwx(9+!eU)T3BAdD*v7<$-LJ4MfTm?&i%REydx`Frr*cxh^A*I zOR)Ux5H@kou6LV$Zr%|VI%m<{7mtl=ZSK~dS#GKDK4j0l;4-(n$u~64r`JyRd$v$z zU;o!7rLA8jlD;S2zxUWqP2W3e-~8uR4|8;1EUmh^Wa^Y}UYR@Ayn4LMrX@be&b%Rf z=JKUxC(0M^T6SRDPusb{G}8l!JS&1E=)wbIC$C{Xcy<@^|L9 zTK7Ag>T}FnzMp+I`B>UoxfeRp700UFr>s12+%ToiYUPUtnLz(vbRR75tmF^~vQuucFsf#dqfS`ODh9^azdITfbQM+r;<& zmHvMcj=Y}|RqcJn_S>)Xn_k&o>~#H`ef|5cDL=RW(iEioH^E}rgW+q^I4 z;3vz6YUgj6C%*mj^ayv*`kkj{+fQ;g;QxJ^m%(!KzkOe(TmPBjH~FpHmVM&amTk0+ z@_Tu^L9Ox4;5#PS+hHOUBv4Dqv%$a^KTM{g|;#$|E)DHg17LP@GmVd6T zQ5Uk(blUp0^u2s!etgoVmSbCYJ4PJd>u_Vy?`ww=*PSo9@wLvq@W7iH-F@tDRlnbu zS9ap<%jn(e5}VG+_A?h;IC;D(DDi}4q0ls~`G*c^mVaHYuru`N?3tG%k3{a0;r8#l zee;Uqg2jFAfiG`{Za?ks=WytI@UG$~u_l6jotvtT-@PT~x$L(db zR%qdst{9 zbGhI>M~h!_lmDHUm#Z#VwqzuS`^U2PCw}SCyHYsMaQV&6r_L10-`zQE9MvKF7K7?%=B0*8u|45Jn7iV_dn+zD>~J4)yZwm zlB#SA%EM!u_@@LTb7$LTzd_w!ADbw8fJmBad*jPJ2MEjRhNJonlpO<1+z zMRaXEUsc3|u$zHjjpvokZ@;cAR(fTb5~HW}9`;G!o&QDhZCiV|+wNV>vkd#!=j@(e z{(k>B=bkzBE3Qvmb5)7Cb+i1IKh zU5Bi#s*Gc$ZJy1yY~O36bpF1t>rNIgxdZzyNG7sN@h;EvmQFdr{^^G2sU~SLxz6;s zi8fI-2PZzBc3$uB<5Edc6RG>xZIt?at2cjaw3GjxfAz!iw8x?^?*7~)!ix6>m>D{pdAp}*TK`)X{;1=XPUj=G zR7{t={5T}}#>FMS|FEU!tTmHZ`liq_f63eWn)J7m&tGje5qX!beyQSq)(fjO=7Hrw zGo!Y4>bVt)@R~>OD>Mt2-*mnvY1S;|<6jo;t-NY#=dTjKq%`OGnpylQ=XYeSx%T2* zrTk0HvXct?;X2+7V;DpbtQSk2)?^~?Q)6C(?5yvEb78b^UH7j+P-LSQI22g%Qs2!etvVz zJ@wR+tzK*GEB|@z{`>;hipn+0g%bt99{(YM-hb?WHzQ5Dms=hLP zkzM^n^Vg3ovhP@gPo8(Pe{zjd%<_$Ae>z17sh#qbOP%%h(~LWZeot0@)WUpretvOZ z>d!xU&wH-U*<3TNbi-L;o@uFftynAt_FS;}wSW2Mc@KE&a*kW|KT+BKKk{;^-u8YnyU-%e79R|`{+v5kIX$5%U?hJ%lUoxxnJvEtL}Yi{{O~5&$`UG zl)skeL)aI0cz&J}-@0k}&blbp=WOf;PjA~1>GE`I;e&d&jTuyuWmnS@_2d= zXTDSPa5;a>j-BP8#Qa_#MBw|EhnR`|*cWc86r!S{FM<9QzfsGydJD)9JQR>$3XiznHM; z%kRDI)pb^4zw4e{E)Sk`yinx$7I(IJx9m9og)Dggr8Cf?vpuilX1Uw5B+Y)$&!4XN zXZ+Zu>2|#F+&90{xD&yl=Vfaa@3lX>>|XKVyyp48x2;YoTO2mmebytlBsab_?eQ;UpS^8al3!f?s~d9XU9 z`?;_=$CrE09zFf{#{F02?*3Q58T~qpwLZUEKj+*r!Lx>DKVFtk?Z3Py%i>aT6ieLs z<$Zm7S6#c?e`uzXdvVL>+p=FXd!6~LFFtwy=Sbj|b??i|*zcb|yj0KP@v1D#4Nrf_ zh3cN_Pd00-ytMq_?(3D8JLZJ7?%8^*aLcBWu9=rq+rP~HK4+Hwbcr zlUCldk9Yjm9^J6}&DMJtGR^1tiY1@5&J4Z##PZr7;d;e;orzFnEKej&BvDDtEy6ePZ+t^dP z?q%wP2$y<%?b@7dlDGT2;zMKp6TZ5O7(E;EJ{Ui_%Q$hy-psd`=Y5|j-g0Ddztoo# zg8L>5*85NMe#Uar*_Lb7$1=U2cIk4}D~iNlNgd75?YsZ#;0u|@VJ-9Qwj|qrebZRz z5j>-RvBt5axZ6iwZrU@Ue#`sCPwfJuv(#lb+uXYrac1IMtI4v5tnWX#ljO4XUY5+4 z@}~Jx9V(I2rS^t>a~CWN^_1uLUBj_=j&hLKg9*~fmjCkH-)`>wT=+}(&zi{%Sy z3gmiHF6D9e{l7Oyymb^~-Osg7E^hgI{%tXHeM@xdlfs!t_!E`xM2dfY{o=fEPOHsM zr^I^UW9urv+I_5*nprFwr$7Jx8~>fMnOFKQUt#Omyrea_wnqKNe@*G5mdnDQJeAN$ zy(hf3JFM=J?8jNN^)1dVH&nQ9ojLXT^yfGKPvKozs%ksunBwO!o7-C*ywCi${FyvG z|Nff^EsDR-l~4Js&T;>hU8eQ3%j!0BuHU|!cBL}!oPF)N6Q|4eF0(v*@2z~!`t{G# z4;=b<_xPJ=tJkWUg|=?7_s@K^eZ2Q_sp#|Frpf==4cz;dc8# z`Bbf^o~LBYmyFYtG&Cj-#)>` z8y2}3Gr!()@hrKJw`q5G+-3E=TC?b{&vg^8ReM}a7Jt{uQa#gS zbm6%!mxO16x*YF+ku4&vFDKj%-90xt!)%^`&)2FewO>+KC1*0!+?Fr4HrbmZ+Yow3 zO;lCeVC#pAzjJD4EaRBGFIsZZ;zjPy&L01GP$FIZTd+yBykwSLMd$$T{+{DL zy-=+0(+r`ZKqya9QoKIDx*|% z<;1o{$=2`FJO0eBD_gWMBqnpomD(EB9WNVnW^>$C?>}rb>CC-pr?sEANL@Q?T9y~B zDsud7*81LWQqk50XEnc7zWNd@_tW0=qxRy3ckJc$Z!Z|)y!Lvm@FXDE{iEho0iZqz| zH2&(_D}lA)HUC{K)h-^sxiHz{#glg-2cJ%{RO3BvbMJET4*jN^`3F^huC%Jl+O}); z)$osR=7l~|oO5~B+StBxt(yCzohNs;Rz3ffNzau#(H^=J&hI#TV(YAPcG-I@ z_phill+s#x%>8-YE7|LN!+Pg!bj|g-Z~3bBT?y~z=f(eP9yy-BTU~Ie(kHO3qmuW# z&ZXd73*Tn*hq8g~g>TMZS(<)x!jtl2e>{2<%}#uwqWb07IfrNOj2kz5=~h;s zuw5>}yUPF2{7oCTe|!I-@A%DImZ_mvWo)cIAAGxo@BHNQV{@{5+Fm4`~v z+Dwi&Ea!I%aax;to=(e}ev+}H_sNR6%h{%dt@Nwkyz6k&M9!6O3tLybSh2)3sO6X8 zDZkmBn`YX-cRgL@f2-|PT5MMH*A@Lumf`W4BI`8fcdmZCM*DMNw?b~_FJGBCIc}Zo zR;8(!9LR7eybhq_1lV&08ds zc(vl=-^@M2YLC2T2^EHH{jU4;=WORPxl^g~Q@-dGuHK^_F~k4s+{(1`r|)yB-+pu9 ztrW}8z-wQRJ)i9VY4R?xH+~`)4L^ za=UBZULx%!Yq#?LGq&#kY|^F6*G+w5vHxPgzq;j{H>;c}IvG5(DDHLe`AdQ3ukR9t;^;@uyef=kUa_o~ml zXf$88f%*QfMb|T%cy#v9m#NR`X0!ad??SW4sr;>#E1#|q)ti$Mb6Zxqh{dwY-@WAA zwWh0f#~U>tHBGeH|Mlnf7u=RtHHtE%F1*;^*={bVro8r@rj6yKAeX0dQ&z20Dn8#I z8e|oiBeFU0^6tOxUq5bkUjF#%-+iC&9bevcz4z_kzjxW}<=9-+1Fq`a4Lu}yb;r+t z``?7G-B&PQ;l16drNOJTLe8z)wYbCLnbCXpzo%VXO|D+wGkN`^zrX&uxZT{C#D46( z%-71k=YMQ22CONbBCG!0aGw1AgW;b$*-GZgep|QZZb35pPnq+}a-}A_Zk}fN_TQmn z>c5hX9!r>he(9z6Z0XN^L*<^=%e_+W+xh2_QDC3TZXe$HOEVs>l`;G-e2HbT+t-oIv!cKMu)Vmn&*H7Y>$~YT7S54R z<3IoDWE1fz(mVC?`LErHc~knBzwTMLt6ylUu=`gpwGCfZMDf|4%l#Pd_U5iZgI=>B&Jwqx3KdGXJe z=lIiJ`o-!e9zVQ(?Z*f??q_yQeFv65`|SAhikz-_lQ~<@yz6q>$*Y*AW!=B)f9jHx ze8V8EmAzC@XF(v>^pN_?$En}t8HZ4%lp62F#GUwlW@uNIjiQz zm{o82yj^Dfxbv(PVx7a`WvSE03)0n|jECRbe4lAS`Md9}cOI!^CJ5HA zY+L*9_6#ZGy0UlI{3@%cnX&$NFMHmu@cu0mk$X+tBt#ONzNmqLAWHs@dXyx_)R{cq@etBQbTm9&^ zd8ResoVy6U8ROnm#VUox+v<8QR*IRCx4yCqp} zUhk)iy?eU#Z~t5A=PWaMOQ~uN=WYIZ=MTrPyEnB+Ce6m%O6p_Z#Ko)LFS)s-xJT;z z{1?WivVZ@rl%8&LXtDwK^fk{@KKuO8zIFDO|NY2xxufp8d@9e@ea<*<{^z2YSNbQ< z)vKLnFIjjwVw3E($zSKcXj^H$VBhj3{I6t}gF@c%`3ykEauv+?Zu;=TXp z8NI)^{eR@o|F@_7+489|c@CT2U_|Lz6d#!o?hd<($`wr{Pd}BA~)EvA07nPs( zKUR)aTh*dxBf3gx)BEJ>Onmw)`CXYW$0*HM?2EKGlY?xbDfuj>DD zYkQ`dn$=g$T$(O=MVjYJ1%)1W-oNZ=8Q8?-ed(?p|D^=q z+)!Tp?N@D!^5mW#hC(?Nl{~M`1~u@kAJ^=KHtD;&WDT28h_{Q*kpD0z4x2rduA@$ zEhyx+AZW?8t*_p&*=tYV>}GuJbjo2?i;wDe-nwfFe>L6j=~r&ub-ehD zoGw6 z^2aaK*Fp5J!yb6|bXDdU_wEE_H}etuuF>9hN>K+US4QckUp9saN5+iyz z^{y9Q`#M@q@no{{QUCI+Y3ts-w)%5t=QBaG%WD^&$@f$j&bOHKVE5-Nza5duf8{=Z z`nc-#jH?pe&u3ge-@+p?ztkk-T-UjemdkDL-zYzSzGq8f@3fXGvq1Ot?pr6D`OP}j z*}kfGve>brX%%-JmG{m5JhxVD{UfRQCQgT+&(AQQo4>zez1hp2ll#tAlo|c%d-eSq z=e^4pXL+grxVcQm_fFbU8+(8I&i|2f)plI+$Xt75-&3!mN0ZNOe{yhD`?W^F`cT>F zyXU;E{iEL(+sFFbTjJ*YHSN-eEc-v{?TIW~SM)B>OmM%+iOZ3vKE9aMe?PvxW@V{n z{x$zQ#dm)6SnPac{(JfJl9*-5->vrbtv{Cn+avj=k!~ZXKej^Lxhf&Bu4{zmnNKYV#iZt-Z-R*>b<{`i4@m4+Yn&yY4JLbnE-8_a^h&em`lcTC~5!$eM45 z`pV`->+5vh?lyi?@{0>!%>!HYA;gxBKq5luE&|iPxqO9d&!)x zxY(oq*w&2i%XTtG&AQvT_l4}S{3oH49#`q|7UrywnIKvD=3klI#%JdjMao64`1kex zPRm8!Zl5JABYzp4OfI|B=JvLFx}~3egUZ>!CyRBGe`Xz@@I&eI2K}b}_Z=%vC-v3e zH(AUpb$3SMpEtXnGPHGE=bn;wL)Y_H(bRLc{fo0FFP+sgOVuX#ZRleU zK6607n5S@u+V>BcH?D9$GTEwX``cvC1)VF^bE40d`I)@-eROxN>GE@v+-kRI%zty@ z^^fz4;Um#yE$A2`ROl5=TdLhbx%&(AK{l^yYG&;NTpT{+DLp=W=u z+q+}EfBEOTeY^eppD?Fn=Y+=1E-K}J{GqC^X!W)HKIe1VUdd-UrT+A^*M=USH);8- zf4=du>bs{^%}Ragld!05#rlpZhVMnJyTY6aC@yjI(RhKTbHeVwIiPpE-ejj}I5cZdOXalQ?17 zjJKO>tU9l}vkQ)y7nSHbuf_dw2p8nQ{`Qo78e(+-epvkcmCrvzb$St&+E+|1_o5d=q%cMq_pnpX_sG~N39d316Ro( zKVc)6*exaX)weR%G@!QR&r;^TiS_%R#vXll^ts`+mm22DPgnW>-7NOS%<|-p@Tl#<=w6cJ^CvAO zRH`<3qSw^J$q!S-A1*w#<;By&Td_|wRs=qM%=^*DUH+em#MOH)E(xa3@BRH9^>?T8 z|8>t_IG-~7!u$4=q}t=I{t0jVge=AU+3c6z|G887^^+Mk7j{(~ZhgP`YK?mD?hLny zrfZI`s-1tbWYrR@+q@6AKFhM7m%k;hNaoAQ#ijlh`;Kps{*}umJEJ@H?OoO5Ywq8? zpPJ*)$GTJcv6*7RMf{&45T(lD1-?`2L0)}A!9v6cH=_-dui`{jQmuXiskL5ITLF4No^ ze&Y6GoA*bQvm`xzWj(+DUHLzBcd@2&uxEVFhSz>CcZ*u>D$4t+aiH`2_w7^SH?MlZ z@JX$I^Wv6U*E;Ge|3A~?tl>}2lPQpU{i3IDtLI|5m~Sp~iXMA>5uF4Nyl#2XX zCFMKwuEC<1-;T?#aQ~=T^gVB_^P{?&2G`3!*X^$C+i>3GZN#>T!oTOv|M*#2^zsLf zbyGK7jGc6gxBQjxy_<7_E?s`NM?7ox#d*hXO|04LdhRak{WlW2oU#|nuhw+g{Yjbo zZBoVKzZ31ZTDwkNf12Ud)@RR_Ozuo?+q%9o>-W6eQmFvhT5G0oy{dD!-bv|i*^|w^ z&X)HLXYjOA?!H^Me_lJaR@v&|j@{SpcKNqFnq%rdb2(TPA;*v!q{X&ZOzWVxM>| zP3!p1b3I-EbaZZV^j_flJ%9PS$vySED{>D`tzEA% zz2dpobCa;9(6=AWKfl;JXLpPC=VirF6<$?m>{iIU|5p9@t);u$+`@UK5|{p^$^A2$ z`@`xh|0_k!>3(1D++VxCaQD5H`}0fp9ISZMt}gdcH~(8?=jZfCli&Lp?B9C)yXN=E zXC}-4d0Tyy_9}TeFX%Z>{`G%;v+581Tc^M0^vaTdwbJTK=N#W__xaN09TW7I&Z`bx zZ~Xdfy5)Z3{5-86^ZTCuw|-gQcv!#O^DcAx@r$8-^IkK5wN1))KYN4Cy7foQ{Xa*} zx$j&3eC}M!pnIjKMb@KI!jr$v?lEdXL%v^)_^I4>Di=A>-`FFAc}+ z-&(x8uzJtEdageHC(3DVCp|SkPGj3|cRlyR;tST@o46}~eViQYdg1x|CR6tOoIK~l+PP1{{$#8P$o{rPFV%aVmMh9vD=<{{60ZRlf_nQlBe6+mI-KD`kJeO#Ys`C$>sE z)F0bw8O<~C^GcQPyUR88Z@t-K@^OyL6_c9lnaS19)1KsqD4xx&Ot1r8+mVR2g<<0pG zE<$s4*&jZ>A;x=FN}KEZs*N&TS;ZeuKev9rSjJTL;O=)lTc&&rI%#vh(kENS`%}f` z!x?*&_iMkr{j%e@NweU*d*|j=h%20}T9!Xsm-Bik>#px7X2$)A*;00Xs&%`0R=~a) z>HVySpHJM}bHmEg*(6W=R{^8E`Sm564R246xisU4Ud;K!r+!-uS+L zl05&D?S7M$8`rN1e!C*wMzrDW#N+Xy2af)Yl@|9|zw_r(_pP(yx80PDF_>JsO|L(= zJ85pF$d1mJlA=WUDLnJ zxDb)tVZA>5|Jj3X*#~!3-mh{y{3fF^T~hxF%bi1ib*_un>bU(}m-emw-MeFv%gyQo zMv| z<4o6a%ntUdy87^W%<(T*zGh$5xiy<{`v139&-!LxwyAg}GaGKLc;rm5=s{1A4|6O5U$Mo!Ben|O} z3n!<%_rHB4?dxK-%NDbww@WUa`&ZD%{)gZ5lMFnf_c{5upTAJ(dZTWYb=Z%YlOp@% zmT7+qoIE#FIzAv;{z>}o5|$+{F?T%^-|qdPpog&PWm^A ze?|VO!=ZUczn82k)S3M3rk?ESocianwoePUaI(Mbw@9tOSHf{g;kEbf&8MEmJT3n> z_s8oT)4TImO4mG2UY@?YZh}?7^;3~)>xyE<((V<@S9wL9dcQJ$-mlN!!ax4}W_SE~ zE{~tVoO%1F{@%Xp^Y4}Gt8dFKzo%~Z{6^pOeF57}E^?6k*4MoIUipmP$8(q6`{iEg zDkX5|te) z&yA${CzdDM?v`v{s{Y`?qf-H|EyS%qGlaYSDKuAl|6%stdb95H-%dV%x#4xCr}Cl0 z)lwhh*O!J}I>OGE>va0>H(`OD>k6Li{{~wNAS`UV@!8}BdoGJ!5P1Ck{cVRIn`N>^ z-0z;y>#}fVI3=i}JWp(=$&F04`$?}qCw(xE{rTcl)cZSWwqJYBCQfsgx>+znqgp4#{@==2ZS*RlH9%%;<4&YkD0J;zk1JnGxa z-%W*Q%=)C3>o~Ww?R>eyde^H}QQtp>hFWt?5e)C^llp4BPCe;W*2UnmJvCuBA8~B0 z{#PZnG~A7muCEdcci~rS`Tg;taJa3iK^fk*At?$S@ zow4k>+`;4+N#-Y7<$se`uauu;G;iltcQ4b5_LuK3zgqjt=F7$(=W6DJe}0*6QOE1P z*7|GRyc4!+w&B0u%}ktPoX2DRYF#F~eBr7S*BSq$?MmzCSSFmh^`_hI<&k9zCYY_= zs^N9{;&J<{{Z4zn|CqJj=$8MNV;K&Af6lYhGq>8>^Qy$c`}?s(A#qQv5ZK9830DPuhOE&yH{T(kH#~`+qOD$Tzj~t8`iZYSACRIq%(jclGz|u#;>L z+5YO$XCL(&EJt5*oS)Y$@U2Qs!!c-Lm0SB>_rjUYyZojH)_q%5{EKh>oPx|f#no3F zei`;Z?=72_eJ$VP^33xRo9--q624@brkN>kuj^$q2H}s}gR`Yt)0*FAeg5e;k299r zxaWKMeSP!QS$+Psue$y$e$~mayT66y&f7k_&`(ox1yi40G2L)*>bb*#-wP)_nAxeF zt?XGI>S_G*jY;_&y@crsXOA8aN>|dqD)IF1^jD?w($73}k3aqNW};qXxrei}>&oRv zjNPm@ZGQHpa877waaGQB!}&$Dl9?DX>gVJUURuCu!M zSKn{h^H+?%m3uC~;$eJoqr(plf2+q++Dm3dX@9;K<({>9x7yr2yR$XsiU)YT+${fe z&-s~u=3NSXx%@=^?q;{YiSu87IBC;ae#rI4OA8U1&1J`*$UT4mE6Cd8U(VS(f7SY? zzSv{i%Q!dfNU)vy+l~2OpZw<{vNhkg z=S}~;-*?GEVf&|_*ZrUSb7}FWKH;q!-U?4&V0QU*-Q(-(&!eB!KK{Af#`5^ROOn$j z`=#?E^`?CMQ!|(SeDL-E#F;A_+=$?vzA4~nW&i&hWUoYN&bNM9MsXCMWmJ9QgdoA1? z@_bdOe(25J`&P?@ddw()e!caQrJP`JeyS zzxwkO7{=-VvWd!}~Ue%5xL%91m8-`gEHo;&BNUS?o_=E;ey+XE+l|K+7XL z^Tg)K?>4`>cQ)($e)%asKR;QrQOR|qi|yP^ujbEPbYwH{+Pf{w>-W|?-yZ)&&Cl(M z!=Bror+%-_dTM4~EdM+7QTpU(TIO%oOf7!uq^{b4_XZ zETttO?FCia|3=O~v%GTGt6G_g#m|Zaiu~^IEzH~Fv$W!&z;VrURXz-hXHUpnWAEyd zYE>9esDA#r@%B^BJzx4#jkF9xT`&5Cuiv@l%b^ZG$KZE&UzgmPn{jAQK+Wdax%)r& zugbnwbnfKLF#mt|Z*EjppDJ@SQvBiX-W3-Qm0L}84d-^>kskDAmrTj|k8{4u{M4ya zS^jl-$>!_tP6Yq$xw2cVEl=Gzl|@{BiRsnvE6>f}F|)}cP-wrcE^|#yhJLnZ&X4+2 zn+|Q6`Q>fYjw_FNmK0kk-|^Vr#dG>Q7CHFul$o)7Nd{(05BtJ^zyXBS>sb}QT6d7bH9 z)`Ndn)_I+-nddsQ>eDLu;4i1bb{_2XlRdq1p#zo{favlPn~Z+fAO=TUw8S_pQhc> z6W+CNZt<@BYdva~O*u2KeEF@M88#m;u4^u_EM7IgV(GK6cAF<6&zeMS-#t+Lya&!G@BDb)d;g0o zGoKpA-%vj^)o)`<{P`Jvd>cykakX8p5d3~}vER4tQyy!&PnxIoO40wtY_lr4%uR2O z-9)y^42#Cz{Qy zTP3~nS=IcSUu|;*{frFaU)WD~-mUDuCCyb&)Z*MT|GVx&|E@XAzPsdP>eCgg>I*`a zFPdT(`c=Kpdr8;97j~8$tKZnnDGoWiOV&dB)O$_aEZN6DKU=(dv!Wr$Ca>(p&tFdh zN*)*=ds}f-{rY@%ySta4&suG9J^ikqw^a6v4&TeOPfaX)SGiw*wbs7xkA?602L|bN zyVt1e2k$*~IJs))_X(eU&b!!`aFn%PuRZ zWltv5{dP>BW?KAkvU@b2N5D>pUw^0lGyCYNoPBA<+?t&;4_!I;)5#+L$NJ^>cd7e+ zZxbw!xiKkSdi#7MU!Eo=_rG}fJ@PouwR3J!U7=oS#Oi~oR(pkyd;Rj9 zUizdf-8S9)Z^?J&$`!wEn8yTIEepFCExhdfIkj_Z_f4*8%G%B6Im7qr-wd~J8m3F4 zn{Q8EqW^ovtUR7CmUm^D=k7kgV)^MGTyrLfxxT)>>iRBY*?DubmtLG4b$aV3i)YcF zOU$LJrdrImE3W&tQ$g>bZ}q#aix}^|Zfk$|?_^~8YW?Z5wc4}t!(R67H*de!_3icR zi%W_=zl(ep|Mkn&+Jq&VKWnF7o75n+{Ep7apBD<9XH44mTk7Pk>UjURr4yH@D~Zh8 zs;;~*dy(C>=atV5kIl4C&tADItmIzBq94y}&z%pPcWCdiIKg?3f4)<;%idf5wsy16 ztMFK6A6>OlL+L+$pBJxxH0l0V)Ahn1ul;mf-yH2VYgxqD=Me@HlNvVFR z;PY#-@t2m(`(#i5Rkpb)mRL8t`-U;I>e z>7eG^d!_rT>)hvjEnhzK^42vw_pT31+dd^|myrFFr<3BI-OpdWqthtPJ4pN9)zc=Q&|0FK-9CxtCImJ)kpZuQFuKY=b|3dnw z2Uj{+qC@S=B2(=u+$(>ZvDLf(ihuCI+pS7yS!iX=l6}_KZQTZXe5Z4lRjkarVC? zxlLh)!S?=KcK@l3ne;ZuU=jd#Lc(_nhsQ9k>=QSyyAW z?N*uEtb(^cjKY>oTH;V(C$&gorPASJ8Sgt*|Necx+1P5@8<*XmPcfu*Nv>v-I#H3| z%ac|wrnC2W&xy%~ZmAMGm;b3=vvj_CTu@HQoYGYv{|UVhfBqKH9l{($|oSI!~-Bx8Hca^Loyew-%Ad#a~t5JvTFQan`qu zyXDf^`=5j?x&K^q^SckuCfD7|=Q1X^hNYU^cR2sWM^Nu?p2_p~Y}?L>ubXsu+3GDt zDcsW!DbM{-W5+o2*_L}N`T87JO)!gWnXGloySVw*r5pDz9-sSqlKQN9#&Wy$1D>RO z`c%GUU*~d8=Q;0xP5XVLWX|$}gn3NtmzR{hc-hBOTb{P2?E2ja{BwOTUt1Are^~0| z^THRshOf`>xc0Zdds;!wbJi%mEnh2@7}I(0+s4HXT0qVdnL@izl%**2S)k zvznk2Uel5u+P?5JOa3v1klyKy_d4SbTW#O9$6>i$g2s*Q*-!oVP1>~k`^Hm-IibnB zBioV-<@$yFZ{41~x^G?gj=pvA2D>I2t+l`Z(lS#?_Il)W;X?172CKiX(N|SBI5qcB z+u=UjtJ-~%%l-+u-ub!2vFxzNanVeNJ9FM=Se(D<#p%3j&fEUo%bs68UU)$C_w-`Z zdT*=Vu>bFV+~t@_iS=a~MyUu{ztwX!9;c8T4KpXztlT+gey+O+#+(&>fY zw-~Q)-!soJg74t+eU-MAa#EFj6LK!rmrmb5*CnTS@k`0IkKMoDO#ks-rLW*>q}8{= z%hh)`o!oiyNJqxIy8FC&wP()w`*v5?7wf5Pzq_^J%7$|mm7n~q-yJvkd+wt}`}0uN z<#C}`ms#E})1mcx_40LdCO{K=M=`nl%CqJFO zv%B{3rNi@+pC&Dd-=($t@vAd4BpyyTPcgi9{CGSUe_CU$X6Wm?oXgAvr#~&c!j+k6 z*?9hAW@*~|@B7YI{O>fJ_2Pc@ynp-p-{0Fdk8{5D=B?ISW{brv-Z0%{_T%zp>1XH7 zHa(?r@${QT&Bs%}&5?SV7gtid|FlAhy43oPnUfE0IOXKZXKb~}JzJ!EJiUuz25|z|omyed;ar%9k$g`S#pZ}lp|7+)7 zch8{qn&7;wauyZ4YZv{FIdRWjedhVS9qZ!08%i8qY`(fef9kQu>Ib%F>c+E`iv4BY z&Nt;cshM$#i_xmR~^Oilf%yyj}cC}0CZ*AXMyV9{`crakd@b}Z)b%hudZl5;o=;=#r582w`5M^=M!aWA9>%IJpa;D+!uWq>9f5eRMy_LNL z@8LBc-_0_W71@5<*(xA@S@5cv?bYv2?p%Mr^L&Z=QnSzLAJ?oi4BY0mf1;i99_@Pl zvpeVhlJ>pztoR65;j5r^?=KrXx^nmOa$O(wylkHLK@ZPO{ycT-P0NhjiMubpd@+ad zv*o$3XDxi*Hhk_9@%CEU_h_Fm)8$*`pSzyLNr|kTzH`|=;r~Z0tzv{Dl4q@rsb7AL zb#~=p4J$t0??=iXS1o8;wNYvNFP`IfQdJT{ul~5xr{wm1<(U;pE%RlYtK93{o*S8W zbG$QVTfzH%yUhdhmrb3flmE^6zH0s}zdPTpe$RNCQ~v+{itUHD9DY`#?sx6$V$;0y ze>;k6rd{^yJJ5M{`~2tc_VvH}#l0fyPVpb(-KocF?nVWkn(+JfNj=3X)#Yh#m#5d> z+1N~}|x53X|wO90bZ*E~sMBCdJu~|RW?`+z$ z@Bf3}9rm{V6`}Q~dh*W&e{FrcVZO}oRb8Q>$D^%EGGBVgEMMGzp2Pb0=WEyeudJ`S zBzT~z)B6<5CBggZvPPwqx8~-g*X^Dz&VR(M``G+%d+Mf3ukkb3ulmjUGxxH+^4F58 zI%7AVxxZxpob{_-9$9@O{h!^%qDv1lWhT{spSO4a`fg?eE{oQC{cY=dN2mZLUW0kC@p`C;YcIHXip`o|8~FHLx!4+YkNE zU;f_(k6!ggp0t@?xmqIj8T0d1`-G)hZ|j|SXTI*Z()6ZAgObVBTR(+_ky69JO7tWnz?~93AOl-@bLd3DB#HLF7B9sjqo=lklC_PhMACLSzWApeG0 zHttAMPyBzKHRqS5mAEf?owC=Szho!Bfoxw(uU2U|PnFUgACvZ#b_YvrO9N}C9DH+Z zHgASa($-b4=Ko>{o6TCgKS-)+ZB6Bq+?Ka@s@K&`l8*C#+oQKc@v=AX{D^f`)kl`O z{Jh~}BfIoTR@2N1*{90Z*Y7D>xJt}asnOpm%xAgmvx(h{KaTo*&0X!@mD=gQbt2yGSXnBfBx|r(rt*bG?B|Kn$ExOZ&2!A$5_Cjl@!2`Q zWL91ZT5o+bxbCa!n%5@zFOq)+%V~Rkp2AcVcKPN?%a6-{F&10zoxuO~t=yscum0Lw zgkAdk!RCae#VP^M@KWD;^Zg~9PMe>-cDSEDeS_x0sNJhFE7nx7&tLT6TJ0qMHWU3R z&zC*4YhPda`P3fw4XeVo%==W#*Ku6qRey2WwH>lI&#S+Fa3|oNmUTwyoG0fO`b>BK zZPcE8Ov6}C^W?{Ca~=fF*|~m#!9O=^uanPL|B9>einrdVcFK6!wXczvr`TP3KC4Lc z(Ltl7r`rW*%(~hiGPm@!#8X*re|2%ka)D*byzaS{cl#W8_J6K?OvBykKeGAZ@4H^JzU_3J zxmn@7*vq&5hlAyJRyCDBf2zLLQzskD*2d(>N)=hS^`=Qde*7K{~{y2zpCHW9^L%+=k_v_dG`~Z**vJe=elN&ab56j z!}IG~Z%bO-`#9BV&ga_qw=;gmgtu#}mRx5jv-~hu?%Vry-Ji~F*z@t^_FX5x8_iA4 zyYwN$=3*#s#aM3CY(>4^~UeGWPUJ% zrhMjwREew8e^|JGiPiRhZ~fB2-%i6l%9C~9;R>(Z!0S=Lz3(Kye_1UfTbBHEfAz25 z1_`e1CwDBJd6~B^F74z(w>9^U8A!}lyzrvM$S3V%*R6p4E*rZRt$seUzxwr@mJO#i zxbMh(5bCwq&OP+ec?0fu-~U$Crrfl*jtM$(`a_m__vua{$;KzU))-kZJ!%JOw=ge1rrLThb9bU6)nsLsQxq^4s zaEhj$S#^BjF^-i-*QP&zwb^a|e*aRN`CUJL>!`<{~CibeTb7=EbW~SLX%pFW&mpa<+HK<^J1G_guJf z?eewvO|KMJT*dV`(d~J6O;`G!ObOcZdjI?q<<<7@i|($? z-*=!ocJI#>r?2XLT(K~8>E*LuE^mL(`_-rD($6*gdsOAV&c0>2y>G6c{ELZ|b<>|_ zSUku{7WvpYeWLz1mv=XJYHH4_ztZ#VvAO%jnFoEH%3JKseeW%PUATAt%u7XkRkJ*9 z>|S?SSo}+-z>-7$COpAQ+g?lON;B|Vetgz>7C#pUapLh7ZIew@s$U#te*Xoq(RADacHe=<0H$8_4C zb62(>(e1JI3wL{Ax;MAxRkLyg`@HjqC$9cJaemtac`q-#R#n9JYNlna z>6@=r=ZY6@PoLWrz0i8=>@NR3tu_-s|1>e@{^{4Zuk*WSduU&h#*_0#`%CTYLf-#h zdG57DYX)cX@spmXUwm3Pec_d}c7kbFr}yb>bF>IOe$sM%-RgUn3m3j&?ypX%dc1v4 zaUY+DuBo0s|F`ip%gm%z>T|iYoM&v3vA0a0@_kF@itYAs_y685|HSlZ`}Qm5tIkdP zAHCCj--Ln>*W>R0KYn+1-sz2pVw#ltUjLQfG1u|Gf?2gvs-YTeEr7$sZ{e$}N`F2o zonvUgp{Sy$*rd!H>zH``=iRfv*L=>oe0%8<>8FdAXLGMVY}yd)HR-nYn{_WMWK}CQ zyZ1i3`0e8t{|&Z>9tN#my!y%Fmn=2X-?v*9O|!kd^vu$IKi1BbNq<)Ev-jkwKfbp@ z{)J!tY}_jNhsVasoaKe}hqFtT)ocHK%(wr}_xPpEhjui~<6ScO>F(yUl0334my4_- zvuB6)R55F=Pd3&UJ}|FpMo6R6&XRi>^%AqMZ=KlZwkgx)^GoU0w|6f-uQ(ZN-s0ac z8SA~Q|AE=-K()VLp5El#weIQ6DbkOZXYsgw37r~cBYJ%9>g>=}w2HE3Ofqu;kJdo+}GYY{K*oaac~_4mCJYck{acnaJ3Tl?`sS_u8ai zM;`w5d*$s@|F7)r^~{=LtNe!{x=yq0uiw>jn~=4FDRXDdywhHA#c=bb&_$23J)%Q1 zMdW_h%l;L)u%Ekc%H_syD+8-+=4x3VXq9fs+>-M8701b=+rLeHy!C;S+LfQ-uI=oJ zjNhf(ii@uJ*}Cm}awfQ7$GfSE3vDi2e6_GG6j4u*U)~+}UHc`Og>c9fGrOu8vkO>E?a$ZPO;1-H|)<<9I(kX)nHBdUeaUb*tXG>?l8L z7hcbFZSvu)mP@;?Yv?`TE!`>hc-ir%0c)4Vzv;eo^WE`+DxJzaoAxK+_Q}`W`%c`c zm~s#&ft?y>q_=Cb+$Q|i^9Iwz)hT)ldqe_#C151OSd=XK)$7O|XD zGBf^Oe8KgUt=nS%YPAKoEEe)TeSM=~!s*#{@k;4DpDh0986V5L{9bbFsmkszpCxvC z{+Dr|JJbGR{=ULr!Clv1)ap*YWgHcr9y|5e`;JeQCtpv|u32O~N4sv}Nrky{mcDtr;oH>-lb4%cSg`zuwDtO3 zGel=adTYFiI~(J9{qYgWqbv3mhiJr{i_^EP@m?Y^$*QIOfowrh`TlRmg)==0r(Ri` ze7-0(SIhp%#FMK&|BR@v&GA$Y4-J3)d%>1Vo=2?iot65x*KYRn;@bXvJN2183xs9f zM<$0`9^athnC<>+r=hvf_T9&B2`-S1USPhZTJ)G!e`2ZM#I}U%rJ9#xlFBE1{j76e zah9iQuh;i0Pgd2u@j4aqmF;9?-22${pWgS*7pYIP`n&1x6)o#oujaHF{|ga{|LAji z>9#4-k{_m@TO4zB>E@{0jmf+_ejd}`%>Rq$ZFY3$@2>KyCwFA8-}*0kUDkKXlfbtI zKOOQicAh%!lNxp_`0CFU$!&Y)F7`jJ^S0gd^@78H;+8zCp8Qbr_i71S?i-We1?tHj z_vre(syJujIYYJY|J<18E<0gp_w(OOjrE%5_f9W8H|_JL=ED!0*CgKFI)A=Y)Vb2> z^Sn-HWqVi$o%_Z&TXW)lgLg)o>;He_+fedTMqhh*w7gK$D&hCb-z^M!7yGW{mzU}J z-%qm7Mn9-OzdDy!`t-oD6uiBJvU%zYp^UhSSFY@d& z8m3z1@M$l+5;0F?-hGJ^H7}1(`6Z%1@B6Cxy$kzd8Jc&@w)nQxZR#7HH4!B*CeDjp z690(x{QXNi|J%%6>{+k=`P!$SI=B6dH(6^=-F9=<`~7Uzwds4*o4qGC?JEm$Uaa=1 z>1+Kftv7yWIrf{UUsXM~>*JNR$E-|$1hTxaovUvjWdG`6)1*^JjlStue424i^KY@T zrn2%C#uJ7W$1PmK^z5rj>#wc9lwZ40PAcEfOs>`& z%5R+eKG*ZB%x%v*p%wwh`XoZW##UQ(@$tI6T=_WFzFtOtvDoeCi>+&3K6tZv-uv&G zvdL#;+(HjT%HP^&rhCCq%g=jdxl81Q6<+17*9{+XE$Vw6wQJc=zsmme;TO)T?k!SR zdnTC7p70|4YDDJDW2L6&HrLG+uKJQZ^?c!y>Un%khJL|^G=Accy=3 zm{Yvk_U}Kr_w{n=chX-So3-hL{RP{(wUWJMGmQlnFYU{kvR>;qpTdVvzcb~}Irn^w z{Zl7*JWy8ioyfIv=O0OzW=ipDo;`KSXQlMxFROpZ?$`XPdA9g)!?j2@_Coias|!|K z=A5nit-|AeqRGF|KYgpLoTgsRzFmDz+9ad@_=%;=?v>iFT$enUa%0e`w2->9`mw_V&@tJdPKqD_QnEuE~>I z^|*Rl^xNN0^mQi6JiGH@`5iM~p{V}#T|vtk_FeNSaKGGRRIn%HCCArInoIZJ%a-~W z9ctSDZ_fQqhl^VeXGbP`p1Ndpb)&OX@k$S0m!-433Tw|5{r$19?rzZH8D}EbMTtB- zEF=FZ<)QM6muF9IH@+9T^EZy#%aJjT8d1B|E zr&nAi1U08iH5NY?dD4F7ed?5VGs~w~egBXnv)ALyik4Sf8oR8d<~6?9*HC?J#ihlz z%RTm5e&7DLE$2+=zv{F7GTf`I`cIsGt8lC$X*1)}{-jf?-1jZ-^o7suUwrQ8yYr#1 z%Kro{ZAc7UH+jA0npY*Of4sfr5_#tQoY$Y1-qAm~xZr2Z^KIf&{WKOIU#ObftI_-< z=-ltQA5`9Kw{drBk$ScFl=7o{FXSf0-S%lezcTfsq>|cY&t*R@?fST9R{5`3x2tT1 z+qkAjais0JZl(R{Rrsap+n)0|{k>YZYV(cM^_OGZ^||_|oiCsDB_p~gQ+@eF|KCe2 zuI-V$JJV$9?OjE4_FZ(klwCBXhkIRlBXONWH$aeDZd^?O*yQ z1uczHU%Trk>#Wlsf6ntbE&G1$;`CLubGDRSTk~PgVzb$My5wt@|Fo`K@%LPM)%u$C zi&xeggPK#T>KF_pi#B|*y>V>5#9ebG*|%F1Z?37&`?Pw|Om>5+x_tGS=Q3|eFMIRy za_IJX8SiaB>qjkleEQ*wcfUPr>N+*2o}Ze|;U>an^V4jr5m)|Qo9pMD1O;n9TZ*M! z`#vZLNvCZ`g88wl#c<=bqYmeR|*Ca~Egy?Ydm@`tkGX)Kbe8XTC`HKHbd6 z{%VQhmhzu^msi~ijH#%S%lAxVD0EZ4V&buD@#>H%XOdjlJ{zxMJpV-^@aPpC(;qLd zTf}}@GWj6ys=R4e7XMG!@%GBbrv=GD-)+CI-lUUOy}Y2}|5e6kH3<*@-}|uE=(<^# z_S;v5^B1VR@%Yx^Xz}{PzBR6Tu^Aa5QJ3D&J;?BD_mniTYYoNaY|{<~hF*Kzf1v*K zR=qopr4P1b2%nZUeg8seeRS8uxWYPKH`TKzb}yQgRK{26@WOD;;%$ptx7fUy5%46I z@7VDUdwGeYiAG)L4#lPmh(6z?uWOOk^f~gp`Mr4)C6BPq>DzfEgjKNk#`L?%pSj)k zPkGAhb40WEMZv#=Kl=CV+P?YGt|jp^cAE%j+FKU3R4?^xy?r&kh-WItsrM!CEae}} zSfut;@a{C>*ZOldR_)2T=((a~!`ut*E%%*IpD+K}Q}<+cT~&{c;hsgm-W6~)>+QUt zu{c}Xc-iL%3n!*M@GtIfl+tPRKji!;>CGL>gNEU9F`rg%_%q3Ja*fqim8%bm^0!=a zk(1?|6~3$NMpb0nz9mbR%6!j%+_bNFXT?gB?$H_Ddjp|aL~+a486<=pxFcWvm`8s~Ge z>wj#U|9JLd=H>DWeCJ*)oIWMxigGT!Zp|C~9VPbW`fc6o2{`j+R6UA$KpYn-+2O+2ytid}$NuFIR=EKTir ztJhZd8voQAt8eK&_i(b&lfLh_`cBEjRxT~(%uP^s{ZxAO)5o~P|GJeT-!4uG-4Pmn zVb|x^`(DoZ{q?ErughmI=RI!wwttoU>36YNUF9~x76rU9FD}lD3ZHiUd;Z04P5sqB zeJiHuUD~)}L)I&q_npkS!I?V0SLCXk5A?g$>#g>@@cC`MHwS*7x_1A=_qc28L$l^h zG1kd{)ckd+nY*8#W_pIKZKx7KIn_NQsHpZw1+{dfDN z{i_ewlDbOQejM#Ss&!TJlibCxxlI!|{6q8K+*h3yaN|{Oxs4q8TfcBe{MZ zK3wN_@rd1g!K{@}7~Jy>D)s+Jy%T=$ciQV!uM6gEe6w=hf_;h`!rwlQRe8QHc=69~ zAC+W2@9%ta+2s2T-Qv#U4GEnN5ziV+uTB2$Wqkj0PsO{`pcLz#sCT*BXFfkXY5r4< zU4M2?Q+)itB{K8Ml=L;y$BR~-nqqy^z3`dRUmLYWrl+r8wYv1V=iGz;nHtHn7k~P3 z;%lG4;`n!S4!u~it7A!;@Llfq_zq1y^A#K`1oken4P6}kbk~v^xtHH|uX`cPFL&*y z+hK*3vjq)S>-4du+H3BpwW*!9gt6|*n)|Ms1&=*g7tH(PjoHfsOPkqlL|o6BvNq|6 za>64yH;MT-*{`JX?OJuWey;1>QybZa*qZoXZ}+j^DlK{Z*+*&h1D#-?y`7fzA(`>?v;vE-Ba`(A&m)2j17+gvRE*`;u;gx*2L=Zn7|QvQDO zy8Wj+%31Aa%O5fPYH{1M{@$O6`8#JGEoDBH^z{6xbcOrgpVsYQx^y=7%BqFk3C!Jf z+7T~33fKIQXxx8h^{wT7zEdB^%&mEUvF3-bmxI5*oIB^Uszp{@A(s>v#@pTYG_9$h zo^{}rMd8}5lMl^3=>L1hX10(L$&_8L&ifxPe_J|n`sSTsw&jj9{N$fB7c09*o1P3z zpa1UFasSClcaL|KJm%B7#=LyW^~XkEDnGka-TZOBy7n+{>X%@i$3g+m*Oi1#b(_4F zUBfv`VadK$lfqS-t~_0TDtUh5)@-lCWuB4uRyG$t4Ou?(yyRcLgmY6hKNPh3-`La6 z8SXW?X4(5+-`&<1C7rV}dGt`-|H@Nd_jiwbT6gU*{LypYbZ0J~MEuXW>xx=0czZlO zbLG^^m*ur8&%WfIYJ9RfZkzWU<*g5oz2ABF?DJ(=3@aYbe!TF>tVxfbi0;%4ENnH} zIm_{{eC4vg-pixEEnckJ8vFRg=U8z|56xrtE^C)6d%m{$x%)fg#rT4>x1S9ctvM7h z$-O?Xf7{w0fi^F?md+}-EaMEmy3^L@rTuZ&xox-BZ3~_Fyld0lz`0%Cy&*a)7k3@M zkyd&3x~JdV&l0Qe6t&x_uUqAjZu#8grHzl|s)|)sF9Q|BdJX??iMMRGJ>L<3wAHGk z=x>nwznsO@?oww1zlJ)-*LlclZQNs@Re!N;YaidU{X5?k%&>U*vBvKIvH1O4f37_< zfAVXN<=d_=7fyTr>+Y(Mr>COjca{B#x?c73Z_-kK{q@QBuC6Wp(Js9u|9R}T#kHaP z=0xw=-1p|W`Ok0fm;P@!tk2#V?8NMpyw^Bu(o9th3R_^=D zZHp|NY!BU%SQPXtu^{Z&_m@70B}!iIHWpBeyfpj0{PED`F)v=M_Bj5j%Ijw4d(%2b ze@4yMztw)&e810OvqCiQjHPSaw@<4syDr{+x^VqVWj3)MgE_VaT_1PYUwCro{B*Epuhfxn}(R`Bx){CSkmp=0r=IJx44M(?fnyvKjdb=+{ZXjj0EDc1Kd@n5j$ z-I~q$ZS%@Xv3{?)$EVv*a4^n0SJ1vjulQUB8jDyCz}>@hj(#fkS7%hoJAb0w6~SLF1b?Otnoon@r2hEMr!?en=} zz5Bu}eHpzxFOAc|($hVpuFhWe*Ustc{?q14U4z^FYaDywY%+Vz**U^ z{^uti+w&)F(VSt7aQ?V#-Bm1T2)eSZ4Zhg?Onq#opqlv3226JNTe>E}$hEP4OMA}DsRYR|gDojoCT3oX2?{NBw@ zKAnEpt3kP>c>UtnnNL^w**aKGiY~O8xj0v~zFs=|M5kZ)%#S9j{$8d>olmXr+O+(S zrT2>&FK*Pl4qvwY`Tuy8x7Tm~D0yF^v&%^5x81wQ@@p?2Z=JXQ;w|$Z=YQL*ixGag z;IZk+-@DB`{5PMSzUf)7S;)DSZ$joR`%p7E|9{#qev3b=s#*nlGI^t{Dow1ix4pmL zarf$h{hmF>QKfP1lk*O)EZDI3omB4RhMn~>50fp|PBm;?bu7(4{m;M73yp#npWiiQ zwt8#Mzq9z*vDWKFezAVfPbhYC)*Y$6w)*kdF&e?8#`kXOn`b|BI_P@nR3TSG&*>)|%~F|aDZV0HCf7dh@TzUk z*nd^Kw*Q2b%*XQF3WvXyB^qrBvGcMTzZvS2zAPSk2@AMFyCz;E6xwA-1;)&tBtRTOsG2hvj2~N*yTD>}au6M)v znpg8y&pQ{eMu*cqW>#>KO)7gPr=Nh8_KfALUVV1?xc1k4n@RE(w~|@YAFq(rjCjg7 z>7$Ec*xBR~k@QB9wFTI|_eLpbhrqPp~Zu6FE3O?P{%XH^Op;v6r)Q3u6^bb7TGwbns_j;wJoIZso zJvMu%Y&>t8L8j1OgHP?+Q;`N$oldMy)$g5Hhld( z@nX`w#LX=gN%ns2k0!`z=ymdb>$IAf{o_{r)yKh7ycauf?w=BLBVyM1gY5n@jSekb z@JD1%-m!eO<+AqXhZSd>-r2s`YW0q=$B`FU-R~~;xcYCIyxmm;kBggEeem7C^ZvrM zB}U9#8HY{6=9-;u&6Q9-Ld}Ho0+p`*}szsd%o~r zjTh(Bl6&b_|F3S7y&M^O`y%`Dw`(>nw%++Fr#RhGJ$AX`y~}t1 zG=)!an%buMk<-V>b={NoF#DDaY&7bxDZU61xGwQf=qV{>coHwzy!EiBK>C<)R zluPfd5*DcRKBfL{*UlSfePyRx-%~%g>R#rM{>?`-n zzUNl{^_c#-Z`QmU+gH6`|CuHCxwPK@mgi?~Km1s~{NDcD?b+|w`g_$I&s#fX%Fd$o zHhVv>Zx;=kwpr@Vv-?~7BHPWjoj^oeU!d3e71LXiF3}Zt+yi|-I;EF!0S)@9*Zd3(h#*(H$)NpxABySBaTlf8A|A z_p$wX^W(MWjc>g>aoHx^T|-&w_(z@7S<$j*mns{)4pdckm%Z||;KSLS7f!$4^L$t8>|?<{u4WXJUqseNVZAb5}f2Z=r{#&cb-_2*QH7sAUM$UHS{k}&&fz0bx|H2Y8#!`u>%iJG7)Yu0P{QML|inxA4;Jpf8!z zoc?;1he%7xx;xuGbFsbuDJgbFwuRX=cgCjj1*>|G%hWYJV{D#G=dlIw0H1rXiaC3o~NuOV^Oqt&u8Zkf->T714EkD_ZHtj z-m~w;kEwftZ8X+C`n`D8moqK%U&)xQ39eLl_i&Gs^qcjwc|^=D)JiXYD&nttVr$}k zF8qP_alt;vo~Ba?y$+Xs?N52vzGQXY|5|o+>{ChSQww6t54`%(P_A)j&i*?l4ORxr z=E^M=+_U3)-HROz)0YU}f3W1n0v#pW_@(#t=9<|Z5DRi+-}LPLFNIr=^3T~6nU!}s zY6riXAC%SGRJT6=&8#byFFq|(nSUsZU+l!q4n?n-SC$zr`q%T0uf5#NzeCY!=^yvR za$CmpQ@VrGABSIezk0EH&&!_IRZnf0-fG6GteN#*tK6#UZHw`Ir~DbAq31u&du6g} zVbyhGwcrf@Yh}rP`b$#hoi6#b(ri&w`>RXKFKY3=@q8>*`ts*FW9@|Q9kbG(>{_7l zDsqbF>!1EV)n>MM&!2l~!iOZk728}-RD9j?{(1F!d6#GW^*zm+pR?coo8lf@I*I>f)~B5*r4c5dyc18oI9!rc z`Zn&01}ah0U!f`s=P*te$`W zRMyY$CTn{O53t?X{BOx(VXmvI=X_pu=k>3}fB&;>zc&5zUCWpMZECeYo0V~TKfAc| z=e76m7k^E^_s9I_{;kfu$Ljz4xZf&YTC!fdaLVeL?+a@8+a*4GKmUbes^#-THw?nQ zep3DYSdXfcJCx`{4&$hF_-0?cp{!FDMW1zTf zg=qeU|v-=?<&O`TP9?V$&2$=h50?o<1?z2-%P z3-9y)DsttMwR2;@^Z0iPcdZ@dP3z}W{CLK2tem~FuN64k`t70^JwD>NB8>LH0o~*dMqA<5(M%|e`{>|l{u_bH=B#oEIEGV14@Sjm% zna6JKG70lQ_iev}t@>X+`62o>bAE-y`8#Zprjiz6i4kpD>nF-*8GWAna7Dg{Up!<>iHJAFVWN8yKjkqnJ@LVI?n0(sz(=oI`e&*q4|AdXHKD)r0*@Wss)0frxso< zWcp#MzI%#`-KiD6 z%GcD-h(0$xwf2Y3?T@wh)^*Lh=xJqtV*7?CWtUavUR|ws&Ofi#@z9^pdyD+o?<=3$ zb#>y>`%{+~FL;%{;?~RA>UN)v>O%daV~@lw3$6RuG+*7x|D);m9sQyg&0p?$cZ{X) zmAnP>>Q!=8pFHfoF<)%m)uQ^B_jjJ^Y3IDnIik<`DukaMk8UyjF!SO;jn8h^rB1T% zdb;T7XRW$4o8!hyBQ3fo_{$#U;#Zn|^0_}R@8gnJb^BJj-u9Z;TfW(*C@eMPYS)_o zGn)Bz=Z3tfa^APJ#&K`KmxG?m`V@{Y{ch%)9@^7qzkSWl9*;c^^Rnlja^KSSM`+@q z2Fvv&K07N;@n20Zm_K{<6~T&cJHGACi?Mu{s{6Xa;%QmTQB#BedNcp;l3_l6w4!Qn z)iZ{0#+`5d)8_>@%ekN2)*+geVdY$`cJ|e?ZQIUPF4*H%nm9H2@VmzLD^f9Tsh8Gj z#(rsXs+T=4Q+Mc+>_ZE)J`?-urt0fLn!ii_Y}tBNJ#F9Z2JXE*w_fkGRGh=5zH0~D zwaoaS{sXR_C8Ea}0#}Z=X9z16>mH4yOmyA5E*2cAl#x&(fDQ1VIRe9-Z3 zwX05B?WUGREx)wxcJZIN-#kA~zTWxzNoZI5lXR)TiEqCYzxO%7nQ*SiGF&vwRAG1D z#(#CYf_&+AtwmP})ay{N5|T4|-L@Okh5 zs`=I@pMJT2k}+<7@riZ(_n)PH|KndNJg?7ebMDc?OP1@3>`ET5*z>9Pcxmkq;rw6I z{HiQ6Kjwe1etiDr*6B@A-}0Y(Uo(FDKHBb|+W+^bo_cxyo-kYb+_iJ}r)2K4DvA8g zyRKdxG?^ECa~Au-@SUBTzZqL(-J7Em*KZ^heruT^Q+@ILeRAcUC7r_WVrG?VPSrbP zp&WmlYhrQdNkz4iFG24wKl#YUUl%HAq0a6rcUt7(>21dOn;7CYzl-H_Z%CM!VeKC5 zll|m@Wn-z$hktz=zwGGP+!n|1B{MBP?vlln<@3VaLsxdXY<%;!gsc48+GCv?=Py{A zcW|+{_MdwTS%igxShJcB_LmyU^YnPsZ3*WR+_rbcWWlz)V;?#;YFTV9ni+R(ThiO< zTW;&RSJbT7_WTvgserArO@@z{{Mal6_L{tyy8HLs)n|ISrv&`)u$M_bRMQ#pL~wzm z;^K;+a{0dQ$AOEMC;m=9ynLO)x7{q_4bC6;_K7T2{Hnayef5uj3s&#WlGCdDz0T(4 z8AcoXPq`ay?>&0+p{RsyWw7(>_ZHoC)BP7e{}Y{3@omP-`Nx)9e4eJvmbZqLf6>lw z@xGluf^S;PSGFqU`x$fRv)6}qsSmx57Fkox*7Pz zI{d`$)#+Z|*IcCvKj%2V|FR59A1|3_s&eSu%g0jXQ!VB+9-Y7I zd%1Q!@3#-ncmCVEn59v^|BYLT$T7j6CYdfKbyNM7{_8(XcrMg(PIl>O6VDem;dOJ8 z8;$H))%krRva&8#Khn*deBOM0#jiDj@43UjFEh^CnRlUd=M0WM1@bNumvdw{quN>hNpF8CgW6ZRiS^C#ieyU$w!T)9Z z1Mc(UYqS>sT~Tz!#yd08)alai+zDD=wNmnh3}5g5_Se!%x^?NR@Hh&Znrqzv1@u*?fc!AuR3WkFhBplS25VG<(l7T5%)Jwrc|ztdbC}a zQB(8%^7(TQS{GJXu}uxrF6w{8k?}9^t3~IrAdjqT8v~7JO31xYc5t7ZZ#ie#*Nclg zu5T^cWg_&GVv+CYr(zfJ_l1PV>&?eL+u9rEo!^}ma#wjNYj)^O$GwyI>YserEK#-Y)g0&Q`M1Ax zoK##pXGWpzk?J{qzo)#q72mqk*rfkiZI-~P(^fmDpWoH{@YM0*r=8DN=_>oXE!msD z^Y!mJ@27m<_tkZ7WS4xac4hqYCzrn8{HL*A`ux2L=5_T`*WasuC8K|3=~L18F6Nr! z>le?r;k$NTzi?LI+9wH1p6<}8oOVk&;cDolZ_2q7!uPQAeYJb&Y4tDjox5(#>plLr zDi=@A*Q^Y@UjC=-4_A3-`;p*RzUueiRG#VCzsCOkZo}`J7T2!(-2T|~(fgJ^yxa2h z%0ImNd)uaY&g+c+O(CCO9orl^<=2ys<$rc1dwpDAbbEej{jIQh`xn>#6^_mNb?mYK z&a)q1ol-r2#;#H}efH1W{o&JQ=FXe4nCtlWJ^A0~^vCYMf2#M#-)Z*B=OBxp{!O{I zW%jHk>gSxR6NDe+3aRpl6l8gMKCE4pWRO)9dFaQ6 zK$D#>{O(l$-z&U#R_4bi_qKitP(J_t>_e;X!9A&>XEV=#m3Y0oX7{8()8$vE`|aa9 z{_~ISA^zh_E-Ak7`C;9+Z+Rr&_RIN3zcrWsiYxVdV$9}nbw=$3k-+ne)+uO{AK@-6{kWtuLw@( zF`K$PrcKSXmskGzA=&qLG>?C~EYYh!?Zu;6e^cTc*kd`GXYaKXxEO9x_VOfW7yE}2TP7!$w-tn{+Y4Ky*uP)(yt>RVZ1RVqH#YK%=0A9| zqwCxx8@a;m>V7;f4sShHoUJ`p_GaO{j}{-kegEf{>wdTBU7_B~jq|0hKF_n5Tb}Oa z94wyc{pXzQ-A`uj5#qPvI*;GkS+(rWF<*&ubJJf=w=$Y_e!A^F>!=Z7m{Yi{3eb(&hi}NitG>!SJWS6*G8J-X~{jZUs(_;|) zZ-!vKSNnsBuSzN>ud2H8c*SLrC9`gee)st08#(3WG&Mc{pnH?t=h<*o$<1vDej$DT zq-&hL-^?wmcQGCBROOW2@ZRG3_6a5P7yp|RedW>~U)$UR{^|j7_T{oIdvAv8F3*!9=kp!~PnRj+%loOwKz z;rA=4j>C%$w|$=+Jy)gV-`#%20NI=s{x2gJ|Mv5nu338b%=^D7DZ%>Umh3@dAATJ< zq#3?)b>E4*k7IY9x%s~2$wd9v#cP;$SH4)AF=eXLOUvzXL7}bhpPyYmJ$T#I#JOzC zFYQxb_wC}`$4d@2r=Kyo6U+YZ&)y>Dql=3SujctLzB1+i)fq4DzyHkKd^N*j$vIQ@ z_ovpsJNII9)@3itb@87q)5`6)-I^b_|MQcQlZ$Nv@2;_Qi!DA|YrCr0=i9?6_NxDr z`JQjP|J5v&W1HS?$IrQTi{qwO&U1gh@Kcc2-OEK+JoBeVayDnR+PQ~vt@yUwb35Bg z6YsidQl5FGC-+>KP;7lh{nN8)JI-k?sqmONsrLB%YqM)l8?KxFx}|>F_0=_ovhAwx zcNy+o!uOnaU1IjX?HezAxBs~AwRl2Em1F#F-PF5c8;&&gIdjU~vNtVDpWo=b_gJk} z{MPu$<@xiYQth99-Fq>3dFgVt<(m6rXBLaSeVlu0*OQs~Ml=8X+FhgifBkivTFLk9 z53fut+HtDE7|SN>D`yHe)&!i(>B)mfz4e>^65vUKk$+3Sj%YrVpz8=Y}H zIdN0K^|{>drnq}9x8-^NQu^P$Oo!5@M2QohPe`#Lw|L&Lf-xHPxd%XHo_b%T4(C71>?Dq4srB8X}ocwIV9(d`b zxqQW+IlydE)t^HAQoTj_nuiNHwVVdw1RbkbvXdXJTi4 zT-H8)Z{b(Qrj32y8w{o|t6BX>q1*8!|#3gx!5s#rOQ~wuy}Tk0N63 z2OplX;IHXQeD7NGa>pI(155qOOZ3^l&Z@R| zQ`UZ|*774qsPfVmqq)x*Z{51jUDNmJPO0seJ^RZoi*t_meYtaPlc(jvKXqTH%Sh&%0zKdT>`TBmw#Quv1eU6L&ui4$d@47GB{GjDrzZZV5d{d}*(lYYP_l-km?yu3Yh3&{N}Iosp+} zEf1{DufMdm4 ze-RCQD|K}Gr#YYg-C-+Zf8w{$xajqIuau(GpblQL_?``pT2@Jn8P@l5RP z^ly=w?SBcs42SDt-ZzC>-g=j`b#}rBD89W&XUPi{#OE- zchoIflc(={Cu{%ZlglbUaUc7&?os%0?Oe}SHQqJZQ)Yb&{&+BVW~1FAglWb8el z{^`szy(g?^V@mrMJmxKK*&IRr5GkjEg)$?b%t?fMP%!xY+-@3k))_Wc5_hm~^ z>7|R7%ieo_F8ey~dZ+ol`xE_-E3bVPd$*o@fB*aKg)dU$!snlAU-IyYuJI`q`H+7R zg>!Ab-S_#g*e*ZG&wbX;JBg;N%VP}BPMhI>DEO%0ev4(FLoV0mn_s#8=Xv!FtHf!i zcpt>R|FgU1hxOx4erAr-7g+zlFx_5PqQJI%f6=2=yUvL1@r^yUM0iuW@aBRg+_Sm% z96eO{xN^y>f5%$x1g`#>xQ}Jo-`RC5&t%Nq8{t)>1(BwX;#?>ZOd3J4VQe2rzVOfX%?B0IxC~u~SNqY5}*KN$^ z)0F+?j!tC@ShXeQh?Z%=bi0s%yGQG_bXUc^Fh4B7TXOpE2D2Ge%MbrLTHaS@Z+r1y ztlEnmCEZ+zjt>P2rY+iw-eF3ykE@=$rG_5VxWywB_ARXy;qv=6r`x3+f5npX4u zz2yFv5pzw?tmKXPu*3iC&EjWw?7eS2EMA|fTAHD;H*d}qZ-+Cgv2mAQ9(%rk@java zGrhX=#qWx$)@N<{EPp|?|90$!Sl4-vKUBxIw3+a{c<1@UUO1>trtbXf^fipeFTPwa zX!i|$tLzx)cQwKE^A$U{YsWLfY>(IWttdbEzdBBAZ}{WRgo+2h&zycye{I9#EK&Ve zM|QUSi!s}IcyaW;O?uN<_0K()Uq8!w)7iP(dbnD){CA1IQ~p+@&MV?nQ@nq^aTNE{ zFaDX$(#dTx*N-uOVAXMm>YEYg=7Ug??;Y!FLtYo8rq+D zc={(L$}hON;O>>cWmnz`&iH&#^TPvnwwH4bK3h0{x!Wn8`xg$^y{xc$?|Ao}){Nb@ zvix@|TDD)|uS#xxCG}?ia_@Ug=d~W&{$E-9VduAqJKCHy z3#69$t^IuV!lqlH>*l4Nmt3~m;%feuwSE6gwx5zXD!1^mo%+A!Q@`6){`c!#^+TcU zrtvwg>owPHcP>u4a{TVsHCGg$d@p>k_3xbWk20@KZVCKfylg?6$>LwO`&8Q_7v4yT zlfA5UU8831y~nb5oL|lrVg9q@-I^VrJFLr-EY(E2ZpLJ4?)Qp%@lKfk(!W1%@_)SS zSfOT+wT{ES<~{#8dzUgkuUWo-KTA$tDR@9O{qoPto_eiMpH$p)zvgjV?s(O^@^kT@ zUYI|vR9{*?X+ib+bKA4l)i3Fr|EcBqE1RJ73)1V$)-EtFDO)XdrPOoh<;n-SYCV#< zR|D66GB5Q~s}GjB_w+-`+!vQ8EjY9O_VQhJ8hn=z_W#-Ss*Tw*yghu%#XA3!#!tV` zdAU3};P(4h$2LznXeEECbJ{1D;|pK6A8Nb5{$hbEPwQ5A(Z8arX+E zmlQipzT{+eYO=Aa{mV&SrPFu5?tAQM_htDPGx>W9JnNqPI$kXuJNy6TCnZyl7hP&P zl76LB_WjdVi!uB~)c^^5p4H|#%~(%$z^tS@KItv-GH-^58) zzbdk|e}>zgFIpEmFISWQ()YPJFXyT2+dcQx=l|~?aPEKoOZz7uyc3tGvCLrp$bI$P zWWDZUM}>bf_n+TeEpgd@ zud3XkX(g95Q+zy|l?!T*v2K|2i1pmD$OG%UFSJZMZ>{#iMG z!<}`hlmKJ9ROMBMxS&3^sJpHG8RF(Y9!B+l2+<0^+$Pt%GD}@1w60{v^6bM8o$S+J zN4qpgg-v`QP}29PG?1lFX}PkG>fi9k(xRfJeofmX7$>_emNDM5TzLB8shhixW&TYI zek;^7L-P2UQ^^5ScWto^_xr$ie}eS+9y$Iq2PSKqe?PW-k2w20y}2cKzD3yIm$g=H z&u^DF%v*PAn}>OFee(Hz6U`(1zsDX3ESYp?a!kEz`rV!#Ld*FUTzR29b< z)k%J@OU`K@6D`Z)pK;n}!S;nF8~RU8(N*4TCVThm1s<9F=F>0dKmQRf!@K*VqTjBM zE+vP#{9>Au!*25U4_jrdUqyA*oQzY`Gz+x$zWlgj*G$%P zt4xX;moraaeLr(cS=G|wH+L31oOQ_LMTzr-BEOiI(`?ISis~NKyZi}Odp+H5N2s=` z;tTot6?|5KljV+`OV;D)%rjf@Xvc~_Z;r7&UbBa>^6E+MyZ*AvUJ1BaZd+>=b>_Op z(~zgX#CHm+nq*%!43V9`XYZq^V5x?*0}s`N_I;ffG)q`J-%Vt$C71KMM_K3luC!al z6wS#$`SRD?OU#pldd@LlRbadyopjb}aqJ?kVt9+m<9*15)$FL}BZhtAb@D*cx6 zMMlOa_|r?B7b>$pncdf^J5+Tv|C8K-@WQvofu@a<#kR)2Wxh4HRBrLK)WG;pm1kG~ z@P57^TV!6zzxv{ch4phMcV4B&y1;QLYZXLJ7x^$eru4VU(QE|i~q#oOfm%EFarY~~)h$v^$E?cHyll{KHZ3Z_i4 zs(qEQN&o4u#&fLgx4*v1QGfpNKg&M8YoGt++*keeU#E8Q*ZlAQt!u4M|Ec^FaqIJ{ zb7i+;YGh*lEk4&|e|>+d=kea@vTXg=W*U^g{eFF4m`}v{oyPmVea%^X{(kQb^T-u@ z3{zk2pZTwu&;CxW@z1YZk#2#8Pi?Q{hRT0kyXyV)tv#xhZg-YC^ZKpGulhIkV%7SNo=i+`1AkW4I`+=c-jtsx-Nu`f zRQY80wbExVlDfWrJfSelQH1YI&bbeg^=G&b>-Qhr^X7JS<&t>YB)=HTH^CJ|Fb09 zJdO$r^}l$ujk`$N;>VQ;|2^R!H7xf8GUv`JxBWDE^ZIDE>@PgRg)5GQ1tfBvJl}GV zUqZF7^xeWff7^4y2NW+>dlY-QTz7~)v(PR6ubupH=C2$4WY$`6T@3M4pVhzE`l;kE z#)_Mh>VEToDDPvHSblZGTkjuNxt{e{oh~q0_UKn%{DX_%7tM<{4@z|nnWiV(C~fib zONQI><)Po-+xmyCwsZH~e!}&+{44)F?{=01l{YoZ&T;SA{^#MGX6170@2kF*e_f}3 z-pqK#jWvn)@BQXvm)-dH!XugA(Nh=9H`JKxuz81D?CyLc{V#t_B_76_o?SVUFYjrf z+{2TuWn{YN?*zVkc{#yS}Sr^6xo;{cfKN_ZwGM z&vFbkVk(=t*U0?D>0mP<_m@cz|3~TnI_%55tEIH^iTm~@`PHvKPGOzvbK>Wh&s*5$ z6!5Jo^WHJV-XZOUT=~?S9v1I*UjC7hrlNOs$#QkUkeACAf1S6h%PZizph9!#dL_M; z>ow{^%aeZJYJO+FQ)AMlrdNHdHv3g?U-Z**eo))BV~hzQYx7Q3=gt&y^ICY$@l->g z;pC#A`&Q34#hK4c&HTjJ-+OtE-tFM;g*EG{A3Zm*nRAQfSI766@)lmQJ#!MLoYQ_T zv3g3egslH{&q-llCVoD?SD4kk{#N1qE~$fCo&=sdvQh1-X8GGK4h0t1A27t8YYz3F zmR7HKSi9t9u=OK1;Vfw{M&5sBe~p=}em`VO(ET2^eBb$)^ENk*uVs7d_dN21`RY}2 z>JQ@P`$zATU#r>jTq5w-oDZ9pd|x+PJM_rk+5?}C8K0kW{@xtL#XHaIn$9)$$~64B zKF`$W-n7T-W3Tk$*JkU~CbEMJS> z|8IE{y?5`UA}uvb-L|Q2^CC^&K0e*{KDSu@OZl}k8QV9@mC7uVz59MSd+v@~g^xPk zXg>(-URuXeS5^J&OZB?DUjoYhJ`+jZza{39oOkBSn)$iu(iMkQf8F@LxF}`+(v)Aa za~JB0J7rcR)qgmr$n1Un@%v3SJOLrx?hh@tS|=(Ht|r-+M3O_Q-p&;e(79AzLDC`~PMbEQr!r3QDePqzz_<;R&llH^@ zwuN(8JKnVvlr$T>T4gnT3JkQg6ztZSQ}ncWwDO zhiyNun4Mbmv%$6IfBv-_eY>-5*!D#JzRvUC`El;veI}36nD(mF)UeMx_}a(o^b_fr zOG!5!)%*37{WaNZ?oTq#p=VR>)wy(>7x%QH@!RF_;9RB;y zYkr;UCb3SFVSQKrm-`l{p4<*xvf5_>x22 z!@O6c|5WPaOG>BCFSbbxUwi26`I#O5r#f>&f3`kiSeC1ID)v<$6aTtHhUdA3tTZlM zdiB>|bKb@DKKAYDHhecoS?UQy% zOs(qcaJ%wcaK|b8V0$ZGo|}`uzJ5I0%1wOX^K-VBp60%{yd@KEd(C>Qu`i$I!^d;J ztl%nipCUb_us^Dlo8xu;SlQa#Ht){)kNv-Q*MB}~{k+dadegqyp+)N@nuL$@ ze$NpUjD0X`*ES~gFy}qjtY9y;W zmyAOEH|FH)u1Z<|i{uu~D@iEhvsfE#I`ih8Y)e_@+I6dA-)39A(fYJ z4)49T`gZgCSIWOjQoHw@T)xHk=uS7eS9=dlxzE4nl?=DaRQq4ucdqj12n=f1Zmt=iy+w_w^OoiL2kY#xZ^hSHExm!>uRZf}wod0^w_~zJALy-Qj#m zq~_36zVk;sXPuFq)@5{Nb@kW4Pt~tpMEx$_w)(q?kie-m8=D_*+IMk7m)za+O}UnB zcNm$}{2pKX{m6GN|K*4ID?1MCSid)TQ$zMpxwIK+45>%v8UdQ$b87W17uqSsX*UvH7^UctC*?Ur2k)0Z!?mCI~+ zzgBuOoBjOj{=0*k)l5wu%~LzK^Yo?2XQwYm?h+}Ll4)J~<>Y>WzpKviEmb|U*iU!K z$C%$Ht>-K+Er|acmn!;$c@F>Py7Ny({%oA5&a>vXarR-4;%@76EDYZmN%8uPj8+SeN;VXW+*4=;aG8G7~nj_u4Wuy0c6EO6^q}zPnyCJ!_k;-~DmDnc4PO=<&Gy6RT|Z zEP8dP_@8oZc%1hizlZ53e?NcLeZZ*h+L(>+{#`*&e{9 z5YX4PXJz}cX)l9RKfhcv_hZcsThpu;M$7lj_{8<$Y3(+DuHdMB-)>0pPyhe3C4}?c z#QT$q*BL7N&%g8X;a3g0u-xm+jS_#pS$SJNjTEord2G$a^L}~B(ZoZB3lDsnapaPW z{n7V7LJN6J?>6dZF}ydP+0eYZgw1N&5uRviagFU66OM37m6WVEDqxuO|5cg71&N*h zmpYT6`=HP516x+c0@`gqCi{>SK2xAb#GF)4F7 z*Kb=~GH+JI^pb5_b6@{Gb^YVp$=|Bx9rz<_Usz=$t2DEJNBNAR=B#VR{rlsbt#4QQ z->jde?BB-oChhy~+BZ4No3-a_`ozX>@>{ym{N9D$&v$M7qfS}ve;NCuRA%1amzSma zuKFGSZQq+2{@L1gQ|tDP0eg*J|GK>6tCd!X?D^*1<`Gsue%fuV&c9rFkTdxb+)1Y*|5hsvfKcl69VbT2+M@qXmw?T*~8SEF=HA4pxam|1@8!`rxzGX?9_OAZ9qU+A*-?Kdm>{$fX#u2gbTS9AWA z6^0(aUdFuk<+}e;N%pw<@~BA3b$&ze%bq2_tvNXg`|}XmR|a+CJw-C5vru#OJu)z1Y9A zC+w=$#_7Mg4Vew31Nx;Z3fCvOezz1VvwBjet ztdc#@D9`Cb-A51WeDC>zr(Vs8Ui`!Rnc>yiPhFQ~D*R85CZvV#UnacXAe4ahe z{rz2jQge6j(x12N?^OT(=wo)jz3-JS+a-8?=TeWQ)^i*d7(PkA|I=PpgiF8Y%H^tM zZrM3}mgeVpGV3Mm9rmei)^9vJ*LL}4msIQjK2FKM^tO-kpi7Qm49S`LCbl)~=em`&;3B>6I7QpEk~VZj__Re(_$qw&k;1*L2TI zM7G~|HGjUSlEv*q51+x*cUR=yt}H6(`}?Nr4&UWW9nUjKd!PN9@>)gFyxDzX-^u+V zPVIGpv+A`c7`>30UThg0)fyE1E?@BN;b_I%=`dEwQ(f8It~Ou4u0Vfz1< z$2$x4&%V7jFDJNcdC$w)9RBMH@|LaioxSS)62`M>D<( zv_D|gUVc6&C@$}HLjQ{My$$B63trbIuX@6uvgiKe&c{}(!;Z|KCb*aJ{>Rx7v#+nI z{^Rj>rL@!MeOVs+tKPAnn_K)rX8V+12VQUZ_4m}r2St5fUuW^}XbJW=b$N1qgnQ-!p*Hg)|`{wEUd$DNn#<+rpp_{W9$dcS;LU)^&vztwuK=gGgj|NYDR z6)-9O<9dskh5x6?`yKOt;(6oa?Boukmopq*ncZ|={o~sFR8fo9r}iy)+q3O+?#6rR zN8c~MV>wqkVhdk{!=`i5_px97yX)Uj9gKQ!mdcl8Rtm>qYle&65zpDlR$d+8q8d>;$z9iR1YzbW`x_Wv7C zjh5{7#lN;)Y~SDL?7gFI&ClcVzkjdQf4^m|#PYh}rF*!ocs_kCneb<~ba#2hhbv!m zul#mPzxzJg>(=XM=k~uf`n`SO`c;0OC*IFndbn40_uSn2q=2~RH?FHsJiKzn{_dEs zH)gRORy}w8oZwCVsd9o`hkxJM|B5R}J?NeL{v|pxNgAx*9o`vQR5UnEB!G)@kv_Zw2)15S;il zqbL6DVTP4$C+~5DmP&Cr-c63zE?s(%-=Kbp|E!SIR;^yUmvv6Ie8NAcN(F?kdKhXG zrsr$IbzfgF=)ig_?+*3@XUlE&O>yH`9`kJH>q&pMF3!KA!zdN;HTM9p|q)a=YRg4^5Em{&yvrdSI?U4 zF12{y(-rHPL^Y>hSN_HDI9)ke;!T0fVX;${UV9SG#f0`RzOmnO`QyM)>sKZ9?e8n? z4tt)>cbVqWEmXNe^xT_%m;Zm~Nxghp@+*6d;K}zcN{_CFeCp7+Q)|%KlzuK#aem0{ zlfPEqiJU9Aru*HEe2blRrz4i>1Qz$?KPfmqaofVDqL&*apSgaJx^mW4BIWd*zizpw zj(hG+{TaI`ATDU%XAaX#xA!XFFkrr5?ZRP{|Ec1XY;R0(ru!UW`4bnB~RO4jm}uH465GjCT< z&`d9@KSkGGP3+WUztVW{{mhkxvDA7wbRzV zO9|h(Y}baOoasws)K`*e=fZo|MGU++C*cNNr>cgA=tGt|ywD&IIML;1^v?2QUG7pMN-aqjuAY59M8XZ?A0 zKO$AH^T+O#GbMH}@2Hk}vX^v~UCe5^`t@YxlTi1S>$r=~X}*0WH8FRkvg2F{y}2=; z5?aGQt**VWr1Wu|^6{eA(N-I_{LeW5oOAwSANI-LL^)@jH<$e6{p#Ako)fn}TE!}6 z-tFqIY5yX8T{1P&SC%W<>wmEJ%iGtBIQO65Ub_CaTd49$yQg99f3L}YTKd@Jq4(h* zC$IbOD2`+7zhF^s{&cIoSNX5Fm;cW$T>T+ax=JKBkHLf2|F}w~-(~4LzxbAF?w_3X zlke6Y^Yr+4S^7e9G_ ze`#>|v8>tkuVv>p1o*69eD>U%DHFmz&aMb4ocdNcOwapyTWjt@zPWy@^A7zmvkcX> zmt^}McKPmxs?QT`?!}ioRQ3PnlsNz4Y{TQ-jQ?!rR=o`Q946x){AigpZSve|0c3K{vzUtYA_$xk&%808$atmX4$uK$23N{m)m{huh+Hzk>Iwl<*+Yw zES2gLeb6kz>ui+%aKk2#itn0I*;A9B+BskN+V5hxbfL&&&O3KpkF%e8VX!z zOWy4)diFQ<=DC+oEB>skzTB_x87t{Jx9fRK+`iQp)$^}LdUzh&xhZqmpC5iQtGmm# zys60$isH!Nvr*+;-t%Hsnq^aeo$pQ1`TOjPr1X3(O`D_%S03kb-*MybJ8q}Cf6Kg6d*hZj zMn7L~Op+v^LT*8Q~D)8+klb;kSPo>xxNJ3E!;&R<;RK6}{_|GZgl^GfEa z^1pv@;ggm5rH`vBuIazYsx0mJH|@`lv%46Qx1W5%>!;gZC3-z-{xsjUYIFC`eY>If zz)H6-Y5PyDJ!@xwW8c2uSv!>c(_cFLTYYEebb}RYcY7nR%`Cc7y61c4s)~Xdi}M$3 z@~uLz)q8DR@}{PLn$YLkzxRW_ZP&iM-u%Db(q)$)E;&7UL+RIbCEsf0&Ib#7#G1VJ z`un^@VBfa zXTOd*xABKt{H}$oUN`?smHp2fezShD_;)aBO@UqZ40r*LTtOE64BmuJvGUnkwwgy+ii?tqaO-lFn1PdLKP_d-qQAfu$eK zFL^T_m%EswoV;k-xxca;kyT@?-oB|k`MP1M&AzX5 z3tpVadTHEu{^|t32W4BntZT5)iOD!DXwJ)QXZ=7VNK4ZFeWs1$qKj9QUl~a`NbU%_ z?d~RW|M()q*u=z3`Hau_{so#$ezGyn#7LN3!+P!edC#@Xf2{qtkw0p=mD0|Er$w z$S#O@)OMQdTJtT@@Kt;a>;*a>&KI_(a`T*i-b351^NSnjN=JBoSa;I*$n&D( zUrpnqK7{w){!=f~-}28xyToPwrgt{yCe?(QKWA7U^=|pQ_GOZL?OP6i`dw3O&3b9U zTJJ4O&fdCy(p-jpL3wYJ*Yfq&KjysODH;4+WAWoVjEkxZkJ}wGH5X(Mo}#{7Y{l<5Af%zWf^eq#l1|wfnXPZx-9ye)_!N|8YZ$vQ z{dp@tM-={hR&t`y?U!bG&Ucy5Yoh1BG`+ve=GSGLcczSgOZ#r0eVns;HoK4B{1vA2 z3sR~*neQh&`keUI;(x9GE%m>zgVc-fy|TV6{r&By72lpMcDCJkd0!CQ@9IZSe9eCe z?|FYg?cSH0E91*5>ayR<9De`x%gXu8i*@VIsb2S=5cKYALBXGWj?13j|8e@p{^e8r ze}&pDviWs>@vr*gU;P$;cDc0Qx^sQT8!5+Yyb0{a;uoe{#I?>1XeZivu$m?_}1UU14%yrNJKSSIhQX|8tsi**U`<>{n*4Sa)3V z|My^@0z=_^4eOtIHaS%>S6%-zUMv6n=YQO%Li^Y6Uh3b!_~uPd@bOR6_5{Cjh^sHU z*Z(8fYq?_puT{qlr#QV}YjwZ-X5!nmORX;?wzMb)-*wcuDg9^9KU41?d0!iAV{>YC z*L+@~9sA_pB)dg#P1Ka~zp2liF1vi@HSZO>4SsA~^KR?xZ#8*(TMDMfAHSmfcgKv- z8xk`oeJD296Fa`+TD*nY)rNx3g+Gp;nsb^pVA3P8y(uXoy`NTE^&bkFFR1wB+vQsq zPaKbwF)y8$5ws(Ct()}bc^oVB?{s^uoTh&6dSUP9jtjrfWLtV(=)dS~R9e%s>bZuS zdDc7Oe#8FqnT4CKKCRf?frkNpH7(LD#cj4;&I+Ii`wH&UyRrP{cC?g_tc@4yzL9FajQRQYOHEM zrC`rhWV?Uf3VRo^><~k9^#%92`DISW{91S?HMP>^^>@pEw`1a-7<=5E~=6K>TEaHjr-}!70)NVzV&v} z^x)d$eOg z-)f=XHs7vn=h!sIS~(=&dgGQ$v8ys4$$b?{kK?Xfad~@C?`z$vt1AkO{#UVo(6bI< zvdO*S7Flz+e@mZ{`M#UsUh1LFeX)DhuB$G7X1A_1C#P?*&2LxV=Ot{9UQPR+xumpi zsgaNS!LKd*r|y~Q{xc+N`CR4|tNNQRnWa5xUhJlPaFTk4wDG6d>$Hf)X{a)8=|7Dk{ zv+WKzE=q&)ylGvAOPv zVIS9><28T(LhtX+xjZ&p#kTFtmv$bwQ~E+;!M^!QTVLF}_S(=npfPC8?&ft~`)4nk zsA#ff^}*QJArV@)E~!fJ%-Qeb*k<&6voG(-4A*|&-xJM>)~CJ`cbykwr#(MOggg^2HP3eEz9%HvY8cJ8 z;P`_dF7Fion^pC&pR4_%)H{hU^6f66?=$j4&SxBA+_P)Pk2i6G$1}yQ6<$-FEO&AB zABXMs1^YkTF;I06ac}#iaW4JtKcm;%&q%MBb;`IwRW`KupY~7Jdy}m%@7(fQ`cG`F z-s;04&wiN6%amR>-Zy_$t;pLolQ=HiGHKe`xa;eR=rgUG%;xPom&o_nSG~ZG-=(WB zmjB+;=4j=Fiwn;`Io7i`)A?5PY_7b*D=QbfrM7-bm{qQS(Dq4_zRbz(S1o2-`mkzB zyi~9ItdzJz{FdcX@}YLUZ+RZ=(SCh;=R_uv?w#9zn9ivReUiMcGC=Knk>uMuZQ@rK zTu_fabTw~v*3PmFjc-qXSG~IZqGPl7sRwd>MeS2IDVz;D(2&RQ!Y9P*>*=1Qf(z~V z9jhl8TAj1_7G5~@*PKf&d3FI2cPgE0R&IXuWM%U7B&m>`0a8`k8U(-3ZxB1^>Bz%9pO$e--Q>vC{ci?-krukmI zN4=WIGtE+Kf+z30{_$d2sCoR~#~0g^pMMp3v%{l!!V>k~u(MIGH>58$cd7DJQJCNF zexdi)#rnl%ArVC}^NW{we#$-CGwt*V{kY<5Qyy}#Cuhsv(tEC$%D3+#yG`c2-wWK2 z%e>6m^F^Xk_@Cr;tMs|;tNq^nX{ngGF;Fb9YWLU5{N?w$?#NtQJ!Q%*=A%;&Jvw%> z__20x!%EwU)fw?^d&8q@`|rHqJr??I#_uDxpXP1|)LPBVd|q+u|8PfZ&BiP9HDzwa zSsnfIecG;jbDDm|EWYz#!KEcOTXwtIb}>H*bXQiXu)0yQn&)3acwqWfea-cMohxOh zPkCWEeb+~}o?mhXe^wRG*`)V&`k{$$cLksLJ%5{XsaRJ1=UuPEx)4;M1>v ztV&y1dwJt**X7#pc8d!AYD@2UbGUf^e|1?+xk+pjgLj_Sd7s_KSlPaQk;(Kt{x_fJ z)Y|T1bXwRQhl+D{3;l0TQfnMW~RbM6x>wVjO*TV5aeYk51U-of&^%-5T@ zB`n|nFMDgF^?aq%_D_9Yf3oe$|Ao#q`Z^`wlKuX($%lTIYu=t?R(JoI)3&PzUzm95 zzHYJI89RU9^99o$i0zgPfA00_%-rNJ_rA?v_)q*&{eg$q`CaP5b7K!rFnD|G?6%h{ zt(snGz74*1dQN#pzp(1}>CY$5tDhc}DEYDH?endAk}nc2YaD)Ky!idOZ&qz9*6zCG zcA4qyrs)&pAIWY#HaRr=@A=D?s~=UI`+M=@bB&2Vb!^T=vbjHaxAT6sb-thFH_fTm zYp=_m%`bgoI$ds`%IQ5N_mX5v*{ii|^Svs!USGl`#kOZj5Ss{l`L2zo<{Bl-T2%9n zoBg<&cloT+uEX;L6LOe;$ZwrvTV*17YCfBNI8#aI;$shvOnLM?dP$p9LGAyCTau4{ zh`H)}Wz#eh0};dZ@-trrJe}vdvx^zxk3ZdB{K|ETO8WXob+IvzD$WKkq!TFE;+l{E3$36F0R_wfrfQ)@;RM z9>=}M<|p^<(zOlO_xDcnR1QD;t6q-Rv(oT^mwLInyJPwi&8g?3?v)>C>R;$vy6XQF zx$`~WG@1jQAI0szyjnN5l|x6WQueq>h&G?%{!aFDrBmInPh;M9cAc^RQXaj^X+=u& z|BA`X-87>j=*}%eA4hOO_+LRaq4E@sSYP52L>Cz+j=&# zPG-rW|I-*2PxE#U{G>j0MU}|ntaq<;F4bkt-4T9#veml_=R_+-*8j>qobx+Iw%T^( z)=bH_#a1^r+5i0KzHWD++uzvTUF>(lKlAm4TxeRyR?u&B>c7Z)E_s=~UjBODZ`$2* z{B7}0gzxZ@+CO!t3RnGobxd8>*RtHNlHIfHP^|uWD?3ivG?#hn?yY@mQ6))`5I9s;oRrTLpeBrwn-rGH;x_Ry6{?6ZdJ-e$m)vqiMwTvy*ZY-Aw z{;vP~@9il&{Nkq6zxRAAvL?E4?!M0bM^!&pzh7o6Kk@sK|MOp!$%c3@jK8w=UV@+8 zV$MGSiKo^s{vY?NUAC_4M|tDP9kae4EEV>@_Q=a5lyUx(o#ACRxz+QwJ_%D-R(i0{ zbw=eY7MrLqs*9~wl~i4D4B4G~WqIG?s!v~Y_uIc#k~n{O%ei?P*%wro8*%iCCpU+` zox5NYbKy0eUIrib*!IsQ@AkUh-^gbwx?CaU-SW8obGdbFRss-8EyRHN%O%g%FLz*S9a{$zw&oS+^nPTm*^h9?#x_xL}_1Xo5#wH z`)iMVJMik06rc6s*EP2U*dO)D)$H4NY+Ld3Dd)XhI@X$boHMZEA zy#};n+K&o6pZDp*6myOCny%xL$*?%FO-@eiKX#4jwPaWMv^!{;Z?LC#g;d9j$=~^7$Q9i=CGN@# zgYMgn7vz3w{F@>s5y~q2@$3uk9UtPhe+t=Y6392_*4E1}r^Kz;^LepdZQPVSias@V zW-(TL>Z)H~b5Ct}B6Y>GIM!|LS>B@XJcS*2ga5UnZ|sKPPZk;d#`n&g3nN+dc)`HO%W&b`yLhxL}pBrv25a46j3bpWKnz zc&aWb<^8K;9{+3n_MNWDUApSYi*u%Kv)hh^UjI^hKxXlV|2f+YWM|d6t@~yE_TlXM zYs>w1N15(!UEuZn;~~-GPkTPA<(3$qG!0n0|9QX8+&>}n_fNfSqvgBm+|`6nTBR!% z&MTR<(64vPrHu9cQ%*1WaBJJ~Pj#<2mKS@y_EH!6)$)AR(-OC@_n-D@K7FpGn|E@) zMIifhsnUAa=&tYE({I|Z^?w;Q|FOBLz#irE-?xdZ-~ZI=xZ~UCrbK2Cc|I0U&7%c6(n)sIY+jheu zsTa3T{<7LR;c1cHvVc}tO->c zEl-u#xvhK7;s4k6)=YJo+AH@e-xpjqePrJa@6X?VB2P|L@G1 zD=&KWE(noZVYKqYkDJBklv%(0a5uH$JsIs^8GB>p!HH@Dwplq_d2iUwerJ1&-(bR| zo8k#iOy;P`bx42tKFKC@`AdhnWjpJa2tTZt&VKw^7}J$<`yI|IGv#*v6jY7h|9U## z+(@f!+7Byias{s(TVAkboqETU7U#g;W27il`&nJs(u1(O%@URn|Wj#kKv^#a_Ww-sAVW!)XSp{o0uX^ILo0)qNXpv*tbQu;Hm|sC;qx#?kmW|6i?P6tiC%)L^nPNB>`6 z=)JG&=NB94%u6+&{v13x{iVCivE(zqBtx$|xBr$1SZHs-w%UVv$Gn0MwkCJ1x6l8> zKSxTC!@cp5JRgtN*9V!eCCw(SSQGHvUDSN`nZ@^tg-_^Mz4GwS+VV9u{%EPy`$>xe z#lEb3)_diMN&P3O*2X`XIk%SlSvrx`C~W@2au46ERl66d9=hOq$oLjdQM!ovgof{* z6#}jcUdX=kR?RPd#_O6RX}llOdN;7nVY^B&7G&E<->Kfaq}Wp#P!tjD2g zE7ycfZg%_kQcdKQ-Ie}j4{Tm;h-WE3e`jUkt4ZqlcD*Srti{2+PEqW94Ev>;=U+Y| ztI8>=xs|V?@{9b6$8R=Ev#yMP#J6?V=k~=Wr=PM_PpD<}k-B=|d5-YK?kQ@^g%@~x zMIYcPDJ<fx5=#=>hFw#z1$PRuSk`t!=p@(D5L<>&S4R!n*R z@>S>UF0pkIfyY0qo^Tb7KUcc(tIlL=zvZ^Y%Fo_f+^7hWniZHg_2rMl(*N#1{q0TbvOHN%YdJ!tRNbh~2t$XFY^Z9Ev_9?FIU4G|t`!~1dpI4_@y?!QVJXi8f zaaKpE&0%w~<+k5H&THErXY}3Th|HBgv;3cG{FwMj_W17YwbMVZpCU8MB*`!FaQ?LK zYbU=8IrA%++0}kmuFXoZv~`Xa>X*trmBVcor@XKHsZ(C}GNNGX`(o!{^SV&K{+BY>%C1smi|2gV`RR`N2@|Q^kJrZDo${*U+qPx06Te^axPL2^ zcc!{-Q^mKqd~^R@mG`bsG-KYjd{=z?Vm`js<qDWT21$b_oqHT)#JY9;n~?6N|!xx_Mi5^d$DHa)PmBe*Z=sNmYc4ee70_N=&UtXw+@!embo(h z-;s5$`tP+n$E%}uKhFBNh|i>d!ke;`%K5fSIer#f-ToTUFIcKo`+UayMc$GT)1S9& zOulw1?Pt%Kxq%T{e>9&Yggkgx|L#fn)v4Bp81-eXS4?zbeWkrW(mcz~Jz?6G<8p@Y zvmS2WIWy~dVswpn;KGRW879y6^75~ce!As+gQ>eu|K!7lWzSEXEqeT|KXLt%T#Iuz z_z&?aYx2Ie_*d*z`M|~UsnJcr=eP8ZH~wY2cY|+#@RJJJAp78;<#KnQRme%FzsO&{ zP5G10bk!*FSC?m&yfgQG`ttwNcXzj`x|e1+K0NXN|D%{?@*h&-CMa+AE1$n{^@=D- zK{Ij178Mm1pWi234ya7b3k|J$lXlhQIs2`q;1;i2ldIial$Dk~k?`-8xzch!VPb*N zrr17>XF_vYxt`nJ73}``ZqkPmvBh!BeLnv;kC*;0b8HG~=6M7zFTP~-a#6Hb&#&IcnNMwH z)Eb=3=WEzHlqvLIlKk;RxAakE=%*Wre=?@st9(@>Sh|$c|EIs6t%3cjbB50h7d@$b zm;hj0bQy)Kg{68%x zNQbfL+O_F{&AZNdO1$;2ZH`jP4()p(WxtS7KGy$EK!sC03&61AK^*S=MzxHVPA%CrRX}i28w`^Uty#LDF4VxmZ7(Ipg^4 z(^KWcIqa_AXfN5d;xbF+SC6yib`$uP2Kwp0I`J}-Dd@|Z_=iis6@Hps^|LqqiV#P< z+}9O9f_^N2a{T@LsEL&;wBK(zU8i~WMOwFJkLhrsTteYeAdzJME{!a>@KUQClyT9&}PHgzs)Gy`c*Y8!Fo$2;xVPEk5 zH&2A>%4?1+oo4qq>gL9EzdElOYd`$*YwE9Jx75n_2b&xelWz+5ZN7hN+GUp8p;2#w zj<3I8{Q7oWzvb&wTW{QKFMjtU$3tTI-y)A-wl6y#@7c?{&-uKCOvTIvkH5YD$Nkd& z)d%I*Eh}?(dae8W_xIn*RWGc#S1%8H#w=Ohb2aj?#jAkHJGad^vXp7Y&wC=Qo8Foy zt}p!|+}rlWnnP4zK09B=wlhO- z9!KpCH%ljUO?+*ABky9?i9Ugx)*X>NxXV|k+d-(P=3T31Z}opIG-k-nEIQ8h@S=uHeZ5rGN4ex0@wr+vLqy-sX-It^Xr6fgw6M#a(5n?P zI-8FbFPGi9RW7q*mz!^)hu!(-RkJUK{pfovT=@U~UyCAvi{-Ah$pYr{9o7HDuD;hV z^F8zXAKTK}V}IRGdM&l;Pg=Uz(f#47o&3s+uBgQcxQ9<|5p$F{admgmVb=f7rC`>!Cm*sMai5Wz2`{G6a%R&nUY4ByU|G$x z#xo2(7F^Z2TXxPbYt+8$@xY`u+*97)SM0-cGoz)tPaaCl`O__-TI*zf;ly{lvp=p( znG|6;QEKvy;A>u7Ns-U4Kel-JW!AO)rLo)A&hT>QN;`FEUzYYQtKX~K{AAY_e`dNB z^zY!3O;L%3zaB?#nQr?_^LmiX{r6Js*Pnd;H07AZs|m(Oe^1N(J!kK{sM5nXIyOa} z-e7%aTJyV~Yj<}CNY8Qe7Sxn^zVmqgqnno>tH0{GwenHp#iAw5_w~ZAy;nSMBwrX_ z`f6W8z}KitUGkx;ja+V9WWLjruU+1pUy&YUWwVvzo4@RVqt?GR>06vD_PASAFYoj> zw0(B-<3qp2F1D|d+I1|%yDPu^VMN;gDcsA{rrNx)eLCaJisQvfFUvOZZMSMVvU$0l z5?}eU*h%bPGwUwDcodoEyt0CSW!nReEZ5Gb^o@tM$htY{hoI3*W}MT)(2mA(7F9lL3eTPlh0rEZeNo8*L`SnNV_Wb>w`F@g>pWOvp^(C3iPUnI@zrK|7Z{NWWcIO%%>ioa6T-^22-QWLz`yyZPBQZ!P{oYT$bxVuazyEHvu;!P8Hs|w{ z_?Ay?mtt1!x4nF8%89vaC+My;nsBlEhVS*syYzyu_AH%myYN3}`MEw3bp!hq$=uHt zo_;mArKUh<&C`WD;<)>r>N;OYn`WJp_;1Lh|M_+PfqSYJlhb=9ySrB9{bv=k_^$ri zN>i70#-TT>{Elx~b?)OCo0B^JiW82#Q@rr`yXL1W7pAs_zFQ(6cD%HvsQgCg_kHVm z+c?f~iR)?^Fdn{HZ7Y=X_2u+4Q{qkE%Fbyt*s##HG%jOG`=cp4RG%?AKRdbSK(N+I ztLnyZtp?2s&iw7#f2#~0dTYonUB!0s>6Aid)?bqjh4p@wP}li(xAEmf`-Yr{BHmq< zHtgd6ETc;K-g*nWl|QNTF`aW>V|D49YsW0RKYbTHZX9;@m+85UP0B2M4mQalS0B`7 z6z!KXU^?D@_jH)^vFbO!4%kht3tf19vFm%!X8At(t1c%W7W?tqE>Mg&3KDA63%o8{ zIi<~X7VFFK3--^oPiLv{rJawu_k2^z(@V-lSI?|H=Oiby?b9leA8+POwJFtHXehtS z{+iE(%ax*U7JE*gBb=vHpu6zZXAy?E4>WE*nGk;0QTx%I)kg03e(ihLb!SJ#z58M- z!>zMQMKa#p+452HyWqq2l1~ZyE_>|L^F2A;M)|eJzmLJr#}cFB9_f5_zdqqhN4oCf z-=aS)%Vw`Losg%u()skF+5m%$h~L&;{d%s}`I};&%6wdGvUan3s`aa{%-n{3Sv7H= zJ>T2zVbyyy*@*w`(=@Rj@%^7IU#aSauqRyEbZ_D7Wd?an4zU@#rR%T!O^(ofD0`0E zGXJK3>66|?mnG}(&A<5R#1)M>)++?Vk6)|&A-Q?Ko3Fe3%dft#FIHv#kuMeh*?xYD z@yi#VXUa*RpLjOtl zR`kc%@!l6Sdv|Y<=ilaAS9LS`!m?LmRAfCEBZ`<9yj(2z3F)S&68uKZ+a`Lym zTasLUuLxM7Q*uKjTz37XdudM`+#YM5$rQHOUcKf|)tsePQCsTvR958Ng{=kfj`+&2 znJZqfWQDQUL!a~*H`c8GjNaelKK`3nzWtBi@@eP&&o^(oApgbjq3@0KJ(oq}thh?K z{cBH7H{vf{H973_>%R@JPF%5av+=*R;I8uAhjH&_mn>O3;pe?~XI?++S=Og#B{i$` z+R`sK*9MsEwOnU?*ERe6&tJNh{0Z7##j<+4%nlR>*?qKp;Jf;9E&hDGMf0b_r*m?e4SIj@6g=J zz5DX&ene=V`)Rwj{{4r2_VtU653EXF`)B#=<&o~!^{;sU<*2;0`XgVwdiIuQ_6N&9 zaj%!&x$ore`gG7TaD%h&t==zf77m!nJEcT*<@?FE=UY9V_4~Hc<=yX2Fj^e@chB(P zzVwp}R_)JpEiHSe6ut_26B1jx(n$N}G;7)WEpb{pKUfzV$WDxPky*^OH{JTYi+nQI zE5W(d;V(7^9Blfeul$o?^0Qj)<$>idX3vV>XF1(k;+L8J!P_D-z6&=VF?TCE@ji4_ z`|@a+xsSYfYa+dR=e(}8-y9_Ad3>Uq=!?E@t`DcnelL~(tJZuy*&%TMv&)agKEH77 zed4%F?#%Lo`ETr)!^+h@%-eKJWWGh~!O-f(O2-$g%(={+CIPX>K2a`w*rGgPcJlE^=)IP{f^5yyDqa-IE#ob z`uTt-=G@MWjkg6O-JUL3yRrYJPpD9GKgWTMb0=?I%y;+2{mYGyCpa+=pUz_!&d@nfZ+hLIJwqvRJeXo6{++A0={AFccRrtS-KURD*Me^fboq4^t+WTdTMzdM3kk@1{Q!o1^%xikLDAuyK?bj%b}l{ z^K?0{TSsVU{w>c^oSSpuxy0g>W=8O-<8kLY2RVvbv*pg41)zeS*kzkyk{O!l-al0=2GDARR)T^FXF8f zr@Gx+WH8mNL@z_SQ}~Z+@7zwK8>X6Suh^!1NS~Yhyn6A^xMxlGe3Xt z>}$ubxSpGIvi$yw_1U@~r@i0T-?~5f-;*-F?>oc(-rL@1x9RMY)#|=;YQC)Ht9}0T zzKZ^@1)CpF39(zZ=Dq)p(pj%QXWVCKOJ7n z1NpYqKKA`_y?<9)e5&&~U2WIyEPm+5)XL+3r)<>yy{^(!=+Z}{S3--~Ww%9@oBL(4 zX`fu|wdB#w-gyJ0G;7LA4RSxa36uilt%;I__6uaNyB=kyK2 z+%{{%(slZyqTg4lPyaUK=Lfl`@0YK!lDu&J=NH%MLGOBsLz^Q?KE7((XtJc>PfTlB zssr!572Iqop~oxsL`C{O@sg@_=vW_XBsw?KVAa9%{oU4@p}igDHp$T~j5{vwelnrl zqw>+U_qQ&s(CX!Iyj}I+tmN$r%Zv5D1z&&6@$h4ZUH6BY!?rJ8I3F&)UMOjIWnwVv z^7AU*Ykp3t&8WRownY8mQe}qRM4M1v`?>5dA1LjOpVt3%v0UAAiKi6{)_a@^|MLCa ze#hz}&lzt^>h)g;`qe-6_p>hfvvA2F-yw`vtsqCUmeDg{q<*)?J_SH@4EKbW_k#5O(niuRV&>*9A( zKVB$4EvSzc=&gi0pF`xf>NJ_bT zW|!PqlRo|G!oMlfo{Eoun93!u{O0;qy7bV>Ek*5aULr?zf6kw-x^;qk-0pg=g}s-r zl!?oo++Fm=t#IYd~HT2Jpa zR~(!;Z`Jy%ec!6Hx=g>XsJgelyk%)1tHbnojXN_g?-* z{rw6h{);D$|JN|5bu61yh zzzcUP7xz8kR=b`EKjvyrv$_{>UG{uY55xN0a^3BLs}66;c7OWg_KdO$t;*?T;YSk> zGr!LDJyceE``UJ^m5Iwk>`wQTm7M>1^JCuC${YRjPN%JG6*Z@i+`J-d8* zx7gu1S|>ln+xbga?`ysy?PC?U zQghEzKL6OiJ}a~5)_l*ub*AS2vD_=a_q==XHv8JI$zK20{ki|;?fr@Wn)&R_83Pu| z@cvYBtWTbwl~mr?l6kE5u&C=S=l1KkfrQe=u{-gSwl*OUoGVy(CdxIA>zV+v`Ti$x)@yV>q zC%>9^gkC`qz#`oZ`2zCT)0 zd`^6^mGTO|A5MK29?bB+`+BvYU$)~@jXZPCS+v}FGApEKH$uJmr&86G6- zt6CYf_tXlT2Vd@;zjDE;*g4em_mTZl#-im?XAd?nx3FHHv_kCCi~Kp}3k7)` z5B?NM)?OFNUl7~6KDuvLPW`L7edqlzh%3FewY1aS6Qt`t#N9JU&V3?>o;Ntax1Pe&^)hx~}gs?U#4@$gQ||Cv>@4 zTY5v}<&N*lcFXsqi`Z1Mep=)|<(s2*shhmkx(V_>_AISCP?)O|Jo$sNR_N^l$=KH2 z`yTuY4%S+n)L7hqPc=R8$IVrb;-8+<`mA~E?h0YK+(+*&v_pH!*+#F!K9vtCH4%L~5z>QcG#^y)8Ot(EqC zd!FZ?yQFMe{(rs|)0V5Z_JnUWny2~NH~;4OD}}3Nrc3k3Fng?Awb{R{Ht$*AzkdX)@0%dBK2*JK;-!Tv=V#WR zw7hM(a#~r*IYC>m(2uJ*b5;CS{W82>mwi8|JG??Pe*dELx9Z%C!seDLY3}*)FZ$E} zD?6`leDr!t4UyyjfpllS(u{*pJZ z8Y|6TcIVE=KL35!cTG9g_Gk5uqT8pc|1Ph&Y`4_;W6Nvae{o_KHD1Y~w(IUCrrO?m zW+`^-*-ZVHkJhZ7-9NW#hH?%ht_VBNtifccHx9Z~8si@X#4ac^PV+ zkL)Gv({7i&FE~@dTvO&_BN-ZgJN5j|m|a|H^6`DkF0T+ibk*iNCrfd&-20gY8(J?u z+L$%X@@v=q-PXUh#Fg6g9aIjpKE7bK)VcD42ZcTt|EF-?k8C-#Y<}Fm`Fz#y-qgIC zxcJc{_Y;fWm^^J@%(EKi=Hgu-UK8#%x`U z=lWxjrVk756_mL7T3#!<$gHgLcZQ!+%{R#nA)35jCeB{`LdCH@Q2raoebaAqJGzXo zER?vy!F^nD@#ia@Q_dydU%u+QtI)f6r|VXHJ19N-tY7&1tv)ylU3g_xCR+yUdM?u?*RDF}=7? zT_|wnfzS}!b>gWXyY(1Kuk5s%?sxaex+;!@?fZXDv!83+!InI~_Mg_=$@6zKdAzia z`?TiXtB;$*rvzSpxi?#P;c3>Z=VjW9nJR9pFUXxUPs+jS^3?W%6uIU19?UrK(`NN6 zp(@t38+|Tv+Gfk2UwJP3LdI0P>KBP!OSqQb=jWNbc(L*a3Df&eoqqh`jVnK&eOh+u z?CnRZ@@{z?FPxPTCV8JF@awZbg>{Rc9@GyNTc~SmH06s)ZeQrcxYEzP-(r88@-kgp zc)W0tztqxsMmxDm)*ojP^1ITzeD0Z$KNGaG^sd@=7(Y+>tWj;N`-eksqS2=Px1-nF zsNa9+;eTymm2l>UuFoOASHBOOw(FE-*p>V_a@p5UPw{(oWu5kiC-@+{bFFId}f@Z!aQFR=$p~ei-E+Tz%z_^1j_=tNx_^ec8skcDeVelc75& z`)$3Y+9u?OF@kmo_gt)^z=$En6=wd*^TI6SZG1 zw6nuZR@g#Ww5&G1)asy!n#x=D53}5ty^=_)wwph_ng4vjo0X6J`q|&knaO3J;q;ne z&iv(TW8RkadDLFZ-Fl^raq%VZQ&wl!_q|lgXRu z&z9et6w~y6|5x+t7e6nZ*K+acjp)0v^1HTPF`uJiAF5?xXsaAP?bWRl`}x$iRoK1$ zRQ5q(@5P|Sr)A!+_OrWu@M%&1+j;+s&fI_S?wMA0#pdKcmVYhvU;gs{@ixKk<@xIj zk?*!l_%7{e)aVzi{_~jrxldR8|8esD-+pQTorlkbkIp~5bBVS3^v#;e%d(z(Y(8C{ zHuF{Ywsqc;H|4{(?pOb~ckAM=nOa_)^WSSpE%kXVGD-c+9E(>KD*Nt9h*uY=rCM4n zx>R1ICimSLLjdU%S*@3zTNw zx>0e%dsm&8oR23zt88B!yk!4s{;WODYgaYBI9I%7L13wT26a$$zFbewmbUJjU$sjWZd72fV#x%;HKe9Sm5!%t_YV z&Eu@r<5yKB%cTNJR<4No7<{zpWAzDmFItj2NEiIwVF-g8^hKFsD8xx>$~e5u#WJ>I^m zYl{T;TrOOraXQslDauM_7iZ6%n?KvU*888mbYkspk6@E?e!I*2-$%B~z3-f-x;*&S zQ<<`P3|HrvY|8C=AOm+KFBU+skD7i@|Dzc z8~)6)_%CbT;+mQ@)w=J7`c+Q`-j@fLN*{NsxcT|@^UA(|t7RJQ1Y9myF1R+iic|WS zviX|_)~}B2Se#$AK6%@6Pv!TG$@WFj{U>#P`_=qZ@Bg62^Je1XKHH1ueYEoLR=CT} zc|H5inbw=0zWwd2%h(LQrDrACI6K|F$FljdHeY-^)I=F>LqaJNG=p zRnKDg>^}edc-_O@Ue0sB%fCL}6nVV4K%3V(?s)dR&*z+9@v7#pxH;#uB~7&Z+f&<@5UPkk4DVZ}Pn&9+OAG z=k;DzUbNOt{UvN$^8P~8sk3_LJ@>z=NM6~e|Hb%;b&T!$ip_0V{&Un;pF7Jq%lcvQ zKD)ksHM7fG8m=tVZeQ1z|F=^5`4fLxx%;UH?=Q_y{dMup^O^fzKdYPOe@BgX$L8zN zo-*N|e@pW|wRkx5)6=Yd#&e5okN?*F`&Z&=PsGZ_h3$=1H%^}RU+w!XH2uW-j3-^#h;fvuDQ!zpz?svG0E2vy!flGx%-eCw1rCPj(ktwmr5)bH%>pDNpT;zjPQr zk^X&t<4x<|ejO5qH|`#6U2J_(%+B3#SHYDUrIQhLiBH5F515r4NpNA+2`$Ljxnk|1 zc{{K2^&DNbN{K(=#gT`vgpcy`bUX;DVC#C}W;*?~K}7LOlWoQCm#?#s(_!6acf6dd z%!+kyeC7R_mb0=X<}8qO>sul8uEOi_hyJM_%i5kg-p-SIab?C|Nq3>LRs5IYc6qeO zeFzBs{o+Wd{wqcHbamTh>-{JvY(_~s(-mgq|NQg3^6|NSS-%e7d%V|5#g8{F=ik4H zHCYlDcdpqX`_b;>v0g3pxQN|-mnB&%l1@Bbb7*PWYCmJI-hcP%_ubXqnlL5s)~e+) zX8fAx18Ut1C-LQdiF?f)bLzRtCy^bN%0GXcJ8o0hQSxeS`o9{tPCxhVXAv@Ah5Bl{ zjZbRME||0Bh*;s3h0Be-mR@iFyf?Y~m-{Yv$Mik(FMYk8dBea`@29ZRrS0DXF59d) zciivp^^#qwvI{JpeGP54=8c(MzV_0_rzU&1@~$~=w!>exgTZCW{T)ws7ykUp^PPz= z=FFxEVbJ9cZzdZ4Cwj)boljA12)QislV((uQ*}-%*|AWEZPuqm0U+(+h zVQ}Ehqbb+BHa|Qv0Dc}lud6_$KInm1Ky zRh8?>m)R$t-+8)z?&M=my>ij37WXkuPsyCIwxUdrIo#Hs>2MSC-cp^z65Pfe?iW{l zKKXks+x^HAx1g2cD}8zkRPQPyi0IF_6v<~@6k^e*?aytg&1md~7hTd3qn z@x6`DL#~O;ta>i2L%Gz6FPVV@j z#(HVG+vm4+H-23B*=@2U?v(FMoeif~J$YViwf5v^TcwR=YeJVK?~V5@bgycO*=at{ zP4nrhI}iT2-@TipwS7uy%=E{TjdIRT@ZT9T+gJA1y1xEdj|F^}KVDoMn(Fq7cUJk# zy=_ltm);Zh<~wY4GwhT6p@q^s7R%jlzn}8+7T>Aof(x`ut?vkPzd8GhwP%&1ET6<& zf2oBoSqF>F-!M!4XQ^4D^mIeREmhvC_lx_=m)L%b_{tr$J2~ae_f^u*yBwo0?9Bg@ zZNGDN5Z}!2e%sju*w&i(y^Qmt^*)UpkT0H#J$y`^z=;cVIrQLW_>`HSVoxSN_k^tl`1t1b#yx(r z%LVH-R+p+>ciUTKvtnAfOz`Ftyn^?(ubR9rK)z4l?8YXYbD_Q0=J(myFz?OUZB>@x z-|v2P&#hz9cMfz~?PgrR?$R#ZQ}-*v)SiCkn!fM#gZKA7-(2}SMOJ;zO4|pS>u2uW zI)5oAziiR1IQHmk_Yb}*sykt<|9bx2oa;s_Q@?C@@qTmP`~Clyow>iK{&DjCTlL4E z-&dcTeLvyl$Mf&=zf=}&Esj09DR1Kow>7ix%bu@%-F@lm{Vxx%-2e5YMs4ePMyppAuI{$n z-mP4MHOX&&|1IHL&s{H9{*Vr9I`g6G--kIj zqBX^}Z?(ro1~kh}pPBcftn~Mrh1YBPc5hqW)$ev(XX-8f$5*WTw&<>Ux^Icw-W#p! z`6O)nLZ&X!ex({0A%2Q^a#qRL+ROLCrUlC!@(d5WKkIatr<*c^TWs5fyL^jRKbH9G zk-X5&bCKB;_a_QGuMEl2R79LJ`^Id(*gPAQqwd|z=f4_a3`qyf^_2K=WrY8P;r&(gP z_3qS9ef#{Rr9SfIE5uov67O7YUlDR) z`?kW)%fF59T=4c;`R1X_Q^8peTut&;e^HpP;9s&lWa=rYr`6NN#tY5NK`hvHeM4d*_#`aX5}X1n*j?vC?K*15-KTXXK0d+IgE@Z}6`zd&=DV+%Hy zx%ghDbqS}hI?HO8=M}G4-dZ~Q^sCbqH(wp!^*vY2^0#H!O}}T4zF&U0M0xrh zd8q>vsy5}nIJ{-vM5dFcOaJ)iz1h=eDj@z^dfS8r$5vPES^jVS?PEV){`#g->JwOA ztUj~;|HPs>KPBw19X9jVG{|y)>G|Y3&+_{&cGc@dk7*UQFYND)zy5v8{~0g$1)XHx zo*tMTZ1b9T&VyyaA6D)N{`1LyZujSh8};%_&ivr)n&tkt)=O{6{^H+J?w{`+TO*p7 zSz`QrUw{6qUr~K|cQ=1HX}qNK$HxDta_hhb6T_i zrO74p&ohhLrxa*EeZ_p<>($x&RpqxQy?S@zVcF%l*RxBv-E^IM)~m|K-dcU>wa(`! zR-eW_kAJ;q;S=OTZ{_tVryKGhASKlv-)oo7a+J30a^y!82Kl{3l z*R5K1>7u`rJuL!x2s=ai}1hy zKc@G!aqU0z+8@*QT|7M7r$+mJ=A&Ql*7ns;`eza*dnUiOMCzBY?5@67$rk)oZ=&A* zs9)|qKVVXxmCUn0R;MR_+ax#ruIBUoA9*wMR=>MF@BFrP|HDA#&kU=lYu;GTt)IbS zxpu$rx<5XR_l2)+kcoJ*%5#r%EqlAsnH>MA%e$VZ?_JK-_598KqV{=y7wx%IpA~Ml z`(^t^*z{g9Quoj5FWAxC*QVY3xTsxf@#_n1vslhsPrj3} z!q4hacblPG&X136i!*w{m0zxu`xP7L`SFO%>x$$xyIPpT8x)0>$**|3>pNe;%TG(q z*%NidQsiV0%zOE+#Dcm0RBu~XYw=9Ki7VaS$j`j^pltu^TgOt(SJnBy`tfloSK^r! zbMGAQ@Zh_{f8}lCoFMz@YBKJn&t4X-eB2@1uC`5X)}6k+?P*6m+k?v5qo%q<_g4Lj zuefM^{>a4kUzc|-x<6I-oyLTPAzSwSJ;2!c^VbzyIg6=o7vk%W8SY=DvZ~v{Git}< z-#6~JTV@;kU-PtDki4u*u<6dcjV~T6*D(D||Hx-9>;3fB3(Fs zVRV}J)^FYvTdhV@rq@e^OMeO4O?96lc+33i9tZw=<)s-JBJ-2I>P zx7jt%?oC+xc-i%R1szWZSAM5qS87SqQWKxQAAQ~x%=|Q^jiu&#vd!I- zPf9DjJ^htW6-qCbFP+)fyo9SXZe>`YG+TyW?0Vs{<$C4cD(h>lAFlMA+4EG^z_ zd`n&D=KOX0)^MLU`4tdea8h||-t`|h`L`G@mFw-1KD)aoXLV7GYRn4z{=Crk#fR=> za>h#E3NPKGm1lM9)W7g2-s%b4{%WqP5w5>!ztsC`*TgOIyHt%!d6v#z=l}KBzbBQl zUHm_JO6}+K7azH1`rKdr)u8ab(5tz6_kaAp|LuMLr@dFrXMa~eJIDC>8t>;G zuRh#=_|H1M(5d**SL?cJi;_D(QbNr0-v4<0N^R+?-p}*De6F_#os8s>qIHLT_rDhj z$zP(%=il+lXIhawBjm)xI!Q;h>&g2*RG4bqFgd%(Wxv@HPfr&+8-M8bn1OHsDtFzL1{?Dd0_P(>f-KXVJ`#-JTD3p3dW2qKP--IQG z(&r@q{kr+N$R^OnMC4^)SdKbx@*Q8kLWg8)Ws8F2^SVskx-WXpV6&HsoOxwRi_HPg zB5~8?2evXf0Z$vvW9Lno(!6T!>6VuE0D=1!`+6!JulHPfT)h18Ws7&mIOIA{t(d6w zCNE88{eIBcKV?TY_6N$Q6GHSe6MQ=Xqu_nC9@c8JjTnL8gn z^md)Q_Om5Z;OlvzkN!N~eCv3wUVD$*`-e9UAN@6NAMc~%y`PRe56hA>+vU5cjQ{qj zuae*Go)u1)U6U)8$-ZGlVPxpZ=m)`jvhU6e5_&ezPwMa7WhL`<=Oy0Ts5kBGlVkSn z>b%XnW;XUQnA%vq(c~<=qITP^((S6%I$@KgKVSZ+mDx9A<$}plB@*v<-3Ytt?Ck&7 z;?&mO6V|t6e%m=dk@dflwc6LWPjk-w$`$LkS!dY^uCZ||fB2{B$GJzAKcmtK0guM&+27Sz%gGw$-~Yi?|$Z_C)al=rr3Os zj@y0TuR4b7SJH&qPZ>rR_Fg}Db7>@qyHuNAa?&wAbHfp7mD2|G5227Mqi=(h z7O-}LNT>RnnR(ZwqS-xGI_U;1UcSZbREfEdK;5%|SwWq<6Xuxx%6Pr0X2pEdr#kbF zug~=VdHOk1|1lf)=#?$?SIV}YY5Fd6S7y76{+I4PrM$~c7cYN&dWYG{w)gg`pVISO z)B|p~O}pv0FY>p=dBx#_^9=HCA3(swEM&gI_33rpsztvdR9d&{;f4qM!6 zj#!lNE#Gc=d{VilctPfb^XE>O_wCNxY`b&8#RGGG*X@f8E%+7M+xtAbZDCDM?UUy- zjH~7aZa%{L)8VS5tjqD0(^T$Q-8bA8p+0~0Pm>C5msR}M?N`lY(p#QS^SAN7xA1&$ z@r8}Sv;It3pA_=C;_>B|7qm6o(_>q1oP0d@{Tu01i*2uF2u-_E@zF=N^~aUEq}JJd zM@#gc&Umpqe$w%sTh0s1GG9GYlK1GhyPa@3*J;_Wdq4h@x$L}Hd{2)?c#xj#dDYY@ zVIq7-RZnTgSy|7&lECC-0hUXT3C0efp)1AK(3{s(kE^XVjH|Tb!;`^e9(Wb9IUs-m} zPU6*tXLoX^2YkBmqo7%ym8Wd4@uy>k1=maO?A&teg5~Qzm7aoW)y7)Sgp^|+%~}xj z@@~5Fyr(_M|6`{vTjkH*@hI&6=NrELTmidwa7`4j2)kHrbUxPp)!rikRYhw|Iu^+< z`Is1Ux>xJZbiPEX?upm#x%OAAICN=xt@P8!i?RYvesBJLrmyV8-gSoB?>FB5>bui9 z{l}dXf;Y;Sm?}3X+g`j^qqO{(@X>P7x#}eI zZEaJ6XL;GwvCZk^W?LI*`D(?c-|r@@GyMK>j!o9|&xPOXLu!v*UgtLd+@@-UhX#Lm z=C>Eyl^8Fx-uO_UXZQC%|MpL^*3UF)DBkV$QnB~{f%CK6>sZ#FwtV^gg>&3H=T6K#6@2pcb>sc^d0RiMv`$(6{%!aT&*#_g z^%U#nrS~2Xo;SJg<*#|W#r^o-*ry9uetX6ERp8X0Tc#Rkc2#yfZu_(EW$UM9PtOM( zf6p#g%J*!~)$|7Q#a|n$-DHB>GFhJU$na|R|Ji(J;`G`8+1|jFGgrU3csY{mi~OUw>u2ZaKNL`E*fv zmv(v8?75Na&-({lh&8?ye6xPqYTL!4RnPXaDqBvz{N?8XDZWLG*4Lk}kqWi{%XJd^}f<$ zvCLwf)qh_oRZb~>WnA-_S9gxE=V8(F%W59|+_|!$a@WtUe+iEr&5w(+@67ts`MkiR z_xbL7|G!UszUrst{ttEMo>lfeoqcVyirW72b81(3+2vn3Z<+Zm_H%iR)cXr*R+5wZ zpLxapUcP_oGm-aJ!o_daX{>+y|44P~({-Eoukimkef2cHZ&TWL9bBk=JJ;`% zuH0YxedmSKs|)uyR~}t)XhBru{jlTGCil1Rn-k>o`fK60_vb3}s@npCW+(8k_R7u; zp8q>6dUCTOe@Ktx|nwLMmng0r|kab^WzT)lMy?r&;ws%X#`jwP? zy?5@n%xOW7d$-SCdcUK*_S65f5r5w=`QLF^e{NOqzQY+`-UMmO9lhZmS*!e}&*3gd zOPK$|2Tv_~_X%FS{b7lb(W$u}XIfu4?TvjMa=zkm^!@X15|3{w);ialE-$R-xx;2& zwT;HFt2IZX{AEI}ZkEv8x!qsC-Cg?DzV7_o`HO62n||r^r`ak?ThBPZ>*BIQ3^VTh zY`3#E`RAK?F>t6&COQta&O0)*;m|{MHQBM#GDu4Y%>$pDm5w9 z>X}t$5+zWuNG|r+>IeQ`V_ffPxV5c3IN@(tYr~9X&CN4>OJnO_8^7E6b#Cf&qeeIW zr4FVN;SU&U!*<*aEcztdbIm{Ylgn|xO8&Gqso7IbU07yS7uI+CRs7DE6AIULEe+US z6ROU6tmAivsM?{or}PVZSD3`Qt;%#-yt-|R;p@%{sTUW6>(<>VzgpI(IDe({`Q5eC zZ|YdDE4GxDm#TR+=kt>M+3Jgf<9@zx`uS+$+!xm$b3FN5z9QetE`0GtwnbSJuPE}D zJEU)Mn|t@uR5x#P$(V`Z&yDLITlj|_U4GS`>)czd<-*rCWz0Kw?CL71pTXxA%{LL8 z_R#U+`c<+k%~k$qE>nqlASw0tr(}}bi~=RQ3w9-?$0M4LeYz!gXKVW|)Ay_XNABsn zHE~sy|B^?Gyic$6nH6rgq$v4uPEg*9J#Jp|-Hupp74^ZopC>Hx>6Rxu!tbp& z$k-qJYnM*J-?Q5td$nGkbx(*hIr~fCZ10{O?V|Hn_vGLFn7r}sPZzyYac3TzS6gP^ z_`7DgPL1vGqtaFa#3e^ z_U_JOCaJ^kH}1FQ)v)_uEz70V9%}5mi|M{ke%1U}l_yW`lKpg{B{e6PTf|>9f4e)`cjqptnHKL) zd6gE-`})Xo=h2m?1Nj_R|MQr=Sl0Sn+47lZ*~?n4_q$fE)tYZOBlPq^c2{?kYmu#w zZH`YVoYFhT>fYl*39DM)gWBG6HPd$&CGT16tZ_Rm%5U?gSGGI#iaeLpwBFCVDR=Gs zsX6-)&ZT>8JXn=l)Ig zq*q&ZtZ;j5?0ecuzqmq%@5-Fdh7Z@g`gtl=E^+yVWs^O&Ue+;Q%Cpn={T9YQuOcq) z5#g|2;?mhkUTE_d9{Flv2>p$J_{~Y&wNwU?d_Q2m?beFEV_`ECr zt^fAih}6JOf7Z?CjJ7*(7;^l>c00|t&+;w0tSyS7mwr?HpZ2G8OUTp5W=}KSr+X=% zdp)Un-nDCU+Mk!lPyhDi@1r+sYcAcG|LfvM zfvK~)ve#Zt@4xl(LrChHPd{({40ih}H1+=dXYHqp*0C{~-=5E;?e*;M!F%`Se?9+w z%I7E6cb~qwP+s$@VAZ~Ruf;8w@2-m6-5-AH+Y#4urt6QNp7Z(39QOAgs^{K+a^U`% zoB!{A(J%k8R4GV*eu6*<|9_FAPfNeFEb`NOvP(`qyld92%WZwzOKj$@4Av@P(x^GN z?Phg;GoRLR_sD&559S$U9BR3IR9|M@{h3nJmY3iC_{7@z-usOm7nN;~ub6oLxk*fk z-?p0hp0X2PO_)<3vS_d0UlpFi_f~cty7xHVV(YsV`L@YC;!})L>$GzA8Ty5)-C5Cj ze`|K&o|O~3*z~U~@0ov0^UZYG!~?bEzgKBRx*pDV+nf>?f1cH)l1GoI*N_*b&X_G-)ORdu)b7VoS1 zXY0vbJbmUfj*GtD{O2z5a8pa{1%weA8ED zZfPn1)&BFd^53?}0kUkBJgN^AzDZnMVUV)hYJ1_C{8dM89iLP*|6rZ9%K2i=67jhy zn^$EO<$atH5xR8w-Lu;Z_sp$0Kd0`+n_K5xF4Wqdd-b*5`uDblHCp%F{z^Sznx1%c z>Yv{8ALVwk$gMr@wEA$XMQF_P*o~nR0#_V%0&+bp}BCGZ<_-th>CG#UZmgRBll3y$pM_-y) z%-z32yZ^RbW%kM6`Kx>9?H0a#bzi({XjF0Eq-7G!RifLn6O1RElR5X(?_7b-%L}Ev zudKYLBy`;p{9S!%`RkjNA_l)EZ<+bU=haui8%DdQl(jwZ`23u0uZ*pHu6f73-?yd8 zv%Kdv=De%)wVS+5{z)+JyxRJN8kwr(BAfC;i>@@=_uso8P330z)OhqAQ%Y^d#K5xW zH7!S;RnHaG44rBg!TkJ@?$^0iey7xqzT9fLYW?%h&tJ3OmEC(LS$+3=>(^K7|5=~v z+P2C6RAo`$M~mNSchB!u^t-n6_|KLU>t6R4!c6QIOzsxjjT3!@@|HGFsai6XuYbAP zy7$}Kg8S}Ix}Q0jG5_Qil}YELWzGNYnf-iL_}r*pG2vAW%0DaYsu#C=Kd4=?X#An!o|L-zRTYbDM8R5QY&t7&HU)R>j%aeBopQ`s>d8h2uM88<|-z5Tq za^FhjSne4vliODLpr_AQZuzSX2me;hOq%5NsdIB+=<-Dict7&1%)!dH=jTfIiS0bhUwixQdyTcnKdSLfTkB_kTsiB?wRz#mVZEXM z(!16i+Sup#u;f<3pW}938@GKaeymx2{^yzhL^ge&uNz3xzYSaI zp^e)sA1n!e#~xUJ>0j9k*00s;+0#}UwvDVUaqt>^YUGRb%|R2!Mm;=UTUSD{5G9$ z{vnQzw2v!pCstU=CO-InXF~IwyM<+5hTV_#Dl|Ra?)E>F*5!X`|9fJQ^!N8G?U-X2 z;vVEata-O@k=>K)8@~ zA7MAQe$~~hk8e!8mv6LVp8rFoe&v-}mlC(U|5*L$OuCq_)7mc&{ubPOxc74WUa^NV z+pbRxeU$w4;4Ry(_c8JdziBThuDz)^XQJ{$Kd)7%3N3&C|1-<}{KUC)mhbMnnEy`d z+Og)`;%{HKIIurbT`F$2YQbOaJ6gFCoX-TObyeT(WBl2?&4RBh^XltYC+ADuow@04 zambIDxhji)uKODL+3$D#x5$r8b(?uh*oTy zRY~aDf<-dno98Zl)Dr(Nv^`tu%~Z87>!sI!3`*PUKd*S%9R26j+qZwItZM(ga9*}B zY%M@^_3|x$`I^;Voyz~Z=WA!hr{$L77msmjue|?t^7qR5k0-DF?;G^?<+kTt+*kjm zd0W@t{%7C%e(#y>g?8qG8?S75zi#J_JO|mErT?No{gGXBe_{B(2cMQdz83fHuKdR| z?>EO^&xyZsGxWKa)y1kg%O=kgUbk7_WBcD_rmtfh`A;`*`hO49MhewU+Bwg^=J;%z zvX8Y~*|mRDJfEJu-~a5o(&DXu{BB(PEz0=ZZ$-W{)4|gx9~Qdu6;ArQ^UlnVoNkLx z^To2HamTK`$?q2Y$RhMvV`b9SLU|^}M^?8k6o}nnRV>IgGpdT2ch2wsKR5Ngi!0dr z0*;qHIlE$CzQKzdr8`n=wb>VIZk5RjlBt``?Du=$lJrQ^s&k7zE$U-?Vi)@8>y$PR zm$(;l{{s#B7XIZv0+5DT|qiEgy>dBeYf^~k?T&O)7e(`45ZoXxa zq5I{cBp<)rE#tX6<78q`#e)R3+AC!~kF6K|@Ot%7cG8ohi|+*Xt+=A~sqoI}^v?kq z(a)8hu`OP4Q!GRH%klE9bKbfx_uAgGbGDVR`)>KAn@?D-zZCP&@7;o;Bgz-9bS`;T zTNl1-!JVr=7fmrQTM~J0YRr{Y!lAuawbd8znY&H#{7#Ru^ebAvu}-|_?Ao$U$+EiN z&AhQ-+M8!J&lWl#ul(XQ|3GT!+nx5OjvwBtHqE{ErNHY?i~B>n%xynyzW#CbiQpeg%{Gvv=m-N!T`F}lDGQVQCnZtSKk#j|* zyid{JCyoD(JfC`A-`pfi^R7(j)952x{@oF3*tBZrOKacS(*~ zy>`A>b;mgk^84jw&PM*eaemdT$HBKXHL@+P-rh9*%D%62o!ac4{&;>z>G(Td{}oS< z&ntL)_+Rt$iTaNuLO*$LS^PbbnJw#%6_b_x+;3jDu6>u5K0k48am?%YGpAea>UePb zvDN(V)jeCzi~e2fRPtQr+;+Ez85gc>2zJuC_fq6juBa7z?df}4cAYa}U2iuz_}$K$ zl(}=C%$pd#ee=p>?)ec*?@rWzz9(z%sfk<8O!yV>zhnQCw3h}~p4eRfJ-;Hbrle2x z%t^mPi{9jXdN}hMXXmUfbI*Uw+4qMrKf_=7cZpAE^{Ka=s;M=YziH1zx)1Q@J~VJ#69iw z4@*qyuD#l_=GO)Dcc0vzM;?#ny{WcO{eI}ryC07RyZu^oa=UEaz3Q9KUnac2{de-_ z%ccA64<0m`RrdMk_Vmba(WmomJytuMGJ7UzShi;8W%>V-B^CAO+VkF&_Dnimo?Cl3 z)_r~cmKv)s%N@QvFSJkey;FRysyhFV%jeR!|7~^utzTBZ@o;|&xA9u{35`3y1gp!c zzZce=x@^+>y#fxkKV|sV+T3`$_wM%lt1JQ-8z#ThGT*f%t6KEEVa$YmZ;Ps`%MRH( z9Xzqv#(2|&b6dTy%t*Oxa(uk&l-9CSB2=d3?v%h-z zsrORl;};B<_MHf{`z2fJn0fj8dmn@8c9OEpY`%+Eo#)rl5OmylYMuYC=4-(g53dwj zWLrMj5s_SZw{=aA?fV!;89kXxijE)MljT_-seWDd@xtxz$($=^d^;^wQ$9UC_lLn@ z>xp}&=`60}PGx@gbI<7)6IcDT&~bY@an@(e*=~pb@WvGS#Inws)PGUrv!wf@qA9Zy zZmeIu(my>UC~ws_saAL4!30e9`J;@9UNAevILl(y#8j@BjRF=7coM zM^*1WNzW@27wJgT!+^*WKM`mfe>|f*m#O?a$b-`x&C-*)( zekXTw`Krqaw_+P!i7d&U^CAB66cb6+C42#IC%fH!SaH4I^5(q4schd2=a#wTB&2TG ze}Y?T;pHm3&q-gOEZ4Ktn(~L$&$=}0ZfPaUS{}K|GsRyb&g4IE`CPo1{h{tb)1U3~ z&sWZWWpJjKbC-Yg+ylS(KBb;|f2TacRW7CY$IrG;_D9beR?6u7sPvS*@ngZ}sD~G3 zdY`)BYxOQe)y~5G&dkT3xL#__4L-8h%I6|;j@H3HftGDW73=oQ&$Z-B{Pbn9k?ir3 zZLf9+om)D6M{xbL%M7osFYbBx&BK=OZ}HvM&f?j5fpYn`B==-J_jz~beEHt>UdJ7( zmn*+*O5{?P4skpgpuD_%3HK`X85A%hU^nQ-w^}6Fb-<`kovRt+zgu_zF@_5O=ihIwCV?v$p zC4U$Au9&~{ z*}T@pcB18-k1u`+O>c3oS6e<)G}Lq79yu@DV%fWu2Mr^#Yo;;#o4xXT*s|?k+}DRI z&a<>iX9luE?xg>)n6%%5#m?eGx}DyB(b?b*xkP=-RBQ zi(`Z@Jd{e9r%r{x~M0nlKFMX5p z&Xql0xqnK!s^3g^#lYCdPx$k5Yfn4Jm00B|#A_a1HudeT|8DiQuL@R`bscedl^XTz z{jJ}{_de$?cmHN-o!hc)>zmi}HLWv0v~)-OGUiL0TUuLur|f5S)Y&@g_Z6${6Vs$u zvRfRp-m$CX+nUKA{%`xDU-l#Q6o(bh`%X5{tNQz({Mqk{xt81o7h5`JuYMO5 zShHI6ZuK4?VX437y*GkylzK6?+Mk@U_u9TgJK2tFe6LpXD>)Qnsx6wAF80FPFXvnK zyQ+1)ZzD~9PJbx)-F!u{pRa}4%O`dFYTa96wEX5wyL#2~*1c~6)i<+)g}nE^W%zvQ z=Cs2FT}QvZT&J4P{HP(h(2D#*6Os){8byaALzaRvW5BFr3d9| z<}Z>eeN5+BcQVeOURJZ>;iD&JCLdnySUpj0;-rT7l@BKUinW#5y>Hd3`~JK(({iTn z=zbg=CYJo(LTPY*;DfZ)yhvAD?@jN^J(`;VG z-q)SyRtFvr?6p``oU{Ct(S|r@-nwM>(A+RitNK@Rf#p`JTYb(Z@=Xd3wBbFIWf5O% zU%2=Wv%6NEQuw>bt4s4{Y1E!Ko};+yOu2LYx$lvo`{lhpEatwx-~L+E+iUexihI)Uu+~`3`YAn|Ys>r&l_$lesusD6%wTND6bYf-y9UFriqsZEK`E>V^TvoG;mr_{~+b!djsvETxm z`Sr{CdFObvK33SC^Wev&#HHDJ^Iw;gSxuYTUhrpXnw8#yOTt@ft>(u(68Nvz{Nc(^ zmD_KQ&o;4Jd)@DHt>$&1N4CeF7e0CUan5#&r1ak7jpgCK=8O8%Wxl@KAL`-G61Ag0 z@@-w{&a`QFq6!~Zx@9EVrC*j@v-shx`QN>ik8Sz3y>y3H<>hTl_E_b7@^CJ_^M`Mb zhTWx&&Qj%83$9pfO>W()RDUVx9B1zG+d6M*I!hny%?t8Z&-mte`^3J?oiQuJZQh@m z-5|Wf@A>RY_e4{-_{rwCeqSYQ-{8KzM@{}^2JiR#AJv|h&kEV$;O)71my+MF%XW+N ztKz)m6y_T+%N-Rxrlza;GxF&Vm$y;w$B*BeWVL;h?D=;8=~^@6E91i5&F4>fTw)WI zxqR09c|p5W{;03foV-8R=9JaHDIx1FxJ@yY+w@5PmPhUDwO_TKey_cK+0OgH5*y#2 zYks+8ajKU7kv!HnZU53KAOG>(|1-C4-_@VX)9v&;d*6$kypuQe_cXt`ul8QsURnI? zi20Pod}|-S5%{n9a@(nTGxLAjFYmwca5~FG;hySc?Hn85xy}FXvBtc$rSI^WT2ZBI zVfTI;b}shaG<~<*g8RM`@=xv35_^+-D3G6L-K|3(UkE1VR8Mh##(2wo`@wR@Qytzu zn_mmw53ZYkCe6?M{x`MWbf28*8KK)BPvG-^tNr2ej~{hQUTOKJ%Zf_Q`hA~e<>QdK zZ8z;r-&)38KE;3fW3S_?O*6V)S@vbR1Z+(`v02ONkwfOIEsY=FtrERiD!$nAc<{7W zCvUhpO8gPHy4*cK>&f)<{}e0pR$i~3BPgZOZucTcsn9U1&F~^`-5cqGg@G)4_Nz}f z)VOWQwAxR3@wJC;A!-G7@y~*KH2;-Y-n-gX7?^BxMqT*>qh66G|MDqEB^Ie~PPnlA zqmZBAm;O1k7aR81&&~dIulACY+octXceC?$+?%nDJ=FV;$CNAi#cnolU7pC<*%!sA zo9{l)J7Hefp5w0z7v-ccuyL=ie->J-^nR~ptd(-1(x$nS*3|Ny(MeBwn=Ekg`5Es$ zc5{k?RJ~`(xJremS6Y2E@lrd^U;6Q%seJvGhgk}lOn(FV_8j;7z5n@!WX{jM=l+ID z^Zt1K{<`zhcX!r(nzzYzi>X)T_1$d^$yTc`ah6<*cAa(carD=Fdv!bKElxN7RCe)D z@cU&;clOs_RnBl^4tKe-w$k*?%x~U{e@sa4iQIoI_b>Ckmun<<+nj06y7P>Q|2UtY z;qjlH|E!)*?$@+kvDo!z`6bI!T6h0z9lMgXzrZKc?z&-sMd18P?@v0hC*=;^vsC zK?^=-Se+}HHs$L3)Kv!Eb*mOV)mxu!V(Gm{#qA<*`Q0}c?*(ShDSY!x?*Ga^m4B~I zj=1vDJe#wp@vc@^x9!8wqQ!Gteol&)X!e^F9_YO+Y(eQ9p`Cm-e3H^zJde-&bX0YJ z+JR+OLb9RfVpn)-tYt8KUNQgu9`?}C%YDylZpm6jojz%Z1O68F85 zF@F30_Qt7SKiQmKEp{Qd=0wdY{fXOGi+fgTzj`YZE_>&G#Rj|gKcX+4nXo6n?_kM< zG?hhGtfKrcC%kz!@zT>Z#;^F_s`$)W-+kuvH{D;yAuZ7>PLeJit{O0e2UunwjyYHpuzUOh|p&11$Z0vQH?Nxpp9e?io`*ZWASf}r; zJwMlMa`GeJZ%<`5zl*%jUVm;{$NS8;%a%TyzhpDt_4QxAb7p^PTD$ZQtBuyiWlz-R zU75Jzv6tuiU7V9IPs<95_4>Ek=+xSRdxz#1{LR&yQ{#943D4izpX#Siy7%8CUVC13 z-PLtgH#;^aA8Kp)Zgy|Uhy8|syJhPwB7acO+T%Tk!fOm z{11y<=6Z!2K051de7@SgbkWj9O9EaMInCd!`|L>HVPmUF_k$S^e>Pt>uOdBqU;Xr* z#%X@OoA)LeuKLus@A#t|Ru|Ij?`3!=8|*R+_@l6YR`AX@HieGC*H_4t-#vZjzA2~S zq}|7=wyJ)2o6NiF(Kokb+r1wo=jNU8otk{ZSj)TMj?S*-T@!XUg&a5>%g-*ryI0HN z?~M&pzpOZ+7sQwQ|JDr0`4MuPSL@$T_C4!2J8mLh|LqW879z%dd2lU3{i-fnT$|_7P9&zn?Pm zPk8t&*;p8TN$KOsn&QXCuhrkEpH*+)n|@yP;=j4e3I%(V2jH7q2 zFK>GKVE24w!R*_o3QUr1-&U5~6JBe2*>~~r3Z`>A`x9$|V+yZ4Uvuj_*SSXdCHD;e(9Jv3-TAOCK(wEc!Jo7XDjWxi-tD_~Kl< z;8V_vUQFy<@pQR_{6n{z_zP#GdM-&nQGB&#z0&y^pH6C=>+|P+mvd&`cVm_F3o47x z1)5fxKRN$cWX{$;*1dA=3h#b2KVI*3<^94P>UmSeo*S~CnEoZ=d8G4)$fnPtw(Vwm zD_PIKd*IMj{wPz*_l#Ed>lxR77qjthh5`AB#BsqD^tn#eG%vHE&|XcKdzXwj#XOvOn5&{|mosQpKDvq-4JG z^`5zWZ{@~0#m&b0%4cJiJ?MSK_=fx0VfSC}bqn1R-`u@Wu-P1}+SuEZQZ z8pR~`;Nz1dt8k8qhff6Veq8=2f#ci{zpw01ZPn-Wx&D81%jZtk?o+|L&x%&uU;E>W zhSyXBuIRqK+t$DTe{9S3Op(~gs~%s@?bh0_@BjIEneEkW>4t~&3MUwOZoPA)eOj>Q z{7btYTC;T@D&)?I{cU-?q(^xAPD}guVpoc?O5~oFmhag2szhMI7BuRPA$HOrOG zxyUXnzNLQ6yG8mxuGp1)dGX~<)z>w`;p+Rpw(vUK-OXpVCHmXS{kx+4ZdpEk^8L!y zTb`Szet*-QpZPj^?o)%bbNkZoRVBH+p5yL&|7X^U0W$M1OjZ-9d`hGex>2uEZ?C&xZT8Bi(bR%d zah3n=X!q(vd!8Tp^R6VMRZY~EBi_%>=kL!eGj;YS|9Ds8_4MoP0%pDq${G*tBi-C? zhlV~~Xm!han-RBr?Ym!sK>?vsFWasEx%Em#l<;jkZOxFqIni9&If7Zf032_t@l13pZ6oi zx$}JTE>;`4*oT6N70UySvi1ZlcMxA%7?kn$m)+8h^B%txzx^=I{Oxs%khG52zgILm z&t2eQ)ZVCHy+)$f;&pkf^`fBPEi1fRdD>oT=B`S#;l01glb++ZPH~S7BziD`+@p|F?Rkyx>J-h1d z3QxW6#X{cq7}ZzXT5vyKclh(VdH>J23hof*E&r;i?ZTqa$12MlQFkmq?%KLO%?)oJ z|2lJc;Vb^*TC&#rkHzj^zWSg{`6a#&^G)_n+vJztQ5GnAIYBt*S^V+8LEaZErUbs* z65f1Yzq#5?dQR-glkY$M{I7Y5>1FqgyN?Y$m)|(Q&SY)vuM>fDZuuX*SjS&gZS?O< zq0H7*#|zgzHh)?>V_8$&t$H&PL_HcYNxp0%Jb^Q z=8mLCQ)@!ZZC=!bM_tvhddfZBCipDp-6Ruv*`uoOjbC}sZGB$6T=IZN-15)<&m|03 zepqQN)2B9d@oE+G`~`pfV;fn&x$b0tD8sJj<#o9C#I7p_es=NJ_V*L*R&7bhn_hiV zIz+B!iQL_q;2^obS3WL%6Kr{`+OqI^(x*KoUd_)}9Jc$tD{1esy7^z+B5oer*~qA= zdS|6@*8a^)d#b#AFPz@xbGh#MiU8&v=4vudXYJ>I&&nyE^;)(4n)f`PaEVea(`$E1 zPkCH__OmQ1vR_2WHan%=i}lOWS8vocSvQ9lp1i96!BcrppWOS9&%QDDrce65?)Zwu zU8?imcf7iNoI}Sob;hL61zQfDuzKFRT-f*Jf<<>FpK2963S5|4@wsS$?H=`7OEwYy z#V6iJ@SXQty!h~hqI0HlcLmBX6@GGC|No5je2u-LC(EU4mLJ|YFFE{rMBl92o;&P* z+f6LLZ|Z&gwRAn>x=Rz+srubnzHp+h$~*6SD#y?43Vl?y_Wt6FtL{WL-M^94#Ia^o zab3AV$k$tMbgrkFZVIShE$eB&xo)lg;w#gheEWEzlBHd>BJz>-+&P+!S3l0=ESJl= zBK2$Lq=?(AE82}#-p#b^^}75?>Sz1&Up`M23YHeEFip5(z2Dzri_C+DWTTh5&len8 zsd?P&rQ64zUl)$++|FI)xvTQF*4>Mh-_Jd*IhT5BZ;46uy3d_`OD`W;>3{Zz_YS`w zR+*v4H%C6dkv*?({kNKPzo(RzntZ#K#vfjOCGnL*{!9Nq7VgU@zpbBs@59gS@BeS( z_1Cg)RK8x_sUI6(DI2PJyz0in;0(*!_|i*frT?6)4_an0zexMgjM;J%c3-xgl>eo8 ztN!iU_jTz`_502?Y_EJ_b#uQhXkoy-G-r`_7Zz@Qdgix!TldLTXZ9w0RlJ*=peuT1 z!bkHJ{!g7+H}7lbdb9uHr|P%i7Zp#PbY~A$Kk;?@x2v%d=_&X3-VWMfV8*wUdvk8n z>|5IdZ=YQLo!#dAm5b3!9~-@7xw7m3gehBJ)pq~=+s5@X^8f71{p^Od!A$~SKXOV<9Yx5KD||o5BBffRhIwk zSmjhVzd6q&E!c(oy?x>)^$W_a;;U9sNw=6PXL@Ynxe3s9POmjCfQrarbVu-)uHl>-^%LA5*&Ky1Z5U z(7yKYmp@|U4w)?Q4v5|N#7H_|X)y2m2O42pgX>@KS^RPSu|H2V<=zKf>Q3zQ+R~hw zX1~t zUv+9_^ZA{QS0(&!s!Nq#zF1T7_wvH8Z)Wa(q~IQ%=MrkyvTyDu&JC9hmu_ix{xnB< z^~CvK9_>&+eZ=^{i^;{Jho$7RnRsrs_YyhDsO7lL>B`dZx&UH<7y?D{FU z?Oyv>H639uJoxE_Wb*92a&PN7|9J5m{0pvI@om!Iz{4AZSa;5UbVF7~Hox?GyL7R^ zyUZKuzFgMX-^;J=DbC5N4|;8JTk%~;c4)dr)uwqX&lQ|gS=()+xY#QE+VVZ~_H0@o zv0_!F{oPqb?`M0=mP}st{e+}WsCw+GeUpr;etW-5ed)p0)kZae$w@5t zPnDnEQJhz}Zv~HXehII6@VY7f>kdA@_54nZ%;tg^>sk59Pc8dI{SI0lEBny9O0>{& z{#k$jDa+1BUw>4wT=Bu8BPz>ERsV>|POp7ZewE#*{nFNRoty3E)_dA}8E11(pYA^Y zLub(eSF3M!q3-sgVsGAm5x<1`<3t2 zo+?~h@%F*heRn^0P6^EBx*p}bSY{PPL_svkX! z&W?ROMLYfd{0hrY$}1Sh%AM2reg1(> zaQME*YyaP0rkI-{zb}|AQ}5}G=%Cn;mrY-ny|F6%^Y2g2+rOPbiyu$_P@1b1Q!5>3 z_w;P}5335l?91D&0^jAY{9AAT*IlM=Z-ZsOf6TMSe>aZhJ7v{Qirug29h#E;KHF*WE34nu=3?h;@88TXUFEy- z`GLMW=gW13ehZmCw|w?W;LRi}-j`33->~&})`t7sdlkNX{U`<{6y<;vXMY*F)aG>H{X_$cLz{)Kt~{b)7p8A{ZOMn#?`(rZ9%%VqeDPLrw!N#fK0nuG zGyla}^Hz4Pck?&x$+q2@a@uz8l2nW2w7+7<=bh8)`M$o;{+!jU=?~8Q;5oiww%zJ? zl{am(3wVs`J-6I1e*RRU{=)AY1u~1bnLbzbb2RXal=r>A?Qa=p zZu3d{kLvU*71MpkIa>d(q8tIOx}8pHII*7K&i5!J0!pK-QCH3 z4qu*seo%Y)*_yj)daHLYwfXeuz44r7Z5Qt7>@A*@`!M5Hw9FOz$!zCkBcqZpvt;n6 zmbAQUKiB56%!q006Teff`{RpJ-sqHTWCb<LB?yj&l)ZV^iMfv6IRKf z-t#EdH-B!}glEbZI{SP*-`XK)p?OZ#AWdNInj?*N&OvtbXWLCX_mJG>z@^<~jlh0*#cuED# zTwD2&UN>aUd-Q?L?6|Au)vvZ!v2}(w#1yTNKhBD2 zQlD~9rB8jNpSrnUQsHu4(ryROeg0SHoEB`Eq&zp>zxDIM&G**Z&Hs}u(*LzY&iu=l zX}sL-s)hzn;;$`_5w8!wYaPUSaq+IyMgFm~Gcu>{X*o81nwOnt`|Bp96@+hyABK9XWT7U zywYIL$B9P_Z=J1swPS_w_S;U=&Yj&}mpRwNGkv9a$lQ|hSFHE$-#OAW_7bM>3_C=C3RX?G_UWr+P&>x{>4}S>p}b5R=>KjKu`Q?;o?Fw zNqN)gM{_3~j!yX-TGgYje0|RptNuOfQr7R2o;*KtoAKL>`J3N;-frzE+OD}J*zm#k zJH>ZhH){Irx?x_v;U&`+rfq78j-MW}$TU9_u>JIzSG{58{r5>OOXSpE{H!|qJ;(WD z!LrSNUhWC2VZ5J_EaLwE&D86U&a5~8@iIF7QL07I(cVgv`E~Pun`=n3#lK@?4K*s# zJ<9CPve-#W<;lCAC5qz4zOtP=?w{w)%=*F}6Z6dJ>ABR1E=!A7LfbPxTrLlopE#u@ zQuTY(bD{6IeqJ{8P;b_{?OYHZ$XBsXj=57yeb@TjY5K7xJP$ldyB2zeUlq29wOAIV zRC)MiMA0c3Y5o<`KTg^9?K;w`_}BO8&a92I-X3AT_hiN4)h{xVkH{BJDqndpv#HFk znQeb{-`hPmk5||k=*+%xV`904^p)1Cz_7xWYKHQaoIE|t@5Gu~$iIFmyg1u{{k}@8 z^vn-_r(aoHz2m5UyDQW(7yT^!a%s?{-G#Pm{Y7*-IKc(&DGglV;X0SF^`;s?b9sHh)C@(0{v)V6VC?0u#k?f%r#eqMs`afX1f1!Hn^{i=YoR*m99}2tc zBAjYj%2gwDPUw!GwDtM(dn6vetMkZBf9k)^xhL~v{xRde8>_t2zi%k-cr}|hZS|F( z4}&JoV%V@U#7Q<_tIFI!zlU>lPi-weoU;6S*@h)L#e37ea_?pYG=I7I{zusiS?#%E zlWNO;&2K%iziZPHtLr)8)}LqmK9|30+9ktP^E~ty&R74`{d&Xl{>@$Ic1LPI@;{y{ zGN6He;Zr5XCf7?zzwBmNbiN?@J&tyF29bO*psQ)i*kI%gqHX?iac5eMA{Lkvt zzm@+tx5+--Ip6+qVgKoQ*FV&7MFrhodfef`TZu`{d)hRC}MpO?BZ>`95Ua?6C4mJR1r z=eBd*p74B!f6s$|dTx0OZT9hBx7=33eRBTuxpKc(MnztVdj93*8>f}NVU;d-Px}8V zJLtcA$=emmwjWoX`?3Gizr0h^@9h8Ry=CqB-Jh~W-+d^%&0uZU^nGWocVeha*}3(C z`){T_iZJE-`&HMyRywqfXSJ16vGkQG&pBsj&shFA{Qte6M^7Jo@vU6{d4i+s?xWAQ zt+bx=cGZ)Axka{*wtU&Q^t)J0-Iq`QWd9v`C_TR-Uwls0oAj*R!IeLE%3WU)V^%w9 zqW$u9@%9(*-2Od3W8LBZ(tWFI`t~2ZY-|7W+FQ{jYv-HD?7Lhz>-gShmWiJKE`L>g z__b`a|B}Y-zv@2gq<-};S#oR5p=njI*UOS-KmBETW&h-V?J{*UAH?i>%BNzVZPz98 z>4M5d%_)8d6qW`*-PId%C8u!KuFWM}oBSAGl-<%mU>fcy_4;=o__J7l#er=A7 z`szRl)A?5WL)I=gzL4no%~HPf$j1kl#rkJ+F5m5L$`tS_-t^?}M-{JsmtVByHGhA6 zlhx%DW}j}o5AHnjJG#I+OG-!X@$srD^X`lMoLm$Uyu8maUg}Lzr|Z*$N6*bZ*w4mg zFIN06XzToiytY<39?U-Vlq?UR!-xXhb z+Tp+xr}upXjeFDOy!(R>XGUBy;=fb7G}e(w^|&t3A1X^{iE4YqMPpWM%$!CP|sjzPx&# zVeKMD(;%*|hbIz)^<=$pxAEZKF+`uS(Q$E&V* z`pyb!50DdIEp3@LRVKCf&k>ztLQezCA6)o1_fp)?v(2BA!!-I%TsD=mS3Y9-NUL5W ze%F%^fp#nYJWAs_H{X=KA#uy%OX0rzrWjhXWmHZ(-K=%@@%vk|cQaVrUlsCi4a-ck z)6Y}CyQ(>zxBDr$F!{P?P2l5$Q|115T8RX|RQP7MobN`V$9(Vn&Pfsbn0GI<_-T1> z`jeROtPjb0?H#Kb%`aR(#ZjqetGUs#tUiZ52-P4}gho4Wlds;&E`i&h`i&&OxOxS$vamJhNa~Mv&32!g9{jkT| z>+|A9#LW!Qb?LbG8XJ^FKWbuD!eWlF`pA zojd(M|E{s?tGQd+zI{pTdv|q3|Jcr31>5aj+ivAU#mS&hO|_LRc)L6W@q@hNw*>oz25!((3Wrd zpEjD8{COZ%dF8{0(C=o`vQlPRtzC9t!Kt9o(7Mlzxl00t+BWT%cAM3AWya}kcMk-x zD!-|?we---`&SOHnOpQ%&#mO-il564MDDhC-p6|6Q=W$EwG4?CE74Q1LzmxDcIWHu0duA9G=4W(vsi!Sfi(Hrwng`DmG>}QT_L;W z^Ou)D-_3m7;kkH4Kz-fv{?u&w-Id-Z3*=^Vwx7LmF?h9lfx@ecvqO6}-P)^Sy=B+2 z4~CaLR#!=04&3@+!giaopp7->9JO+Ny874YUTNEVNlWs<0bfyp&pXYTjfHl2@&Em_ z)BjfCjP%~WvIe>DSBc85Ij8itSMKzQB7U2u3Hu!%pIH9%p@N;opEY04?qA+mYVzW8 z|HlhkYUKGv%wAjG3jS^Rx9aNOgtvm*H@jWn$yojEYahcJ#clW6gN|v2Z_z7lS)=S4 zdirDKk(-Z9%CA=_NtE8nzP`SQ_57#ZbyA66MIWzl=g`&-D=cojH1(7Gg@U8TR~84p zc77MS?nU|ADg2Jt=6))c5K-S#9$2>0@X+(ZsgK^uaAzo3^hy78e<;20O4>g8zZZP> zW}aED6R_MyQH?)PSN!^wC3kd|Pjc9rb2nm1^~1pUzQA`!-R(=71#f*kYmtBdhO%3! zaIahBBD<;mxA-#t`OH--I(N8cIiKRwhJF#Fyj$B}&aQ3P|53s<^i_h)R`-HME5c4y zt}k4FV(~=@zr$L~|Lo55+rRGk*>s*ArCon*f4@-=(NGg{|NPSZk#Bn5zTbO(9{g%J z?P~cF$@uV>UDHA|Ce_wRmfU9Cv47`ryWAUYwtWk#SOV8LK94okJ7hhnZ-MN*jT?Sk zPiOe`HmFMO@vtja65x3*@ts&Bn;^ys;ttKNs+Qr_>yW8>VU;v{+Hv+Vh4Y!7nFeq0Pqeg0(4 zrx(s|S9_WG%J$uxw>VZ-y474+#F~9VmiLdpw+}2e&^V{SUnCR6efe9_=?gu3?z^%V zxX#nO?)+)Lt3X-p%Lh(#U(WGOUwm5JzhZu$m29@Gye*sQ>+rRn55so8hGC1HwQ zzl!(XpPnkaD)`Iei65SAwR`>ILGN}Ill_gmj(@Da%NefTeeYSM`e7@%zt@(<71ylt zD!8|Fj#a54h`y0Kxyt!Wa z?_oZBzXf)evc#tSwYOdya9`Tl>TblV9Tzn#MEAd*cA2AHv~tOH%|DlKZl0t)WqI=@ z!=~!i$sb;QoWjTL>%L!9M(e;;m6fIUE@jVc`72`m@$VH==fJt@J!^s!XP6$_dVe{y z-{+^LRxE#a*PbYj?weP*@m|TleOsI7w9H(l)AOq0Q&Z;OH7`oJB<^=|)^krONeh|s zBJ0}GD@H#Iy*T*nmd<(qNU%}Pbz@P+6mbK_cK*`^E+Go5E_$C{mc{IxC6#&Q#jDaa zy99L?wAIaZ{N<}~bm}9X@2kWFHqV*3>v(A5@iRa4L=Qd@@k;DjSJLXJ>2Wopy>xGD z^R&0|uE~qFZ@#&`%PaX;?Bj!iZg={x96oU_O3=vao>y?}6_H~c7he4H=t;i1Q@_aT zXJALytm>b?%lm#^%m3aR_qL>6=dzBKzgORlJx3VR-BrYva?UCFUflDDFVAiNGw1oq z*Ch6xuBrD9kZJi|vaaK?L}T=n^DDwkcOLxdyj0#`=OnK?TBVm6R=WM_G7GzXME=9- zJ8vc#9+F^Eb9r_^XU*s5yWI*3r!=nenssHd-1@s#-~VXeReb-FM`Ct($kk;_SKSCO z$a-EZXZYma&tkWts`)m(O0s(DZjndk$vw{WI~3Uec*gq&9mfhcFK{ensq3viKlRE4 zBQ3Ft<2IoYoBU&TJ^H=a=hXpbe&)WpuM1-K^Au|v?mCsYL`KQ)W?1Cj4F9v0JHN~1 zPV_H4qS$`mdHT=5lk9%kQMKLesZTfym>wIy-gh?iS@A{jIhXI9Z@4EbPu zkLT(JJpLt=(VEq}e)S(!{soWuOPP}ntiHAEQHXC&!H3^Jc7?6~bjn}$!JV_^Pc#?o zob&$OkF&~7qT6dg|im_dcvRx6?DZ|B+6iR#1?2&{kF~PtplHDKAn}l?p~oxL%&qj`q?&Zd--3j3{F1x%m3At?f=|(FXfl| z{Cr)Z@WU&s=vUo|^?lMy_P9OEv|qXM(@)*=1?!JD`<H7^=$EZ5p~t;J9E>fWdE;Vn<2_>Atxeax1DR%W#04tGe4`j-|@V$b^f2I z@VSEXf|I@eX zb^AZHclSPpO*WtZeEy*iD{I{MN4lGSkNy4Yjs3x&n$h*k{=VCleYJGj`Op z{OtKreb))?Ge3NHeqg)2e2U4nvzF6~-xq%ZmqPpVE`{?3?^tz3^6>l9i3fjl2L4o0 z&%W}~tohILb@AU*FXz-Qz+#S%mW{okWck*Q-{)2^^7nt0X|g}cob_e~Q{sZf zK@a6G9pAd=y6tn>YM1EFzxQ}ote$b)wM@tE*uOmaPfH)`zdpasWdE$DjAj3}SXjQ_ zyKm=w&Izqgcg_+E$jfV&yxU|O{W?QcboZugQ?VrrGf(KZ)@k{2cG}r1YXzL&E?IkS zh3txmP?LST62sQ7xN%_Tip@gCLA;B8Turr1*tx{d)TeH$d~~Oglk8v^kD1y3 zUwyxyR(juuDdxWEw;9aqTbj=uj@RLHWOG6#fayx;o1i^!z$C@4!j*;)->Xe)!4D)M}r4eUDG_%j4`juV>dD z3Js{PQ`cHLTaTg2@9gtRmismHE}ncr!{I?9nUzwOpxXk3r_^Pf?+l zraa@?oF`Q9?@+R-Cx5!g^)*ieF3aV9zVPJ7?>%YJC&EL2uQ<-X2O}bH7tAg z=?V!v-Sslw=#b~y@4s~R$DXX-*M50}^!4+{tAG71k9{QZs3PkM?^E%w8cPE{OpQLa z;{Rp zW%(6Qp{c#Dz%21y?bQ7J1*??#w&Z?bKH8Q4cww>MTm!Dlv7Ygv3tY2~7Bqct^Z3TP z^k(M z&Na9zcJfKA^1mRq-#Y}pDO#Mf`g}7|`?uxex!)9j&)Ft(R8+=&R`^`=sBd|n6dkQz z&d<}AI$PbUYHD{sXB3vZR@ z`u}cB?-IZN;L-aA?xpuztbZ>z`LFxaG->^-C#gHPZanpIc1cueU-%`DN9M-`zud7b z-|Q1tEtOk$XLV0y_VV3+73t2I`Ne;NFYU6o+!iZbvg<_5-Wacn;C&nK-G5;DypsKN zdQ8A;`>o&Sf9aK*_O7yjdDYa~{L-}g`@g=n_4k>V{hXw(RQgBlwcp+cwK>1iKmRlj z7vYPXUm}yf@z3&a!vAuPR-Uu@^xY=)$olKouin3?`(@kwit~5=&-=V`_rEFsg!g^C zKlNW?yZmIU(`k!U$}R@K{(kwuUf)fU{%&`gk33Jl zS0F}cUAfJKHSb#wHUBZOF9~d~l`_oLoPiWsd?aGhHmG6$Ns$R6n@%_zH zUoEcP+t6UNr}(hik)t|N>ps*a{=b*XAm1OXoKnApPvZB3h*gUw`#lW&UL*P~c$4gX z>Ekw4Q&b+bPj0wz`J-A|=+vF37WbrmJh36z^?{smc?93#$^E;ed9OZP>D??;v)Zd+ z*Tg?B48G;NUXE#UmvVW*5t+J=^_rHO*jtC|M#Vb47%~oKaQ=@ z>h$mp{qx=~DD2tkFORJr*0{}2lTrNrb%v#BrtI>c*CtCP z!teGfw;Yd6ONn$(mfG7}J(ZPD{&|3&Ysl%#h9R?#$}~P+!Q}SA?aKNuT^aVaF@efH zjPp-j)5^=Z_@e5l;kt?QzaCiPt#Rk%2@jL&|ALkY*!d z$*lKY*97i+f7<@iv~!{|0>^5OOno%|WFoBq|wKB#W(AC1b}o~Lh0 z+nm0)U-i_?l9mgJ$M$8~hvnU!^rXf?*0%WjiPB|P+o8T6#B&n4#`|5|c&hj*3bqW7x|_s-0pQE!vHJzF?^joj0j=hJ%Ab>uUShnl9x zeqQ%>!_*Ug9up&{yYMgD);{H;r`78TGW)yKr%PMCpKKP}zwVOZxyrehHa;?+|2iTh zIP4|I-z&+2g;SE;+EmZK$_STr+PuP0{f_GSVphukBp;cxv*Z-1x%&U0+sQ zTEeJ-baV%_DbtM1(FF1suA=&wiA<$aY>^6yR@{+xSi!9~J z3bVe)w)OPB|Gf6vgHrWBT$h)B(d_rU6#e0cXZ`a%Rkr(Esn5M%o$2`{m!|&qln<2r8NK?;skOV>`&a)feff9i zE6!)BVP(^_BEzwUgQNLOiQKOWxb*yeT}*|Jmwuj&i0e z^HxN@ig|N8jrYyZmqK6f{PM|~#NT#(j_I+`b z($-|_2}XHh#~ik8zI0#x{`4)Y|NgtZr8B!c>+2!~S=J-$>1$Tq%yY2)?(>T0`cj!b zF5gnAQ?K^Ep7l(j`0&(wAOH0ia2K%I+N>(B(>ym_(DwIw6XQpbwg&Ns4Ckyrbm3>H zMbmlN))&&JcVsQPADYZ^{^Weo^9{@w%gUd4iaH%%9US?QCouSTbmddN-CAyrvFEpc z5lB6HVpZnBQ!6I($+k0mT{$_m$NgAO)WlxnQ?@$7_xXI1-`Q5iyfwSWm(+JrdzDU@ zwf^P6$EQ0s7W$nuF1r%w7P9D0NBRQhrMJyX4f_u-K6q2~c@5jXBULxkKS)0hK4)#b z>xS}{IgcOj2%WNfwb|T1b5;1>%J(tG9^ZRvyPB%f`mPcKw%fk5q(ZF^mG(T9IBu@+ zy~3vCd-=Njt-0!n7hZDIXy0#5F3wMwVe%!*u4l5`*Wawy|5?Zu$mMdLy!%@5z~gEa z>HF&Eg4I?u#+uJs5SAyRI6qX<$?CFIxYHJ?x{bV^Klgu2zgjJwTj&0Niuk1G>n5#Y z&X`}w8@HBEdai7b&y$bKyQH6rZl7{~C$Htwioo3KypK-qZok;{Zm<5%Yk?(`|7y0I z9-4O}xqkPPk5NmM?_9R5=vzK(x5DD{lR57gTAhCBnE3Vn%{{N5aXw#gok@M}w-j4v zlPgUZlanvXf06#M>tMg2ao&Xj*`w|+m)mgdeC%Y}{lxMvk43bL-P31N*7md%9dDJt z`*KSBwbx5s(_U+}o376gX7auoYhxvJYu01&@8P=Y{nqRJ^(M=4U2GR&mdcCGQJgtM@oxa_h4F8MC*nu{vvMZniEdX71_9`!((SZ>0Zu z9kc6o{r8${318%nvA;L)3w|Bnx9_9ON~=|`>iVK%Q(O3!9rEBf=JF+=u6X;|*j-GY zHXCnhx0`llvc>vyJA119E4^pE;A!Pz{xvyDb>7)!JTm%s_OZRa^85euongnL)N_pk zH*K~(&{gL4QM$M*{cQZlnE9#IRd?4WiHc1+7XUbT$9WexK?8`jlw(H&5A= zQ~V-kYvZ@}v>5(=ZSwl+x=vvb0KUOBiT`S!^@C3;Hp z4_$q2zx94eaodl|#~WAIJo=^cKKJF+tN=~huirm^zIZQi)4r|K|E$b@T{F3M>9Q}! zlw;WE7sY?GsV?x+m2LO`v!Xfp<%ilHyX)nbK3cN{`-M%uzojSs(7{Xho=Nj+y~%$c z@=oP%%G~$GCl!5esqMR0Fx7-XclVo@x951wC|zSS|NPHHgR0rF(R=;g3uwi^zVtrx z`;n{5tNyS3(r^8zYT3%PPyXkY8JlUbCSSi*qguGZ-D=v8GTX*Sy>mCn{whASVnY1) zxPB{+oBD6xUp=tl-FXl9NAGe!?R%JI`R&W>+9T_>J0FYwR+Go`tU{G})g_O8jjk&9 zc>h%$kqPbGe0S4pJuUzL&h?YenPghODme48Q2d(uvt_xJb6dDlCq;#NhPEEO{qThr ztN-bRO^o{&_?SM)j5TPAZ9SZK;zQyUcR7j5n`}3CO0fsZ-8hqc%_zV8N?g!1>4eEa zo%~6~x2(_Hh$&N;zN+c&zUzKlUrlS={KY!t&%POQ*6nsR_7jTsU3|cuxAK^`-ru`F z7AH3f9{d`$?$HB(ImWJ!dse6X>CFG)&U>c3S9Yo8Y2~P6?}|P7JC<9&lKZqgdEsw` zuhkJchYiCdr2RxHgr2{sIg?q?XT!JqYq|Wv6ZiXz+5MbCjmnoicrqv8c$}KW(|4Zi zJ^#)mv_6Jo*=&SNdV`;VcN3zoRiG{PMi40_i6*#7g_DTcx}$&eb2W(KOJxJ zt1Kla|CvtZv0kP>e0M~aEBAhl<3A=nF~TZJYq3#~w(=n%y$`&-3N6k4%0IuX@LZnz z+%`67*L6F_yi0;}&R;(!oEh_b>aV{4uLSpGZP0tE{e1oD@Vel_cQ35!4)<2=`J0A4-HargU-I%p1c(cl{)@^?7Mwyd$^<5TRVDnhmBfmobWA}f3$7i$hG{ct%d?t_h@1I~XlQHM&KE(0d<9MiF8IKvniBiE}6Sf6R#TpK{~ZlBOrCZ&iNduswf$`_pyo?NdI? z$>fvGJZxIIy#MwGr#qT_p4b1#rC!yzerx%|ERp^FtAze9@&BTJwtrXB)r&SSmoEOi zg#S$F(qqBW*A`o^erC0;_^rTdOSjl>fe%EVny+5fcKz(lrRfVc#Kpz3ZSCX#Refo3 zGV`D2O&lhNtSt3+CTZ*}ej9MxDQ-`@@KUA!J=HPii;j1HpJ>CqKU8n!r;773uY0_- zE7$S4>MqV*QPyY`vRLBi`v;2aKP`Ek>0ViuzUN(n+s`T6IF;937MxlU{Abx4r|1>R ziStUoF{X;-*LOc&nY_Y6@+03{wK+H6-TrfQ2SZt&@u#w&w$;rhsr&4_ZItFutDU@d zS5+AAs>?0A)%V&I%gx(!#`KJF>95{p{(TS3D?(2FeWDR`*B3<*O|n<);{@_ z?f=gwM;_0-o;|~L-mR@)<2D`N{b{<+Z~fC%9oz3;z4-LiGpi4? zrybb-X}`bL@A~jtrdrpp)-wlx3V6HT`}XAU$!AJ<$wLJhsp0H~toL?(Q@yCp8vVMsDcoI9>9Cc0O8uN= z+|{PNeMP0SCoF&Ux_0hGvAI)jNxyyW|6PZj{eJA`D+epwHVWFUYK>?xFFn5fXTkpc z=fyA9HXM^JP2V*ubHO>Q@=1^4=I)w1LrTA*+@dNy{@*;!tLA#C4yz43U%oqZXXn!5 z<-%LmSWcaL*`Y(G;KPP@`jWw=?+Pm!nblu%=`PSo^V>e>#AAETpC&7={_uWmGuhpC z$AtIate<^)Q2Wgyt#szJIZs6p$K7~h4eX6&9@Sx$NWUGgjMNApX)tJ(E?`QJb6std&a6ATr#*jlAtpzFmhu3Kp*rWw4ER7VWH*Lg zpVM+GcJ@3?YZdy(l*zNt^VdT&fpCePds9NLeotxXlk1-?cvZC4(>Jw0)Zl&O*121) zcLjeweV=Ff$L}dqG!}VHESnNP(QV(cLwqmGLeBnKcKeP&-TCehb{iVs700Y9xy*2z zMeX3{(#`{1+UIeY;N{?{%HRyfg8+|J~VXn|MEQT-_JYp8Y(^&siB#cS=lS2EYXzR{9;_~F>|qmk;z#EROVUYX<8<^AgU9{a8F9vrpH zMT(?moc!!Kd;8b&Y1^G7rdY2rE3xrppOdPk9J#yir_S+x*Vg|Hy1C{`Y}hovqi;Uz z$ZntWxU>H3@`}r=@9whd+jjVcmdpFxqf2K^z0s#oy@>BP$DWrvYB*zL_l5Y$2nGL| zTzshTMa5zB%U2D%=R8prY^UVLTw-`8%peowQF`0VujTAlGuF&C5j zYc}qGc>I&&RA-AbJ@eieUjFxLPWY_w_U3b|@5nK(wRqnB$=y6>*}s$fsw3-{*|1%I zAXz1%uKK>Se9vz!x5-bpUhA)#aBq(DujL!UEb|+hGpA(p#~0l_+4y9s@u#Ji*>`xl zzuf-h>ZYvb6F+a<+-+5L&FvN``{&-6{-60>B_uPJsf7puq2 zzo%ONQs#7QZ19Hb%gx_4+@JGM_51sZ_n&|1*eCw-t@X*@GRatZeYN^^YugvqujJ<+ zFMfJ_&PSu2ns0j9rk?Zj`P0S~I_-OI@AdL@`TBYHWm&40MxB0N_2K^9f0^y~E!4Q? ztx{m&TpKTQ^n|OUyTf~)6DM~DUp%jB=etvRp8k$yoX7lDEG_E!b=hJ@aNe6;nco7J zUY{HG=A-O+t8K@owQD-Px*-$B^naOhK=o_C^#Q_fBxXGS7a37x{_;Wo)n9e-2i8A( zxmUt)i4V#LMj`@h#Lt~IT#ly(nQ@bF#`C)c+JoPA7NvY2EPb^0 zIUIezCWdM0BqQ(XT*?*|gNuieeKd`#-`hrbdv>rXuI z{JJsx@~`gi1{1<|8VlBj-MO<{|H#2x#$Jb4Zwubqvn|xlP4m$HQ=+SPXVn+`pT6>0 z=4txc)XS#Ngs*;=c)%{3w|-(p)b^V9@1;7XJo^6gi&RN#{@kl2r|$JlpCNqxgQ4@0 z1($XoTGPk#sPS>fm6c03Py4K){KsnL+P4b!FYLdcQt~>n^uo#Fwir!wHE~bPr5`H( z7OZKoUTN}A`?K=*Evq*>$y(kqwtc(ec;L=A>Lqh(=e=9C>+!=CuFUZgk6%9B*Rsx* z>;05(RW@&JE$5dj)L!jl`6KncPv-BmWXq{(;=D$ij{W#ppw6_2$vpRzb?KLv8`t#c zFFM%ow`c~xQ~8pGrM)Z6`ty=^pE57ao6z=B=ZI;7OHjs^eBJY!m!1ghU}X2LJ)FTI z9eJhG_uu<-9g!sri|jjG8W-1`T>tyUan&IHzYBZ5%sf%q`pNV8-Y*A^^;+K(VE=jd z@X`1GWR#ay`t8~E@=7fGmE;*VRTJFPo<}6~{1;1&J=Ekfm)+?4Peb#Y1;TxYmRnqq znyFw}SX*>PSnBS9>6^u6gmyjIyD)ub_Vlau!QOVg)m2}VUKroqx7x-Z5H3LM^&EhU#N}6 zp519KFMVZ=Yx^awRu`zK^i7tr3Y+*$S@yZjFON49)=k;9?4iEtH}l1jS2Iss4-8u@ zUdS3ZQLtW%)1&;#%B72|r}$SXT;;8Ntd>9by1MGqIr3j?>ix6sUNJmobxb%_?#}wf zw$C54)ZCh{b2v=yZ3dIS-~4kYIfS>$mPc(&U!d`{DJx#_?(a1Zt)ITMUoLq4*IZ+l zrHx@l%#EKE)-s=;tX{gz{K@6QPz#ZIN!zkd-d0+n&Kf)2_f5%&n*Ld(J@j{n-O|Gv zbN9`<(EsMP|Kp{fBR@8*wc^??m(CTFRv+ZH?DG0%&D@j|>-+28p>(ZGDwHo&u{<+T+qt$TI=72;= zRw=N!r}%zb?~b^nfK%Az3;9$Ti?m=vv-RyGx# z^1yxJgZ28EVU=9BF0YAmO^hkBKW(`F!>@eNnFiBiOhh(?NzKo?Zow_$%G^9VZpM7J ziu~J#<@r_TmTr}kwwk}EXVZc5c_o#>OTFiO4O!eFu=L@vqj6gbBR6Y2@cy;5&BDU? z%L&sjlU|u99+{WmlK-dD$H?N-1@{T(yd2i>b!bVH%=mws$1ya^C1h30Wr3d;%}r-q zYb!nYK2YZQ55cl;HyodFL%FvtF-QrFmRnl9-m#%O5#M zZ1>e3`!_$!+wwN<~R-OKEbw}j~~KPk7kGPHM9b)2==hk4?2 z4f%6y-Uat1ORtkE{#N#Tws_jx9Vb_*pYr+HTA%Opk>Ouc-D`=La>;pa9+?LXy`Fc@ zT3LF=U6r@s+*73!i+6mfu1&4DSm=5wSG~);R3~RfNX^wX*&m{0ZI`DA*d)XR{!f^) z@)4JNQI$yid!8%#-cE1s6@T3HRz$~&ef5=(K2ozk>HM@^)Nh_I|AbvjS>$*LgGH{u zaV^!@cOg%XTHEFc*RUN|4Zp~_BKg8a;UBj}zpB?7+_!nvBB@b1HLq%+jMDw@8WxAv z$jAszSS@G%Lo@Dr^wh@d$CiI8oX=Zgp&1v!{$s7{co*p=^DrS1|Rv>&zb zuXWkaFUqZ4yv*3q>3nEMTa0C1OMuu+U$lA_8~maA%&fw6bAx8wSv1N_*{<^?iUMn~may>@%Tc>hZFm($yY=6?2+jk{HL-S4{l(WkSo z8DzPhSXvTxeB+@@nX<;~w)$8FZ{2fk`crGGMrHr|XFt7XeN}wr-`STjh>n1Z-JYORAd8Ny<;MYOvhu^(=Te8!C?YC_9+~(D7Qzut0 z3}3?IcX!cx)3+X0@x~z;&sBc1o^j4*SJMBLxu;gVIlpsT zYUR;f^GnZdtSZ|teO3SQXXfj_awk6R{9CX8_cGspyIGkNgRCxAEx#3Q8>+eG+SQX2 z+%2^|+?8 zBEL(%z2vKvdK4lm{X2XvYxvpR8gIo*Zv(>?PQ1w26BPAcfRX7{%jX4NymcmJ*VnyY z_4|P2^v%xerhnWN&T`@TdJS%g)prhX$1FQ=SvmajgX0?)9_0VI|JAzv=c8>uiL%v~ z&RDg1#@kCgZhoa)AA25Lkb7~7?`P>t7IrsJ%N}c)NU!}?VY395rj!`0RLFb2u+~5S zUEiJ1-#3n0&U~M3{UhU4gx~&+vdwOHA1^fj`R|rlp4aVF3e9%=pWIybx;M{__g%6Z zGkfqUwe4O#o;e5nEbj-s4Zb{c)>D%p$*;Rso}GGo{jA+R=bE47Msa-(PgG0^p0~8i zx+zZ1_-#qM+@kN7KD^zsen-VVcFPQ_=Hk4tw;ort#Fti|JCo>sVNvdu_4n&sVhcVc z)?DP1DO+HD;DPP6weH=|>&|B%-0_@m&VeJAKbYneK6%{|DcfN6ZC8!suB9@G+NW3B zNS$AQ;`+?FC3hCo>ex*$x|ZJjQD*1$UZof6Po`d4e2t^3t;X@oOe-!1Q`w}`FE_s0 z!)yL;uhy5yex{{1KJzBMGwMAX#$4r@`|HVWx2N011GT>2Q15@ZXa4WFkE^U4rY-Gc zuTaa&-+9gIY9P;?g3qVCUOhP+p|v)-$GA~Ha2s!RpWU9qC&8yr+eq|(_BeAcv2fdq zqUL0iS3)Nk{|n4ov~5+*Wz~b4xgx87uIt_uv_r#C@$sJnsqM#}JA1yoRV#Jv8t3}c zUH2GP%S4o>U9p(`uSlEgW7qfM@7jq6WGmL4nQ|~cZ(Y;oV}I0ioRyi~pL%Mqo)r0` z?|z=}{qMIw|JK|r+hb*?wXrd_S8Ew_xs=@1AL~lie|fOu$;G)xvZeC3POUy)aXjU! z=h+qUKcDsd+LY_R-|*6;`OEE`(zDh$Z8yGV6KiU5{{PXJIF72pq!KSm;{ohska$1$pJHhK*($8z<8<%;S8or&J_tNu^ zGLymn)(*2>`TS|}TjZ`Rwa`Bq{^`$^pkI4_G%FisIvm$DogrC&E6ly!lI`xBLwnCH z6|CH{cXIj4yH20?eBQZc_2m~Q<7K($zhXK6t|I5&>xxbCCvHwJKON(lxBk2Fz6st> ze{J|zW^r!bo{t?ZJDU}cTmSs_yzsKz>NmkRroR5~BfeyJjQtk_oBGc>@4wc++JET$ zl+8;Q&$^#5Z|Bx!Pp(_uuUiypS01zfap$k;hc0_wUw3x$y3K2g`ELqB)+x>>fk=`5{$ zr1zn_Dr5fnM2G)+ru)wO#?O%7`8|sFl9%;MnI{}S{#?Dc>azuJUDXx2AB?_RdX7~` z%S@PWXVO~CUJhbsCpqaRQCSY+l#GUJZXLsc)a-PFSqzZ`^8JjYF=!xky5Pg zbv-jBFHc~`(Ts(G7U#^xtDh(JY+0FnnpeC)PHpXCy`#r>K5hTf@LZyLs&nSHpnZ$K zto{0`c*dL>?`e;PY$8(IKD*}~Q;<)PH>xUlIDHC_`H7C2?Po+zecJTzbwrUdd!<_H zJg4`co1^w#mMB3v_X2OAd7 z+i_&O>Se)+B`>VbTkPnx4hnV;iaqnt|Lpm%rn&FuJlq>|&C2iBx8Ii?o^7bu_waZ@ z-)qZbpJ%dvzW2DiKk)l!-(!(m`+vvW&-{|xyu8u3R6cg*1KCfzigVt4{Jc*^_f_>e z5zXg&avrICoEn((!*=^y72e7qiHXm(U&(#CeXuG0RYZ03#97O>uPjxcXD!`-ZMD?b zl~*_1nNW0pqW)#odhbiSO3v-M*TP+O zl^=Tj*ljh1E%4oLv3ntYC0k}_t4(LFY0KAF>rJ1cQD<%WyK~y+HOrn%|E2bIijU^+ zE&Hx`+f7&1d19CU-u~?GE2-x;#WJ0lYy2aJasR5~FO{20;}_OvwSIl_W6#64lkZ*K zAE@4#wT_>hIw%t5`^UG?h zdv)TCo-+T>MC^?#H7GlGY|nYuu32Gz#g^WCF7|3Sp4tB4-Kj3A_>zxH&aKyy+GOL^ zbZ%CvN9*MdKU*t?XY-aCH2i$%^lnF!qVK~J=7?41HmfGx5BfCs1NXV9Tk>+5Csy|P zJ_~hcySL(2-8*JA@!*r6aiL&P=vL+Vt6u!r-FBweF#Ft7kDKQX9k+bsZn$Z#{o{Ll2V`%4e<1Vq z#Y&O&(%b!| zf82{mS8`S9?|UBpGv=%$^W^QtiI?=}&+``Sedp-ZqBU=^eDz85ud=TtLQ8oKZ}RMm ze}5-(J>PV{ty>?b$?w{;YL!Y8|N9@j`)~ObTzI-B(PYiyWqvsp7uKF-pM2}up^LHc z&b{aO&m3yLYPj-~vvP}L`mFU&WR;LIDv!NoH}|3X_Le>2e;wTO-^~i=t#a9F)v)Y| ztF(dWZ>4kR?Jro`uzL0TzBn%Q-s1mHnfmR)#I1f?*w<+PGn0>(ev0b-wj?H_Cf}eyPD^yvybH05znQMeQ#&!ST`}@^ zQC7Bki1trUF0c5-ZBJx_u4P^+wRjf1=ZS{yyC!9?>4&|P&4ZYWZd|>&WWp2kUol*T zd8?&kABOE)@YiE*p><`!o5wr20&D7Comw;NdsX=P&4pg+TQ)17)LFT2c2Jn5UWQAi zq4`;>V^h{Wo5)=7^P178WUG{^^WF#PvPuQ?*oz!c+@AdP?OD~3I$5>QZxfk!5^e(kGfAzGi4`O|fi<;-3j_~MO z_x;CJx!52z)!L)Gwcc+3ym~U*w9jt0J^nrIyD&B2`t&>J7X=$`6>bexO?`eRB;u1* z@T1_l2@{sA{Hh_hPpSV~X#bm#m6o&j7qdRxah_LHs&RUe%R{+O%lkIo*)}`bWS0HW z>5q24o<8m3WBbO<_8-?Q+GF*4%eyN!6RdXDp7ORkzjo5kd7h;^y39|W-23#MZ@c^{ zoo9*F>)iLKUOHIw*8Edxv3F(3r%XHLEAzihu3Hy4yY|P%6RZ6D#J3j+H=RE>Yst!% z(EFv8H*azJANq6e`SowhKiBTh`?Yj_%_Sr2*Xl7fRqKlnCdxL+?|b-Hb8r3ZdmrCc z+FdkUu)J@=mf72;etjJ#dsX$^wtKhiGhIr9=k9;ccX7)8TKl>0>f2KfExLWce(R_A zOX}}D3@>%tu~yY^Za_l0)t8+eR#&g;eNFO~HS=t#sK0%C>fyk8t7ldV14CPrZ43o3 zT&opOJ>s;Ty`@5u@xQZZ04-3`tmgT{;|u7fR%jML2;VILpe=B$Y6S@1UL2)H}pSb<1(x;b{Z|{>kGvEF4 z&V%_=`g-)2F@FBOZhCF<>5?NBGS9^gmrs#vRpnp&f5R8`qx_wp5^rZlDeSB4-S%JU zQN|8qNw>J?@A@BxE&8-7OFsKV-1`0RdsfW~*|txfU4Bk&{NsCl6Cw}$9h1sPKJzx? zrh7?KTcOCy6@O#*n~1&bI3#sDbCGeLbxF#<@Q=~?)qj?qYs@<4@RRc=%Z~=N`@d^0 zZSHgQ`kPsq5t4p4Yscoq8wHpCEVNy=xTWO4&dtvr>qtB)jeA{q;8%N@X#UQL4lg%l zx&HY$!}p=O@Mq@t9i}zE-_LuZ_`AAc)4z*94PPz%-_G~_;{5ZUW8BsxTZi+N21P$H zSmgQK*zD07wzZFbE=s?2ebL8F*-u?M^zInsS*<>MdDmI#2fPn9YjS>8u(yaV%6q-J z#{AK&x4x&pKR5jKswTj*UasG_Zhrj6pX&-w2u@vjKxS_9^<%S7<(C#F`Dvfo5wvs5 zE7ul5^Itrgt=~#N^B!B}CEMLGFKTJYyB#;D|A{~Q`i$|nAByYymd-Ld`TmYh+q8#L zjO+Gw{kXcV^l0I^8u|6RPdvXbcIQ<~YjKG3gx#(igZK1Zvbk6GtSa|^&ADRkJ0IPx zzW!s*K6O=8xpseSy~_EuzT2&uB^MT)Q@V3-Vc18R{rvo*5@#)gWPV@imMywJ!|ku{ zQsHBci*t{?o2_p3-f!-$kA7Xj-&K`=$>eXnef*7g`-Pk3*H54Qx%vJ4{k2@)MTaAo zPE1*v+^fFiXYp6BU9*FlFN@z(+voSoe&_yumZsV9hSg7uWh%HHOFhkgyuFJr^6kWb zLVA|*U+Ifhmosl&wAlW0 zb;+OHBDo)&>u>#=z3j`ke>Jmocb=Q|c;SbqHy%#<<#sh@c7RUN`-QR9eMUOz(vv=H z>Snl;YxaJ(@`iqwT|r&}+|5B}-(TMS=KF8+S^gaL-oks9&->}d-}paybK|8_(~1v2 z?>>Hhh0|u?|L^}7_D5b$-}PVolKuM+s}D_ic=yi#l?Q*-K41C&nW<-h@@kXkq45VF zB^E3RS{PU$`)2uP&6%9#>o2`&JKB1E_N&$U!lgTd+7^GVR9|Gp>a_m(x#bs29_l$3k0{1^xcdtCB#C+WJ*KNy>bzXh^N39D#v@Q2}wc&F7-Q{PM!(%Ncv}*~-tPH#cc$w?y@CY{as8KA)a5>9Jegl7 z-?#f#~oarKb{wT+ro9D{*tR23)}9BoaVCr65+jTVSq+O+Lu}=+F6#J!5*ZWwb|9(sS-?Eu{%BBZbP81AT zJT2K-*ez7H(Rxt{o?kY&qU~t+{hr88qgisU>~Ws|Pw;zGXZ7j6-hY_& z*Ux#c`OiB>YwWiCec*jc1M8>$opbBIKe^ExW%5yVVtM@57a!_gt(v=hPWy?#O{?|l zPV>L-d+d1B(Bi1$y1v(z^81zsZhzeKh%K&Im_z78&Gl51&o9d#TI_FjXP8aK(|P1mgDDI zIhFSdul~gHH^6=4p+(7yKbK!FGZf|jdZ$0O-+N=# zxb4Q_KW@sL?Ux!q?0d);+vhuTv;XI~^PjUnl}y`N=%3|RcX-|-zTDT}&#cnQIIkG4 zYf$)TuWjM;mrJ_mBwN*`TR-`-S?2jkXT^i2|9jG7O`;AJd0VzRCWagjKIG*2;@q4Z z?(PPk2Qe-vN6)wV%qM>B6S zTYz2ROuysrq9pd)krRMscb$sgco=i;WH%wC3e6 zb8in^OwaG-2Ct_&_KIpx@7j(UC+59XIuV1=rOLWVM7o7Ih@_ePl?jgPQ6${sQ z&&eKnFMpk3-V?)~zx?~(=$G*rru{W?`x{Q2fgqhp$L`|QLd)eXuzC#}A-y5rAs7C>^}0T5zE8VaX7wWIqO7^iui&|!n=4Y}W#nF-c$Kkz)tQS%-Y-ABoa}mgYK{BZ z!o^$jj?a0q{q#b1_w#oIW0H4F6glTSqk(}}rpft1;_N(?(mMtFo=lqk#Zo8AvygAk zf~EPHvjrFPzX{4OI?!{8$#!|5T_(TrLm`b|dEPRmuL4#r;%J%tcHWYg`4*2F_`B~V-!{4bdH0m~M?KMeFQ2CTlls0)TyJx> z^^%8w+CJ+k$38p~787qOKDVj9yZKjjoVAlcvFp<*b>%@H3#LljPtl*W{PVv%9~|Fy zeDX?dKE?24`C=dC2bUeEe7K|kwXEde#^sswKi=xT-u!&2ai7U^L2a$*YT4|@(!_Pz>{njw;hM2B@?%HrQ{DrzAJzn1&|LQHdSY?Ln@{b_c2+OnYg5^} zFWTgD=;uO*b#+d9>iU-^GhI3OYD=+RdEhp$${C*@Z)OjbQO_z`@pkjP8Ml@f89cvX zJWtzHKkCEJu1TBy_V_o4KMZDGACw_gIkmWWih=)> z70g9d*1vjoaVKkUpTP7hvddqESDsjZu^}V=rOHyTTiYisyWAP^^tQx#!{ps}OT{IZ zm6r7xv`W9X_I*Ct=MdL}uJTt6m#iMzxJf?vtv&B-lzYN5-nCuFSFVZ)+_mG$cJEz5 zS3X`g+xJNFSEq*Uh2leZ56&@qw7es@_mB4sk+7rL^Q0G^^RKN_o1fU(FZ27R&E=x` z!j&sdC+5DCz0_KM_sGK6;^(hVE$vZske;)sIYVYzdww3`_YWF_eyqLp& z`FYi*`or&vbGGR14F9>lZ)?vY>p6|C>bKY2^7fqbB~9|~sZ{|p<{7iewqFuk#Cdk* zcIk>0fw$N1vHMsX#BqF&%6IAIc0WUx-TYI!a(4TE&sS4|GwNp@z8AkV->LZ3yydbM zUprUr)3-lZ{7K-_NB_?+?tA{}&3RTon08Ta z{^`{crzdLFJn(5{o>SL;prgk3)r&_ZmtueKtkYe-K6mzW`)y0B?|*Dr{H&+v8Aon& z=MV34w`W!JnKx&B=h?Y3Xg8z4{*$i){XKb8UjH~Il=x@W?Vk7^uAr%xBlWXFn>Bcn zt_LswR|E#lWWCk#nHGyD#_c@b6|rlLzeeXLE1_2pp02RyS>>@h!96-Zb* za`?rs-^L#DJNd=0ee0=sKtX-?`plaWN{kJv^TzduI1|r`*xSqD!|v<*7Qw`$+ymT;TO-6_;lA%(?XB&O?*f zAN$H5)kMhI1=}6)Wm5n8vM#dq;?`DUBasbrR_&C&?fu}|iDdK33S2jqa(_=XW=gpn z`61$}L4$Sq9ox_GYT56ehaI2yNZjP_SC@Ya!;7cMuxs6@%6R#+{`&UU^ZEH6N!PxP zz4YwR$@`U&OSEJR;!CgJKVEr!=XRN%_{U~(d7rfU<{Y*CVKaBnUncqQk{8<+JAUl- znziqfw$qdYuY4}?Dx7{Y-7Uzp^3}3_;b|osU#5v)kn+uonw1;cTlD;*W_S=6Q+_(j z!aiN4wmY_yO|Sk-JsmHt_e}9z(7hk!Ws-sR+hhXneTXeF(%Sy>^MO@Ghrja8ub!!) z9>SjRUgq4!-I&c4V%?B)%y}2{p?~dzT-!8DM>`*)yp3zi9Ek`D_=&&YSNXs65q*zE3;glUR>2F`0Rq{#8+x7&Zoz`+Ow+vhs=}v z9k1tH_Bi>J_5Ar;RgYGjb3D1hDC7T4@kbvH-kf51SK#R@lb45|cS$cd9C*8k&-LCd(XY$oeTl6gtb%ifEVtni6sch+21upZ8 zmR5w`Pdiuf;I02$zndlNN)5DmEZ3XNmwS6Ebp7nw$)Og%hSYpQ;uSv+=B(SGsfC;-yya7E~Vp_(b?j zgZA&AZRvMX@0=*K7}@KepxE5`u6hUC9=}T zUOwf&{dqN8Y0Pse|M~MxRcoJFls*1wrfze5r;}arQkM0+zoq4WT)8!y<;{chujk0# zbC1p5bA9Fv-+kXN&-wM<@BfCw>$@H~vWreGstxWtJ@xdxY}w~q-m`tp>3*`H<&h{GeeYpO@6QZpTyz>g`g-kn(pjW2rF?0Fnue)BhGmf6 z?RiUor*`ts+BENb@svK9o(~eM*E{O`nVYA>gbPOSHw z&e1WeY4W>uiuXTE_SikkI%@r@BRd;kXq}VX;M_ammc`sylMeS^3vx}n9)=e#JXZhc z)sy%?i<4!RUP@^w(P~!CIB+)lRII4e)J0WC7D=6ZxL{|QZ_kZO`}|&ao_Bn*u##od zyArY0h4Z}E-~1&0Mton}jGfOj_sx9ztmX8pWybI7`aU1A&FK1SvnOZTl(^E`^RGLP zIWLL7S-9C_`o-V3Y7DzfR{QN;b=27L_ko|fHQa%xm@9epN<-HgKK^*YR=&OYiT~Yc zheK;i%`SF^Eag+5#vHnY)BUy6zL>5lPjpYek6L=q`Jdyu8qb&2&(r!%l0^T=7sn{C zZz#=;*JNpDKX<4nWY)8a3pazp;-1QF+?>|YxAqaopSrE_O!aTmSG=BbcFk++d&xc; ztFP*`)ES;v{n{u#caF&Z1#drIc)QZ`=}YEQ%wDfNr2;J9mReq&>uGuD)N+}=O1G7T zYaX4QQWZ08@jOji>A?Q19ow&N^;#Y`XY-m;cJSJ*lh9D!dp;w! z|7wfLylC;uLTzN z{^2@5<@vTp6F*r7c}lMm%$j%ZVaTNQmxD^~?2G%f>d2cM?_1Ng9vPXJyogx9dq3^E zHIpdcTlw%wecMY~GV9akCNKG__NL-muIg2*n%7FdrPO=(Su5Y;uV;O{zO~@gl{ML0O7~p!joW|lSoSHw zS7Gl}cWS+Vc;VaR=+_mcHhFU8=Z=P+w<;BBXa7_;O?H3e`MuK)Z*Me>@{hmnxzcau z%Ht{eSD!t9H`m##^RU6|i+hw$D`*+?34fhpI(Kj7<7e-`X1>b!ss8IwopAkcdKnrI)7+s0JGM@3#@W0-*(jmJovIht3G_G{D$k_ z7oVC_D>c0fJ)uBy5gaiq=a|Fy5l zv#JFaZ^`&v&(QbU(rH@pckhhqSH`QmU#`op-~Z{!cK$y~`!u3Uc2BSpDbYDt+|k}s z`#ZS!b92uut(Do|V^8TXPdaIR>1yhE$-Ar;Q@*b^ligP0#oUy?(|vvV#O1F8r>5>- zoUlnfUh226_}#U86e{1oV*cP}K6%QCZ{HBnP{Z?b^XTI3deobSD!v}?n=?D$5XX- z$<4hbuq|Mx@X5JJ4YK!lE^h1is4Cv_xFu+P*0t#uHeH^0&g^<}@av-F#pgB#-gnPE z(*HPiu3x8NLPkX8(e6hVEbTvM@pAe19ky9_HE`vonBR*ED!x3NQWfwlI;z09-Fk=6 zI`*)?X7S~RPU)Pte`WdV^TOGMpZ-Q}ohm)igMHqeiIW2zWbdqUef4LydtEt4G0#-) z9gbm@8?8F$E;l;vS*&hTyxq9}pY|UA=pWZ?UmgA~_*i4pPnWcJR`QFN^v1_nZ?)S~ zQJ1eV$?wna2^y1E%gtqf_2A@9QLCPdUS85MOPL)%EM;!hksuFiU~?H`|h=Ph4=07xOYK!Dt*6&-gdlsr)R?7)+Ijb(Wd(~R{ywWqg86W zKCl0E!rQ*}A-QjIW4`>IP;~bggKl>@=lSUe7FvYp2FPw%yrcGg->wh;cF!p*+Lt`F zI#0%O?g7>F)-f--BumxL&fRtUq`38-&?mmHQe^F?9u-|$KNYT@T$B+q zlegUN`{r%U@BgU9wb#Fo^$I*b{hyWS*I!MSvxDl?rr$Ur^XZBb!&ck5>u;^P_DApR zy@a9_lih#Id<*hRfB$v<&yP=*8|B=79u=?mF#V<6=ex&54^_UJ9JhGesptD&U#!pm zC13C(bme8w{&{CSR()Tw_4};zE41&=tTk$QyXls{@uHq*AJ4zJdHd?E)fvkoT&$n! zw)XyCp1V$c?&1=&^L5OLS~Ul@e-E7gBVD%m@mZfx$$e{iir@2T8UpvB$yv@1#qpO+~@!7{q94tKK%_^_b)2k?2OiE zGFY%`Gt2v{8@iP(uikvlW-s@B(($Ug+`0lTO^Y*nFZKIw6a^lfwDY=9$bl8@RqtlH zzn>m;{yn#5-dzcwQ2zHfT9zl%-Fldv$8S!>hK(-wBXujZd++N9N0D?}@NH+;QRSZ(IFhAFC~W-sWCQD^Dq#?=P!!`#C3C#ACgr?csTwWahj$@b~(< z)(JsblibflZCUtXSu=a?)GrsGKf1GFg418g#N#|y-b$U@cqL~;W?W_d#2O#omNSvuim|vlfN`;+QmH&&Og~}vrlM8>zWU?PailhpK|s21KoJ( zdzh_J zbo8Zp*3p{z3Ws;>O*PrEM3Jo`U}m#XzI4L`5w_=zcLWw({4!zsD*3=;lishq5bATq4^Qs1No0sCVRrN? z|JEw9Cc0UsF5`Qr{M7y>{^eOlf%{&~QRLYr+FE6Ft6a7=Tkw;P`5{d^t2r8F*CKZ0 z?DGznd&RTRt}ngm{LVRYM~;PV-GBOfk78My$6RTpcVSWgZBoN`rayjGv%$PZ=0~n< z-DTh2-ac8=WxsdNyCzxMB_Aj+vLRiUsr3*PtX5xZQq>L^Rfyb{Vln7_@d=n zlbwp%g&kL{C&X68P27Jw=0UVsq~B-$%6X+3a(_d2h{*3ebmW`fT;Zy@-@UB&86N&U zb;rvTCwAj?mm8Oqro^83?LP0PT2cG-D8bu5q9+{L<2F-fw~W4pfAQ+XOIhr@w=I6p z7=66@(#Pq=%#T;*{?k0Z{gKh_S1$r(uW3v-+gD;SM|=9eUvt`@*LeSI2n%w)w&|w3 z)3lTK(`sk#$~ffz^ZX~z&&%yTA6vZp`J3fg8|P0too(|v^-$++|Kg7=Ch5DKel63U zr+O{>#H7%VYaUxy23?NMzqc^+R?X7*vll;lJ$j>4dP+M>NRf5<8f(Fo6*(@8_JWn*^{EBmY5@t*d} zS1Bv4dOhaOnsiJsH`;aSw;mD0a@m{nq-;zVy?dj0XUp}r*xtPSV@AGND}L`j{Z;d7 z>d}+;UnzataYy2kxW$QkJUv+_7N43|J7c$>tyrvzz-KN%c);y`FmR*!qJndgg}T zy2Z_5(KyfRf5+nwzdNPAtj}A~`Q9Ys>7L7rb+1}%E3inY1sp9into4@Jg#WsGqc-D7^uDhV ztj}X|pRZGMX^C5`>Rg(j>n41+T1uZQJN{_-ikSaF?^EUF=7**o%rvOpO@shl3Q-cuPCdj!CsoR znRTsKWuFzFZ=O`W<&*A~lg_VVly|OqF1K-2pY+o^2J5m+mOg)SZMVshMf_Dh+pU8v zws(eaIbJ?N`WJ8fr`f^Y2W?zu_NaPP#((1b8x*-df-yJg-YS`vw3o{MaVrFuy@;;c zY%n=HX3gaND-SO1a3;S+Z@tZL?5I;H63|A^g}nS8%|*W*3wDXZS{xTNcc zV80dj#s3fdcTX#MA;|P%h86oChO3i4t+EVR`SDJv+*?Xl8)`GPoS>kA!ylJ&pd=p7GD`q%Y`Gy78aXUFNhx2`YQxXw;i|3To~ z2u;VW?=|mw&&#$q?Gp5?+%s?GByG#J@~iESI*Xe=H=a~!ee-AA`XlzYe4{7!t$yUa z)kS5iUWR0=@9P(*to+|*DxPNY+xzYZ@4c^ozMc&<=-+d9M2c1nf7t!^R;JJ6U1?c|l@Zym z(;im8%Fw9HdKDJ?Hr79MvtQ4gFaNA|Ek5`>&cwb{Ca^wu&Vu}+OgaC$=|cYd^_lNJ zEdRRyZu$9o|Mr^i$5!9-p1a|@>HMw##r*%zeL27E2d{9%Dw%&Wxu!mf8aw?|R|Iz% zo&Ed%&VM7dlXHFUJYM~*|CYbi!v$wn22Y8(apyc!^1EuMtCoLXSR6`Wv$3DZeq+J6 ze7W-l{Kb|JK1XG3KV`Jyd1ktulh&a{&p#jh7@K!#=B)cnGQ9WfRn0l|Vs?Kn2(e^XmRtJ`Cx&(1N7(*t;}a;z3?U+pKQ{$j#Uor1)K|IzQxJkTj- z@8OEp>CdmUKdsF2e6qW;;e~$9)Ngj@EzRmaOZ)C*2|8S^_s}%f^mX;7-cpxk$I7l2 z-+5FaBU-XT@f7FV+n?n5ra3-O^_2GLIaby8RHWwS#s$*)&V8?@JbzSjamBu??0^5I z*`AZL3STvEu?_p&(%tXgY6L|-c(%6g&3SyV)peTZ&dTnC z`o9fl?K}74V5jI?<()RaUp_st_4P^XZ{}A@%7V&+B<9R!_J5ah@*~^+uz3qb0$MBQ zN}Cn;O`JXFR-adQ@w3Tp(=Qq*|9N9^{_eftcbz|i}q}yMK zGr5-rN5=Q+UM?Pe3`uGw=;cv;AHTU%{z4pmJ)AQcy+sbuI zT<4Y89GtjVu>OA}lVeb0p}R==5hJEGPb42+heNU^ExbhlMz1MAYIA1*#WykY(6x3{jx^BRXw<9D7R z_j{&$x899+%-@bgeB1uszW!?9(l2w=^6jg%pR*a(yVi-m4zIMedwg|A!zSlfp~z|b!7di|os({3z{6gY0P zXq)h-szu(X63W(z1-cYndG^&pY2Q)9P2Y|E-QH#PPnvag<)SP(8TrpEx$i$}Hs(KG z8RyKq@YXcBi;<-^%9X{%wtyu}BU9gF#OxAI-ksZ^PNeZ}+H z%`b#c*IwT`_mtJ~cNyG9u7$sJ-v)FSd!5ucpp_%@aE5mO(Pxt`Z#;HCFrRNuIukY}4jug$;r}aOsknz9g z(DTx!T;@akpcn`_6qJwGD)dx78dNqgix+s&7Vlyf|@IOkRKSoWbO z@8c==4HBN&$c2{rN^FR=%TEsoy}D!1o0R$G_m^EUIKVHW)mW@iKl@X@==L81=|9Bp zoPW8@{D-4xqP&)8(i$H|PFR_WS1Pw`L2^pS~im*yxH$VLxYI z5MW#95|n+V#xiNvcH7N#|+L9{u%^ zQR9EP#5d25eb24%C%>oJSh-)E_9)=v7uEBt_SpK?KZ-PWx7u~tuCQC~^h&k`8=kjI z2duCAESS6CJ?HP(=R2OP&o(~y-@3|Aat7Z^y(pp5blU~Ot(t|*8YOb&j~~pD|GrD; z#q;&k?C+~ifBBQ)*5kB~cD2_!Yiezu{)~>jTYFA_z46krYYsfiTUUB}xm!-(9iM;p zr_M3WR~B#99eqA|X}Ry_?6uPO*IdY|Z2fuWGpGCff=|KLp3m>bym@8w^}(8*fAb#x zd$(|l;KX{%_NvV3M(Y;8^sh*czFTAWVB62xv(xXrs&AjQA$;!bbH_dB%Re_RU6&WP z|M~y&%l2L)vOO|;(M20xVMkfa9dzgvhSMATbuiGAHBWsr+T8MkA%FWd&~WbIZ2;< z_eZ|_k!-!v&O+`*)o0B|=j+YuZpK+j-IwVP&04lZ`%3YGUcsmJLKD=vLl--&m-x6> z-)kk`olh>js`t+)`7hp_ux9DT)31-L30(ZD{NWBItBo6e$BJ)kIJtl2<3|i^_7bc& z_kFv;n>)kt1@|Pki2;hm#~ocI?Oso-U9Q})`EN_eTr-13i~3un|EAjCm>2(gcj_P6 zw&hRibDlowsoE1FzLQ~3hRCABAGXOvJYMI%l8L+HhV#kd`bBleFMfX&7i#^;FLa8i zue-)R)kB;=u2>bCJi9LZbh+`D)BC!^esctTk@hqHlNBO5$GnaEz=r!j=gfL|z z_Rn3KD(Y6cM8__`Z2N_6tGin?Rh!*jG`xR0aq^7EFFwbn_U$r!=D0f3EWqZ@W}QP{ z)(IWId82gEndvV5=T^!3&bq`ZxMr8x&EsW$l8ZgxJeWQC`VQr$@`AcEg7*{V^1plc z%Q$bc_-#$w6@niw@OyciAa60qO@k|=g)yw=eqW5$=5$+n$I#h|gPS6tRLm%O>mWQoOboAY(rIZ?;M=RW>Z7Vj#PwIucA z-bc^0?`1pLb~&##pRf7mR(b8b_d);8o>+W-o!b6$jc=TvPl@|#m8v59T!QJ>#qE( zWZKNs?tOoMoMirK_-E_4hs*a_y_p$4UvvG-A7Rr@|K48s^3x+YWu`-1Yn0xvz(%*Zi;h zHNWu3%3vQ^qu6tW0+*#1^6x&qe4mPyXP|7~X_3c%$IdNW@^l4*`a^xycJ`XPY~6a* z*H|9dB_CN)Xz3(Tu(mHScWe5rD)*yJr7zaGZFz3tzcu*mK7os-dYwKJQs+TvN zx9aCTZ2Tb5vR_ZyWT(K>>NAf53nm2K{W#PA`K|K8km=2DOnP)>b{_b=@sUl-VKIXZ z`aQoczyGn;D(|4Op>yi2(*g&Uu$9{W6IK2AN3ZmqWgI7SqRi9kqZh+OU*?6$-nVwP zm0TPCbj#w;X-*(weez)1Nu#QQn3KkS>`SaTYAWAIbBY9&YfUgSP&e;!wPUz-(t8*8GjNvoU|3)c8*9ZgKARjPKrkljd%gFx~Y~#{bLfzgN!7Zo7Taey1Q~ZP0U( zV}E`Z>aR6Aed2$*jbYN^{r{KM^zFIC+jR2yj=<(x`=x46I^~U~`pGRnUT713&u!mv zvqt?=gZRLFPf3-G#s#`A{>|@1{Qk;CT3KD`o!r+gG-ru++Cjg$4zG>l0vGS#Oj){G zq`joyVZFyq-g%48UCX}zdq-l7jEjFe?@c{>;l|fj&`quN$G zyLjjNFABL47hK;4O%YE$9*s&F`2Nk_>z~|r#;nr{-PHJ}!V~A4HhX>BUU__;wCxAI_p!T{f7}*%SA-?&&*Aqa9+@t4rH(&P2)S|f zXKB}l%iBt}+O3$#t`+{4&>R#ksU;m(4tsmE+ymUIli9n#xG*s9t}y>)-C9hL@vs zmn$w>8`cu4$y)eq>nlOo8>_#seph$)eZj2?+Xh+NHf8UZf?rpCez0Jb-mS}$b<;o3 zi+US+&}Nl|zi8n5qqmMPU%Qc2_UbQRxf1bAj{PTFcj^SY$JTvMu726`j{DeOH{&z= zr1& zQ}gr!oqJpJZwK95FExAHhc25R@)tj}gg$hMG@YGc_esfO)}I|7=U4Bzu~nfwNcG%- zrzf*D&YRj-tonX@``n#=9?ySf7k!T2!S_rsWuja8uFb4|hR4^RVmrF9&)76?{_`$p zQ`ZdZmC9>+WsW}H5?bfnzv$1W(56rNDyNE1Sv=4)^;^E{P3yURvf9k;+n+A8*6;su zWn#|ibd8g<;@!0W1~C6($-Bc9b0gjC)wg-CJ&L~g^D$nv->UQTwCarqdoC>bp?)sJ z`rRk#zX9hOqIPgL26^6Q%*hkDw_Q7-N92&$`CmEj^^P1%%DKs%U>c^Od%bq?u2LBl zv$S}C0-33RlC21Spust_s@i}|zQBB^_?y~5+Z&zjcHCnW-o!S!~8e98mmRY*j zWsc)9*6)f9@6VlUT+u&;&HlRVyi1=Wma-gsA2ai5`IY6XEwa*|e2eV=G)Lj5<)G5ILG=9IAid%yYqe{2g&eudna z_itW;?b0dEI@4z{6jaXP-1Gctz<<8Y>ypa5eC9=cJ(JJO*I2pzVdg*o9hFk@wQY4a zSO0VF3XaYFn-sM7&z*DOTQ=@L@p5_TkDn!XrvCG}lm2Hh=PcpBUwDMCEDxOgK4GCr zzTe_i0?~R8{|dhp@#~LIVE*o|RGu#C!`TycTluiavJjoGGoL>VT(D2&^{1IHXB8AQ zsyy0k%W*g&VBPV;>G!23Zu1XLtzOD2_Zi%vUZ<8$?LR$P3l5z;qhB9rtEf7sIYx!((*X%K+g#Wm;42M5=Yw(z87N` zn`)gDcz1W{nbozfbuQ0VIv-45)14SPD`ev1z{1@b*`N6O7T?`C)QJF z-J3o6^4uA@iTR z)kSs$OUuZ>%`hs`*u%TaQfKvi+hWFt}V@dnRM1t`T3%vyBF)v zn!a4H!}sMoF5!1xb}!nr&yjuW3+9V87G~4>j(LC5 ze%iF|_M(TI%GBhJob27SK(;$h*Xm!MwB)qI#-&XmOCR6p_s^YL+_XRR*n~D4`(y8- zD|_}o47ycy>waxiU4oppKC|uvi*qGGYPAdQ*G#wWn6GsBj$zZy^-}9kRc>*!Ja_G+ z@tp;}uZrEv^y)%qeKtQHV_uc<_s6mwzO|mF=B*2FFV8Mt<-A0Aol^g!fX}P@BH?tj9luTIZe(tkWN_j^`bk&jP2bAY*D}SkB{(I@WM!l~Z zu1|8LXSJPIxzuz0@g6zdT}$*<9zK4DUBGqG^ZwE9{<*KJuPW80@c&S` zcwyhVS@*UcUYo1!7xMXF`lW4N@oSmi3++3iI#1PaYm61g*8Eu|Ih+4|dpP$HXZw<@ zrY_+pmRAdBncsS*`cwG3-EzB|g0^$NG{srl)rU;ZGF<2Wtmp3ShqteAZ=Le#vh1ST zJLfAW-?RJf{<|p8`1pe>YNcimj{JUMy5o)4-G`ZZbH46Q*PN8UW#7L2n+(s!XdSgb zSTXB2m-nH9N4NP6^1jxn+FqSnGT-WU_^aBchbC#77u9%6GC#g}!F}_J@bw(!(s$_= z#fJ}0o+G*SZLv;b$gS|de}vz4PM^!2a__Q@{ne}6&FyB*|MhXI;s5TLby4l|!A4t7 z+x@+3ys$2}VeXwtUw&sLZ}@O`VoT?n`EljDj@i9!6K>t>aLzxjtX;AH))}k6c~-gI zlk56S!nlUr|SHq$3lM| z?+h|o)Gg53F8k_$sAkyRRFnA{^8&o)uFZPmaeSrw@vBB34%RfD5bgg^%${R?W%a~L z-(M?acr5~I_PyErzWmCssy})^=UtQ)+o{NBD>FUagu)1B3D;3s&g%3xa_ch5!33Mb{(R3JCenJ7ran--@%joX00{LoV3!gm`mHf zEq-GAYXMu;()6WnPu#!g?u(XZXx9FaTeZY6|>xs1%t3vx<&tA3k zN#Fv>O8-}vcUI``+1a;!x{6MY^7D*GdfB&2xgVuIXlbjt>R!Cw`qQh#q{Y5>OP+KZ z5zj)vKsW(cVPk0t0`&lG#s^3JtfZhKp zeA_4AzrNyvp!P}gnWq>3a#9M)jbl^QN(7PJ1~?de+ybr3WLWDrQZr3|%|T>EipD^^aWMeJNZL zXB>6r`3kT5vb!49A1!u|Z0(t&OJ9_-Pf;zAI;}$FSDKB@AJB=KkRNwbCPSJljlnluXnrG zuPk|6E+u&U*yMFPv#XbK_3{_H^V_#oO=)#om>R70&^#gF z)1s64&v_!Z$$rYP|Mtti-}K&=!_~U4znq--qJ2;4nzNthmTI&%PQfTo3i!xO|LcQKD(}7<+^fm>X#{gpX$yxpP!>Wf6G?m{GeM& zcmGT^dbRS;`I&V|?eac`p>nyVY{7Fi)1O}pt`aJ+{+v0{|E$+xOBQy)j;!)ua}+J! zns~KU=38E1t9o0iHiwh>)Lr9pEt~4N_57(Ft14e*oOyamwSIw~ivIOA^IsWAde6$1O!->3QEkHPO9AQ^ zPn$)(Jsy5($GKg*YuMwedOZ%7Z~YZ#Q?SzeZ`O}@(t85RWu5x>sT_Bdt^6XpLTCEx zofVd6pTykyxZ;T8<5vrI-r6g3wA_XLTa$3|7q;W&`&52)?Rb4Uu_I%*nQU*tp$w-l z_qFaXx-Z1JqT=<{Wy(c;`Kv2S7F`IPvedZcN8GuCKYwTL=K7=^yQlvw;r7+Zo-&euOGjx`mWLa-}l~!f4=3<`F=uq zZ|Usgb$TZ}vNg)Nd0)vmhiJWO+{|AV*ZVG-?~!NouRXpMV!YRPG_TJ(A<+Bcw$h}+ z>#3%*y%+1N_Z{6iSupU_e7+e)Yq- zvhVjQD(^ly6mw*8wojFW>Mxd?lhwSIGC!5|<6mz3&rf=a|GPixcL&-9Jz4EU#6>_HMvZAb9)2hcklDI+1GFL{$z&JT~Af6xyG+# zykezl9DiTu>N}&g-+ymb%x;C(jCZc8bL50>eb*g*-QyItMBc*+*>EI zT;lZ=(K&u4F<)=Wnp|4No>TCl@8fmL^OXnpc>V9Jejk30S3dvwFX1wa*x42q)xI(A zZ$JC(ua2GU$g$c@vi0MV<>~8#y8YvN?o_jEoObK!_KUd*iRa6eet5@TG%$fJA zNNcLm&z|PF(|))AIe%g0+K(*H*Ug@D?ClcwxzBF(Kl~|q$^XrV)wdR3_;8l9v+sb_ zv-&ivl?gi+NH2Mqy4mF0wpEv(AMaan`M0-SG2;Z=<_)>8%iT6D4ZhgF_Ro1hfZ%Z6fML+C6wpqTQeX%Y7_wRz@x88ql36|2j8oMUwIKo%hpn zS5CUP;5nPyBY8jTZ;RLNd*gO_`vH!c4;dl-b-S3;%;hd~PCxFzRDUE^?&}ghrvTOC zZSzHLY(KDm?axU@XZM@@W)SW$d_cD$5UUG&AwA7aI?`;YvRov+dSd(XYUQOEuZ zFMsxNX3w&w;I{6WH`)4r$GB@>E83U1<$dMu&G*)uWz8(s?TdM{cWwFJCw>OSE6$u) z;Ko{b#Wne1UX-ujtGy2=%?WgWYKu6nZjd?w*CaBdsUj3Ka}ExLaxNy#DWjr}j?h*t2?8 z3Dd4uOPForzD;>E+3X8@^ zzF8}SewDTdZu=gqaC)PwtW@P5>+O+Y_6Mu0uat8Bk?MT4c}IKC&gn5_vku>FToQdI zvD9znlBGGy> zx2;*4C03bn+ny&g9k=-PG%%y$p6}{{oo~(w)O@ynA2R9X#5V<8fkp2G|6DPxUMnl_ zTOWV4`s(xiE7PwVm(0DHE2r97_j8q$)e?87S3dU_AO03uaP)Jn-4nqLKi0*ZxNh|0 znCRP#mwGw#ZafX~wC#&LUpT9O@sm22W&7=y#$C7Q5`KK)$L@!5t`1keSIJme)iz3> zn3^+n{$7jYL67EIh-KaDPi8&)>d#T>`2MBMjZq2@tB!7#ZHqm9y?o`(ml1rtPqq{u zG(By7DpWK6^R8g!vd)z?mlt2H+Vh^j^x1RmPa1wgX|3!vKXmVlzUQp}_Lar|)VeE+ zHp!nT?`l!Ww_6@w__SiyeE-#=t+wHRUN!jWzMcHX^Dq#-?S3^ zf7yS1!ufys&iYI5x3KFRzo(t+#wp|9B30dYQvKD6Pre*n#mmlHJ@=cwfAyE!SHA9U zQGRXxF|02*y7HS~erR&C-}+C?_Pb$|Vm`(GpeZ+fX-_9Ii|mWR|;bGAQG`>+0Ny;JSgbSS-l`FWqH(4DqHJ^%d* z{=c}H_bK@C;>jNqq#uXxY7olLeP|?lE!b=0^it;Y)35Bj{!r&2>)yB49WV9@zC6zQ zxM2Nx zi~rtRd%WGJFKfyEvOR6S%(TmP7bhR&zi1Oa<>Ei5FNb-a)hd>4jjwYTeb{8oYpnNO zF!Mf7*CAuYa&IJo?WuAIT7LaFGne6Hqoex$ zTe2I@eN(u`_x?h2`0GpRPs;5AzU4is^;M5uANKy`iPw7#z1}z9*k8T*`U3mjPlp9J zb58bZGt1oRZ7V(L*{rAUa^;xcd|_YSVO4wW&YK)x)K@wO2mDNS*pIhV5i)ZWUo5@A6F&0YF2Q&nBQ%%QdAd|UG}x%`tCRLFV0k2 zI%VD6Jzheel4s=~-k8l7rCqu2^qpH?2cFztee=)yThFs*$u>Bb2U^*@-?ikPZT~60 z@*5lN!~bZWwYp}rw9KP@$z%S%j<;7S3*3^k+?rCfLTC1zh*F0PeP#VL)#uaPf_C;z zn3XjB`KiSp`;IHllSy1PF)cpuxax+W`aqfIKHfPQUsk``n(@`D;PJKsgsB<6p&1ANjQ=75(ys~QgzQ}fY z%YsY3HIoH?2X8*_HNAl&Nc!9z9|_AMN2@H;>E}Jq9GH}Kw(Hp(-+9I#_aBRXKJmQ&e&gVe=RaClUoNrJR-5`y zR%@=e*6caQpT2t2`Q6jrJLAT&!0m!r(zll7*{vvI@A2Lr>oxa{p}$$XTI!bhp5Zsc z_uS`So95*{aoY9!Q%vEWY(;VSUBApCvuTpAU!Hxt&j>C9tqUY}b(CF$f9W8rvfllg^H|JY|f5iZ%iMe^vb z8Yj2+K^e!NYO=qwVC_%QU2gdQ$n^TTUpl9qGx@c(s!rVCiG%MXSA#9yo){a z>w8IE@vQl``jcNT%dR=}XPx8UWiML}&&j`ejnBGtlls4JpO?+Q@zA~L@xi3@qrYUf zmP+lo?BcE1v+exkby*hudd3UizqNC3b)4!O;c>>d<*#4Y^9Z+N`@a0-e#UN^Y0Yz9 z(^Y<2+Hw!Cx2J#jxxXoP(usf1p4ir5clYQ9Cz)frMLlo6aItm`fAqaJLZj-)T>IOS z^By%NKdU}>`=fRJ_P3qM&9xuz)Wo~J-Wiekv3mW=C2T!fzS1FgKU9au-CDJ{t4*Wy z$D6N)_OW$w?m;RmwojK9|GHW2Pu7y72iGjPw%I^pqEy}UdC8tvb7QSmOb(bXlr#CM z+|>0um92FIit{^XSy&qn_cRmoq=tT77t6bJ3Nz&)((8wOJdrFXh`fhFmMCI8)tRwN_)z zYuq^{8hDRi+s1lsqjp#&XoTl6Wc`3Cv#dSxU`%% zo_=(XMBj|t^IpYHlzVvVdijBqk5%9*O&cZT=V+g9;LaD zZ<^l`k1UbW9| z&&qspZRc?-cYBWAr=&~YDBjoHnS7-G>eVtg*;gh3H|H4_mM<`P7N4qV&hX^Uf||>` zn$K78p85M%BKT2o>V{KC%VX1`uIznhFng~{*2iN8Q}uUeJ1(wg%oa5lTX|Vu_HlP|ukG(frTx3o=YMO)tF5Ob zMbAB1{f7IYTI`EE*9Wm;a%%}-@kg7mefDboqFK$?Ov~YFK;zJUJ&tY z$BUlNJC|LoOxv|(v10VcEmK$BTUV+tb9(zu=DEp-XPtj*`tawx4)t#?$72@nE-Crx zV;Unbe9a^FThw`reW%_|nHRO?ebt1^9-gvZ?7#LZ&9_%yYuY*G&RYIlxrL`R?B}}A zj1FhJwYqcpJ!bJINqxb`ui8~_S$|7kR(JXJ=b_PA20!oYT$^Fh{=Fa|cH;W8o9^?3 zeXB12V9g`7w6w`|zNY#ki_LXkmOh$!?XYD*-s|00K2PDVEEQ&caPiBNDIv>au5s>o z|6^Tp^R|oszANq1-uHY**8UIES5KT1ev`d)#oRfil_ol`LU%6t>$~ejm49@*|CcGX zVNpIiKHh$M#&T)j^h)95vy9J6{^W0hSucuvW zYX3U+xwr3?PO+_>b^N@h<-udx(O08t)>Z$KiTYa{;rI7=&DHz<2JvZryFq zDSGW9-~P6!p1K{$5XG;yd#yt$A8I&e=Uz%?-YK^(VUze@skb!52f9 zCC9X%-S0CrzjLVMxa}2A#pB#tzdVXn*YHm+nO-CFc1dE;C(T8zJMx>jAC%j#>+4hK z-E=YT^`Mn z*E=^O>$TlMtveshf8R_wvdg94r(LPds=^P zmEQXEud-$ZM_n!1=6mb--btaei{G^-TVL$k6O%UC>~_9l>X!`vh5fFNXNlX?URq@J z)kOdI0xQASVTU(go6Bc?=4&bcgGZfHbUhBd_O7U%{QSo`WxLa-!a{3T?~}dTX|~lr z_SM6>lK%bnx*n4*#nctF1#zpi*>Lsbrn{&Fi{GrdwdmNb1B@NtSM8}k`CRq3cY4*@ z_fKBxACx=$y5bV|C-#YVock40eysh$`lafQrb$ul{`Z;XHVyL*gm;L35}Fzq#g}|y z*UT;dqr{4~Maw-p*T3NHH=p#==OX>sl3Tkf*==Lo#7mxCRJ^)KRwk1}>Z$qKNW%vu z4=jq9rJ^5=_$9z^KjuJs04?^O9@%^S-dWm3|sK?X{oW z1a|wJ&%$d?8XMPcoflm7%<}B9p84sw3TLaPeqGOfKK$8%{K-Xj&(fyGF50$A>hwd) z@@ctyPOU$nq!(%)`1_{k?dZTP%one}bnx(d%Yw6~DrM(KiWO;S%dgTepVf3XOXSYxVk1s_QSHzr7vD$k zo1g8J!{yrjF6)ohWiPhQOIn+5>@QjOEO5r|6?UtapSf`UKJOuu@AGBzE55JfD^=Pa z8kT>iQNh0V;`43ZS!b`sF8uJx>fG618?^o7?hB`7GFi^l3sSkTaSGGsu=ktv?g>t3 z>SFs8e)lv({mnxiPLEa%qUwCz?>efk6P)?5`2C@e zEoJ}j6+~=FYPnl*<)P(mw|lFk`VMxqUD|0rZ{z#Zmcg}m_b=ZI-mL7>;lc&|n6 zKebBk?Y?DiJT5PGOIT`iamg~9r~aq(GllL{cJ}f5p3Aei7WVbu)ytcht2nn+3Ccfd z=ZfAoVOh-yx#{}K^YiZAT&k8){iWyYhaI_3+~+=i;nQ!oyyt~cTIz?)`2j++RQb0S z-{af)VeJb6wYd}GUWPmqTzS8R&3ID93^~oqpN=q2+0Cl{V0vGCxy*L0$B|a|e*Ru^ z)wX!buP?+(vh`<`U}@%wvIv*p)QU4yt%-5u`x zqAdgzIsWdx|LD%=Z>yIH1+5KhVJKSnUMqJ(dAZuMnv~3?nsUcIb9bDY%QdTH_s!01 zv&u{2eFxUh`DJmuQ(tCc&Gf!I^Z)Ly53B$F{(s?LyUYK-|Npc9>;C`d|6hOGb9V8b zs@=~#*Tl9Z6&-lWv*&q5O30#hGfLMv-wr;rJlOlC^vkXqbxS9{nnmwlEIn9tuGow7 zcIV_*`FD7_cZL35V`aT@idk^ls?PzHv+K0ZyU3oHzk|)Es#(``!QQ_up1r5bpD_Qw zS{16c=k(mfQjPv9#f$r|pS!#@uJpmzif>o^j(+~r_wnMcg{BYgmN$OXl4HL0$ha`@ zlg~q!d*N@tOxtnQ(ALsw>wew3#ec2$Jx`N3TR*Eg{m<4Pdml$vF1|MHxUTwL#r$*o zFUy>>i92uierx={GfU4}?)+DH=sTz1)p()x>b38*|D4KAx~KQM`TmVXkND2k28X<6 z41CU>aQpZl<8$+lec$eVO8iS?UHQIkm)Bei{kF2KZ7=(QwpWMZTYqZWo;7`YxbuAK zyv;n>M$`PieVSWV3ruuzrJuz_tHdg-mAs5~|Jq)fawYoUPec7ESve^>vA0Ci?rPrIC zvsS-(zTB5Zd}>?V7AMT+E-K%>Naoh1rHyWFygLL0FK;Uk=&zK2AQ5Zv<=rA?hPNx7 z1ExE_nzLJdjln&oy}bE*7W2(m)WxsP{QF4lw7i^PcS+uG3IDDjDZg5AyI(yv_fva> z?!R&fnUn3ra>};a(eGBv;=(*jH;Z+?1^$aOqb;&8${nA&Y-4%g!=n}}m2+e-YVz^w zy}zZ^zG6>#{!*=y)lq`AS385d_sselp1-t1!93pv^H(i&{Q$UebN8 z@k}61UW41{2>+#J!M01kzk2y8+vpZxwvaABq&TmFlSo3w6f1>E^~DiI z*{nUuyTtmo^vS4S)oPHQ?!NY3^nM3J+hixg8 zzpk$TzyA7r>Ig@k{r3sb7s>?OK&x@AIzr9J;fyeEaoN_1mwn+FaT*bN#E> z<{DiY%i8DPt!&=6zxSDA`~2fO!?5bxvu+(uw+h=bujIy*C%(^TTWza)`&OejYsqx0 zB?n#?^{ogt{8)NA{oKi(9%rw8&1Dz+58t_0@lG?!zmoY>hDnr_YUr%A-TtMvd!6U{ zKW;OdmbFjUe7(}X zrhZ=Y+660@%&FI!{kJIggRxJ%@4JfgrZ3WEH9xK>n0I;KySMG%?XR6a_x4T2cbT^z za@rUED%St@%dcd@m;a@;pLwpUSE=Nu_XmFuT5+k*q0;5=7S<&fN`HE1tJ{`q2VWE_ zZIVB`-v3M4p`G7Ue)fH`_jbkx zbMsd&)6Qw*w)p)i<9rF*w|!d|-oN~FRb}y-U%%QbCT;s=cg&_dHZ_0lKfi(rdD&mD z|DKmWx%In7cvxBc+cU>X1#SBdePO=xqt}U1jk)wx=-Z3s`ySUzC||kh&a5gLBeU^K z-!2CB&%3KC?Dpj>d2f8bZo2|+(S0@D)eGOv%iWXao%JR3Ow!7*%{{9+-nehR$#&eq zZN`H0duzV`mn{h1nrda&$I349)a;Wn9>PQwPnTk_q4ds~6o$d>JQn*vU1bJ)pL$_ zDejdn2=Dw_ufN>wU2FS;>3Ii^+ptb|ogzEkOV0H4&P!o4ed5%Qy_jYea`npZZDIde z_wV|6z*0O@Hg~7bI@9~BE56I!s-5m7q4#$++gr`MD~lycR&8jS_b?*vbA8vv>pI0} zy>8_&tJl}Ozg}e2{4Z?x<-qpEsnM^$*50#SdAum=Qu?gt^S10-l%~FCmcY&F6RR!# z*6*AVtnQg59($~NaqC7wiMPM!&3X2tXJW@Zan8qIWuEfRJhJHu%U3zaGx49?Yy97O z|6cUb(9ZA4@%Nuj$W7<|)$@44CWpD|4=(RYWc$2KrQT`>$L`bGrqbUUChb^iv+Ur! z9W6Wujh`%^l66h&=c&zZ=S3OJUbgUQZ+P(A`jwCS6gRccGj9By@j7b%6zOR-TKmp# z$gVrbIn_A#;c-j5`!DZi@9>`S)v!NUKU<#D&2z3`gOmG*V)?As%+FYRtruiY+;hp< zs!m^8G~e~((}D$d&xO{>+Pz+#o~(Imci&IDnO?&C=KTH@S8W`(lZSt8n%$oE1i|O` zG%hU7na`(EwEb$_;yC|Z$KD+2SRp)JCjYv`>kqRZumA8Nck=#hTV}r#cQ3u{`1sfG z-G7_l{P3-DmuFsomjCePTHibOwe82p82d5)~d*%xuo zS)ad}xp~F3qgChsIIE^*y|lfz_-~7MW#F~R?;Yza*w`iBIKR|!@KP6$yi`q&wBFqn|GqDX8HVOn^x`S z%RBj4r(lJU<;{m{w6fz9rTCWTC{K+&D*VtR=40N`-F|6;+g5LVS}e-kgG8W(#npJzSm=RM^R?FYGmZIw}~y=L0w^X{$WuyeHK zsmPB$kn)P{;O-K39rSy-h7UImr+x+V~N$_ z-Tz;Fd357d-rQ}+B#)&_{4oeCDB1Hw@_mI?W8}j#wX1cazgC`Ps)*;#x+Eksb0^Q0 zT_&?Q&+UH_`!jm})iutUE3WQX+<)x2PccjS7TH&E->01QcX9c;=yU&4(KfyR%np}W z?pgL0Eit!>Jl^{5Q=n|g`41D=E=-&CIb>479?yQ0Czo@&?ytM2`o?D2`%NDUcAN;V zamz^It>Ds}&&?Zfb@v9J7t{DF4t;(UcGxf@U4wwn3d-?3if*b%q2uk7f>Sr%!+ zdtdBL6G@M^sPk^oSQI;P!uo}ct3*|Agw4Ax(_e6BtMmTVtM>Uuxys40dfBXgQ*hR& z-*?I3H|w@No0&Iff%2*~|4i;V#buZXy{b1--mWCOExu~S+9=uuCggOmAYn| z@7~VOtkS_d6k9%r7aoc{w2^V`eW$g%Rz79$O}F1H&to~rvEyc6 z>E3RswV$MV>)hjdCii(x{q%b;f5TJNQiky58RZX_sN`qm)y%Van5OWSJ!so>fz`>k zc|F%jzv~ouyLsv{tEKU8^EU@ou$|hQCR=cB!Sj`KA5^-1PkdHubn4mm^qbRX9h|X! z`v<9Sotu*n92HhCn>qi>`&${J+dCSxr`V|P`?gQ;++rTFn%$Y+$B*^TFWMpUd-tF9 zXSTj&dH;HchraE{JL`Ui8^>!~%y#>Dl3glu>H6pAcZu%!_%0`yH*ju!=kD0kA1giU zR_)MvnAvrHU&76=FXPpCWxkg^z1(_VaHaXN#cO|yW$#_Dwe!0Ej{l3AgO7+@@)Wkq zUTjw%(o|LXD%nc^ShZBO_NloVFORs+|D>bqU6)>Y^~xtp6%Laf?}PZ~7_78(n0>+e z!z6ySc^ATMPX#NV^}C(2Y2BYS{O1GB=4OT0Jo5itP-LUDRii)M_tnaxKWb|=j$hce z<=qiytJtr`uWe6WzEiQl;^1%Ve{(*6h`d%@)U@n#z{le0);}D?L(^rZ?D5|5_3UJ} zQ|Xq6?XCCidSbo*^wyifO8j;oh5puEJK^`%c>ATp>u$c?zw%{D*0q0}>QTr0KQ7a? zf1LR&!cnkhi?`ES!)*JrSC?B(`dZWQy1i0l-3@`*<%J=8Gvs@(NN>_xe)IFJwOX0H z7nb^bKC7|6wrWzW*L|z?WfFhg?MvPr`Muwa`+L>A;}+pszhsu$pBK#ioVjj++P3dI z&(+pV-ekA+WAT#tHy*aHT)W$$`eo36k+ZGO&;Kr7U3BTsjy0Qvo=IQ0`#F5_on6|& zQ=fO)tP0pERI;m{-&?vrjQMn+grbk+>Id&wOZ%5NZT)`pq3R#Gt<$t7Kk~YHwe#Sa zjVB&ko33Qu@X~0_^&1l_mbJ=XbTjVoKVvp?F;~*^!|D=cPhUkn{=xZq`KP>jyOsMd zO`cx5b@CS%X9XUIS>aQ4%r`%fSTgC?l?_EjQ!*`6Pi5(}XDZJ%UB$8@ctUQ2@s_2p zHu0|%J9NQ3%fV%S-ufBHA;n&O=Lv zKO{@U{14l68DEc`p$u$c--7plziDzoa zs%76>7Hx_sM5}^mlFIh3huAWP?}j`No>Ox^Bxk! z#&m9N)SkQIQ&+_<@ZS;NU(ope-s<<~n19W>eKY_4`fPiHi`6ZHzt;yI&wnQ=MR zvP3kqdV>9hu+HeL?Nes&@=Wi)u8`00Zfoxq*Ylr+`kZ~Am_Jd}{B1hv)=$=BedlG4 z?JKC5mH)#2)&9N->faUj*Ox_HZPIwEdpuz7t|L)>!JFp^ZQsZ7ed?JX(`Iv-7Os81 zYvMV*>aX%% zeQnWW$I5k|^^RA&R%B+zsN_f+{66!b>XlTfW!R;4=@v`G?i-fP`!-c*3-A1+8n?F_ zbzV%{vNXyryJ%LC-EZ%uW{LTyGoMFGJz#kgs_lRBv*_RO(DKE1u3o)+KyLfz%-ahk zPrsKt?~%Iu=K5&ec_n;vcN!NN`oG%de{1Qp=hLL^uIH+Rt}MLd`MvMER_m7=r}voa z$y)3GJp6mL%_d)a{gby(Z|~6LyJ9)@Z#}!t3iIt3mZWuBmCVlWYD3T zrLJr`ovoqT8_-?7QbZ)ZO83p)LA@eWqrIUh<_eK%wtEf8&~$r(1rkykmEDn$X)|>G?n0zlCoNT6<77Ed9p3go?Ja z?*ALQOZUHWXm{eJRL z|DL|nme>5h{J!44qUv9&R=2N9|LpwKBEIQ=>@L(!4!UjdW!1kel8^5kx)=7T(e^3V zih$Rs;zqG&%Us- zd2Dp@`}PO_y0-289p%J*XQ}Jd-8VPKrhL4=GH#Y%!Dfj?zk?jM|M)z`Z{PEID$Q&% zYdY_j6$}45dbh1Y_x|*w!N(J(#dOcfo1gKX<@LYc?x&9Z-22VlH>Tu;W^_{Y^*`pX zb}V68s8%LYFSq~Oni9>H^cP##emuL;IbGnk($!_gd2jlbPG-Nc;KVWYUd`HTOWAbQ zOs5Dv`@6%uRk+W-)GFkuoP)UVk9SFjU$UKJwOHx5W6vZ1+Yfq{t@4=h>y`dy#I^Y zUi!S7)V;I(^N#B)9!I+#-tp|@Q}bWVVWC;CY_xyQtGqJxf|$1 z`_lJ*UlLt>%~XE+OD%-7BxE#P3-W z`}Fe88jY2&L#1rl;ttwWg=ouEuk(g}xLimhCF3*3Fs!YyGaSe6QlelOB5{mOhu; znjG}3IO&e%?JN5ZNX|SSU}vck>~{Td#Wt<|hk5s>|9q%3tJGWNzSiC9t9!n${dCU4 zP;cuhE6G1W-&emdKi;3b?z`Hw-piGTAKyz8Uh$d%(Hw*TK->*m%ys<-@+((|FV zC;R!|y30SSzS_P2ZhiKARN!2xlc%>8yUx8eyKmt<*CpqS=WhRF|8u%jY4NMP1TZC`lDDP2(MzgBvB^WB+ytyhOEcB##9e|Y_E64z!cv90l3 z^`4QX2}xgT4&}?Kugq0n|1ZvZpQ--8cb}>SzWNu2l*(nhgrvFL(R?U-?C}$WvxUyT z^q%gU`q<=Sclytp-8@Yl^8U!_dFCc5d8hWPzqOovxUA_* zOxl6cOMmP$%XbUfoA=Gx@w5Md-9xk6K6jsM|9NTR<~4QQ+nf&%{K8kJ>CE^0b#e||C*%-EAw2uygfbbUhquWsFxn|{L>}%Sfj5Cit8(%8=18;dbLOYRu_u+wb&;4 z{r&fPZ#O(RU$yPz*OiMU*UovRv^F*SdD;BQ>qNiK{I*zr-rUQcdKz)x|Gjx@zkT!h zUGvRBWzh4)1=(*_*($B~oR_Xtm9*2EMMdOYzuWDtTmLWS*lZhk@|D{Ko#j1pxlDc9 zRS&)M+#Zw$Yx(!or!!OuEPQ{x?%isu{~Xo#e;wGaxhA^MaAj@gzrEJyu1@(P`uz0) zh2PG_6TfLo@@!nMo4tF1V4vW}7u!F**dP7s=zHN>KGl%h_U|QbOKJzrVhZ(Hsx{-3 zV83T@+S{fii9Z!bE>};xqutJL zx(xh%w=X{y5LKTwrE2FLEAGVBz)a`qOGWQ*T^6GidU4`3w$vJC+izKA;Zk#&_GVe0 ziWB^~{nN?98A~kt4p*4pTfdv(w}qMD#PG)vZs)Fi-($WuV7dkS!z12L>t;%AWLOb3 zu_;;C;b_PCmn)9v%V@7MIdSd8*8~CfeW443@2Kso{#n6%E&A03+Y_h0zB7$md_{B8 z@$Z{|{`lWs|Jr^<{m=S8kAKbozr8;0e%)8C(w{HYn&zYzw5hz=_k8YW_x|WBH4nbL z*0_FDot1yCd(k72b-Vk^?swN&9N%9qSG!Y*rSbF2jAOQq4%6l>>3y!hGkDV}*{TIM z?Osn=#U}4iqWDX{JZ{zEo#*#$fA#3W?5`b@1!|b@hxS?a8ouH!Xo?ry|0H@rvG1wb zr7|C+_q+&w^Ih|hNI*=G+taL5vd_LB^>XuGq;?`Q>C)+C&N8K%dhETIHmnNF`eV1C zx_ftv?y@DTHT!pVgdgYFn(DIZ^)lXBH)7o{{M&H+@RzdnW{kb}I%jx$-4!XC{`kaM z(R;h|k3K%UUw@Bf-Q>6qU0(Nb z?`4Pit0&58uc$v0C!2cQDEofzpHp8W!?UC`gSY5?Vmt2j$nC3&T=whpvh|q}-|Z~7 zJKw9#JU4T>;1sW!%de_D;VxzM(7v~M&FnmpvWv3{*56J{e%ht<`n%4(>wgP1W=E7X z$0prLH>*6PyEoKtS=gr z>DS#=+*~3P-dE<|x6o|g9PmC&MmN)E(`Ds!OZS>|J;NQ~Nhf-@iX~=f5wq*;4d;`JsP8 z5f}9?$=;v*FEIYmKG#U!mnzrRwl24v95s30`7*z%=4WSj8FRj`oU#A>$)}IjO|;oM zIrrhq$on6^8Z7Zzdp_;y<%U*YRUh68Hr_QOIcLkm$0o15Bfc2_Jl?7HahdG?{-~nI z?}hv3?PU2fUH01Ez3V@2n{QqFdnx0Ovy=Tw_GYp)^BnzCVsUS|3CGmSCpqtbSN)>& z(Y*Pg*yQiUA_@H~Cv&N{_TJYDUdkQW8dhz2q++_z|xF?+@?C$7$8_hr7z}#r-R* zm?CGvR_#^xmTzxM?CTGA*Y4(8`uNkHWSLVFy^ik5iQQp6)HYbwBQG-?S^czvMOUo$6k>SIw5+^q-bn zM+K9N_0=m!<{nzY)W37Vz3di_Z;q*VA52~_;fVe%m-^jLAI|MwQrkCuR{31*OAl5? zE8KfJWz8#*4jVRD#uaIs%-U!kQQs%%23grOWwA&@7V8?zW>q*E1``$ z{)?1;ky^vyci`HQ$ctH4CcA3V|E@37XTNpzmr(KAsTS8htgD_9R^GlSsoaH;FXGpk z&+o49`hNa->HONjJ->Yydu?B#?8_x{{K$O$YTKQT!M;p3VjFb&wenuwIKD>Fe}T*S zrJJ_LfBkiJ^}mb%KgD0Q|07->RR4DU|EpKel|PK!rL@0t9M#*? zDwK4vuA`@Th3tMU-U1cfUq5p%CBI+0%98Kbl1!KRP4n3PUOd^$VSijIbN$)MJ751D z2rIoBd;fQ;N!QPks|6-ZKXz~bbuG`z;)zFW&PtEx(?9WkkuN`{^z-A~ny{s5!pF^z zNj;7aw0r6BGGOkx-OJo`d)8UyPB!t=^)^51kT>1pM^L=P@%VVxon@@^%<If}&e` zE*mS|n3lDoE5FoaMY2;V!*u-%oQ12S<3D>8F5Bcd`Bd-ZZ|jqjWGg40o}l)0O1!P>o`3&@cHWXWzPd{Jjb`$( z3wN_Q1dm$Q_1I|NS})wZThRCSxsJH&%N#FXQTlyp-d;BkzhgIF?|8Gv>?v<_=-Mwm z+VlHQalZQSS5sc~(vLrCe?z#+{fzDA_r1tjDs=qe#cxr(Yh7=j2|Q;x`Bwh)^jY%t zul^jGI48`>*>+zbNm!xiarU;3Mc6bLMX6FEQs= z@>_oMSB>4B_3@h|zdFafZHB>d>h5=b7d$fkEj)eta+x*dE`{McBOe6cpLb7n|DPe)*xJMyE%4Gs@^7Pf!Wf;H{^>7t5%$l&6yh9 zxxGYl%e|=EQ)cY@d#;+L)9}DU9+~_HJXh@kTGQ>PKhC@RQ(?n7*(GaZi_{EH&kpw2 zw>(w#Xy)v#Tjxz?wlsYE)zVA;xp?9qIy!VBHeg%ex2jDS$#GC z&4KXc&EGCgHQeGjrzl=I-R_lh++6oZ#uY72) z+4XqtF|Y8P3(M7hitPXU;V!Ffmh!u+8&7%6j+wTw?_ya|U0nQowX;t$4B{?(E@xX1 zbvuN48_`xDE(JVWrG0#Q@v?RkHGZlT`BUA@A$4$t}U z$)u`?FI$IUXVvPs`se%qOMmtM|J8oQ|1b9c4_~_C^?vo8-!r^z4ODN zv$N)a=rnJMiPuYRG(C%Fmpb~@Bfs#QiYI;uYWJ`{9u+_{BheoHQi#p2f`OqP96X7(ogESP`dl1 zXLmnx#$C;lSvhBu=4Yp6d&B4dsnyRr!cg;|xayDggQtb_?93I_L*x4PP0(7o*K*CA z``@+BZ@j=PP-?a^&s}o4l}g>~wpp8M-l@2*-JaN4zTU}NYIbQzQ`X+y$J}I(J{CLm zDR8%w?BR=LQA@UoelKFTvpF=^=%;79qxGqWQ{FGR7;B!gwC=>btp3Yamre={)?eDc zapB45((mt;@J{_T?^LVU*UYSM_1pJMxMn#yvOD{3Y=V_#(w)jm_voCSs?^ z>~c}uBcpt6cJ^19g>$;qI~UXhDz7%$#q&4x#0S~vPQP;sYeKf<9a!-7#VhsK-#;qo zsGsGpeW>`bIzIp8P0?wQv!Lf-#mxh<*wd`Zzu4(I9LkLNr$+-_y|W8TA$ zMd$LrnKEA6y=wK38Cx>UbHnG~{_lIQevzhA=_JW5$#Xw!`5gDf^sDRfxpno64hz3c z+5L7xe=gHEX|v%YQCP-gJHKI1yYL{PLJNv8i z)HA}9J%vwnE?g}vT+aM%$NNj)0+Qc-wF%A+|7thY$o5$9yUrJX_4I-i?zl|&etXeh znQ8t$FN3{~7VF>V=jwlaXYSGztX;!Y-TvC_iN0h zHhHaAPP1N}$uR8QcVSU&)ns$;|5rN`f|mjQ+~?+ts6q+RzJU}yLG|!Yj-`LaPi)9h~?H_8zvH>Z|M{$qZw*< z?uTuk<(scrCI?@}CR-?NoVA5FJ?86FapO8yPtV(b_DoBDe^=l7l-xfP<)f{c@wKA;xOAq=fuQ>g0Z~3m;fP9~8KTCa2-hR6FQtz|;OU@VX zJmn8)-mG=K+;8XdDQv2>YVQkUTR+eKu)6Q!+AUcfEmxn%M9;rvcIwGAgSFGwmu)7J{?`&RTH zx~^V(jcu>gv5&vCWIJP5U;pSi$5#D9!J}XIEdJ?Fj{4g8+RXClk-tTcwuNnX$x`~? zwAc3g!Ig8)NyaXI67%`e-a98BJzi8Z?T_cn*;8&Wx_kFS$IceB$j^TK`9DLJb4{|! zo04|rU&*Z98r%|X(@xcXTk(ENSB<;e)5o6IwRT?doN>wTq0_0dK=!^BK64)a)y!IR z>SNU+*4FjzcDelD8P)FC&Re7wL4m(%kz!^3S)%uZgn;l+;3lFY1py~AaZQ!0g?EuZq~`uw+dlAqu8NY5)hbl=lF z>)Umu|HeH2=Qn>-xB4IQzEZE&bCZqC;THjOZdE_J8OZHDY;MJN37;$;PSM;N_T%_(SE+ZeE{bi)4{4QIkjJXNuxr!Dx4ISAR+yXa z`1wx$P`zZ2^2(ntRm?7i_n-J|{ms-DwoPYkTem-`$B8}@G_O85R zSHQ0Jt#!Sg{S}L&8j=##S6?!^KX`dg?a#ZX7xmZv`Db+C%dGty{_k9CR=Xy^J>DYx z)HD6%jUV}vo8PZADo`ss9BJhh&6_@dl~TcprNxX-YnHuxb*i9iL(b}1=Xy>mN>Amr zijvsavcl1VC3~8?{xzG-?_F|lLTB%NmbE;WA!OrK!^MA@&p8^a?|Bxua>egZ32r?@ zo1o6Od%E5CCgm8Ihtx**-B6laUhVE|A(Q{(ag6l-j4%m$P``+ZFzdNF`9OC#q`=5ScVULe5UQ~YX>#{9vkL};@ zQt|qxV*R4QS*~W)mgZ#Ei)j|Wf?j(_eDGWP*YlE=Ex(<=)S{OivmPG`z8E>v;Kekv zx!SY%ZT9(|(UaSfC>tYcVEU*`a(n1Ezj-Qm)_Uf4H3m;va;jUcKD6%1=2N{#d^!Kg zl)pKB`h$UxZ*^1wE`Pgm|3mlVNGAE7$<(f@>K5Bl|MPZ^PJY0yYuq}&FMdHtulYQ>ffcf%J?7FXRH1^ zE52vhcsc6S%95fi-}H+2k@8#n@+wQtrTVT~sPe8v=i9|&Zk*TM8^VvS-}aKt!n?ch ze9hb+aRLeM9?Cv@qeRV;zEzuYy{-{irKOMQ6{jlJQr|!ERbA;=^>@zF~yv}CnXSuHK zdXm*N1AULpEsDn{70-ODam6>`>hoXHg4tF6a}G_sWIMOwM02v_))=d-D-Rc$tUBj; zfaQ4T^zWxWZ(9HU)3?p%mzPbRzMyu??BteRS0h(GEqZhHX6RFkbKk4hEPcfJa*5>u z%g#Mr`d6w?Z!QsdHRDOewu-t#l5=)wPG%7QbfWi39l!4JfB&p`+$X~Exqt1Ajen-d=)DL%eM#_VQ2ptWX_xK2tq#s9 zn;0u+ckxd6hxwINf1cj4zu=MX>*jnxR_>+N?W^DXi%cq|U(S;Hxl(qkz`qW)U*EiU zie-FW{q(;PXbHgcL+;88KV=*)Stc{hjKB2#D0!g!d0L=I?bPePZr41s&Rf~Gm&H5l40G7Nv+sMln9ro{ z-x?ork0I?rmv{Fzp8uxNub!U1DYEmO#2Mz)z3aQ8Ev}TDbV*l}t(7vhICZz}|NG5f zvy=9SFXmxezEf=8*P9aSFTUFS?YHd5-afI=Rn;Hkbgcw4KlrlGyEO0e|C1^UHwW=< zmJ(#*Il#gHXPaAUv)hMB$~?wwO)vXaEPXhm;3|t>uc)f&>$iJ(!_+>k7UpvoW8#0D zeCcyaW5)!kb3#wv>{-3`_o1REGtW(~T(2P0eoIKE_eb#K>H6{=`dYd3qAjO7Y`S$x z*T(9)qx4Ia#OlU%LPI_-ShGt1 zmn`3_llD@X%8P@pYIc0_?VG&Ux|03b-5ur|)>ku~oW1U5xz%CE>Z%l_c`KWJey+Hr znBrjd^N!}h!rfiTud0{6+~H}r|JaHXlfO$axvjV-Tqc+A{j;--^M1xd)wMtGv|QY> ze&5w9_gT)ewOgHg#r{ZD);{KVed&Fbd#tPF@y|cL=00^@f8u=fPnm;0O?yIOn|^%! z`z=3n^2MD!Cyv-Gk#np)nt9^)kJw*Jel@z?d3{X!s?Nu_N~YVMyxb*^FFluuX0cp# zW%>NayRFQ={JdG~ArWF;9Q9dpvwB~?tL1TBnY2G^XZ7rgs^LBo$sgF;Ves06rzd3VmssFM+f?E>8_5?c984!OZ*?pUv>WZocdLZ9lwX|y`XG-G0%9; zT%OLg=XYP3)$=9DAnN6eZI$uz|JB@If49gg;(f91?%XfCqb#mp-TImHxZuA_ogwWt ze&0{A7hchPq4NH@r%dH-|KjK0Cs%FF+I#)#`@)v={j0ymeed}u{kSqfEK2%uxN!4b z-YxI0c;8(3OGfcv#M8a=WA~}=SGZT5xcStw$y_2aTVHGKbmgphb|*;cV0ru1<03*! zJ>#a-d)n??bmhuZ%casU#r)K+rihC9a-9y2zV%=3r{5<>+4vRCr!!~Y;`_BYbyMAg zmsjfURj=^O)qhoRbsIzUqx-3TdB?54d(K}i95A<9<9}beRNx8A$F+eqE13Des>=Bl z1kHQ!INB(;67q0i8?huOaj9qS-d*1N*Y2p0f zy9;Y=gVQ&yT6;D@A|mwJvH*>;`BMz9cqaSZo|m|+RQqt`fm^cz8T-T!&#etrJ@5W9 z{2*iN)6aYF1Q(cSx-33kUfBNIpq{5x(yuG(>%p29557>Q#4Ew=%%8$~e^0!U*s-L~ zQ}kTck#=T3-U_Qv`|1nA)ncDsdF=GChV|@~U$weB=Kfw`ygqz&KKJokd9!YM_=LdGczxg%~A_E zpY3*g?I-O;dX+!t%yv?!y|&WZM2B_ax>cf?*Q?L&zHsYe;-%GVZQk1*dn;7&V#Av< z7v*=%A&;$lO85S%Vt;8++_c9R8D8taPwSx#rxeYHDnsrM_1`M>AAukD<0 z=e?NDV!mhU`MXwMmH&59{)+wo?f)12`{DmTtkzcZ%sZPHtz7lD3EY!{IF}|E>+Fk~ z?|y1mQ$4%h>OU{;XZQI|mH*7iZV+`Ka8Br+_xxP8-_B{wm6AP?e;_2ZOy{{2_k_?Z zg^Ed`?_L+P&i`5PCwuiOy@?y9SWJ;Ua5#4QS#m7N!#O3raP zl{|&1`lH9AHUDiB82_I4Ae%AGNxykJAj*c6;ia-Pzz-fBDU=Ywxw((syxQ zcv-RKWH9rBiw$aVZOZf6r2_l6Px%_lJ%+vYzNQ)WARi3DDVxO11OE*I_>-xg> zwnH~p8%_EC^5>}p|D97gzB4NouCsb0W8EsETs+lvm2cX;tC{ADzf@iR`d+X5`d04J z>pSM>Kib>8-q?6yVBYNHHRba2Ry^NiWl}jm``hna3!Ah0S9k24ZpkmQUFW;^(rfQc z)AlYCUa$E?`TSjty;5Iph6SZ*uAKQHa- zd$r`Q?av(_XL@z_JkqXQ_w@3__L3sDWoGjQQ=A{|R&ip9(9d(NbdA+i-CXJyebks?of+_1p%gMDDe?DJYRx$Jc=50Uc1f?x{d-=^>?@euc z=L*+8doQ#6$hqYo?=7_7e)LNZ_uT!Q)9o2!vi8dLRDF7}>gejt%RWoYdp3VtZPl_; zn_hvZ3!ZUTV zs_(U(E5Euj=C@>0y+-cZ>$|Ee*Kf?XxVo!+meu!#taW8J>GghJzr5X<^~Cnm4z?Mk z>9hB*$@_jAba=`0%y_wjrj3c`?%ZvYKYy|%#$j8LkyGBg>UXQ3Jrr6bd2jk2lWvO~ zllOD0zN`F^)iYJ+TQ0>Z_3Zd6TdRJa1MkIsRGZK3uG#l^LhWU{y! zM3K``Q)ez!U|DvlVtIE#`bLA8UAM1nJaOl}E9Av8{ zYV-E8#?SH>*zHFwlx`xg70Ei(;rX1 zX(`*#J@2;!^OMkaU#(3m{=YjsGcxq*t-Z(iw^`?@f2dr#c*|_fc_3sPzc}?5=+~+FkKeyTWFE+Ph zvs7SJx%~Y1aczqaCI?RCg22(`I{8pL4#uo08VNLty*=Db=*rhCy|M+rO*D1SmCSKoH#YnCYV|(sAJ?awg!H=P5+XLRrYFgLB zQM>th-}gW>`|cmk7a zYulMKYx=(4R85`YKjn%)r+eq~lGVi?ua)E#|2=%8tXH-3aOg)iyMr8FeS*>UZ)g2i z6?zxe^0@EEJoke0g)S!d3tny8^{e_zUfII0n%{T5{=MApRo3(!)(@L@JpN;A?X=?k z>u+5-Ta#=;K6~@tKYh(C?Nqjr7kBBLMFk;NbAJ_0{cODS<)m`;$NRr2zHUo?6D&foOf9xLW|IGU4e_VC0sd~)w_v@E$mRnvmdEfivd!AQ) zFDbH_yWzv@<-&YB`>v|1$Nc~GQdsuG&ET`Od;h3}3+t=Ts+{yZ>iF}2iFzeJk6zna zC%>?^t#a;i$r)?^oq4I>d-%NQQQJ#dHtI8eU(sVYayw8Xj8-tdf^|@vLNzz3;WVUtEP<`)f*eB!w$X4=zbe&8_9o z)nQv5o*llDxxd_TPVn``9@ic%zpZ|Z;e1Kwe*N!XJ+2<I%9y!IOXtR})9JR-KYVrt z@5QF7lys|i0dntW<{zlOb@IR1y$#(w+xXLk3zmN6|6wAvDy>>Z^?m-@npMvf4^~tJ z8U5f1S$s-SS+{b{`g5_RuU^HuKd-Rr>e;enqezJ5tw%|px7d`~2#MYAyP&#XzVle} zoet|#g~I&J@9TX{|1D_?5$)HR@@s4ET~NVPeIb>2j`JmD`^!-FV4PNxXYvtLb|$>E*pzvYCIrJ(;&x z_jr($o~hQC&^h8Z%O-#Rx@3~mq#c?Edq3p<{rNY0LjBsRzi;dRn7^L?_x1kx|0nCe zwSS$x^di#>W8S)7KC-j-$pr3tt*w9Q?(;QMl+Op8k6rTe&iNcQ^+J=wjO^+P_xP9J zebRq<;a{#@*NtA^xUo$6$d)-hb1SRT&pQO24&0Hk{AS?-?MtFRGS}|=e%fDDv)4%Z z-0rubw}y?$h4xTkP{GssDn^%O^ixP6{_)wLyMGf61Cp4zj^FREokU z_sTuEkUL9yx6RT!S1Z^2y;xH*uTTF&{)a!icRW;|TVMM$bG4gP`pRxi{|7SZA{T&q@$ zT7PX8&sv9>2i8dSExT%`#GLD)=38PbbpB^>ol(EkB~8wSt*a)VD120WFuia6nh$f2 zFD{BX8OwNEa{2!MCckYK|7n|C_Tc}k4cabb0IX@2hN`LbkfkEuU4iW~KPt z=MB$F?#-GQGi$Qyx00%7Pq(<#J^Q@wa*F+y-1|axd7Dq( zUSS*=Gkw;ReX;A!E90I1-C6v6XH)(nbD87rr{~&D!V1uBw0knYibC-qNU_pSHh~^>{x2xqn$np8MRIF6KRZ zpZ@HVy?@fd=ir;0T-`dg&mR9clMw4LPhy_&QIQSRUylB05f*qKS9(5OdF5la(noUk z7M~kLCGPq0?emFP@Og*HgLz&YbAk>uNws`DH$5=--tXmkg@^c@jgLrvJbJ~uWkt`C z+^Jg{l_%5#S6~#yw8j9zIy5^ z)0c0y%CC}--?{MC zj+Z_6oLl7nsCCR(wW?HRx!nGrQRQANcfc`qsss&t0t~ z4Yy@2asPk3jW^43?~4_Zsef-+&E3BImpO(?drL^xt1CChdykYzyD<)lkDqd9P-cKSU*|x%E#{d z#ccC=8opZf*PmN|wRu_h`n(Ogz7PKf?wH!_B=4#> zS6Jum7oPS9!sV%l-muwzKPrAVV0BgH)Z{PU=Rdn)K682Rp460?wefuizIXhJeyX19 z?vi%(&F!K$zxI@#@_e_ZWRG>>tlr6&Q`YHz+!N**H0ja9GvR)fCiz}(h5Z}FrkxY5 zU7x!=#Q)x{?u*Hs;g51N_VeA(lv~{6t$5#T`OgOrZoTzfG!sq($Hq_4QUB1!U^3bXmHO1=R`aiBq-jV<1Ls^l|m4(|+KTN-M zs#jRuMziKsM2SU>ictFmxs|4Kx2)QGUMp0y`SV-J?Yp+!xLmo%e^bHytC8!s|%HX93#(_u>9+|_`GPh zxVp;iXLc^_#~(BPaZvkvZdd8W?@P86@fU46q2fL(@2{C)_>AxA&r6d0j&Rmr+%x;) zwA_PF*e@(G+V3CTs3}{!`cvk&>zqb@)8fb58~5}k zUi!+pD{t#c&q{IUl>u3I&#yXt($sWC@ZBlzPV9U-lRK{boTKZ)gCgZ@nsXL>DABw6 zYwj}6DJPwak55|29b+x+zSrZXe5qenPi}ne2UVYI^_+HWJvr`+|1~79T3K;D?BDy= z6}+Vjwgr3-6}^1(Md!t;CsDt8rd&|He_*jy31jr^^H+aNXS45nyN^BS=e^Ps{qgxL z`>X%otyp{h4oA;S#bdwE8J?)^ioHGK+yS$>N!_BlHk0jEv%RjoYN56R;*aqGLcCz^{LyGi4|L(8*ev%oby`xo`v5WV@=h+H{!|< zEDI?pJ`vgZ)$(C-vHQ)ZFMeJP{r`6VugSmG*B^dt{oN&b->QuV8o!;K>!HQ}?YV*C zy{oTu%P;pS_le&2`B7`7u=1>Yrro>Kk>-hW{2qzkRPWmpCouO6bH`slFRKrxr`Ai& zJ+S9-z6npe(cIeFhp)xll{8;3>6pIfX-(MieBnJxJ2&@#;@Dq$=f*$1sVA4aTjknV zKK1tO3EQVzzUZ^#+0~m0{;YF-y+Yf3-iy1NPyJV%%(>XTq_mOsc*{K|=X2F=(nV&Q z%&vMzX|7M;E3Zk8Tg^QE{YCjp9iQIb`7z1Uch>=L;XN-U68~kk>~*W0e@C~f<%Q=n ztGhopg{5Afr0B~2Ak}hDy{7(m)`FA8XQ!X{d#&`;_@459<@`U(;#{83`W|m8*UBF< zO={b#3z-+r{(Hjn`DeK6y4x-CJ4C{H&zRa=wVJ}O<@RT{MPOL0`r+N#a(atvubO!6 z6Z^Bq`{S}7UVC<&Q4^c&ymjZatk)GMX5E*3d)*~*rPCMrmHw5v`la6lA1{u-&{o>E zqioIJ18;(A=4D*J&Y>Q8=;xZ6fRBr-jLa`wJ#{zSzHZCDKc9X4H+{<4Ba>`+Y@2)K z6J2|$b+N`u!rD^hM=Z}SV_Un&)!tO;^NO<)cWTy6YrP{;_=sCe@@w$v9%GGje)eyV z2hYD$SUS}@X;bX=^LII$zfJVdjJ;j&{WI8l<-zQr^m+g69UV$UWtZ0Z^RASe_wsYiE33BT$1!ff>rCxm>i8S%+H<;a z#gDV!t?O@oUdwBJt zPYRy(N=U2vPSJ-Y%Gtg$_0Mj7+H-goyRAY|C1{oB4m3d;8w?&gVsa%}>_;`)gwS_jmuXH`|v#k2m_eh0oq!KxWg5 zh$9Qme|U0zX3I&vb5Beo=I@gHl3*p87qarJ_2qpH*4+$i`TZ>(?ztLVd#3Q-S|@}Z8!0=5Qp$&>(eW4iA}k-^i5*C)5g%%Pk%(Ot&#g(^5w0b(xL6Mi?--9 zo&R=QQBKw7)}^ygpO;1NDPJmhD)s1lvGW?Mu6QiyGco_9SiZJqaoVgWrC&N6XIYjB zcS*HdXn(R(F+KH4NBQ2YEuM?3&NW~DYhkctYmxG*d#78=Okce@xgcWe?9D-Yl}q-m zj-Ri2blHh3|FWt*ra!oJdg_;EEvZ+ZY#-cx;8JJmyL#0Uw}+>*p6M_x|EYKWf^mVb zt=*>ZtJ_~~Qu*@u&6S77$Igo?%}`tQ&Dq^g?fBM`$%{FQ|36>rUU2Ty^^#>TY<8(@ z=vS71Ulm@gckB0&+gBDB*rd(>|8U2-har;h1r%FP*!M^*TK7&evi1AQkgqSFXllRB zl>E2bz4mQj-4X41$vH*w8;eq&$R~GgI>LQ=cTBLvhrL|C8>|1$t^Z{Hdj7xF_n-YZ z_nc+ptGww`%8$B`f0m>?Hz@yY8CYccn4*^FF8j(glf$(~|eg^1oOtZyJ5fdd~Xa z8@F`n*RHep_kU$|d7Nk6J>Q;H^H|L`HTTNgYS=i@{O%L^wY(CuEe+;ad`Z7iu>WVt zNyn>;pDTsUH-7)r{C!5jvfZmo7HV`Y@d&(BdCPKY+Qh!Aooo`OO{SH7d8Zh7Qum)+ zf4{swuAI|i;iZojUj1^a`@c!96G+@PDgLpBr0)99zSFm9DTmCiy&h=)YESAuZ}s`& zc@g2Oj@6XuY8>}B(^wN@vUS~X2zy_+HQ*eVW->nb)Mz<)BAR8Tkfv1>8SSc)gj7(XOH|| zV2~WP@!h6hmuCdCO1&>w^i->0owiv~Lf@>oD2Lv|rFl-5Uq05-7CHXlYWrWccUKxu zp18NSzf-jK)jGeUUsiPQ)IW3oV%_7iU%kI?&PexlX?}Ra|AMd*OS-Pap7^^OmLes5 zj>hLYl$YB+KX$I(=KlnlDHnHtK6728<>{;EJ1rCc-`es)LOOQ!vNxyZmt7C`UEX@; zaNtjq|046f4*Fe|J@Rj*=knZIhTp0AC|oY~jk@H&3dWm$FQQ>)Zw-{#o;ZP(l8 zAFq|3wb`_@oPKdotGuVw^SDd@Wf@<&+Iy})9-9AZT4DXf-Cp?Glx4U4jx%4aoNC1V zeyhJ#o&BovqKA9G<+|-FuMD{>Y^$;FgU{kEo9A1ti%PfhGJNJ?#g_kb-j-)lPu49g zGl`xgfB);;bBiS_74HXSsm@ zzvut5>kLoU<{WU?Qq%AJ)OdcvFTYPaU&kb$FfLv4H!8aCu4JjAyFO=$?IveG%SWHA ziY-NEwLf08OX2$TmFhj)j=f)!cSh9hXu#U{=fC{yyku>+VSDC#hw9BP`)}NSu_el1 zHfN=Kfcqb*_SkyszfZzsG+9yIS$!{*sef8z8?3$a*rbn&ru2`A*{=IPX-T9fnEyZ@9 zbpJf>Qwqm9E4B2rxRtAqFV@Q_m6^xe))3UQ%W<;!(irY9-*Q(3shilwnONilT(zZEB%y-}iv)|iO{SIyTs*nXEx0%3l3|s1?~|4%RmrygPp5zQt6_SM|K;yB^S@W5 zrz{WJC%4Jz>(4B~>LZhXOj|H$)KNbrVen&NkCe=*2Lb8vdbeugE*f(5?4PdOcFtC6 z`Ey%8nfg8Ie1>}0^WU}K4Yj^s@9lnENA7-S*#E=zf8<~N|M~v^(tq3Qf5*?B__tcv zch3RtXM5e4mIlsOtv&X8(;;)i3G2Sw?zQ^2V=@1(@74GAR0Wv(*BM^BpSxwwqdU_o zt2!>f-^9%&+dupGy>kak%a`!P>NS{5ocHa1*XD)ae`nS$4F0e{%gVth{^~oHIZI7S zRBPDZ`&2s2Tl}o>+WO8u@z&Y%A6(vCz@0)eqa9+W+y1>`7ZWcb5uWWd}Y}?+~wt>l-`8WH$*J>4}X!n;iuUT(e z=6C1g&b&ER&!hIezjkeAz1Kbe8*e{MHn6)I{j|2C>fe-r>DyNOtrR?em2u^{{cpUz zPR|Q}pZeuz@LgFw_m3V|dM*UlJQ18$@!$E^YCo^s?cQA5vp6%lCml_^S$Uyvecm5Y zv+HvErcI1L`@zSuY}S=;S0ca6=r8!~vpnTu>2u-tDfjG3w;bD~{Hc=r?hiZLU_0Z- zZ^M81*5({p-k-t$_~>cTUG3UeXK%XyckapO#;GgTMa4M(ik`Gy)Y__|t@t{7j9f|8 z%i_J(vO)V&|F6jGm2h7FGyfvzyvz%UOXgj2{-9aguD+r7$)&n2&xPa4d9(h{+oQK~ z|Lu$yH{Mn*fBt$>pV7P>d7BUaTRrDXyyoAFeD-(yZJjR$ik3(?ZY=Tat2LP4Izew{ zhTi^5lFw$feAQ-`KYNlZ{@sNazmAo~BwqAfwbwg!PxI_MeJs<65 z_H)6U*Y8|oE5f$_*)i{}cSdV*-u=BcpUQUsuadaCX6yFV$#1iS3ty#9p6B-UaoE$1 zj4#uIB<5VEl;@3*Y?whzDg{E%c;(%gNu4XdVeKX_vC zd-Kj;rp*6WOlJ$pTl`>dw@J}Ki&b+Peq7&q{@2$PXN4+Emd)r}c=?03>7}_-Zi$;# zF~!}rzU{gw(@Dhh+~dftefllIj^dV~1sf)q-7C8D(0fjO*YwE4i$CQpmz%3MN&fpf z&Wfs#N1fFd!nWLta5wnm=de@Vz`{55u7TVc{l_lt6ISiMyl5ZCXOrb}&n0+YzS!z+ zyHas>$uz;(hPNH}H?R74cfb9s|9|rT@BG*Q|GRu?P5N}Vmu2ET)o#|igirlGD)-tc zJX520&yvSixE#d0?eZcD&a2EhyMX^nc-Ckn*ZyA)w6HX_a~=ktGv)zntJG}uK%Tliv*X?40;`0 zTqVBHD{jsC+JzHu^;lozFn{%W-siQ?c5866tM?y@UH7NAra){?>4`lo`_opZZ*hBj zPp1DnG;`;i0}H zaQ*$tx=UNKa!&Ge3ab}{zm6OJo8zva}zqBr$ex-O%T502k{nhp#Zp*Su&5d9)KOXa1RqdvD zd6A<0^=z5aJ(jO#ygwwhs+h-jW&VLmleCMC_n%5$J{NvMvHa(u`+i5ywbrLgndaa9RJ8BhDn-8+nlhP(I(Hx5^TA@B z(d8Fke%%kh{a}^s`imRAWjj(GCT8VC|8l>;{oM0Z(ex(O#V!%6PIy0Hx%F1<+}W?? zMKKv{p5Lcmd70@{xM>@|m#yV=J6GXHm2z)qeo(fx+-l{1rDud3if;@qsNeao>e& z(@$^yInChbY=5aam!Ioh{uVaxsp!Y&+3WY*{1u)WxBb$m(uJq42R_bU(4AiG|LIQO zH;a9B{)w++os&g|CzQEW38i&ntLbvBd9(rR~MeeZha--7@a{6z3|p{L^{* zP44nPSL~Kv_AlL%Cwk?q(9)ZH_HVum{CNKD-+ABqEr;Jry-0VLpR{`E=9ANzHqHOD z^3}CpM~ecIc9u(~@?}R~O>JHOS^NF&c9A^OvoUWUoE6M1*->2lb@|B&D`)%s+{?AD zAy%R~=*`lIT+suO=MrY^{=x&Ogmrpn zduE3JUjAUmBJnu=4;|m7zD9iFt7XeuzgR+FS>iW4`|FLboc40@ANyS^J;|_6s&PeN zlGN3OS<7bYUg>q(P&m3`nuvApRju3v^3FZ3$yvaVIjT^H;v@BF^&Fz=PhQjg4s zMG8vm{0gVP(^At5)|BjY4!>UH+;~no-Yx$Azsvu>+W)`Y_x?)Bnty7sD?f%l54U=6 zb?3#z8lM84Rh#wlxec%WS+=@z|AC0URZnj??{nqUP(EjO&G_2$U9;ck<z8UEFt4)#8k8Wiam#t5=sZHu*jFQr{)N>Fgf;%=^E0=AT>1%6y#T>+huS zuN+gKUf1ZedK%MF$INyt?|SXBCxPt?tWpkqw&3oJ&zhFi)y%x%m67r5XY=^>cUjL! z-@RlPpKs+I@!ow-(^gLwyiuO6o*1~-O?kHIrdx_11^r^}Wh+`9PV&?8UbQ0Iaa(a+ zVH{zx`tEt|?i+4@EWw&Hs|^^=soRrzsD2FS{6E{(IN2nypKA3BE2bpJ(@2 zgIVtE^xBJ-i!Y`0A9*1=ZD&x@{=P$jdtUA+jy?aW|N38V+09#JoED$ca(Q=`Z$b8s zzUYWM6H`o2T~FEdZ|>`L3r&9PG;aUXIA!5&uA(;`&d2At1+99+$oC@U-sQsJBaypq zwg~;x_#~5O^5n*Ms|)c{*Kyb{pV*qs{dfOI?FV^t9+Z7}wd3k3<27adCqkmi^WHqY z>S;Y|VvjJ}1Rsg36PF2n&y4wMo^Z*^v{d@o$3N*`{em*w^)>k`&Yf63d+x=3-vVXV zaQWX8?k< z+I#ia@85qo^-B4?``=5xZ4q4j`lj*PRemftKb}1Ghx44^ep#k^sjmsgjWT@?!`1?% zGHQj|$($yWI#vVTprOW2Nlu54r{k`RTrcY4$<&tC7 z{#?ngcC6$4b!_i@%a>P@yty;JJqdsHIKADu_Itn;xg|39ER*5``#LX6mgcYR{;+ZX z$;n$&mrE~Knd>Y2ZdcX+Jzv{=d6{Nw_M9Fe^gppc5eRq zBklK17I*Q@6BMc~S{ZZMj+6P+ili?t7Xp4+Ilc&vcpcXMV&|Fq$Xm;EOLs(ED{d5= zesul9GKpt<8Q#jyO|>|_x7)vR=6u^fJ^GD{%a|?BPFjBD+4)KHw%A>&HGgL5cQ@kE zPUDXvlIxf<_ieNb4h?^}<{ZP67Q^sR@Au3+bqh|(Zr`)NcgCf~f`MVZTe4~v2UgtJ zTd?_0#`beJLzkYOzi|P0Z<%53ZS6p}2p$i#G&v1PheeZ!Q~vQpO) zI-V+?|1DQ2yMGR2@PiAoe@sS8&;%~XH*xx`qjfF$GV|7FF(*nu(gC7;{op9H; zIucm-tVh`5ib}!7hBvixq0eg`{QG<=!972UMS&}6&GRCeSF(Mf!7`oZdec7VcPZa` z>G1OPo|jkWJSzV>q3zY4V7o7mm)*W@k=^%5a7XD!lc}~3QoG_0dln`$o=WuDn)B#V z=9P_WXDdxvKG!#Hy7;QQFP#e4bYwqZFOD`pzoLcx$pq(2yF+fgy)nzqD6Y-^vhQ4o zUY4jfSD{_FrdwG(uY^nQLa<@G(jgmXVy?=qfvyfX6s){jR_&8}Yw692Shk6dM? z%zFKwv6q$meI<5YnEQ=yL*}EC?0R=?iq6d6x$w`SEzh2xxVZAzy$tUqGS@p^w5-zb z<_PU7(Uv-UHs+LbBjcSLrwuDFy_)%@qT;Bbp>x-@Uv8HFtIbj@?P7jCmDtH=|8}pH z>R#EUmWNgro$@~ruw3;0>l#j(%~>lJ_kNAHvwhio@3H#1C0{Myf1H0wea*uq(^p)y zT>eR7uJehP(sgtFzD;c3yk2^<;+B$^X_|k4~P5IKdOZ*j_tX%&pLI(xdUAXW^Pzs;ucr> zVD47yFS|Od|K7d3@jDB9koexEZ=F`H4EBC4`;n(qt^a&YgYn!cmTi&S9#!9(>~>}8 z*VV!LvXSpK;sebx*B1-){ivy09~EeIVT*sHUccGV-GOy;mb=}1S@B(JzV+u4=^HER zYDD%eN$>sfW=Vqiyj$+e!>3=WekaRz{&CQM&Uya(_y2wuKFNFTU)f9vsmAr$Q`v2= z&i`?ya<#uzMB3W9Gs-90{#V}<_W4h+-PYRJ|Et;de4erXR+!xU`FamU`()?e-MsFu zwWC9uP;{@mg-KmvMp7OQm|jDz9;1K@5arulBJZb zx6PXWs^-wv_2zT93)6m;z1|yNE!DXH{fDOe%kTdE`;x!x$JtrE4Q1vBwzAxl%`!=? zS!Ex~_50F9y&12?A3nTP;I(d}*UNiX)(H05ZJY2ih%MvZz1MGVNPK?s-looBveqI0 zQ}e#f|GQ{&SB2e@-jtsq8f>h0u51e|xE5vbYOdf3;dA>gZaaDZ*U7kYu63JMo&R#V zclM>0Lk{2Gn=JJHR(W{K_mgKuwtgy0-fH}@L~ha5mU+7`OnnqOwKQ3=e9n6l*T=b= zGTeGfjkle8f8x^#?it?SqHR7)zWPzQz3I9A>mB8PH}72>BT}Mdc$F(@QkzZxtK>)v z!M?B4vY2|N2N;{a>bcWWIw~;#Uv&uEIu1%Fu zQEkv$+i~?u#6MbJt91 zW7yB8DrJ*W>(njw2jq+1otiPrXCsT6-<>Vtx$`D{xBvGy@c-BSf1m%l|9|E2@^>$r zve)>sTTY*@Z2Du;zp$k-nN>ZR-;LFthb+G{OZfT+J&Ol#qTM(69pb$+H?-7eJ%47{ zOlPU@Ui;1j$|f)6dnC$f!NNCS|L`Je|M}^EC5xT~PO{3%dU3es z*5ZeI>P{_sw}iFdZt)Z~R+&r7yhGkH&bNG<<#)7B+_C-N^sh{N?*5#5DLd4hX-)UB zIZ;1tm`-i!p5^`eNBJ`;}L&8mCXZ=fBeC^x}BW z_4}>wmh@FiJnT4Hpi%16UhZ>7cq#X{-@C*Ep4X~#e)=+V$qu$_uCp!ESIp1mO+IX< z+81n+_{v=O@m-DOYu|{==&xX&SSB@f>0jUFzIE=^vOTjl*_Hl#Q2Wh%>%=JwUfnsB zvGYiLd;85l^FH1+xxUPwD|_9mzFW%tWxLM%o2;*FW{;5j>vQM1#e35?rS>0>FW(iBcm3hK z$=)9S_kH)DpZ51kCFjEDg*)~&=@;HSxb&v0TYs%tgSp-JmBk6qEnZ2#5;*fQ^Gvl& zeb(8vb1c_g(C&M2Svc3`;wX>^U2GRljkbM zIxVuj@=-QD{`&nVd#zbki@f_N@hj~2zZBkUdo1mL-Fc}Hx|`wS&zZ|J_^rA=S}niw zGky8{phNo;loX5jb7o1;SKBdb)z|Z3#kpFC*UX`P%jT z4fFjT-SgLViu8@A2W{fs_x%3LDh9TW=GWIFy9(F)6_z}|^jpErZ`;mO7gts4-@2Ci zajRXeqV=u!GuKrsGMdZo`|jO@$^Rr@mfZ=E4P>(jHU3evV&dn8=}QjpJO6cm zu;u-@`6l;vG=!Bek&ZT9)b18-n#8DA`ru)Nd8v@X+vAX=vFxvF7mvoK#k z!r)wN!CS5%yT(ahjdEUEhbso%$&%AE-Kj0x=KtW2>Y}!ScaINS9Y1um^?OvUG}A#5 z8`-w}D~7M0^K$nu{d|JsZL-vanmr~`iEb?IkH5G(9%QR|VgC8?=Nqq9n7(RB4395z zTd^?w_ZO*OG5+4qFTd;XRk{7!a-Fi+`uErGR%d;%eZEotX{B@b?q932?tX7ic8q^4 z!hYBGK3n11<3^j#akrK7yok-abI!3w??(9izjt>Y>txG&aDHm&{_^#!`uzg`Bp+@# zCp+b5{J*#LtN#D`|MzzMt2fLs3uHf-s7QT(X~Dqz`hBu(`{wtjKF?d6o8FWCZ>@5o zs{hrPi}Q8L`+1K%n(=x^_YW%l(Fl<^SJWSRIRTdr+F6@+5fQ*LkOA z#&o*d*Vsd)b4 zGPnN8K@*zicNB%P&zSu-<3PBuCt|Lf`gi~2UFGZdDV%yqRq-ghZ- zQH9mJkIDTF@8|lx_;abMY|py;pX<7Mr`eeP56 z<&6)Iy*&TbZC#dLOzioS8wH8@ub@zu8}%w_oIvOmcqz{?OlV zs-IL9O`rGcnk}bf+2{06&bqI59qj9`dwgMe;mxla_dof{K6^bS5sejgxbDMiCxvN8KY$?Yf@KVZoSeS z_iLHk8cXMMJP6wRAo!Hw>GasncXPj)nwQsP&CR~B=KZh#)nEQCUt)jb;dJ2%=dIaq z#PO|6|FrVOgqk1KE;kkb>$P80-BFnHB&J(`ZkIpT9PRaW0dt)mx9MDqe!bUf!iloL z?-M4i;z$iT+A3@`cY2BYmml|853ZS&`Ht5@scL=J9iFsLdu3FOH{33{D|yi}LU^4& z&$BJxrDk7romp18D|xEYoy^i{{iUIs{B+yW ze(TCl^QU{y8A){9+hlR!Q(nlTkKwHIq-vk9a!fZqec{3LW7wf<-cReMe>=x#aPr~vavpj$D@K|L_ z`l?HB=DStx3XE8~^s9EAa-!X&v`tH{eX|x`{M$f(Ykte^=ZB?!_cl)!H;`I!?c&C}@BBg?jZYaZD__0dGyDBB@6UZwdrzIj8wi7voB4F z@AF=({WrJ063KE4t7F>h^f~*>lB|4*%hz6Nf0%syw`^5Lx!A|~f>rCZcl5kWS*kW! z(5?F1Ba{@b3qMV(zAbnW;0nj5{kx8xuESs|-DZ~oS_DYN?8vy|`p zeJ@$H;xSvc_x^ak+!(&U;b%Hl9k%e7w0ri5!%jYGR@QfUVBf`g;_?<+&lxs;tG+CH)%^P1 z>gk)zU+=hn^4MfUzege=r}n&KdUEDq^l|@hb00hG`K|NtOd;P%8N2s2b4(UpO`U#y z{e_qF)oiPZ-Rj;3AAP^&_=;oA8e3xz7uxZp$Aqh^gdhK0v^x1*>znxN^Cf>W3d>|z z+3nI)mQCQQ?%QnT5qtaN`#}oyNFP5gyubR|S{d&XVZ#4Pwudv^`IsfPDofk{@oWK23_t#J3OY(0%tS(x_vh!_h zko)a=cZXLPr7})mo4U??9v~#i{}6NYcg+_v#EWgbKQBt zJFQdQUu4c*Zo70M_x$ybnEnQZzwFpCO=kMe*Ref(fsf@UNnJRWb$$BJfSL1;EO3*y zdHU36EvveZx(2)Z!xd4#pIzjeQ?F}Cd3JN%i8 z#nRGZ`@$dWFm_{{r?~%WMs$#$>wYVJLpQ0L%LV7Z;C^-b-%2URykd5Ed3w3{9Wae(`y3TEy}Jmw)xBb^kC*t`lEM^JtqFR`o8Ci zr+==#di||T;)O50mw$VBS{1ICa*p-lJ@L2epV>b8JNef$lWvattLODBs=XKWF?=bv z&>8!snX=~JI*a-Kyjh{Gb$)5b`TpxOzE1mC&m_y4ieds=LA>$CA)sgvTIoBN7S89fq^W(moAv~wDJZT1uKSAml!eKW1xU6-~0 z#QPI}SJ$jt^~T+|@BEb_N$-b6snhwx>(7OTCrx}i_29vn#R|U}+aC$m7RbH#+dHXz z^A1s8-?WY-f60JJ;`fE`KVT@?ckR{|2Fd>-mbWsiS0)Ox?O!}G-S5XT?xS+{Q?nc+ zXSEw>mX=*iv3qWDeSP^lNkgly+?^pOS)SYVN9brTEm`~bl}uxuj`gd%AJ<8Qd;I=* z?y;vR*O`>-0lRv8G?q%S-Z|-iy70=XDg3g1sXzX%>MvK{G=KTlhgPBQkL=w4+BWaC z-NFu`=C6RRE9brbaemb*;h*W>+${IzCm*ezEBJ)l z>%CR+rkd|Z%%@xB&-y6)_PJjDp35iVmwIkpuToR7j!%54?b_Fw-qGJ=GpF~S6Stb9 z`9DBn>zj@u<9V6CU(PuE``peid7nZA%{|%kwkz>;EG_|lMx5*WYV&@19ABe0 z^-E;9UA6gp)A@O-Zy(ez;(oG!3&;BQ=+3!nlkBuVz203uS--U5?`-E+=jU6_J$G8} zHs{H>d0*dLD48YnWcsuOZGYRf&)$Cj?4bAc$FHeR*14KkuD1?*YIimATYTZXKd)X@ zJbxWpX>{=4JIQbRdhe_`_};gEsqXXWTj6J~Uo1Lzvu}OKleec{e?EWZ*5$>Ymz|sG z-u3q7i^+GNaCYf*hkngST+^Pu;%#QluU#wj?>u$uzdt47yv4g?v0wR)tKNT?J$>)J z_dS`fEUb0vqkb)xt;;k!@Llu&x|;T<*QMsQrgg2Fv*J9@<%i9m*=P1wO&=No~-GbZRUhwkY}vU({IyP>f$ zLH(sr+xKz@Lz&~dH*c$-zOwvMsnZSJ9|&)wdL*wS(g^C2@rn}GGptyb;oz@xuE<#;QaZZ z(j%;!q(4Wjo+T1A*L{BCm(XVU-Whp!uG(eq+xcqA&lgjy92_%4S`L5wW%D}LW?EnQ zhd_;0P7Gfej+e>0PA-%BV-lsgSn$t^-FY=ddp2H~DfIBm=iFUrqk4+}{lgQ%zh#viPBLe?e%<^2 z&+Kc;rE|=AAKu-OILkEe_@kI}?iW62SaF$pCH16x_PlU#dH8q7`(MFwzjkFi9|>{u zcI;F9WWIQbN!8t-G9UTo`R#Mq$!@vq_hVDdy9;{LcOF*PvgdE?oY?oShk4JHTNe9v zCo&m*dnG7qVfDJO=I+x2&1aTR{3j3-xOnEr<=)XxPW+o@`&eSB*(z!47;pJc_fl6_ zX<1u&`>p-`*xPREvt?WSqzaFhZhPL=UvsRk^2?)$TlUqjb6>PLD((8~sY#Re zKNXy`yX>XJ?57(v=ZV(8`09E-f2H^9%l4)f#d04cU;3HuoD#l{aY9jP$(;XISL%3{ zx&PM6*J$uQO$$S@oC-j89D9t-|qp!nH==r?^U%4Zu z$2L95D&Da;N8bIx$;_nZX)B)xKQ3lglC6I{&)1Io?uKVu)Qr7jb?@{d4i*}0X0*7v^5Jyd7+r|xvV?&Q7)*|+=c-T!~F2)Q!9gxTWb z-}EiazDlxe&@x+px<06Rl=lG@JKw+2ps?wx1tfzf;$%cKzP7;Hr1| zhi+c~%$dJ?*@eT?Ha!$xvpc6;hNY!rQT~EEAEz1pxBhhe`NfRmwl5dHf4;A5q0QIQ zQumAtWrqU|o=+CL^n?thd-i4bV+H1G|*GKi4ALcIk zQ?fq2_tKhYdmrzSZ&bhWS@WmA`Ssr)s~6d3ncHRIT zeO6<~zP4CPpJy*wzD5=-@b%fCxIg>%-sOIl*A!2A*j}5e_3>QSvb~MW6LjT2?T)@s zBD~}E`dweMu6m|VKOE20pB%CL-rZ^UuD5&GyD+VryDYT$lITLg%9jPncjr$&w!l!U z=vvH~^}%k!(f(Xw``;@?NAAB=x{7=8+Qau#t7jdazJY6E(g&-1I*&iEoAf@l?uoT| zU8eM9h4(GDcigrLf30&7&;g7-VrPZgu}#UwD3Nri=!IzS zhLWapyZR2#_LU9Tm-%Df>NQ3ArZe=^y;uHhug^RXyjNpF($Dez(ZJ$flRkF+|{g z;k)e0a~ESDU8p?vN54>O`RDRiGZx?b{oQ*Jqu|$0yDXOnD>VDwJ&K(;`J&3Vn1qPg zTEt&iZwa?U!5p*?q$BTj*!q8WEZD&(AiVYmQx=aHyj^&9|4S z=JbzA=l0%@XqsTYYIoCzLqB)qJKQ|`&;QqKEAtzA;_W+L^M@3Dyy|@HiO8KfMgJ9! zzj2?t^v=P#lXs;A*ID}5HOya;cI3yL*C$QCZ7pD_*-$q%@__2%PY%)#Ozm5$u3TNT zV{WM{=cDRNA);m*4UYBfnegGVIb`*e;Qj7lJBz1D1XKmAo&NK}rcVx^%I7vOzw#<@t)IPT zaDDA8QptgamEM-E z(Q|!Y_FVd9wfwH|nO&)Fi&-YuXUktPtT+{a>%f-tC(~DdtNuGB`E{1a{*AXhco!76 z*!4PJ?VBvaE$hGMeEN@dKVD|o6wd!t{@mL-#@)Gc^WS-Yrfgbwe*M;}oqt2x>};P_ zJX^c&f5}>nyj?$!&G|1Qx9@d9jojP2ho{}ixvsyf@`Lt<)qPJke3`9LW)K{GSbCkJ zm4vmep02*}KcQ#K|NYtfGJj?Av2^pSyEbP8%jT+OSFFlxU%dQb?YX+ClcuZK-%Njg z;rQ!Ux~~GFih2p3u;QZ7S8^2tm@g`iyE8Wsj=pNwq^?ayh&AW z_KJ!*W>3q)jGy@CyY2SQ$k@=nbV}seaItTd{au&8&Hp{)+|80(b@MY9h}+8Sbf5e4 z<9;hm(d6*h9yOnXTaEv&g{=kn`1gvT@1f-r`fqPs?sh|SZ-e19>tE}a23t+bhzMoB zGbKH=hru%ZUv0S_|JNh$x%GMzE|>k>_s)O6HP73}JGU)0*mTb5_?`aUv9Ur2J|2|h zzGJA!|7$`BoBDL=rro=$HXeD(%yTaD!{SHNLQc)BW&8HB;&Mi};8MrLeI}n@oVEG0 zitF*xXR@a6g{oqitm-pgT_KmO^6$RTPzgW#xC~1*-R3WW>E8j9S z|GD%Wh0v{iw_~;#Y*9UadQG9_r<8STI`nrw=AT#>{?|N}ce>h}t9$w)x$h$vkx|cQ(nE>nZi$+siJu`0=FNrJf;YTO;dPdCqK?PmEqI zH+^Z<9Mj{cpPyQHxb)I|(*Wy(F_+HPFUeo3zPG=xMj%_aR6EmOpWW~`tF5+dT&QTR z0&i8y?C0z)?+mU~a{FZMuQ^xvBxe36Lrv}Apu8jNuhj3lIWyX^rf25)ufBIwm&>#m zO_p%huW&j%A?U#VM;*Gi{#M)k-u=uXi_bRW_q+37e!RGvzti4t=e;#ieg{HbdtdL{ z@s`8$%B;wNmljX|GWYTqbJaODi;r)36)I64#QtEG z>*u}4((gUBP@8`3)6CB$ZqcPtJDgoIKUZz~ta~|^_4F!dt@P`^ey+61cZqxJcu90# z>A9_u?@V0gmAuF>nf)yAmhI!;m)W?k%6zK*G_hpY(qPZmN8}SiBDU^-b>~$|kJa5N z>h@O)J@&2pA6oY$trLlafvF}s^9$!DV`Hg+)k@OXN{_d5%w7mF(>@hj9Ps{$j z4X*8+-XeIv_^I|=zx;BqnYO7{UX%yFvN`4a`=0I9Ny*d9w#%JAx%t!0@U{PKi@wd* zTpYa3=41ZTtGo48DmW_s0eBYm6 z{P=8xt^4d!XJ=KxuNGpT6837@R`jd>nfu&7ZMAUoU$0}&e%FUoD*r3)515vHJTult zFH=|S`MwT8s|)F|_UD)Vmz=ob{I~P(H3U?@?$|ZqsZ5^v*0YP0t>^adt#~JLa9-cv zb=ILw8V#Gur|+6^sJm;yy}pI+_DpQHal#_c1#4B`Pd#*g5#z)h`Jehb`o8-0E)M?W zeB{uF=%9J!AKv`cdu{%4`g^OuqkFqs9NjxNw^;-voBm60k)HHDcxt=`N0rD-dG77+ z_bmKuyj{8AUA766_?_ab>nj{m6jzq7`OUdCKkrD&miE4WshU#3MQZ9jipPIeE&pwI zzjv{dWxQ7Su0OLs>GdmxXl^=n?(WTx^R`>wnWNjnx#sPZ6H6nv$~5+zdGx-tf3`*b zi<~Eaj(wi0pAfypI5SJ`vE22OJ6m^MQF;CK$8vqs;JTg}*UzoxlWf1gGH>DfQ{El7 zwchhT<2`k)D%{n*!8&!_67$vzHj2k1j(waHS{@R2m8-1&=nthu!k)5iQa9Tl+Y9DyE!me%o`-aC>Me_bUJY&VN#e3u{-4t(?dd)4jUwVIWOqk-*X)BJ4?Up{hIP}Yk z%j$=>T~e-i#ab<8`BI}KYxy#!h#h8CXUtW*>^Ze+qICAAko@+1`!#0`^&1Tvp-Gk?3g;sm+C*eBkMiq;kttxYYs%*-EpSkdSZ;G^-HGv z=~Hu^U!S_p_F7Ld;5z@x$FVlo0$(3YcQaZ%=g`MVd$=wO&zTT1Gwx~X{DQ@QzV*~Z zZhI2B?8x(;np^)h&u{UqeHU}8GXBtn8u3Z7iQ$qHr5x9NTN(T2+$F)Eq0%S6%idd; z>$YdIzp!bi_Dcz^H7g6%Vw?WI^m^3seWuWSjhR8#$L(GQEzQ5bTkk)gZ~N}$mKP3R z$#%SzwmjU%aZ1gG!`Jn!e+wOs-ravRZc}K^>?d;E~v*eed(YwHLSE@~@~^mY#e0;XZr8 zyXLDe`Nf;cRej`~_qX!?=@K2gho_&{6@9o;T(>{&`}gJcHy*M(c?%o(8t)c<_4{jF z>L#&ku7>Md7InRe+jWmJ-c#(p?2@-^Rar1UAD$=Rp>i@`-;`W zlA@f7`(;NzTj`YK?3m#ibE#62>+mj?FLm?6{0u}>H7?8c+#Nv&sGE$E8d|2wAKB0NmyD3hlb1oYBuS)Wq zDe_K=)x7)rH%2cjmjm(^lPBbR*wy%7T(RTo3a=^b`(D}vMU_rBJFB<6$N2W*!;dF? zv%R$Ou=$Fpm%@*?u3j&Z9>1t}k)rs93@14&Y0GaiixbanN`7)M?eL=C1@8A&WD0r~ z1ROZ{QR>cCe)r=~58SMLT`jk|xAxyDn^}26VO-9U<|)%;rFZq{Cx_R%?W|OKzw_0i zPZ?)!&M&R*pL+Rk-cj%V|E#jBt^~~r<*S*xH|U(@2ll1g@96J)cKCzUgu1LNX_+k< zy2nezW%_MGw=Vj7?C%?gCHK~>+Gssxo!K%A_PNsvL|z=4ZgFD$Z;g}dMYg}tKeh2q zYS{S~+0)$PIhkcMmKaXut(R~+bIKBPg0;9vJa!;iEL_K7*_}9-W|MGCdE@P#C zmVsFxzpL|EiC{$AAJlxNo6oZV77^^R`sCi7WS*Y9P^TuKfdshQ})4hx3f!@`ObOs_-#d@ z)P2S4Qy))B|Id}S(6a6Bb@S=L{%)e#&(i+d9KBF;_v7~*+lQ}Y?`%3H8}o!)@K~v{}Y=M{Bo?Gm- z@j>q2yzj3J>)e+jU%YjdLE3$-d)f6Dy_qTTl;uv_y#t@;yJ zKBr%wWL)}3`RA9MqA7n~<*e4c9ePTQWqw7C`+e&#(XrocIX~}nH#OX!y*&2p{1R(@ z?wiY=`@JnK-(}5U{=ANN-2S`z zGH7mSRZ;nDz0d{gb|-W1EZcV4U+DRkaxc4(kNr+Z?oBYiobXdL{c&AFpr6*;^Hct> z_Op!9m94q&nH+5QD~3k%)NuKlZGw+?ge7pMaMMZ(ty~2;OYSXwJj~^*#_0GN`dpcu>DDr%iRQxz;pT;&v-jk*w zE{EO}-;iGQElcZAe(4(Cm+Cy1SDo4{-B}JvmOpGW;jyaqFS5RH)o2Fyn(lnR`L|0Se=B`0e7EjfrW!Np0NMEyZX+J2{)AYGMkld&P^xA0;!!wyjgGCGXT({7fZPY^k8(g1zN`lrt@R z=eWyOU25DO>Lwmq@?%rpC&T_z`Uj0mr))p4M(S0>TfW2dUBB!7h<*NZkAkXu>B;r) zMYB(>t%+^8xa(P)oA<@aBQO(B|wSPLr&-5%_X3NTdao?(g`-=Y*Si5Y$c5&a1g_oW(E86Ct zxYzVrGk3SoeCg>wYG2M+uv)9<=n5^1wCf*N7QEZZbRg1fvtS z;rn*J)S>1+zsUQ{ruQqQvn1d4J8e0Ab&Y?am*2j}_p;v~3%I{h?&HY=|3m)0oa=n= z+M?Nd00FL{r7Ll|Cbi;3hK3H?l^aTqpknj?dwn1r_cW-OX=-G40*!JIK6aT0O6Jzy0UHZ|qP2~5i z5MSFR{}0IV?B4hNW0v(|vnvPua_aV`^A`jxmH+gAAIqW5o3$22S$wX$w_ilgyf>yZ zP`B9f=7LQ-Px;s!PVmcG^tj+k%y+$obDep7GCn^)D|%7=X~=@zlfJ*I@fMXUn4o46 zJT>_IC)IgN>+Yha}t1y_)mfkH2O) zyPWmjvPsOJr<=HK_3;%5wQm2t`tp?jQ^OzW`X-6>5iHPy9u_LTmTt=@HH&$AOzR@ z`MEPnHmo?EG9@oV(%Wvg+`_$|Hy*l?TI0HQkId}(ynFvfynV8w@{!=B-IhA_J8PEm zTzb6GGHgx!?Q0*Gf8HK_g+ zyZn#9^W`?jZ)l&biq%=2t7%{@TK2gm-_zeu+jC~a|L>Vvi_>~5?@g>U&-uLPUHqD; z$0pDAd^#dqSJ%Gilikvct9y4xJQl1^|5K(bwAMoW`_4AY*L#jVoxD8qrr*|!o4J%P zy*^hRax<-UQql51D~oxaPG(Sicdu&v<~)vk$7KC#_3MwrLuqTe*YHuu4VIkN$#l2^Ecb)vvb?&=X{Hw z|2UJr>CAm6@tNBfZ&bJZxbly^QRyDp`_{H???dIDNz}E<9zT${bf5J%zVxg6I34TH zuATn-?-|XH^A-P{>v?f{T4K)f&bj5*$A7Jn{+Ic(zw}2bpRC1f@s6X#oeWSr*FhZJ8jfEvm8Qc*&Z%Ng9or7UEy-yk6I|Gg#%5 zr&iC3@Y^5G3x3GdKXm2#5=o|yiJ$zpUGJ@QyQb>$&S{3L)T8o8A7keG3)b55c}za< zXLE^Nbh*~0(y84y?$xgR`b&Ku^R|*74y8?1&E@-Uf0|O&80i-B(=Vw;>)ZK^@3A{x z^S13>eZ~7%dsX6<(`Bp5+*Lo7{?50&v?tj!bo=#J{O<0CD^7DgnfA$$`jvN!Yix0ZpGYXS7`S*!$b>;TsGn{4> z+*z>FbME04@>$je{rfIPp77u*r^tU=F`4=2!;0BW z_D`HyF5i|>G55=Ve*5VcizRWUc`@&&uPh2kt?r%t{+-6*(mn5L%kQ^5_LtGWb*}QT zN9&2XoGapwckFkxe<9lQ`tq$8lb+AGZBg*g=kWjcA^WF1UdiRT?ws{qhj^R1@XAE- zpG*FJwv%u6o3rF?x7v?4tuF$eNH00+Jm>QJ-z#psHkrBm-NwUD{A}~17qbSkzuXr# zJNUW#nU#?xPTKF)_;)IO7kfW3+41D}9TkbTPrNPM1n*B4U$R-$Z%SW!%umC2mESey z+RX}Cro~sw%<{AL-CDnUEB%D#uD&Aj;>)V3?SCfLHrQF5%FK&Dq#bI!>HJ*N;8T;T zFLyST8OmjqB|P~tFW~X&Umc0%T04E%?myb`&gj9UuYQx$R|*IGSoP)1SE1IUnXk5f zxR(9%lz(AQy4%EcKSTG;T=e^x=|T19%|+5l-a8GCf8O)kMOo$Pro8!!KA%i=b#jke zW^}pIK5b_H^Fa4vujY+CA8yG#70L3*IH21QUTU{kW_yNK>h6X8B|Cy|Y`FiU^v>J& z**^aF!rd5+Hu-Z{+^w*W2 zoS6>ZOFwVnnsc;rR@QYH{Y&$${IYAy9}7Hhcs#3QaqZ8wQeAidnyh{n<6ff2QE25C zTPeQ&_{KFw`pIkSR@XSx>o1=X%(1;@$;Z3>{jYmo$J~5ry);;MdhI&J>2+#3p2A$r zOHJ+{{22bxZs(4=^ZV3oAC#Y&{FR5#x!0%K^`_Q-?SfPHGd^W4d35gox3j_;^XpH{ zuJzQMRa-axvF&?tm;0uQ{r@sqmK>TeajNCMjOQzTkN%vnN%G_JFJFW2Eq=56+b&W4 zuJ*f@PiuoKv`#IFslPsN*RJxtUo2I>-+%gc`L`NTlSN-9&k5#hzF&K9N~MeK zea}tJkCwJ4qp}||Z^?77KQ;C92gynISKR+Q7gWl`wiF%NywmP?hSrJ~^CkZM3puN> zTZ=Vu8F$KE!HT1QmkOWBu5Nqi$93Zne%7d(W5{3 zE`NO!`uv&3nxf?lr&cV?6ydFV&--oXs{rS>k&n%OEacT=z2J6l`;v;wHSGtDmi`Ic zY0`MI>yP`#7v2JI8?SYL|L<4D@?5E9zuTc79}6s%E2qTu-Q3!;aI$~ztBl3BZ!I`J zVP&9i@1L&wT6^E7NzCiemZ@>I*}(t%lV`Bhz57Cf?#=O{nZLa{ZtU*6yd*GiZrPdGnmo?LKk$KrSI3J(P?C|@UmLq}cxgoVdfiIr~q)+;{lGE{}i@9>b z9>@CEGtN7<-(I20m-}z;^RI6f8OQQWc*j)|TFoLir}Okii_ZC_PjY$f6x+Y#k~HavWV%c{D)g=e5^Is zO{~$JUX!=s{i)9foE^Bev%;SURuqZOEmwZ!&b=aAKfBz8GxYkQx5i%;cA)zutjm!m`1#<#N5J z-fPL<)jYOj_OcN5g_bqXn={Lni> zczI?%;@oqox9CdTihqf9d8K`Y zu79rXD7)kTZFAn-1fQq(@8!?kf1~W!RrZfD<&kw(_A8qvTQ7aNPO_?HY1U#(X%Xgo z-}ol~3rm-#%Rc9*do<=qrO5sLW|F%Me@*>Yx7G5I@YxjK+IzLlGhgTKUiTyW?Yq<| z|GwV6Y*X>b`s;_?v*q{CvYYz$S&`lQf@xc8WX%?ruKc!q)`jmYUS_V#nCtjI_vqbM zE|<$IZa$ysZ~HFsU9E?8`A^y;^>?|Ngye z?>4&cNj|xEx1*3>@1r+jYO*$W7d0GPZt_drx;83}@l>(nN^4`=U4F8@QO|eIxfot` zf4^jAhsJ?Bsr6TvyKh-}aa!&U1*f~=(LG_aKgG(n?9{0dUCjSc=d4|f+{Kqm_*VGs z{G!_8Zt@_)&-7CG#}|g{xi=KcT)EI%btQJ8G5fg_fd#Lg&bWAC4%5Fwippl`AN!0i zG@nzsR(*B5(v2n0HkZh3ygr$$O;5LU<%xgq&5Kpem^|}Zaw*n)vF%CQ3D0fc&pml~ z@w^8zk$jUyGfVUQ4zQk{@mf-e!PF`HZE?iU$Y~QB%%4k?^Ru0LGc%sGg~jaOq24g{Zc2yMOzZ99Majo+Ugb{Rrb+ohOGo3NGoI z7hiq5>zI|9*w1IK()Q2K{$_JuBhuFSspP`mYk`{&iC>HDUt;L;Z|~E0$HVU!cD`Q_ z*t<`=@%Xci7wh3`0e;>+w!5#?WyLqn)N|JFqm|-A{~7%IQMs^q+O(x>E~LsN1V2CJ zy>Btk>oqGTd(Lg~5}sS)m!6dSv;9fxtkv(IEO@e6Rl=R;f~&9o$;P$vc@O+wzV~+M zTiB=lG|krM`{$URiCk^4OwE*sdvD*=_cdFMXWgk-x960ye9-g@PYvf^lz8bU{LN`@ zQ_e-+9~I^IE=tdu{`OUuL+|bizvHu|(%KI==&bm1YRRoRuOD?WK0T{<|3vv6LB_0P zO|QnDKOe2v@Aq0&ZWaohw*68056%Rh2|26k5YoR&(Zoab@hR)c)|1XJ z=qs7?afSNdE52(YLS>GATottZ@ICDUsp}FJ%U1esn)4|xVe4e6f7SEF&B`W!hIoR(;Dbefzrqx4-f_p|D*4O6RNljD9Z3UGOg4COAD(R5sXt ziR{t9tLLU)SvdWi{#I8-{(nJ5T69UTv3lUaGr(`(vZK>who$I)gL*;VbJRwgQK8 zHT^#-%XgWtNxr`R+oba)UrcN3rWV<3p6CC`@$~s;?^n*vldF@GKl@qx@0o9V_Cy~J z`M&4g(;qdw@}>FH|LteWULNeFeY?P+{K%ZDMbBiWtH-P=-M-lM+xwL^_ObJeBj&yP z_pcbV$-w*D$&S?}D{4yLJUX`_CerVa_ov&eGQ}w-)2)8bJ2Lrj>!(#K1lx*d%59SM zKYoa}aG`sMmGHNH-vw(Izi;5oM!fKZ<+f1j`>u0Yi+G06XX!#d6QAOFicONYO z`F&@(mz~3BA>-Gp3sy+;&QAE;!?WjBu=0ATD_>uDURm=l#$tNf&%R1g^#i;<4DTzZ zWgSpeyK}|Zdpg&g`op*0On$VFg+J5bi2mJ`exZ*2pYKd%lUlUWD&hH#@8_o`NX*_b zy{c_-kJriSr%N9P@;>Nt}KH zw!4Z&-oJIeuit)3(Op$&vDCrv(AN^@0*@{hlzxyl&`_rqLWlNWe*euqWXS?!Ky=&0ANqxIsYp$5*_RlnLs?CHNx2>(> z$9Cl&#d_s5Tti_GsAow)n7KwL$MfxmED?8K(>{m1vry|MjU!(;QO z|Mu>BDdm3q-<-UPYd;&z`mDlZL!Vqca9^Z-ky^Qq<=V?1YPWt`Rh;{5MNs=4y`@v9 zCv9$>mN-{0vGnt)^H#6YWySX1$mV*tCUD=9((EG~Rd|g#A@rIyL>E)+u zC&!$vJgdvvzr@;QLgAdL$1P%CzENh)ig|a=_T<{XX#u-t7>La%x7udKe{$!Q#J7Jw zZCB~xuDkc$I8MprdEXyz}_ zz1+*&%Idc}c;3VE?WzH~H(#wawhQDfU-4b{kq`_n+~Wn|W*Uwbd5adKtRT^F5dScmC7kz(Hi@E`MF0|js{J>6Z}8q`Mq+ll9HY0pV!WNXVY+8w_g6% zo9D*Q|L*#8FaG@Y`DL{`5?J&g=WjkMtU^+pMnRzjW(W#nK0Vh56?F zh@JjDeA1;#^X=BZ^edul4xaVCaLeb_%PW6tFaEiH#=nI2c+t?J*gF?g3Z7O- zExKFNEA_`X^jFR6)WGLE-+sF|&AlevVpr?RSvC=ENnH~yUf5@ax+^Eo^IMsG>bd$- zR@*NY>TW+@mVf!bSwoK3?&_6;a$GUr7kxH7YFn2q^LqESr+hZ+`F8|a7{5B-`YZFk z@u?E#zz^>XRAjau6AF0WHF?{5uC14JUWKLJ5#4Olq$3{c#rsO&k`0&ngTUfByB=Mf z-RGF@pP3`OTF&MF&dINvIKQ8MxLx|sx=)oZ3zD9@U({VUk@10+By;QgyBDXP@+~U+ zIV0}>^LgPGVgc-nOc%(dhb-1-?`vfbZ&vj0J%tj}q z!kH&;$bE`D^h?jfQIF;8i;nHwmCf}}{j8paPQM)XlF34M(e>}3WA-Sb=RdCyk4|5ORTzutYNoL&9-Ip91KfjYq7kh9-iuwKP zyxWWG=bxQ&&i(4l$wk|}o-fG$XQg&{3(NZdkx?r}Lh>Big$&qjmabd+DOIN@bIa`P zXFp2s1(mI{%ly5H^GcQ7vM;agHWi-+#b2*;|eadi|-6|8aNemG}NxGv*4NG=DYYx=ifx>UGwC^L%E0 zl>D1&qWQmkR@+SMI zWiC^V8Xl`w3iD5S@@L)oEoYB#2erpP@t15UZ-@>zd$93W_4R-~_L2Mh(%r7AzNxa8 zpHsj1=j=((J@;ig-JU;Z_Rg-$AKl`2)h)b#H_X0ObMZTqM;n^gE@rL0_m%N|qp(Zi zz9)Bs<7zKozkf3D+}|U?>W??Q^{>5ft32&hb|9H~> z@!glDGxZ<-tPZ+#!1%6R?}g{Lu70~c_1BT?k2g=sUtPNHf7QIlKmPH27v`HcZ=>7w zd-G1ci|O;XKRexC`R_qKd%rWMPd?gzS@ZCcC3Br;^@L2lA-VG*%cV`%YinaT-kz~i z{`hUmspUpGhm6e*Jt;0_O}i7?-yQf@(arz8rj}6^w4EpAyfv zo^^@-BNiEE?#Y4I^Fmf?zs{>ZQ{N&#H74H|C8yx%#a>6ost6e`MVw zkq>r~y+NwQk0mO3cpp6vQ~xA%_>Li))YoQv$+gXPN?nh3ob@+J_*@ZkL9XAgMfv@& zUXJd--;=(2Zq+_`@anyN??cjC^}ZMPOh1{hTex3S`RlH7uiMw>Ha@TQGF09;CF?}SnjkUhvq@+J0_>vL$=JZ44$jBNjqmle%7Io<9xiAJM*VA zxj#*`S(nDU@^!h&EQ>oE{r3s~m45eR#iKcXo{Z+dw;pWRvZ`EP?Oai2qRFY@ zt^Dit*vc!5MgCU}M>+fX`-N{NWo@*z{`l(0#)|#BxI@3K z{C4wo|F5u@t)^41uKq0WxHd}n_l}UtJI;NXr&7O&7Wuvo;#n=X`0K>gZ)#mG>DENe zK7Zs%SX6MoXZaGd&@YhdAZr04d<8iYV9^l z)D$TZ2)+8$U{$5P^cm|_HeLOTSAA$$w!(i}jr`KSrAJ)zPJZ6F*W$E+?nbY0&YI;m ze;;wJYL+=PHT&>3tHYn}#?KbG7;d`yS&xS8_0<#j?i`GmE-dhKolE;{>m8<1Q)=c1 zT3xr6+5P%;>l0V&_1AX3oUmg~^3T9Hf3F))`d5Gd7@fY`ZGrF4%SD;uo;&KMS$D)u zG|$}J6}2H-{9b!pSH-IwPyb5Ai)Fmc=TxT7id?^LMNE~kl;767Z}z*Le!Hi%Txu1I z+q{c=f=~8t`xrB~W9QW}7dwkzQ^W$+KYN=Xv(;VYQMHv(>E^OW&abb&KhbT?VZ79D z!5*#GkKf0BQ?c2-&T!iv|2qZi7nhrbJbAqSil~UN*8boAYcDUpHZSV#*De|5xyC1_ z{`wW3yM2$(%lM1OYv0Ic-}&^W_K#?ddcSYPlH6u4 zO#Ir#r;h*Tytdz5HFn{@Gf%CiP5Za&pU%fC*M#%zAD_s`yLPMM$P*c7@B04yH!BZc zNRL~R|Ly13&PV^Yd||i#v*1DT#!A`1%D-XmB0=&OuP==hiL-Y6blvV}?RoooF@f>> zZ<%Yb$T>flJV7bVB;P8qj;k+2?}yifk`K#;FFfX2Z+JplD@OH&ON~X+(;I%xywiE^ z))#y^JL{^||5@L5-w*z`u>a+b)G5j8CeK#6pSIb$`kbBqV?X2NCu2)rPyMNWROIKM zaxIn@f;`Q;lx2~O*y)}@5w%yvm6XM>VG;eIxh$dZ;?{3X5H51ru5Y2 zQ42@&{hg;KCr>Oc%r~$!zE!Y1RrG9?fpo?e-s!Qsx?`t%bWFH;JivF-%O2J{zhXnb z`(2P1>Rqxq)NtpbKTTqd-uACP7p+>ccuiK6%RD!SwaQZ2>lRC9bKLoE+f@9CZ(G-5 z!T859ee(YM9%o-!BPH|xjs6@dGqvW=A`(Zo-$`C;viNkJeNf=W-_=6T3PUe-f9HRx zJ|~4WU1+Y4Mt#`Y42!4Ar@n?ic`^5)0DFSk6WgqHD*~UiYHaPe9Qj%za7*i+&3eBa zTjcuxsO;^VwLSQgoN@0Z>F{~icbM1Q`LgQsqOOv+J3=x~`0|8^|JB+AVGTvR`8cD#(9OLwtPy_D+tZ(?y7DX-ov$+Mfs{Zn`TC6L40)M_PUUBN9$R=j3hW&Yxs#092f0@9T)H0FlsS1z_H{$^?Sc&7Dl8SdS| zuQW?%302xZ?>`@0s#54;$zJ%b*e1Cvp4Pf+FHu8!hKzXdBM^(ul?o49~EYX=A8dv`hHK;w^vJd=S+Sr>$HD~ z!5P1$(s7~>`do9PU%vXjEb#S-&{lEh(Ca@gFqHQnRsF(!yy;cX_fUpcEZ0li^*PwXARk4tcYk`LuI=yV-^)Mw+cXp%^Y*HL$2!gJ!tYOeq^E!U@J=(( z?d^|SuU{JcU-G|_Q}*&aHoN8if4*zp58iEMZ?{z4s%Da;zl~n$g!Q-nLHcHc*S6ng-~DAx_t&)wr|rs%-p<+8USId_r0|-PGe7;ETJ$=7{%?Pu`VEKI zzmjs`x~w;A?e6{jmVb)X^EN%o&irJub??=U`(DbH7dU>&>+tgoE;^oMq$vN|+_Q9D zd9BS&zPdNuFG@pJibxv@8-p4{4{L8nwG!WY<6cm+v6rK z7MtacVp$rucfSi<^ypNL$tokOhMsu-_M+zZeCwr8E^|2aUA5q%=83AUe!13HYm=t5 zvt`B|Roo%WTW2@h$m>DTou9^Pa~(spCcZwN+jeNihj)8oOs+^VALTTR;AY>YbLmrw z-ld5rE$*#e7k*Hp^6G&OKDTEp7(Z*@R=!E-~}k4%_{Vds-WrnpyB> zLftLf+En+VL!FD=CEtCYFtPTmR{s_0k{K}*>r&r_T&*g77TG>nlyBPwsg8 z%CI6-ZtGG$F}Fg`|2g|sDo;t;k+u#I@tqy#B)X@y{cSw^nPo z>sn1xeQ7)4_>9vF+3PmF6Og&C)+hg1<-goJmb1y3mk)lJbg${(lzQg%J12xz9m%(q z*>HOGC&#&F;wcdZ3H7sU@KMtM$$}+Y1kL?ow7We1RG(LR~ zES_w*Qqu8S@)`F+fQtQt3@0w|t6Q;fXP@C-o4^4sMUn`=%@9?aDrz~Io zc4^kygUf6V%jyPaK4>etp!rf{xy+;qiCa$oowI+(#<>+fdx~wmvTl`f*d7y;mTpkK zQyt5lUT}T)oR#gn{_j!|scwJE@A7M{wfM~6Qq#FFKd+5Bykga?liYo?9#5DU=<94A z%iLCbcf<6f*74zwD$Ud9_MchdK6%^6%*|WRne_fWS9Qg4`Ilw6XCB2COu6@NO5pK- zJHeiXZZ>tV zCSU8U67@T~UYcdsr>@76PaEgo5u0TcvYkCMNd2+*r?P2{EtPIFB~wL~-|Y9xQ(EsW z{4{y4+n)OBNl8|AtIA*fc)I7^t>W61=XZM_$@^#h<$SGj%=sdjt>4bATOaI{{l)ys zygS(spL<=j{FROY8fthu8kd@|pMGtl7VN zM=D>ZPkQp_zu)b?*D}S+e=q-6Zc~z99ClTvG@mIrAh!IqMbP}Z+P;#i`gp#-1@q6_ zcO9xv|J5v8H}}v!{!TgbnT7>_N{%*otu``_Kej5l-!!go-R5&s!{?gs)Q_D0c5j8N zbb-XXzjCYd<1RhEVzPhMjxGKz+lANtKC(_){drUWx&4X(uQwU_GFl(g?U#Grc~rGb z<(6vb@9*a}etXT?JtHJ<^0jAe?smSrif3J@k6KrJXccq7?tG|5oyKVW^-@>gx|*^L>~icZbl%;mi8;hh)j{crs* z?>#CW*C_tzh@xD1T>mzwEq5Y*IxPS3ci!TA!F})MUZ1fy`-)}$Jzfzkk=hAMkHwn(c>Ocg)xE*&TYSCo-k}s-(@0 zhirPQL)_%bt)DkF-g>_CRG{99nOcAinnZ#+5I z=J_xC@87l82g-}zgJF0E? z@|g5f6VIEqxpU_3{B+RT{>tpnQeSo*o_^uohQ#Xgc8fTl8q`ec+r+*^ww+;V=yspE zhQHs1bba!SeA4w|@@v`i$|s~kreC`zuyk5r?G@|wVplu(EmB*}1fHrcHsPx*66Z(qy&8G;U3(`K6nnLU*3pUjKYMWWf#8Se87pB4DoCdO4B?RYK`e7CO2|17`ey^9Oa{V#cwk{@(QJLZ)B z1b@}YL-R^CbRy+e76+879pIDa(tgFncU7|UzQw7Kxzi)(fAc(VHREYt(9aTIbuR%u4_CSFAHQ?77PGb#2pX>Ca16*QRd$uKBy+`TQLsrt@O1Z~UU? zYr4Ov-8THYpXrHrcQ5~W`}%hMQ+dT%{i!zY_uoG${&!nbGrGxVjdxy|(%Dz{PS<(u z_4~N@(}nyz&W~q{PBHIikNm$T`?c`evZwPV{1iO7^|Jf)Dem>JieJ_3=Q@2qD(||R z-T8U4`BS=H1^l`4?)$O)D@*DORsMf4td=`ix9ywd{$(HIC7bK?{?7!R2^`w%)_7{g zX8)zX(-X>^|E-^;)UYun@Ob3fJAba2{pkC>v6}sfo=t^{M%lKeFM7w5@}&yQr@Kk0 z)s$$ITAvWv7oroWFFWT}nICWIv&!?&wNfvaR{nR_EmH#?>Ae&+_L8XwWBAt*zA5ZrOQq0y1&zHQPXc(r{tsdy*hAl&H*P+ zJtya@Zx`K3mXz3N9M%86MVKMA(nVA@yyV+TsngY+Mwb%bHzsF!#637L-Dp?%uJF3` z8a=h0+-Fu#{*YVx)9#YtWRwnGZhB|Lv;%vX5$R>HpxfM!@bU`}75N$!Ug8Y-~TC9J2gfq`yomdFva) zXKN4NxtMjjv)J7@G?GO=N?L=vir4-04*RQ(7OGaS<{W=(vGCyf=vxo^99n;M?V0tx zw)lE+Z&A~cn{#V-p9wrS{k>uQls5M#Ec@y^ynVjkT(#xD?8%*-tH1tOSMZ95iFb9` zqQ13H8#?%2#klA0C_n$~XK#etthk@W>&-r;NWQ(PWAUlYa)SF+D?c&mujii5nfK}M zI`?~Ftt`NxyY zPFQk%$z^l zsX=;5`?|$<`rmEZRIV3Xe*Ar6z=O?~`BzFWJ;vs1S}N;R^nU-f<+Y2Nk7bHT@A?pu zy;SXGRa2J7^v&8kU(bt~e&g=83rha4*IH|6@9V#6ezbSp@jDgOmKRIf7R#B-oDcnW zIZAZHj)l>(NvHf*ci2C#pTpR-Q}D;iS+8ffzt(4&EV}P^nfnCay|>TLalhyCN#$SA zoClFb(R%`GUbqR_3i(f7Z&R8hDqiBSG?*!{cFEMm=Vk>mKlqXRvhR^}==8&U@rq|N z7#I{7JY5_^CRUX_f3!l%oX_p*%5yiZjXuk)mon}zP}vtNzvr3C^S)2wu?zPsma~{+ zyHt8#`G(zp684^qWN`j;tmILMt$R+YNKDq^b&M7^%JZIf85Ul<*!NBO^vmkp;%j#0 zS5_{|JT>3#V`id&QLHG1bf{Shp6DF4dzzsIa)rQb$>U-^C~ z*Zt4)KFWQ4KI0Mp*Oz9STT1Ucock#GvAs-Cw$o~I+T?Rn)RyfnpZC8--2aN?ub<1L z9Q*D*pLNpMx_9OCr%xVP=2xA&ZR>k-|8~cJn@*qDt9N{R_D!zECyqy|saMYkF8czX2|0It0|D0Sm|HFjb zn(vi;hy7Mt%{zbN+0(KXTN-58Z9%=RpH3@CwhO^Kgs>I`m@b~DUTG78@zsP z(r0h~_afhZtx1b#Z*hDUZ+Lt;=VjZ>EPlr!W}&ik5GEqT;kV(!_c%@h0{^~HI=(yTledv$(G@OFz(XJJWu#o);oC){7) z!RDgZTIyM98`%CtWX{!7&KKuQWD~#lASN^>CiT*URnN5gHyxa@`oZHvIQIcz=3gjMs~xz}^+Xr(PDtEOscl86NuD zZ*%01?>*%Y_dfsd`zPCLXO{S@PggicE>S=EL2CJzCF_)h3)kPWdbjbN+3PZqP4`3% zEhaV_SeD;V{&j)B{bFyAd+6USHcNKL1ZcV!)x_Wb%Hb?~{{GsMiE-<8GR!)&_w4cn zJxgnYP7gQJef>#G#jjc8H!VpMKixxy;w%zEYXx z*WyF9CvC|(Av?iYDVE)8&!X>fkFD+n-{l4dkfBfFhy7ly+=Fb?tInqyc zH{|49UJxH9_rB6((}SHg`&OQG|7f~&?W!oju8i=X#y@(TUj_C>saJ}pOPdAsT&isO zv`Rlq`p-AL|~i=xx4k7whK=EYs8UxVfnQZOXmk3!81MnZk=}K?6=1H6I0JU znPn7lTG7hp`vqsczdhe46l=~eol|#h^5TxiPdBWxk&51Ls&sbogUQSp=fCbeeY@ld z<2BjsUd}Vv+rRV{d46?hJ^GsUn(@U#w;y)|UQd}FTlEDUXT4YW!K&k^@*O-?&O{t*kh{bYjS4y_1WTU)g9|Ui{~4s?z5@ zKX_?dQJ_b7uSM`mh8bJqPh8J6-@W9{x`T%DZl^Qm-c^fza`D%e`CR7( zQ+Mx650XiVFWD1f?fL6mhS}4ToZKIlaN@@OgewuZnsX& zqWbBYotx*emlxD6QolNJ*O!*n{uU)Kwj9~=-M{jG{kMC%&$d0W;Qw9qwm$9LnGZ%% zMQ!Cp9v}6xR3+1SusF`^QE(JsX_R|( zfHCJtS<>;cl%t(Vt}41Gx8>~#USy%7npH9L_RZCwH(a}ZKm6*}Z~x`_Y}5H3+5I?w zuX^piknr&E(D2gI`#$~&Yd8A^ERVc>`hz9^$uD!VPuA?nQ$19@GXDD4pH?;T;g>Jg zynOifPSDZ%Px;HwT6>zGwSR3_<@|F;+x>E;W|PIIzXTs%T%{$I_iyv@O&4#@dEFnC z-FpA@uaavQ`-7I+Z}>8|@A+x%yNCJqpEX(e{`P|tm7=kpTPN%C@9JKjeC*95omD@J za)0JW{M!+}R%utxBM~1f2L2Tf-YoV#_{>{d^NgXA{=H3?-bDJ!>1ysbI;_Lic<&e&-d7Uu|_1gENIuQ z#YR&n#cSRct&#d#xvV91L9JEES%o|I=5FL!EWulMD2m&3_u_NB5wo?{W?0JxizTLf z5tu9bE@REFSDkJy_3mFMYkjLcaQdldNpJpnlj6!d@przjJ;L1mLgqtizqDeF%K8Nz zChzy_pS(L~%dMuCQ@=#34s7kI_#-RZop<8$XS-w5`dlSvo^0e0OuQI4*E{R*XMyu| zI7gvmYmVMr(_$;($(2MGs4Tw zyY8L)uvmAh#zv_}LfdbbKkIJ$bt3iCr=NK$eK+@r%-)_`@bA~g!X=in5zC?*HcWrM z>1djSl~%UYk9T{3~^_b>h9GNoDRe?#iXyxjS?uiv@a&ruPWgdQQ%sVC>sB^Mv^i z&-V47-{0?d~t` zd*~P5C!ClP=ec;seO1}Q6LLBWua>;iI=QpQ5 z$K&%9mb($%utK(n-h!w&1u}{w0zlyg{&{CqigTVxIgY#7Q6pu zf5#oAzu(NFOIB@+KU?rVs`*^ImN)*84x@+^b&#AE*5kS=x1Z!g=QN z)#aDZ+5hHC&;I>!Zs)$Lck_Q)O8;4O&*t+iFYV7!kG+i4KL*{GF?!yaeO#-3{WGKI zac?R`J)h0jPOAO$F6b-QuFdDo)dObdcI?se{?>I&d!>-7e~bQi`{}9wPdINb*7~eG z?PHB)J*)QRF3G+(Ys#O`>F>4v@#DL|GRyAT}A%6>e`~S4}QGdc;(E`P$f35BSu@7U3R`7v--ut z?dIO0b|1g*+OPX$uBl5*g;=&l+xHc3wT>Ewb?%(XHEYf3Bb$y3#M|FM|0U`pUV<_ z9LF*R9=_Zvka*zf`MkJ&t@o$@sF^c!YgkeK(&}puuOIrK^6QmfkN9rQjbXwsW@!Fc ze^ci`DrbLE$&HL_4_H3@x)bo;>!8urTfx;ahfJz>PrdfH>Yc#a+krC||C4v!Q!3qT z>Hj7@<@LwPxmH^eE`D!gyTNzt?WV$uu4TWjSS zFrI1mD(lw3ij9K%FAz^ zP>YW`A=709wzi}@kMAAk6J#;UW$p?hZ?U-ihh<nVn)~%_O-tC9)mhA&JE`^Ui;R~SHZGeJ+9Sns z=cvrw`bmHPd{M60yH8hZO`^r?p#APC@zLLs6{m{F+FrM7hcOFf?b2Yithgn}Q zbZzK)Ba=Wj*{cOA-0Kd%4&3Wre6{k6)TduR&hL5?_{nPj-6^NP|Lm2%zieAtcy;LX zI`_D;;^)r<_pZEmM)BR#lJi!7KH2@QIC0L*XZjrLs(F&V#^(6FQA*a=nVs3k(0j(Q$xjEjRxG+zD|ayy{8gK_a5>0=;-wO)2hxj#+jy>3>*#}39ro!-roLhhqU{BKFJOBY|j@zyV?=; z?h!}e;faqkiYKi(_)z|rK*7D^<=bYy|9EDWyMO7z`R?)Y^Z^f@iw}~|T)p6S^5;G4ZOg(|KF_la z-{0|5;-#8bS^M!dudPhoZ9A-dN{qVlEA02wNAaexFZdL$m$I*aqEunb?FDT)|317h zv)`pDT|RB@q7b`psi)r*E%E)@XL>#3PK(?78%j(YYo%H=>SfpN>U^nlck{Eeb}7vD zsz>ImPSco?ysS~eRq}4_fo*LUe=KF8P4BnY# z*0=n)c`N66wr%=8bxE=B+C!7<=JqE&xVkhd?q*nYa+v^qVoGqVq3RHOg|sq zKO@<4KXbls>g=bvFD3tfG82B^oUeK+YU$&K&Rd>!^Io4jw^}(}^7r{|5>uxaGMqkL z_D3VQ|3mSQ&4>Hm@8Mr_I`PB5N*2Y_;SBmc85&T>+@&tn7r|PvgKvP z_mXz2%!(BcmU}Ks*Il@2QuX5Nmc5TH?peyk)xDfo`onVe``yKFCJCpX4)5$bQ*)%F zx*}Y2+f)Z(=E*ywKbBp$oE@_7UhVeUZo#I1JJpJto#&mr?`wVhWtyZ^C%lKkx761Ob6K@>)kt(B?yhm%|qrS6ZB6nU({(Qr* z&rhOzT1&K6q*SD%g?54IZ2KmCtB+=-g=wAVJeHcA?Y_Sv=%mLBKC2$9ZOIPW?feT) z@I8B6-F~vSChtLNocXg7?e`I<_zb6hmDXL?eXDSKDfj7xYpk~0+TT4DwEOWT#*XqO zowxSd&+65ww!Wavn|J%W@uR<9b@h`U6(8NWsMy)<`Qc;PAl#;Ktni|?P>DO}LK;r2Y<^hEJKX@k43kFVJCP=W8<6W(>YGwS*|Qf~G+ zEIuqK`%CQi%j1=&wy4K#+#=U^T=d_HEjfF(_s-PxO}U${w*9@w z<)S&>pD!O1F0cA(8~#T7f#B*#Pg^Fx{dtVJm;czE33U%G<{v+@HM8%y=9goI!m){W z7AQzwcDFT_@36V_bc%c5tBPy$j#4rto$C5Q;+RhGZrk}kCnxlruQ~cKfBkl)__FKyXTSG4=`>Gw=A-?wpuo4U6Cd?9kR?-JXVoNLT?K0dd| z(DX0ilK1^R&#wPP>!Dj8{hT|VpHG&5xpC>fV;jq#a;|*Smi_3^-0f>M#Ha4nIj8hG zi>(1n9j&GjBwezp=md#=3EDySAEt`C*{IGS+>k}()ra$Xt zNVO62dp1kBM&_|m!`76k@((VlzI#%x)g!31Zkc)Yy~DD;IsI+tj3sKtc;`L8aGsaX zJWVqw>-U~RQXkxtReo=Hn11uP(~p}8iFcOCly0zpUS%}xL?F}YlfU^~*)PtO{kX$+ zYGQb8YMfNTUyF-2zmCM;zWuqdr|+@ud(N--iu)$IpE_tKop#qw?(xdH(;Wvb_if+o zZpC~2_`4I)zn`^OzYnb6bGZMUr5j7%ui19fkKO&f@5@U@wfXybt@JiV{S)+`DkX2( zzhlYy)@gOwb26r^O+Dc~lViU7lPdlj=I1W23Fs0(`b5ZLc0`!Roz%-ytY`VuwlssJ=hz)uPYuv-*{u-mN=x{M+9h=lNQ!8NOyptM2->+x6%8$VD)4v|$xfp0%CwI2nuQ*TY!Ho4cek|WH*ZQf-^B*>+1uRRI z-n=`reiDP`Lk0VxlQy5wmarmzfSl` zhJE4R6Zf_L9y3??xspL*zTV!bD)m2C+yp)v+E?jY9S+NAF}=R!>G_R~o2K4))U`q~ zboW{1us!ibMQby}W-i>Rt+TbI`NxspGNs&q-$!)SuIB0B`1_%7Wm@c=KM&c?SnO_5 zE|19d|66zThxNH6tAjC4Z|_$v>fPpTVtuLj3GcZ>({`=@Y5Zm8-3!9=cx6)Uj&Hic zcl6<>S#Exrmz?jYg~%$u+%o&6@;cjy|I@c;q~W@x#szV&?6sdvrs#Oj3W%=a$MC zqrHdk?JO>yC%!dg-qXi(qCQ4m6-$3sSoAN-R{ZQ)-Lfa&swIvq-(5KA{Pdt+^{HzW z!=nV=Or4f^?B<$4nZpyK7l}=Hdgttui#G2f(?34H{xD~q?YX~^-&Y3LytAz`T>Qew zuj<;F#u~G*+-G}^?>Jdf)cL*E`d9Pg>-CqNIux9Z-;}O;_Uz)UhgLUUiAnc=dGmYr zw9jF)?)l!@X*d7%&Fkt}vVZE{gUTIthMqT<-`~9X%x}`Imy?%&4U}tmvXO<=+46+b zC%Y{+sYSc?ELWMmH7(WqVz#X1q5fRAGU3RGJImj_6sinKy^{ZE-u+z%AO8NTEF3=n z&QJ4s%UA3x=$98*{LiiW_zv5uc*}=Z^vwnJ7_a5OJw)X8YN=tk)weP6mYi76k-P!3PUfd@0LqA!3yXQV# zV&eQQ0YMiweeRWaOgS$;xS8>3OZb`<`|nEJh;G>XR&ep%cfXQl|J?qyVf(}ar>Z?~%e|Fy z+iu*ph?WbR+;6)^jO9u3lZ$hn@4I=#Tt21!(y`Z%W!LRn=(Jh&RO7r?T?U-YcK&w^ zr<`Az;H%gES9ZRo-Hy}Yv*TS73sV;9^zp3}oig>&pQ73wg$IAu_-~DyIi=eu@3eZZ zy8hhO^QSo9SxnG0k=yhx;JAeFxvM9xht^B~SRnJ{PKwT~*({rt_4}7To?+q<+x+Qv zFQ47AEc;jHp;;%69ay1mmA1)Qx#<3mq!$7)7x$>2y;nMS&x~_5`EA^b+c&zDe9@>> z={@zjAuhhRa_@{^PYbp@%8YyFKDY9yjnvM6d!DXX=leILS}<&#>8+4!$5rp$d>%FB zNBgsU)>7tKU(Qz?QJ;P9Cg_9xff=h)Sb{-v+E7Tz*UmW(`gXZ6GO z32uH5{v4fqZC2!^%*V0CvQc+CmTgh9ikx}k@jJgslk;C{Ppe%sZ6DurIfez_|CZmL zQ-62+-($QryarYUm6Nt_I`jF~!&!5~KAL~Dc-{BzfLq1lUE1z3es=d)ozUz**Sz<1 zV2DTRtf!@`%H*QYR$l+{$yopPn|}A?wB8%HzgWL3nrHJ`n|&3soH^0z2`x%JP!Me>o~OHbbZVEC!(@wdf0=loZjGj;Q) zo*QAN%cDM4zLd;fZFV`~k6qmJu*au*?RU=0zrHnK@4`1sG1njbX4|^#f4BOuOHIcH8#px2>B_W>2_st4hva;zN<~oPUv9tB(lh&C23^thRE|v)5@X z_ba`R|Jsywc2~i*E9+K2{B`7)u&pw_o-$`sql{nQ%AaO*#=LRmtL&x!m%UoH zBD_*7P44mhsEa;7Clptsyv5h#cloaD~A30eUYnq>Mk;zTCq3nX;g;0ZN~(6_n@*pjC{c{CciF; zT*#}co4!+9+SbO&=hd6aFU7(OZ7!|v-No8{UcvsK?zgjxk0psjg)HAL)b--?(}n$) zzWv#Ecg3T?+9Q^)8MiHVG`-#VT=l@q5RY9J{ohQ)O3Zd;P4um=lbCk7sb8jd{wwL@ z3wsy)bc)NepE3*$Y16;|)vvbm^u7}dS1&!JsxB<6{O*ag$Sdqb z{gAHi``)oH`1RwC^TDr`f31(U{FgT&VyW}GnasOB7wo#`>{<7|WQU5x;+j+ubJ+htw+Suyi^?+?AMOB3nlx^qE5MS92DH>+H>xf z$CGJwA9UB~T?=>JQMu17QT6b=`IEIjhF?j0;!~6Jtw1%?smv)am_IQsB_$@EwVRvT7J2h za%C(RH9yw7@p{>r8QUyx^8B}}S2j~!@4CI|#7>+0M+Ge}u^RV(_+xk3wrEw?f+Ux4 zx%~CBzuz!j?Ot1uspk365IE-OM9wFPpxmJuv^> z38g){SD%07%e`{T-jVO%ncsW;EmLCz)7(xxEi0D&*V7leOylTO3pv@_f%7dlo)u2I zzj^WbhpGSPhK#rC&9RzFCxt(o<_Gk?vB*X8>Trq`Y-UlJL*a_aoO4dwst z3LgKs!l%aUwY7U@-E{A1e!+RGGIV>dO_Y0JDu1vz)9?I#{lt{ML+8H69nUXb^)lm6$k`T}c1A4%S_76K*D^S{@Wx zd_qt2!p7R8pHouT`BiFed9r7&UsU?_>e*Lqg~gs;|82D|ThP+IChXk)7f&uvS}XZZ z>qq3Th?S>)ewv)P&c8D0&*D!zE?Ygit<3azk%~LJTg9f}Q^L`o-~Z|UKJUwe5av4q zV&ywG@9Fz7W#?tyxPLO&e&>}Qy>~+Lz@DN{uF3h{8?FUfmi}GSuPnrS=3)ltnTpcV zde=K!*Dnn+IhGQtb7)QB9@`!T-3JcIB8!EUo}PXD=IzCu!R-Ei59KW0Mmn~O7K>v&eb`jEQBTE+IM>c5Ri4+4@cuG%c}+MjIV)^XtW zYgxV>&$g`mFWI@Y`s%cY0g{iel+Ah5Fz?$6+k3yS&oc1ZQ6aM8@bcC79`D#4n47%* zvu(B1`ixK41NZlI371bg(%Tig&ij7)tooI~*EBr3Z(6MQx##PI;)2#iIiZt(z42RN zQ=VlZ(0BXH`~2^1w|_?%OMUQA`m$H=Ta)|YNp7*4_dg|BEI(d5>B-l{wny79YT8*F z7};Kr-XtOT)FSg?HGf6&+<*7PZI0~TEo`$(?~}!H?~i^nw>+|)c5|jn+?ijWuFcJ> zRF!tIKXY}Vuk<^ga?2-wBp3UhT;3u7=xD0q@8_E%f5z}M>m7(U8{U0-`8?1}fr?RM9qtrqi6UX$%QUCcf_Q>OOVJm!5Zk5@CvU7F#}>!qh` zv%BO-p_xbJO`b%b=_SF-*GDL=XU%eMEaC2(x8kb1#-)2}qAlj^d%UZ6*P?Z|1%E&F z^T^+urF%~EYNW*;Cwtq}m7?!YuIBqMcKvDkHKVi|_qRT}UCB=aU#?7_nD%7O*X`AN zeb2E@KW+W_n|jmE^|$A{*7MHz-eI_fwS*;%{q^<@g~f8`*ZR*{D_Xay?Tv}hb%PqY zYUe%AtmZ_Y^z@CI^Zw=QYtQcb?tSaNr#w&e=KRIIyNjaK-`y^Aa1{A+WYB=;^k7xLspJ`r~A_V(o?w;x1wC?HNV!1^k+Y>guvGJPpV`IzAyToIg{(d+JAB%RgUy zh2(f=JzTd)WHm1{U;evtx!`H53m(2-&0+uE-M?~oZCuy7Jt5)CdU<9)U;Sg*^VQFK zwp*T__-CJ=sEx<@Pi}K~!k-!J6I8TH(wZrIzoLFs@P$>p?2_}c&V}sNQn;jd&*AIz zkCnoA`z~1OpV@lk)5PYgFDZJHU+)nt7}5YeR3WUa?$m<>Fs0f!m#)%`Cn= z(_njf?0KWm`)gRI2JTF&*?FlYKW=k$rgmLvOy0TKFD`l}<)~ejVDQk5TeQ&Ub>87~ z`LB%Jx7^m-x8MAd?duP-zw=pJZZWaB&KqF*!0v1R&BJFhUNA6cEc@m!S6pc;v#urN zy_Sa36zy}*czT{)vWj{m#JwUStw-p~o?3H8PNVpwqbrqtitljQ^mspP+^~DgP3wEN zuPf_@%-<+Kb#njwi!IOHtE_sazq((PecvurJU_hDYhmXyizH3$s>pzFr(Yh1A$>EY zqJF6CUY^{~7ICfYm{89b8?(ue9NQl~Nj|piNt@HPsl4|440`yE%H4auf?Mur+1-7y z{&jPfFK3&=w*Rc5Xn#ePa{rv5b)R-8ADFK6CfMSUUSi{W&(I?)R&P4uxXdW1#?J2C zeOInoyfRXff&MoCLLd8F)ODXLt+Yt$kllqBZ-0E_=ohPV4?WQPt51KW`RvWCOb`T@%vAj90v^~`lLet zot4x`6+2)NH*t%|d+*!7?|iY=oAB)BljBP#G1c^E_nlQZ6CJrtsp><E=Kj*R@6Ff?bR552mhr&?~q;-9=~T74}7wO|s3e6x8;m2(L+T^G@Zo{q|2& zaD83ClI{M_*PbqX_Ti$;ro{8sa~?GMAK6zdvd8t~sV?rcH9tPr{jh!QSGAeNr;~5m zN9$MVg4ZnS_@=&={aAmTJxKRZ*Oqe`Q$BHQ(kM?lm6wwn^Xd7#68qWnj(qIgyz!dU z-4}O)B;PMz(6j%~oR)|<+pOT5Y&WVhv^U>6^Hk=1+S<0hjVC85-eaDVr50ovv0$;C zw8X=9w%yk2mL>Pr_8dDo=sn9S#FM>ue3q0i6m<`izE!cjBGsmA)6cvtjT?)8 z|Juj7Q}_1Am1}#gf3ZC)PtCjeIWIiD;*`|f-JK`5?tL%nyJB5Lew}ycgBsQ1En@q) zr$r`RyU%F3IxT(er=62E58GcpQ>YTNbgH4%x&AvPKkiyiK5bne8$8oydCVtS*WRc5 zK31=rfB$oAvFtwIfVT&4rB~l9oPK(T@tWv=r#{a5=z2p&{LK4$yEe(`_ssjbzU-QF z|A$%7zn#k0Uhfildoq1y{nHor%l-eK`DA|j(Vckz%6lP|i{bR!GyebKy@39nb^+6K=yoxkqk%3q?#eIiOE>jRFmTz8zwETMetuGm8(n@^{? zL_XbGEVv_)y=zLP*U{7Omh9UZc5TxAqlGIrdUbW(@?O@pA~tMGnTheLkk>7L&V2rs zR$_3y{7&@$cV>%LxlA>=JU1=IeFsaj+-sNq+WJdcH&$0p%Y3!tZSudV`(>||pYeWo z6f_II%|zIxQ=b*4iDy_G4+@?(Iepgl@2syq&Se=^yW>FpYgvH=pnO_9bJ-HKoY#l7O8KEYaKV zXRnZ+_I|~mrDcU5>dI8Q4w=}U3V;0G!z6Tn{}j%;Xa92j&+R_w%I5g=e2AvHzf8RS zv>vZ^_u8`t8ciD*Pjo$!{AqFOMNf%yw3*p%#mRqLrZO*@cy<16MZ;@``q~n`)6xq? zTKhD0Yc?Al-d1~F=d)F*!LPHg3zC1eO*ZXeo$s!^>fS{IY5rTY65lSCyHPxg`_9Xy zPpj?t&d#mN{ganysllGLS+(P_{rea1G`Z5EZ{3yi>#a|!o4s7y z7rndt`mo@R>o=boeEn5gAHQAM>3iAkQ|4a^j=Wf)pFIEhz8((yYtQ?R_2~u~%&u8w zvU-_Oy!)=K!yn&0j@0}Z#dP-1>pU%;Mc+^SeH?e^ZEqjrJ)y-R+y7KAN$&q~_XWFD zciV*g6JP(H+gEBIclq+kzNll$M`+_n!9|!*s8GnTpN}lO=A7&#YWheD!4i z^EFDAC%+~=*)!?KE189FyUp^LZYIRC?LYtfz4p&{x7uz+eXrW;*uGMlmYe(nxogI(+z_J16XN_0xk ztr9#wsaWs&=9&+l(OF#nivV4ZfA3ywI)fG|sGAN(>#fsb))m!dQ zySAq-FSnTMn3USObua8MN?2x>Tw(Y;W5+i3)kljba!vnm=JprElB)j4cCWi9elN)p zvbJ8OWPhVC?abF-ug)s(uKM+Ps^nzrx-geLhCj2O?|SlK)4Cl(Yj@82JcldX(#z0# zn~i*8!f%^Pliz-n@V!5;@<~JSjmUeZVi9%qWw#%c?m7P_XWi;Up3ijG-Hk0``L(0E z{u7t_`RRQg(sp%x?fX|hll*L%Sf6L)Z6T4b-3eoV-tuBp zfQI!SzWr9QN!JQzZv0zz)%g0wWkuOp`&m=BbqO`wc5^xSPi_^gHhz5TPG!i$@HG)_ zoE>k=R&Q4Q6RY(6%&D|xb$c&Qu-xh)r1MJu5Yxo-RyI0y)mI-JFW>Y|gYEJ6*GVo( zOX5yd69tQx zj|5|kj^znTYj@0)*m^Aa-L;9+bKTn8d!ldtxXKvww)mj3fz751?=_>=iKXc(rw>R>#ha*?Mv-8?u^ymKf$_T=iywU7DsofXvBaqX{! z|Fih&o+mjkEVhb?8x55nDJs+vf|@a&Ni)lw&h6|C2wrxv3qB9cd^=CN9`Z6S{}(yElzw< zJ3f2%*%xjnKA$mNsw}L$hVPQ&jA}-;Ue=!qsnI0?zjwHtyXEx%_KD;7tpDz+dsN`A zS2g8XdE9hstD3fFzt8@#vpzemdyZw^l}me;EKa>A@=QqW+qC(5hGE)|vt{I~FK)Oj zwkE~o$JWN;_wDj;Ul>=eJFnRn5OPkiUBmjAh5xhM{Wl&73og0h^*CmuOU;t4 z(+tdC2QT#BT|M>3xfigdnN?!|8ioH zhPu%`i`O=Cv))^|9$f zgH!zLujh(RU6SZ9Xn2c=Us-&`x3N^Y4;YK09NVOE0sz zW@-QNt;N|-7TJ!UZ_ija`|{1o1(xEkcWL^6`FAI>^T(5ln%Ma}js4zkv44C})#qw| z$4O;d&3w-NJl)B5QLOpX^bSvc_`~nS*4c;4rmVUdcQx+yw(Hkte*Wci(s9c#Kc+>H@dDBmyX+M5(qu9g4UtX@`X+QYV__5d1KgSkC)^;TIb+*`A-(Di3YYE0PbV!fDKb3e=eH?$;kG16J|(@Me@>jc{B9bX&8LO@Jx`CyzP@oK zU9upv;BZ59t>Y?fYt>y>-_Ee(mC>y4vwP?>#nD`Ew$Zip$EKIow4BwLDHY-_cE#v} zk(T0Wb~`=26|(F-yA~TN%g^-cS{SU%eWJoVvP_(FzRBz#8&~rhnQdoWc+YsJmCqlu z1IJEguDI7MJ*S{j=WO7kuh!~2eA(HaYJG*wslrjw-;~D z$tnM~U3R5L#`S$X>alN{-R{k8o%bT-;R%C7+LzpyR4(6ZX1A9A!^H05lDqZCcbZri z6_xZ=G;CY>fvXLMPVh(-9>lbbXTV+{LFfWwrHA9% z+wX0UZ#Tys74EB8sO}X!Yr3tM_2++V$LkNjH57mLsZud+&W0%@MkH z*F;S?U3!ms-Uq?!g837(+x`}8UO4a9zdtJyzfL({I8U~0(cX^DpZjJTFY<1xj3_hx z!8zI6N8bA6n#i!-I@y;mzbfyuU`+AoUpXsTF7)X4-1W(Zy&ip<*Gnq;lUux%wbkqQ z&Rx9p{nS05<6pN-jeO>Q^RSJbe9ZnLjTMQm?03S}v94P8Yr@C3w_M9MR?atJTPJN9 z_wYx$l`htzUl$E?iV<8~^sQ>_o}qdY!W0;%q(_RqlKC zue#*UtUBXT7u^$|Kij^3WNft~Mmb5Yy?6ilY1a$S-Oo|}Jl(YRdhPOwc6rP1A9%*{ z#l=GG^z73qw-WBpVM|-P^il0Uvrq5ls9z61yV>iX+dhHnfU}8(KX=uge=k!ut-n>p zN#?j#sEyL~>Dk}vLM&|76<1%`sK31Hm+ZB!Wqp&1%k5bemrHrymVWN*p4#{GgX)cE z_eEunZ+JS*I5lMLnJa>8*HmtMA{qX&=2UoY!>Zd~XIkvv-*PUIBjm2WirzeMkn^R+IsM?bFod=+=*&-vG@=Qf%?ja_zgdiAb$*}9T@ zJ2+=Ob6@${=elL39)AXZ{u7(7t@$plNB7^H9dYiy{B~RI6rn{M*S!CG_UrjYVSVfG z?2~DTGZL;%i`U*U<-?SX!gphuHucL09?w}V-hKQ=z~PCX{RK-WifOs8vF`Yrcj#1Q z`R0)RYJE4Cx79QE7|d|jb?a(dDr5Ba%*thIdXLSnUduFa(AWrPERbk zttoWns`oX|_JHPTCiCXl)vj#6_$TUoB- z{$(*~b7GRaRoUb>T4!gM_V0U@p**X4&hrG8+41ZIm_2pJ`tO2|JwH4 zM_#)}PfjpM?&R6;{#gva-o?_s=gA4K*I@$@N-=a}#C zs>?j_<&aZ-dA$5t@}9@Xrkfq>sa5!YVz%p&y}KfF`UIXHlX-OErShq&>AUUZ&2ANM zR($<7Bk?ik{pX8oIcHlZ$+ibR4*Dd_JthCyp*M~`6O%o^o!z3g{Cd()v+%7ZCZ3$v zkKU@d<@C2i;q<{xwxxE)$$G^R*ZIV>=clijx9v;LyL7#qyv8=?!v5U;efrNo&oeGv zH#Y>kckd82ovIo@d*yu|DSZxi9Z3)9yVC+-GN8v|sQ4w{%hdLf!d6 zcjnekecWCd{ZZ~j(Bi(bT;(U* z*sVD(+s9YmX5P=Zzk0S__NLr5%fB0jPBPqowluWJsQ85Bx}N40%Vn&W+tfcZ-E@m% zn~wgEN|xeQ>FFgC{g3|2+IvKC-f4zC(p$f-I==JW>q(CtbmiAdUU6&L?E80hY4hun zNxSBr>5fPby?*x9ewW72Ijeo^QzTtdmp*Ei&V~eX4v=s)8;u^ zKNmf(Jo{{G+&cZ|Uw`$#*s;j;cy&`txy|zG<($XAR;lBrml+{7JH_{$YXW4&e^2Pg3`+bSigM>MV7* zX$M;iFl)Ntof3te7gIU+Cwou4Q62EhU|y(SSb5n~&Bu>cDH>}v+uu=~sJ2Y@<4onB zS?;sH_r1R!sQ3KD{=141OMRx_t2?^s&dG{1mzF&F@^WUd!@XX%>gnRfap$Mm{7b4< zz7@W{CTCHD>^aVkpgS+0xmio8M^2ZPWbFBV_ElurSDaH6%Mf0}&f z$@_;IgXV?LKB#}r?%P9?nO4s`4y@%bT)D!mWxLJmPy0Td@w|~ORb=}z;r@z8XPovo zZmhLTD(b$_!&bfAOy1l4LHUIjw$_ESuf9JmeOxT_bpON2jjP1=##m`)rG#bQt(bc? z=-YoS*APQ{?v&+?GE3H^A9sFTJta=wJ(thow$-BlGV2~**}RAMoynbz7X;L;gUb}VT`i8z222zEyK2E*p_M-HuPU#+t zXUCM55f@#4Iu-nxjGSDx-Yk0)QBy`koF`BhQV3nzBU&g0l^S9yGnx6t%GHF1_* zM)SXJyR(z|_m`S=o?k+yy-jCVet5F*qvU-_`J0hXH&n>m)Ng*jFKVsKbob9&i`=Z{ z-BfSa?pGH0`1tGGH=A$Ezb=o_pV5E2WXC49z00g*wpZTidy{H6ZRh;Y(+*bl_zCoe zZJGOV;&J1?kEN4RwWscU+*J84^G?j<58t!4PRkDb|Do#hpRC}SReAB#mDpcDj?Vl0 ztTawP_S^fl4}U}zI|c7u8Bp~~uYcYAx?o{Fi~rH-KfHIy z=KtBXPBZu&M+?-JYNk7_(`EL(o<&6!WTv=oiH*Zr{O zHmcumd0s3#_+p3q$>@)*-eGKMif_)D>}S`r{*v))e~z22ki%AiTmSBVShIA=>=-5K zsm*0Nj>~?jNn|Wsw)NJ3rod(%bV+&hJ41=kJkcCzK1uh^nkzx}SE z((-%v>Rums_u-*zW6wORtyd%F$#nK@%(IOxTi%`A5*XclY}TTUFEXMQ?B?iPAK^X6 zywBN7t55Lusp^W)6Bov7w~x)TTl`JmuDlvOm)D9HwBBx$kzRhi@V>%}3-_xIR;!7>=1%3F z+nKYz>rXU~^O?$$oXyhjAAg)XF@LAXmt+H{SfUHrXzvxr#?||7c*$>A!>0UmYe`FF^*-5OqR%IP5KWz&(q8vlF=a~qIquEDA$ok4 zKAVFhEV}QADGyC%sBJxtYTh{`gxzuoVnw$_u}TG z31yN8-WzhMpDUPtJX>SEbmrCd3(Wg||NK_&Tv6hqzUIww&%EPaT%YdM=*pBDesgs9 zv#fnGW$|Pi`JIk32Yux4xz~N4nmx^VpXEXKT*>pdH44px+ctjf+q#wa`|rT{4!4#5 zL`j!_TbSGv`Fdt~xpcQz^yA%Lr)NLsp1=8?Sw+j|TQ+j5PH(+Cqv%QG)Fsl#)9t<& zm4ufqJ9y9fe%4XzOUeT8Yd$YF{d9T%);?;to%;Cso?5RBbKh=vFP>+3`2E*vX}|4~+jaMzPu;seTkCPH zx^BgOne*vqOrC6UTfX4&;@j_ajuze5U;6s;?=(9S;S%A2bOu7)At^k+&@2T zY1Ypr_qF6J7k=6LM(Ry)IqRzht*w3TzNd7YxX=uaC{%?m8&v;4GXJ+PH?^9y)?+gHsq&8Dey?^I(S zzx@_#pL0I0E==AMb?SYhX5EzKZ`oeF$k?_a=f<>$yUSsMvJDF>pmKw2qW89qsi@$XQn>Wn=Hu1~ih`$!Lhh7Ix z>nk+hv0>hhEgyfc@3_7;?~(22Dc+}j>hAwiJ1%y5$LI0~o3F0AQ6{3;cDUL0QEiP+ z3E!^f=C3{07aJZruq^1XPFj^|ck$#2G11P}K(PtV8yCL*;a)6v>7~2P{IcistlJk= zE#DYbedp)Qp9jqJlV#ksKdiPCeI7o|C35EeH8cKA_KxIY=#jeTcJXJ*v@4VLM6cTR z?!(Qua=eQx-xnS?^Sday;Lkn1<3%&v|Mc1A@EueP{Pk?kl*shg7n3GdNq)~+omeb2 z-}KN>Q3lF~X((<939nZJr9r=+^XY5th=xiEG0 zym~{6MRNqiu6>9uXa3!$epRl2dhcvCfm26+3vZ5_@%6BWrJrN*EX)6My!)b-i%&ac zb7KC^xD_#Wo0Zf>eQxLEG~WI=`>@Ph?stn4*KcmVQ!N*3weB#N`o)QQ!a+;Uy}5KY zda~Bpi}jo5d{`FPcjIz?zupu+vELeeD}O!uHk)mMxoeqO_lN8k7jB)two3W`zdZYM zJhkr&3(XartPAHZloWY6@x!^2IM2fo@59>jZa>*OxlUq#PsF=Flb!u5gzbZ?zxGtE zykzD#TRFe@)5o3G`QOjq+y2j;*6nI@?n_&+7P@=xl5 zud^QAxiQIo|J@M#l9i83i}KR$39CMxqwc+7k71hUQ=|Me**~Al_gy{m)>(Ax&L@SQ z$EIvQTv7kGy48Juxc=b@$B(`~ak25;hcmbOud^P}IH?h;e8*Bt|L~O{yXA>X{@khv zI?Q=ws;a&0{q!>{Z~uOJD8GH>D{k2te(E#l71{og-FjE+>gOAo*Y?X^4S%>sDtrCn zS+`AX%;!Fhj(hp<`qSMppYN!DT6JQ2j2lB|TYG7v-n0p|?>M+aS7)vN)suV0 zG|o%3wy;$C<@2hutyfl`O{u(Eyff!q^b>u@8KpONC7626n%(*=vLBZLK-N$QJ@l|!bw>VofJ*YI;}pwZ zaQOvkr|)(DRH>c!;|!P9&X-1ZtgDM%r#;`KIs3X)$$8<-g}2_n^472qy8QX>JMR+>}hFT8zmo{`nhz4g1MuVpp6q0_bgZRziv+!u{=^~9!naJ*bG zaq`9Y^Of$tDL(Wrwzyg8c*c{>F|tK!DevA)^!m5%Rx!uw|9L9qEF0g?l+%6@qr7nQ z@y}i6S$b6|8)V$0XFs?7HO0g%qh9`YalVChuZY1%k8^FkZ4u$~>P!CR^&LKXD^uBP z>tbGYVE@w#aaq|7p3m#gtw*$P_&~%v}+Zv9)LRQyI(I?wf_ho*T;K z+g}n6ShD@|8XxwL8QC*4ie4?0x1Gtl@}=eW8K;#V=5BqjqyJ8KZqTf@*Zo(0ZolMv z_oh6na7L2t8}Zbg&nC#Ix=UHES+k{h|84*CHF0UdFnygt^8b9#Wn5pb#P@32{sTo=3AbRuczJWsmYkP_uR(xf5w;X3-7F%w^F}g`F)?otM0!~Dn7gM(IdTyv0MR0 z2L5;MEe^3Po))6#-n&yp$>*xrbe`u)PiN%GUwOG_!h2&G$?G$3Zw=}D(eU@&Iltpm zA74rQq~V^gf9}uQ-PY!|>z{wzcZqZ6?NwhV-)wwwe{^K$!k5OCSR{zvi*sry?y70v*(}rG8yNu zp34+^YJ=q;yW>_DtfSUPt<8A9g1@+aMY~LX+X@5yS!<7LUUp{nb`^I2W9l3m92GkI z^hL3G;RUiMYnM;t34dn&?~dt*w|@=eRE3Sd+ctg42)nAf=gQm+v6*7Fo_3jKM|$VG zPdH*e{fB$#;nJVqjhw$1{4BeC@A}S1TB&vAGsV*GK8^DYzn)&XQ*Hh~qr#m1f7K>i zZe1YotK|ewMAl|~r@K41HC*&6O4zvP@Pp%(=iIB$b#vOTpW=Mzf!|)S6T-WhpH2Fa zF*&J+DLpXrRe|$?todiOf9$b)w^XF73mAzP-c=PGR#%X$& zJ04uK%W<@Ke|Waw{KRTwza*B2G3{QdR(m_0!VTA3w$FC`#8GmZ)#dP4L7vTquBmO! zi8cMXzj(epR=VpT&6_MerO@Qp5yq-l&dp_~gu~1kc2C?We#4>Sk=Cv<*57j*eR6cq z&B&`g8?uta`J1_X^mBu%n$t|>rk__9%u8R;ll11e(Y$=W`K9)C{LJ;0cPz||GPwNW zw^*CSMrH-HG*>yxyqx(<&et${e{1x;*6p&B&F|l=cxf>Gj`>5)Wx@r0g; zAJV@TufBe}ulU`Yz(ovx)^AG|AN9OzZgp!;+3nB8{f~uCnSE5dE4bptrF)V2B|*mb zFFiWOyNmZ+#0Cl9C$2fio`<#V3H`CV_w3IXHB)M)&JMidw8ZlH`sV-l_dnR@{_c45 z`aS&LZENK7Y-{A-Rll(Na$9@e&u5=29!l#!n7MrZaqjqPIenYrW4De@o*UQb^S|kS zddihLmf7b;dp~kn#{TN-PJLACP@?p+SRwe5jr3iPLwhd%*lWAk=hGw^`D;6**2vUe zXRvXN+r0Iik%e`pEB_<$C0o397ZtCat@$~wo?)T-^I9U4LpKQ@VK1MYU7@ z_0OfFw4D9lB+j*xT9;>P^W|6j#}BXNj{W72dpJA3mhJwJL)SmPxt^z-x9qd!_Pb|S z`ufzZm+eoFZ_b+`n;@DO8(;i3WqL}-mX|lyEy@lFe=;|4|75xOy_;tJjw|DwF+ck9 zDYa=`vrIn*Sf2j8ZQ6;yn~TrizEiY5V>#<~x!tYN>nl0{{`iv%2YT*QI~W`*bU8P0ya!+Gg$d`ij@>zr|$vH|?)&knr;jCG)lNH%IE! zJe^bdtWw(2Qg+*f@O)W$?LQ}yE|t%I5m@qW&YyP~YF>Lgt+(!b*?PAxnRSEw|wv8X6F2i?4`$>&PxTX`<#<%)Bky@ z24mK8nKe9%x7swFd&r{n$9-bv+7qwe7u9aQ(({$EG$j6bnq5hH=CY>68x{W5=;S3I zt3CRAZhqLM8^@LMSD!9OOV7Gi zJWneoY;$;#!nN3|3xkStH>=EeX>?uww5Roo9lML~`sfSJ+96fGGw@*K){;LaTTH|b z?Bq9JZ@zDSVOdMR_sVS>u6;fKKIHV7+v#({_I7MI^4vJDPiJ$W_n8m!k1eP7pI;KZ z`d-gU#c=Nx$?q25EMl4XDejg*iOKtQtH1ubw)cCa{p`dU^JQPgO+S?)VJ`j8uKdrw ziMIKBU#)z#F6Cii(%aHi8Go(r?60|O`{u)Cg^rZyA5&#@ysmQ|wpg($TP)Qm^ka2O z$5oSz-J68xw(P7GSB*^kJa6|7CFd^NvwO?k=UelY#@{W92=d7{%iL8Q{FAfvsM_p@ z4~A$p53Jp^2xD(L;BYl)w7Lk&zMY`+JDni;<&z6 zM+jfz%)D13igS-EzK`iNc5Es#zSE_Yq0;n}`B&bD>71A5=B@cI!=oYTx8FJ6`{siu z<#%;1JF!kSELvSJ78P{dl5G*g`TZXmx4vDZ+1<5f)$Zo?{Z)&iraw2nfAPmFi!;eD z{zkID`=P1+yz+sM^4q{E>4%?i79B9t_CB25t|U7rkKuXQMUJ(++(sva|9{rGb8GJR zndg#Ue4l2S9&dO#FmBem8#3h^l#PvJ`;<-JzHpLz$oVKSJ+kn&!);mn-+ybWQ^b`2 zZ&T(eZ$DbVq4o7{WO0_!f$#g?lrPs+X3BOn|6qCk(ZqS{+$`VT+xGi@P0lBo6K=1s zr4_GQbfuy^eQrvXfd9xSNIR&$-{($eytM^Y7RRh1=ybdrD3zC%WIaUBzE0_hoL~ z_NbHokJ=cfSH1Rgn9VGxXwNfUO7KzSmv??Q?EY=LmTz0sdVSw-L7QLO-XF@o_eIO* z)35M{6R+>(>bLplwddE?^+%f5?`i%0ZvUa8RXm}kQP)NFZOWzfZGJP&tAEG(=ic=F zefR%fy8L7A{XbIsezmTDs6GF$)V@!vvM%{@uiiwHD|gPaNlo<=IhZBj$O6u+EL45zYm$kJ!W$P;@m7{)Bjt& znphK>vgWW+_O;L{)Ay&#%`{R-JdtKY>9`siHdE5VZVfej6fBEnAYu&B;XEyKWvCTiOT|N&g(GPB) zSH~9r=d1q1%l7{*Yu>%DllwbcU&3#iiQK-(Q{hTQK2LMAm)I6L?po$ryN-ENOaGGV z@=wn{3$fytvApLo@rwB3H{FllTXhF-xvX4fq5Ql=H-D@7sijY(Lmxkz8NTPK;+~hz z`G=(M{dcqZ_00X_0qwkp*ADYPXl&1a*w`+2fSLbp|8My!hVS=x$*;X}frDXhxy|>r z&p+HTpMQAs{Ti|Jb;-Z0-$|c;Fmt_qcl!Q+Jo74lMcRDcn*VTRd^K16uN(Of|L9sW zGuv|gP=<+z13!AqetoNHX|_&8dCc0)ZEXE_ z&ir7Pnij3T=NWVVO$i_fd&yZ`5I{)5%?e+upU^iu!f%J`p3^M2hB|8VH~JY$Kz zu*v(v=Dk$w+fX0B!E%L^neZ)1!&QdXg)!Za^Y>SuUApsrYq`toGtX~VuUfHb&#RTc z-pDqvQBye?dDdu02mABm@atUM)PC+}arBK1$|j);4=%hcD_r&T^q?*4Kv z_)eba{`jRumbur2?^~RqwuZweywoiZV#hT69o!wD< zy43cP{%SjSj?K)USNvUEa;44w=6vw7xB}Et9Qq7o9l<39?JP7oRhsGJxz2bua)5MrU|942lY))eUBGjCYfcvcFV-* zKKrd_%d#(fKIQnj_krx|6Ej^?Ofo$iUo7m~8`uBhvuoFPTQj-1=fV-y z>sMcN-?}l)r|6KZrgLHWexBZvp0wvreR6wBX3q6{!nV%LI`4+M-0oWw`%5P?tvbQd zp#0Q*)hEqN*YcRH2_I5_N8fKL4V-;`l0@i*@0-G{)gH@wzLHlytLNFl+EG5?Yh+|W zJ6D6?%PEWJcsY9>e{$xv^@1bsMd$9yy{p6=&Hl~o#KaAUJ=1xVI|Wle}l# zc)!Qg#qFrvzw0{BYoZx-VrzG0y)Iahs{X!g|Gm05uM0SmU3`136{GJztIAJ2W3x&B zOSbs>y_YMuTk`qmu3wzV=d)$kb@$~7ht($kop++}%CiEVq&?|UeG|7O9)DeYT;XLb zdsgPpS9~H26%Qu<{%}OTLiygWC(<9EecvmWUv>TUhgs$}MU@lw_ioYQmaF(sXS2aN zSg!W3a>eiO=YGzs|HfMLcIExU`Sq_(|M;T+Pt5LT@%+R2fB!DuFvpaAx`XyC_c{Dm ztV+sN*v?=6^Sb(v zVLaRTL-+hYLU!Lz#~()Bme0&}&yB6?4{Kl@ZZ zHRhtQ+S3=eD^-syubn#O`P}V>)@DE3=GeM#Nl7m0`*Txytsn3D+D}_6K7ZfOxxW7V z>yNw2_sR9!f3%4EIV=3p(Ph`9@@#9kx6AEo4S#&~`m^}++I7#j@9Wa9|8~0K)nxyN z-ur*K*8KYahiBi{oy#}ouDJ8`VBM7G1y7b%U$SnvmMdfReCF=WpR-b`7agwbKW2S? z0-vi>SYNxwhokH1!YeSE*veRf9Q zrJ|^U*ALkXUq56&{Q3RAh2Oc@_db3d|I_x*x##yFr!Mq) zZuk2mrdtzEXyz?B`FGauddtq=>1WQoy{5b}NOHM(cJ;dVJNi7fy647S+PO;VcI*4; zze`qz9bA$B*}}RQepTNtVs5w7 zWPhET+n@3$m0<^&UFJ!Lvo>>Y`{7r)`ri|&K1I7S_TRHt&3pZ7Upc6Ry=-Lve(744 z;@HD~es{Q@7q*^UUUo3Y|BmAo-Eh|cpB~N=?BW|u%BLLD(4YC8@ooQ^oF^6HSNF`{ z+!ax*s^~ZAjn0>)8|4{7wx8d1(`nYMeVeBkq_HO`--+a%@lhag=ahCo@7~47Ox9t_|U}n>Eume~Nn7bG>}?S0Sd8tp3(d z>+OD*e6|1mG)7J)o(;=;3>FLfum^N$-7Jf9dZPTZh(+?YqUeu%Hv3L1b-vGAezEiP zwl^%3e_z)u-5Njh)uMwJwri}gEAPAH^V%);{eE}1b=D?XhkJg9ZSR+zJF{hzRZGi< z4d=5nuD{f@3Sd0T<`AuLrA$6h@QCo|6Op%aI<2&|7X6gHCbvC0B-ys_;~mDr&Tv}`=1))c9g?W>OrgLbYmm_?0=T)gZ{PO{~<8%&*Jw-tnL4p?Rj~3{o&;NI+4?# z9`*LzUs>{h?e7miqT{=d-~Sb5^Hcdf^FNsnZ_MW(7O#7|{o~E}f4()Z#P>D$|3CBm z7Rz&pO1=t1uoY*oVeY<=iK~(m*x2tH)ER=8$P@Iug`fMJ$9T_TQAf3sgpU%t~aYnk#o%Ucz4 zmLbp7YmOONUdqpoOnw>@wTs_UaM{II3whU<*Vn}#w*LR2{PExV7k?`b@4nw~{N6W- zcl*E2mEWGPuDhIdeeLPwinq~nhkw`o_{-36&wAgVo6A4U?5}5=|7&ObarOVt)Ia`t zZ^!>dc6JGa(W~`utJ2s73U>70tPr>^qZhbz=VZHQrmNF>j!oX|xq5Yll zL%7XHt(x!sd*$>0pVypp<250lGuX-c6=ha5{4@cPVZ?*ly-*Er$ z+4T>C?f`A3)Q|H>!UmPKn`d;LT!X`|@-y>p6R^;v!D_tc)Wt9MncU3u=Q z+ov~#tQNTzc(CQs%+Im!l?#`Lrni`WU%zzEzMz~NN^0waWOdk&oUmO|Q@KZL$LC!} zkK5|s37jcne`$HU_g3zk<^95!FK%30dARnd`=*0?HrcJHd9r?|e2wwxeL7b+iJ4gU zo7uQ}oxT;fSxT#p@5#;=f8G?G`g{HJk&k>{@kPJRYR~XkSXuXWr_CYR$ok@l;v=u0 zKB>C4bV}*f6WT_;cSO!t{tJ0u{qb*6?<(D-4yj$<<;!iibI0)KpPOFka4z`cIiAus z%gdFzvPIg4p|vM%K7P7!KD8*@_U|ln+c>XEpKV6w7psl#C)ApCsh+y}=&VLoUD=xn zXQs_qb@%o2+j}Rxi)@!?YkboDXU3Kz7N1_{Z9S1wk{R$g?pDnHy5Eh_JyMek(>T9g zEx6bc@peVg#wB-?c6a3!1hKfghuL|oWqqox-Dj8{a_Ln~%g+-hr)HifNWH&`*c8XvJMa9@4r zx*d~Tq5AWQ8o_>A=9gR-FFL>Ch0Pp8UmN$$tIOoJU*v!Kyuyfmv3Te1+Zh-BJ&{{v z)sb0l@?&D5jQ;!Q&q`vL_eIM0DjQv?Ucyv4Z<;_97l(A@$_2?ESS~Kp5B@bH_u@mh z<#EeYAI5!dITrscd3VFD^*+6yjV)8|&YYB9AIH;UnOOeIG~tf^3IB2iCSN|gD{syz zZ?l-C%(eRBLnZceD>J|S{9BuMW69&MEN7$NUtXDMXLL*F@)e6;f(O3;yK?(umwR5T zVgDx`wfWjI&1bgCRX+;6)BC0Q|E1j@|7_l_|7>N(!TR&3SrT_XdJzBj&-;gy>tCBM zFSD@Io7$KW_waAsy?O3eC(0?yzAZVIZs0yo_UumAwXnQWLBUh{1F{)YHp(fgbF|1PcX$^Un4I~$)?@brq@D;lQDHy7Sgo~2Sf<;gPU zMSBipv|C=k(6-(C@Xk+pmRoPOZ`#5uS$eP7%5`_x-jC|-A(fxLY3IolM9O|--Sa%Y zhCS|MEWcmzmDf9`w&!DP{(=7g*8g?tp8o$;`sdI8KZSpe#s6Kh_J(qO_pOjC z%eKE?{#QKz_SvU;YrVIX#ccca-Xk|S|Jxnisk6V996T+vW^c6gxnkA5)7sa4xM%-M zZ_j`Jz4GsWo!I^1!fH9I1Mg1jZ@u>6hw%EtkNx-X*?&21-}Je@=$Lr@-|Zh(+yB=7 zaU}ka#k_w{uG<(({B=(c;(vU7qkIrUL&f><#EdJCUiqF&%sl>c-u@M#PjcC&9=>Pa zc+=orwxW~db-NAUrw0CA>h1XNonW18^%nUJ|Buzh&tLoT%uR9C&SIa2vUauyjmPDV zOs;=*xZ+d)ABB4#-kI-L`CD!Ha`(M2Q8h1o*B@=Kd&U3g=l?I3HQ$8yH~RnETi+A^ zd-eW~_4QpQZ%TGJxtATf_gusHM*j3ma%)5LEAL#Ibgz0|&f<@jj|zS)|E}zQ!!Z7u zS@fyLd@E%ZUf0`meqv4(>#KQ(yp-*tY^~*1?Q^>+^jo%+^J?%(k^X02GWO4#_jKcW znHlLvPWT*}x!82C{G0M?H}=+B+SgmJ;rO{|+Qie(MLSN#nXS&Q-t{U{cw6yL>xZ48 zkr#tycD~+X@cirMH4k>5E;v&WI@hmw_ZwsPcyHC{6^AQd`A&NBD0Ow24&#n9!N30< zdA)y*);+_=%Ns+ASf(%WnKD1F`_r~f*QW;m%BV|;DxYQLbt?SvZmF{!S8Xnd9*c|F zHF;{+XPpCznTdDu%)*n`%|1~0WuNc;ZK*Eq`*xi+T`$!yd71Bi;HlNO7Z;hoe0m9H0+w)#& z2_L?SuGM{3)egXEJr3`^2Ya>b-N^-dw*HE&JK?>qS|?I+Z2g74)u6)pAZf<`Js5`gWye(Ujwt zm;Q~~w%Lm@;_QV$#T)exJ zJ)%YQiAQ!o$`pC!TNjplXsPwD`LxgEjoIVzkt%+EwlFW~pKIN2RVn+LkFURKUaE>?n-qVHqu}0s z>7`0@JD+HWN0bNG+H?hn>|C1R)NNz;Ipfe?rJ`kJAMU>Vd;jtCA1^ewZL$9&|5wBA%VhsWx>w)qwSHN?@5k;RNB;lv z{_%7EKZ$w&o?K=~cszglqmT8u=T>b|p6-A9Z_US!qu$)V4{m%QeIOx3UA9?!woUw; zUx`m8dAD74c`mwj=kK^u`+MJm-yi*5|K;zGck+Mo?o|D_w!Qh<^wL+^$Dh~zH2$&l z|6B2o-Sr>kAM9Lj)BSeej=pmon`_sa^-XYb_CEH0M_1`BhBW5C6VJtEKDK;XSW?_? z%~x~x-offaw)HX6?tNc_|9{=zr(XZ3`TBuRbA97~-U7)z)Pfp;T|bXz#pF=WVvG`X5xi^WB_h9$PY$ zSKbb~S#dpon*7bSC!g;=TvgJbb1*{1Yl)8Gs}&c$Pu^ZW@1WSTPcxegz8YSSow|o_ zp7lxlsPV8H|^=0@!o2Jh~_pN4SfBhX9J@a*c*?H^s6No?#{6l;0KQ(uF ze?shS-&;w0ZFTwEf_h(1zW*4u>4txgRNqXGrx&cN!mQc1PS&~{wf)oaq}KOyw36<5 zm~S>xTRc}`?S1#uta*~TPrgn3@cztIf&R-Oo;=FSuFJpw_%VIDOyfrWIRCKatDoKy zyuLtq)vf&Pu7(~ve)8Nq<-$7Q$H!gMLi%<*p1AP!ioLAtaht{NR%#voP$oUuy4dsW zp+J*gR(uu5?@OIp{kB-D`;6(2p7V)6_rC9WmHb8V_LI$PBG#|e$vl1h!If*ahx}4k z9S&96&blt@e!r*4yO$n2r6!iien_@?TW4k&eC6DaJM;6`piE-^%a) z^W}wIkFxE|b9)(2O5SiwS$;LYwO|-M8!i6z%?9{x9&FTdzLx z#+~QePTJcy%``gre9NQ5n!8I@7uN7+AHDr}#x5Q)mp{Qa3Wt77zFly*E5&t+<;9Ry zypFrn&78JIz3kg|T4VXv>3Sb;ym+&x`1z#yj}O$b%w1Ocr_ug<;-7`}zZX}05Y@MT zesOXB54}Gx=Ks{FdvgCr;-BXKf2V&m|Mz)+@ACS`nJ$)_R9{N|iCf>gMD*o_uzSx| zY;F6p^NjZwo2(Surys9&%NxpXwQ8UH+W0!J)vdqbKla)G-23A|e=YyLj|a;i>|=jd zEhtg@bNM!tJ#SBLf1K;TPuBkD`~QM}Zk_)t_3!=vcj+I0?*DwVHh0_Oz3#h~CAK}5 zc8@K-Z7}=UY98y_E6?ZWc$a_4EuHhQP4lAM+>^5JEE3|L&n^1n>EE|({q#wjkGQzU z#i_rx+ixrXndx@aPHy3nGgVt2{q47H;s1ZLp6&j3ce@t%`+shDUtc&~Ve7RIef;~y z-~aef{qf5D|4McL>i5E#ybKdXp-L~=QwfxF+0rtiJHwo{Ls{CmRe5aFY?HL=qC=ksexLE%-<)i#%^rQEea_~l zt;_%9O*>Jb?f>TgoW8{@i+`W?K5~2g6~5Q2L%Y^E{4PE(KXc>#rANdT8_bhjdO2C- z|K~ng+2c!Pul?~$7e3&@c$fLfje=xJhB>*%*UEE?1>1c1&Q+4cnRZ_}BGIVd@3@Si z;P)vRTVmF#^O*ek8p4;6n0e7nTB^0?&&qc{ikPj|{Cg8K_hGpG^u!mJj;60xqg z_GcCK3EA`JP6_V+zI488NN(Rg(d>A)+p{mH-hF?e`(j}3|9-#u#m6oF1(a{eo$!J0 zz|!2~dY|&l-dF^?#LFM=w2C{ow>QICe(R5wBC^{qO4e`L@oV|ZbC)}K@?=lTdEVUZ zqNrK&M$u2{`1|QO6PnLwPU<_FSY=>!qC9ZX+nU3Ryr;JRsk(0IcCS`0q3_&8=Uoq1 ztvww15a73gGI#x+^X{3B#oyn5zpYEWx@uKu_KMKb!?HVm<*z&BZ}&f$A#R_T)TfJU z6{jhMwM5{F$|L3Y`#jkzG58iTNTD^88<)o$tqL+(l>S~lR%y$0bzO$3?ltD;n|Jl< zDrf5lxQDIPt5eJE3vkz*{#Z6YM(we*#@z|?7^i*PYFupdPAUeAOw$~Di zZRSnO;mp*2FDbuF__?S}&E9=IOH^;y3EewBO=|Y~C*hB0{>ol@^OsKF#iy$;HazcN z8n0Vwn;);WE$Pa=Yx918%1Tzhl6~%x^YR5xt%KaJUTn9we=d6AR`oB1UGJCr-g1`T z|HAw6Pmh^uA@{C%2krFsPL(S5dY{2&EA2Y*)}1wb<@?i{_I=iQpwRrF>PB16kDy?(r9@ zdYE@uU)%hx@3r^+sb+QeIjtQ||GToS(AM0qs$oYpWiCZQ5FND+AT6Atrz2#@N=Hy)0OY%~4r~kSo|9$0mrd84X*%y9`MXr7KZc1}#>r$VY zrcdXE^;Nt%)qU`f+_PyP13MJmeKptK+<0kg=&7!*$ri@5^fql!`@^xM`fAegXF;cr zFuqjYY^0`G(s%fY!<0XdSgw4U)U3`XcvC5fqw-wUAEv&yVAK9~|BJg`Ugn01pJo=HCrvK6)aw4Y`u`v2 zn%|G_A75NbCME$>RwdUEY~*fAM?e!@#Y|wv01O&mVsC_W7ej{qwu;^4}~K zGPqM=kbI42&zC=oH@x~H{?K~cp2$|NFJ zx_D`RvpETZs4Uc^WB-4Da3 z+cad`)tavRe`G6%^R+)rO)upqKD*Izyka%1CD*;1LG>1XY7 zt^_%UpUpVpUhgN`5zODno548Yg#E?oyJNqUrIqZuy`~}by^Wau-VZ7|5xWY!ZW&HB zs6Xi>^LyImf-A565B2N))?4>u|Nfq>+4I_BEnS$B+e37Vc;87bXAO{D{zvE1^6h6C zu6@*~VDuCc`C}1(_SsZbcZRsfQ_W7EitaX8ojdnyVEG$~WZoOskH5@T^Xgmi`JCCZ zspo^OncHq3eK}*<;zjH`bz{`64fgW3eLj)DtZ-*o{!z2O7MxA#-(D@Xy=pqiVmretkHq{`#eg zxYciHZl9FjzB8SVGBs0I9BH)q>1_CR z{=~%_zZK2C&iU)$%0^wYJ+RbVt@lz3>xqAzucjy5E0->oW%MnZ zbyMohl=tuMZuZ;$ZnA96njH;uauieC=Ue9l0~mL80InU&9_BRR`PP^WQ{;-<;|B8dmAqpmDi zsyU_hxD!LzvU>;m^?Ma2#_q65VmYp6EfebaKG-XML_1klutR9K@`>*V1D6MR3e6gk`@kPdw+SWT_rgNvc-MW;!F0k$1#O1YT z$~`%AQ_p8)$@e>$+B4gHJ2mml;(5or-rSsiQ|bl(hU8h|RV5a@cMRu5nwGj}h{afI zoKw9Qx3uHt&FB3;uIvgr68GlSWJ{w397k%x9li%Eu{f9imvk?>xhXef`u<|wUH_(~ z3o&y|nW#0%t!{lkhZS$>2CkOa*fUB|D2E9`81!V&di zZ=J7)P1vH(Nz=ohS$}$;am?-6?V>9g?N8_F$2S`5*@^9z-}0I5a$a`(PVVOqj+o2z zCZDsGx&Ht5*&oN^>-hQa{watvOnG}@#V0BCpbSN!4lBmD*Z5y*n_W@v7tjrVBD#9r zrpLXNT>Y;cOiw>!x_RsPr4^4>|2b}T=1cI8jq%KC!Zz>IkI!E>O~-wy&FL_`qqG12 zsnNMx_)#TkcVXhWCQFO2Z`B{3DCRpZI{$~+zsL1){T5G{&nzvkdD0%fr81S(i+Np- z_PO-q8s7hPtQocVE00H;56*YC7F?~xsnb!SdUUm|bXo?M^bRu-OnFK9C!_+VOjjxQ;; z{gQ_8-$m;~p4`{s-#*o3GW(rPRVkfU=U!f%cehVaf<@-jH06Rf>*seJwbq%-(qo=K z!!VnT&;EJDo8mVIe{BE%jrGp2nXeNUf3G=mOXABq3x}Tp@gg&9R%coi{B&9TVB`5d z`O;aJBl$N>TBLv9UDN2tr-zr!-USy(?d9ygc`MdF=KnuP)kteNdTK^8U-_ zDf4dxU1g6mOV-Ig9~rjQ;`;5Y;quY$wZH6arykFj-&>LU>9M}n>Qc*J*Cy0?RBkaX zn_L$Ea_iR3EcSfro63GhWi7C3h;KhVb#G6^mZi7sCQN#3y*l|y;j>BVm)QQVo3?L> z(VcSb{HUJ2y8ec*<%?D8=B@v7_P~RCuceg3tgbGvxfLaON8ZTEJu|Gf;@Z69^NiNk zne3YP@xw!_zuSNPUODBh8C%XnzWukDZrwlmX2we6BFO`#$`I6<>_hpoPy6MT{~LxGC6))S?M3I=OWrcreU+QJ9Jl_QJbIm zZ0?+m3szoBG2C?H>fGX$Tdqyf?NNU+&Es!vVEx~U55@1Q;|`p9+TxqKY5UyZuWz+< zvZqe_wOnj+k>@rxt=$f*51#L1DpT`{wE5*wS?hh&wg`puO>S)SM(&nCQ{dcRK0FxNz%+hpnIke9mdD_w7RSjld!@}DhU zZke>`-Hoe@?ODAaD#>_r-!MG*IrfzJnW^^{9#$-ye`5Zlf@yo+#H19Lbtk-dveS0D zw6X4mUd7%Ik0VtoZzdWoiJX5`uV_w0-+BoX5yzu^(-~5pb6UB3vE2RaUiox|AEV_h zL)VWt&q}^I(D~E&Vx2%#(WlmTFOCM>YR)*bG2jHdlDE}N=6j6xyywMJizKtWmV4i>HJdVRZgs5T3BI=+3N1D5D%X`Is_!Z8pFG*}LWS?lGW$CAIdv}! zZ=_$%6IMNAQUa>#Wh$R}t+9HW5cBtE_Q&=0HKOzCQe@dKbi7HZp7g7IskCWCzPA=mHa=c(_V_;jM>c7- z*W!}a9T(dDWt07@HB)*fdVes|_L0*y-7#;H;q-TPx4%tTYVmLG@rMs4^B=m=qZ?B@ z&n05t@oyEMj8JG$*Y_H&a;zAn--`gkqI-zmyOre<(9{U2^v*(|6z4VFq z(VT19OBlVx3wLeR>wn5`#`|6Pz9q->Y4)~!OfoZ1@&&~2&);4C<)uV&?2T>9zuors z<_YUg>zr^~sOt0Q;<(IalgNP`?B}anb)?3dc6#5-}2r$aQ(BD*Pj)B|6Cs; zt;Te1+Urd1AHU+hCm42Lm3wvGbl#Of?bgp9*S?r@ym|ieTc;-Z_qO-fOuPNbc}vjV z_1l*m&(OLlHs#0HpEbWe-ZM(%z82xNRrl{{@4mOk{ynxi-FPTx`M#c)2G4)Zex)~i zmQ)n;`>Y4a7Lf}-G_R}A?_D2#*7VPr;{sO?7@x9p53hB)60zP_)~8-{?aAGuEA@B% zW^?jbrqcK6^G1)07yIhB&y{w*R}>l5_ic4=%NkD4*QZ6?bgf?51#VlCyP@y!tvvhl zExM1lxS6rluFp%YUZU15d+5XEi!(dTioV1ja_ec?cDz`Gqqn4NBVUG{ihIAym6r#T zic*$rQ7)U$TqLf=_e;{M=4afF2Ol>0*}Pp_8qmDx%3AmETi<%NoBQ8dmgRefZ|RK7 zt2bzbTwiRH>@KbCbaMWRfEO!HO>8hKYB}d*zfZhBeM#xJ%<7hVm%cChc4GIJ+wY1} z0}p>+DyvpnyxI^w-6<(i z%GXsZ_`<&wcW&#_C-HW(0{c9sTs-(iboqjNH`6T}YQ)_Wq=Q!P^B$xk)eA8fM!tycG8yS>?L@h3Z+p4~T# z>Q8lwJ^e>;zgFi4mIKoMZ??^tRiyv@?Y1rZR;`&(_j7A_0aJzV);n>xSH7NZzPN8v zk-6xHT`AW?4}3l^#_0Vms=>VW&7ZZ$ZmM74i@x(?sr+OXg-;+qKeeS{SNYz) zE9ckWcyj3Fo_`0Id1oKF5?Xcc(@u-W&dVQ92~oakmQ}+4Wd0*@@weEo|5?Af z@M*jL@m=X{9hOQQ6C_XF-Vwp|Y1vGV$4A_MURAZ5=zn>4#-fQ9^UsByJv*tOWbqOC zYu2Ut7>! z|NrHD1-_#{)y^p`h)HewJ>|V;w$6F3mzQtvEi-;)YybV_&)Bn)$0|Ik13beo8~pyU zdHGq1zu!{Td2hR^du@qZdv;&0PjH_79-+A&b;2A_O)vFCk4d$xyUtGaf)W0PP7zATIc91@ok0A>xM~_7OlL0oPTOJ%jTN2 z!@Ig2u7({v^Z1;flHuz1CcVWA>;(5P2gJzjdT^^X!k}*_&jESUp!Ieyc1O*U;Erm4 zw_i!K#w9Jc^U{?|=So_#bH(FipF4a>j7hn2WYPPr;ak_2Oex+uYaZ*xTUVZaoMJco zp4~@2$=GX`mOo3^dd*j3%62SfQQr-<>8Fmnemb$Wd%}{7)pv8evK!V|a&474w$}B4 zRrvNGkNR$_<%@PpIGg@e*nWMNvxUBMLH(pWj?PP)Uv*w6dQs6}Bw>VXQm*X^aOBcyV4QlENuPsmg+nQExq7jgH$q|w|hx@B8_ zSA;*C^=)TS!aeg>mJF+#tkgxmGpMM0he)}f*qiz&;PGQ4>s`-&|7E)STl}QpiXf;)L;Jan0N_?UF~e1&aU%vKTKXBINtx|3LnO|6}xjx$g2-dMzRS|C@ke8rKZ zA3{$1q(g%>PuMPPVqSl~jJf$lO3?mwhfQA?C+1~6=yln&j>)u{&7k@v&z_&_^$r}$ z757nUo6NjD{(G@a;d9|-`l@m9*E60aIjj^v`Td$L^CC@k+eEF^dzKdU_hqfTo}ps# z;m_X>v;P-yhRxenbnE7J!GvRLBrV?csz1n$-zjlhZWoWi-*uDpik1JW{>?M*|9bYt z4D%wb=a)7fpPg}f#gb_%sj}fY!54I!PX#Uyd)4W<-D2B9&%nA%X=YPOt3EIKJN;2_ z{4SQ|alcMwrr&2td^RW2;_0N#AE&MVo33M5VEtmogAR-JJ701H&QlG{uvxcf*|UXa zyK18L&)aN!;I{D}_3205lfFHjXp}9a@joqh+Uc#|_Gn zc)nuE)&)OB%=ZgT|Cx1O!v3F5u3M0s&ZiIWGv>WMb?Ldz>*iT0$AZ>R7veY`k-hTz zJ~g(aT*=;gd*8jft9?O}a>3t;y6)nyz+s8c)i%ihb!f z`1|(l9o`ME3vicjj=w%3I-7mfe&?`rKGRT@twGC z&E46Xe~YD_|1)XVo4G6O76nB;Sj;o?mXGogF`J{5V6ryJqVw9o{Q9quxb!sKxpwaJ<{TFP(Ar@ybXx_wbi1wpA~B>%(d3 zdrJ7g^efkSB0tUHpCY@+(fjkU?R#F9m2@k6DSf=+@i@I(%J`{R`!9RN`7AN74N4Vm%U^Pw&t=eK2jXFt)gFf_2e~j9}SnS;$!JqcvNC*$8BYQ z)27M&qN(Xwzf2W;jz*s5i(r-hoB2LIM9X`w^NHB*ZL*id8%!T?i6z~5YR1|7r_rp3 z|FZv_#edeAT|Sbi7*YAva=XC`V|mS^e*J74jw=eSQ@XMFaqHajZ+2TQ+t~-&`SKkowTzl_ zEW1zbs^LODyLkOGKZK5(^uKk?=v=NeU0h*eTi$2qjvIexq*lBS*FPeeZ!c$@cD7<( z$jr8n3FoJ3e~A8HAQ<;G-v3yS>*fVTE5a+@ygEMH!oumER6@no;F*du;(zH&pJvZ% zWxRU9N#%53eQ7rT`mLE~-Oi;KUb$ox|K?Khn}aEzmZ`j7@oi!Dq(@vOHI>g8^8c*< zyrJfM>g0}xPY&|$D{}sRcD5Hw&5|B_w%+jg``wu>NAzx~%nDrTColIlY~9wNTYF@m zKWOsb!?ynS?{kg7H{3p5=+>-5|u`10mbI%mD3*vXRQa8mq z$mFe=TXgeNT|<%U*ZFex$5I)%*IfKn^t8Wn_Z8!?%CxQZx6{_w{&>4!PW$U@nR9D? z{=VuZQ>%MLG4iqJuF%le>2K%Wer#@3P`faQO>6$Y-G9E#l3m|zSL$mP9P{hPY}uKw zPqXUQt$I8y;pw#-pYKkK)n0ieR^7?@cYdi%P*|LJj$F3!OXiy)N!K@6W#mtNy*%mg z*YDZCQ%{q`znX@My05fu6KY+q?5@Zam5@vOZtQ@&5MfqCLq+dn1gJb1zOcd&IwP zw!3lcYmQIO_D?27M>X8m3CO6DJ}dgN+Sfz7b^48|Z>C!XM6Tj{J=<({+1sG3+sl~R zjxO)_+qdP|7XMQ`JA3CnJE@s9y`LlY9<#u1jgxwl&IiOQS=FY<8?wpYye_So5%uKu zl8ZB6?3>yo^?mcV=#ySLyd|Eib?05nU0gbS#x1#5;$>N>FZR##z5V-s#gWL=2*>xy ztFJFSHjSm|N?Pk#=Q$pqEFESq{`$&q*{6GU2V-w3vbpWu&9{^1y-o7-NmEX<<*rQD zu~xa7sik~yRS;)-Uz&jFfgmp>tuL9r5tkM_MXm^#b;4&#-4zS3m&(1mXEtRYs;DUPRol{8wY=wXqVY!n>F=# zkNCNw{Vs2>cQkBt_r#X7(_>PAdA}?!fo^)W!wA9WyNVAG}##qIB=;O74x9 z<4&9RXk0c>l<46tIFsFXWcUA{x;H+qNS&#F+Gg6<$m`O!T+uT1VYXYWRaE!ePK!L1 z?_=dqx$)G(KfX&3a7^uM>6bWOcI=qf+92`cTAQ~RgmU$tvfH!LZR^w_h19XunVZueo%z0xYyI!t=1K4RJ~!kPtn}_)c#4(bc74s{ z;+48LeKoe8;Jo(q%`#DK(Tzuvi~VF-j!fV=qPXp@;XFn8=QrCLHnJKQyi>p5629lX z&6!!dOJyZ(ZW`o&WZLtvKBnhyTz$lM7a6xToLu=`U)0?jKiyQaS@x%xKkMVgU5ifZ zzx)wAC+g9ew=bMPKZGD!EPPUfgNH*``wF8)_f?X42a~Jz~!{&A;z5&y@b$Hr;C1`kgHIY*zia zadnf9qebCKbK4(<)>%5Yt8P@CdUkg_Bf3Gjs*q9K-^4)q?`QxkcO&3yX{`|gnXcOxy|0^lmzGPqFvc6~*VeKJr_B7&C z@yyRZzof4JU6^}%L+1f4&4MoI$v--A=~u&(ipj~gH#sA|&%OR()8xf-Zbhw* z53-Qhv&Q-%PgN9G#ymB#^CC~xmtI%*UGQIJ{gV})E|&XSBp6OytchhwIQnVs@9Dp9 z%D;^)K6dr;)`0JmwoQ#*%B|IJZdf$cWOKXVi@nVqBsPN9vJF^;#kugK{+WU+uOyewA~nvDe3GRyS8FyZheS(!zR3QWFyrAHC4EPK z@!6l}nk{2{!*c7(6@Iebob!`*J6-vy`D69v9mNWc*G#SX|J2CEE6!>A=%~W}-K4GN zO1jt5`MEA~#m(m;=ltw*nfdACroi8;maaG;pw#y6gx^oS%454$ToU12QDb4rnA*p% zTYkUtz5idgKWe!y*O|8AYRBAYo}AsEh5kHKzu&R=|7EQ$m7)Q4@6Fe3v3#V;__=UD zugCS+hulTWS9~g&W>_-khOfoTnKM+rzTuduP89k@>BscE4a@aUX1H+kv2y(r z*?>Ob>TaZZq{=jFOPclE95G(DJ%<|`__4(ti^LIpxvS>C6Ui;h>F5`R!$*SgkH|EKx#_r>Q5cdvC>IDg`)2Y+NV^L}=%6`y+llH9WO z`clz#@%h@N{?YyQ?@q6r`u6vw zM~kAm>aw!4KcCt*`)Ac!RnzQMz7KU}z7^Z_#m5WR?EgA_;WX}vXR^Pnek`v2{&eA| znuMg)bNvHfY!SA0*M+unO!@4WevJCoKOtodHV_WkV-+l3{c zN>)6TS-(X}*VbP9xzApebNAh!OI`U<=GnbziCxuIx9Cp$&n)xfO|N!rWRThRMsv>Q z_j_-YUQAYw-lTdkEVXjx#Wja5Z~teg-*Df2W6?vYis$Ek^vy3i^!dw^nlo#z)EpGH z|LgaA$?vjl8atY|PY}7)5Wr#6CH}s#lP@?h`{}RGYW`EMJ&a5)s5AQIse7iof9sRh zF#oyNwq3o^XcbU=pT+xX%>Lp(kx3Ehu?`MBRnr&cM%LS}=w4--d9`!J$Iv<6zfZUo zRI#s~acl|S%lNy`&sN+rJY3jZ#=`b}?teE&%@rq^RM;E?^BbRBc~oM?zj|+j)t4NT zY0EBFK2zpA!eQ}($LQZVyS>hRkI!A&u4r;eLE%}3ZEc(0dRf+2*R~#SzRGtYf#aRD zylh&v=B#^Llw^!zD{g+in9X$f&Oeq@2d*yEvgi&->{rX(_4w$L^D0Jui+8KsXDD*^ z%-(TigS5PnTGnq-=A`nN+voOrnb4#QDoyWc^G#e_zK4G`e>lLBrg!<{+-8Bzi~XOc z90)iT*>TJ;NA{wLoU?h}r|KDo(N;Xpa*HEXd&|Ds{WA}L^k{#T?6$j^AKjLoF!?6bu)GzVy`?M)qJZX^=8r2R`$o2PU{_PJTAZC;w>9q;r64q^^dvE zuVOE&|2dC=>8q`KDbuwX=QiKBn*4S4)xf=tv!ALyjNhZ__&KUMs3bWrsp|T&R*sTi z1t%X)lijJT_v?6h;_|=cb4&JYE93AzpgDby)bhXf>s=*0zRa=TCuDp6iKX@Zs_Z7& z_B3rJo$|^4^%DD+OzyC#RI~WJ=hM?~OD8Y(ne8Qaz-s-I%lU5}Y^&y-Ikzl^FZ<=i zrQBccSU=pewk7l29yZ&`tX$p;Cp_2=w!dfT(Re+vNM+Z=%h!L+_p$7bRIIclD`TblvxD)<#FC2mCgb zQmW17dHQRP;lAx_oy(oCscD;D-9P=o%H;6U+fJ48v3$`%y~lk;zVCY;CndjL$3Fe{ zC#`>PB!c}OnJ?)zmwH_sQ{TVHd+q!g$BTY$z0fLEk^Rf%*U|l(uU+l*3|PG8hurik z>sN2RH$95uo`1OV_dg;1TmKwQqCb3`YkFgqOdXSVx?Nv)`G2u{o1cH*$lRKEO=;tk z@Y)$mPb!=fmvvghR}nsY*(8&wY4KuP?*(wko{XFkw7KENrE1+sz7-c$XDmLx!!6N4 zE8^y1QQL~fGk#g6&u(^@zHewgy>iP%4)ek*OT!obel593=Bc;tDOmcc9bk*Bp`JJoBO{Q$~ zy8nsMsLE!!cmAU1I$zE@T*%+I+dnf$`R%L=YVAHA-@l!loAD^(_x?X=I`%~~ zBcG@Erq{7-n4@5`!0;tQNwmWQi>4x{hx^a`t%zm6y7azqm`wJA%Ix+E`sKJ6ca?IA&p>a(Z! zhIxDczx6Tqc&d6gPs8T_Z>Cn9Z9jK(PwukCzm^F-)0xq2Ui0Rx#S`7tG53FWNY|;I z|2f@MAnNClQ`$_YzORWnddzBSLGjTH}7QXWQFIXdG^sSo?ojq(RNSE)jJi~qWUdW{!8=uwYTs7x@ElUjosNArKLB& zZuxh2*|(6Dg?j?_eC0c}Pw14@b@{A6rO8v`&t1QCZq@sr@p_3SSC0L0S#a&U>b_dO zr%{#P+)6Xk<=_6X3O{~&$^o~|!sp%b$u(~oP4_V|c&Bf-$Ufg*a3}A3^1Cz7-L7nY zdg$8fM5Y_{|MvdaTf4uDyKE2d=VL1OSYF6W*u2oa{PB&$6^@XihIv_2!jtQczdG{4 zbVa~IK1aRjSEa(dW3J56ylVCM#*;mDXPWyLwfsC6SoG`m>Can9?}<$6)OK5jmBFn8TPq4%3~!(OcB?rSh8eI4^K z#>ZGcuF`$3TlLDvhqe`FJd3L`W{|g-{mGSXg9XK-EA}@MSL|Ng-Yt1{V&^TU&TGl+^QTA(820$uiJ2&6Yzb}Xyfdl%klgJX2^VBv z-YnyjocH*Rz?q3L8?;$sta5knojqyp+RGaX9gg+NxXwPl(EB=*RH}IMM5#{}OLzbI zG1KDXlX?3bGtSPfGn)70+h6*|@lCh#-1e=E zQoi$_yX#3#@w(q%y7hyV)yxH7I*-_Qqxdxf6S96_1t7N$;_EG->*St@Xde z&df7U=Q6B*cz{t|uIq8#cTo*lD^qFj*YlPed%xPo<{+D8DlPW<$ES1I&TAA`PRp48 zyXfyMz0B(iuS~PqFSaM*b5hNs-*MdnBG2P|A3yu%HodKI)knVdmQ9zgy*NF4b>!+V z7KU+he+=iE@?LSbth&t`b8pt<%h&Cq9=(*#-KM7-T3RW0f3a6Mx9{FRffiBGlYAo= z&tJA``D~6a>vg|Qi#oeK_-ys1pI=k<{JI*n)h>5MzUQ~pp6lguZv7(h!I9oK!{f9* zZ~5|a>ygd~X}7)KAMfhttNr@r;fv=j^S4`-XI)wI-DB;)K#SjdY>w|KyAnVB%q^=G zxhL`&u72OTsdDY>hl)F^v!8Z;dACvau2>$w{ajmyxJ{2ITV&7wz2WX2b?wv~+YO=C ze;QI+Y*Kg6{_ybczP{w?b^&i{)*IU&-xKK9%U1Lx&GL7mS>B>@(Sk9+)F7+iTdv*WCI@}Lj+!bx~wBSg*Wa)`_(t3Nt)UO`(vw!?|`jy9= z=B3N!AE!O;ippC5WUchJtgpW{4tF+wOElOqwcBIw*4jgkwU!s3I=FL4dpOl;@l1A~ zW7W!*@vz!?-sg@Sf!(qH|J^u0Bl|+?$@j~B+dNB?3`28fD_@=eYD;cH^U`e_?o=y1 zJ+(Jq=C4|2OWNAgt0&gKT9Ev;E%x0b7r{b>XC<#Di90h}ADxnROUhErRLZM}CHBnw z(;PhB{<6MHCyGtjJK3hI6Q?>NOmM=}MefIU`i><={&da}T z9{1!!){aZu5{pk*z3f+$Z@sxSSn21Bp9(Kz>#9PQS!6kto$)l8+SBgySmMGlHTUeL z3eWRY+)J6fDxZcmTv6(q^mLp0oaW@^VH3DpCYrZt#-6^KD>YBP!pdz)U4GLi*9DK2 zpNRPEx77Um;KeWhGZCxb}UXrTco(62W&GH9PM_EPfpD zH}_b3 zo-94^+gdsw`Z82vEIAcTj}VM zbGPOQ{!!_ZYgwJO!i@j;oo;3$rMsWmy-wefe|%u}@<`#dn3BFI^*PIX`-6D&=En2a zM6=ZUy-C=e_=cZHt@HrsQe2&+R$*x${<}Q_QsU!Nq;o-dHdG5xCNO`pe%x zU#}>7Tb>uZR>g0ze{<&aTOu{9?A9DBc9`PVB{gNo)q2+_46PPjuND_>%Dk~jB%y!X zJAF~hc6t5U4aTkEcvZSdVBAMz~FvS!NHe>qNBhz^{A3KwMC?r-RNWE>Xqo!1&k7)0O%M*`X zbnKd}an{JoIefY4kEQS5^h~Ncx>LO}wR}&)k+q+8@3^{>b#mO%0%>h+-E{T24-TK6 z+3PaJrZjL$byBSU>8C4fbT{W)rn|qsu%%zdrSI|wjkG9+Hyzv?k~-y%YJPcoqKB<2 zdilG9JyW9I-S8Hi_WD5i%Yyi7zUA+wr+i6k-Xc?aqWVwtkKcdZBK+Y zdBVTk1;-^m?S7(g@%f{Q&pIa7PpsU#_lUVG?Aj#spZjNQ*RD-})kH4*{{Ka9>xHYS z&mt~Zs)n3&f96(d)4t$ytV|bYxvf^$aqD80pLf-j{15+X{Iodlu~WHte2{>VHg1eKoHS?s(yU?%*BP%NJRq zx#oP7R)4gHU%vl_W@wTB8jrS9`mTPLe*bOx&pdI_k6^8ni(fBT^L)=o_E_6V$K76h z{-u6CBJ9I5^FHPWrr!7bryf$CJ-Om(#D>!{dww;i`v|&CX1D);Q2)b^^YW|@QoW}! zN4)BK=YMRTc}G^0ldczMIg2UG4>SoZxnyZE86 zb(ogg+=~U$XAk$;NH(u||HANS)V92m4BsfmQqHKo)k$s3eOV19PbM8noG#NHtZ!M& zRap7ZiGwly-#O_Ge_q4}yn3+a;ZqrbvzLmr3k`neE-|gWmtXTBeNvyP{+ktQ;pG?gO6IZ4E$+Oi zm~ecj^PIikv-VUxzdFP6!|{Opy&swie{jArdhWOs&S!mBsWSAszghdFQJu2Qh1lAJ{`&9Mmo0Bpf7lWeJw1QDTcVb%rN6CJ|ICX2 zCY#<~F8jVbJ?h5uPiOT6;v$}0F$X|Il-S1~*p}+{OI-Q=N@TyG%jIKMxh_{Z+}=E&=bNT{& zPS|-`LqIL||B)bp?w#wNL`?Q@*tvQA%f5)7jf&~s?w#)<{P(e6;Qq<*DK@L<`>Y36 zJy};KJ+|#_w$bu6+Iz%PB3Nr){?n|*_u~qhj;b*|`}!zC_(S#L;w7>+{1-kNajcrf zb8_LF{tnhp|0LzA8~ScLW_>EA7-X-iI$Ix%cf3``0&zeZy;m{0|e1 z8YkuZv8mitd}dlIpmgrQghWCigFI+HJscMBu}s?Q)%$?-zd)d1T0I{QS(JY`b4&XYQsl z{s}wGvZjz>t8VAqC2YH^3@dt%MMp2uv-6rH>lqg;(y`%3WpuO6W}EQSQ_ANpH_qGl z_l}#t__^T2N6$x|3@=_&=^lG_UwC|b&fk4^_tpO`Ty@8+Z{M2QZx2HbpSQohDe39V zC6jxj<$hI0n{7w|MB_crS2Pd+XEKo z>^*ns-g3)5^Wxa^*&l2>K5@&VUB7=ESaE-`WA$48n!9zA<9hd3+Ne2+#>c;vjlNJb zFYs;JO|w~F*8Kiq8GEj5?e*k@jg#W%*ue5%4>&uK&A!V;m`7HH%((SVUWsi=gzIz~F;3W^4Oiib=yEZ#7 zi@X`#Aa_?)^T>ncY$tay7`mJYY$(bX+}_K}&3k3RDnDb))Wfx_2@aPTK1y zrH1;=k#`ZccT!n&%HnKH>>GE<&yj0aGhO=a9H+IYT*!^lKxDs6tgUDa*p=E%_c+o&5TV^O45&_AKfDzWuzM{V|Q){&~!KJZI?fPoB#a?nz#LqoZW1vzN23< zm-?0QYE9=Np8V* zy=tlS_rJZ@M11+dv1eOeMWfXpp)(oR9?p5Y{^FsO!2Q=Q*ET3!3H#vI} zYgDH4yP4A#P2u_`?WD)=Q1qyk?cT-Z5w4TXkC{!sDDRpXxnapyi`V&<$AV?%n!0ON z&F8eu5^OW8y7Fl5jdW&NYlqyzm+>4D@^$O(XY<%HNJj6@K74J_jcq5@T()yTBA$;sGU z-C4V)=tbi4TV|QN&xG9eD_mvfF>#7--?9m_jvO>Qu})s}%Gv|-?sXpS`G`i# zrawtm%v z921q);%H(7m`tjapZK4YV}z{V#JazB3CznkOsyG?K1GH;vs z$eA>=rT>qAp8Qkr_F<`Gq1=Ids<$`1+Qoe#ea))nn`h6w^5N98h-vxDi$w1{zr$Sk z?fw45U+4Cnaa=x4lOjr*w& z=M1jedGEP#@P(;*nL$VkrtM9sW?dDZE-+%0U zr5t(OXU(_W`U~CicNeZd(s^2TdEZ2qj}^sgr)QVP|ByL%v)nXp%U>xTsr_ktHzY)9 zv1}-L_IO9dckK`FZ1?xerr9@NN_p9;CYhIIloMx7d?R>(;Y+P%%vh=>_d3OH(bm zdBf2|cJ1%`y8r$EeBq2wOih5q=_&f$FLoXLWauruarbBQr{Q*s_xSG+o_^}}h9?;d zYIq#tq@%Ph&UXL9YkU6sgU>aNAF>4tZvFN@u*Ws}f8acZ5Ay$iD0i4Ct=_e+>EDFV z{f|Cze2%X1n#-eSzCNY<+da1Y-%p}9Wc*yzdwIiIo+Rmw-(GI5c=S;H!-v28$!BY` zKU`Vtzc6>Z9P{xrH;oJb)z>qp>CScacU7Od`%ubTDWw^P%rCN5DLYrRUXOgTnNj+@ z?)gWBx!ZsE@t%p_CGh;;Luo?^>7Mx&Qfi`cRS#Fr*!$HZ}TMl zOuS#oZzt5tznjhG_?8FH`>t=Y+0XY*cER!Rs;H)(4Cp*6QwTsZn}Ko;J?rB559j}t-o*MFNc_KtM`6*Vr7{=ThvSP z+^+Thi>}=WT=LO->*nj(!6%LTi&iaFulpXPJ6Dfa==kE5(JaQ2*_F1%n@-2v-6^VY zW#!cSVkMVt{={@=Pnc8Bn00sEhWRVbIQ0FSl5Ds1Ow@c|o}4GkM0e#%zR7u8taj}+ z|2qFGEpb-brePE2U%4G3d@pc|V?=JQ`I>;xCJJsXtjQLajBFbuS3oc3J+~)kF@URW@ z&5zn!x#l(VRj+K9o$KVSAH>NP_hy2f%d*8>akY;u`d`Yhx@OK$E>7x`&?#L?ZF|_?S4ymYAJg3au8PIq_7l&%${gK!m2V<# zet(Fv`F*3fqnYiqcz@!xM>l6|El_)=GozLD^s~g9@4Pp@UDv(w?YZuaCC86OY-qiI zcH8w;cR$?fpWEoa|FhAOyQjX{a7@jMbPN1<&_;HHm+kY-w`V?CyH-8mW{q&5rla(%?=)mjaeeQYf;`={c@LXN3_3&V|+@aX}ySN=RS1+iZWx~8~vH!0q zzpEc6&6wU2vf1OmS7p_WZwYD5+;&xVVmdSTzm&4({P1GE+|lOpwZ~>v%O7(tw{2ms z|ELglf18y5oxd8_?Ce}R)v(9Objo-qwTW*W? zGu?ZeGB%Yw&;9tSe_sFjJszpE+~Y)+>wJqJF*Y|HATg@+Ow)QSwInpJ|wt*;JkFt+buLSE=-f zS7lxAhc8b*M@zk!IO|Sc;hoB}^Isl$o7(>TfbHr?kw0aD2m4>X%zXB;(JLyxef|Dx z{VJ!$D~x(3O;$Q(Xes5j_d>t!HCM~MA4=s^eU?YvHI?dX?>`?e{r}pw#hFKEDdxX1 zoAj}8$|T*hU)Mb@lc~vmdM#yL)W3ao>w8b$y0Ln?P1mNyFAkQq{gU`nyo5jNi|p5Z z>msk5Uh$l}&+XUg=&Yxi1*#r5U$0*LW1keO9q)G!NvBKxPhVWBt_wK4*e=M%>|*yH zzU%vLTBkFtiTNh-?dH3Soad&B^Z8i+kumA8DBV5#!z5Mv!}j;eE!IVDwt0VZVy33g z-bR^^EAE?4jlXs*TEbnIta=e~h3E|4hh5cgX9Ui8Z#qXpe&&nDQ(7My$_`Nh5p!)5 zj&)(Kk29RtZZA!}S^MR$cY=4Zy+V@5ZPpuw94hG#Has?av**z#W(%psA|jW6cz)eb zY*=*3=?@!JbIhw=#;Co=G?d6+5@c9F-I(R=GMs zX;qSV<1Q<;*Oq_#k@C>~Uq)_R>Z{j#PRUPZ+|;*)(c<-X|LTJ>+rKYfe}Bfc zBRb3xk(aZ)cA0utc`X(1yYfiz;tr`~OAe?fRd|uv&5R_pF%S2C>_+`)t2i z<>{}nC@Fta^wKwZ7hfKO0mFe_#@BC`vOy~O%@3a?RldpZd?P4*x2jnEF5^RT zTc+tnn@?M0KL53t^16R}!1aaOwoUobcA~UfvH9|}8}GLNu$0;L`0xzN6|PbKhqoMF z&;E>e-oe>rKl%LblttJ4x_9`)XZ7ckrDi(#Jj|TXz2W`hzYRvW&O6IL-tN@(?#qhJ z2OKPJ?s^@tZ}rrS;t$q^-<)YZq*bxmQ{IJo57S?ewcD z-tzCiB&*MT=DjLT*4}@9)o;_#=qZnX_Z{WBS1xtOdfmc4@A(WT7tQX7-gV|we&3IW zR&NUDoxEc7#%Dp+fsKN7LaJeP+jrbnR?vLa`N{AZ?;3%V-i{u&Yu)twyWAyb`pJlzpAZp#o^)bjobS2yJBoKN z*%#8^yX4EE9vALgHc~T>TVG0P%Z^Smn{z_F-_r2Srr?#WR#TKzZW&FzvwYvxZy`n- zW<6^>owPjv#S5-;-rwJM{<^+k_wzNo{q?OwpTzCIadEG;S>SKw85(+>`;v~&V=d)+ zWgR!QCC_B};tiM99b51yR(R6lAejkEi#NQSGu8Ct-E&8^?TU59@^0t5yb;byJyT@w zu}k%~{*jH(*Syj#4n7$E|CiR9SZkLRd!+sM#KjBjvM>1Ud{^e>F%ipWH5Ycf%&Tfo zn8&~5F^>lC=Q>aEh9?X7w#DZ1L=>JWn)CTxuvt>Jx$T2=8H$m0ni|Fs9tEc%7 zZHk?qx2r8L#p3DN|w}5@?(pa8N+<066e9)q%HSUN1NHeT` zuW)Pg7Zt&8jC)S1&ayl-NwkQw?ETkWy;jl3+c_RwFqiAN%YU;p==EGJ$ozQwUHxg{ zYyLzT>qj&v+%F8d^LS~a%dv-!>+J>H=l*`wdvS?pqxvO+dlozEkn>5R+BH>dd{!D z_if0XpMU2+ewTl*Ge|%6XIM(W?#c<3j!j=;QsVsmm+p);w%9)}?csu{Ej{EFa-cnoEalHPcgxvq5$)e{bESPC~Ku`T$=iT^S`en8y z{%>}?*ONGNqsS+sc_X9W&jUMuys50`>oxfNYp4BpR*$H*CDY5}9_d)F%rbuzGr8nq z?f1ZJU9a@(6ZU=2EuF++dEtFjey!T+W>r#kTxw zN$;2AKYsdtTr=0$m*IB$r<0!(9e(c6DLYf4Ir)C8mmO>E?dJ_Cawl?M{m$Lq`1-e< zFWFstK&lBI$*2@2l`2J(f`&rgndzYVHQS~;zzuw?w($mzAK$6lcju*`&aBUGKCk=S z$`IYR#l&^P>pAQn|Ly%JdcQiwzvkaQ=8qqWnOTBnPf%}}b?oYqgNIE;UW)9wz#Lq} zR9MmzH;?%W>&t^yo2Gp1HulcWIa{qKo95LWIjwx^uOEwz(u0DZ-tbEOK27V$6K4mz zd%_J7mds2h8V8@fD=xVvQ-AN~ardlOb**iewk*@>E{>c(W%1+1Cr!d8hdMZ`c^D=i zjoE(xY4YM(rwWfA+8NJMVRP;HWStYIUab8XoPR+0afWku#UYPH+jmT5Dr%pzH`}jw zr6%wBh8dr4b{H2<>(W?rsO8zC#Y(}kuNNE_*kstUQr%tD%ktZWIPIv-kAuF?j-D0u z>r!BCZ0E(P%+uY2Zq7X!)*~UX&nG;);_73YrTu$1hDEPb_V3wMxbnA@l4Y#UclnlSbIcCP>|J4f^=a%W%}S@I9_JJLJ~CX2x!F|Qk2%*x+znvi$$^ zX~mQ2{SVdScQ#)W$ZiObbW@#irR>?nT{oLm-D<@Z+cbCIJ$`A{byMk^>jWEl_sT2H z;FaFjbFx9QJMGbz`!<j?P9OZw1WU+nqn%|+uc2lC?@0sZM`P)p(sOhJc#a4X? zn)CPI=6U(TYP`1+yXVJz7LNJ9^mXCu>3Oa-eX1*2?mbxax_U_@lL2pKS=VK+rzM`N z4R5ctzt4Jn&)0}Izc2m0XfiwACCfOY;M)5+&HMNKO3s)+_4nqK zn2pPXyZp2Nh~=u!4V(B>|J2i`k3Z$MNSt{!>-#m{{dTe@EKUt-SMw)m5z_l0}wl)wJ$W!~DcqjZB{r_5aS9YvNhN7bJ8 zwC~RPv~6wN=V?`K8=~gg>rH)~`p4nt&uZPI3*Hr`&m}KQ+5VJZ&zFDV@y#xmL+}2I zpHC|n`UlVNU)p@?aon>BWm&ObjlR4w+`TFCr^9F04z}Cj%i2H9&3JTenWD_Gx@!yX zl}%MVz30`N;F;U)o*ie7yZAM7zVrEImrUxCPaQe($ld3f@T(u=~6ubA^5*m5|(N#NrnSNp>Yx!)hKx8ERi zKW4A?yzVSE){@H9P_N~`TtwC4-u!vkv}gvSjiH3QS$9Saul}qc?%6Wl?t!+;++RO^ zzqIP=4w;;9f~l+ai61z2f#Idx{u`PCj9EKHUY)XLaQyf!Evqi9SxCOL`$K+OPU-U8 zUeDwiH zHF&chS?Zt7ni6u^dGc|mo&4R^NgSPiDTSw`YD!!(>w6pXKZUSQvq{{wc@?w5{h1o6 zzob=XoeM}xpOf@Fbo-Z+?2N|e3?4W2ZZF#s9d2q}z4t}C(*D|eOcE}>hpRni3Ri7C zVjWa;|59y@Z^zGfdpyqVytT0>Zi0BacZby7sfF*}eadE%{^R6!OX{oDEVdcDZ*iTI zE$REN$&oAm_2}oj7R;Y5E=8s2sBUhQdJwtw`A_{jeXa#_j|Zm*Jl2Ri+FdF0*;Bgl z$Xmt+#|i)5{s;*-SwHV}(&WkjmlNl1jq{V%?;cC>|cN6(bL)gKTg?R_r9#=>-lwuV#Dvx|K0pOh}lZb z`QPVDK08;PmUvbkr#pos=e-Xv!z_u9pHII(cwT=$d-1e$M>wa;bSB3av!tD$y|qwk zA7_Gr*#T+$BEEme*Z&jyURPf#*Kf0^H1^7K#pSP_^EOOvx+0SH)cL8~DeEWJ`Iev6 ztY)%*@_F^`;>_7net*v&Pnw-8?vvCT%zZt+%=wurLzm>i@AF-ayR(9hI{_)pT9rye)hF(x_SE^snvW=4u5b^T2ANQYpL9w0aBM=&3Pnj7$W8)wcw1) zzT@Y-Ep9n;eUGUWx2t}-eB+Y_)ryz-GVRX(@mp`+-MlU5`%{Z=d(|JDvfm+7R=PDh zODIC`?5t&d%J-_o1<&SRToUbkKV;fn+4$>5+x05GtxPXCEo%N?+4`7v>wQ(x?qP9) zkwwXT@3!XZ=WlX7w0_N>x{lI*=I#G4pWX3ye%`Ur-*uwLV}2FM)Z9v(z4!6^8|8EE zS^i;IEqQ8rzZLfi>!(>#)7YQRTzWa+-se5f>X@gVJ!co`c~tO()T{?u2QD_$=@iHv z_*VYd?kMLeKC5Z>miX*nYV3W7ue|cOiRO0h%vd>p&*!&KO>FJ`{iI~;x6R4d_CLOF zv;UXLoqg}0=3l+w^bx=N)xCE$4W-C+h#Q#>CIldd!Sx++1^br*%yC z<7xNW>UVrM`14}p(Yr;9x!eqz@77WNaYJ#r z!p^-+OLzRfvGUTvt4~VyP2HM$?ZVP%i_7I+x`K5J1Je{1ei2n$yzG6#zSH^nzaEyD zwW-^#v@XcqpZ)uEU8-38vc%8R_dLw-SgASd(l6HZ|L69JFRt}o)ObH}p`KT@gl4zU z%ZlShPW^Mu|DEtSHsNx|VL#W3?rJkHWm)}WZ1&Pqr$-&+bCPep?(p79x?yfWnf$zS zLPx`|vfDnJT*#{t${#5DM{we+Cmzq3+2-wiWU!HGB8Qk+(fL(^D@BW5XBhkx+TiS3 zFlpE8E(Z6RuO{hlPGfi`bxPA~R%PkIV>^pl-0anbJ|5W@+`h{0YV(F0hDot8i%xy( z4ApH=%MuX?R=;1%*0p5O2_1$fD?a)K*-i^y^v2<*lf%C2{-*@gW6V}qrzco7Z9aQ` z&t#2@%R>&e%z9DK`ce_8Y27sj++3_niB7&US{~ayy>hRs3G_aHjhFgTC{3pInpeFzHChv`dS{QeDG#MyUE| zJHE_1Wc_`y;RN-HtM#?4+wK?tRLg$c=8&VD_wQT($Fu#l%&XVO$NDE*Y^}MREgK=N zd0l0e^F~*WwchF_kKby>M&51ns@(PLc=m^<-upY`WvX@0{XKj=;pMs8c_~>r5;C8U z2^Uix5&8;nW^HN15`=1*euxkDjCb?r@==LYif~Fr@Y#-TtTJK+V%+~YQ3(oBJ zJFK`|cHd2_e`UAoS*OWtvb}cagZC7vf~d7Q){$Le&+kmQRCGl)px;4w?XqVkI;r)4 zKlhpY9X@B1*Ie`6ePSAKXWj2IFWWZ(pMT!0e189CsnhAN(fK?5^i6-{E;D6cnDyz} zN%rY}bEe$W3_U#i^i$LI`UwXfzn%Z{pVn)=xfunSj^|6h_C1T9x$2CzX~j+LUH(U> z%1)ei`q0v~52F|R#_!GwSSM>2zOuIP5{HZbPpMk>i!rCUSbei9iq1#RtQPqu%xu3b z>u;#P=E@y9*P6Mc-2=bB*tcT&Y>pl&{@Sm-s}AqqTx=aOuTpDWJom3-KUVDfYFc?O zaM_y2$xnl=*B>wbcC}*ie9hREb>X&5WzjqM+~52#cy=zvd{JNKii6KI1#_QmxO?V! z!O3^w503l4X*z$enxpRLnVgQ>(}GpJR`V|H*f`_avfiM%ISGQ{ zXS=fUo*AlF6z}B5iMOjJyu5XC-_Aeps)d7E;^cOV_-d8%=7gu5SnYBB zI^zo^hG5B0e_h4jGz-V?|9P)<>#upHKmNG?6WtzHmcDH98r6nR=gj(_ewm}})_P8+ z^;G%QjdNIE{F(lK#h&M;J`K-3nID||J^$czy8_mAKTf}YyoP^X$KklL3&)gByS1v` z)<3lR|BH~CXXbjRvpdiHoi$1Q^9`rU6w}XgcR7M?n+WYLI(=4MiLp0*8ppfuDF-gi zo#qqd%LSSZ+iSm9zWi>1d0pl0^&g%%`#(H+wf}Kvylt!cyK1iHo6Ki!*U3H0Hy8gr z?cC8ls>K^Kj^}Rp{Leb!cy0NCLrc%wOMN^Z{+A_NUjCV>Z}=jXTlYV$Ubv;MEMv+n z)_1nn$HM;pS{PA!Y~gw7|Gu27-$(W8|GOt%cwMx7@e{EH+uXj#yi`87E68vAYfgd5 z2USkX{#kaXLDJ*8kj;{|>ixCm{~q<&AATusC)_^2^vE%Vqi&6oo6{bwxo^)tzvk=l ziDmU#dtZItJ$bXowvYtQ@Of9BUhHV|>RIN$%`M{hm(4#8PT$|X+Ws4_O{u??UH8&D zeMvWE-A~)>AF?g|d~092ZEvavzu>D1&WbnNOn*%8{x5g`=JRZehkMf>KA0}M&GGHM zkb)CG-5*Aq*KkfNuk`M_ew*<%kJqe-+M}QOtjfMIZmW?$`+Vzy7ngpVFuf;sI`xC# z%(CX687n-aO|5(EcB?vbcv78ZZm z#PrM$tS?`BCHc0c;OeQq!IS$+?o7F~X8m&eeEIXTy1gs6g{~`m>{+C9|NGLlw)#7T z>R&H*wELz$&5SiVZ}0jy#>;Z8t}2K;UUW|Ia(eFMvU=@b4}W@}vzdH3f2s2FOHyy7 z?(CoU%d9|G_-JwMvF7KVwY6&ZUr9g7?XLJe)%WmyFW>Yl5>o5^YxjTeZ@zft^7b6j zc@hH?VTs)+Qtm-dFt|J#?UKX22ABeh&BgfHFqm-xJ!MJQ3w+UxY10QH4m zDkq=ba@_3JKcVAux3r7a>~rsy_2jX$i){GbvB^s7?Z-!(mhZoR+VUPx{sF<-*qJ5n zv!JhEAgMq=XitKQ#KAtCyyn(SG&6Dl%0^BzQX+$dABLmZzSdR zfA*~TB^!UR|J+{D=d};E@D}aL(Xx26#kt@!tNmf${{`B;*>a!veEaR|Hf?s*%PBRYVk_tr`z{$cdK}Hae2Yt{r6g;_m@h)+wnE0|?43pWaT^7An`W_6{?9e1%5dpDSN~&dfRd(a3dvjpCQkxgB@s?kQSuIj=qM z&9}_JXfvMcyoGn||61?+eDUuKYW_rGcWMCU=&|Mso3h5Oa^}se_C04y!7Yd zG-;c%+lPOAx^36``(CNK-_9?gv+oveVV_f@vG1#O{F1bYePLN@3!d*;#rjKR#n;v) z-=)^)w14rlzF)4>xheScoD zP?P@ZH^=uC8m=n2{oLSh;QE8po}3n~`WaID_~_@w`$~i(yVYlHcayJs_k3~u=A4^W zT9v)rYX0_ZwV#t~51bFKjqBUm>0xHo{p)#f{K~quukMwuPi9CnJ+Scf{9|^vZFk8f z*GXjs6#wwOU$;Z ze6&AQs?V^=bM?}~s4|~#veE}CuGFp0I$3^yYYVsahCh=|WHkiNdGgOL&dAB*lseOm zpW*_$&dwDqnm)gfBWTyA&|ME!XwH5wog%zeJVp1)oa%k^Uq3#Sl=0m$^3{PSVoSF? zvyt&{6nNe!wLVgFn%L)Z)=^e-@CmcwSc9^;@yqJ>2{Uc4hCyCBzydF`5kadka>^&ht`*xx(THx zS7+7T*S3G2K4-e?F30C*nD>6ZpR7_|Q+D8m40q!(pEpLa}t zvD}b(x?f$KRFs}h{Bww_m}UCR=chQAu2T?f6&0WVH0s(##){|VFIke?)%vsLm>bSr z7kgtdQ);7s!4qo^#g?@#4v4ng5fdcrTtdZN_$kFud|wd*az-i?gYzMrV@QJZlk`{2^_d8hs=2AI;;nP-5rH0w||Be4V zvi|;H4*!0h_IWi2+!kFs)?9qAUaGF}tZl`gb<025q#YKlpKjWyDl$`i*Se_Xiqn_# zeam<;@6^h-@8AE>@cMWDbLy&!6U!QY=hrjb|NEzO$GiNzH*;!gH|_FZvznCMR?ZOd zdGhg(AN=!D6(S2H&br+RZRr{r|?z_II((^W*FI&$8&>Ui|x6 zYKC8^v4@F9dY6~>rD?|Y6;^5I=H2YRA97&*yO>`6KhyOe+NNPG1X-R%{x&NQ9mc4@g$RyFDB(M|tE+CBfD+A8=o`H26&kH>#>zrWl2*{+K5 zTg2AqYyoMH4}RQVXO#DAx4a@BYy8wmFZTKJo=WVQvn%5w7Vr3=HUHYDeQO!R?tf(1 z_vN7fW(*Nz;SB9lHDfTkwskUUTeaT-hg-F;L!P ztp1*Hw{Ml-m+;rOPb$7oapvGuo6w@d-l4L#P-iw_p+9R{K~Y` zO^E6hcIVC%?QQ(CZ=$a6+M8LikFCVl|9$ps`^!BweRV$iURO`K8)iOymbmx(iguri z_w1Kz@lF1kJYlYr#P3PZOnr5aZjk%jz4f}7>Z=JW>nvTre)Z0rDzGzbNm=#XO{Q|u zmRr5Duh&Vvcm23^uGrJS>Cx*mT;{FK-{+pWrmT0_tNr>H9+jJ#ef{;eByQV2L(%1? z>y+#cN3%^3+9to5Jze&HZcg;9$BH-7SL9S)-M0L`<==_#84AoBiWy`gjF&S@@V&cM z@GbEA!!?WZ4u1V^$7KC&n&-y(VTBqWW7UgVR#a^5SNf2~yXxUe!U^QTL{9jlbGXt=%Pbz7;njpqKo zn%WaLs(;T>o4Z0KTh+#|#%SV=-omUjtE==TZ;?7?(kpgckt48 zuc{9(H#(K_?pdF~_ma_AAya?0r|y*%4$5+;JKDGY65Dny{jbH;4rMc`2^nJ7_9We_ zt@!q=ApecZy zMHZiDf3v()YIn_ar_tlT5o>MN=xF!f_g$M=`RS?Qw)A9O`|ILF!6OQGj~j+FZ^xnooD|9(u<&%4=|o?q&i z{3yL7^xl-%+D%6;eskzJT>h13w(9;5NB><@H7xVAm*_oG(#fnn zr}O81_h^}>c!td{MiySI7Wd3YuF1+(CHKy#J=m(=? zeLkkMRNb>*|9+x<@}$q=*?QR(`{bq{yHQs5p)&jB_2a$_^S*6Pf4st7rXp^NbZhkf zO6hxF=HKu9{%1M=qhH?nF8jmx@@B0NSG>^ie&y5)%Fp?>*ZvHvc_Q7hJL5GvJqReaj!cGQ%MZ*5lXoU-F~{U;Nf*GtdOS@S>a zz*O=0&d+u4cz66=CCd=C_HtB)c>w35RA2kNeL-^#FX`^AY1@$EHq}Ii^Bj|r)yF4t zpShp?)`Yh}I%STE-ys((>@b>b%ebV;T&W~41y?OKFMux+t zw~|*5?)rE$W$&|xTmP%c7oLo^Yx`XP^y`hUS8p%;wQAnk zztyJ<%@WCGC?eV4D>;4=OFZg7h4*A*`=z!PZlfIy9Y%MpP60SE;fDT>s#HAw$AUoxR~$skA=tY^##k< zsZZOL`S*un#-Uh-IL-&#|Njm(-`&lpeRAiXO;ztdoqDyJVGiGeJ%5|;@0YXqI3fCj zb^mUG{Uw*4TKrnDx8ryulZa@l<(7YP{bzdKG_YxLe+=fWl3cNH#pL%UW=B(nnWl>N z7qXbfy(*gdeUi7{zD-QQ_m#bUG|E2;&h5E)+28ihm){fgIt4eZeR8Gr#9{lk6_JO| zh|Kfbx{~AZ_ggEXA3yxQ%KzzH_nJQst)r4caouU@y6{aJ#X#ZB3VE7xb++OCz1$+S#4$=U%Y3`p+Kqwkow-yX(>|i`)6#C*G4z=kCvCHI~zTrkPzW za(a8E#$~q>-~T34?m9i$M_ zUGvR$y;FVCvj1V$jNsBcd-C_Zx<0Gq%&{v^@7j2*x&GbBKJSMfR%oMZA7yG-XG5)!7bIG+Z z$2R+2!M|-2z9!f|eby$`v+Qx_)x*;(PjFvaUlEhjD*pbq^rgU@zQ0x*=TF~KyKUdH z(#!j*ZWOXV{<*&_L3hD(yT|kY|5{vecz><NzqvnOSOlD0V_tOQ;!)2}YXog{wMSj)JRZ!_P8DbM@)Kw`azvg{k_2fRCq-Cdhs99?;d|EvhV-;DKVKTb5S z6RQ8GT;IIv?X^3z6ZnW)MO6cU*?Gw{p{`$Z--QR}IkhgqsiaLXlP|&-D$ydH=UO(Tk)%yFR zUj16;eRV&#{&tyuwn_fS(e%Z)mzjLKC6_tDwLjJV`ePfzmLHL3pACIyORcS(5hPyw zp=j3J`@4Aae{9`s-^=a&K1w%z%l>+xJ6lHQXi?tNSH~OQpZ|K3 z{gv&t#N$uRAAhy~s=njdC4Kz^<^K@4fCL+W)lrX7OKsRkl9E z z_2<=vam$X@{5i8twtQ8NzH{`(;10{G@4V;OD?RQ-1>f?JJeAlSxv{Z$ZoB?;k?!OQ z#tw)@8hRaul9a?d?id$XZ@Oc8}@AaCB*QY>Bko}r621BjLum;)Be%?_WiMbn@`df zI|{$|e%CmC)jZg0Ptn|j!`e*KpUrGPW?Vndrsn;^U=jYyK6<^v^WyeB`xtE_HRXQQ z8Q0uXjjKKW$R zllO%mlA^^KvU*H>d&6VYu73;B*L$1VwOMaM)_fD4+=KmYs`Wa4F(#pl`}I0zf0wVW zl{+mjzWT6`)zOu557SatTzaA?B`|q$x2$@Gn%ZZf9`n3ciMx&(NF6tEYxW2c6nJ&w zkKu(Ry)8k`@e8LuJW!S*t+jS)*qQq;;`43q|4Ki1UBk?#Dc}B`T%F7IHSusr zUqy@N;XUl_MZ$CW)PKB;XwqG9yzI)}X+7(IE0=OjJG{9l$=CjT*10Vk3K{KrYZbpH z&#KrSReC+@)HJ@xzOOQ6Pt&E-Eu-hNusP3_5I@T?Ywz^?9*@tQ?MVJp#2)kUMZlRy zH!l90vbt>h`a+#gy>G8cP0o=v)!NJ}zViKV?kW9e6OzxW8Pq*?oU>^HzXto7y^Hod zDgN&GOyri^yu%9?U)+8^(Q2x7&AF4g*Q?e~QG9xRpX*E6pIra1xt+}X z+mX5d-^cui`v0z9fBb9xoeF!+9|sP7j{hfP^XKDnh7a9BYUQDQ*X2C_IK}12-MO}Y zw_$0~&!BIH^Q2Dp{yTE)Q0e1y&4TOpe~Pa7`u|(`jt};=5}$WJ4pUn&?}zmBmFgc( zwrcB#E613KZ9H-MeDu-z|1V@0{FC1&Y@K(bGh6?^Raso6b=AZ(arc6YKi*%_Dp9b} zbX!#0^nY!SC&yQb_1S+7G(EVD;o7$~58u|8FzVGDZ9VaM#nSCtcn(~ay0rUoheL(h z`i|)J73bxT6_|!See(NcMAN)kO*~KPP81z5mtN;^=+-*hio@RL4x5MV-N8ILU2Rb~d~8JNF1RkM8EoMV5k>3?@<)vvD+UH^OIf9d%BAEX%S z_ym8pds(t>b>}>AMxD&+p?iuX{TC zx6?G=X6HT|p5=Q#><-Mg?zva;>)x$-96#muo;1n(vS{|g7zx4jkhOax+uL^UFzw&Y zT6+d6(7*xH~T;KQebNG3~zz!R` zM`G`bp6d6T_CDwOsu;KCvdI0+qq-lb?$5mOsHWu4>+LJrHExKli@2vW|xJE0tS{GLzGb>rSs;*zddKTdr6^&Lh)S{rRH*!(v}e z*mZsDy`J;c!Z+N0pW1ioPT0O~!`$QRmr7(Wln!3=+~xA-x|6K{pIDjt zHCV%K|8xe64Pi2T1r|G^4|n(fH;LQ%x7OnIiMh!YwU4KzOMS`Sw0_x!6$^6x??>mX zZl7OO9IiZF{qd!rCQlYjIr>+7>%uh*{AoI`ywBd!ZRKM4>D3q&wtivxkH}b~qHVj5 z&Jk}tn*Vif+mW@Z8aK7}`Ch$|VR@x3;`6sJ4{wQ8UGQ18A#BbfCn3W z2fxqI*z{-7OsQ^zXX!szFXvW2XEjkyy)D+gIoSxw=qAH zeZgf@Rq4-_S%Gd>nj6~o``r_LW+1xRRPV3IX_jX^F;mQHlJ6Z+zFHD9^6`*51Z zmiIkttL+&>V%8mfdE@=#DVt0mS$|#TY?(H3zofwV{p-9|bA@v4w-jfV=dC!JFrB?Q zR<1w2Qc=@iFJm5?h`+_V>U0*7GXEd#&kfptG zt7`^_f1Uj$l=ZoxLcl#g<+;$#i-FUHNyqaS``LWAnDhB@`dar%f7y1I-Ra!_XKDSR=l4oP8>%LAByJ6=FF&GoO-eGKI7+}^MCqJ ze^`G0pZ1=&qVJ`W-DIxJ-z?{-8^D>_9aopQ&E~wE+2P`UZ~6V6Y_3nteJ^$IPnY@Q z&GnymDlU0f$y&uZGwRt%gSUQ_Q>7M$%$lK|yP9{?mggF;k6#XPS$}%3B+J)VEmu07 zj_j1!@crA}io@RV{jc}$`Pw!m{m&hKrL&8Ue3|m~*M_{?O0ib%`+HPuFZgX(k?wh= z>RN1=<%0*Gxc{@}*Pgte{QlhCg<%cz+nMfZBwadZQFi5BsoA1T*4nBY2+P9Oc6>?V( zHU7NJarIEBKVPt~dX?I(o-@-WZ|@78zN0YmcWjg7sTu0O7cKLCs4w+zN_mOm+H2~k z){EVJGP~Avnc`F4_0lM z_wJgX;6~r8;YTmOy7!Jz_iwo^&pU3PmuY{d-KpN|sCvmJFE{hK-QCyAtL`r{+_&Q0 zTFE2(E}#0|QTx(cvfs9-Pdx8_fB3aV)7x5M3O*?|u{kB%JTKOXb< z=>fi=ui0$M#@|x{_bqbFH%yt~dAxhuqqphDE0|2aq~27{+}a&{#ptHYzW}vm-?&#; zHwOm_m2X^k-eOtrI-ZyAQCB~15!I;qrPV&I@ci?Yxk4WmYpo-G|2pa4vs=Gses}TK zQ?FJov_9~+NlX1~+J=p+_QLsp%-Y}XT;8~T$;)FkYfX$j#2&}#7nU5HQ25(0=5&W# z{*rmJ3)9@T>ZDGy@iow{^+=q1@0CYxV63}Ae}6akIga}~9{4DS?`htUDs%Nu(Sp`{ z|eJ8 ze((BZohcK#YNPDt<<`B$Ws%#T$n%)&(eG7!T6seG>BR+?dB1-*%ukzBEOq&N2Q4i`N-dwcJNnyxbRtSVPbvR zp&RqvCQ5o```#96SazfEFO{3O1tv*xV4^V{X6fn{soMjd`#|FEX!<)hW+4qN{+ zr`tW|vH8X>->bUZ{mQSVkMEgYJzQ=SAMLP|b3v~3@z~1X%9LI0)74wpZ*TeZ=(ByZ z`M*OyU$iHG+aqSRRYD-0BXE}D5%v?QYk1FU_gGDna?y}}R&7*P_w$?K`x~pS7)03| zuP)1o{q*B(O5~J#2Q2sh3z7M}B6-7AgZSBx*ZzOH_Q$24;fh%;SsGt&x!t*yv|-+y zVC63JrWfJ2d5$l3aR1pXSGi~Y`mG_tyib|`J-*1WZ1S6ZU*rB9KL1xY@8_?x+=cgY zEPe$Zf6z0(Y7h74U(5PfuNMEAW_fki;&<5-7Or*a-E(-~nT6Zs^lbkt?Rgx2pW}>i z(I?Z8zx#MM-gnit$}9aO9hCj@dFB4+x2LJ)`E<(^O4%nIf1ZD=wZ7<|OYJv(ng2h8 z6Wz9QtYZB&xxQv@n!($hOQ*X0o1Y+8JmI~e?q!|UiZhE_wRxL+%()Abq~x@{4kvTf zFLS*9Q!{r)xX$tON_zxzxsvvGDL1tp)#w-TpSnEb$aQOmssGmGi(g{?x^bCd?%#b8 zO-FK{s=7wY9W8oY67gZHYlkzVJWuMw! zXdt=%S9AViEBU$RM=Ilczq>hpzFBeWsML!P?Tow8HJa!6qO1yhE;sdlvHg2(QmK}F zZ~00;v#aTsoATd&T3+(Y^>1e2?(N4j&#sKly>O~l`R}eJR?iY8?Tb$7*?fL-yWqyb z?APj*93tNsDnuKMr-g^z->_%XF2$wA^TSG}g@={vu3xi{>3}dp%!c(|OjuejfKUfcBX_QP3j%h?Q!C5m32k-u|1 zRpHtiX`V)151sh_sVBLAeSGlpc>TTQJbe9OGh`1udb#}PlsS99$9i6l`sDra?B$(L zQ*WMYp0eOUhtffb+R9fd`+U=C>vWf1=qU)RO1XdZhMUhXLGxhMu3uT~TQ4P_;mLFJ z)%&vY!%xSS^9!gLUXOsjh^_m zwk?$r3RnMrHj@oh=5XL=pS>&M^rei}Z}rMGyj4B4Q-X1-_qm|{ ztq-HU>JsOfT<&x=6uQPPdTd(n<(_F=E8Yg*iapL*+0uXdM|7#o{Tt_m7THXAoRhiY zC(k`|W#;7HswrzyeY5wk-Fr({)8f3`>=!4GU+c`A>o&3Hdl8S#-|6#Oj@x~_`1(?E z{ejr>JI&Ys-I`r^IQ`AK4Nl6BzpAdWO+6(Xe}@l(HJ^NB z@0&BqCyQUtbH94;ME5US+qnPT`G==YuiF}Ve{I9_|Ly7hQV)DI<|V|{I@tDZsam;x zTQ8>+Pw8u>y-YLhZy)IC-ui5DP3z;rY>N~7oX<(VuRYuTq3`}KfzLZ%$p*^1RODaX zG_7l*^^ElRwbRA;|4rK#xNlm(?ITD3Y|f56+7#uHEhW`IzuT(d=eD;qnm?YIU+bp) z_h0M2_l5u7@0ShV^Rip$)IIl^w-kN1`QBCD`=)m`r*Cu^^O|kaypf(;^mWhnOj!1q zk<+qL|4gCJ(}h>&u=6|22=M0Ioqw};`~TF2{jZmgi%s}uZu#uya9b$c zY0X}X$tRW9>ORlA!k%$q-XwE&t(r%B_#Yj*Uvt}HOORRayQ}=h5`n`)eC-wAY@zymF0>?8OyMqUUd%3$6<0p8vIU&F@S3Q4hD;pJV#?Bh64%otM`|LKQcE1&JW@;6U^ z9De)$=+5Ic*^IM$CNG=iSlt}PJ8|W-3RB^b`SWjGUYn+s<*j!Q1z7i0#WQ>%TF72!1T`==|nYi!W<=v#r|w-K*k|O?Q`hO2D2kY_3|{ z%R=}po|>E!m{Df(LUFP8--JKj|Duh~JM7c;`}=}7$pAd zuHSEx*4ugVW6IO`f9o6aOdeW4KHe*FYQKd0&y}B8>Q%PdAB+6GcG-31o}b=tGx#iI ze5)$oJ??k(i`Z@cIKTd3?v7uZ<8Nzdnv43?UFxiO)P4G5%C-Hq{`w``7B6~!>F~{} zT`WGrM{3S+PZC}rqCY#OX634E4SA+lAIlXEx1Zn5A^&&39@_);`+?O4GcI{XPnhVw zp0RC0*D~f6jz^+aH*eE@EWCpGl^W;cDMzA?yLm?yFWLGke4p*-`g%4#`)33ujbz#eUIA{4o^w9f88mwb7`(i>`7_g*SrB{(@f6XIfz8Z)7-BC^oOfoa|U8>K&<%(gT1UGbM;xy@G-nc8DUd*nCH_x)LL$-MXP)fCeh zn`PU7GVQ;uyNF-x-KU59>-6nD&A*>pW2jl5VsE@Yjz=*#YDV7Gh&#)b`NR5?yiUyU zmU3RJo1`=K#@a|pUL#lU-_P&=Q-8DP-!->Af7#jPH}M{~{kr?X$3C{r89bk6ZEszA zZ1XARyJ;ckdNvkZp7%#5OYP;9ce1B8PO18n!gu}@^VI3t)~Xe9>udHiAIqJ!G5=_l z`>Z2hjhDusF+TQq+wE&T0k@Y;zrSN`_x>gG=Q=-dyq&C97#Vg%f12?8#rsl{vy!Wv zvhQfE)4j8H&K83_@9$m@uX~^B2!Hdm^tXRuylK_d3DPC2Kla>TyfNUGvTDlA@T*IY z?c2nWCAE6n?Ne8Sj#?D1$&Cq*ktr{<-P0%JUR|psobY#BTwsUE^$pi5W*o{8+$Jck z>wmiAr@@-m)#eqe-HbxLX0O`#KBG_iWw`Flo0HbB{TTH;W%K*YyA7(j@o|U!^X@lZ z?%#WO>Suu*j&%$l?mV4(Ra|%dntRJ-_kVwVX4%uJSNRz%qz{~Cd=sPo%UPk|$0gf} zm!9&6wf+8U_*s5A=hkCU5R&=$iGHv1R@PLF>&|B3Ud>uRf-5t_BhQ2^dLF~~Fsg6X zp-U2SpJG#PoIW*YO^oTKtvr=dar*Nsj!kvf($3SoaOAnbYsv3AS^H|jlvkebt-dkS zt+&=|yVw?y$CHA@4gM-=1w=f_$DN6ao5=ja z&iPWed&8?sLcF!NK7aagcEyq3zt3bJ5{o?<%k^*9VN2f2(ze%5zd9u~!+gQkm3J41 z2d(%XCu4Xme$k`kd0k)UMq25vaO9ohb=ktHMBn(q@+}Qp8DH|wSa|jw-|DH>$3Dl+ zVB?&y`&-*Dezuu*>JELMt|;41mUt_)sgmF8&m8Oa;P#%I2^@1y8qWXn!|2Z|s|nL| zL$Ck-FX^Z1yEjMh_nxQ8Y`=Eu=;bec-*D3K^OvOgi_PVa`<`{b;(f+jNzat&Sh!dG ziF30f)HpUUaW3coZjD)`iNY?d|5wF{A1 zUA5%JjcMg)KW^8r)n51e(pTvP&z>Fb-}@%=MH=V6cGc@)uUMV;Qb9}E4S zx77TA;Vo;Py)kSjOiR@cY^i&4be6p) zPUhG9(Vy?|Zu_>g`(Cf?Z+_0n@^oi#eZ%{9DKT5-uX=VZ6|a8F-EKR!Ldo`RWco^z zoR{;@PSTy9A>;jUu7yCjsaIBImwMsFU9Wl;s&W^5tp5^lN4ZX_|6Y4=<<<`uBLhtK zx$qy+@MiGuzu~trPAuxX=-gV@Tie5Uvv;NcwBNV&;IV?+0b$GYa!;&C&Yb(|i<)w+ ze@^VD}A)m>gYeKxzlUsXWjjJDT^<2 z(UA(X+2>UEsN_8sJiKV1)a?~l?{&X2RL!o5KGy4Gb;xJ_w}|6EpZ>DYsmgzN^OX9w zbxZbs~ldCTrOy=7uxxe^U^+#^?*uKU5k1V&TMJ%qLWoy zdY?wG&NP{C!KtbjoEfb;YkQQ={L|Y)G?VPMzEUVG>OOhcKTN&Y-KX*HXO4!*6Tj=Rf*$wu}N%&Eb1>l&ReE8L-Fi3#vj$ZYxk}dzx_XFeFn?7 zFTM-=_T7Dv`tr9=nd%C~N$=Z~-J~)l#cumgPdmZq-#ve+4EKEgik0GXre?WqIhV+@ zuzW_7sP&K)>zeP=>r6RY`}8S{fo zt{rWjJ7xV5)iw>|-uCNkD|ak(_|0FKAsaY5!DvG6y0(KYJ$rXw`@pYnEx)^Li&@Xx zc#C%%k3Y)XUo)-Z-OFVPJ?~>PbSG=>vORNO^vp(6_q+F0pWk{cv7vDJp4-P>Hu9R+ z{|(#o^yzztQ`h(zLiWo|xvf=x?je5w*Nkb$AAh-__eZYO{Mjqhs>_Btdrzf)a(;b~ z-o`(6FM`BK>Hr{Ycm_d-7hb@{yf zBo`vLdSAL_$%fw2RWE1Uo3`oYubf*v44&^|&e%?{GUhSd|8ZmS`_I+YF(2aZb^W|` zP4~^5uZ#U1x3ASXv3%qI50S4JR=0h7d+WiGX|H9@z81VTPhZxf;I(<)!QFMA&oZ8N z4EK)xDQp+FpnUHnW5J~}3d5bgO!}mHYn#id?|w7cAM=5^TOCl51yHA#UmWs@OW-rq2j7PFZKS(c%5B5F+kid z`kqtRyti*=HSbHyQqU^B5VvNLM%7h;aB10n^9ny+sJzqiBg>&XtJe1K$C5{zA6@vQ z!W?pT{Y%;G1FWC&mdss0TT10hMD()My^BL*zAQM%6JT|#gP}q^_@QUj`%wL#uXG)j z))-6t*6fvCzujy}V7^=M!#$lc$us{sh<;O%3Vd^K-zFIs{uLIrZ-RcVyO*EY5nsLL z<=J z+S0l|d^4`kl$_>O_tZW_LT>F50 z`K%aQhW#bJw_b$Y+p{%?=d85*-dEM(yEvXX+cTb8e~H^b{{l-wuFWUW$Aa_T87Nt@ zP5Urqz9sYNeydk?0nZy7{r5jFiurQuG-JWaW5*5!eVXlaLfPs|v*FdMLh~c3))o9u zY(B|;d#}O&X2uDVZ?WI5?of%+kNkOe$CSvjJtcC#{dDvX-nv?`S}NAd)3zbM{;S`g z$M5$Qdy8M^wEyFM{(xiqOw0Y^UB_MJ)+@WLe7W_+(#EW$riMVZ&=Qr3{x?siS;=qc zJg;`(-R|;V@GDek;DB5PM)_et+~F~mv@TNvi+5|$M4-u6PmF+YtG-R z+n>oCN@7(15&YpDGd00Pt{@aO8^Nn~7zonbJczt&1Hpv6k?D!V*MeU|^6PKlKEbiVr)pSs(pHJ*93FgfhG^Xr)xmL1#t zXsOkrQw~Ruuip~6%XO*yJ^9P}O;&!hYNU6hcr7#)`LB7)Z~EHL@3t(M@A7ts?D}`? zuP^7XTB7;4xb}l`c)Hofevw(f>Nc$4fBD_xdzg$*%h6p&zg(N2tFy)X(w#>)vX16D zAE}N171DD%Z@Gn;cyGpR{U2MM6cRNV)9s7+>ym!2tvF*?zP9U^V{M1|Mil5@2-7#^jQC(_V)e!>2f=T)q*l_yuNGj z+-QxVWb%wXx~;3W{=E5NudYc{`-{XgTl;eTL!Nw1FpfVq<+yC|^Difl8h@XrnACpp zhWVdmiaM&ckJi-m`#q|8@20%;(W{SI$1I~yeJ*?ywBP@=Z$Mc2*K6JL+O&jBmOjh; z5@@w@(`w;)E1oz#y1vwHs(1F%?sqn~CMWGWXU%JBYWS}I*XEV62Y1Y~()v2B&FZYo zU)}k6OW5}px=+yT`C7QpbVgTP(WkckRZ{*k&n`HJH>zG}2s6HMZA#02yM0^TR@^gr*R?B&anC}Ny@PLcZDU9(-Evep)UNwtIPbnplO_Yx zOy_(@+i9WVUp(EfRf-in%6Ktx!<1KF*6#jMl4b5^{dq%))T7G_#KoUq{;*cunXk8o zNB;fi$<;sIp4NR>b^37OJchPXlTOP!FT-vAPN~wF{`70|oQp4PBpQm|9V={1xx}Vy zR@vh}CrbEW#g(;vvEQ`obr#;M2)-5YzHrOp_`gnnkBL4$%NVXp~@*D5!;7W{*QQ;Bc$MgdfZfzuU3>&$r() z{M)U6?pf2}{+`LJ-(=a>$*G^LUl$j4246 z3#Pc=3R?Noal-f5+J~hT=d8IQiv3PYux$vC+yxhP3w*qeaZPk0MnVF-RKPA}T z??5r5snV>lr>74Jyh{DoxLbw4=83%iv9<9x9v-rhmsE9qaJ)|Nz-iHM=XTs!Fpqmy zuugw&=J8#Jx6b}(b5)?n-8J{VzR(ShtAZxY@>Ab1a^C-&FW2wPS1+-R>({>Hx8r`A zz1j7w?}MwU&HBLAe)9FvMN`)vlejkP*+-AX^RLgZu25d-$mZVBH)&yRu(IzWzRQ#L z?L2e*hb{l-iw6_FJhcCzkoWi4wYw9)?MR^m#xRWCU7 z``;I)J2fYHQypjhYOMJ#)b;1!y^_M<-^=nmzeIJ$ZChY+byITXwy1}vZ*aVryQFYV zX0Go3)#v{+<^8|LylvUG^B+D4_a8pUUoXLRKH$&eH-VN}ceCP(du(hEpSN1iyY7_r7CR+j{=4GIc(r z@X-6=>`U>llQzp~*RSH0?7tlt%#j{*$?bFZ+cl|KcSXMSs&73Won`a$=j!M3hWx%) z7nRRdd&T1;yD{|a;(ynw=5b{@#?GJdTI1neQRiFM%U)af>iaszW_v|vJbe1{?xezf zcX|Vp3-=tY)X92z=S}>q{5PL}S)cv<_}8hDd4_R(54&WS{#A-xyt6`5r1ToHc_n|gZ@iMb#ov~NIfnazD??qyhNZR( zHfT!6P7e?J{OQ!I+l)4h2i`MPoH(+Zzu?Wm`^QfE|6{0oJjMUvj@;dI4}5UG&8DT| zS9vK>A~M_X%vJZGX{pO*{k-bcd+c&;-&Bt2OT(E}cu%J;Ji1z9j#}aUvX$K*oxcjP zbQLzsb$v}*-`lSDM=<``v5L5>o4;g*1oJx`yHfpi5xW9I{hs7g=PGw@*smBbCpybO z=5l7jv13t!XEcuOPihEZu9CAkyGLkxyU~@`0V|JPxL7U3xz>8q8vdI%t}Tr*Wh%DW z$g|COujzI!A){$-e|UE&tgz{Q*l@A)i}rVms9BamU!-Q9SYE^zJj=)5`F{AKc7w~W zHqJdN&~s6Ocgi>0ukC&ZlI7|T)h;>1%v}C{7kmBhPuvFkt8*icY?Ct=pC`9;k6-mM z!+B?CaLtg((p9+hV^v$!)H7>e&MQjKpJ3!~H}#C|9vQ>;1=$sOehp6!|2uED{7%I2 z6Yc-s1l9a=j-RFUwyt^k-VbXw%3fKJ{^_C_p9b&RTAK~?<}L}J8SzMB|Gb0m&a;%f zxjFGbpt!|^2iv5}9zCuv+sOS{T5HcY|Gcy7S@*=n>T`&2U2)@HZ(MozTKmfO{&!zg z^TQX19MRnUCqyck>3Bi>be0Eip3lGfW8eP=o8Rx`3E%%Zi^1w2_q}7>e`K`2d9}WI z;V;MPdC_|3$q=>b3b&@Ish`yIzJC!)>zUqrnxS$={7aiA&rc5|C4QaWAlw?){JHvi z!AJYtx!4I<)uxVPt59nea8Hh>fgDC zO{yQ=Ik{fy@RbkCqZplJeECl<4wb*U=*yIr8|$M=J8}|t(~ zt=aEC|Bqku?tq+B|A@HAy$O}6rNL89_{Q2t$3^ZfuT1?K%5aY1L)%%M*YV0WA3I)u zh~K`STi@=XmyFS4J`KGiuY|hhD^-a->kSYyzW2hEweZq$qeu73-hH{EdR}P#iYZw? zjCB@k`t+7hsCXJwVdu@eI@wdl@AQF)=kFKh&Iz8jrc3l_My^Hg&((|}r=3Ep{jGyl zb9TjRXX-MFwFccimSbtW>c*lKQk8cWF}!#fekfhwyrSmf>2n{%1f<$sEO_2u-1By3 zf}5&Cb$?ggqj(;66Z4<%-&W__R3ta+o{-*~C91e8d)Ef(scFU)Gj^>%es1cQuzgoG z`%7P>FfC>ie`mK$eM$VCjX$1!O)}m1d(o#Ka^meC$4#ajwK}66v*Sx@rm}BG`+fHL z$6hYH=bv#|$o{EGd{WO-rhhAJVs(1Aq|aR@V)(RbqupnR=@&aR-E5>}Ga49#EtF`b!QGXl-c^5WrBfsq?5RJTim;8 z%~$q+X*Ub-GFW==Y52EiWucWi$!*^@cK?>1l0GYO_q;{bw?vd*XjB^aFWh1>H^j!% z>a6$g`$4Z%bIa~6zm?9=<6d62Qld0kJ>LHJQvbW`S~+}so^O>u{5Je9-+^BqPZnmoZ^icoy6YomoK$EItGHuxahBbx`^^2}VaQJO2)75T;~SXq^Eb*G=EIIH23xqhTA$xMGev!A>oGSqn4@2 zf4p@6yWoQZ-`-WfkFOD^e!q6-9645RxhJMJUPo5+-YCDnJ1WliUiHbUC4KI%<~@0G zYx3`nd%f<&?W?Rj6|a4`s-a(Wsa?Sn&Gv^=md}Z~m{EVwcK5r3zvI5vX?$Hg(KvK# z?}A*x%TEN1rTlgGZtMQWQ9plvzVrFUCFhs0Jdvxbp8CMQS;3ZZa?8ivM;IGU|NCcr zqxAMVPN^I{netN~ExzpLYwxR=JNd)iA3>eVe{Eg%aQ3C6X(<<*zaD7XYMcGzKz+SA zg9!8egfm-}ZM<*){5e%}W+->~zt{uw_Xl`u{kt`zZ?nzf_$gnHebyB}ntoAe+SwkP zBir75ym`HzDZ6@G-o#HUgykDEI&=hhohH1Wcr5PRubIM6!XIbN+1aA%lP{+h>$zU_ z$6NDVUwwMx@0H&_v?$F#=8Ns4^EOuw2RzQ07pQhCDk@iGOR@N^&AfMQ7HmniU;J_N z)`_i&#aAj*? zRewL7dUc-JLj1t;>)rnaBuZX<+>@+-SU#to|D5eJx4@|-JFT6{?*IAs@0P{ZLbdBj zyPw|hjt%-4URnHoeR|2UH_QJ1NvgdSvGkeo=Xs}!y+kf+yyz_!ySB=4)|`L}n_K54 z@BNVa+}Y;+ch#|z(->H6-e$FS`P}C*$a=B)z1aEo;*D4I4Q?zs^E}kSw$du)Oll(M z23G5@Y$pAj#!W|Kcjioudv*AeNV#wF?~|8jq%+N#&hWY8@+ym|y~mTkO*)^Gky^E2 z#X`T=>*}^gO*dU4Xuez8vrxm``fKu@8`lC&pZ?W%lYHd$=GqeTjM;{|%gfHpe7nf~ z>dhA?7`s22$$!=_jN+<`xnr_8rP8c<^ZYWS9=Y_70g{)LmKjP_NEz=p)c15~K4+sI z-loTL@pf10*XEC{*!z}66yzqF)o`B%8@HZtZ<-a*Cxp?44r(=Jc>!StT z7Dtl}Eb&V4xg82d$N6R$%$=^A)f-Q`sCK1+~f26VaAP}Uuamj zIqr+}RK|LktfB$o4^2O5V=db@h-2a>7 z-Oh)4E4EyA4O-85r1kkH@$IKouB%HfZ;s~3;(Kc8Ash6r z@eZ?Qfyqvz#Ezbg=RdMco6`10_3W*^#WBCWt^GL9EA~+4dF#Wiu0MsgM^rqXcil2t zD)C|L-ygMEja9237Hdy`(6_p5!RcjaQtJDE&*tvxSd+{lqBb|Red$YXE zuW3uYiCBK^rfyW3jd{b@u;#cs_m)?_oVbQz)kneJ$#vDMBt1PhPn&qyO|8x~>q~83zx}$);YrBbn!n%0>gU}`dF&mu=i0@xIl)f3 z3yeEHRVqJt+Q%;_`7Wq{ZB;RM?!n$yUHj&g{gOI=P5kXa!}coa*&plv*UK=s_1`}u z>>XZbVcPxeWA@B>PtQNfTDMki-OfCjDaVhMJ=n7*9PGUu*KZckS+nZ_WuCtEsMZ4ono+S1Fvi zNJc;EzU`uyH-GOeNom`w6D;wb^-%TCDP0YfcQsOP%2nN;p?Be>`Ly?%uRg2mc`=$E z`)FHruu_?MIg?r6mwt3f3YVthWp2gig@gBo+ z`?pVh-mAV66@X$LOXSe~7A`1?M&13EYFm1|vGl4@_~UTW1Z7iPs~RX#_} z?Y#ZH>F&zCm48*IpYOPykg()oU)v75)iXmMZ~D`8HfIO-gdJZ!W-P5UvDyBs{Ts7v zvd;NDkyYxs`)UJvH(I<}{_SQS>kP$vpPi(;|E&u?b}hAelE2jJTkR$jm#>%@=D#KE zu%Y+mf0j}LFMm$={*hy#wt4*-;}6aI|AdrmUK{Q3{=E}*lpI6H4ZrCb#_>bX4GqWq&7xrCelk$l0_PTwE@1se*cHXkUxOK^{ zr+=NfAKSOS?%%F1yWhg|elVv$*dWYzQ08vMAM?~dJ{fEF9QO7ODOuZp^_x3`@jSg$ zt%5%@mp|C&x5r%G?$3Ae?loW8-nzE2Og^g{>%US^^YSGJugr@INx4hEo4+n>U-dKb z&$>NpW7#jWoK9LaEB&V5CWF~V=c?{aR?FOYv*7Yp^M}Ff|AoBReDdn120b-xcm4Xm z5#gs^u5i_ije4NDR&l9s)r>kL@#AxyS1!9sICdwddHLhc_h|+ap#QH%=AO z`}w+ig2v3NS?tNEr0afOMIrD1IhOO8#sxpHr2u6E*i+ua{G+E?2L$)&B^ z>F#&GbmH1U=+uH3F9zp6$_Z&|(yr28B zX05M`>As1#f7;YKOp2eXy0+&1>^U36ax!;qoHFfZcHsRR;yO{go+VwFIK_E}*Hzb# z4-O^&-7}>lXw}*O7dtL5%C$a|@#eXP?u`=~pEH;L_#>ioNqo6Mu&jYq*^io=<$d;B zj`z>6W1m-c$uB2*meu8#iZdFd8TYUpz43kJ-^dSj@lPY;BHvCA5Btw};3dO9i39Wg z_8xAQlq){r`(y6qd(G45R7m#OWvu^wO!~8rs(!F{YsRq;_r*1zbt|OE2met9PzyE!>bkf>0+k%?F}+BBOe`QPIsGX z&il92=9Y2qyfCkmmG3SrtuxVi62nuaI`2#IPHX?YA15uA{U~wF!EdqS#){U+xIgPE zC%JLnl)bvr?cp5j8$$WE??l99yKmN>zj`n9?qRMQ7w58kRft`(>79PUe4mA7*KWO? z`%kU*io@fVD`To+_$K_8bPqJ&)6dS5`fu6CYWCON%5U2i+q>6I5uUcK^vAsCwjcKi zKVfX}4zufjt+(sqFa3-a=2Crb0=7osKN$8Vl?royzNBoJT;JyQeE{l7TbN@x^v(%RNpZA=e^8L}p4L5hraGqOq?DoIg)f=~!zgA0Rm)+A+9QR42 z#Q$scWmN~od%P?%JfQFRh`%w^+Uw7=8>`gk&WuM ziyB}5YyAG_Wb29Qy>>hqZ`a!GV>_nUC6jRX?~kiLw(d)b|MA3DcjwQuV)Opi97?IZ z5?wp{*};tI4JJ9M7Z+P|AJ*lsdOyFa<7377Ifd`fmOuXd|Ibc0S#x>6x=)%-WjTVA zA0M^ImCIeG9i4w|^=fas?)bgSx@)5T)PL7`#hGvKVOUT%X|nx8 zMRns(%X8XN?iZJ|FwgV;X#UNU|JY-lwymvSqyN4--Lq3$eokwC@qw!g51ZQ+n7-SY zoZWZC?$3?IEcy$+yMYiS*fU>b#Fq+s?P17UO(MAIo?VAVa<6( zookxjGH0DH&z`d8b3jb#wS{lbZPESHd06Mk)mvdp=G9)5*1sk$bWYj-=kj^ox7sFb z@Q7~9o~u-6xhJ_N{CwCe;ig3_`u@6mb8S0n6x*Wpvff<(5OG?n*=ozWTJQQumfStJ z|8Nw1zrSpTQ{jr&dpWZFw*Twdv9$Nf)8qe&>mTg9?s+)rY{}ilcip2aj#Rnsov~l) zU3GX=#QbS?3H}ooalQ`T`Byh6IjT#qF7N8)*9*F%-fU=YNS{|>KCk)~pG@ru=Vh~N zTWmGV)?c0;9(F!DE;9FR$<2@(n{w}-)?U3EG$qaWfRo|g#?T5I3&qEGo@#%r&#M=o zSN-PthAGdQt%TH{dj=I`&Iz7rV<+vyTN?TzN;pLC`tnsidiO6?xJ|s9^g>klw2|DV z^h3!JU%p8{QoULEYA=7bn`Cc&n#huy4Z9U0-S2w7C=6;|^endhXL7)6=GP&;FP?^< ztq)#gq*bNs_>kAGV4;*X?<>3I6}R?DIG0YGtu%p+@vF*fR{JVew|t9hN}hK2B2srR zTAbMbaO1Hh`=q8s-3b%F_2+Lu+=l7z-EyVeA1yLCy*&M}&>8KZ!$dgd)r{c$5K z-B$04*!#U!*KY}Delz+BH8V{ENTYq`yAk-=``1QgvCIjjZA+OEF*BV^7;sDlcc}_e_3e5~HS( zX}s&nQjY%Wvyp$&*$&?n{y+WrqYKJ%+w@&393HOAzu#Q`@1Z**&m^f_>AJwMaW;|SYGEQpw1hr33#P;_j zZ*p&!w%^VyzW1#$ug`aRo3E_?QhnXZ{hw#M`*6>_lz8U5=k%LXt_6x2FMXw{rG4df z_3J;8w?F9r|I_-Y^!9_9ANiavS5IM^XuR!<=X%Z!-_J^K8ShsnF`;<#Q z-yMD=6K+k{QqX1`p1tNYK7FuvKbyQ(Idox6WSes4|MzPdSEGwvSZ{1END=ws#s~qpD$(*q3vs$;m%8iQZu_wE^QB(#y2lyT?Pc}7D}TIsyw%(wGv=zn z-gS>3XBV#gm>FmvUte}R>UgAm?{(HJn+Dgvho4_r6x{tz_um!0+Erqa|JL6=Jn!{2 zgPK=my~*mK``>;{sH~1sJLqwp{n8KJX)+scO5B+~<+4fl`DGioU2mNpbZBzl-EPpX z#N#^m_a?59ZxYmF_|Won>eXK@N6%1ZT~-&hUbhw9)&&roY0heH}20D z&gl=Prq?i}%k5;&{1bj)&n>G9f1L7-j4g6qKD_wk6|&+i!_(6$w_mGFz5g+wyYt#S z#lLg@Y_9su>KuPWd0)A5+&ziqB^#Hn`Z`s<`c!BnkN+qC>Bn{J^N$1vHZ`P6^B*uS z{@a_tbn(iuYfG-H#V*S_qRR0;FtIX<$9mVgmaod9e~dcUJDzk^e`dMFe5C5pfl500>704ITY(HNt_+jm@FMRo-&rb(6Rtns5QZM}CX1;s6SLmu8IxfFn z1TH<}FYf61oNv$9R(4;*KHVRIAD1a^tjM2reaW?3Jbq$cRhxW*brv;V6T4XPU2(bf zk^Ze$A4l$Xt2(;M^z0Q)kpy=+CabSOw=#AAZvJ+#@3^*F@5+a1IV!d}-W*Egv(^8T!VZdAN1%v*cSXbsp}? z339(qO`cc%t5*FeGlO{S2g^IvpZBV13;k}1S1??k`?!7a!cv=8+rG6WS(tM_F`T!2 zaqgZ22@{O}P2F&>YiiL&YcnR$EGL3M69t7|uyebwqdoVV}1`#t9_ z-v+iBwU!ne0*T8Rz>mlum!+|;n^BDqTmq;x5WoUC+{O!i5 zNiQq*oh`LK{N{q>xjzSw`(H`_{P2UYnEsyNtrJ$9EY^Fx{o4=cSC1uyqPbVU-_P^?-Y#iP>Gi%RPMrJ| z&NSzH{Cum0ybtnsUOj6Obw1-lM>gA&+uK6VNgq*ss><12Yx=5H*H`94oA?3gAf*ZC zOLlxbwbt;5?7t7nf!RV6m%q5CmnC{i-87c#~^pL+zHOx}85M^RJ?1 zS(RK??IK0hKFdd|&cDiC@#E9>X4$zjm(DYce|qrM$CbAZDgER`k-CDpI6ERZ9To-eRAKkvL282T`6ZzMqNGhddj^1EuYU_ z{V%tA<-aA5)w6Ve$z0}pzbS2|tY(tEkKJ7+gII&SRawWss#g6iDzw%=m8(@}eeT!R ztmczax%|tgE^zfe)w3)1wa_1l%~!oo+h0rjrFqU;`THFU*{G@%?)kl2_Pt-ZaedJD znNiy-&rGzfd(?Bg@ET`%!ZlfoU1ytFkk;(SZN7RU=kKqZ45zhMzh^HHYq-x)@LO#0 z=LJp4+wb;GpZlk7&zmRS1#h-hA1_$HWOA)$c9yK|f%4Xssd=$UpMD-+?4r4^bk%}4 zn^c?rW;;FIyIjv;&u0DOMVSwLLU-t&EeLL&Bjvh$uVS>*!DT+br2EA}d*1vPa!!u2 z)NQqJ5;2xDK00B+_wSLpdp})Wr~mO=#fqqdi)|(2dxO7}bZIS-63xAo&eb(-`LQiC zIo7e2=kqMy;DF=A08ypKEnwWz)O0SAJc3u(aI2 z@>kSu!HO@lm-Ei4n(=V2Y;L8;^htYPoh#zr_sn(KLmlJR5UagiUP`?Cbz-mToj$!` zQR1ZUXSS*-1lnF-nmV^@;^vLI&zjpWR*1`SWd|}Z^VMI(rF$yw+4|*zwm&kKcx&!f zHrL(P+WS}~^~+9Yxjn4u&5e0Sl09yD)-6sC-|@T0&E-t9@3vn#&$o z8dA0TmF&S=1s_As_PlxXI+}Z1<-&&CG6UzGa=%x5r>5;$cXsC5+H-#{YjR%rlxCz+ zd*b-(%}=K4#`d=ypI>~ccFB>y?RUSwIp`i={Zb=4s(YOb|G&7+Oph16tT>*1+4%jdAI*GL8a3Z!!QZ2^<-cq{s;D4jQlwaW+3==!j;YGkw+uJ_?sNEPv36^C z?2(VRc5X{4)4lrm%=|hgKFdb}Ijnc;F29Yay(}Ixk7qu=(q-to(`xPd-S_9MpPf?^ZU_7iwY4YA zPf%}|&TLU#nfjGEx|io+!zI7z(6#vS49gjRXv;)={=_VI&gN70kM+0jcZ$o_i}KBU z`OaVZNYxsZRRwk3Df5%wtXfwtWF7uK=F58C{hVXpaVdH=@uuMVw^pD~v^H0rd~8S_=&iw_2h`vhwow~_Li8!5i+?4=2l zxQ`W=Oce|%JY~RtQ0M2T)m8T^l>I%eo%Q1^cFoDHc)@XT-||v}X60i@#miA+f}?uP59&XI6;c1 z{EpI$piblScOQJ5+LRvtQqV+e8?S8h!4ivOmwE1F8Z4N>bfW55^IU~wfem7P@86Wm zZCbqiqtIFTzVHPz&;M)xwx#i}t(3e)+E0~ zGclW@Y|QzJS9b4>lhKo&tWSLzIR9frz+uT`nb?0}a=!lWERMF@++HSq-Z`rL&L*3_ zyVu$#@bCXNNq6t*_gj|Fvw4?grrf$OS~l&2aE4S^bnfH5GJ79-eQllAqbkEu)AHeI ze|>7s;fy;v=NYnv->+Yrn6+|Y-{S6=x2eqe5u4^cHI1(KkH3=g()Q}LNw1@3s3iz( z?OCi0Q19S;7p;wd?kw1Au>8(}d0#s`{Fg?Rf8Y3HZ$;#< z-A@@VnJzrD(rTOkJZrhfy@rw}jy9~5*1y~4t>Sn;+v%wChQm{}<8Mt$w)L;Nlss{p z?#>NObI%0|mz<6^VY*ejxM08PzP7EmDzYEkHh+7>-0siTk9Ka`@~8ja`1aFVzpnnch^6HSqt9iZ4_i`pN`;$>f8Eqv^Zroz)s8Lo z6}%@eY5qI)JN;8{g}asEoEw=W^wDxa@Jnw3&E_oH)ZSHsUW8y`N;C!*H=KoT^OWp`eAI#tNUT0ac_w$~oKdxSS zSr)!F-D&p=@SdKvjBWa2<*z&JeV3Lm z_{p3uRC3UN|8_CYl15WKk7H79w^neSbB+DWR*^qJ=l-89ZQeX}f&0I$4%K>5a`Mle zEpIxQ9g?v1LEP4UapJN2)}|7x+upxQeJpy__ z_Q4cQzxgF=R=m3PNhC`%o9FSz8D7VEdg3bYO=&y$Bk0xE5ZT3YQ=^uC z?(xKV&njQMenktm~YTZuBW-p#| zg8BCK_uAX+uC!PDx?{v}toFcf@uF6L&Z`@$UYYA{aqM+_(|fUg@gMg*U$bSh_L0!#XSXijkuQCB*RhR@x29RI zet%GA?&R}Js;Bg_Gu8b3d%fk`6|t{>HXPYl$91GG>h-g&=hj`Y+S{xc^X9pj?BX4d zZXZ6gNse1P{`ide1Ieq8__}oY_m>2;AFuiD$@|A#{@vbebG^T}z1{tUQ-u!{u8f-d z|Jh!@J#x2}*=oM4UUmKC=4|mSxw*Hqf|AsZ&ulAlR}OHSQ$4fKZHo2o+q%4^K0()i z*vR}}X>zmnc3w^L*Vm?v=91fFH}UpYemg08l{;hhtb?5wIxk+~sgL|+v&3{+T39r5 z{J$GnnQ9`e4(Zbw0>l=v&ztqNhX32!x-Y+sJNCG!7ObBCdHUwr9;&BL&o`XJRQqtB zXu#uBO7p}Ye~3(vS-Nlcx_gb*`Ma5;8Qte@;n^XU<+*wqo7~o*XNlWWqAP5iCdZXn zO}?}(xaw8>+3mdQ|4h?EKD=FcJdSB!{|%mN-*;*}-qLHjHn-I@dH!9Ycdu>uUvAa8 zYOrPAn*L*NooCtoIjWnu@xD-hg!{FHs>veuyz5gp_1|a9pVXgVp`O9%#(lch>v=?f z^sf(hmP~Kma@qIfm0v&iHJ(5CT+Kw@Jj`Xyl=iK~na;8QHEw&a36p-#c6a$Nrze`P z8$Y%6E)O`9lsRp2eEAo{y)GGvvcEkdHgZZFF)7rG?BDPs*Gnn4XOiyU+Q3&|Z}k^u z?G3s9_s7#O$=5y{db|B`kNZ8#i|ukvtRE6Z`u9x-?KR$Z^~9D34JJPXr-g^@XLw-A z5XbW%JG%R9GdExSF6sRRm)t*EFRy1&m)&)Gqt3mT%Y)y)JbX!vGwr-biTrw5ml?+| zE%GoZGk#(u^-_w<_ro*oau<~yzkj=3b$-O{Bl&fWPwnSA-zCvK!T#@-&s?G#ttNi| z{q&$3opsAR_40J|uN4Z~ZM~7qwcmT+H}@}Y+nQG1`~IvqXO2r%>aAtTVY_s@(oRm_ zy|=We^JA=djpVLp20Do*ag6u6&wnt<-yG&2_~z%`zGmacH$;L%MbG<3<~}?cQZB8@ zSvE(>x#Y>&r7mZ)pCu*pT)&s=<`vwUlQqpPCMV0~^VW;mb{iiozc-Ih>^*EPfX}O= z>3bAG36*b(R$p|JPQmwEf^3}&1$@qc7@hK{EYQpPVH-hoP{g4&#ruHWaF2(bzhG2=bIdp zTXK?pE*H#P?93-uUFM%W=gp5mjYQ}B&pxj6I3T?5{gvOY{lA%~*T2zvv*#0Ex%<-~ zA^z?=^A@bW*euo7c6{j_p=Up5R<#{}Y(2Hk>YtAPW667)J8RTJ-yT$5ur+b>imm0rpTCniLCbHE8HrwKhT?Br|m2EAO#8lk)KC1LyIVRw=So)Z-;I51 zeA%7Tdw-pvGn=er~i2l?D-{RP}R zCqF$lZO^O8;ks+yGqYB|zuP=}-Cn`?Uq3{D9Fex~+FgD}ck8E^eQf&WUE)h*@A$sA zKb9cvy0>`sL+2KE_6S>AN6n5!O$=7Rl9+zKPJpEz1!P;LhPV~o>=~}IN z$o*+<E7krJ_&t)Q7Q4cz|xjwe{84 z-!{y>Inj6~)IpoU3jAf3g1fW%9n>T<_>|tuxIc>sUVoGt4u- zv4$@qBFg^MwL_myWw90f>l2^zQ;uOj=Y#JIGP|}$*j7B)*nX!ae9kwym_5nXdOJRH z?nr*`cvyV@n_FgWuG`pNoQ;$Sx^+o^dgjkO?;@Yec6ZKx`s5V(VMUqLA_)%ZHrvzF zwfcOM9~FPu^!d$PrmOE4#^qe=?3&*-KVn(`0CpJ`*`XOX<%# zsjsTN1xJMkN-P_vy^~SB=$7ahdUbJ#mW|Q89^9kG!QaO(v=y&-n`>lIh=91Gsucid( zduQyJc2RNnwraNB&brGk zsXnFf)gIA=@+_e}A1}GhlKOQ@{G0kG%THXdH_tntVOzO9Mf2hx^EAz5U3DGazpa1O z4(|!x{V*b`ignqX4=cDv6hIP**(leysHY`f@J%5R*WdYE5ZUXxt^^lpyU@`e-b zy1b85rX{r{3FNKl)E-UrUdvWW903?9Ve^>P=a;WApwMWo?E& zKLd3)=iZU<+g|g}ET;D6^}<`ha@}hiE}yq#<&-b9IVn9oq^`nuNovc6nk$pzr!QE^ zT(N82&L7`%Et8EOte*c{O32`p;oTHxxtR&IYI3(%?PrU7{vqDS?Bb7*({EmM9=3E^ zt30#EOu6H$r+g8Zy{jGhCURxH2+Xz3DmBY` z-Mo);t=vqvS(!3YbN?*rJyjNcTXNtn}qL#-Jhc(tqXEBK6?|V{uV$QCO({dyg zrdLEhvF!hUW*(m;XMELp(TaQP|G!}2{l;5#?ndcr*&Bs_b8mb+d%NKE_56dn;rDx@ z_f;t8?SJ*nAYEs1#}vueCSG~>^F?3Z`+C)>zI$o0#)0j>uN^!mop*S<-8a)Ej`=>$ zzn>gj-G3^}Z?5&D;PjPm9$%aP_~O1*|GyhZ{bsFRI{AI+Jn?GJ1-o{C|MWeP%V%Mm z%-P;cGmg!lR_@!LAN$jH&aW@W^IOjFYuLOwargmm!Nm_p3KlGj`NLQ7c*eHiCvUT4 zX8RwR$@J9s*PGuC($6iNmFrgVZk9_k*;aDvy2j>F?vz|F5e4E5lcEOZ6yZ@-#JbkfxW6|TwA0|f2_inwT*tuyToBFbkT$~Sj zYeOD9UNSd6SL)`$n(SAqt2FkVSYSGDYIx%?n-lh z^|&N`#PF_4dT|CjNvE%KMg>I#x%8RBq>u+uKox?JFLa?h* z`<_sVs?bxPG`N%h&e*o%MU_a;e1&uDcb+Z!kSSXgKF^Q;kJCDHyNP=L1h`|LTnb$L zg*9Ww=eA=>HAgzu&w8-+=%1iD?^2TVH&y+14)v1R-MvIdcA?37DdPnxH)89(oonA%*uUHM8s z@?P7wPqM&W^P9(uP4BnPJmz4?bFLyL?URmiedKN8-z%qd0uHsC$uJ3La2$CN>7}e!$@qhJ-+sHFKX1zm z%(^3fqw=%tj#q!L@17m`XUVDtsZBdAo%>tf$sXUZrR+vf(cdiIJ3j&w_@smHJ;-5G zUH|rmapf%gb2r*G;~y7I&0@bY;mVE0f80&gbm!Iy-{bI~mytZ}{Pfr#M|F*V%q@6T zXz}Zc@`lf|Vi$^eNoU*c4_s_>JGSoT$vgWTm1FIK_br@vsm5O5f%g18VhtbD-ug@4 zJF&hrues=#>(|Y?7KN*O3pMw1dYGE^rc1@Yzc=N3b?%L0tE84s>OMI!rS{jx^!ZyB z*v)1yzh7v+@6-ACwI9CCT9<41$<2p(a@McjuWQBEdFD&GMO$q>7Myb{pr>|8#+CA) zHqYi+{j__*Y1u!q>#hNB>_YQaH4QUK)i}AhvUT^mqSx-x;`c-Fr8uh-|=Ydk(;Cim)0 zL+#dick@(Z{;t$!PnJ)aWZttmh3!C|!MRJ!7aZKv_7=SAz4heIt>X`qs^2bOve9nE zoqO4gyI7B;1?b*8W^{GI@`rz}eTqn)r}`&4e#g3xwVxATKG-3X{wuY6n(6$D798g} zUT!hHnPw8@x_GhFqDK{{X6!RIoF!R?U4a z$tb8^7u~cxdG&q6*weQsY?dqch_&dW|;xD)-Q@2PvNo7dSo)BLI)EuV|N-rb*8xrXY`&bqtW zH0+z`mijFjHnIMzoy#=Mf`V2*(WuY%e6T%z>xM3Aub{8>GJ@Tz!B-q^mG(UL{(Y~? zK$TtTzwTOFZ%+T3BXM(nu85sc`hDr%{f{5=GQ@4%vuT&XJJxuss&bD#Y%dd+!#O3;0wC%TC%vOLyWRl1&hzLNV++>;-zJ2aXex%4?r z=C00?T5>$DNs=vUzbvc9T`8L zHO@Fz^6$Z96Q6X;Hk)@xs{8yN9m#Z%D|m0<{JxKQYqCqOQpy+Y`z7l33ArzM#cvfa z{&`F6vS;G%>pkD4SAC!SRogz-h*_t%PR7@bdv?=W-nNO;$|L3+s?eWzLe$g#X0c^O zz*moR36qyLocZ-sB}DW8<=?BsnG+4KEWMbWy(WCqumAtw?9JYgd%RHY+u2*};w&Bw zN7NXZR2Vr$9GRA+boS+*nwGRY#Wg6>XsMR3%%XZ@4* zSkeDI!5jY{5smDBY_TbH+8m9l$RM9j9bBxlSUee390dBiuh-7mt7e~8dpZ95ms`(c zY~CGH&1Zi8ZtwM3>Hhxy_RG>|gdKf4N82QQg5{l@n9_N#YCf8K_E;->cm6yhIotAM zsa)!#rEWi-sl7PtY!hYh$zoRRN!vZm$3vQAqg>>=vzaWW8_)i2)pz&i_6O4^F37vH zdfmzwnMM^)`t5#HEqprbVetP~#(e&>TaCWf1vb(fJeiO{;_g{%G584wUx&UH7)vujH}y&Zat#8*|@% zc(K2N$DxPKt={d!xx1zvTy~Bdml{<}5zKW;{jt!wyT(KFlKjQY)P6RDZMt3#zFij< zZ?Aggd+@j2pMAD}>mEP27+){)dFnQ)zGG(p%x0cg^e?1o!ILnjebWvfcx+^TBP1h5 z@wJKN8Ef{(R;d&D?lEL+Z8r4%PyZ!IPX0-@H9)vgU$Q@RW~1A ze@;|eqOp<@oVGyN2~vT)3o{eQoZow=JVx}r=)8-7hg=w`XQ}2HC^fK zLHBPrXH@w4$lSVorlIQZ!;k*8jGv3%FS^)l^@G_m*`Yt8|YUbKCUP zEVo@Ke0%zew;%r;531s|TCH7uI<&ETN9LFNeE#EbbdwH+%+cG;X z-K%4z`{@QpVAqKkA+_49 zD}H93@NVDer665#QpxSS>+-}k!G)7tIaf^%QWbk-Vp$tRQNZo8KLw5N1>$(+qrYjm@7x5&(_)p{0u>+1c;`9>NCHk}kdP;_MZ_BXw` zm#vcYOLMndN}01Bt2^dDZPNPCnK?ybQ$9%ko@9I3^x>Obk33Q)1g`3Ry(@>i()*_3 z;X^;poI1NAuXb7L`$al0PTNa=yPEdr#q4);KC<8ctaPvJ^-IgsdpVi*Gd|GI@At2J zdx5vowBWGiACB9PC&$-5Yv1?P`l8a`f7J}%<#u?Q^V}(ZUHs#`{GZA>F*O4Je{{Y- z5IjBquC~{DW5MJHRVnEvs{>7g44!4ZfAr{aL~O~oorkz~>^8Cblw93j2BA=|aELpcPWX`_Evd4$Ru7AU^?O|0WTq_#I43e*GvFKg2 zBK>KF=+O{%sXu>|eBS*2wI=pg--Nr5O|(APRV7T@Boe&z`)MVIAF-O&TwT_MH;t-} zAE_+0ndNv(<7^+-oz^;6MfFv$t(Hk$U7qz*=j9iP%NCEPu5weI(^hW$-;mdRztT3Yd9C0O}1Ts;jy5xX+-Gioc}A{ZNIX2j&M}URlh}VdyeVY zuDbYSo!gwSDVr=Rr$4sl)_Nwz+pKj&|M(NHkoi{EXG|9iD4x4!o)X)eFDq%r9WO3+UFuJHS~!pO*^_r_Eth24-Sclh*vEceKJjDK;r;(+ z`tSbQdhvS0#aa75U;h02-1b(9q$`u}ze(J4RsMhUZq5x?-&VF3S@iDd;!}@}zEHoo z*l4QNrl~jgO^=&y>AZT4ty-eQ`l~1Ob(>wmW5k0P*^O@o7 zhkFy}G}em;yUsND$JUed=6>Kh7L7i@Ar@Be(h|5Eq)oSZ!e=BS_AeJj7|-uJXC5qI;yJYS<~#cX=&{Hv5JH+Lku z%WmE^>ve6<%*)vZD|y4!R?G{VzQlW`>XVn>4?BwO4tu`*-^=9%$M2Ru%8vgdHSgb_ z;2*Ev+qN#Z`zcbUA0znY=e4Oz&s#q4*~0tt?xmlPQ}&*F`1)aO?Y!d^>Z`9kKK|k? zQ~a;q;|w0vzisQTT%O8x;rNNfa?43utt%J{nPxq)U)Lr0XI0b&=hDYdH1+pIUw)kv z=jv;mH8D^(HU%29JbayPf+pO#V)@0fVmj6C*{v=z8OW@-( zr%uj^-er|tUG^!iKj!Mx**_IBwcU8n1yBC!c)F*eH+#vq=z5s&ZBW6zNOBQ?D@K1SNd z_(awz*?GTTWWJgB-gT;uSfuT_^INTo19nH85#P8X|501l=CpsSn|qFbsQk8*@8*hQ z__Vv@PtUos8cc#Mn+}vD^isNgI|9z;AJGlG( z9!0G+Nl$W4tSE(aHIlSwBL|&O|ji78ky=44WFC-c7%@cj-=njoUIJ zewha9-P0ABUMQs!I^~+`grDx>=_RjjKFXYEXQFV?^H}v`hHj(NEg{i&F5X_M7o&g0 zHT`gl*jmTL>HCj!xa~jT?mXSK<3?PW%6-QE>Tewr^Li4xlXghuoY`^b# z#&ubRwo;wH5vNwiUG3{Tz&YXDvB(`48aAvJI~smRHg)SFYcB2!vdv3E_by-mbiJ<9 zhQ}Kgh)AD4CbyVzdf%aI68G-9w+r4rKdpF-JvO_Z`}k?)~ait*th0KE8XFr17kI4DT~u^)<5o|6F9Q z@>zp-qu!-R!K&&H*6)u#)39!P+1tMU-#_DuKmUJjdTcqdel_!iJ&R9$+!CW+^4YO$ zy883^*A9!6v8=wD_`12stTg0$Ueu*t;V1e}u0C61DAge?r?w*5zjD!9?qmF>b%#_0 zj2koMFJ>$4XKSece7^2^0^k1pf7^aHo@IHn=is%ZJsF!;C+c+F_E=CewdUxxe1;V# z&XgCNH}d>y@L}iue@uT~XzrC*yXoyKmi9k=Y+V2U+Q?jf(HbIrz5M+9J;lxY7w5R$ zn=x~$o3qmE?x28!zxTiX`~1b>*ZkAtcD0ydg!+0Lr@Mgl86qp#jFN^XARmotsG!{*fQf4^$$N-K9R(Fm?SUbW-preA^U z8M1Dcq+fpj|C0EJ{eLfsSH<^SD$!1!Sm)bRy!1KGbhmJ?Y zO}(k#_Ox_;@J?lT8o2YIm0QBmd#;+?p0l2nR6WhseU))Xd`|MW82iop+}+g+7o;Audh~h6wIfq4CQo>@LacIHvFY6H_ax^pl{($3 zU7h>(Qhb{0m$$vzelpj4o*lFMIn`#{{q^r8kIXxoca`bGvL@4$8Ee!hr|9n8K7GyF zlHV1}ADKS#d~M60@@0>FdivC50_l_W@1AxD)IW9llX6(Qh@}SGb%V#(x7G?Aw|u;N zg30d!%cSRrmOZ%rerFT^z0a3k+3e$7UBG(aKgWao{C@v9i<0Cx?LCrayY{8skek0} zgRR}qLI!!p5610z=X+VC-+cJ{{g2tdXNUib$nSoAGUZ?w_u^Ua7>lP>Dq0s8UFG~I8 zz1+yPw{PWCJ_>qvbWzSix#@d+=0sH6>Ghb*sr(-B%;r*SX#cZ2iLWYW8J3DYpH?pV zny(`0%9bm3`b)zq-%oW7ZOqVEs94&=C)v-j*>26lGoPfyLRI=-E`E`>C4nvJ=;HIq zeZr+uRmsg#uAaM-S3j0zb}@5E0f+YbJsES-_tpl3KM^2FwJIh-}?AOL8wZs z3A;SkzAq=$FYSB1lKo=|L(}xN921L9>@}WgFr7U@|8(%obIZ*$*F60g7?xk{SRK+5Yv4i#PZUmXes~C|NQ6w4n3MS|I)XGm8U1quRV0_TGs8CS`8~_ zwOmL&oAg=l6~Am(k(9l?vfdswi@p+;{r}F%ehz$|5}SPTrk2pl8Mh+dm!3Gh*w%c< zm#c?e9JX-SANbsonHkP`e(~g2B6U2AOoUe&J<=|oAdvn_=dpF^wwD}74a4MC{PDm1 z+Di0&{1s*A%|F*y1hFT_etKo`dBr)?bou$NRi|#9tWvoDGv+qakHUaC88;(srM{l1 znWg9D7CH0O`i6;pUnTI;tvaa0z z$5zke!z~VIUOl1Vle)cjZKQN>;QI3l>yFnfo1J`Z!-nUcp(1qzRj2J zAIok(o+ws#Fq_Z7IM6ig^pABDMa|43U;eLT-TC+RT^on=hR~o-=k`_9$FJ4s4zgMi z^LNE0rKjsT<*!}(cH3vy%*n>d=dyoWn{GN^W_bSZ%;V`fQ}h4VHM)G9&-r)PlbKv= zF0y5Nix$s(wVEqm`)o|bHipZx%hy@-T7CA~b@k4>U7x+IKX2T7r`&t7)dS_{H>76C zebKX@w!AcLk?Copm|mp?N#V*uO3yrB_Vl>Cs17d7>6=lNa*_MUW4B*x+D!i4?s*`5 zr6J?djC<7z*e z(>7bEPJ6LtWr$DeyQx!VEL^^H^QBYiM;`P%>iZLtutY*xfcMPFOLL9-qSoxqJ$G&0 zqT?m2PPrxg+iJUJj{fst)_W2goG+E^oAKyD^2XA|4ez%Hr+Zf?nPis8hZY~m@HX_8 zT9mv(Kq>|C*9AQ_GC}^{(C{NwE&OR`d?j2xxIyt zIsVsMeP#(?Sv6iMc}5%AR|h9teA_-xYSN+Oat&43eUq5F=v?T(c~!CZZZ4hpbF2Hyud_}CW%C;M_bmu&F#1~k%ggi?%Z2_%mWC*^ zOXB`hTT?S-`_yXsJM$ZYp1TEYxW1UN?A4#3oy(4=wz_6$@oo{DX*_wh+~dF3+MD$2 zpA~-DSN?p>i6yD8{303dYI4lD^OARYsb}(*R2z5Mg?rgtcuyv$#t7DOn#Ilg_Si~p zsrSB6_j7#DEM_`M={D~#pP?Un^y=yG!o3ey+~2r*QvBt(n)u#l(gC~HDB55C@pf@t z+)A_Ax8?t+zwYkaWZ|CtJ8P2vOOe=U_7bfn{Y zgqXplY2N}bZ}@ZKvf58)kHg<*sW*A8sIy+ZZMD^(V^$NMJihGnc-2e&sE9wa4qJUP z)t=l}EGP7{;#m6ijOq9H{t3Qhlf5A7w!~AZba&4CZOQ9mU){KuojG~k{fS}c!`a{!R^!JO_!i&AKlX@ikw&om-tyy2{ zvp{hBxBC}O9J#XGg5-A!@ZOcak|&UtscUq}C)dn6wAFk~m5t;%-KNf;izd!_eA?#K z5*2a9voHRJzS%B!e&xiVjkXs%)+^N=Zfvjn;JMZCsru{p73&JzHI9Ap;`VX=<7g+k z?5R=yQ>EEQcZQ#8x}H@2?W)zz6HW|8Q=XrYVq9!qG&^$9svmRv4!vv8F)Lpyb6ERy z@BES(6WB_`GEMI1Nydvhm-3vQkaoT#|6Ah07ZGz$&$;~4;_#Kir_)$M+0cJrsmXz_z8`<>yl*w<@cUZ%ef$w0R;TelmjAOfzk7|LqE(n(uI{9lN`h>u~x0UpJ)$=7w(6nac8} zb8W=hp3H@%USeiSHS3j^P0F7d7k%3&Xy^On?~lG&=ldJ{ICfaP?(fE>u4xjES`szQM(e9aZTOUs@?N7abaY*n}Zerl}a883|hMvKd+xmK^Z`*wK z^r>dk*ek1y(iQ(-nYiq2_r-j}xqZnp{-u))^RFEG5}Tv_;P&xtDTe>m)>cXd-MJDF zCe!XQ*>LZJ-%Z|H*_pzy)yA3swmKb+&S(60_qYDT z-*Q!a<#)@Tmg@YLW}4^xS+e%`Bj;bcn%8@`%QNKk`>)IE_x~r?(9ZCu_Q~z!JSQ&E z`kddHe|p>N+3pvA7caP??6zrci0)piOIK#PT@H>pv`FH~Rc?mRcJ07vsqIPTieF?+ zzFBW;fB#sn`roz;yJ=5ZAN}>)HnDQ{X21H|f(s+}%(MKyBInoK++9A=vyB#J`Z{Jk zSp4gX#mcu=i@1DlZr#3C$7)K~6j5IB2pNB^A4eu-onQYnGesgeFrf2z?WR3*S2r$- z6201-G-+$&$AZvb509oA)*U!fWBO(lqtJ(o8Pkq^T6wZ*l}m{B8X5a(cQac#gAXXB zzu|eHm1Dkj}3j)J*->SL%+o-ctIsM6-i*?-6(et)@ zI9Rt$3|(SprJZq*y-HQloIOIJ7@uDbna9rC zCuOXZ&l38OmTSC3??;Pe-($I_hxHy+*{ti;|Gm^?omcbya%ttmS+88?i9Ip6wB^8y zrofuLp`sV8<(@y?esAlE^S9sa6MbLxK6bsZ-8$ZVKX%6-tJ%u8<&bjz?LWbF_ZH}6 z>UiCjE`2Eza?fYq(Q>g=p6!heQ}6aHUs2Vs`nKoUo9x*}J?SsCEQ?;n95uGfe?7}H z>YrR}!)Fbtq|eC;Q;%_J*?nGb*YA9=mVfW=iyI0U<{ICu35rYlsG3%Fz3`!x-1q0R zbC@-?^Q?CL`*0=Mf4A9;nq-TMXFa(J*X(t1`CzP3?DoPcW`d-cC0khYx~x-MqoT_u z^`9@zeQtGeiBK)O=GC;=qwM>BA6)2roq1i%t|tAzr>6hDbzW>z{ERQm8q*DOR=O-+ z5aZ-{{pzjPrtO*xK0%A)vvU?lnf$o*UG zz2DFH^!%o@ybYCcRq`Fde?z47ANrr}jNaX~M|<7<#h0bKS#F21ObwNqXD*v;wdvpQ zE`hSS4?f2Kw%Jv8#<2O({zcQ4zF&Ixv-tYc0q*<0sb?`a%xAyC@k(iL=aEN6{m0j4 z?Nshfv-sMUIaT52E}czYif)&sYU3(@7ESus+q$@}UEW}urPUP?qkHnQ4-2>UoG;}| z{i;!Sy&~#c=AM|XargVQ>i2Bd&pIfXaoh5F=;Z+3AZ68=cEvqe)yegdVwW!np7?f7 zaekIzpwP)*hm3A)Gvy3AeX1gX_r9&XoNC}|^{Asg_Gw!hKG@`GoV>N}=UFas%L7tB zF71`Ee|G-)-kbB4_Rd?+`}*;uM3XHW-mEq~{QBQkm+Q}`RkwZ1kx!|)_GH(Ze|yTG zuguhWyynaLI^MHO*45lSrKuX9eeQbp)G6nuSLwcu{CoYQ<_xcc@;iQu$k+dfthsD9 z??SooxdzDt|5+X^eEad_{o8W$=g94H%onM-YX$DTEZ=@y-Jb2iVurex2hQ$X_(1n^ z=pXj?KSlo>X|I!$-}iXt)R1Ldfwh-zES#2fXRiEov*6vUG~`aJi=JGxpV9WxX7?YV z!IMpQ`76J@)^sEDQs4P250Cx(nQ?qqR9e{m9miP$jwemrRWo~s$nhN}3;1rFox-pq z{dJpu@gat+iiDL}d>Y=7$Gm1`? zJq53;&F9Q|EiQlJI+G|W8-KBo%jp++OgN=@Uwz-9-TQT>*UDwO zt1@cXE8NX_kKWwpb8qHyzAU@&3n%PFLyfmaupT;h?8ZL1o9R!#{W^W=KGT(_GtTEZ z=x%lYclMEwiik;iVx$t+O@qGZVy&rlZ`Au4Tp7)dzOU17+Fkc1>Cmqe%p%toNBQ<@ z8*HuNtM@8yZ@6YQTRL#7+K=jMCR(#=3s%Sef3jI~%K1Hgufu=*5&G$Ar7(BO(?r$} z56btlr=HdR!*=-jzq8YSeZMQTG5zAftYaVEc3Zrg?UnWN=k4m~;Fa@}X`BzR$Iq&=@l-=e@qX!lC@))4B%j;twj>6Zz&x&SH99eLd=l?C0J|Q=j`D5k3B1 z#PZ#rwv^TC*JPDnZn8Y98{)purb*6s?cYFM{cp|Z4oE~wyllV4e#m-1pOnTwrF9Jc z zc2VC~!_^N@ZavW?d4A=|?K9Fn^}BvXytb3NeP60?_Plio21(^Q>g$%DiZ`m-DHbt3 zrFQP?$NSblS+k{f%Jyr!YDMItx3SfgB=>DiU(c3v?|%L9p8on5O8*X2#~nzsn)9Zx z`H()-kG{7bPu6d^z-{?`zLL(%<+0 z`Nw4be_HQ$PIz0hIO@iYw8$#~yCO|a^`6;${Ew*cA**UR6T%5o3`Df2pYQD@ujjFYq9-Hb0t-E<{mBqU*na7q=lW%QYz`b|+ zE!h&jWbaw$u2x0s^mcc|y!)9vJ7Si+a<|zhHW&G|*H5YS*l2J)7yUQSOm^|tpmp*t z>dz)VerTd!(QZ-I#dhYP^`l>QVlyWG-!ki9=ue@5?4^El1;ZpxAbKmX`tNyhoM71VM zz55bS#eel-)}1}Cq7z?VR(!BDJ)S|!K>xeuHjOh$g0)hNfp*>!oqR#c4X7B!xTylL@@tJ%Rw*&K+ z|K7o-QTND9>Zs>rg-;re|LkJ_iM-!N zGb}g1k?D}R{wH_RJj-zPpYx_lFYWV~yz8prx~*Kl?wp&kq1=is@R3!wdGDsf8gG++ z*lsh+{(o~*$F{5cva3y;cH4d~5_oW2ef9PJ$2)%Z-%-y_p0fVat#+H$WY7h0nYTaPb#UR=d#|}} zKc2kH*6yb!gFM>@VTQb8`{I~uZqMz1xZeJg@sEkW>-e|lZel%uq{Qu5VCWpC;y0&r zQdMSmivRKE_r3UAxx$5Weyi)&vZYu1zJ?s1-&8(x<%H-MDeFGtV4W>ne~bTk^h~NnhIPyRXtJUu{^F+$UkU)mDl*;-7|0FQ4CG@!OAN>y`PoF0Fc#*(zCBu5DU* zeb&sYk7_GSB5rK#KFhg$$EAzO>oYS_{(r60c$D|5*7SMf(sXOZr?=NU`@VSIX`hw} zpU%!mdmr*tq3-LB>npZZ?MjySDLwmb(XEY(mQ9;lARcx9x>ldH?T^&6CvIl0jfaddveH-InWT~=TCex9>v~sP_?5^=UKicP zb=>Kgo!iwd3vNwZGU?cdeak#nzC7R+@^1D@*XzPj@k;e=zt8R5@Ve%B(2LmEwR^0- zbXJ7kT9jO>b?=RFcyWorr^#QoM9(?Cq+5)a-R8rIz3bVv)=BE^FJhhlfB(D}HAkLZ z+~RWl)|_RNZ!S`ol09}J?|s9zT#mWNyOVE!=6vjVC*xod*Okg6U(C9C4sANTvd6mk z&*IayCZ=K2@16N^Eljpv*ZaNM9S`}EUd@NW*H1g&d;I-?e2srU*EV0-VDp8qcd^d6 zQmj?8f9Ca^ISQGJUAQLXug)pA__y%GkLCL=&GlfgI-k0K(`E4~`4YK-(;|$2IL)UeZ?`6w@A>`Kf~Dr+_Wf6GFDX88&2F2S zmAR3n)w!hoNqsMCB&&Rudsc+b`}r|ZDt?;P_dkKt;_7B5_*v^T9crnoZQ31uxBhMB zQwhfPd$*XV%6+|gdu860Tfdk3KlnF`#mcUGv(4i2sSzRV27Pj}!D>Gx*Y${PnZ9#h zf$f9V<@(>=FTKA$;^2$Db<^WH1#7k@>BTiOizK^NS>&Y}@p`>HcfR=i&L2m%J;>0z zx^~Z#6^{>o+Vo=U56|>T%dYOewB;&mc%0Q0*}9z9Qh!&(t+$EqFFzAz`FE`l=hEV) zYr8$?Wm_61O{x@m-&K7!{z+v|N$}dn)Qo5m`#9r|^*Y+y)L&r)o7?isXDhS9@%Oi^gnu7)vl9P0Ek4=v}G;6ER$BU;T zyr0jXZ+b5KHS_&A?(f%3)wOFY*Ds&^b*ss`Gqf<+8vbV13oqI|<{kqV@Lu@||e~&%LZ~I5) z-QLf?)(4wg?BRK^pY_9uZ$F+a-*#NRUGNGY%l!a8`$OM;JedmWj4*w0WcdH$!rPq_ z6PjiB{hxRLkiXrZ%|DdOZ9B!@KWo*py|vkPWAvXri%(B02o?P7v8PGy=XRO9oPlv| z9`<(At&--3ZOWf)$)U^FdH=Yw-C_ZACox?KDJ`vFJ&~EW?8eKO0kBa=A)7Eh7vG0$p_P1UdmAQ;}STc2A$^Lyu zGIga}LZ9O@spES$AK|?pnsMch#*dlCi)^j6#O5ZJx-K^Tb+6JKh>-1)WIvcH!=MJu`y`M*gq`&dAx0hejb7}6> z?93|{)*i6k`sz!-*PjJxTiCp`=f$}nzdJEu+gpE``R=uM4L+2=TzPr@4imeq+syUH4fD?*>y^96;U%}~so_z!vcpsF#jZHsFD#i#|DCR3?KHnznjd<^hAI2g-zz~&riCvufJw5o6Yg9p}e<$`>edqUAEl1=IQqN zPL2IHSk~k|Ias*w#^!6AHJ`|@44m(t_a@aOe~$d;SIY$Ug+HHYWoNQ{y6WF$iaVaK zZ9h~0d++wg+pP1tU+mWV@YKI%X??ilfy*=Unm#35a`r6x6x@3}E>2!n`EBOg&9Rqn z?ReQ{vCd%H@k_t{7`0dE$M65Hdx`r&{|BDlDQ9O)WUt(L@bd2$6&ZU2Z=ToCzO=m)T{mBNQ zr2iV7n#;F6_qx0+wiiGQTA=+M=9~zWega-Dk?l zZGyeECo-~1ru@qF`g3LX>lxGdmU&(hC|SMa+Iqfyrs|6Qf0roxpVv-^n!4^$)|$tQ zlNa>q_N6~D_;vU5Wx@VHuLsMmo+a%z|BxGgYrVmrBa8h-#c$0Q`sDgD<(S0Th{Kz2 z_`l8W;ktUI@NDM~lK@-8`uFz7%Uv?`QwkYzpMPn^J@<$=O1SV`8#s+|Ga(s@uc~Zz(s9w%z?#^0;S zTv?jGIR2CR!Kpg~_il&?JH@(3@K6hL>!te<+*kfCw4PLQe(Ap8*0Xc$Uqr0^bobqw ziy97hKfdQZdaqDS*?!UDOV)oM?X4I5b8-3+iTA%gvn5D%-#pg)<>KSb-*&&=^qir9 zMb1C{t;yBHZY>k@mT6s?x6doe`qS!f_p5eUf0jC@^~biy>{y_P?x(QD?|P;!lE_SU zQeSx~*5pLi-eq1NcZBmtPI2$q6!NvF^o-*9Wit#br>(FKwO!;9wt$aohxxVpY&O$^ zWjjmcvRZ=W?d6_EHUw!cd&;kImocNy$?(V5-+x|xx}&s5OQ$N!EpkH6=WPq_-b^o< z{GsjX^73N>{;&4P7p_Q_wp2TQHGC&xL}m2Rwe~l&^Kzx%9!?_f@x7zxkWptS7mEA=tzkNG4^;$OUDU9n?nZl@iElM`3 zZMs9R^`{fD#mXz1&wrm)diU>%-IMn1{aEnylBmu9o6i|m#T3?xXVsulXb87dv*R`YG5<;b^V%kNNukOH|t}S#P_f6&aD2mc7U_ z;*42paW3g`+rGVv*T_Dd*`~fU_OXnWc+a%uapz<*?yXRqt$v+f&#qR`;qBuf2A|S* z?pv5dZT1yM@tpf>=XO=s+a|j$f5%a!!<9112fS;2R#uqb48E*!KJDcyYon{XY$6VS zUgOg1)-B~^CAf}RCIJ{kyhBzVt$-)l{95yezx5_IXP~jxTt2`P0`7pJx|6 zPDean`Q^FBlgpoe_LOX&`2KN~(W4f>0R5-EUmag{*J$R+_L>~8+N8TD+i#!LrQ`|k56 zS9YzfIp2FNYTNoLYkHr1W@?5Ao!ip0CvUM@Ec-*R)ArwM@3TLavi-EVM{mo#(w*OI z)<)f4Ci-&Wsr{9mUde*?8|63N-Pj}ZZs*=d?DAED^3@M2?^KmY{C&&TR?qvOKeyli z-=A+ko_usRe>UL*@7oW`IsN{1tOt%W{LyGo=Z8;)X7m4*`S<7V{3Ej4V;bL0U(S5t z#zNhW$Bd3X$^XCk^R~xZ@0xsm(&kN9Z!YWG|E9vf*kRVpLJ_g(`(Hlm7;JP3ohB6& zv0s-})-p~q>F(myS6)Smm;KPWz15d_O8=40-Fu!jh;wn;d@DZmW{yu*M(VF#3B@-v z+`2zm3q=JfhhLN5pMPHa+pV&_%v#GbA8p_2`9AkzhVs5(A1S^EGQlQ~43%0I+k4tq z=+Be-^Fkt7q|54c$8@E?0m~(C7oOPVc?7l=U`xVPKFvoJTXsd}H(I9h_O~e(8y))* z{Cf7oD+P;=ow&Q`fe&|{$a*X86$j*Z4V= zk8K;KP5<6qx<;gUpWo4AN2Rr2r1VHDTv)tmL(Td}5^n;|RvzcD)82meVA=fpO{YSyS9pnFE&$V8bLjIyC6 zR|Nm*q9@BAGJnXHy3Tu4{kfO)@iTLt?wsv*S)M7b;@45TG&OFM0QI;f>WjmhZK9&W zZT_9(6?-+u;P|}z6O!5Niz`+HcHCG0ka0d!<95D1Q_sKUOG#%B(l)nY?zJ=)X;@zHhT0 z8_wNxc)eckaMgR*9zEw)ydALbSb6$DU|YG2g@Xu^&rB zz6S3M*_PRS&aT&~`$v~SqK%O0xq}mpZ`t&Hw%j)L=}T*0;ol1a%Wk=q25HHeO$xV9 z{(1AahOf`UJugy1-m1w>URC3H+~fT->Fa#we>Vso7gheJoO|^Bsh^KG_iTSVc}MBl zo9x-|zkdwWXVl!@v3g;x+fVn@)8X8|uP50V%ZXm=nRMHs_U1?9)z*EsD_hI|$4M9b z{rt)M+s~-$yEcD1R;pV4KkM{4w|m}OlP%LPt~z&Fr`B)j?+0tQGu*HJuUd28`TWCm zx7W|HzVFL$p~ljl>w)$5dLy6Ca##f$*a%FDd+ z|LS%z_3q0^y^ygqP`a)6SwXVp^1B5h<(p252 z@_eNpYO4P1%GqKuIPrx@v%|B8Ii_39B%PhWU=()#pp z@#i~bB%@9}5{T*QEj}irD5$=*U-S6vW6v(Gl&oBD8Oo8y_UV;?Y{s;{9XcItA71mi zEv+k6lyzVJ!(;#3>zT5dJHyuBn#}&W3rm zZSVfBic)oE zxi5}9{-Yq~cZtqs(K{~=%ghy>U>EhXtYQA#zym*jU)8UB+jDKdVZn3j`)noi=1Vr; z_{LWEbX(<8KZ)4IkEGV6d;j>%|0iwAYhLmF$Ak@YdY@Y`y+~&339Q$hzsCP$wLbg0 z#*d-z<2qk&$^D=8Bb6ntr0d2smC^-g^3;A;ZQR~!eDCLhMwz;P`^$w3io+U%=AYYn zsW9$N{<=AJK7Ry%ZY(LT@y+CN_}MO3ar(;E)0bxE!%^-8&4@I z%X`@|Hgw0=t=pQlGkc@##a$0JOp*I~{dtxByUp9adt1J_8uFHl^R>9@_A`ZxC)IME z_nn`u>L+{tt$8^6juI=TIsHeM2JY%eUVq*^DC)|Udp-+-n72x>UNzgC(eJbP!t=t~ z2j#byWeM~zx?+>f_oJfD%d;-~$bx;>*G|3pC$v2>XZ^YlUcwvCYw>2x4$bO*+r4G$ z#6Ppvc~$0k9|`8%FL>$Ij#t%lgFpTeKG46@YnxW2md3sZmm*JoT(h!ptx{ZQ()riX z%`@U}o7i`!t(nbM=~_L^E8{d@V#Y8_e87xmyQZH+?C(Rp5?mM_{z!cawo+_ZmzK~ z40LsWV5hOJJ+l7Vy^njvPla+M^IqJuW^47sfcd|}Rt47nJ#l(tubAe=8z(=4rA+dU)ieVSm!iil6U-Ck^XfAQ^>ZPs2ZSGuZ*EH8TFWOw)e zszC0GEK3BPuG!6&4J}yweywktqr83cyRQ`;Z*;u2zgxSlqf_hs?Z4ewHR{K%TyQK7 z&0ctvDQsm_tC1}j(gsm zH*C!R^c+`Jx*~A&-kW*WbJb@SPEAvlkF2%`sJgy$X<*Wk*&hYpw=g8dIGszLVxH6W zT$thIGjnXe!KT|-uC@zGJB$a{PnL9-QBuOveB#ki_Vs^kR0ZwB(=kn ztj@krdFhvNCScwJ^Hzy_+BGWWY+k#MUGGtk{Icy6Lp_J=hGj|5-h0?TiT!oQJ*Qvb zy5r*sYv-uTTlXA(ubaPDG{5q>Eio9rZ>!&X-Tv!#`1-yp&)BcKSy|fhUyF~Mwo=d3JgJv0YFFjnD~YMo&$$`}Xqn#( znA@WE|D3n9@1l>By01nunjG&BWVnAh^GY4tuE`$zgI-Ts+jN{`!YNVaK(kO83A@z~ zI)&CO{ZRYiTz2)V+qX8PU1GnT$d|igkJ{`Te><}NZIM#<>3bYszvIV|;=linGMTW) zuk|+RJXOGuRm@@ZX?@6R&xwJHk~cK;#a}(0qdmubp1XSce9J#+e$MBkZRCw)m#Agl zIM*Y$M`fvv+w-d`FCVRtV|wwXlh5$bKC@#Q*0HXOlc&wsnt43KR?c&#V96;ax%}((3E^8c-&!wO(`(az&b)Tn<1==vRJJ$ne;;uA%06bf`Gqwms|+4# zdwuGvk5v|V{!w`0`Hgedyf6G$nQ2=0U1;jLpEs`0`qTB=t7Xo-^Ycn?wa+;ozvl}t6P*F7f0^RR_)nzqVhqbb=seo{CgYTSG;$WwuPgp{A&8HXNemrSstg&ynZ(CBGrvjUwod58++@H`pwGWMM9WqWn z_9kM*yPNN{4j0{Tep?f$sOHfB!}!Is1&dZKu@tUNS-48?bHhxQWoolqoORu$ODk5$_18aHel6)H-*go;?{4+b#3PS zU7xSdzPq?;-LmtXxiRK?_0?v&eFt{mE1tozfBL+7Nqt+pcR@K{b`|t5Jvrz0Hp8Sn z$InP#%azMCk-q$Lg2~Oz9PHIQlz7{yxnDQdyf0J$-75C zr>!kK*P-wyz>@X#I*p1?7uP=u*zos2EJIfLo5Ht-mIt@>MVRb5K0Bz{@@DUQt@i<( zn(waf7n^+KHK)GKSEv8$0uM^r#y-8f!}8>lDK&>1ykZ5DwK`q<9=$xaWKD+3rqU#* zDS0_}AN*w5$h!EV=W7Gy_p#siCcn7(wPC#;U*X*ki*8tT=kcr#G)w>gBi7RY3~vTc z(UiiOi`s1dNd(-Ry6o|c-1;rQy0p_XA3f5^+Hd^$`z5h^SKFJO)|)J!bkbz+oTMFz zv4Z=zF&$BFk$67uzVXscoYB5_R@psPm3p*(X`uUpd-sov-Foiv_PTIf&8H-J_D6P3 zj5?dvOT>QoaW2Z{ZrO50HHSH!uR6XOB~Hm`m~-uGtf9vw=MX$sJ;0lJGWbg`Bx?wy=|823s_HT|y@f86HFn|qR%zx6!5ai9Ba=X=w3efq0ok^g_w zR@2$9BPG+nmdDS%`CMww^f32|->eU+ICuif5a%a`%F=Rf-x z*cjNNIVrm~@%Hu)eT!PdHGMiwQ?Ji{a!mDF!J#krIIl(RZhSi-w0ZuuTOoVe!lykJ zwYjhCb|X>Kb*{hKw%f+}49_OcPR;Dzc6+vH&h+)+jz&DeALl#W^6CA2(c5fQkJOSK z=WB1R@$Q|&!L*XIda3j}(^-c?Cakni{NI@^`d%bmrvBe84{jwsqvYB){YUfv>P);u%9{N zjnUTn^0yOye{K-7b$u=?+xPZXuwj?D_3ikLHsPHUg4`c}S|>8wyUY90A@?~ylUaVQ zY^!({dOXx@`?b(Zueo!kpS3lv%(S=tzT$?CebSebWpZLBF|QSKr54^iwyf8G_TeQH zUoG~0n3>A-p|4#2*u(Ev@7J@jmRfq5ebOq43O%e@eSY`9A9w0+MfAM(vk}{}bo=7E z?&@`~=gA$GF;~i{T&%o_QP#xJ>-6PKmNn)^_FLN1?wOR{{j51V|Ib_VBWD35Wm(0X;7|4+E* z_M2?5H2lPI+vS1mpR2XcCVah6eDTo+!RsF+-YR5E`sf8OuC9KTthd;N&tOyg0>LJ; zQ}1_tci`LaKEG_oRm+r`=>9sEJx7k+yM1QOxdW@;EBv&{aG7_pkTWwUt{_cd`Yi9C zeV%C-d!`3mDw2=Cxcjo?)PO@j!d|+|rhdD%K6!Ug*;;&yDwe@fMs<1lf^1ctAYp84WHAYP8qM8P9KIDFVrE-9&|62FLGy8>3bqIW1b6ZdHq4?Y|N!!f*k0W)x zn7zuS4u&UAY>kR*^M95qci{fT@X7CQZF|9S#VAt#dRXb5RK8;p8&|&VxgE0lPoipk z%hpZTKe>9IwwF(j-KMB{N^0_+lPWuBm@f;p`uJ&2e*By3o3=TAeYoS%>s=Gp8cNni z@#Stj+#KWV@-;73@9gP#_P*9N+nc0)H?kG(?MY4ly7v6a>r4~peU0ROc`c)I?Htn+ z1#9ak*3Y^6{_m!ft-c54cfIGTdol5O!TY(>&t=^9<@g}eu%G3D^|s^c{~ulGt=xRr zxBb3lLUm11X?4w~az-1L2k(`q=j1stNx%8P{QZww-KU514XO16zcuA&FIP2^b-QQ1gHgh;MPfV-* zEh@!ZrLJ)N)cxI0qZxk6@{3uq$Z)!UW_$Q8za&F!fqUw#$;V$@&&cldQ?@;6)3NH~ zo(nFEx8G8>zPi$T7TbmX$$MYVv%Y7r=S}l^+mAL4WjSju);4?gt+@O3aphl|lXq4$ zJi32h_H_BoLwjE*2TU(HCcI`%;W_us2@`iI9Wf0(opf90&;_;4u9{KRn>O{d^<4j1 z{a}s$D;E{M`G2>cU;cKV+=ssJdungCI2GTin6j2zK1y#>$N%5&~-yY$aoEbhlA?n`A;C;N(-J!hFK@odeCyqu{2Hnrg)*VC7t=<4YH z+h%EhELV18uBDi*du8nT8iTlnnK#s)s!Yp>niW3n+_j?<)$e3g+DmY)UX%HbWjfQ< zo;9gHXRr3mmOSH;_ju7oORt~Gb=P8^JiZ}WS9*JnRmSS>TN`b%OZQydQ2nuJ_jdja zzg<~>RnK{U%{I7vvpF?4#_z()zmeNkt!!D;Cms9o&CFNRRC`KF*lyi;RTkmDQSOn= zN14u*S zE=B9iuWfu1deY%Nb4$(jO`5vWrI8{TVfKeMugFY#T7GBRk@q=^AH~_vG<($Z_FDR_ z`!8OKXhxP1v4()^?|!_e*R0aGPm4 zs*%~JEQ+r`D+)R{uWap=8r}_N@!z**^2T4^q^G5Ss>1!7&8Ocd^tZ|iZjXAlqpWw! zm#FJMn%dvpdia>%zQ6r_rRLJTvo~-V&(ePeTihIDt9{tlV$a_DK+p1$4}r1vt(Hz(=0@=yt&p?4 z5yIdduQJ!Xty0}V*u&80+(Wj^ijw<@pN|LefV zi1RDuPg+jBW*qOJHMFiHdo$P=FMJGxZb89+a*m!+V#V<(>|q73`?SZd}#=8 z-Fe-*TWYV|f#lq)Kl5j^C0W(Cs3-g}v6m{>ESJ14_V=Z7Ma1(hHWsljx+-Te-#Rwy z_(`FAb>9h$Atc8jTZIW~t(9M(Xm8)a45hPtX+g&qzt4Z-eb4bkopjhSyZxW;Xg<4}_-)PJ$M>w4?mznQ z)OM?+*=e=W^KIob6Aamp-o43jV~@3o&41S2QB5|k{ol^`YR0i$sC@jCL0`C{<5S9+ z=Zlw~m|e=|dQ(#_dgZ$4rPZY@vqVnsTD>GI^WDD_cRhcv=Z~rSCVJd{&(DIAXEQ#Z z?{oWpr)kQn)s6Gt>he!24_m*qb9VEewuMR+UzVntEL2{7$@*)LmamrIbtbJ}?-on# z2sPYe@oweC)P-v&7S*;a-miX1`rqO$Yd7hf4x96;A}i+KmHSnHS-a0Y`u#$+w*RBE zO@`T$Kfd`vcHe_k)c^=PMogIu9|#;glF(NBiJ(+T@;J~LInrSeiKZ_8e-t*&>BxdLy? zy>4A{vLYcS`%#3}KAumNTm0)JRwk@5Uv};Mo4MDrZ|^)_{%g6v?R&$V6(%z;F5jl& zrvJRat}jpbL{+@A{FYi#2jA84haXo(C;u$8J(GIC^oDuevD4?TFN=7;&q`_DraiBJ z*v#jNF}!qqmW}M|s;>p#-yWF%>p=I98_eP#r!BsFQ!=mVkUrxNQ0M;mw&Uvl^1BSp zh4x6Q%#r5Xc3gcv%LiMAe>x5NGCM5IMfUt(>;K@m{IAGA$KU^EdAH}ONZdu~?=0oV zY-C<{mer`=Z~gx2$L0HRqB63DTs>d1>&tqUy|t|WdinVF<)`Xv^8aVa?Jji+z0|S( z%?**idEB$jv$h!3Y-xD9=%%_P=M1T9r)IW=UEHzUy=B&dqc$90wS0p3Wm8^RJW&5_ zoIEL6t5#*=vg@B;oOZ z@_v{Yk+XUK^?K3TR!$}J6d_;v}S?d!N%z)&UZEKjA~(U0aezE3@3kX+ag+(5ngyM z{ZgUGX3_6|&RNcqT(^!r$Le`*!k!B+A}gD%wnkTl>TP_o<>%66GlDPvY0Fr)lu`J? z@j0djzw~EGFg!R{E~l3C>{IvjU6b>})ffJK^z1=T#*Ewprq1=kJ!*d^&MUlo@$2$0 zHT!s_N_i4i1pl;s@IB|aM(EP#74Zw!eVilB`r@hcC-EDCi+ANkRI27Qe5|>D?a`&n z)1nGrK0R&0vghwS>#BIh=;Kq*|1MQtSG&zlWQEKDkrz*0CZE4@{KMCv+v{at#T0(z z7XQ5?V#>a)!Ph;SPRZ|GV{om;s_yzE-eaK_aw}gf6`QJU)b25*aS!8J?`^7AQc}0Y zy#F;#myb1kUs+`)e~k9^YqD?G$8&G)wK-*~6~byRsWa`oxs>S2*LjWe4R6Jn2F;w4 z{rFvWcWL+mZtm9qSJYIlNa~*Q|8?rF+g@3vi=S`!?|skDV9-A8w}#hLwj8m|x>-N2 z{gb*{wQKFey|v~wQsrWS7k=)wT z_HE|zv%3GartO)wuC`w=BfBQkzORS-#f+aauZ2l~^R%4wrO{!I%fC}4 zzn1TKJaK-OvE|gVBfnlAVL7u>Vyn1(Zcd-uziXR9rI_6AWT>dk|Go9fb?bFxHf-y=?URgWQ)r{}_1f_WiP{>yA%ZyxBy0vrYa#z2?u~EC1Ba+cszWpYZ*5 zcgnaw-2EPZ?7RIJoo)GhKdn0bldbhQ!yie8`dv^=ExoiE#`yP9)ZXEJYCs`qYlw|uSp zORLR&=k^u{(wxo5Kh#uitzc%$PhtjI6(r3K)YI)6gw7kn=Zt2aBVZrsQ_^jkTkAHi~ zSKZBIlHhr<_tXh4TRZ<&Q@ilyWl8g1^-8r|J-Mwp@t_h@?zAms{_EDx6Uy@6uG^kz z23rg8I=SUvnU{fhuZQbA=@qw+_f_R$a@LfzfWo}~SHFuv*_xZ(~{@+)vs;Y@Q`tfU9 z>~m}0GZ|9p><)60mU$DOd(GZumAa8TVxRv}YnK-(X_gJg`ITAq@04oi?SHJho>^?2 zY+T*Lq5_{u%}2go+yDGeVBOju*_BgHySGP*)=A85+b8?W+RAu~-z807SHA0qs;{5P z`sFt_v}bxpu5$Y}7SoYa~)X_m%JS{gD0Gg4tn`T5WowTMz zetXvaV-?riu7~lzXX~3S-7~%S^9AqqqUACgQa?{=ha0^AW92Pps2eDzd~8u?-_M+@ zNh%@R_L(hM^S1xN*R4-3Ms0omMQHZ6yE_!CWX0w#)xH{3E^4`{=b~b4friq=Pdog5 z-+wWQ{Tv-v+BfTV-0y=XQ?^O&U3Si4s*=rdS=IADVhdNy>YDcAdW&Qi|5UGQ?%%5p zyu2DbWvAs24V!b_$y>iXwmki44sY$6;saH4mKHA466b$x)x$o2wz2x;u&pwsb8hds zAa=CU=-mE|HL{yu>|ydbWdB4X%{};)`u_Kev$Kp>eg9nhY(a9Z%wi4CSIf7pPp}c1 zBB0EW94TG7E;r!9i|sl4UVc7fDe+tC_oL_Q@^^m=K7Fz7<=(pNuP&YiO_q{^mo)0O z@+@Wjw^BLmxRLbcJ@W&V+&@+OOt#z`p`SXP~rnSGI$x??v_Gqp+mGWF_&#_d-(q`sC`yOtGXJ#YKTqxY{p+xqQo zb$MKek@$n-hc7>=lKgdY&&Qilw$Iyr8SOr;3$FR|@cD9dU34F8sU$i0h{PE;B`uVzD7i2n0Pug~Arpaxeg(CH;o^<${P7BcJm6o^ryI5{AzLTX}-%v$ImTV?qPENM~Fb)EVe9@@HJx*ynk3V%rbgGFz&5 zykgS&t?9knrdb9s#p?4t-M#On!NppJf|sqQd&PB&84ft8zug(GG_$PvRe>q%9wz0p z+95aCm_HraF>Pbar&7E72iC{_TCOIpJGqp}Qa8J0OW*svhgWw^Gn{W_q|Nmx@OZ;V zXKSx*U$&~RJ3l?n%BSUiYji&21o_t4y_)8`eso;@_+x*~<^H9TzP9ZbCH>dWY4dfT zX|wcowcha+${W6v@A@Rkdd-iOW$~_$4{n&g%X+ZgDERPp?_kYJj=`uBB~y;mAps^fG21R7sXVl0=u+Sjc0 zcZ;1QUuWi{hM%X;cJOkU`e{xITb#a|#ruXvfEVs=)*MpuO=;ZxU=b7Dol3VVuq1V+grvI}m zr<`B;&M%kYLtsWb(_UetZL@Q)?o0i##94FQhKc*WZhxfzsDNw!ge|*vxjm0r)1T_L ze4*71Kj+z|nzXrX2TsZIYr`X@JmsektP?j>@)f4^Wk<Yu-$?*~@3Dy->cI%(Y%R)g;?wvi0?ETigH6XcI|ZzbR<(o0557 zUhB$acCDOTH~rD7wMUb~w@UdRzs{$n>%zBlnqBpx*&T1pf0Z|%Xih%4zV&*VZN%#L zYmC127KUA`Jhg4h``yXM=Ks6E{o_S-`~ls|3$IU?=KCkuzz;gp;2LPFfV25Cw{}qe z=iGK&egA%2l-0p|eqT%fAb$UU{R8{j58)rzaZfk2daYLCF5h5sNWb$(aCooP$*dpw z@;{QTy(`|euG)Mm$$FFX!w9E?Dyp}Zn?JoW)ktfN?4R!AB`Y>0ac_P5w>QtU^xn_b zy^`X~|HXbb@X8lrbd|NUzG-{T$lP(pOqZQu>{GRx)cjWeN`Ieqyu!eMyKT*1lX)*4 zrT)!ZdF%7+*`@d6d`uZLZblxNw94cbd+)my2BuOQIIO-MmcDjDSxwUQW&hSIiw!p~ zwi3}7J87Z6O!?^gmERX9cJ|H95PQ5`_D$IopQ#Hn+xvui!#lJjK5mGt+jzICUO4?| z=GQGtu7o$dTd-Q=hVD7Dnw(ocGJ?*3WBt_Bfrj z%Fg=K!jD%GtO1Zj=dLpW8!9~`P=us zHDD`QaQC76tQX01W5OKMuV2|2{qlI^s^;!5>^;ZWm)`uA`8eU({8zUYXM61NE}dp# zUGaR@)bqP+?Jp%yQ2hG)>aFPuUoV>G{BPy&ouzXx*cAzPul-<^9PP~~`mns@;faTF z*TvUu=cxE*bNs&f>+5Vs*R9*Bb~G~N?$-S8RkjbloLZSZ|2d=EV;0+Ich=f|$lg|% zvD9qoufp8?|9O|5OWxRVlk3hcyRX}3m#qGL**(QIva5ZTak%S2-R*Zb-Rd(JTDK>u z?}LVM)g6uJ{qNJSG)fEbM@GI_ni4JP!#6u%19$GJr_p_x2(x}5D?GHKH?$(>Iv^nUu7*Dl(TekQr% z;#(z~V{u>YCihJFw%&YBoMo=Zg1mtD!nsio_}sdSF{aNd=cnq575iFTdg<+wvrDE{ z9G_;THPc?Yy<>fbx7F15g*~QoKke^0|0brtCb#p;V@;(??eWr|HW}SG&bT;dliTs% zODFue7WU|e?zZGJukTmhOg)QdVn_TWpSa_c8!dCTfAJ&u}|86M1@~hDv zzlZbtjl93@{O0#R&VR?XPjT_{{(s{>@ZIi*(Z9Xl?fbXit*R<(o4w$}Y=(W=)is}< zZ#%BuFTcw$Uccb-!|zsyzx{X;&QQa1pq}Z$NoMosZB6;RKNtUa-Tz0p=FdL&!q;h* z2H7_wPsJ|QTja0&PppH_SV$@V)PE|gs%I*4b$nO-c|WV8r}R^&RQk)FTM1$t&${!joZNM& z{cgSaw%Jc#+zt3Bu~zA?_6m!mDvRp9w>Lk!<1lmiz0FH9eb-8c-mO>?Z*!*g>4n5) zwzHq?T=n>#YW9yVhmHMgX}-d)Y12-b%uc;u(Q0W|o04Sm^v1^}GTNd``why~yR1~t zZpcpk&7rZF*?QX5)$h}8to<8*>A6bgA}h89*88ezA2}qp%v)8_veG^FYASR5%k$bY zyQLDs)t~bO7GGQECuSOP+x}Hb&bj%wUe8*}drVaZI#si?K{52=vwh>EWH0# zLZJJWOSzEt_3Mjce%>xf{Zjexo3ad7+|G)dFGN&JzloZ#@BC!&iRs+K7iTWNXPs9b zv2$MAjzorle@VFt89hu1$ytIokIk%Dvh3Z~v|VQ$79?l52mRjoJbkL!jg6PX`to)J zJl5SW9e(xR)n?ZpvUjVlTxUp_qFa({R+lUtrC{Rd^RXlC?jNTMyL#UDOHWxRzT$BH z<=YQ`&hMKtJ^a{i9rvHFYy!gfN$(GLfAp(x!L<9^_Z~Q=Yy54+M-GMXE0(1Xb=ix4 z?5#QaweGAATgA;or)!rumm0aev<*t|otOASR@wCG&6Ka7cYEsps|ZxNzt(@Rx#T?do|9AJq!tauUxn3 zh5F>SYsVCWDoYn%TpIS4@j=z<&B5ExB&eQW-M^^v?ShK%bkWcd*Y#iQlUe*`hX1wmMpqOqTkTJL*UGhMTHfu! zesQ7apG+2|(_wQq?Y(6_S6D`UYLKWni|l#LC*d|vR)_kSuQOZhVv<*N@mqRjum20H z!zS6E7}~ZdtADGAW`3+YuleQn+Eka9(cXPgp*rR9_mf^(gvCftzciWS^@;q?ySTnR zZeJNvmCSo{M_TUp*X22l%cA1BOLZ2#`5blaeD=gwpSS+II{o^CL(3lA-}zpv4mwG< z&ho#xg$?HecgC8Wk4x{gTo=r<`g4!rhTQx!w;xabFL{8S@egR-?wuvlY-TqevcLPu z`{&7F`)>P^>ysCii2ayra5{a*?DsZ-WzTz$BuCxef5S)bSz3nX-j(OY?wonJ;y(AO zM{!;6OCGKb>f6@izvq+5x7@Q6F5K%)ns_(;`NxM-r67Uwg}6e(B3&OU&+E;=C@K zaaG2pXW43lvSS^GD&*&%dpDEs;HHFCne5Zt+2T(xY!(tY>?zCoJ!MX#nBCB9VG^J7^^ZZ*C!O}# z?6aTyobkVT)Bjwa^glq*nBl{xV&9h+IYJrkCdLJBh+Y)UIrC#bpW}hcjaE)2OU>?O zuUi~>X~VmT|E20B-(TIFZvCTI;$KH*{=Bf`z5M~3lg)Y8ynR-o!u#`^+vl#WhppKc zH@^+w+aIkb!`oN*^y1R(m-Dx*-0Ls(_F1anr{GyS+7;W^^!s11xi0Ou{@op^ZIK!Q zi~XkhDg7|HH&gPiU%Io8csf(n>o?Pehbv8R%_^DG}soHx_w zPTk6wRh#mr)_vZ-ufJ`J#zNOMOcR}o&4YN86Do3YXIQ=OPOX}!_<8*-@0rKTc6}48 zO*h@OF*Zf0_=D%aSE*JE@BZ!3c-*-~$ih(7J^#nIbMpF2H7-o_Z7zFfGd;uo#UCll zZQnGEL*w~x#F{?mdHTNV*^kw%-OL3C>*w;$zk1DCx}E9X&*SQ+GILa~gq|}|*8hJq zD{VmubNIf#){k2+8fF{29?y-Dt(8_<;lk!wtzkKN5_9-QkJC4wOT}${KXH4=4-M;m z^PP9~F1g)OF6?&a=-bt5FC*@6T4A4S{Q2F3+o!e&s^7A|9JI#n+Igd&vorf1EM;@* zsq4R`bNTYhmA7_Wik3P3!|u}3ZF5tZm3fc9|E)4-YpKK6?LE)3PaIr6^JPWuxfd2| zKR@}J9yv>Bo{QWBPv@C6BG;q;#yn?Cx7Kry%v!rdG4`WKQcZcRoy7dN^4&V$Z>3G& z>~Q_<=F=&C9{K5C-|i{Ut+9?akBhF9-;sUnxO|;l|DDf|4nAp+7FoCGrukRL<^tP}tBZpUNEJQc&hY0B_&C(L?)nei<$tjLnacl1>D~UfOTTSU zV>&CeD(LIJ&Ic?#-+w=4pDFQUv4i^eHAl~1Y_Mqm61eh?xIA7jKe2I!E(S^t`~Wn|JiwI=yAu%Z+o=9wcYo`+e-wml^t|VJnPm4<6yx zkD9r$eEXIc9Ab^fG912q(pAcFI+`i5{)Eip#_73XQ;!uSy*K&gA9|mw-av;}+AB0J zcf$$0yWA_>AG}nrx_2=n>6~FFSG3*p36qaEx+QL089qne%4uo6)V#Bd8Cr98nR&|_ zzh+)+aW-N7v7$%*{k31Vtjt>SaGk?@mn}7``d+5bVJvy}HLmT1y;~&Xfskh=i#nwr zRL0Mj`y4slV{eph)w-+7Pd`hXUCN_rIe`1S6_ z6wN(`ZSyz2*YQ2;GCQDI?%;C4!XqCSHhebPt$)TX^JV$+Q0r^K-zAPKD|%jMO_S4L zSmvj^lPfZC+Hc|FuPZJ8ap}oic=-L2@!5yVw>U(piQSrGc=_8B=3{Pj9kYP|n(|8dsS?2iUPwNJ9G(qBwVvD$y=d#Km5^+m4n>65j} z{(8o^gWCQ-pPu&qZPWVl)wOvy_P^MXaE?=Lp{u6fagBf9wywy&pYOB5v`VIan#tEK z*S4)(e$pb$@#wF>q%$EG-aTFY`12z^s`|m*STPMG3=&o4Y_t>4&G_Uf?)#(;@TTCt<+%>UAQcvlB z&*SCyx7v0wUp})}<>xIf?RtBi?MD=xDO#i#%Op@Auj+@5$ZYvMh z@B25k)tb@P$;9gC7Tsk+;wvw{*FMMUW7p60qN+Qp_NeW}d)ZUEcJ}Jb@1JJ;ywB~b zp{#>pS;z)WgN!fnx97*iR$hy%_gTKx;q_J9p0_*YWIa>AiTqpP*>qQ$HC*lEl8eG! zrB+X_H0++Z=aydX=DsyTZG$BSN2I2OV9UJ ztt+~CWB$ben{A#iM)$VmvuCP4s`LXgz#>U0|g1=X~Ul*D+d24Ta z^>*x;1v5J-3z6j z{h@ta+ojZ(9bHiMvh}cxY4PdS-fVtz(H`vz=4f{5ijy6dBFn#>xh55BeulB0!(wld zR!Pti!?h*}M*Nu}Pxb1h4oOwy{7AO^T=OhUO7=;WL$T;_!ON?1lBT>(4gEK3;iSn@ z2XwCLvKRk|jf`4sp?%nR_I@q%gNZ)jT=I7}o|j0sQE~HM^na6YnBcN=i(h>Ce*2@_ z;Y5b=dq19h{-SKVH9xh|PM=ddz~z5I)y$naYfSBm&U+Uxj$1sZH}}i_qgUr0+8gIHgf^KyM#(M>~PcllLf5O`9$LC2OJ^mYZ`E6Bic|UV; z9@o!DKh-y$_4+L;w>*ydbEQaSt%&oQq-=aRDdwqtzF` zd-^h_FznFp8D`%UtIPgA*rxno_x*Co`~MH7Z>)Wt_|A2I2i#jwszg06Bqwfznih8toP}KKU>vuUMzYw zb%DfOaq;X@j;)hUE3y5Ky_@zZ^W{sKTb&md98&soCL`6ILnvhG6%Ag|^1Xt_R-$ir zex2AB_{D_vS9<*oH)SnJIGCaFZDLVa{M1c1_@^EB?=uSR3=0q8?b5#A zpHS`8%+|U=Il^YHZ1u~J>&{)3xa!`nG|kX>d5`3uFKp{p{L+|u!*E^KTn?|rM{-Nq zs^G{xR+oP;qc0zh~^0kVot}#w?PH_9LcpWqEA;nbmLqHJ)z0+9#gsJtP)s|WG%WPrX@u6nNnlSfzSs|W)IWZc|3dG zavhng%tz?#k!-@L|c3?b7eOc;E8I1uahqv-Dv(c6q4 z^ZXBL*t8&bPfGl>@NLqaiyxYNTdC2jSa{>+8SN-VTUY4mxw%heS4*2Ud zX@+!mdfc=#=a>4{yC3$QyT_g_WxcLKUaxY?Rj*&#WoK>DpFX+2jjNZAl}OpIX}F2VA$Y zI^_#Z>G)n6Wk8*J8q-|Y}Gj( zS8K8-b#Z*$vcRo}KL2`Ec6Z;&-J*?!MM05g&hvKPJYaF}`Ra>@Km1zyblwLkbq~Mq zLR)J$&C?X!#9=V&&#V`+O zuQKvcT;0)AOP%hy?vvSbLa|!2LbAc>^v_Fe_kVmkF*Ro$$DS>Blz11JH*m+@yu4o5 zb=ta&o?|kaKMW4G?p&wXdil`dhn4;7AI7!@w{H1-&s2|l>+y}>o=1v=dHxc68GG)$ z?SzE$n+{ZIT)mXD#dQ7NgVO8V&hJsXoWG-7-$wGy4EfKC!l&<98dBzZlV?(!yQumn zxoETGpp8E!^ug8w*ozC~?9Zw&Kec=Ltn0>~XO`6^K1-kId|?9bj~y!%?t6>UwhAa z8|j#FMbE#cbTRSU+T}ZrG);aaEi|Pq_YxC_oAQhwb8a2l+Y`I>(Vv~wtjRHT#``7g ztXB2Z=!A9Tho1S}bgFRO%jes#o(r$-`($aWZ5>zp(}HdP;ggI{87s>?i;BPQ3_iI% z^5W!)$*XIRr(0dmv#WdZw%&z*|8@N}rpM~uo)XOMDY|@lg(xV(bv*Pah;RhzjXQ+m7>|THmbU5cCwdK ze%|~z=W=IF%(GRiKi!uO-(0sZTk$vt&h9CSk0TqQ|I1vdGqJm)*tM%l7U%#<@!RDYlf5)EEsn>EQ z>3-WE^lNg_Qx{WVrbj6{s%bF-=cn+^i@q0nR3tkpWo7tAf^X1;ICHmKVGaoMuP3{Zi46BY^k5}mD|c*Z%ChYst^2!mRwpwa6^E^fzb7O3`on?d3g?N`N_IpYmb?>Job1S*X?{1z#^XO7s|^ZUDm0v5 zXxDN}UHTrk>$7fA#j~fyp40C9x%c~=;cfl?vu_?g)t+y2Svc$0*`L$qn#{Y#8?gE9 z#G`ec&sD$K_Ho?Y(fXxVTH5&EO@R|dGuhu)>Ln}_+<*G(M_!4WA1XY)KG}NR`hVrV zeY-y9XRdgXA9wS-je#fgqa91Wi+=w1`itDtOvh&@Cf40tvCh!)^zp<-iv0OMIY%tF^j6;#_czxreqR^%ji+c`W$@{` z`8!vAJ9l*M=l(7Cj%PkmzJ4`*O8Ugi-O%X_^$GQ9((fj|tbXPn%C>?!u zcFTO$54y|KpZ~x3^5)O<{@yd;+IJ-W^zkfDe-7GY!%$=25N~T_^kJ07@}8ala_;ZWb$-_W?@f=*^;+vVGl_fsmV!$q zkvYF+&AgXz-B?js|5RFq)}5LDKO%Qt@VdBYhU%FO3pOcAGpg{o=o@QFhy2pdrgso|q1UBvyPNQs^I{!#yqZ&GAh4vq__4ZGChql<4gataF1?|LmBmCvgole5*zTkyg4%9{rwoB#SNx77x>abEhhp|vhnJ<;h@8X5D%I_!)2Sc~OpfB*Gu6Xxaq z>yBPz!?VDR&DnmmRxX{R1HD3_@w@$k;-Kf8z=-`RD zKerU>&)=+4`rAg_ocBfaLxHKkBbDZ!Wtyk9eo4dQZF8sFKi+U|{pRJ@OMe=Mq~Bck zxjZJf>R+D4+L!#3zZ{*n*=LD~$%3CXPd*EO-m~SmH-q@JG_&K3g7)TJmVSQ15mCz> zziFI#nkx12Z>m@H!nZ3-oT`4V>6g~vT>ZD|{+vq9PqDt&*PM@&@BCaT*E}yRui|rl z+RrSV>sQVtbD#V5IA_lJOVhukovA%??{~~O=RIz^me-8eUtZrH^Nh#2IzF;X?(KB5 z$&&Bb%%?kFahqkHowYxZZO+um)k!szfButsmb>qM+-I}7z4vdHSO3}n=-R>u(fi-= z?fdSm|LC=x?Y&(u?ONkmKjbs~2=_aGuKwqZ6E#~8_a1zo%dkBC`PVOR{-`t7a2)7o z+QG?HGreF_%%k1+Ki5C9uYb4xLA3nu=L`)&I}G~c%5J`Yy{i1}%tKBZf7HLv+`VAA zKF3Xs7pqoDNCMBxF{oe5@^Rl7d@OXD;B+g)1rxqq{=LtG|KFwa9y&nFQqw0pwXO1;{?jI^lJM> z-Y&FnzI3Xm??`|5+#5z0f2Z_c&d51CEm81Fct%Q!+^1i&SMt6W73okFDo?NhJ!6gkW9#{Ct3PgbnB5ngv-o@>Wr|JlnHZJ)od)Ky~s8rj#S zyQfc7Io%WJH-+hEgk0VFy`S9HXFrpUe0$^7r5$y1+;2xeSKGC0VRKC5-aSg&{in44 zx#@Gvxc}c=yFfNQ)tNU9IlOkg((b$TvSC+Q{=Rot!>1J%Tn#<%{bb`k=0&@7Pc<$| zn$KFk?D!YliB+_-lBjx$VG%tJ}Y} z20gjT`K9=;m)G?0B#C$Kodw%=&5i9}y{9l);q&e1uPSA%>{u^O?m1uUTffFE<>t-k zDYZGzem>iCH$CwGwQz^Xx6?m=NSD(uIchB2(^W8u1xUIc)$?M4bC%$CwfB%1$ zcg>@l(?2X+U;A{$=U=rP@h+QFYhHYL^Jlr=`E&Ul-_07NoA2M|@H>Al-qzOozc9l* z)(_A7d(Z!6>7Tc!ss8)x|7!mpfB&y*Q~6tTw#w&E3%}jp{qah-qRs8v)8^bsg-SBE zzp{3eF~@OM6cwrzYUoeMuGp_{)8n-Aw_(qr+1#ZU9iE1NJjYwJhOT0*8zmfAfvwDq&tFF*txxBW$O=%Ofjn0(*;km9_`ALvZmF;5k4foc7 zko9NUZ2DOEci%eizB+5Uj^A!|7qeAw4)6KmeSx9gXTo&dh9i@otW@n=eU?RP{}Xem zt=^ez&*tSj{^y%pf5KqG^luE;+Y03#{Z5wrbFboS->;en782|3KK3mMi2rOb7;jgQo1Ay8O})9xJIr<@XcIqYs@b zo9^=Rz`GYOw^#l@sXReGPp)pof{zns?7Z^&N5HSITV3TgPqd!&?BDa9X`Qy)*RL14 zv97TCp&Wmh^#{B2Oy9*S?2_b9GtTUt$Fnl(%K8nlx_57EKY3;Aw=WafHb-8p?DBbF z5aoJf{^L2~z4w2HUk|iC<=hmxr(eeIqr`!K^Y@->*m*r_>lP{NU1gri{ZsdTs{Qk1 zql?WQj^}UZ7b@ylpSShvt4KehUcLEg-Sc^+=ZdF)$??3-XSqb}@(#tdOUjL_gzD?- z57bHPOt!gWaQcr?ugXieS-T2FU;fr{{c+>Slezc%@8wJ~OBZz+B$JMWYta_8aC-YqQra8AJ<<;JG+V$g&+4Gv}l0DIJVTa zg;iz$UTvJXlMys}mdgQZdDm5y{i|lI;W=>M*39m^@Sgt<J}|XKd;#aWWj3udgPxx}(|X#{ zqvpz^Ge_mald>%>XU|!@X$qH)zB%`P#hsK{OCLWCxxv5lM7DWK zhGzitws&t$FP#@(VOZb#{!^;Qz1u1=E6WO+W4C^fgB)i=udsns{mdk6o}b?Z$%y#C=4)lQLF8}E0{^E=7B=lqG!dfL6S5;NYs z)oFe@dD)(PIfDb9k;|1;yLWOQF3$TduK8y0Mne?94UeOpe?i?)_UAEy-;9Okinkn^*5 z-l1%%)?YRC>lKUEmWfu*u3`Ey+xf$@r>fIKr{9+BX*s>>=JSA<)SE@K-cDp|h_YNK z^zP=b>iz{c-d%BHe=YrPZdU%4)ye%|1fBmq`ONj}yWQi^Gd<~YYO~JkzrE|TcT(p2 zKi`Cw&R1Mj!W!xNw8A34Z2c#Ta!LQjiu91589u+Qt3IbLtz!JpS8m&pd|>YN_a*+1 zEq)*W_@HLuy}d!YCmZytu3rdSGW+?{x3i8P-`ldo@xblq+S%_do;{Wk|Gn}1_nk~> z%d|edw$PJRmU22K7FgjN{>WwJ>AiWIJ&pP<>9EedW7T&s-?Gp%S?}%kU90ULg)NHu zec#qaMez8=x0{(4MDR_QWj``uv6L4VxokG>^)y zuC)8CawB}7P?5~%8;71uzg}sk@p5Bws7$R>yvy>Dx6;J;NSq z8n2sV@u^3fIb>e-obSvR4Lp-|-rPNNnEz#^-)6tM+ON}jr~SP5v3;pxtWAFX`z>m* zMr+fL?U9_j{#Ae8g_2okjyWA$eIx%};7*^5DxZB%s?OBg@VipC=#;+fp13_)FZWuU z`}bnr`ES4K-=E$a^W5Ud>px$=?Rm0|<6y|J505?gZq{~r^XL7%54JP@sAaILO(}V&yyC}=m->&7&;PAi^ZW69uICJz ztgM3bE3Uu%{bH(n>8dGeXSoYn_xwLK!M{!7R`Am;`kVSAdGCjKuT+67VhdMa{8EcMF1<<6dOeD!wfLbC0+4>Zy{aIy&`jN6#p-C0jUZEqA+f z;dJkgIHyGJmEVGD7hSqKeZHjy2XErP9*HwH!hUaLr|!AME@2z3=Vif?w)|t0c{czOUSNy5g>wE4+zMXw*@5d9866-c! zUVbI*&dqa`*+272^*7ExF+n9y@UTwU!!{wO{;oW!=uZl(zS;FX-)I{-soL;th@{D) zxB7{FYx^cH)YMly@_&)|f_=*GBM*na$iGqd;{LU|w8xulziBFmt(daks(Zo%Z23s{M~jR+yc;Iqlwk&DT5A(@b)*>hxATsLX%Crqr-|y4KW5 zw#rg7#kkCGZ|*g_?YAUDAx&(xZFkJ{2(H_I{JunOE|tXU zdFS3{FIZm@I(;S+>zvQ$qYit2&z-Yb@>|3Mn8MCR*w9nv;7X zmTg~q{zUHS6q7@S{`vLiA1C~LR;KYScb>UYfA5wP+J~C&ZeHWP`+V`j=Nr>)N@R*| z?rQs2I@ax&Rw>O4E7hd1L<$LaTx``#H^u+7j~us?wFu#x`F z+s5ZZ_vgLZ;bn1GxFOkXX@d3=Qe$w`{QlBR_`W3 zgJrJfFAROZ1x0VjJHr|Cb4YhJWFSiLHvFtVX; z+rsVZp9?mp=9=)lTxA>n?_V`f!PW0vk7iD{Eff@+{^CvX*5%!8i=X}7c`f71%ioh< zFH5@_w{@G;$2D8O>^okgA7|fpTNX z(Hr+|Z03GQj?K3(QsLikuE#J%?$+$&#?M*{EYsYQXU^)@0-gGVS8NH z?@Z1O*zxs4^TPkGuUsXsOg%g$>#NDBQjnJsyJVgThPB+lefgvaDsv^ZR9W@vesXj^UC;Pl{a|*7^mW6z6sL zw|&W@}o)Gmq@LJs~AuR%9D*%l)jkF9H~K_U>JE ztHS!Ue{#)h>$}yL(@nPeulYS|UAlC>;rZ0|C z7dNnFd`WZmW-Ump{IN>7FWn=>);=S`a_pC6QO+_OWgRI`F@=YB@Z^^sjM zL9zui9$H8@?=*jM>B#ioueBF%i@AFLecSf4FQo7HZc6(1tSaHY=0f%y&2@D7i&T2rKoX8X6y`);9mo<}uA$CclrH8DiPqjF~9`}EeHyfvLJ z(OQ3Q$vo_e*<9uCvUm7!J-T-r4#gK}jYzF+cozevT4hiMT}UDa#NR@|Ob z7&$$+$Hg`4N%+Uz)1>}x4?8<~-2q#PTBA4mjP9b`w`aV4UQrQuad%$G_KGTVlV7{{ zWEF{?XT9^n=sR1ETw!GyAQDgIx8D2M^|bzE{49eP#Z%Q_0Hg=R#H%KRv!9Hj(#z#u4Sv)QnGeL_$J~ zj#r5Eak7 zv^ULOe&ZywpVnUO8~Io6UGXHOy012l%W)=ax)H;%_uCKG@BVngxq1=9(IxTL`}LDf zNqIape>~gE*0||N)r)yM&+wWry&k#g&86S9+Uaj=?>&!rxVJ&B*)Dj(WZC}xQ%b%C zbKl)L>!aV>WpNR|KEF8{xhDLJ-K*T46U#&XRcU{^wcYm9W3xP!&{+4~JMuoS&avr9 z71~s&^?kOC->10d@6qO5Yrjo*?_f?pt>aq6^K|N^N$=ACsCv7xe*ScFzfJFw2RF<_ zlWV#5guB)3iA~#c#+Jv^x=uM$TS`B>>b(u?G`;KEUY~izj+7Oi%-@zf@yD-nlNVt} zivRpLz3ID+Mq}mgpS8>0^A!F4`8IC;W4HM;Tciu6yw_?T-NPgQF#NI2Gnwa?V)`Xz zi{cg^G?f09&74Lh+^z3O|xYwN- zCnUG??NFYo{O8&1;)ac9rT3vvh}q9F=d2e!&0Jv)vDg<4Jhu=#WN78hw& zt-C)XbI;yb<~dVwM@-4wKTDb=y(mIF-cE0! z+*a+kwc>wIev9D}RSg+TzlHT%Oa=EPoaH$L6`b>Z2``I4Kt?oZRruM+OswrcTZ=>>vDZEVUrE*`B9eH1p|kNHMK@7j_E z{n`C1*NNZbF_vha)AM*MQ(DQTiZ4rd{R;oH?(&L0InUU;32p1j?3VBxV9ijBXN=iX zw`amU-uo{EU%5SW?u_%vJ946U^8RvtM-koAGw)@3+)Dd8?MKV`;92T5aS7EE{pT-u zr1ZgNrR5F&qPjT!r`Fr@`9f!XKWXj%aL&b33i;}M_qJzzSzqzuVYCIC!4mZamS(H| zCMA>}l8SQvGyCfv2B+D&5AMvloiE1r@?O*G{zp5)|J&X$em}k8*WP_oYecRFRc}g| z_w(DwD_6Ph2R(^Dels+k(|Aw1v7P(V_^`VvJ1QRUkQUj*v})_YORvvlFTW64e0R>J z>aXAJ_I;ajFTKJp!8cd%efne7Z;VB1=9%YGYi}Eb=m(y5Ox*W3)#b$_aRP3-RJ z^*Oa$H|_PR4{OZh$$9B5uJ-EN+fBCVE5e@Z|51}-y_uKgKL6xnoj1zL>$HwlM|gcL ze}B@A^GMvXnTpTmezs40%~&|~!F3sT6ON}J&+d9F`QelP<(-Op(>>0C~>ruI>%}2WzTfXRSv3o9_GVA!C zXQ}m?&lh{OU78z~R8zcFk*C%eDhpBKV>OT_u>+$$Lz=iO%bt6Yqp5F8|y;+8zG=9gQd=hL6N3x)Q`o!|Sx z!R~9-ji$oRspTuvmFM+%p4EP{L3hn&MFah>o7w|K4tss*TOD0FeWl(frBfl@%Xrq8 zn$EFRk&nK2xFgj|e8(e0tC$ZcTYUcBkGBfT4DMCEV0>`lnEm0( zv=0FnMQ_*y2%fuq=8y6@^|;PbAI;nr);H=?SHBB*;^lO77k`O zpY~?fE4lmAOTw++oh$e34>J!`I&Zlytm4JoCTsM{|8m^S>a-@K|*U)F2a<;ZQkcUHL1d#<=`@A_`BUus3uVzQ>)c4NIY z@7A&NQ%^h@WB0)N_Kxw&C-lxXN(`;kUOHNHFfhOpUnp8q2_!>^ELiz`Mz_Fw3^m)^ZwTl^P*Q7 zt+eL#yY^`AaWQktG^<@)=L-w_=VqlIt($k-*>crVPu1m(S#uuG-mztGUUJdVdpCA& zS6Gw!=k~GLtvwpo;wCbOYWQex2x+~Y_uMk=eRtCJNoQOauYOeU!}N3Kjuh2;8~3iY zPbxR~FZH`a{Jv%G-$)r(z&b>Qcb?xEL&`MVxw>#_Pwj0X{ zR)1R~`|Z=b^T+e~jP_qDono7&V57|t?^oHcwXpvDhcmS=&OVU+c;d&~)1QlX^u6x8 z5y;kQ%<3&)Det|q;(xOCzV|!DKQ8>frzZJLb@2zGS!*B8&hM%Hu75}3&%0y`TkHMB zRb~H#GoJtcD_N7d`FyylP1Pr^x)-niv(-KMThHxp`-L^-aTHI7S@W&Szm|kGB`rya zpSz-FllnrjuY8}Tt}=W0^N4J73}d0zS)~@1%Ql&xqO4CYK6G;BWYKjY4KikmmwBs> zOzOJjty5-}uw=5vMXzV(H?x@%DrCQW>YT2B#xwQW>B3Sk(~C26S669WNf67}a5Z@C z^s5;*hx>o-4wx=!FkRAQ!PP0}&euN@I()cNi+8Fe$Jf1E(s_=*vd#4kQNET}ch5R{ z<<{OmFZ8PKNBk~-_x8z^^Ix0(u6w!nRJV8k4W)b2m3eQG;&$debPPt>XM5t)N>fZ(-nWu)W=h*PWx6F7 z&oY~u*B#Pxf0a#Ys*9Wd-Btc{jhoc2={l$1FHB_I^YK=pO`4Zx#gDt&gW_lDKYVg= zTW*zxsJiREScYFe>#puQDR+T=P2)Bm+q=k*o8Ym(~tg? z7Wk|2vf^&(@qD*?&iiV0KKCcmh>{KL!Bf76CjT}5F&!Eb!FYy4hX=*%1!YCC(uf;-uf4U`Iyh^?=RkJ_SM+@OgX&VOX$JPPFB&kJ^R-F zn>~HLv{7`$jyu;}?|+x%X{f#at|(&vv4h3CkAL5pJ4gIS_|<=N*pF_V;hoC+?RaDh z)BEJU^LyE+GwgVJ`rz^KXOB(yJ}$PuzHV8`ffv4Fx5H9D+&*2hcS*@a_Kc-&&JSg) z-`&fU6!#4MrTcR3lGdGyCh>*dqJpBexDa$0YiEwlgkeeGBp!+yy6HN#JxybC+4 zcknguICyL>r;58*S-{D>lA1@~y59dfp#9_R`)Wac+k!b~Q@(4iVfbePS%rG!<;|bI zZ!Z6q$m6MtXDp~H`#1CQ=Fj)}A1r35`*-8V9sdvi+UsTOpUm9fQUCd5{2^=pz>@)& zuY@%%Fr6PzdunQ7pQfqmbQ9a^$bIJnm2PtJPvSVjIlZ!vyXmHr8h1$KMq%+S^A3qF zKDzItfcu<3m1kAAR!4uhW8UC)a98KDPeGqjEqFaciUMaw^R{Qq=yB>0=`5^#|7e@^ z5gGRH+aCXP>J<|?n0ceC;Hprf=lfN)k1G`Su6Gj`|Eez_{wjpQO#jphwa6;jN0;m_ zDPLQzYk!^hxJJm&O|xdW>38kWNZ-F>i&R#o_;PWgNfHSh?V##^=_S>IEBb{TABHI{ldR=Zlgt z#iq{BHXUcIDsg$NpZTcfpzZ%T<+}>Io<&^y8({V?{BzQ=>F@I1-1t@Ks4wndernTO ztp;m%qaTb1-X72AuT|KtQ0Wx*Yg_r&&ug3?&fNI+WNK{HiA0Au|2=(j(+inho>}JY zN{BymuVgc8<+|gOE?qux7B~Ie&3s(EE9HM3w)?2+R-ok++hlbNB@dA&1?6R>+3!rT)401K;hco5_UotWNJCS zbNo5nd$971f$J33^hqb)NH1XNd-wj)_q>!@v#nfyCY;&6QSF~z<%0~i{kOLZ>Bh31 zoqgg;-{L=#ybH79+uT~O&a=J3Yp}8Y!%v~Abx!J+PN<&}tA0NzFmL&pi(ED;>Fa|H zltk}NU+XWz5PjnKv=vULJeN03ja5DA*=f#wdgTqlREd|5t~`>M#e3|Z-RCD#PnEue zTs-0OIK%AED*X>SpC3Co-kowF+x*V2opm=0?p(^Bw(7kf{sS=?fu zR3`gg@_B88SDpD!(Ia(7XZ1X5%Q>=q2+mF`polZU&d?tL7;O`ja_vSnKx~E#5FP?K;X8ojjXFm%Z zi?(~V^z7?hwewP+*H#vUJu9tEUXs4?^^8S4y0+8)E*1b7d`};S~qwg!A6KS38 z_kT<}{a34XKJ$mQprN$~U*7yNKJNC6t?qL{@`vACO`tJ%_6N5a|1dQ8%Zktb&8cPg z?T7xu04f-`*36oN<|HhWE3j?V;8;Uw9mrcX*m+qs}T_y5vK2^}fnX zdC~WOgr>#q(6Dv=zUkpo<3)GQaC?X@-v6R=0`uB4OwA$-q<7Y62I=m9(HiEw^UQhC zYavhi<~5bxe!V9rwX1K*y9&AaJu7$)YO$X1S$N`JsI{EroL5G5TehX#y|ZRr{+0vm zr^?c1aZkE8Ir;Qzv*PpWP5LkYq_n)5dMy7?rnqY*!|j`y)9y_#-SGa;9;046NlPs+ zj`^Gi-Zd^=bGEp^_<`x+2e)`iUGK3i(XnNZReYJgvi0lXFt_*erH*U8zq37wxbQPc za8Y^JYU}UQpzL2YZ#C|Y;YsdE#d*0s7 zNwsEqT!}l6bpDw-+n(WLv+7pO%fD?N6{{bvic`D8*Rg8Wi_{md_`gn+u_|eNX7Ek% zoB#99%74i-`Q=U?et#}oJX*rPH}#_NImWs2hhD$>6v6y`Rmq3QgT21SQ~&R6G3?0X ztrZQ3Kc$$ym_?k|E7jxZ>zy)I%|9(Ixk_Ky*v@}>yr`yl+Wa}MYxGYgR;E`SJUY>- z%I*hWZ@17Z*|UZ3w(I^h|IB`F_eF)!L;CwK%sCjdm`k@R+>QA))2SO9O61x??z`2^ zN`IsA-AnJGWo>MpUi9s7kB$@1zb^Dz@PajTfrs9b6#bR{JFHAqmEDzF*0*i?vpi-~ z$(-ZOzZPwq_M-glooN!C-{dYj&5+5rc9iH%<-9j*?&};TX9JFJez)&Uo>iISwr}Of zwRUo68{Xbslgkx!oMWff)jvK*EZTP1&FocHILD(m`IpbU^m)mQst(_+m=_&6klR+h zIU=r>VPl=1sYg}dJRSS_%+D+JHSfpp9V~pJ)&2D7<(=-#YuB&Zd*+UtxTb87)wQFi zi(cwVzf(y(dNt;pa7W4G?=zqO*jvq5B^|r$_l}?o<&jkrzlgs!iuOGF%g1xS&&<;+ zCYL-mUwrZI{{GEpXFOkH|NPsYcRxd)rasO&m#P2%uie{Czozs3HVJ(hr+#jG@k{;w z8#CVb@c;O{yIpEu@9cz6S3N#QMxXzAbKb=FT6?@Se|!)Y2Tz$@?yrC7TU*ckBb4Dj z{{w5Y*@t**S`YLde6P*pcmCY#mp6Z^Gup5}IL@%ADrL$$=^cCb^vPFzO8@9S|7Ui^ zv$^^WZ2OX4ZIx2HYa{rUo6RyM@oPZG(>FPrVld`+v-J9cf2XO zIHk?9(ojd^!V;gJO^v>7yPLR!e^{pdoOjP;ox-g4pHYWw@9VYoK7RPn)&D}zv|LYx z)=k?jK0h;REm`Fdz-2u5{r#}JJC1a=IX`>qb-F3dWWl0aj%#I{x9czU>x=$1-;WR5WWL5+6qbEH>%;U(!OQH-Aa}=_&Vb+g>i4vpVGXR;P5= zyoHw6&)&HHa;xq0nawwU1P1QfF5lbb{e8u)V|*Xo!~Pv<^?x?0aHov8&&6Q#OD6jD z{gwZwO^bWAetKvBrujc5KH2#&v+dnC$M5mHhd%1xTBrR>SZEl|knMXqWZ#oa~>Zyy6b(hFniD3KcN;!4Bh(WAIdCkYHII$@zDKF#k4hM2P^8A zZ&5C7Kku`SEwSU7PGyJQ(&}gHr~Nl<+%vuS{=GX#ttvgjpDwgJY$GaH>p$~ZvFU{B zEx)F;f9x)rFt2~-E+u`fuXkqf9%*=LD8<4Mv!`x}v3ve~sUO|$AsGVEn$qjsOJC0W z^LAx=mqq^cXD6RqrXQYkj4S>7MUNNirzUB8o%;4|;>q<4u{&RUmh5e~Rp_MrpsSAW z&Nl9)lGE4NxyIdmbcl6he@cGXxAilZsCl{GdZ)QxdG8Ewp7S%0cdgf|aeeXqINS3- z4*VBymX}pZiv&yMPr3c>`l8%vuR3o_=PlT)tZ4oH?hNJi zpLgZ&nfLKPVfPc8{%YQzHWmqQ?oWzv(|CD)zV(&0Yi53*{(0V?*YCf-=sWqFNm78* zQbuE`dfe~bIe&^}G)zCw&JiiT^C|1>{=GggS1(n}o8ED+!np2j>h6grdz<^L4c<@Q zP=4<4jQ#VQU%WKxf3p7g;+?b2YK-srEZ%eL?~LiEKTYKCi8yoWeCen4-)<=v&72s2 z_LR)$6Hl}HW?k<5bo1+m^Z7}yRrWlBQAMb+u*ZerLdH!+t`8AyUcjjFFp7x-dp-$vLJ7@{{r!Q~*v{l3>g6ref%bP!k zgNDm38qyj6{7imaY=7{&?T^SmA1>Fk{=fITj4nK#Y_qP6?hAY1OE_|O7 z@_*}d6ZyjV*6Y)QpZR1m^ay{~;QOJJdtP{v!>JteS(TlF{K0$;$7HpXpH6jbp4)zC zq0(v5tyWJDPZhfA)KtYFp?e~99gnE!mnRqUw{BXxrMJud(bA<1FB|*R1@`WUc`7hn zCrD%WC83woef}Pd+3Em68mD&YgoIcHDg2tNEn|mUXtKzv_j_wK( z@VmHLWjWWE;-9q-;%=QkS2Szhx}>$< zE4rN~_Q}o7s|lMgayHUlL5k+N+*-PbO3 z&A4Q}|BbEs?@yk$+7~_RdYt8=gYPf02YLndM5W$*uV+3__{05mlJhL`lmuM%^E|zM zs`;rtzunaH|0-(FpGyDqcBQGF+M?26@uTnOm<#iNTQ9N6xUcZW@4#MNxrIB=-GAJn zXghm(=Iqbc&V4>Mu@9$+vlk}H#PmUIQ~rW&)2%`-=tiRa;6%Y|6yG0 zIP0aGtK5X0Az%K@(mecaN@!%HN$}eMq3+Vo$D6iR9F#I+{rJDzyzlYD^4H&V1I(82 zJg!YOmGXLcy`d)U$p@deTZ(o)xlp!f{ptM|R~In$HUus;pRANv+PS&UIpk2)7T(o~ zAG9{S=3?Qu|Mpt$*5x0$YaL?S7J59hUvo{H(8^-QE6Cl>cnkCFe4+1+BSvFHO_cZFuYBx;A}EdG`68dmiVyNa?=Z zyUyC~@67M#Ib^~o7XQBSVOzZj+IzVl4Kv(4M<@!RutvuxFi_wP6r zY*EesY47L7FXqY|47b=>7k>3^!u=SfOM9K>H6OY7vHNl9e;L>RPfMT7{pVNw=$}Q` z<`o%o?)T?S2~*2gzAraF^6zC|HAE%OIk->Z#=WtuB?2iu-x9zk8|(;aIHChS^vRA_WZtC)ssIwXSAuV zD*LAnS|>iIWuMc-CpS3m9Ej!ytu2@9FVLz2licDz?{wQIgCH;2`%XEh~)lsHby#*)PvM#=0px5?o{paoT zlAi4~=90}muu-8)|7ORMyKh+9dP@u+Hb{x=kE%Lyv}u~&#lyPq8C`yL-M9Gq^IgM= zJDJ}75~~C!xHqk4UZiMnEa?2{_M8SK)|!(7M{D0b(hs|TX)o*Dj>;D$CmK_;`E}Lb zca<(Kz4=P}sB4&1dcf+Rn&F4G=l$d~uJwE@XI7(c7PINZ%=O-<+^yd)zIe4a!mnIG zFZIsit}px6s4iXKsJ3rO6vLFD-$R76%!^90%FledGcfS|l;wwCZ0t_a>V5f1;_GJS$1v^PCGY2IaGw>^oMZRO6S9%Z#tzP$6V@B45|?&iIq9i_h;?dI=#G%2L0xnz#* z%&f-q_Z{S>7haz9VrJptKUUW4h z<^21<*Lfcm>InWhvvcoMpSGFL@9bszloHR$G|`XUWk&DhtonOuQ-o%2Utc%FOeQYj z{*!`vI@M`6u5#sn*>Ls}zhjKqvrzTxar*!D9zTEDvqxpy*E1JhJpJ|R{A+`A7f$ud zHGT;=6YZOR-N(G!dh+XcCN?*A-)Y|)|HSIauk$YqqS?>wy`A<;`RPXWm)n+4{8as^ z`+4Qn-+RmL>^{jnsW|(*GcvDw#}AumC+UiRKX2bTuN>p6Jpc07tYc4;@@A&L|9DDL z_t7ptbt!q+S^(v9)2o-RdKVZbuljTKi+Dzx4Gj0cyu1GK&hegNK{ z{We*-h&kVOkL^xGw|GD^wMObL^Md?+a|-9L*SPR1I`%#1l0B!nm=j-C>a|%;m5=j_xN_Jz z>}A}e)+3_)FDp7(*)@*z8R$HC_bn?mz3_l&+Me@mZckSnT{Qou%ZISF1%^9#Dt9nd ze6d(jwzg{Li}#DZaaDdjxx3(weN5oC3-jOJI)69$um1vuS%Iz>d+OfFdaf6#avU0$}5^Lf^i(|z-& zHx=Bw7j%bZ&EL;*=PsYlJfF)LvZx`(%lhz|1n#At@2#p7#U#%(-s;t8sNz1{d1?0g z>fc`rZx-aXox64V)Tw(3d*0lCULupv8|Gbqv$+46u6(#n>f!y}a@ogiWRHvQFnqEo z>cG_`tKv-#U)YrV6Y}pySEa`>uGqg`w6-~YhUKei`B%5=|D7DZVcqeC_ujh8o5XCZ znr@lD>|g?0ZA$oA);EppN9xXh+rjbY+;j6K>4AG~J~J#aRMk(JyMO&l$&a6Q9=#g! z>5|aAd-JD-te-ah%!75C3YNC^M}0N#b+uppChpMO>+d4YpSNRt{O1uD<0%K#D;KU# zSN$Md=R9?0hTQX(YR+8&?oJWh6wt9>P}$6k5k`nR`tB^*BKh+n>#p<<_6Ir)0G zr`63D&o@o=-eqV1>rY&jz`Rji{#n5IPd5${I*3yUHH_2wRbPiJ+@F|qRY)& zdv!e@SJ*etylIs$r+Dwl%A3jopCZ07UaS6h|McoMY17C4Im7`QmSl`Iifx=RSI_ zB~)}jA@1GZ>Bp0f-Tv+LZ}xe|-*?U}{qW;XeRjpXk8}1)Kg{a0K77-=FIP6ZQkK7C z<>Q_S^Q-60RI9E$UwC1*?9K!HCC?Yvy-c0{#alA|Nn;Szpc;Xj_m(%FFdcOHlNR~H;wy8uKBTj>*aPB{-_l_`10n@s;aVo>5Mf3 z2kLnr9DDy$?_n(eo*wzC`|-#7_xw-)aK$;^MI?O5u?E|(_h(%SzoM5kMZw`%ej4Md zR|->}b6)>ElQYL|rgx`e&s}TIzk6MRBxh#CbnSd@5UP8AO-wJBQkS>S^QZ0?FC6X) zb6LMFW|>RGRby#I+xs4_l2Vx`BGg|Rop`}9$Kjs3dYEzk+c(^&T7RCrb}4Y;nyQUF z?_Mldnz7%KM_uS$?#ac)54LP6(O)+0-rn^;{xq0ASuH1eI$3&m`dO<0N4aUDS%&e) zp6{Aa#^AIzrbTt1&*P-mo+~H+VXYJqT%FVRg6n#To@DRV=_X%z)7Rx{O^Wilb1x%Q zE9<-2onxHuGxs>(JY@CC?(s#QhSJY0S8N;O_1mJ&q&|J$r1wzAY}%|=j=8Nboot-q zt`?l@USsvM?|eW1y1q~Q#C|ILZ29aPzvk-6zd?&`P0BX!`_I&}Va?k2F1s{*3WHMb zuB>?4s$VDh>i@Hc->l`|q&r_~c>9^JvG&!bQwvy+*fAd|WJyVu+28s1y6x{TaRR*C zKicIlDv0AeeY`Ru&Tn#kkuv-JpK4-utG|gq-x4S$@pI>;%hIj36L#pfH%0T?HY6Wd zJ->eK<)AIS$((b)T`V>_E%M^~JI|Gt9b3ypXVftC9rm@@zf(N<&FUc6UF9!w{)w$G z+t7SEv|EYo^D@j(>%XjUM=jgjhOjT z%YS;tzh512|9(ec$l;W7p;%R@}*o2Bq|E_vlWap53ulne=+gm*|v#+dO zHd}Cm?OWDVx&!&`QxjP`tKB5 zj{9;LJ*ztK(B{@V-4*I)v)tB5^_u_bzI0jOg!*TzoIlsj#rIq)eZ1zCbI~H}_%gJjwzxmt7gPBLI(sq3;-zIwI~=(TIrEddm5n!+dAyt}o}@nadgYV;s;a3vf~gfx?H((A{2j45;@^q6 zpM}q@HP%0@Q=9(pVa?yXV}H(^zO*z{U-LBQuf1`P?nqDmotgZbLGj3P(U|TZzh#Q5 z&;B?zyYbHQ*5ZBBFZLUGO5QTLZ(mq_^tk;8uDavD#^#hRQWAEsKdyCs{(adsanmDqIrg)ey^ZbjTGTeV?77!P_xd37Z1;STT7Ty^ zD?&oo=ifhTQ+>nlqC&%m-AkUI64czkBYcu(ZT<50_aU;!0{8s5S$@P`Qg+WBi&s5) z(Usmer|g*Kev_w0)HVIRV&8tI66FgE*PQ*at@8Ip0hh;jqkJERyB0rk*>g?GJ>HdD z{MKi~S6ho2MeDXmORQbDVNS`mM-o9(YCl{!zSzcjr@7=e?b1shuNYPOY}prQC0{JF z(e`oW#CzXs-+U<7eAVv|=Dbqp%BIT6R=G;~OJ5~3?$Q%uu>1cZ_kVU9Wt!^y0DSULOrU)_t0MyWhT{=;@>XYn#v4y=rY_GD&-8aAl6M zr~CI+tO75N7;0=yd0TmDaew9B$g4-EOBcl#CCfLQ6aQ?kcYH_q{kxL--=|o<@}1d# zW{O^&+nkWo6Ibbmn*96e^Q?C6&naKtEv>JUX^xNN%Ci+ad^f1AXwPTPBU#SVg>L7E zd^xl)n3Ffkzt?SBWdGT>kB;rlSfb>YJ)L#xq=%AMt!C|C+7m3tI$Mz6NagEQ2b(FP zd$(V^`AhBUGOvfvg<7f~uUM`lu(xyhuUjwv9^Ng(RyfD}^Jk$Z-IC(v#Z3y7bI6LoB2`wV@t>B zrL~XavhUrq6!Y3>6LaW%#hE?NPq1(LzPS2DY(&&^?nx?1c2R+DfBs1F*0LYjR4kq1 zyzDdYv&U{{lU~j_wr0BbM7@U<_RAQJq~CnvGMoPL?W?C(zt~+%u$va6cYpTePdB=1 zt`!$bxId}sdH4C2PN0Ra^8WLCmhqj}K2{buOJnx&pH@NHU*hCGo{jH&|0&~kYmmSd zk<5<%OVh7^){^;FC_TTrL~we7s{f|-FV;T0Wg~ybjBwFmDi&MblNJ1d@lU3xWS zUPiI={7>h&gT$9UDh{68@-)aS>0UQiKBJ9d+O@m zRa1}td!+Oz$z&3{_Zw?b6TeOUflD8J{dO-vuv&WR+*O|$18vT*X_|}uGAd9zRc$Fg z)y?1;GxzzIbvu^1-B5YE^h(~8&oysr-g@j-;#a?P(01319n$k9>NZc?wy`d#yG-oP zC7Ul+>q?DfcCI{CU_5K*!8}*a=l^#K`iLa#P0QLQ$hSbePy72;dF$1Do3b9oHA?r- zIe&uL=W*i3@-??liZy*rc~Ea~{-j0Q;)}O-*2?yrle@S1>r~w{ufP3!dVcSx)I~>T zH<#~uZN~6b@Y~L92M=7eI;VZ?XpLD*$M+L6j`Iq!8maBRbgPyl?Dy$cJp0Q+r&nK? z`2OdA@u1{pnejQ>XIIIW?V4KToXk`{w1=JNJD3aI^kPjlA%> z6vjE%C&;3=BQSA@)*$)?9zFjM0xxaj#$WxJ-|4sK> zy}hEg&sA}G;i;6xu0EFcFTT4Z*gNT`q8Bd%w(T-a%x~7PXI{Gf>zu_IPpAGo(2;I(#fty)wM$n^gBJ9! z*GU!Lbo^?LYJpC{ozE3(I^4|JpYJ~U?(>=FlfunZo*CT~yJ_KObElw{Gf(fV($cll zuDyQqL-x|=nCmsR#!hlUQEP=-ov$&-yqUYae1+!zH#47aVRHLp%loFTC)W6z_xr~& zx*K(iX3pHV@9Wg_>t6k?R6acKPJ!%`I?4axk=6H)8GYVWC7?W;#ZIDtBcEQ z4}{*2v9*sm-<;%YG;gC{>EruLuRXjiRB-ZfWA2vr(>?RwJ(T`gJH_8!vb}iq>A?1& zj}O)LKGe!rG5Xur%_)6T%Tq6Z;JE+!bNj!4dGkkJPI{)ag`7?uhpc_&?Q{GsWe2b1la?LQsd-{CzgDu(RUY6^ToRm(K9|-+X;mw1Pb)P-EMkeUlv< z^Yyn2EqSr#_9ySI_=vqT_+Ktcof9J7>vxO&-CpOm+hNRF{VP45+I>v=@$_j+#{Hm) z+y3lF7G)K7kFkx`uVfPoo+jqdMJvX zKWV&vXIFxP&V!$|*Y{CD9>ZZH4SF&^~}wbyUIlu&qD@(Tn6J-jFS zYya+Ms$bEWH}Uu?@lyg%K7C@!k6yNWm$;Ss^*N93@8)@v{&2?{H)gpDPpqD{$L&i~ z|7Lx@`@LCar`z65TWjwYtuC!TrsT%;v6j(n{pN|*$M*^ReEH`~oO#5$+vXR4tlG6} z(Z*ZXAI~`PSnJb;q$^7EvOV^ev%THhx~VdmtH@rbG-$V(67Qw4Ze&0Dr8-&1J8x#Vtndkc4NHc~+tV*i=udHulZog3bKB?j zj;u)!JFa)frqBA>b?S79=KP<(zwMus*026-W{p|!hdA)V@!&SR_GC#*mzrF3#nHX== z>GO-{{_Wmdp3hcP-M>Fda7)qrs^?w)Hoq%tzMK^Qc;HjnjOh2$6`Tj;nLhZ=?)%TS z@6^L%56YPt8bAjRf_7Ew-uhYhpSe%}=RNZerTn#Q_J6*_AA4VYU;n|!=*6>t=2T68 zrR=xU`23z(EWO|I53WcmX@20d;4BljsHkcU>yu;s^O)Cd$UNnK-=f#}FU5-iH#4oe1R-NiT z@s8-RbvI%R;?*j4p2>Fn{6~9*^t(fqoS7>Xt~brC*G}10c$iP%_mR|q>8Cqxyb}5= zd{^OM&8M9aS?;ZOig$gy?mX?;hIAkEuBCwspPasZXWc%Q2cKk=5{blPStL3JBp8D9k_Ui3@l?+~qhXUr6a(|C7n-dfHGSSJ}_tdrg)l<~k zH|719{x0)|4fE%q$WjKk)Gs^Mh_%mYmc~c`f}M7{aJcBJwN+cg_2(J zt?cY?dFR|#@13ag+(?pb&TZqZT9*a4eS6ck@9L#1SC(%2vh``OX6`g!i_ST#mc7<_ zeJuObnkO>nY&mb9c=Gc|;e+Dsx2(=>l4a)W5q+OzUqr6Ue>RqH(pQMdE;~Q(lasja}*!* z)aSGo$vr=EIb0`ZrbYbud9^n$Jicx$w|Ixyl%i*Bx{pLuzjf@FUNYm`kx%P1Yd5~P zsbAjs_|cEFIYqOdTN(AAS)5j5^I71Z;j-q(6F#O|Nj;r#X+z92$H$ALCHKDFdoGS| zuR!|O??pv-`83adm23Td>DWA%sn1XF?38!2>MM@RQ?D2P>3A&hy|3i46F;6>NT>e# z6=Puj?QG#K@5!f6zqMX=`exe>3fS{P+Ch ziR|}(7)|{e$|!nZzN7W>_n=v(er1pQ2X6D_@zj|MfR}KAvae!8KhqD$6mfp-b^8PL z-_EFi{P_J3SKiXO8io8z{xSOc%#dWgJ3qxvHn>w%eA!1WZkx(U(}E6*?>pGNJbB_& zvmmvYTYUEBN}{LxA8NcdiN9~z{b6tNtHjd`3f!D$1+HYgmy`dr=LGmoD%Y2H5e zQ13$-MeD!uPLI3UEbMW5ank8f>&JZsH+Up$7QYR6#lrus@muccVND{9P{zyFGkPy-ty0?O7zMLZr)SB{L?p{^fwFblz#76eL!1ZCcXL4Sc zy>{B3@|~td+|RVuu~x5t9~1Wd`RAK~FJ-=~J`sKWR7jF(->i*NI;E~3Uah{S{QBCX zrCUsnF5P?Uou-8&Th9E??r-)SPhEN6y)x|8Wb1RUPg=RIb6gpt7+A`dbj;y%D33?2 zOu@{#8e$2b?-(zRm>0m9VEkw8(wzO?+37!CthwtP{QUb--r6I|K{u{5Mk#V0mh$@e zKFPkbv`3m-qdALJurlGETZT)MciQo6`-e_asrP2v?*F4>zARFA?)kFKI~(@rWfbko zW;K1}6qUyBQdgd|8C%^^Zce(KD)e>&dD+4a%~ z3vW-h_FC}k?g5SVp2{?xTlr=t>1TcAg#Yahzh-yu`gQf^b8i>h+n?;%{O82?>>1Ko zlErS9JN5;eVjk?i|GE6bV#w^09k1?> z*p?HQ3uDYQ=hoRSDm}_|zkbcrfO|)y%ig(nI5mmPk&DVYk}Z<+$49#=FyzIby+@EJ*LW^V zPZj>2yuBU-s`Tt zIj=f<)44+zZKE^x^hg|8YBTkC+_F>GI24zeER)$)ez7LL!c)#YE{}WV%70Zidqt|| zi_Wb*xmEJz58dB6){k|x%rXQre`v(6J>-%8BX{xQgx{Mt6omdXncM$qP3g-W8~m>% z>=AkD-<9F};i=HZ0?`@MS}V7ITX9R{W&SzI_qqjtejDBGb?x4o_-uutPu>&8kd+J* z)l;rIf0He+bIiXOmHRSo>hpymdw!hnOa8#zu>9ZA^5%P&PN(e%v%fQCS+s1}x5Ifd zAus&DoqTiiZJSe2rf2R0MN3mL%eciGkL>+%XZIAFQ@qCK>^EyAKYRbM)_(P#7_Jjq zY*nehea?TFy6#eD`dwXS`=?)p{bir?>=*xcvs5@M{XsBa=rvb-14VJQ01!R`#dgrD~bA8{W@hJ~EBhO~%62 zaL@diKce2PJ+5ESti+=)DQWuq_`Q(Ew}196oy&M!=GV;HS1XO~gzc3t`YgEaY*gjF z>`ZS@m&IRUm%O+3$_wrI z(@ayEQa>~3l;&nu{tMPzk-G7FmgaKa2Y=)DdVHC4ddi}GKW1<5D>BZ%c=E=FFM^vU z1{znHERos%S1RPl=Nk+kdF8o%n0pqdKQlaTa&yI#r$sV9eP;PTKKJ?L8G~uIw;xsX zvmMm=YLRzy_l3Q0uX#$bFH`@w*{b@M&+f@3?_bU^f9>p?eaA}dW3nCl;k&kslF@DV zt7P}Sv7A09Klp6!tiAR>*Dd+-%6yW?o;N=4Rkz+NJ(jk&d#%uO?!Y3o?Ps1%<6+%t z_sh!dQsBJGr4P28tbCpwuisN~RPuw?p5mXTch7IU@HgeoMdo_tiq^VfxyKqam!7gX zSNZ$uf)e?PH%$M36`y~6`2Am-X;1U^?`JfT{makrRD*s&g{ZH!OgWvUH{&ruEKD70fyl8#CxBRW{o31RkWzW6` z&EFwlCCrxn>+t;%hJ zrLAiVCQZrVad7AxR#zQ>YQA4SxBU2YyII}Ec}Mq;Zrq^ zI=&Hp7b|>!b8m`C;hn{c4pi@XUhwewTg5&JDfLhLZq3^l^$fmC|P1*L3^E{vJO3 z{%WuOhUb09td~!o{d9d)*7Kz<&*IMg>{~jaaOpJZXN@lkkA5p}wm0W|!WwO6vNnuw z!&cTMcI;bH%AL2`Jnflw`)8kal>DzZ_LlcP?s;GP?C#w6W%q{D zbHJ8~EGOh9e4Kfnefqb1d;iZ#fBv(hcCOsfb0RU>4A64{{_XvI?hWgUS1)d^U)`SO z{hg_@AU-cXQ@HQbgPH?XRX2`vt*?Ka__UFAdHnYqp}t?I9sK}h)gU;=3ZW7yM+;3g^ zOH@JfbJc#W==hD_Sw&6mrSTmQIv)RZVa+*3wUTuYrQct@*|92Ysf@!MuL|ko?<4Hq z%+23zrFP_|ZC+{Tp5+JM*d6bg*_wUE@z~~xUEklGeI``*ZOPNkIZr+szWjN!Rx7)b;PbJh-XIwp01^8H<#eHkT)-?qFZCeD3#D#@7e7x%~RNtE$f9J)cBoU{Ku~ z>>ub}` zdmXY~wo>t_hWpvi!TUDj$=Kk{+KIpuyz3(@( z{^RmJ?^$iW9C&K_GXKDXPzHOp2cXkP{O8S^De>DF*Otn)93leG0os&Ht9P0_p)A>dup?G^~=4>Y`cTvcO}hC^{kl|*!@F(L)o1@ zX;F5r%F@xxB(=7zj@J6YHeKUeFVBXcqR(??Y+70_dZLcw+6ul0b6>rd@57%vwEEt<>^fpL`Fm7ew)xWON~$%jJ$mX#z55;V*CgnyhCViM|&GHJp;CXm--x~SL&>A<=wuHlUnlg9)~;460F&ye9=UD zvvsauujcV4+th43|4ENCo*g`0vm}Rg+FGxuOa1pQ_^Io?K747rid=TvQ_%y<&&MB- zUN5UY=YRFShg&Y^-Tbv&`cLE9-j{#3+bYYSTlHd3WOB&Ij{M!%Efs!!nw1=#yi?-5 z!*kn~rY_+lz2fS^I%!#*Ys^-Eu)S%xNA9=H3xRo?RGN#^UC zt@osUyjdRiqT)oi?`+N;oJY-+<}3=H741A1jJqF3P(k;hj1+ChTgw@w*)peRjI51|NN1_qMpa@%nUm zx!=3izbuVfYd0xl&(b>@ukZCu`u@k{q=)!{-q^)OdfzyvPEY-wvElJ`yWY%*0*=4ZqD~$)-0PoPwCLr z+SoasZZ|TNu4JU%|6X=}($|d+Z2L~|X5F+AtmJ!~wnlgE&MVh?QZv(k`#v*yzP)gF zrcZM&rFeuOnj-1 z&q7aUeeV)pQ0`!2S9#Ae{ylG{+t;h2uP51FUG&AYO68fI(;b`jv+87Ld_QCHVp5Z| z{9e6TwW_Y`U&^j;e6jWUk2NoMElHm@O)<*2wz$r?-}#Z%V$Rn`tEy!`udm;4KFy%A zO!WNezd|#3@2`S(9ou+qKH;SKpQU z8}d!Ayu0Q~kO50T>$8k=Cm%-t&x<=WN8EDW=U?~j8124Y$^P*!-L73-t}b`hGq$pa z`V1A{zP$O#X<@+y7sw z?#<5mM~=(=zf#r~{^xo_u#WhHO7=UYho*DanXpvtnz`Y^fvIjrKV0(7=5Lcc-A0Ex3uYI=xRsX3%8B*`M<>FMq1s= z;Wk$^l+QQ*B2+t3u6p&Mxw3Dh^QA9|7d)Q(?&sQS_h*6++ir@osxM94a_w4PyO47| z(+!*VQ~0wBBE9{&PaHUyEp<=pQDxn|<}YWjS&3O~Ir-dB=h3cK%beMpO3iL%-D{Mq zo01&-G;dyYY2b>BlUnQIB{;9GDhONG@$iP!rOof6Pt6RpU8U{zuUKY6(>yK5KC|!Y z3>Iux?psRTvhGbh6qP*p@gzI_r)J6?qW+O)`TKb4(&F~6`SE=JubcWSpY4yVcyGRM z_va?liYuGmZohS{X|nE;w@WKm{nD@8Xi+QM#%Ojr*T0+gKYBU;<=ft=d+uCud@_G@yp(OvoKN?* zZ<29sp3)Oo>D^s1iptka7Wqr-|N}(UMD{nUJkJ>xup2?(Xy!lcSrz%~#u>SM4Q#U!f z=bW(Y{eCUWM5fng^TzW0gt5{_U?!6OMPN@<)xc=-HY_Tt#YY%ziLgxj$4eI zQbZd6&U-6Q|jUR1Fk2?KwUGs_hS5I#4seSZ4%JIWZncXMOe|!GV^33ZcGykm;<#6zSf9SQ4 zx61S0`|(HB({~)(xJTr{VgEY^zuSJdwE6qvW8bVD{ty4Neb^1!7;zqS=%=joOz9o< z51#x|F)v^i^gDm<|M%znpDW*IdvKreLp;-uTaS}U>JM1+t$)Zq|BvLKcgOGd`v1Fp zzq9^F>+yg?M?9`BI?^rr<;EqISKi87YFN7Ft_7RPW0_w0ybTKjH!Lt)zb~rcl}Xlp*;BW8 zOS~gZ^L8h$PtrVF;B@D&&7rpLb0OMkGgN$Q|8%8g-VD2za3r+e%r4CPyVVsnhD(8L zHSbq17T3J}B2PRwKJLf=o7LYly!%(%eF(q5Q+Ml?NjmbjI@{&MCPnGqp46I?larIo zUw331&ka9@$x~Swogy|n9bz#sU{ssD=Fh~brUxcWHO*!_!DF0#E#dG1fudZwgFGL# z4J1yxUDrRkDdps*C)XBVo%Hoh^}bp5uYOa6SQ z{;rN)I^|r_jXmub=~g|CN-b`ZyS>rcy7R{2gZ zyU@$_@kg5P?8IXAKG~Bwm9ug-{#*TN?r~G5xN|Ny8>P}G7^o?)U88nBRPKZ1-Ww%y zMmwi}@Vy@UM4=BJ+UlBQ@b@|3q)^_Y7Z*7fqahFp4?YB<$;w;N3e9mw09wW=R+?Fr4*l zQp<)52jXqckId-kd%gSG`nf|Zt0`otPd|6e>GlIuV9 zZ+!oz)}rVIM_$ zGoK!3dd?yD?4@<(bK4E<7j~b&Wl?%LnpIWcO7PyQNi(+22)5MTFg@{jO`5{;U%T&p zpRWGzW#Ifv-*#@B)cf<(?dCeUFW0{*x^~{(Hv9bXPkpz`O-kZ#cWF;eXPPMg<;~*n z5nm<+Z;HIaTr_d}-W{tR>Z`=Jb!$h&KK;bEOXd;7zBfAFbEcZ!wTKg(_uF#m+U+M6 z&eF^G>PwD0z0l#gPRnJ3Tl1&5b1gE=ZM(eX%T1&H<8gISV!pwjTaJAEbmw#S%~j5) zm;7a%yW#YcSpU~nV!G1T4Re>yOIx15!u!b1#Ge-az7^5UKTBp#U$!;4_Um0gn~jmT zPYM2R+4leA#~Y`gocnQQciiE17w3JuvF~MT#5cRgi;UfBPPg(uTC;bxW$rVTWzG!$ zBpdF}$RmL6M|`%MAMfl~o3{Qo zx9;a+(+xiO^A}|MN|}6^*?7d+?&(Q`w?gu&bEI}EH7t4Q!VtiyW;)STxj1C0r}2}j za`D4Q_pV{tcj91#dbVyhf2`GSBUQ$iI%g-nSIB&}OGGnn^1lO@9bftUTPYaL=>N2N z>Z$^JIY;rIvZp-~CTM2Xe{`RItGxEyw2tqBS(1-~^iP|Ax;VS*I;DpBV@d6zIxiVV}ce6^%-kM{{-SFRoT zCoDF7`(Apv!lAx1D>GvMv(Jf9&8`ktFX?I?v;F8i>sQ>W*On;^<@ZWBDsEps(xdJu zU7fb$(f(Z$^M5z%D=n`0SlFX$V6hX@T~olkGbHD7{;HuMR%U; zW!zeq+;}p2vQh*4!mD!@-CLRU=~J;=)+fmYKX0T7O@8uL=A_~2Uj?7rKfPlOkKeJR z)lbLv+lS2RYNc&+n6^FLDgT(w zBDrhfy;ZhreV#2_H|65}ReQHCHSW5z$#9aZk-GZMTpc&v_311|2Uhk-EGvEA`~AU3 zclqNhm(T6GyUcstZVB`M2gRRs&QqHB>b;X%V#wyp^=EG^dsubs24j`a(yUWoa*S;c z-%OE)tMD>y zHS6DU`*hUI=db5mB}UEkJb5F&_vfanyf2S_>^#5Cc$uHq>Cc@hpQCrDWnB)~yMKP! zoQJo|`f43MXIwvQ8yB%YKUZ$=r)}qdCnB(;Go^HV1CuuPa4-}mgjRyedkxxSP)UvRW7hKZi1Xju(Qj$`+Ghf zidx8e*XT^e^V_HUl2TUPlIGbF>fE^U+DAV#siyAj&Cf31+kf=eYq|WVbH6|Nd|-*> zp<-Wk^Gv^&DX%L{lygJgTVL6ItR(W3(W~O^DXXS0{jvKuSH*MN?-6acj$h(<(lTdn z{VAQ35p&)cOO>BlQNHY|ok8W7r)v`K2YhPi75gj_>bF63Gk11kiKGmpFss8aZoRke zg_ZkqX6}?uF*^7wq>WLB!GT}a{@vdj!HX5n&Nmi6b}P%UvdXPr#rW0g&PxY){ZyHA zdej-p|D3(+ukAmNN4Daq>W?q=J9wQ>-8jdbcJj}4#?_V!K0E&OtLqEiv!k%d-M?RG ze}13A%yaj@911QD%dXPgFA?^hA;j`jnP&BqzcS0z^rrH21w5Ou?4157@#uoz8(03> z@ZstAnd0;NKI_?~d%m6%VO8^eVwBjaT)EQKPv2#0{_}|Wbo@-G*|RnKXXp3LdTZf7 z{b%O)&eRLMq7A2<9J1v~H!|*vf3d8mLVxM{`$fqjPCLYYTqw8opDkx{x-w_%>Px1YvxXUuJw{#lW zrFm6)s&+92EnB;!?R%86?%HK+7h_M!<}1HA_}sTcljFk6<6D}Qm6)vTO%jK+qlSNtcxkh{`n)TcXZmWiqVTlQH_@6(>#Rr{oM zaJ}54zXhuV`-P4j%TQd~{b>%v#Hufv^*{I~&AV&%COX<&*ubX#_thEx>%;R~3?%P4 z_b<4kv45x6hoUpj1#ib})mpoM9b5I&cT;08cYQtm;jh>2+~|9~m-Btw3m^3ehwuJ# z<;&vqxct^z+S%`St~;`(@AN_Kt9O*X9*UY(DEG-KuW7pCM%|>?JuM%D7H_w@Fz43U z2)p+;^o~!GEL7cN{Fa4B@A}g(yZe)CJR12wO*_W?{pPchHIt5)eCIjfeXd$Y-{!v~ z&*6{Dx2Q23P-~b!D?jhht1aQ ze~?`9)iV0WUhDX7f4c}j_pjB3Av^oL96~A@=87)7m+${?pTgvpeS9Y5{s z6=P-=o&%ecEi>;0CNl?jUC3QkxpAM3QgH9zu%xxK^Cw5}7hNygn0)Gf_3<+TPOZ=6avVCe~ z#ogU&-)`z%m>2ipcSM$hx#f)?3w16Ua0RYBlYIZP+=Nw*Q?~H!`NtX|D!cDDM^4)Z z>12z#KWsv)m4BN)cdD{xGFx7Kc}Xrumyzr9&d`~1A^(m(PW_p06BgqbIF+?5X3aERTao&D!v(SO}hqS-@=O`W*&B-t= zo_+pi)0Z8u8Efvnd3MsR?e72Qx4oY(dz$~NV*S-hBe#6B(DjOK_(?iTdTh1cOhL9xh^!pVPSYj?QDYH~S8G zaCLnQKHU2uVfnS~$Jw9i9#-6Qy*%m~hruzcqyD`9`8La>f8M)%^7hp!A5EBUa5WwK z)c>&jP4LFKTll25*?cyhA^(^sd$G~AhEH3b=Vsi$Jy9-m`PBt^;&(jxv%JgKT*(d5 znI4{7YqIbDk-fnu7uj8D>q_48cJk?}0AV}d^Fc+8n?HYecQvE(rk;IuYwwO9_e_6ZDPUjo z^7lu7z5m88*b2`z(*NlWrmhF21ugIlpbkn(RGCE`0xz995ORKzGL4KTlS-UfBEW-in2}=969f zDy1&`NNnpj+k59ji{cgU^YS)Xsoo2}NM78NQ11F|TG_Nd^=xhC#IHLqDMjzzcxP3V zdw$5hgXX6W-`f8=|FQEqySlcjL&pCV;|im2MpXyf?Ys&XclOwX+&uS5Xi2wwq;c%2 z$r9nmMQ%?@2%nRmGrxYC?W3jB{!LgFbljp|VnxWI*l(Mb=Oz5FdbxW0UG@Xpw|+{g zz9q4!s44N-hbzy_XER&I7x%1a-+t_ErpIp2(_h#Rd|t->ZKdJue2I?=W%7POC#Afv zoLm2G+m}-o(?o7;*mNr+u#$bc)ori8Z+x9Ql)t>2z5mwJtDVa(&o8z*SAB9PgHM(C zCBtjqbnkDwGIy)(qK$JhkH2N*($amezfCB?vs7;>pHWC%@ZxP3v@DfBOpWf}FstIr ztBLn+d=>dnYowg`pZk0H>#rr3UY@_%{#^b>|LVBkNqat3$2D*NXMVpk(Rpu+*GX_ke>0SNhn8y{B@=1TRq{DN?URSPWG~4`f@_B(n%Rl(-KfW!gZo>Cp zD{I{zr{36G`)l2D-IwkM>h{cEFUL%4+UI}v_LDks zp`C|zSMUB@{=a|coa$R0+v7ee#QkmheJ$bsuQ|BS)b{R{tg~sp=bdKd z=gH2^&-=^Opw0M4s?T=++RR1T-)cGSi=V!KP_6ez<=fd)E;C&;jVJf~`*yy{O{Q(* z`FWlvE`>O-et6Ke>Tirr-(~&$Z5wZkDSQ-_c(ne}QuAx(Qf+MZlkReQgkH1R5>R|@ ztIy)om*t-?i!&_LJhDfz@Qm=9^O=8xx6X@`Fuw8W%I6!e*1UW*N&RX;T_@X;D)!K( z#_6}tg@s4Y6HWDDZN+Wb^g^Iu&*w=Xjc=lx>! z&#zzbDR#P9)tyyU8-CR_{+jdi^XBa;m!8Uhp5HlrPE-2Ue?=-94s)Y;^nz=?Hb^a7 zY(CMju{bR6v&x)bD;t_w7{x0$SfwXSJUU_Orz!iJmRWt;yIjfgiLK(W$(v&8JD z_RDNP*?M{D){h?3Pu*f$t*~v$EJX(9JLy}^m)^Rb>+?Hxc5j2u-)pD8vLsCVbFB5$ z^p|Y|&?&y-akH=dX+A@F?Zsr9Lmphp)<3rD#k2mqTDfV(_Rod?t}EV`$Cg<8hQWCD?2x<}F=2Ke z_RbFucMJ_XY$mCxS?^;f(%~HoTMO`G-|NOskw>c;?O!$8Iwz{U{Ta8st6|zX7Pbiy zH{M(dZ{%F_^zv%!rXQEW_c1tR8!6XY9$$HE%F=m(x330pWd2HD7W@1C zUb71(Uu=2~C12ebx_DdU@m~|Sx%;XLo?w+ZF}-S8bISSEs|@^(dh=PZG;s61+4uZe z^LM+B^>_aXD4lq?SM#s*rQN4EGu8}VJE{@$)nc#Pg`XVpDOq|UnqUe zd*6D`6C09sL*g_ox=t1c@b0gxbN*c0B5%3Zz?F?bjsLB%Vx51`#=FxhtB&5cJ-;<{ zLe?pU@Ck3lR2IZ;)oKuXEf#$&>_VO2g+1v)X01DnSEMDUp8sTX&UCNQ7mal%IG$um zue9l0ZEp8iw$iYETIlI>Hr1)G)|w?tE|Qsd@Ox@oXKsg|#kQ@>ByTUD(|+Ejynb>oxUTw&R$<`M@9y!c zol^zhug!R)xj;&azne+n!xg@$KhgJMUes zj}Nol>)}%4dLOKnSnS4o`Z#X5LZf#3_eN&f}7h|9DRyxETRekRBdUp-rx>03arvLE(pBsKC;ataa|hPxT5k(J zd~|14SgQYSo@?h{96Vn8Zdc>t>;B>fl`r>R_-pgp*Kf`0lX?3Y6}kOu_Fpv7-|=nd zjt7@MZ{VtW^l|Zyujk*-IFZG?o)^+P`&L@SuWyPd z*WPSCB``1J{{_nlnICem1baAdpEi+Otvc5%HGlISNjJttVdfj|CpUcLz4BR8>B-Vu z@7_n+^`+uPUrcVP?n<$0ipXA-w$3q4f2yU}t<&mzPhYsDP`+>bd!8kmmDNnueW&N9 zmjB)uTG_I+YO|!mirV1+YcHwIbc@_{)AsrV8`7RO zFm%41HswVBCH0>3hCI*XzaILc`@lWSXTQGi+25xwecb$eRXY39xVan~828n?t#vl# z!$K!6(;jraqtL<`a4P z>B{8`jsM%NzByQ$f-<%#}!Z_!VCYB$X`yyYu5t;~PZ&wV?4BI@VYtl^Ko=58WG$Be=c_Eqb^r)=kAzz1{q2xnXwC*PBdL z4;D)uxSElgDY3&OY(k)|Q-t}ni62+oa{t^d>15LXFHs}JaBq2kYp0g={Nv@i@_(In z%Wzxmst8f~J2xrKV9CN5+k0)Z+)nl?tdi{XlK8yjWYP00EL@!b#Xq>!nC>|Kw@IpB z&MzmL^+^Mdaay+jhJPG4_VzHJ$qtyVzw6EyHO|Lx8GPKMZdE^2_oLa_^B@p&p9>&hhcYoA}88}yd%?#G+!AG}a@z4a?O)b>TdiFb)tlUMImb6#-u z{Q8R`S#mG`Rr=&_@2t(-{mn4HAo1?c=Lb#r%^B9_F;qUE@8Y|rhf9CHuhMs3AJ0cp z>6~hg^9*_ujcU>|y3>0$?LGMD=PcX0ABJ~|e`ncD(yzan%BsUzd#$1Nwv@qvFW%Q~ z9owB%p7x<<(%}Z1*-v?1ZNItbx*pewstIKiwi(#nHk|+V&m2acO2xlMSLZN>G;n0j z=$g6orFyH{>+c)?cJF-oVkCqj`k}y%q#y`;kazunaiuLI={7^ z^?sk6$ETIEx~>ji&8b~14;em*&4&fE&a1J!2?=ib=oTrtl& zajV|P6W(9FvcpC9>G~>fzu%B~`ScSXuKF|9*HWk0+sCimmj7^Z&HIlA-akw79%xOq z@l)ixeD&?2k8wwDuqW+y-)T^CPt(6ljz3PhcT-6E0Smq4T^rZdcD%Wzb!tkS{l*z$ z|07I0YhV00vE$z3Nd2{w!moTzj@Y_(>-*_b4W})fUS_{;{@E|V_g>xItNHMdvC+QY zrw;#^*8T3d=H}3Oa|DL5r6Z`u3zImZ56w#)k4T<=|edindG z4evv4-`<-kmBzR``Q+-ePj47=+mR*-krKh^KOOf%%5Ai_O0OU ztk95OGkf<53a&BQxnf>el>b!T2EC+OTi%MG%Z{g=O`m>vt0Z1f`RssE_HzBY7kV{s zPbkOhOV1OseSXKd@agRC=REz>t{NUVFIn{V^pYnPZCZ!V+<2S1Pio)sH~suuD;+L> z+;rs01V-amtRBIg`|a26zp{PPmStUX86KCmm+c8>pZ zWO~-^twjx~GFtg>W}FZE$CR}wIX1fZ4u`dy^|{v7YPJg%P8%OMf7Y;%(aY?-hQcZ~J&4@Xg%18p(k5RSZj2({uEXvR}^@ef9m;V{!Y!+m}Ag_ozDe^ZY^A z_4n?}&c69~_LBK8bpq~H6=-;IJf7OV%=fg{!2|b<|9$OUIi=TZ^@|;e65ZL4*GYVh z+F;E5OqXq2=A?8_xA|54Yu@DtuV>Z%4|}VAF7fHjGkcAFr%bsszi*<2-lL0~_Lf*& zs$g=sS$)7^pWr=dz7J1dezjP8-0!W}=|dZ${A$;i3e60A&GVyXQ;U0r-0cO+WwZ7w z70iAZzJ^DbG5lZOXZFLJ_pz`E9&+E8y|>@i&*JiykBs-f6`bFD?C!qrpQEp2YV20h zJ-vQ^-K*odCmT+i`Pk3B;a+7}ba?H&Wn$OePOtT<*><@iLT>wYray09)~COd{3tu! zro}w2jwAhT?V`!oXHC1XSi|gt_&M|Kb?N(de)Wl%w&taD!#vKiEvB{17i)@NPyG4p z+I|8c&1kyYdN_r zep;y>znOseG2?yFagI{rzW? zuGRzFVrSDH#uJeTBji@EN(_9j@_19@*T;pkUj=%+U&|!J$GSq8f2~dEHinjyvWBxH z>?6<16*Enmy7LaB#Z=XW_Y6J!4Yqk&Y6VryThkl4?_#ClrQe!TNhO-Ir0==cZThcy z{;G@c(}Q_|yLG;~R~WVQve&bS{a5u^(pEcFa#wz(^Q~#;=cE@K&0O->`gzFvYL*8F z_M7zmIK;c%-ZagIwd&|R-s9uFu2(sO{fC`9 zA5WkDU*BN2TiT}EQ$={|)b5weS$Xl~>wv`tx0lRfY`iw>W^KRm?!Ehe9*)1UaF6=5 zxIfdx51M4memo^2?{UZV1;QnE9`80^R}(z&;nwV+D;HM=A2r)x794v$>Yxq7&%LkM zFIh!(^|Vwij}QB~w$|PBIFm`?ns@aN-`&5@&Jh3a|GS3kUu^PEPQ0_{v(;9+&4q%; zk7=FAUSHay`gMkuiH}0UtXpX(lq+)5o!Ekk6cXn3{m!XgENhlycXc2C@Ap=Z7ORK9 zv48PrTW|ZBsipn1xo*{Q&e*m@o5}9Jr`bEUmopk`o(Fcvu)fOK=40j}>HN=4f47C) z79EcFIZGekKl(w?r-wmrLA2%VZSUv4UHEaa`{Sbifcw`?Z0CKyWIy@fCFy`Y+EepS zdAB^@yKnV(*;UKdF>F~TeK4|i{oDL&E!*TjSl-rQS{v7Qvs`xmM*DA%K6vWa==;=& zUG6hd__S$yd5zTRJD(feg_pV4xop|A%D(%{y)Sm5n_u-msjG~#J^B2mex&rVORv5% z)m^W8FWE4C-hYjIg&*W%YQ7yl9{9+V^RHM#^XIc`>n-o!i8{OPwrTC*OHv=AFMDO| z+gbX%rug-5#v1De>9E*&lUvQ&a%1Wbx_{(mub00*uav{8aP`T9YWe&Jb^c#TU8Bj8 z^}yh&RioPq7Sp&XABv#22pSKx%_pO<7FCgXp**`1U1o9cSu`2Y> zF;U*gpMS?$cXv~OSM%xfcA=&7c8cia=4#Kf50zc4F0fZrXp{9i;Rfqtn^t@~*8Hll zt>ta!_XbIR<#>kr_49N!uWYbsI_@ZXc&9yEkHSPLd$;e_vsRhznOJo#gZuJhBfXzh zH6hGdEDyzuj2E+yW!fcwveyOa>TTDd#S0!5cZCNt&wXwC6;m^lT#xZMO7=}7&J+Pjtza=%YDylxH zf&T;BTRH!))%Q2lKI;5?a!=upJICfrhKaT$zuy{vG1|S+|LyYbIa(3!m)`_DUi?v| z_wV%ORWr*o7oM;Ca&7sM?&VI`_dH`rs}9<`e3G>MrZ4ANLKJ3wX54A9M5*}7nG@$* z8D2NcxAwThaHza$!vZ-+Szlw@^V%nhrwXf>y1PzZJ*(@_qgx%R3$|~c8Jw%!eR9dQ zHxnAB%02&i<8c4uZ~b>TO^>|V^LAm}Y-fw?$>tv~taO#tofg(V>B!aE5346B&T(d# z+`QTE{==G==Gu|==8}`Me|WqqOxwx)cGLOS-uE6XU#OHI;#+9e?`|B&xNwo=x%P(| zR~{QQw&?$Pxz^&>k+R_ZcNa9T-*>5Zh1~+@b6;!@`EYMb=4=1pcRcq?)Q7hZQkhd{ zpWL(YoLa$quiZU!HwFJb+mX<@t?&LFqrJXg*m9BuEH?cMKd_ib;cP?q`h60+efj18 zNy+VbdLm@ii?7WucfK^S4e;FieUW%n{@;ziMUKTjt2z~C#QKN%*pWKRtt%L+LdC8x zwqtyvQ~p(Q{ts)Z!=-6i2O0j}^X@-C?QGu~ag}+!2g|lzo!rWG;K=^aN$akcK4q*Z z(8#(`Xu4&M{I?$mwkS(==)4Z)Bs(t33>jlpTaiHgtOx@_tN za9#z?2PHD-vwv93a7}!goci3o&pGOTT=M<%__Tco_cyycp&M_pUfz^mTYC12WbJZ? zd9B*>Rkz%;cb?qxeU1Tx`{7Kvj~+&Q53aWfUMx^<_I;|n-o2~YF8!Of)SlgCa$!%v zd&Zuwq%RTy{U)I|#n;UX(>Jx5JYBLNwc9kP?xJ==b!X9uWM@thrl&uAr8bZzHfjv@ZnZ4{K-EQl? z(@c#q&HMI^Vfjh#{sTQy|J^@sxiyc0r>Qu3-Wfl>7bhmW$1&de5@&ywe}>HxBdrq$ z3%8wcX050&(J+wZpLM%#QQ}mQDasL^bs8Cwr&U#Zy$!w{ePJrvd;iw`mYo`qFv@uRZr@{xZAjP0A*Vtxt=K_A_4jXY5xP(Qc@I=ZE`t zh38ibitZQt9q+zZ7x~t@wApFXZ)e5?j`BZKH+3IW``ydSZ1l~?{ehN-(W&y<9q&H^qeK1gu2BaJF_*5ZNuLSX77G{ zncg4xOxXGS?k_bq-;X}OV)xqd)YGc1|BUozEu4PI!%=YClcK|!bBb?F7k{|@V{EC8 zRP5qLlTz=~=A8R%m%p#{Qtx*a$-Y0!Vd0d`vnwjrJW0*BZ7@D>xq9X8&Slni#nuXY zRG<#HKh|)wXlIQJLaCwBap`4ipBgnR{J)!h#o8v5|1S=jx20PtD;#0;alW!^ zt5nDQ#3oiXv;HXr4Cv+`!;Rhmz(sPbby{IYtIUGm?@71tK)RPVW9lr4K( z^3T6!cuT;JEZoBejW#Jc(`BkzSb+-ba?)&;TUpD>M?(k(o*5)<$ zI&XbF^)a}9-m8yK=j>I!SN2nI&$mm}g}3Hi&Dm$=`BI>vp5ejM&u7>6ui0gg{p%Qb z(dN|4HO1M6_wW4TWngFcBXsH~XSNmJuB7|9KW=K*OTWMMUvrM#ZMW4kzH4X+U39pt zrSDd&y82DX_j#TS{kwehwlO&y8@|yD5DGmJ=%8RbDYqruw9Gve3HkDGZV zoi*U|JY^NzV;5K7_B{0C_nw@}oZZX*);aL^{Y;%9`T51kutzgAHLC)05BJlPlS$CB%Yq0^dw8XFI<>bas-FLFLI!f3K8eDYSjv{X%y&+txQvn!G}#)0h4|`#b;F>9?Eqq#sL~ zFR{$RD}MK5!8<=&o&A}^_t{mQ-5t-xQ1m5dTcO=o%X=S}FDVaMcJgw6a)e^L(6U%A z?f%fb^I7{pJ9JIwm1{foFnIclXSOdKcX@DeW!uy)-+N|{lNqm~_Zmk_(oy_o|_&w9=&u_Yy#Qpd) zcjBDBq|bY1_5F%lcFVn{-njR{4H5Sq5Y7x z-3IHt^tS)GD&D{Nk9u3&r&#@YUW=+k`)%}>%n9O{?9bA~eyI5Bex013>)c}Pt$MCp z?r8{a+PXVGbZ)cojk>z(c@-Z!a~$VIB{Owo&GLNyj%E99mKFPFUfO!UR5r{p{!jPp zhw0HLmQTETy(c4fO@6R0ZZRX+4p#dyxTlTM79&u;UiUftn zf+0a?Sw2OlpS|Js%2Mp$tqS?Md3P^Qy`qpfd$YRAU5<=Qt6y?+e|>X!_#@`D+~q(! zjd+Xlqq~mosdAWAbs@Lq!>Qn_Z+_;eJ!IgYq4vWlYqnwhwz*X=kBYK9kyP=!lCgEq z>3d&~o$`CUuIBvR^1Y!xJ*)TULPF_SE*vDZiW5vMn&@X81Yt?f?GP6l=%r z*}2U0t<_q_{ie3bpmuP|zMWq$Gpu9#&=@-XdCEdY$@SLX*MIB||7#X!`d=t*lhF49 zH~)_tzFV(MnQ&oS%4e@O+1nXf5g)HzGC5nE-N@K|@o;{@`hDr|0cDKlhjBlDEALvnDq- zM?NaJ{Uq+`E2JXQ^T3t)ovbIlcS8 zcy3Re&sUBB-FVjLZ>kwRidg@1%n(u7U}G*lXKF*P?*gN%pSmxqMMmhY&B@Hjytk|G+3fSXHWj+|U3fk5Z}Bvq4Snw4 zzfHSP*O~FGz30h+sINyHx^($S0K%Fb7RZvR@A z|KR()opycaUADjr7ZWRzS#augILH3d!Pr`6Le^LDYXtC{|IVlmsLhThBR z7C&CCo_6hl%O&6cFN-s-+g=p*h(7rJWt{cuyu$^nRlfx?D+yh>yuM~t+{}qx$J4xo zS3Li{?c78LgA{4@n|EJM_nv*awsDu%huWKmZb*NPN%FXSA$fo3&&9L(v*zCU@i}PO z`<+Mjhu%&LoqgHvRQauV<0#&!t=YZ8=>ktp=ezUo-SqWb`(?Xz2d1vem>$S-D}rxd z_tOq-7CYs5lm9DNv-dvApIX2rptWA4ntKI|t_xu{0Vl27xY>*vK4&qLb_p6=vdR}*G^^2J|< zb)Z4tFEz!lPpsnJyv%gswTAn%<`tUUzw_%)P4Vk0hU?5bGOs?hjC}Fs=HiO)uKzjT zTYiu)yt$7(;X>eUo!qI4#%3!GwGPT}W|LTOWX9%%q@)=_mJwdGOXA?^Abw+pFVhTn$*kZ`3cMmRC+Ti`RC+dN^)p-E zYWEY7k`Hg?m`zoZ^WT2p!Kq_W?&qDam`B}XvE6h|U$e(JD<>??KOzIR7GS;mHq*y? z(Or@D8_f57zi?>Eor*O|wktViz1ZY+c23N>iSZ^%yKTRB{yoWTz0G9Py^A^@XDv3^ zYd&A9nTz4Lz47&P%YOgaBL9^0%YyLWc@EC^YL7j(;?fnd8U4<`*l9w(yiBDX6cj<%j$o0aeYda z&{(N+!z1}^qt$brqSqf!^D3$G&K4J|ENJNZG`F}(Zs(cg-tIN?#14E&;Q6h4c-Bv~ zo!=hrStQq@xyM{tH|FovY7% zHJCqP)16mqa_6+hFSAwYJig7-pg(Hv}K!I$w9ir!?5T>7V&>`vp1CAzvp*H*!z3!&p4Y8JAW^auaix=_4vW5)vM=Z z#B8;8yE^%d+uc=-`)BNL`ryfMGo=5oh}XXRPeh(%e7zwfb^ag=)4sauDc5cOXfb(w zSbQ)nWY(_L&9`q|`R2cNXX~d+C6;S%=^Xp@TFk8~U)RZE!BrN~Jr_4{-EygP>RK>2 z>o3o2r#lw6a~6CJSv_m^6XCt59`X2YxR|*~DE{+x%M^~p$A6BM7v3vey*_~Nt6i^A z)Z-QDbEk#g-ZZ^lXa2OAZ%@_il{C^NNGZ&Oc&neVV%Ed>H%7uQTOzFE9Rby{KWsa^@S`5AJ=t_R`NgVJ~aGr96{g zFCDid|46y~4*vB!Uc}8Yihg=+$K*ac{s+0A&#v8m-h8{={#S?AWcp4FTYGa&rmr`s zL(9l;o#BTk1OK`m7KrJbZuwnL^grCO?f3Vu=BhJc+SsLVZeuGgdoy=$^EdQ*OxV~Y>4rFVQP4P@3k*|+8kcj;aB?LM_#zg@mYH?7>R z6Kk{Pq`u^zL)W(l?YXRHepl?XT@X9;UFJD9U8Og`~GT_~7?e}}T-cAlKmpI14|2bvn7jv$!`s*2V z)p}z2r;E4sXS1iUHB5PJ+t5Adkl{j}vGun>E#RI(@Aq9ZdD(f_j2}06=s<|j$Oz3q&m)Q z4E4A@<@^=n&g5O{-ja2P@6Lar={;Nd=e{%6>iK^^>py;|+;5{PXEV3t?d$c2EZNT$ z6f;#W`Tl!lxq0djotu9gZl=mTyLOx{h4FJRuXuk`pL?>F;XSvxlV^lmH|HH_2s^cQ z#X<+{qEuBth#&hugr7nXHPC+o^pNmqJ!(x zKiu-P?@80<4?jL(P5VpMRJRS4wpniXax#lwl^jWB+xMgM_6Du0r{AY|TWr8^y*c^Zvei@l?>42^xK3TZjDP#B+U&kBrb%lL{jI=wC~E^%OK?xMu#^(p%PKcmAlcC}8}U;N{BrTnqNvnJvhKM(9X`%AOF>VT(? zb?3vCidl23Q&rbrky;Qp?~HZc;t&DLlbchQY%ZR%w6NvtvBEX!Pu8CEFXTD4E$rmt z^FS zYrRU2{9S)mSDd?dyu4?pn!9^I&K3Qc`FVdIf@@mc#h?ua=_Y5*x6hlApZAyR)Ze=O zeW}KGXG!gP_vZYA=luKl^R51?z41If<;Jy!C2ZX)_rI>3$)&@x|Kkcj2ip*#GYPF+ z3@b05de7lM`C$Hpr{2{zw>d)R1k8WAamFryv>#EQcvo!P9l9|0eZo40#%ax#8}8gX$F(F%_Kd{o`)L(Eht%`G^!;9V z^?~^bYo;|%PA=li-@CB<%*<_jzxO-|+<41;k9mBK{5Q{0?}rLp@G@h#dbmGvM!bnlZ*WXqn#$)nrwj^~$W4@ZC2(ry#8uB1=oz)8 z99Lh}8F*0tz_A(Mxc~N@E8p=U%DVcv;Z}=Xvy`X%+14)pmKdG(TWORCtM&VU_hn}+ezAP$Yhx(s=d9x3? zSL_cv@Wtu3tMiOkT;I}fwZCdO{ppOvhn3&&@0c@FeFop2KU`G60 z^=JNt{`0f`ZxZuOH#|YK&U*UIa${C~o3I`jQ54z`)GWz8Ix)e0{s zh|RTF#(7h|a^i(`$7b{$ySnGf;lS_`DSt+zwb|1uj(=)W-Y9!%(tYP2vX3uM-Z<~P zVrp6h>)WKtq}%7M9tub4Uu4|pZ&>rj`jq=K+0>P7;dA{?UcYT(_y68&QQNH2#2~(x z(L2i)?eI*jocVQUp{MQ5t-ZOMS9=-hzTK#KE$R78*RS!p`{(tf^z=^oxaqU}QER?B z(dl#c&I%Us3p&M6$NO~NzWAB>dA1v0F|Ez?wY~@%8uoPje0HrfXnu#|K`MjYo>!md z=xj;1=-M9tA@R?jgZGbaO~1>${=kdir<@OE7Cn z&?oOzJXaQ5GFs@{-Mc?s^^TG_Kl^pHuQU9seoej4^8LltBi27>OqUZpwIxD)o3qor zcTa*BPt$9CD`6>{TyX#I-Kf2V3(t#mY)f7D{aR9egv~~!1Nomm1Up-uP6_#uH!mXV z*QvSjVqU%XvWggac3f7LF@DhZD#hk+%6+Lo2B**8bmq(d-Ea4`^y8zKi^6063(cv$ zDS2VBTw~Dvh1>Sqhef1LlDjO~xv8sm+tf_m^NhD0F5I5}*4L@>R?o#*>%Z(?cKZ30 zqs*sbmz%YJc^=LxSZY&gJhS)M_J2>Z4bOxvzi0pL!{Z-6{#PdJ3a+%B7L?jG^E%_+ z`5R1M6$!IXXuh+oJ=uh{=#S3){_@EsiyIgZul%Rx&oFoSp6OX8|9%KFJUEo-Vl6c4UDOJd-1Op!Oe>z% zzAL?zF7(vI`P4GwnI;-vHRBpqR(%nC;O&s<{p6M4j4wPtXLWtL{3OV2RXMwwxLy1Y@BXwO zS6HfztUnoFvphF>V!Yslp7)Qxvf8fqIbr-(Kd1Uw^tJzAcjrZ4P3PK>RabcC*VpcP zaqrvp`#$g9x9tAw@ST9S|{q)z{7Stil zDC1)oa`b}oUIybMmmWOd%lPKr^mzx*_f*_7a62&J<;FYPLarw}<{F+%zC5k6_+w!`V<&u|qb6R`2h+mnvf7=oR|Cza&n)g1M`@~2tcRkp#(2s@t z#=9qCKh93NCh=o&n)>GlJzslj7OAf=U-83w+oRaJx}7Uu&ipu6>pw^K^&MY&yp4KK z@84K;uX53Kwcn@Le4I3UTJ)a${HlF37{uicW~R7HekxX9l{;^lon>Qpw@pZZx}LAl znc^&~yP7=@4^4G__Sa-XHRJ4SW_;hgq~GEb{?Ac!5lvIkDiO&L$B!%D9*_C;DCra1mwA^p zZM@G`ADH&_*7~z=9@=)zbgN<8lBQ|*`s75FkBfFjzF!^euRC|{%bmHYFJ|u%W6-OA z+`8jkul~D&>hCYw>~9`Q=ASb6+mu(=*e)tOex1%R{gt#?+KI(4O!>DM&67?ynQv%w z+jrAWtLyv1ZW)~}mVIos?DlR|!F}$Z+?VScSG=sr-+TGkX{LLRmn}(-uE|-p@%QgV z^UZIUO?c0yqM3h!by?`?%@QA1+DFcve!nz-FW+xH8`*~32<<1ONt2CM3F|Lg&Y{b- zr7g?*y7Z0mcbhp2%X&Zg9hTbi?(3d|mjWNSXHRWYRh{{1&E1?+g`c!`Kg-{na{SYL zja^UI=N%K~mzi4^diLC@@PjWil+xZyFAd#$ik*DuIV#%`2<(;c&1PJqNH)kCQWhAx=F!5sNeNX=WF9Lq{s!gY|Z#BMS z_)yCbXMS_h^)1ULx6QM>^>Ws=k~t>#@0|L4cI|h@9b5=h`%7R@TaJVTSK>-3;%BTl;W- zxVLexp}Vcnr3W7MIugAZ+!fCI-Wi!swO=*ir0#l-J2Q8^^R>G8+Vg5r-Ks{{_bpzN z=H)Y=cC1`I&y8z^Vaw9j@9%$(V`;r_{7~+!D+^z*H`gH{zmUmuw??)}eylFtu)9OY zWp~JiP42B$dWj5gTXVX@bi?{5+-h5C`@CM6p~yxpaC&jiY?T_W!mOEAl^_0DS8=8- zd6~CurGILOzhl)C-jjPid#ns*XO+?2+hWN7wQ}Ae&5Gycn_oAbyMFtl+pWrmzG~*= zojkK0d4e_^t`u9quC?Lsk1mG&m(5mv*UjGGP*i$}mu<#A!84ctoj%LvS~CIcFNm|Gb$!angJ4-JX`|HBajQTlknixY0jJs+28Id1F(Q zTI#RwS6q#Qrr4`hbF6VZwdwbh=L+}zCtbOIAaQT-b+efUYqzMp{o#}TV4KUuh^0|1 zysteEEu0pZx|7ju)+E^#xtkYz8a{5GpX{SGsVnU3$NRe&cQRYNVS9VGT6$XTLFA^*Z~(vMuoB`~NC?67Sto3BC8j?2GoCnKsX(Qd$}>&GWbZnEPF0Tfm>W zYVUWid{=o(W#$u$pr)G1>GAV!O`g;_uOWHX)q8JVudAI|JGr=wUxD#W+NX%9eV;EK z&6=Kd`^&GiE5WuCB*Mj3=j^xm_IBC*vZ=y*-&dKcGjRM6RbR<2arFJ4vo=%R|Ex<0 zo%X@%-lmq$m(M56dnP&mrS;sak@CLwdCz;~D!sV+GI!kbv2IB>+|$(Y%5lZ}4ilbHcmOYErZV$Ns>(e`%<6Ab}dTq70 zux8E1yRUxzi+!{B*!p>A@}IMIuid#d_4V|NVMnVD1?$&X%YV#&uk$$cxBRi&>-R`M ze;a-G?^|_6TdoK5nRjIE+xhkO=d)|CYAno-x*WU!)Qz1y?b+<;{xjy=|FLp?_`VM@ z!Snb>>*{;$;b-5k=w835=!=Nve)bzYwre*%<_%7J(VaP2ERium&iL8di4Ph#KbrVV zTrW%ITDl3}DnoN`J0D|Z-(xkbMiFkt+$x^c6Ta9e9NQyel0982aO?HG9X#6^_P$U0 z`-iV6RAQ@4nuGqzRe^JAOz-i^%1Q1x^<_r;voqz-Vl)0KFm=>LE^+@f)#`?<+paYq z-6f;?H|^Nh+g{B`Y5THo6p+K|1BJ!kz3kMqHP_k*9_%2{Q*x7Xtq`_Hp{*Dp>pxS7GurpkV) zFmi2q%qzFnM{m=fOj{B>F=U!T&GPMcj@Q37u6XnCYTTuN>%Q+1JgnKgyIsg2a@vHA zGnUxxJ@B>8$y(^5{_n5GOlOzObC3Vor}g-)ZK`**{?c>WmVfkq9$32A`%lFj!_3_i z-?^pAeJOsOUH2#TM*Y#x8@zrUQqMcQ(El#~W$~Uj6*j8+`aXQy*@P#@@yMp`F>g{i zF3*}7?!Hui_P)dCS?t|!#-yste<{(JJNt39e!b|P;FA}O4Ysn`>q_=7dvpJ1`r>PO z8(r42CcI7G@0As%_4V396_$5@zx@4isdsz%r#rG$H*d#vecu1HGU(sDgXdrMzg+t% zrqp=o}%OTr?|^CPWd=({?0np*#dI4F9d7emD{h~+K|;1hyXU|)Fk^AJa zNiY2hRnyjrRwfh~_G#{)c<|K5SKp!;9-WNvU{ssB)AsxxxdTVe%hbKjIh>wc!Coof zUv@=Q-08-SO}+CYUrC;RZEO9zSZuyFhgjp56^hwE=7lYF2+QC7Lcq@RW8R?|?b9Y6 zU!4`J)UcxT`eWDJsZZu-%1tPkQ2t6%vQq5nf@#`z*Y8W|Upx6ly!zVX%GI}5T)Wnk z8MQ9?;^c`ZbT-G?EqY%zOMA_nU1gc3wYeK_OgBASwk~A1@9D2`_YI|lJ}mnAxZ-+f z`QryW`E8P)t(e?$ubb)1-_t*zU6WFcz3l0oeIVag-S({c_PqJ|d3&V~Y-f(x9VxH= zcD8L-dHk2-73UlIA8fkZZ*laXwhBX&(P4wE2;&uJ?o}k5co(arArO4Id4a?+o?5PO z34s-C`y&HVt}K}La4)k?dUV<*o@b4V8D^|{_%Gu;>z<}%atbD|+^@!54GT8ym1a8< zSyyGyKlSjb_q{Vuot|_&DJZS7rGGfv-HhJB zBbi)ra3_GK;VIzp_2_?dnM1+^i_? ztIX@S`I^b~Gkv?byFZhe?bu7}s&`kd|EAb1Q)#nY!s#>T9ZSpItL&cK!8T3pTNrOf zO!+wP?~Apmlm6X{&U0Owd^2eJ@fs-y%SuPveNqSV&)?&{5RuQYbn2WrXBm` z^u*)4!Mr!W;|=*&gqTSlv^%@Ue3HlWo|DcSOcSrY51wE7=7gEu&*$^2H@&Hddilru z+(GHOSJB+ZS+20{x#;(te?iauZxIhPmVdR2n5rqKl5*=;bmg3J zo?pqmL26TNwB-87i7$@@pR=fu>bL#!@#>BhQ3?n5y}ZftM&!L7_u^U=W{n4NOqT-o z`De!eZod9-k$Bu5<79t<+HcPDk3HI$D--RN9Up!+^5?nwt@Y{Of6r7(p7clh_36Et zUp3CJTw65hpG{+}Bxmw06+>II$xCk)off{I-SKb6!Y_Stk+UXkYhT9_ec8tS!KZH> z#@)|uzL($a{^i!EPlxPEFSo5V;y(LiZ&TdL&$VKgE{0}4(WrDjZ{Q&{p~x-YI`-kW zU&>EUDA`C`J*+OiX4LDQx@wxczv-vjpLiAz2CPy?zEFm3m@rRFm5Pv8A@oxB?=KQ@cZ>MfsW@_uZh3(I^FKZV5e0Hs!agWS_ex@DiM~_-&zBqLG-7)`| zkGp>y^!~>^Z};<$3v4P%*MD`<*#A|}lr`?lJKf(V&4+w?ubCVcDXwkU9H(G zK4%)EfxpVH;+2XQoJE#B5i6c5WqqM$`}d_W&;BlQFWMv@S-;8OI?exgSatfeZ|bHM zY{_ja4*xk;&0nfH+psbFlKz<=T;lQu7ksBT`C6ytZZ8s;BDXa1v}xtvvsxbJUw@{! z>kEAe=686Vm=rOW?YTu`rGw?W36C3(%W0jx6meVQ6Q4(s%Zf?`p@_8!o^n}rtRi3B z-fX)bVf~Fyv`a0wk8?MpvyG*E^w~vEuU!6iVtvJViBvI$pKBX-G(D-wD-lQq9`+=#7YQmOy4ceU}N$@jiAuRnBjy-ofk<;Ac0RZcxMIl1AH z@9W>j`@fr&PdM}W*01jjw;2QvA1!h@c{zLgKixE*_r8o;$BkcT-jy;e@-@F&XvQQV z{9*6^XSo({&+PU7xm&vA|6Trs*WdHj)dr>3Uy;$^_F2DS!#{~D`zEH&oEUjF+}R^l ztZsdi$b;P9<<|PQit~G3N$yax-}Al3lZt$-cvNnOQ%3Rqdn~m#pNpm# z?p(2R^Pgq1b+7iCue+lB^MLlc15@wU9{3u-ux@X_{@LrIJ#39@?nZY+-}Yn-;0?dk zva6`S-fniyMtTblb&AVZx49?f1Mqr_D-nw)Bm3= zYwiaoxxIW_s`Aa7|5fB)##~AL?bCV}-CedyJMEj7X8M;cbNb%7@MdC5yGkhZW zmFMT3Z<@bzWj@99-SXzzc+;$BVd8J2+xh)pW;>YVoMC+zo}YU8bJRWEpvnbLr7uqN zPiKgosl(m;p*DJ+;hKNfeyr-vh_t+|#UXZj@$>SGn=|%J&;PsY#f_)Ny8Tri%g@P& z3vU)!AHH63&+{thy_z%C=70YbB6)rT_m|r(4cRQ#Gyf?(G|BCiKj^ZyU+(Ryw*t3= zFDKbPj`$Ki|8~K#SFW(N0N*Ze>HFIA^4He+$4)-n+yDG=b>-sRD~nU57M%PYR{s8~ z=Bwbq_1Ry;3cjycqWLT+X__MLBiPmpA^8pY!h%&$s#itSWp`e1hoa z(>_x)Og%21@Z6d^qwI4s*Tvu$Z}RlKCp%33zNVo&_jJUw`LTa^KEEiPTkXCxkw-MjM3K3iL@Epm@7|C)W!m#7nd zbHeZEY~RPFbNareNLXiuoHhtixbUtl`}A>}w|N%7d%h;tR{!}fq%f`n*KAJiHrbSHweB)Q z^p#DQsWpFTUH`7?jqUdk_4SO>%WIqGeKb4Q^v5Sp z?4rM|%)FP9KeD9PM=__*3BCO>HFw4X({GRNrhhU>4m-FoD`8Gw+nj&%<9HpsD$e@v z<2!Hp{|z6zzs=qMQ-2ryX3wANb!xFiW0_h<-8VP3UsL11?S8s@`nT0e_SbB8sPA(9 zmTl3rOLf`Z^Ut#;3w`>MzVhad{!PBsds@Hmw~<(PNlM6?iBBrr`{m`HUn}yxef>Xo zU8>yfx$}6W_B?B$t-iXOzxpa)^-|2-%8-*E`uHcy76$RpSI+V{cWf5^`fEje=hoB< zRo_4LYG?B{3;18YY^3mH?W~q>rz_5^{A60i^6lBxRGaI&dLBmV_bprfH}dqMPZztV z(@u3gURnOe_}cp4i!Xhj8+J|S_NVLG`O(Khiu+Rgk~=fssaWsv zd3$x+)A;w*`g>kpl;*5>`LqAQT=w^eRMYLZI9Fa1$&fyv&uC$A|IV-8pUC8Fxq>kYBgUMxFbuWZ$E=;x!!q-#mE#aMor%R?%Z(eov=M zx>R@X+$hY~@q0$5*rk|Fr>7q?FfF+~G5t*T3byEJ4&pVOM{jJ`{rSOGWp2-to+im> zq8l2_AH9f8_A2CD=x~f@*_0@&Z|+y)4u9Zqe9Ajvp?6u+lxh1IrND z)8iVp1x@UwGV1s9HI=V;>z}hd{efNt+U-`g`!#DQUt4zLa zILI z_bj|$Z_@f!?dgZeebVL{+*|j*+;}6`N-KCR|4JWU-!&rtk|MACIJrDWTUPMt_H*aH z_-u`^<6ke$t7m&v@Z`jp%b$&3wf~#WpB%I1obdCV;x^*%e?2Wvda|)&s=Qm^X2%Dy z_dA|%pR6&p?CR_UTMoaq-BPCM;ja?dW>p_J*Rb!-mYP!b@Rie6L_d>SmNon4l7};= z&+81Y|DSDDdPnxxli&ZPPMqA@%-&gZ|B9)@&$qo_*b){CuPX%RBDq1{Lr>+&yi(vEJ+D*OZyU_HHDt1z&55 zUoU??JK8-gc82NNmoDIKH=AcYn;ktL)FI_P@RcDisyR;@~0p7-d))|!$jxeiqkdj;cQp77};FN z_?jtd$>iI>E?u(R__N;cCwmfoZH0x4SQkAqQq`O75%~4}+xH>+Rym&0FSK1A*~WT_ zMTzgmx>GBTKAO0C7XRf(ck7?+wD91%*Bsa%96Il_w5{dMe=Ln5rrRI?uBm}-fl$vyEd872d9c$+Z z7sC-^Y?w${P^PKg4O%qa_xD#|L?U6?vp<^ zsJ?v0!jyITNzj!4n@?p|ud0z*DytFxXkNwL>+96SrheS(JT1g;V@;agr`e`DHQBSO z&!wh6c>izp`$GoNd$sBxjzw=jvVQ!<>*|RTZ%bX7_->|FlamUyC{emn3n#nbr zc-ho0f1Nos-*m~-09)tEMCtrJjvhbRbS}pS9Ijd*BI{>xtZ1<~gQq&{y3a4%jZ;!9 z({G)8;N>?VbAt8ME5R3LAKnt9dbaxiGrK=$*|+aXy{lVwF+08^{O=F#ti4;@)sM5z z^GpzV-u1?9`?agv^EtEKPp`bb#6HWk@qvQ3QCPvW2(#Yz~!gO`kcLl^>rdaxmA!x^%%swY{N1 zZ@IUwdbM@=Y6+2id)C6uYn0Xc_gU=<-n9FFLgw`P;0iq%-ep-|mV&vbI%=`^QX`o;?0uZLf6_o0nX@EcZj^LuvnG=dBX4YgcVM zyq_b?$TzPw5AvCt}dRrT>kQ_rw6xuG2XV`%JgI9mx!M47FqKQ_m`=~^W`NTe}1#} z+Y{HE?QvEYxi?I2vkSI0Stj~9TF<)V>|DWc&M>*D1+9uVwSx1!l|LT<(Urt@2E)g&-`QD1e2`&E&TXer?ywNVViQKn% z$=YLGOgpAda(mA;>7Cd0ROQ#(@9L<%%~zDUV3P4+`Ef^^c_Gu&wtYEKDk=WGQcM2? z`){AEd**#lTcMWgBQU!uDNNf(ZbD?xMw>GmuH2g{aa-H*^b6Z55@`oIcq2FHCd`u# zTkcdRzhrB&X7^Qx`%{*7em`Ki-oe;!!yPWI>t!eZafIr2KlSXlQEt-iep%t$yC6aG z^{xrlKfc)6Ree~>`9Qk(P?;Q8#EiAuFB|KthV<`?lrlU~TgP(PILNm<_u%i-HU#$kOJn*zc-%h%BWFYao_r0;NBBI&)s)TPn#zfAmM9z(dUTS#-ArU z{x01vsd!FOS?Jrmt&Q@(%HJQEdH(M85BZ{BCjNiCUiN=UU%z|gc^UuGybF&ba&`*U{3gQ?@v6{-yKAb%J=8WKmyN93VW20lE_@(n~|KpF^RBXf>6_rvW$8_x zuBF=d?>#MD=U%mJj`~wShF2`lKbk*@Y23$>aN=2fY_;L#m8t=Ei>B;m*;?~td!xA8 z_rI@>d#lbC+_O&e@1?6duQCSBWnFY7*6dr^P&cvbef7z1v%Kbl=7` z?{t!{QRR=v%XUG!{0>IJJzi@p2?(~PH`zTQ5` z$h`E;)TPUNkC_bWa^upfA!w1CjS1*<tc*|wewVB}=`*wakQd9hTdf>b7zj@!7 zykEcaQbW)6`QO9A6EykN@7^lhzH-_Btkl~>-EFeb3(n5Dc!+_)G$(NF%trIwGcPUS zww<<7&XnWC_mKUsZ3|2s`Z5l-b0nO7u-ns(@fb&p&MT%XA^G#u_})*`wcQhxQ?tz= zX3Fi4ic`QV}8Pw zFnv||d}-xJx*iOM&l5MT|JY~$ImLxZta3v2Z?*Mm9}j8YOOZPN%iA_Cr0*Z@JzBBGG{%$Y6{M`2w3$u1r zd|_DmO`11x@1^hZ%tC)7*3YZBd1;~g8e7Hw8}}_11@^OsR?qo*oJmE9!H@ID9r=5G zv;Y0tw!AgozqRdVgZ!WC?+=9L?_N@|;hJ3dvBp#R2cFn7RH`QnSm}BHh|D#t5088Q zE^yiDva7w!Sy7)qcbrnr{x6x6+-|;k<#n^?hPC-6r}i=0|CxQi**mV{;p9iJI~V!? zy_x>uY5!f*+#?U&gzM91pKHEXY`ELMuUt0RY`L`S z%QhW+E&Fum*YL^9cilYpWhzHlw!E)z*YWVE{kaXAIsymzCMT`hUCAtddQG|Y^s39J z?XT@AkC}f~=6n4!1G}%w&E?W#{djWcY-)V}f9dFx6~u(pU9;%lFwty?e6`}zt?LblW$*L zmHE3fx8_UzwO(!8$5}5scd2zAzdTLi-sGP1f6AXeHA?=L7r3gv%76YV1qQB)>Bnz9 z{lxMsQYyHIr|0r+#eR=Uod@x}#!F`ev3`BBa&plt+05Fh(Yt>1Z7j*TVX;B-#`+qc zwhi01aedu2Yn}hu;BEHT!aSF~edV=OzRh@9lc(oDr3B%}tM6Q}GiWP6{cCGm=e(kt zWtBg-I?Y~|$zWGA=Wp_?H{Pc|E%?4uZ*Z1w595z+8&0h6@$LXZk?mGkmrM|z2 zQ0)6!chh1qPw>x0iAn$8JQq*Svj23+uT*aTCJ&E_kAFD-yj}h7$id?G@0aXcraFc3 zkJTyL+Wj{7@7(&kxar!KWuo8}iRLnA&A0Efx_{?aAj5s82gI zRG!ycwoF%SuaS0uz@?zpVrFHr(2uT98yQ#c<2$uKa8pnf+?Q)0nf~AD^y_|Z!JlT!++nfK%xq-%CK4o|~oK?7IJ$+N= zv>N-Xd(SmIcjXEGIrFWBf9yK7m)sxcxo^Aw`~O?x!>8X*3I6_|{eOG;!vnMRSDhEi z=?P#vlW^}~%`&-qHrF4#a#iZu&)I|CuWRq{G@OfWknF48bZMU3`QI^>b5v`x+de+i ze8qdO=8<=D`Jr{EY!1~OD0;bfvrhh%+Nx*j-%^9FY<;oz-mK$AKkgaV9i1n6Q0rU3 zN2VtBDN&QBo%}0!n1$taVC}N(i0b0x34MIBCnf8@t(K44IsJake;NB9`~Nb0vwLq+ znH6*|h2wrjvQeYsWEHL#FY~Q;1v@TPd7H5|RiR^B?42JEO#QBI+nN*nBj=vA-#OoV zi6YpweOQ|klF!dEtYv1MAXaKHG6jO_fY z8n1uu+Px%hj^)`Uds9CjVY&3o~YYW8#NH|5)}-SFf8 z=I_rwP76J{_ec5L;@z|58s0JAy}*-eY^Kq~uhPZVp0P+Ht7o%C3d7=yf3EDwc;p?o zsLtnJ_rIi`PRW97Cd4(6gaUmLu%GSX{lW=AI{r*Pd@wls{E^Q%O#h* z-zi>JYxjL#@wd3o5ux`(x6as{vOp&wVt)Jgoe#hNo^(}u|MZHOx=wMf_ZIf@^X7ZT z*+!had;Iafb(%KYnVDn4q;jJ_YfewUeYRLPF6;RgwHV2VmmY5_jNBn}J6nETG3Si0 zVhea2s=5RJF^in|B4ZFd`}_v>D6ixr?N{GlwB7vVx~N{R!^$~z?lQ6boab-N4SZ6m z(RV*8vis-F#z8DsrlL?&EI$0cJBT7$!>Fx9@B>>|DHVX{d@A@+sAr7?y|n- zr48}!{gJQy`RbS+NHWARCw!gJZJeF){^#~bZ`tQ{ny>j`CwBhktX2)Ni!)SHUANaH zE1uDQu&0$Zif594_<`NCM7$3!(Rtul^ijfRrV8&ilh0x4Nk0!JJP=uPD5B_z@SjQj z_f*r@a=Jb|o+TN!?Sp4UrS|*V&o|lLIL?(V`g7}&je+|%-d58!ZmxS}=H-1#@9>sd zo0UQP7Hv^mu_j7>?|GlP)k5K)IluTEIVd-^$JJd_bIQ~2=`xWu6ODdu{&45n$ww!y zUs&o~{_5w3n{(A0t9edsTSt7) zJh3@@VqboklPe3);$x4?q*aqPb=V8OdRBL!Bt71xO>SN8`+gU9-q8n- zR?F8ce&aC9yk76$1NpeVzw@@1Z(bM1`{LYdzB5v%a?gu3D7LTv^gS?l%`2YO4o^xm zB05fI@l+lQYpA(!#L6h8)Ys&E={?twVy3wNAMYPq6@UA`r&CFy?cU9JLJA~Y$%=nJS=nV=l0M7hcmfn*>f0T{oPi|A9t*BaJZ8ZZRc@agthyp z1J7=5v3X65PIC3%0{kmgx6QY+`My&A^RDpE!MxMGo>gCLikVh_X_n>1}bV@?VSJ z$v3_B>nEqV%cg(3kmJ~3ms<>mg?aJLl0nw;K9!`Q&;4{|vN z9m;0EI<5SFtvG8kd z&)po7EP5XuW1{%aS3YQezwJuw;u>}N^|A#k3*??YmXo@5FWKzw6boV5)eTJf4eu)c z#LZ*2+PC*V!@^5{8-&_EKPcbyc+pRh)h2QFDt%x1FF#x1ka=}O@#NEo5>gy?+w8li zWBKFX=G_aQrT0ILdTsrVneoGpzB%>1Wq%zD_dHc>{~9(^rtSY9n~%vi-fP=T+iAZe zMrdEI?!CP1bF&%K&$AZaU_V@*Q(vnkYm#(wE6<;)mwQ{k&r`qh{g2v$yZ@rvita7l znC0v__m7;?dCM}E4H39W2Q#c;`e4U!*YDQ?jYlVrGXFWcD)__f)9a4S37A~8_zc%gVc!!Am9HF4 zPn9^+Aa}4>r(yG=7>3r41RdKcb9FVBhP*tNE~Gm5(@#fHf7g>bsYzn98V_z0vXUrN z+IVKFu=JI^E4$qOozvG9kG|5WD!93u$7q^J$s&g76^nY-C@lZDb=tpq4%{q<_9U0h zeE;0rVZz?yo|nX0bvIvj_Ntz7I^R{|y~xpT?V_izL=~B6zhAq8;qB&?E4We%dn1Y% zk{_|Y4KBSbA=SVux#9FYo7`=uF2gyG_%wD=QDS`16Q_v zoL_SP`Gmb6clpn6=xi-Mut%J^il>a}o|VsQvCJ)tJWpyJ&y6<{nCf)BV@1Husqy_@ z8-IJvE##T?Vc(JBS-*8nT)B&x;z~bdZ~U`hZ{1Y2KT|V5tUX=$-2eI_+w?s}@*A{0 zGJVt^RSUjN6xwQYd4uZeTQ5~)^FK*nuzF!!cJQVR@7WBF&{x3>uTB}OEei?i-(uc& zN#^Re=aKKO&-&D*_P#ZHd+EomS1YW_-{ef1^VTXN>>6{{R+GF34szGJvCZCSGm|pU-a%)=V*%ZzR zk5?>NnOQWuxVrFnakWvv>Dq^%dl{A`JZD*c{_B%p-oJkrGJ2(p+=yc8yt!zjmW}YI z;>*k5&o7RzWVk+kjc)Ih`8PkcB<%>Ab7^64waMjm9&uJT;`o;S`5PncyR=!^XD@@y z)*RuuZCR#r+keb^yX@-3g})j1h#ye=d-CAQzb6k`MEvWsnq_!}u}-#>Wr4lrjVtqI z_K0)-ur57wbf&4v@>^}Yt_Y~6q)5;>e*-7n!Myso_cx1TbWtqt3Iq=dDU3K)41ti z%DnkpT^ZW1W;_tQz$VK2;nBzSxe4c2RTt!5Zu`hk$1byvf8ICtcE!$Ds;hZKKQ?Y! zq5euEEcn9@&JATUm;5xBr)*vRm$|6$<`U5t0S>_paT9(-9eWT{ckITQ`w|7G`QIHm z`ro#g&-q;Z7U6q;{MR2b%(r4{xHgwju`=y_$kuC<@8ku4DF5nNW4-+CuLZ@fYkQix z53`%-@Sc@RykAwye|~0cxZa^?|9aVZ2F(ZdJ-ib1e*qh8Er3A!zV|gD6R+!qvYZy) zy?^=CBiadDO}E4|X779(>cjKln!wcsp}D93JgnWlx86_wXQ2_})993(Q(ih>g^y0V z`*G^`hq0miKJWOpr|IvzsX{8U1GZbva{~8*%q$n-+rX5b8<6wYq?rb z6TeAbxoC}dS=2M3CG9(o3to-fI!)_u)k*ibF6Mr_442hD{JDGUwfBA7{+uyjrPJ+Y z%XU@e`P#4j6dJYU)P9jQPen@B&*Z%FY|fiIQ)RVwzsR}A!5wu}s>6`EQc$s0eEZxg zNdu>z6-teV8&$QelM?4O+~fFhHucHf@MrDoT66bxm5c26s@OU4dzjzKl$R!VRh~Y4 z+<7NIhf|H6!NySHNb*gu3E#{$d_A2lycWu}GUvz_N;z*i9doMt_3;NYuXMjZl>F#d zag5qK=WW-t8zUMIO^um1ZAZnr=9Z^r5C2%$?N9D3i0F8KT7r9ikUYOe(LLKOzYlz7 z%Nr)|4wYQF=(B+D!|N5w zi~c=%uWmGm+?P8;e4fZZ^zYQr_PQ?_pF-ypLGXq zb@y80QTRkNdPeWIC##DqqS>++F3g#B@AdI%HLv1=Pi0(&nnwOMZX& zW9hE_ZAH;c*Ql*YKANF=v5dw$V`kNxY?W*J-P9l-A=<`qvMT8Ms#`yMb}~(0+5cy5 zL=fB7FTtXXOAJdA*BYrUUH)BTmD90%tHY}L?%4m^qrAFaMP~Z?C3;^!?$BSvP$irAo=sCzCd=5hJv(Q+`oo5wj*N~f+IEaBTIKb(4Z>bYP5H#RkkNF}w%9E81#4|I zyFKrTDNMZ_RPxZ$SM*@&of{R>$6080j zJicdMKAigAl28Ay{duSJvWK>BnBN!3=vLA9qWHG_zjyv&wHvryH!`eAe7<{v+@lSJ zKm8Bpt(Lk_xaeu@$1S!WzFof8P#dOOe5rR(-GnK8`{=QpQ{^TwNhq>%#jJxx0SXj-Q;m=gEKIQt>Gul7Q zvfig`{2-&Deeu>)AAjwF{il~lT=_J&=G4w5|2J*_?3LCp`18^Yqx!eZ_Ycf9zu!62 zL3`c?rhL1{b@b4K4|8j^0-|0&%tj?D$m}_jq82&MUcw%x$EEg^W{mECtAJAPzz-LQF;LZblo)1G5><@c16m zS=>Uq_L;I1|BdUJMFikB&@Qf1RPUK{W77-u5MG-w%j9h)fi{ zuy*Qfjk3_pV+;$*4(SF5Z&O7ZOE(^w zwZ0{I>$F=68m7@a%B&J(G>g03t${J&)jq|2AHtt6k~_C%^3wA)UxPpV{{PeH&6en0 z`lsbG5)MR*w*2!8-OGJtU9}}|Rz9Q8B5w7UKTCI}UlF*ye9L*wlfQI-%Ky9-T5($4 z@4%y_yKNl2E_=Veey{oSzi)^B+&&k`Ry;-I#D;6{8*Dj}rf!ysv#XS!I%TVj;rHz} zQ~zxct9z`xJ82ughGD|lbyF61=2r^r3=X;U*!KK0vtORGS4%Ekko>Ok;I3H}x?3f~ z>zu3B`FvX&{;Y7lp}}OgBL%^||Lgv%EZRSz#OKQW)&1tR-&AA@?mV8QerT>rSJ~6t zTW)1H0$=ND2S4R}Z;`un!@K2EUpMb!Ols~vEVgUYFW2BQ6NPi<*xz*Bw|?v*^SNue z?TfOTfm{AvE8X$p{reXC4a>isRxG=vCAYKTI#2EKcCHz# zQ}#KWTK$swap}v*Pu~xye4hV)>g0kqRYCJMd;9!*^2N5|>3<8k?UKdwa(vmuk4O7; zsmiveE?659#x}#o<9KS)1Ygy?W)osgxz95^aq4MO!6eJV`Tg(rJ3PF(ssFXzs`)$P zpIT0Decn?ezpJ3mUeal;`b|-@-3?#o2yGW_-YmH7Urhdv@2Tfbp9>Q?bmM1SpMBTz z&#(Wi*l@5V($Sn-MasG`4dTl^-S~j)iB3xdZqSe;*r3#)r;xOY@#T%Ee%+5ODW`XdH~hM^+9K(( z)t18Vl2WhNu6TKk<ZQe-O!h~z>3gKC-|t?)TCgfKZ`Is+|HDhC$oBtxXIUCNgWsMdmwo-M zhaV>8?-Mp+cvZOZ<^C1LJO?=L`!|sbt$^}*(y3BWE{`~Lk6^FdP zE&q6N%kJHe`yFk6o_*MEvd_k1MYY4tQ{mU`tf%c=ooILEfY0{}OEr?y|GoQMaOmXm z$EEe3gU-yh|NhYQ65o=|c3(_=a&Is-yw<%|)44?S<{`lgX5aoe{B~%3=jy!K`lhv^ zX-R>t_v=DG&%2NNnk)LnHcji1>WiIlyV*ZCpJ`6n(_6=x*M|kByKmmNeP!DrV_)Cu zsCg@9d#vxvwokM>Gp*aPBKzP1+qIf^e|(iLJSm=jF3Pn2`Ok{K_WR_{|LaayI`dIC zW2g7p?OP)@%#jUvC0%b|YcGS0I$+!HRTXE;1 zw)_U!WzGA(UHoit=Sg_1Vq_(wtl^r9bk>}oe0HY~hh&`BeAxc#&Y{N(x2YtByIN0k zT63^ibHPLA#k`T`>#R2aes(5eNkl1!+T0g)(Fa<+pQ~!bG5>fGygROJ{e?LtW`^)v0`$AoHYOoa>|1K^cW+zfHGKMm>nNtJ-kv`qa-nt?B>#Y%dgVT=ICU@6Mpw zV+xbmJ8#?yuv%SbTkBun3h9de z_14==ORit^bflZ``Dshf_U87NoR{1C?)Rsg+qgI?4ox~+@l(84l;7TQ!F&rWNWVx61i3@u6&hjiA{T+s&1vYhJILcWnuH_L|2uq4G%uoab@4K=J|TXcE0_zqU$%ACfwebmtYmx z<#n4e?BI!MRd@1Dm#Xbu-jEpGxlSpi=;zJFALLZt2A;YzFHZCQ%`CB&sZ`O>1ZYML( zhQ5wkYjtospI z&O{qs?{Q~yJ+jrPUorcuck#{hxgTaNUy{9eop{dLvwAK+3s{-`7L|Qmw`l%{Nq;}S z`|NjQ;{M7T>+iT(H?fKT6SBAeoE4QjnQ3pZTDf}!=39>_NIP6 zTgo?o-U*qntxcf`M<#Fd0Td8GTQm1#(HW^zwyqq_jLY_>E5qSz9_o3+>~WSSLL^xVWR64 z+vHYRGM@i?;B&#D_W1tRZgIOCX*U*@-1T2~^!$DUh69WJ!aHY#x6Qa6c{{rQPEQb@ z^77}^=lf1xSfZb6#V3_3`|6Nso^5i#I!hHcM`l;q@<;oEb^aWAq~AQ};->?lA^LJv z?#m0_of3@H^tUXvo))<(;biAKt#j|+6dKowY0SU5(C_=S!ab8#m#nVW;@sLl@t0IJ z=e74!7C-V6ndd39QDE|>(|Mr3$Gf3WG#C4it~K5 zX208&{4KV5uA0^Crgn$tj23I`Eq~1ad-C92@I1`f5^yzJHQ~y9nV6gNWn|bNv@)!d z0(VJm|C{~!*qHvPR9o+$Uhy`mr3#y4JPXC817ojlT-3J0V?tP>k<*lnqP&@R6P9jR zb>b^mV&H*I92#L+4!4ySFWR%F;-Xz?{>|*bW0BMI9cCXD{Sfdf?dF*V&MRvxOqrG` zOtYT%^6M$rK)y`@dAjj4j;1@P*{=U=yw;XEFU&xw@lKZyR}I6-QswB}RZeydzoTx2 z9^P^^;bgGO!bvj%gQaBR?rn6P7rwB=$}dAA*LLyaZ_F2}!df$qyB~a;miPYHDZT6Z z4513UH?GJu;y9t_mdw+;+Anu`!wNln<|2vuOF_R%CA42DM%&Nyz9crQy)OOYCij;c zg4!7;ZkrT-`}MYiza$@K6`kA^`(gQfOU8W5r>Pa6IN6!4zbZ^y*I=8o;B(Nc)b~#} zd3{(G%k(L>E92KJ*XMV>pZ(sMaJzKM2hHTe%_rSNul4L)*=uU|fBN$T3sYl$f4irw z?T^o&|6lv3KU}s&VvR2QeQ|9E?)5>Hbs}zN_kX^0ys_k7Qfu-eP8Xk@UncK5zOE<8 zE^fNm+K7(pe@=53JaUigj4i+aGdydutn2psHR66hFBgBdnD~wPLd5r{6SI!(32zR` z3!S?2T-igpiUe)XO!tiwQoM`9zGh~I$Xc}Ay}W$(p47!PY*o+K{`)b3<$d+0eId(o zEAy{bE;v;xVrN^~D!+XRlX}d)J^usuO1K17Kl?H#cx?~wa$U*yj8?Dq+$~>qe;aS` zk4N|C7%%dByttO{rgXmL)3ZOm+Sf`s`CDpxPy9Dy^TmsbAAiVM_P*X9IqBO}(ZG3J zH_}fpte(1L`{{q(AF9*mbR_#%usJ#Xt_w^p@ zm^U3&K04VXxXSkOyIb;?{PtWs;ida2oOSN=2HSlrw0WDm_qP)it&G{4aLfZd+OT zAy5CkQtQNmi>>Up-fBJkVco91RJX8w!vmS)-`^g1`~0+W?ep9Hr;l7~wA;u2-sXhH z`JKGAKOa2mmC}|=`I39AvOwBs$Ewfwyma@-8T|Zealm_GSlg$^XZ~%I$*lhK`FF;l z1GT?up3F$_j0%e~QGc{k``W`D%=t$q{e1j2!ua$HEe8EJ{(Ny4=F9vky3_h{#p0Vz z!u&Ez7WY{tz4GTf7hC=(F`oUyafW|f2hQwDNOuc5GFhCz;D_G+BjNe>Z1;CQcF5@! zb&-5}_q%FPBH!8NEo%eJPpuO!>3`VI28w<~iIOTlp*Aj57d{tbkn|-_a{hTX>Z$-mw)Yl5_xo30a z*KPBJ?N7U-pU%sB<@@EskL7X=$L+r|?0Izl-SMa5F|E?;BAR#S-|yhvez$#h{!aey zYwxvO`0~@QTkFlPB*C)Cea2;x+XSrN?_=2gW}ATZckzUalUO6RyspuS*~7qHKDXcW z`klV|s+*Y%It)jTqD~p+-}L*jw%mr-zxw6G8M`mfk-ZnjKi%x!X3qIlrzLOH z{7yTek#aQiyv*E-e+p=bbB*{9%W;{o%5E-r|AtXz+qN&KO!j|X{2_Y&$3y|UFN;r=RX!GN$cYtQ z7#8rdx>s&btVO@>KmK3mez(@d8CS~Iefcy0!AX6aO#%HMFV3kf{;+4e9l!g&7aBFc zh3_AFI)C>f%ixExjVI@w%j4K9w8!bdgdf^3`L`NuPFV0M>CEiH+aK>twqO+e{5`5+ z`TvU>Eq>#G4V8?vp!)gscpDRaQeO5TN@hN zCoQ`3zCXz9Ug_R+M5{L1xY_MIc8x{W+Kx`p-KTa37NJlb%F{T`R@ zuJVb8KBzNW3%Oe^y2vo+$-$?eU!LC08IgB-`^4vJ7I!C^%3r@5tyDC-LZRRDkpID^ zH9ReaJAdq);`vJT>BK)vNEYxaHHy+;12rEv68-QbtGyU(gI75uo=Yf*Fa?Ti)2>N85k zF0wJaXZ~>h@5zJL3dNT#?n{#ft*?-^<;gOevp>H4PvU&$4~z`;4Ko!r&t%Ms&OQ9G zx{m$$m-PoCv*$Hxo9VPNq~-7?xEdC69($+k%(nJNWYR;?3*KwAm@7Voc#2HUioFrW zu-YNBvynr;pepQKcltk-bqqz1Bz%wRl=5q2y035wJ!ewAeYTv>%bA~EN=EZnO+B#f z!K1Ds=ZM6Y{Wtb}F5Gjd|MnWE-jzH_MyJmw1nqw7s(Uy=`M{&LX$?n(^xu74GS#fB zU_tcfm$Jur7Wb`?YyFyaHSFYUM+LF6JKGgCejIXYV`vIxzT?9Z`lfZlBem`GN|Vn{ ze^=-Il%q;NA)tKzzk3HJte#VJu0idrVQ!?Cbd;H#zhKr{&F|c7TUbqHgSX8O&AGBs zz3JxM?05478{{t^ihcHYhPZ5Fa$HGErQIBZi5DT^|A@3?&X@yBJSYxmeb z`lyzCyop)t0&`IP)2|x0Di0h;1dHz>C@h9W%$DPOJ{wz3ce|O8H3wuAb%h!so z``bLb;NEe)BU|HlTdwz%Td;wFv;E?Go^Ons(w4lhSwDY8@gy#d3;zykNo5OKl%I^T zdA-*Em~q_C>>2w%`&n;^tqYxX%c}MKp5HomzHZ*#z@rtiBrJs6cIEQ>oA)-|S#`Z~ z{>oWvuPIFtV(>+Du?e@%Fk3%+lyu7?nTvq&Lnf&WXG6~&ovi5H#P1E(5 zIep@erN8-vdxMI8e^5OtX+J$ai7_thN2JCgrv>*CfRNw$AGH^bK64TRWa!+p2PW-XEQW z1h1W3^%31`=S>k$UTvRn@!#%8H|(v%-1j~3I5W5Ldq>>At=@%4)AbflJjs4m%bZX0 z&*jh??^d6g$^Q9GBZJMo_#JDP&#!3TSggOd^wg&aX@!8S?EYVjid{KZJ`_xREfLu6 zHUFsDeYN|+tC-R@Pm3yC{gVw( zl$ULp_q*iB-uc3IK9i*08ngXiS@0=g`WMCKzI#=@r^PgFUI@RdT=HEh_vbFo4=Q5K zcKiWzE&A94yc;yzzdx8ep`cN9f$u4+&=rK3|W+Re|>{B^n&1`pSWrTmZG z_Tc)rsBYI{>pia&16V$IGSuIkFSAA#JPN%n2s8?PalOM?wvtP`9`pY;XZX+Y;AOJj zr8NugK3jLZQ+t0){Jq`w=b}D~+}W1O*itC`!DC8PmgRCU&ahKVEL{!{mWg<=eh|60 zYZFUj&8m`+jSZqI-*#)HL~E&I2&ggsno8upu^ zT9~_ADkezm?VitKPo5_&m5h2c;oI6}Yu2v!;uiCL@TjV=>PAFtD_hIS1MzGO$)C^c zG7)mni_Bh`n#S~*WdS#@Mue$D98<2-hOTv53j4h)qg&@Qm0ax5<%y9n(9#Ha!uXhj zl|M3POPFo0x5Hfhu$#OL<#+bTt?rBJyy>vFQ?4xT(}njow@Say-I(w)=1%?bX@AbF zI)O2Sz6akazb#gLf#Jf&Cyt@}!%kYHeeinZ`b+n{m(~t0!BUPJ z|1Ez%SgBtxH19`Gvtd4))+O&R_vLNmuh)J}TjA<+tNZG$7~SWhKN2sjbIP3iq;UD} zS^4(6kFVb4>wL<3qs%&iv-?)R+MJIQw=44v-@sk|4qvwZ0M8mFSYKkY7;sMDI+ z*1s$2swZrD*{inJXt~bAKf9FKIV$fgw}>*2E`L{EpD{68f~&H3x`fK4(gW)@i;1w_ zVh~&YwEU*WdGAc)>t_?@Eoa#4?RUtS<4CS%w#fA0R}U{gsVa_S%DKC=&goO%!AE_=3Y*33IK?y_f%Kr0ycy!&yukM)BV zgFMrQ^E0|lv@@=ryZ-R*>bwK2vA-+s#DDKeP+R^nl2av&VcJ(=)`+Bx)jOWW z%!923;5lFMH8|&;R8U#L4UYesa=Y1Crykr@CA>XXNG#!6^iki$*NkH9i?k7_OJ-P@`g6=M1B?(!mO zj+LNU1bw-z{j@pJ&?&YsFnItPtEA3+b zp|mrK zYltnrJ*`f)HQdusEoJ^~=?v9!`DLQ+o31jyG?-3%^!|Cub=~uhjUsCv&}x5#N^j zE1R35Y7O#v7`pkRdYb1~8}QjYbC9VyqxD72ZRaLwd*0=37O(aFj$SK`Ua%@sGQCXh zhoRnsgauo<(n6{X{8!rUzt!$?>%h$&9y>##{T`(`d*mIvx|VrW#A3dcy06)Id=4aB z-SNYRVLnr>DbH~Ut&qSqAxld|Gx`E6UTiY$W&I|4L2hY`xWWZ_PL_(j98=1wbG6qx zK34wb_-O4@hx5!f*B8BK6nT|-J$Yp|=MrJPNxGXQ9z6OY`Q+2Xzxy6Bs#dDM)0Ld? zsdPhiZ|Q7JnK@6ipMG2*8GYzyvrx?XTeivTcD1vdDU@BzeK>Vpg6^*!F{%qTww;~- z`<~p-iyuCnDc-biz1H{LDTR`;73YNwUYNh~%Rd)w%KvuTM6(Zt+uY~b2Z~=?TC`{<=@oVV-J^Jxv1Dwjw2iK?l;fde%HR4ag-+K%#vB^)Tuc}gs zQwr?~J@RMcqMn;B=PS0pmkLsxFtwZK(nm`tv8{h*I;ROtO%2mFN?RZL@cDVRsJ75^ zUSVJEb+Ny><>AU(Gg)(+tt(nauC)uC^zOMP1g`{lAnd)+1m zge7q4VQJ2sWy)LdhTYoR-{y*<{cRY(;9hmRs zHRsx&;_QWYtWSxZpQpvJdtFRR^ZecNVYaEN->hrmb>hsd*ZsJL_v5=bc~k z%43z%&HT09ZmfSx-2)f+imGU)<-}O6PP(z4bx-t(g<`dfe$RThoU77BV}*8RZ*+6Q z!Dlxd1hVexYrQ+7endw7z`Mgqv5`{k`{wP5do9e#`TflHfZa#8)c-Kxi|Jg#e&wiA zbc!Z__->1BDPg5&tnK@Ezp%?*voFK+-|zf=E#dp#r*bU3;$_^f_RR0W$K!Hc$K|Uv zmiT^LzQ#S(U*|@;xBcHEm*!9BY1y;;gv0)7Jsa;#xer}m=9PP# z3%1+K?e5us`h}wgzsk>F9hl)c9`?>-;H4 zuTMUGKK0Rtg7XpuIx{{udf}Km_%AHxO42q$MeaKr(XWmaQXiH zvd+|{A?arWulEZ13nlO$FwksY_x)Cp?WxM!aa#&Kip+NNPj|m3yX#4v%+^0)Z%hnZ z`{Yb=**=sr*xi^flLKCa@#3NjBug56RcDuG{PPvm0v2iDXR3G#u2LT!aobaN|MSP5 zyVD<^iJsRdZT>dNr9?GMWaR_46OjRoSCm>a=6B^s*S4Oqt18>QtRm^|^YiRR(x zw;pKTD0k&|*&5ckRIfbUi%V=??K(40R%E%tyrX`lTe1YU356Is-afHCvL*L5muX1O zmP5wO-3+@`lBX}O%3n0+aq2~{>Z4lG5^toPbYye|RzF&<;eDIO_W7aGRPoG9>$H@X zm;X!SUfH}%^3&W(hEKK`3{ed+IrCJzS5NU`OEii|)>T@~b58V?lAg`N1$+%Tk~0{u zwi`NRuao+meaF^l5ETwA`ophp@4;Yx~*(~mJ+_(SyiX+Kcr{f&h`Yu;Y z*$}9_u#maCA-cXs-0t%{{fA5HD}MHDW77=GU(_zz{;m~-)AxT{xuV_l+Wmcu<_KmYb86l-b8+#7rLk-JIijv zZ=AN>ux3kd<=wThbEa@jKQ70%@%#Hza=Z6hzg^b;Uw`D(;qXV1`88_Gw)rLg z&3(PG?rhbat-ti{ls=A)D8Fo#voD={+nwE#(dIeFp6%YAc-nThVg1V*om<6%VtUaX zbIap9SiQv(6YCYl-t1!FE}PrGRC{{j&AQWRHVjdV-p{QP)cg73`=$P4r+6IXR2!bZ z7kTqIQtd&!Nz827-#VNhZajC+kuejooc~gdds@VWNois`Kc6Yhxn*QhUF$Nn?#M1q z?%=~5DcyFZS36mx++vR|jakJfUgngx{a59MnWq^zu6KtQD?ZDvjZlk~{2O(RZO1Xs zeRpzSr)tlwU{Kvv{>kT&l-<=zPcq`Mep8$@L^ z|FOQT+pl~qW=W*u?=$;F^X)(Q{CV;2utDYP$r}=*i;k;&XK-b?qN_Gdcl|3hp8NTW z*Hs<4yL`f~qahOo0s@z{X9*T^2GN7o4-!9o@c_#s(tI!jZOS@E7wPq8nSk2 z=bl!Q?w047loh}EM%G&9opxbgFN+yRKZupfR*5Q@(Igtj6uo8blfC!Wx4)TW`0T@~ zD=%BEqW^6?ny7!p*Q(5iA*wBIMe$K(r?4MSwiQ2EwBzp^*3~S@OE+}|Zp<_;^|TVK z;9D_6^{4mTH9A#D@NpE23uE@psI~ ziYaPi2=QGICl|j;O5pnZ(97Y6XQa)Dn7GMHmZ8qDQu*AC-`N#c=iC3Exb}ld@YU5D zZhty@Bll;LOwElTQC$5bFJtS+im5 zs<5ZieV4zvG})40`d)K;mT9v0^WUz)!F9fF9#i}8eGpvq;FDH#+w`gD_MES1UEjjI z@87=s(GTD+Ore>`VN=T6~>T}hhL)-l>rO}e=U;B*THI-bsxOk?Qd%M-E6^q>`fYvWE$gn=( zXS`$i?9myau8L2Ov_I?*o7 z%Svz4D@pzD&oJLO=$3IbWNE{)#Y!_-KhLn8wx3Ixz+!8Du!^@U4d5)0;3v20(s0&(xwhNYDo7B+9l$oeK>qt$0 zj8LP})9DSm>sf>zT>Cy*zVOdn-Pi~Xjoy%pYg4kfALH_8*lpvsXx`Cv92t|}f3lfw zePzn@Zw_VbUdc|!R@_n5NPSe-)3DRL@Ay`&9LX2k-fv#&d7=8kmMyEE@LQ&`Uh{sd z^Y~M`cznCNweDT@ozb6@jLx$v8t+?lZ$JA2#?G~^nLRJp=N)1?u`bqGc$#job3>u( z@4NN?HU0iS__-pxe%JQJH@&jg#dg=*J+v=8@B6Z4Q>bHPL410)(zaKZ)lIKR89cjt z{QZrMH{~nxKY#mHv*U=|k&B;LxlaGqSzY`m&hGA#npV}_^=gmqPkdx_b=lF|3~al# zwy$ieyM4F!@HX$Gr56KuZcUwX@MZEFPhtd zZQt!nhe{^SzdtQGD|*|>+skB~lCNHmc++|N?5dyh{xgKk4CGlEZ?r@F(`JcT`xFHP z8&5C0v-iuqR?(jvi(B5zOh4oM>D9UX+YW1<&f3v_+<#A5FO%h;a{FaRZ}lt{pB8iD z7VkUR>4&|trM@-V+0J-+(2n2EE7mqc?VW&S&B>q*EDYXN4RK8e8^r6MmvM?rd#(Dk z?_F$l`?dRfog$|Fv8=r>r^7h)SJP>Y+IQazJvX!5X?pbQWAMVeX*PU6BR1u;-(S{n zcKh>3KfmX`o8a6N7oFO+y;N^kUC*O>753kI<_NDhbkJv!+4;t9PtsLW*&E+4yzpbl zXZrAj@6GEKi)H=6jmFCkkadCONOI>nJIL>1UGjQiyRHY8r`I-JS3urGt<&Fh0&hxWdBFtvZp4xNn;GhXGy z&SF(o+IV%Y)r)|3_frDy!Rq_GJ&M9E9y!+c#qUsMH$%X!Prmy$KV5po*UQv|Y5%r{ zF2deg13{8UI|P2 zdj0e|8|jOt5f3}xbA%YGnJtJrwX|<)p}Ld;gMY?7%@>o`Fih0_u_tKf^*hWbrghfI zz1;C_!!Ff)(MP(`lT6q5cxxZpBvE;DXL$da#}}Qtr@!mj>HUl;qx;4i2G3ino&Wd@ z+>%eu(RF(}E37rm&m~s=ho1){=j#;@ioKK{9ID?bGr#`5%Cc>h$JfZ7HQV*7{rbb? z^*?Oh?R>Y7XWvIgVeSt;e0R z@XH~7GufS4K0KUOxT>_$eq+|UhFQ0!fA`>yJ9Y2etL*9s_e;V;+y^e2rl-yemsl3E zb*i^l@slq*w^#*bajE|fj5N|Judn}5bf(ynqcmIfHi)jVO$$m^TW%5{Es`&;?grKPrAx_a%^4XTRU zWUtkHo&J8|%nRvG_d-|Zvn%pT{Y>uk;km^z;qbJC#z#MIKF~c>Go$3q)>yrVUfSaG zRO6>j+xh0q(`gP`Y)q>DoR^CWBPMBY)t$b2(T1Ay^SA6}2wnUwFh5lNtK6mP9q(ucu}S?|j&+<)oq{?lQ5imraO$T}Zw5LntSC$HkG_|k#@l|P@|z4g?s;)!FNr9&|FClLxQr0c|w7^FC+Jmiw#`cKVTW8rC=ME*|Z2 zS77A0X4N~jUTe+uXR^i}oi3rFR<6f%v==zIb)KF6;fzbvMLh|z`A5~(9}y3{v0FPh zbmi6sm+ypJ`L_HsYseHEhOOtkpJp;U<+wg@We>Y_O}BNverU;});5W=HMgJ7`x;j0 z9Q-9oV0z%auRSL&ERk)#7k`~WcdDFE!z~Qcan4@gYCOP$E4T(H6I7;mn%su8A-TLTx zTf?+ZeW%wpq?tV4>wf<4j|9ax-{#+MzMWT5BJJBQu;IGkZu9$VL*uLWy_Q-kR{6{4 zKvd!Lna_hK2lT%yd19#dvFhyI2}W{Dme+roAO0x#{jdC-yL)nvo4UALPpK<7m-^!e z=kny!zjPT=)`gnPSJpC@W`4zUYU86&2DO{k6}?j}b-#bmvRSf9B68{HU9PV^U-Ef} zI(}>v-FhMI`qj9l7JQGKU0zKHxb4Vqyfl5+_Cs5zMx2PYJ1X~UW8uwjx7V#`Sa)E7 zfu_yvK(6Ua-e3In?ssHa>DG75Q=@jO@B7|wKk@K%9h(Trto@%)tlfUi;^`6Nf}7!W zU43bGcMBiC{qg0sec$i=yD4rfi-N2!+uElrT#}LWiR-}Yu;`bs-_G{#D)f%ili=U# zt(Y+5Ptd>nn%9`moBotCo-7a>!N~C0_I&Sa|3XK;1%=$J{wlw$cDOoy#_P+|=KYB} zy6v7;yMa#j=dAULkKgYO`0@GiS#NtCL8h|u?tq4)-tK>1erNH!{_d37-oWqX#TEQf zUsvSqY5(wX>!jV@|Ma#C8Y+ZN`gen?Pt~q0Hj>HqW|7{a*sycqJ7*W&y&2?p>iGNG z_+Ptz7lr7}W6#&VVbhXw|H+n0zD-xoX8x?bdj0zJ&;}r7QFbAVcw1TGJibliweH) z;JzH_-mfaP{m$(`_kPb;{(S3LJ}@yHXRi1%d!>z2$%}K>AKhK;cQjvrzYMpQt%QnF z>|KWHHFjP~ZKW#DZdx$z6zZ0aUUxL;);E`p;sHP7?EcGaSfi=!Cwb>`$(10k4@&cF zU(dSJb?xRW{s-0nM3zkck>$Fu>%xrrnWr}-uT7aNs4;hj=-#UD^RKy!mKH5vv?~3{ z_Ru35%JJq}PK8so!n!ZD$=&#pv}%hPbB%8H);X)gTcQ*j8MXAMZCo17@oU;$4K59~ z1*wst?q1g0{5M?-d~ew^@z+w%WDkW!&+dMSYG71cx@V#0YRmUN4l3I@cJocOIyK{o z;n@Q_Siii9yv<|dep}pT_M{c!J~dB%w@+2&T}d*^9tUtL19NZUbvW_KoKZz5BxcnlpohKmHt$|5;3&YuC%zm0UM?=5h$0HQ&1SfwS2gp{Q$7_vA1Aiho*OXQFn({kw){ z_n(c?XG#iOzk6yvv^bwseRXMhl=|C8KUpKQTm2{Q3fa)E{G%>rhlz_WU)TMxH+@=b zRkL>{-#;<`jfkM=r1Cbc<5xv}4tepGmfSF4xcxp_b-jG`DxR$dMJ_UKbN)@!f7l-X z@8gMGr6zT|zP>X3aV6XDSnc)vhK3_2FY$c1qrBeSsx4)Y;daeaZ*KMcG85N)uQOlI zzgcqgr!B``SQ^GYdA%yt>}kJe*(K{AvwpGY?!R;Ycxlf;rqvw|vQ-XSY&I|HSjKX4 z>GCzKHuHa8Uf*N$-In3;VFszjG`0{d>c=spw;E+{8njHTQ}$UBkCC++Hu!_j%%;tSz_O99^_!qxEJs8W}rr zKYebN#Bk>M>C}FW>ER8ooR9BD{W6!o9~HUZ;xju%yilqYjL)0-sdX8{rj$0?WwtHdL#RJwcE10 zf!*tvJ{7V8WqpmoHAipfugT3f=F7}seqg{*&-LJ*p?GFkK&#aGxL?eF zjw&vHywW>NdZJjsY!*Sit6A%nzL}WhY-fs-=|BHT(|WCzCb!FqhS#DjomWG%okU$D z0v}urU#MEOQRDf05ufv}j;FXB^%n2l-1qrv@w{((W}4jE!aMgR*+x2ET`m-Ug@tMJ zwG})HTBh3?r0$=eF>hn&!YQFw&gP~Y$7uw92x;8T5%}-Z&dXXZm-o++-|c_)kqKjN zmS(#QpRdF_?v2xuPVZZzaO%M#kWDTwN~yDko9nCA(&{OWl0e`4_$@GxmQv zv&w$W1`)wohi~(|+9ta1&gPYGow#GB*{qFizqfWpVd}jOFQubf7Zm^cbIks)#Ou83 z67KlwH~XbmEl7xOy}?vHIdu6dqt`3miZ>oxoBe7jr=0eM-Fm&d!=$bY1s|V$$>7zl zs=MZ4kCWBsHdSB0`@Q4Z{>8G+!O_bLPW@K@xOM+uxuh-ZRxK6vCGM^ zVco86dls#ZS9<@lf&bkNXGw=hPqiny-)}u&eSceZl34l!y* zuW{~KZ2fc6Z2u?KzbeeU?2;a)N4JT-mb;Lw(D2%DRc__?i>8kEKNWJ_ethcswD;z7 z;yzugSh~1#&*hW9g(e7T@-c^=5#^G2de`(U|!40gjoMg zUsUf~)^Gcj)-b8_pr`%2tY7CAEZWZZrSxl9eT@3FN6p@czZ-wozP{Ye+J4^YJ844w zzZ*X5pPjo(V7-a>Obh=!9?#$VOhqkm6s-tWHa{`<)q z#qzS2Q5G8o*WdfD{bO?Txx@Ro-zhu#Pn}rwT>hZy%*fB>pBZ)9A_OPS4U}B1yCT|p zM~TFmSB>YT+?iWEBzMS6`X_QQlP6%K>8xc36{cyp{cu@rfAy65i>Yd#JfChm6!1yp z=<5~2XL)42q~4^hIaOa(FCA^0CEsyl_NkR&)mdj1lxh}i*(tkMLi6e4;swDq$7T2I zU`Rg5u5dqDtZ|LT^G)grXS*Vu16R0fb8!^}cUrr8X}=8E(p!D=XOh z!qckRA1|8M$YrnF`*&h?L!VsXuK)MW{X#Ya# zPfx6H=v^s|UbFh->-U8=I`xSzS{xY|x%hU2XXL}>);?2z8#sj|Axo!hw1U@{RihvvUcC^XHd95^F-f!*jfND&M*0Qs-2YN(jP6G zs5(i}cJ_kjb;~Djsd)Q&TG^cW<$*674d<~hwR`lv;G@?=?O)83LM88)rZ2s_%~Ucv z{buQ1yT=wW{`?cXZinfuvu}Ix`q^uh`#aa}ly!K&!)KrT4JV^rA9MmgTHky9CuX{t z^r3I-pImKT%YVJwzVcpStcAT~c98o0>p4$f9_QTu{pYFt)n7Z-)_s^i@!q!gRlNzh z48dL7YaR;dTYpIV^UKaWX?f?nQ%&rif(O(YWbVwD`BPh8w4wA4>#G%uk6VFjld}S^ z{Q0hZQ)gFavXDA(^s(OgoQ1W|*B`Xzw~<|c^LhJ?)N^4f4(rbD`Lx$*kw8kIee^Mh zsoB4LI**2ht&(iu$Ss_5em%Fui_pL|2c{H#{4HnrlV_60En(i*s~$voCO+3aleBGC zzz6jU=JL^!Pq|F9Zn^EzHe5Z)r)O`(U*3lztOBk@8DHhQ85T*Uq$)n=xUqS`n|~Wp z6rUYUS})@(R{U1Fdyhtv>-sWTm${nLvIQMD1P{+}n6B8^7j=2UL9utdh3r~g-*$O2 zdsG=R)?MkGB+LD1-R12v-}m;(>xRo-{ieorc5Z#a%NtuN=R7kjy&u`*eLiRZwS-W? z?*2@jn(vqGkH1=decP!|84FW?e>?kQbwkcY_NsO3YGxNoyuFckHr2c~LgjoRQ~P$! zB^z%uSUMhm^wxeid;R}O=O6u^d^a}Ic;dS~sj_z8cF#W?`ur}B1Ao$!uPmY~ubliP zQFY+x`n@#;2j;EVcHGyZR&t{7ijz!p`B_?OBHXSk#(q!X7cdC;zx}G4)xWrX}@UeIv?E@ zX5kMr9xtra|7l#W_Vc9%W5cXZTUPDeW@OTu{<^=RBmeK)@((x5|A~WE9n1Dk*R%c~ zRP(QN{=qAIgReY4E0N=8r0ITm_WZtim+s_wGat(S6zgY|_cp#NJ^A-f#>4FW*|i&G zw%Yk#(JST?)GeRQuq(}%^9tX@DBD+2QxoR~tXvu&a&N+S!HM=kx6T~hxOKwwBQy7O zJ8GIYbMVbL^Ls+SaMb=|+QI&UX734y)*uK&w2OT zACkf6YoGsWwzECJS#|zt>RP7jJ59oD3ikxEC+*m~BS&cd?L?1{OZL}BPkpxAzx`)_ zf}LrNbzS7_g~g|t8@Zpm{CU>3wc;aVc;fb-bB|AIcMxZ`*kx~NvC`hM;tSVP*;13! zE13USy~=0{tS|bI%y68kLbu^+vfeqJg&py)I3yU9vy;_`FZzuIkK6RZNkgSq$9`xf8`i;&l`y zm?l+EUGv&NTj}%87`u}?STp;%W0;1gpgrS99)Jq4?LhXQ9Tsl+NkyI}8%?_XA`rZGsZKDaF3 zdG7nW!r5!ITof|)cicW7$9$lZ`&@^ESna`k^Tj{!zg8hOAy6d4NWE&|x%;)zKTCol zMIBs%?OAPtrBu}&J$<&7$r=5N+;eRYlimM&>l1EIbAQfxM)h>r!9B6+m-al=%b9gM z>QdCvs{$D@+tswTn%{pc&iG{$t9%cu!tQCJ;+q)GE@|Y%myZ4iKd{r-J3dk#JU#T(nSG0_w6@&PQF?u zwQ5n-YeStamn7G+ur#bbw~tM}`se=SuT!@#Sp0JN%G_X!=l|`c)Av3t;W77Ttc!68 z(zwhy<&2`slfq+*n;F%-@44Ci4SE+l^|V#q&kIf(N8Ibo;x4Q(*?xLI>lEP!y3wCm zpDBhUbu4t!4Xagr@}aaZUby4=-WeOZ@2kDdIQVZ)Y+|Ft8qtSoP$?zui;qw)zSA z$COU{R$h7RUBJv8dnIaE)`&bjuIQbvlUiMuG^I5@(`U*vmEsvo>nbcn3<6zccIGh0 z?R_=i>oZue9Qe(cBUd~zjrHu> zZ4X_mYo*^umWuJ+{HezQ8xRi`tPZ#*Q!6;1n0&UR4u#rFX;5X8Lw9>_4+%%ib`F& zsUVr&y18^!87GU$v`gX-T0bW#T+muO>-W?}+plmO^Ie>)Uh2Ahm4fv=<|Jm0NYzOG zZU4Qx3?*mVh*v$>lpzzC#_n>b=3~^He+$=dzf^4!u!8BERnm78y$l2Q@9ZiY^qy_c z;?+2kw5OrWH1Z`YgTe#7R%br-YfBzI5*CVox4g&Td-%T(#`eeC<9|oqsk$rMU$DC5 zOF+h1Q&8jUpZdN(^YW8+6wbJA8npWPhCS0xEMF(iWw9~ZGm`(v)y;d2!|hA`FK^MQ z44-&##Vm%q!HpC4zvi1-lsNrXTw zVY;#Hz3ug!11I(Wiqw5rD!*{?%f-CqcbflKTvq?s+#l=I5S;Pv3X_h4(h(0mwTn{D zFK71XKT3^C4mrqTeec$s=q06Rj&H0{y?wTCRC<4moEX%H%oL= zeKW7~TBsYY4NdZWt1_+gSKX9D{%hXu*>o)G&(S-2aVk&#ZEBbhDqZ!_`B&PNpBGi^ zRtoJjI=?k{(+lni?w7hJUIvgSSdar=V zb(TvZmTwcU%--?Dw!PP3pY{dj4RU9`dSyoYi>^~?y=D8nOtfL@<^C)Dj2XRa z{CKC%w&O+j^hXyxs%1Cn)IYC0;1korRH(J{LctpATk&+_@F_OO?Ib*ZZ}xAc!kw%c;= zn(Yk?T`5UDDe)}-;)(f~@Vn~R(_3mSw=eqe>x>v*QoPMW!e(fUPo%0it zwtw#2Iqj1Bn{Sh=!{28-p17cTcaNCo&FBp*-;eK>pRS*@W9PBy_Y6CY@70TK%X_zO z?#+uOhyB+d-~acV{o`l(cNrLNTJdn4Wt(z9dB2&)#~ne_C!YAv+^Z~i`kq(U{NFb- z*Rt&mia(H1w!qHr(Wa_%+s`sC`IdLfJZtZjMVGc#?2@sn%{_44Dug#cqIlLGv!&^$ z`j@|FG(7Q9Kki`dYtDA%OJerhYtQE%IRA!kxpjw()djQJoJUHN#HW9D?UJFiS(4Dt=(ldd#8xNI! zbeKG)Q&-7$#nEZ|h4Q;jMQ&>N^15|B`*hb+2NHMgQI)#tCdl>d)cbFzGGnuTZK^Jq z{8^@yf5DQ2rPKe^&Tc;BEwSJ3r?pONO?39%+ppih*gE4Y``=3EJsJCFe~i{%e{9jt zyElKeJ1kdZtgXL0UnWNewDDra;)^DR@0d!i1iJJ4{5^S)mmzNFyB~+=aXye|lrg*~ zbe7MmL-lgMl ze>|>vb3X7`XR-Iy@oNDMJGcZnPAG7!wrSsJ6c)DX3TqRCd1J6Uv(U0j-M4)eef1}? zPHWwy{8#vafk|m{tM|4Cor=s2i=v(eU-AhvO?W>gX|?dbEvwom9N)d-d_+vn?!`}j z&U`fYU;6zcn?!46YMwm)kg>>?|Hj#lCws0vF;y{H5SwzJ?n`j^&MHRQboU{w9S6HGDN>y{jqiX-1hl(f3@~}ssG0|?cL>imgwb+g<{Kp z`dYlLpWkn-zn{B-$?en3XQ8}>S9G#uN+oZG9sG1}g_y}M{+oN9_<2?&-Ra|J5V@t5 zv9^`({n~HW)VHnun7w@(vt{pF&89Mw&P_AlPvh-Kd#k;2{a&Wo(HGy_=l-5!wl%h^ zXr8L;`T`-Y123iXHB*B(dHpqOUFI?;$tuMpr}avqy5iNp*^A87mpx$aXIi}>t>Mun z|M(=?m&!{fgKra{TqB%hzx0+n5}8$dyGRe5K@p zU_a#}&(7^#u=B~cl3L+K^Q*T^GfznBnWvxoSvuE1c}98E?2E-SFK?}GJf-=kZc6Hd zFB9I&?>>F=qtt=Np(nS`ET60KvG&%#oloR7Wp{k{sr#$z*^smGcxAC&OrJ;ny;**b z`~s@(&AKqX_w~Vs84nl5&aC}iWYHPFDQ${{@P=IF`85VhuS{S3D`dx(7yCZfY+Y>C zDk!i)*LCZ4PX0w{E5)|?@6h}7^0&gSJ&{$KjJqZ+XYXU2tv`LgOC9g$m+og?GrH^V z=5E*BTYBbm-L;GUjC=OlTkc4>!}@Z?;yyW5 z+`b?cy6wfI8P2OF{tH{SZ<)#4pWeKW4_b*;*6gV{wxKiN_%YMej-PW&^(Noz)b?XM z8*#?4>r+kqyk!#^&mWtme{5N=lmc78hd>6qy@%H`W;694n6Q@NrjoY6f(X{?U9loR zW~sYfX`E_i75DbX#Yq*9z8v8SaG%f@Xl*5QGBPeqEB|)T6BL&LuZ>6P}bRPW+PJ!+1E!e%tW{J6~^HSW_SGA~)HRH;C!h&L!WyPFei=DZc*b z|G#JbAKmG%XODjOeoaOh%ia3>X>)!q{QPm_{eSCuzHy$Mjxd0)Nj`%5{cY^R{)!dDmHO#O8H`RVEnVh=C-GVc0r zRFM@rFU<3;=;Pe$Pgo1&Oy+-{cWd7DX?s4M4`$^rh)6Jh7I$gd^u^va?bG*Mb@qH4 zbi&VJfwP}>(7ROyPd6+m(qvcDef0W9o9p%1LUFslUFRQN*>A-x{qD|&xn?h4EWF^` zEd6o)`d)cP?mz`z*o7JrS?XE^bXjRuz`L)HG%RX&-%#tm<@rzRF_gba< zwmaCq&t(*|Et-|l@kv53slemVl$x_YjD8yZu>1N|Yv_4gd# zBYaIf;C0*E`E}`mPN4~B_HnJYT#`C%Zo!5hM|8?MbJJU$ctdL$4~VQ(xb-!#G5l)b zv^~H2W~Q9=t_yd|)W}qGExfu!{eB3ex>)y`58NFra+?bD9=TMRyC@hsP2DwVf5XNF zn>PG7_+8>uas9SQx4rF_>burFtaHg|uurd5f2Fo@+UG}^4#~Euw>I3>&UvWTzc7rC zb~*5jUs_Idrmo8ThszZI{VhL#>}Yy?*qZA(OH#FexovqCHf7_q<0T&Vs}&>vv_6Y$ zox%Spd|~df@0q@%MIPmGZt-B^N%VcfUZAdnbyjA%evnjl)uXz zx>V}(zU2z5@9T?1WxW3`gE_!ux$JHua~Y|J^NF1{$3{epKI%neLuH@b$TiC&DUd=l>L!D+vLXd)F>xSa3$MwBT%vZgaq5 z(Z`b(PuXbe&(xN-uCLw8f$722`&r6s-+%eHcZGud^}R2xjw+UyFX7kjuzmF1e?){)*T= zr~bnoCRdBkTl7v+mAJqbr?O|t?f=irQZ*wVeOvH~o2|S?%BF1ZmuaGQclhty zepBySrIIvej;o#kIL8BUAm9X-vrNACQc?@@0|HuB2aYRq!F zWGZ)MzRa9E^JRJ_x4r|_LTsgaw$`sQrUlg(ZIC-)eOzCF)zy1`H91B;DVeq5 zuvC1-@9@I&Z@)kKx&MDj$kjJ?_pjV94nGrlqyn?2S2vTFFuOq+cIoGZ4AH`Stpn4gUY%O)ogXt$*12 z{@0i{A9vg>_qc6)EA#cV+#er*hCi77|5xpr-%s0kF7Rf?hLui#$Mfi0B)Uy`5a*UH2on3sFmBGBCGlL(W3c}_k8z#^e+3I;XAp53xWi^jfxBUwwT!pX0mogV-hazqZ?L>lHsh+fo?Y%*oOn)tUXT&yy zZH#PXek!`uC+ywDuRX61?hf32=F;}m3)h(3POYDI&AiWC_(Zc76I0>eowf{9!~O&Y zJ)8EoP-1^tk%XT2x6-B}>z}oUzY90}#caP6+ZwYx&_VzB#H#6QSiMuf6ng*kp6$8w z@7)HOY3~m|-uCdf;7`f#{+uySpIN zH_!PsxjBA~^}h|znJW|<>KO_i%;+}Z)_C;d-&2dEkNO4wa{Z5&zq=(Lys>7xoc4T{ zDI2Bmkr>uduyfJM z`S%!SB(1y@mVIQ}L?%ypksJ@)Pc zQR2QcUFGEW>(;SW&3mQjz`>ly^ylYp#>q=XB3m!T)_kg&@&0ypl*KC1Y1b?o>u%a6 zcQ~A|+ID9elg%+T{g!207c)6b_|1A$RAZ9H(T3Pn&U2r$Z|97D7IE5LZvLtX(@Z2> z9(+8M#q;ET$^S&*#eD~M%Kxxi_vf9j#lyYlkIQM79nM+0Y87ay+2do~`RoGG$$|U0 zZ>WFf;E-^uelEG7HYdc9CE@w|iEC4W&#(lv+stGBozn6&)aCarJ-yO z`^$rZv7e9LI=`}A@i*IAm$cr#3(gvAD*8pbbvLNadDE)6e38P1|HT~W0ucT=N{_U+bn&XJ5)d8{C~C0RO*9NeEzjawS_2za5xJJsX1in z@vK}Dq_SkjDxYNu4A#8I(hSlP4&0C{E>w=+pnGzYUfJsYl-S)%Ki68@f7|`7>e}Y( zze`Uu+hzTX4ZZuk`hI!*wYciHx2wM0vc9+G>HEhPhienxbVp9+Z@#f7{DRGwuN@cD z;=Uv=2!C)Z@#Xe-zF$W#ZT?gH*=5?XA10H&THHRc&-9qdrjp8cldsl({-Z6ldus9B z%PUlr?-ERy{=d2VW0(2fn(jSf zzy2KmFC+hN=KUkg`>X#yxyrgFS#EihhUha^wjX;Gn`+;7|IfP3AtN%!#_05_>ZKp& z#HJUmt6WoF_>7@TKD}a((u!FB#m8?v{Hk00_S4TJfqU0$-2J@%)?@1x?8uglk*{}|fb#3eKP_=y$5?T%ap#Xo=A-fw5? z`I?uwb^WvFJQjft6VtnQ?Ydew?eo*}S<{-f%e41PZv9@h<;9%#$7Ubqh4b9peDt)< z^`5eq(XLbWpPcl5$79j%R>SuW(|DIB%k}HL_EE2pIsN3opBtMQ7tPT(__X+bZ}~OT z*vd0&-L}NtU=B>3{!*>|>aVLci%f3aZ@L?LbbH)q(?8MI@3-H*nwbA}*NPYC8Efnt z;_q8mzA~^r+A0?HLcc-mK>otkI2IG$6YAgnW&R5^?B{*(o@vLYf}K?lFRQM8{z3lE z7r{NBXW1Y9Ew_hze%&HQrZu<3YzgM`s>Hg0n3Vr@3Z=QDUzr5-~=B~z? zGqTllT$p1ff7V-i`1r}lD4sp9>>RyM|KC;KI8*%R2~$1kU%%Jz)FjOO|Mp(k){=d{ z1iK3YSQuI-R%wd9J}G_LX4x6#4L46}d1=b(w4Chk}uqDwQav?OZubN zlXi6`da-}G?U3nv^2^fay__lYqSoKlzj;W3p}}wMJpOsCb|1ORIbD4>!PWvi7T#ZA z9{2nGUZMLx@80jbzV~g|ltnT6Uw+I~|5&~M2j`!A|37-#{C=@{<;}yt^6ttU%3Z%z zIiLI4$KwhMmu_9QmM2Rfu65$Y$L{*;rt$w4-SBfy<@x-K%U%6z_x)7uV~<;Q>p#=I z`VVeR8BJC;zg>+F@60KGxxF|4qVxUd%-?ui@=NW0Mfg56+qdz%_43y-FL_el)b3=z z9_0F7lJ9Ms)oN4u=tzHy`Mw(UIU&bN#!{UGK90ef0c; zckzEr@_v`+AFclPdH07|+x4s8%y{>Aa`lIY|G&mR*mr*q`K9IFee zcVdp3JMVTfV>QFHQ-6gfOMQ^N^Yy)M*q47r`)<6ya(G+*yQ|{n4zhe_B@b=hmisru z?mW{9UX|nxy)SLA&P(Ym4GT-ya6Y|njp8G`qbadl%%k^4|Z-m**VJwXi<2&xK?(f}3=HO%5 zt~!f9o%{RCt8R7s+-nBQ^AoRj_oi#<6#E@MC7CbU|FZc~aKgoZatS%Dkvnztniujg ztu|kN^l{L1 z*Y0>VY5B$rte1ru>Ua*=-?OgF+L=#rFSN5`WB6q*C&ae$+UVv7^}G%smPFi_MF_ecGLP zfx+oOzgB5*v##nNKlN$q`nTUE%;);D{+aGEwwU$ex0~Ol7QYvZe{frIn)MexTmJs% zLTmrVIdY5lF86!&_R8sOcg0J$vRoa!JB;s&W;n#poskt+n!#{qil23pv7BPITgrjH zpe0{g%k2(rY_<#g*7eSCNAR+x_e)Y%Ostyqqgr|TI(>87`Eg|~%(nX7d;i^h^X!4) z^G7?wWNh{x)Bk(H{ljtjA3Xp5zTYdne*a^$n4FTw+hdGh^2=V#e74?m|C@I%X1*)d zyY$BkI@}Xo#CI$I_RaX!(%-ad*}1NUCNAe)^IEHEf&|HPnjh34xGCo0|6vriQ~tSnk*qTMVMbF9n4Zc%&BUoGj|l{O&)3Q}yAN44(H zEjb-nDYN=fBGn z=kmT#c3#(5Z_D$d(#qt%%@4H?98*gci%hx2b7qYoZw}KA*Pr^={(kdwHr@OA@vk$p z&wmxRmHor0zAlzuP|%+~oAYx=e@we5ZE6ZS2-(dJoe{pXK!Zq}Bt zRW;7j^=0Miy-_@IYw&B2{kN;xEOm1qpMQ3A*HaOZ_JdY+=Sw$E`k@m&dF3g$#t^>M zMNjRfe--c8l=$9TVg33u&X+IWx88MduKC^m=yi9FJBj;<9{A7tp#8hwyr^@wu^9`+ zC3PF_J8|#j$duafzx%K7@&D!w|2Yoq=9{^+yXjuV)8`+5UBBPlKW88F{-0B?Kb(11 z??%S6;D1c}C!Q0ZS!X`8b@R)W{(0InxxZ}S_K7c%Jn;MOpLz2tz6(j`g?F?$o}T{m z(fc%?+g~Q+NraqlsMsI7bmjL||MT4s%)DrRPxr~al5cP1CaHc9>M;-Qd@LKV(eIUt zBeTq1k${Y!VV?IEnC}apJze?P+_c}yKQlsC%Ln{uDzr?#SAI6T@14nJn?r#!FBj!- zZ4Q3(W7Wy%)K9ab+N)W#Zz$aCzizTYfKA4)yv+B$rF`}APdv}A82#1LEBDT4`SHm5 z`s%`$H&blngkLulyuH7*E@D0}N4n&uILX?N<#LD4|2wDu@R{|xgZn?*<{#f)`&?R2 z%HZX%@VMqKwre;4R`X)?N48rcY-h3we@1ocaAR;@x3|cgc*|y9+<} zd{5>}>r38vy3FK{vJDKBl~nlu^!{{L&tW1+xt!bjpB*peMSPw z_itQ2{w2meSO4&fv#F_@?p@lqDV*!I5wp#i=-+=o$lJBle{0|0lALeRw*Bwf{KL}s zf3wB>?#gDrxkuvVN%#3j=GT1a|FALshlJeUFZ;4x?tgt)>-W2#=k(RrR}N3U7RG&Z z-}mYVPwrW;|L^hY57yYb4)p6Bhk zeW2{=mc`+BlXvmHwmY6Nan|;G%Z^;OWB74#?SThZkH=K({#thAt-U_;_QJUEb89rs=*>#cZTkb!;s@9wpCd}irF(!1rvHwfU10An} zUh8GK__U}0j#AHkChVv;@38TSslA;0oFuj%DV(MA*z13YoM_z>_4cP9T~gm{W_YeY z+5Gek2k&S8jaPY>9{rhRX_@=D`RA&W=G$BhW}KQg?ak8@Paof0amuCgVZqJaYwC4( zq%42b_xjv}Z`tqdpOn>Hyttp~Lv6LX|KHb#(^3|;iv2phko7}!#zJw!w{va2cK#JU z{+{K7IpZIbhS~fxmx|l0-Egct?ss6#?~VQs|MK5$^|z@ij*$9UYt<_elB{p4X07Eb zKI`_f`{&NTxR~xXMfS(tx|<7CcO9N*EBN+%+N_G>)~t`4?(i(H`7@ibeop^iv&SdA zrrmmT@c8ah<$%X+kHn7mmWdtfb19y%A;`v@Z*$_5=`DNiJg6vpvqbN6$x4&$BHOoT zJunDn$~vmon8!Oq@V))yMN11~J_T4}8s~v9+3Y zTmEW3jdfnUyB4H;=e!j-FK61*O}8h1JeYgrOykslyJAjuu(0Pe3ccz%yKBLZ*_ym@ zLf@+xK0NK8fAD<$ALfetx&MXU|DCt}k?;FoVs|QTpKdGKH{r!4?Y?hDSEL#lrhR`` z!n5Y3@N3QYH(6)>YrMDiCCB-o6EU}Y*I!w`!TiCL!&W=%H_1QG_#Ps5;ctB@(=zkF z9FYwN=Xb5I{m5DK;(e`%{I6>Hqo?nE2-@>?{a(TRy7$?Ir?cbcJh=bwaR0-1_kY{` z`_VlApm_c3)3OUvCwE@mny1#87JKj8gzEhtbHl6+_{CnkhcBGJeNOnK_&v-QGQWK4 zTD({)aqrUK=KB>_2kj_a^K`MpZ1J)NsjB(|?ul}29|h;x=;b|-u8`n(vj1&4XW@>y zJJu|IZgPC4`n5TR*Jp@HJKrn_KUh9%W#hTL#xKkpYOe|W&cFS`_}qk=Y~kYUW3_&n zGKx}XW&4*EK0D#)rMSDY6YqTKd;M|R{|{w*9$Me)*el(i>-qlC z;NvK(GmGjb=W2tdk@9M{gV`Nim_2oaWc-wnA_vP0}tw#}u zSF3ub`#zN5N!ieKn#IE7culkvkIu`8j7sDA>=LJw?@i}nyJdd%`ajJHr+*gJ8Wqlb zG(-Al`b}f`Y1^ulvUYCzH}PwFtKgHAhDnY$Z&deNtvm2&4tu7nCTsqVU!Hp&AFKX2 z>F!gJQ_mga**-Kg{JZ~j-o93`s=~>AQrx;*E_6@%<}b5f=0H9719pZzPbS>lneoE= z{GFcox(9cET)G_2aN?|EZq%E&{BPIyOnUSE&ZMc+E$iOg+HoeJp?|u4)f)BX&+i3p zIru8s>g}~nwLxdxi#rfpPKA+?HrM$ z#U-t$%=C=Sg~F!0#?(!os+X*5JFR-5(I(E@^LoqeE^Y9M^R3ylkh#WGrgKI4s`0GP;{c7^v@&`Gt zZNE|1usUzI%<=!PR)1(Kzta_7|N3;{(~YMKCBEEvdHmzm-||Pp-&;4g@B6?Z_v?-F zj{p7skKep3c8;nmyubGD=EHRsdK2Q}n_ zZSMBu+wt9g6d_e;U!DDSb>`_)U7z^hI$qj->CN7MS#RR9FZJHsyZ^jR9iM;Q!;gCAvewU@50jFobLop6Dmi|y@~3RX<(plXe!P8fhf(hLW_OLXHJ=~G zR4qR9$c>SivHIN`L5s#_)~mL^xGo&D-`8yT#A;jOG?iboLn|KfGJm`FRqvbg#~uh#!fW98F>@4xJP@Ze2x#hZ7=ll1zHRta;Jee~JoF~dx` zBSGr>%QeMw@~(WIIKzFNyX`x}$-Vi?~o=tX|E6mS{eJY!= z_EBj1RCn&T7AawRN?Jc|{G0vpb$liFyqb3$W(mpZ(F?Q$j@Eyzv$}uKzUujk zi+=lG7M(d8Avan4^@1HaTekeEG4kTXB%UrX{}Ck-Kgs05df&(A z^FM6f{anH$_1)VaS0b9+UfoSNc0sh(*x}qX&jwME?C<89eQ+Ti=@+n#_{z{m1unp`Tn$${lrsiSLVEr%mOY!I|jEHuK>5Pa8re zv?M+%Tl{HF?0+x*+piA2o^ttt>f<|!2Dj=APE>zl(h@b__crRzmtENfch?^OuqnFl z;jG!~j+vV86Vb1|DXQ@%?x)R)JgswfwS4LG>%`LMTeYiyn|~<$opp2j{sK1snrDJF zKl}Y3-!y(+B^jxA@806}Cf$`gbEHlD_cQ$In%D41dc*b7Igf7HPUMl0a>z+2Ro&3{ z*(7#*%?_1|)n_U?cfFP7QZr~TnPe_IMO*LS>ifmQabK@Re>nBn{NdB}y9KB3|8nVh zpz(c+DET#ozy8(Q)SS<>`LT2TgJAhTHv2vuPiOnP-B)Vy!dtf*z6SDSRcqzV>-@fC zs(@VV^c}e$?-uR6c>1`$Sy*&@@Il*eD>jGeU1Qdd-}CwWsiSi38@CkZ80=eYc>Q!{ zE%WRPGmcvtN3FO2u_L!A?7rMIW{o+O;+y_7zPPw5*Qwt|?rfT1%-4ODGU1jru4@j@ zx#2KN(xSV@cwX&2ft`h?8us6MEz$8{;`DmqiZr{3WskR8OqTK%x*u`x-O;BpJq&AK zC0|S8(pp#Xbn1?`w%Z?G%dck5tGukc<6r3Y{R-wVnEjTfNg?Y8J$+C9`hd*2{nU$M!8@LSdhcZkd@C*4<7C76=!#3VU(p*6pRA58U1` zh5zm6AG=T4ac4i=s&nAP^p|4I6~`WLdu+D3=vMsIn>%*}UHW%qkAZTA`75Vo^?_>P zGLetxn%9V~xBPa&=N|Xj3;Iky4(^@2{GDx%n^;uF!hD&t=U;&s;-+usTl|aL^80U| zeM*>~l-2f~Eb@O&?f#%IUny#K`OakCEH|6lXHSEe4el@mP2OM=x_!%?>_+RiUct{^ zXdYx+$+pGx@dn+6vJE|HEM_qV2G{zZIGYGviz_qDOJI5(7O>eh?acL>vkh+@mMu-% z6p_fj@Ai$3Z}R-!{$>YXChCMbnseZA|`ZYIYnPq_w}eSZ6`41De-=S=Ei+kep_ z&E)%;_m6|DrT%P@U3s$0`@y_*7Y&Zbt-2-GxMR)Ty-DoV>-R9ZuiwEkJ*JLjdR!fg zyWVaVcm3N(Rj0=`DZ7^!zMJ{H;9GY3$1h*rpZr@~@$8Fn#ixnsfm+h@vSuy+Ebjj2jc6Q0&SZSA3hdwsU0p5oTHJKO*2sV^c|FBJz&c->dJ%qfa-?oR{u2Sm!+^@>h_VTZ1<~XXRynp$n-|4)|&o6sl zbAR>H7Y}EBypeM1fkIVJVNLSmmCa=wh0l6cFMek6vaQ`B=;Pj20XgOPysFE-rf*`; zB%jUjOD>k_kH2%xNH}lG<+3D)^Bqq`80{N=U*X|c_o49e?HyHL=lAR9|BN}GRdbr* zR0QAueM+*%0jl2`#17l`DLDu~w`b!px)IZMZ+>>b>E*@@vajcuPut1#NUzg^U+Q+} z^312V_I~1s`#CTC!L{vsg|6>^#uiii_iDw<((s3yR_o24`ZC@m*GziO&i{foU!L9a58r!on??0O~ zOcSn1KVB=wP;*_rXZuUJ1M8Tt2EUAHQMPS8{Ze}R+0$z_m*{O?Zq(QO_{Zd_7Ozj2 z*u8pR(spdmOAm&gUnO>TgDzy|dC%!Hu}a?jwyStS!8O0f8RnBF zuYKooPJg-c)7ebLhqEsyy?2%sH{!QoUCFns-MuJoVazr^e+Fr)>%9X+;yFAv5)ydHNzi&hIN)HWqMLpwR!ye|2(Mvuv7ip zvX@%-JIyEQMK%;h**}*(5uC<-ddY&BZN`V6NnMOSzmIWG$hTIr`;)J~bLr|1jds|a z7$JT-PiC`f(A$K?k|svY^BHS%u3SHQfs3#1!^Xm#D_c_cd_1sq;?-t7=S@o^Tkr2? zSEw+58MIp3Op~Ym@nfz=!86P}Z)W(+EPA3Ca67hUh46ywdw%dJtkF=^nI7Y~E3SR= z+TP5X^p8@82@x-5>+Lj7(7z_%wj(XXRA2x5wH~)mx$fn!_Qpm^KixCu{FxL5lz3=?6|W%2Q5P#4i5w<8Dpxh5nZ;0u82WXZ=slX#H-oc-^eNHD{xz_RZTG z(7T^p%EY}V&PQ5g%G{>p^}Cp^?@Qy?uReP9#_p$C zZ|+uz>g|6O6!U44@(tTv-QIn22PZDxZE@-UyQHmA3$JyhpSNo-o?QOS^3xTY?^iZk z{C;9-^Z7}n&F3SVZ~Xt1yyO35{)Zd&Z7woi>HV;@R^YYYbjGilJ1sN5Tubg>&tnrE zsC9RS-`^^hKShU^e|>l-&d9cJLlVm?<$|S?9^}heebb*OG+p!i*^g$^-(D=Q?3%7K zYr181Fq5jxqGb$o?p<7dV0Z7@Rfpx&nOVu3sz{nLM5t3JK>+)ak*%D2VmGUor7 zG+p+n>H6Jl*Y~`VlG*)KqVH}EPx#(9S~5Go2)&;jSH$ApCwK6j>f4((tmd5>ak4joxR7l z8RpqM*m$ODJzLcFeOG>N`|$5BLo>JEy)(Bha#xJoTJ~xFu2Y1kSF%5rZH>IQ@6!C~ zo@(Zw?Y8z-6qco??)|!I^N!EUstd2G`X?{sUS`ZtCvo8X+qpJd6_#-8e)08+|Nkm& zVXIix#S8yBA0KDE0d$Lo*%maDNoXLI{q^@WwY1*Pwuc`^C@i~is* z6)xe*`(}48znxXlTGJh8khjP1y*)!xkGI(CFZ-V!c8hy#U*+WTp8wmuV&}IU*CKv8 zd`i-vm{HR8u-EAF*^Eyo4}UPqoxSqFp-+>pe7d)=V%oI5#^-k@=)6zxe#;=;oGVth zJZHnY)eLNlu6O>;njf~b^25yb(CYW|s`tvRzIiSxYW1Y|3(kKzQ_8gD`bX{0#|nRD zgf%d(uaSRk_ULIz*z=hC#c9lOdFu~V=kGV1YV`5!>4$f2OnU!Y_h85SXZrcOccqwZ zxcwyKcwyANS69O?GVE-Q+F-mlA(pk(P+|S)1wMb3%M`rC-+0 z$jSP_=5_qtx0DaJ`ZnekZF}7O*RtwJ@9~Wv&DY&LdquBY|L(!!=UT6JdCi?NuU+W% zgm1xj)OX)IR=#RG*S$=+YxCcK(Oy{wq7a3R1F?4vnKYlBUS=mPv@Feoul8(;~ce0 zT={`5Q_bqNiHBW8UwplIn0@`(m+32v?|xfR%d`FVndFo1Yi{sAF*egX0?&`MG%*4c)zxc^)H=wyIwlpDSE0L@uKM^!-4ZmKjgpp&8zyd zVP<5;!dAZNnDjD^K};+k}nr8-0t&C(0JXtpmy^I=_IWcu~XmpL{AzUf(}$nX>E5Bx~iy7#4#l*jj+F`CHvC?_jD~wmfa| zYR?-^lC$_`9-Of^$#-6v$%@MVl7+WsCh8gYUGof=d~@1I`c2~TT_@xkx&AN;)@&?s zcp1LoUjN4(F?XuZeznh1JL&UR_pf1%$;>S=+-AY|@9Zm>-QAY+b>25a6?O~T@X5Dk zlueoY@x+1yGv*ylW6sf8n#c6C>Ua*Oi)sO_Vkben0*v^Q@>y2>a&dd+!J%JJKhs_ zyJS#2Z}FMqQTsk;Bu{ynWp=uAkNdu74ldsO9g9^zAK4%3R(!A3OY#A8#m}vG3eBF% zrE_@|Mak%Ud%t!_P5qkld%ozBvsFUM+S1K&3(9Xd*!0=6Z%W-P^?TX(FPdks>YvVU zuWJ`&TqF~se>K_Qa`|nk(_hcjSjKMJd{FlK+s9|G*X_KmB(_W8mq5e*&E=o2Ea#s+ z5j1ww>R7CN2%e3^8Ppm6)H1BM12rqF9z7`fQ_p|5)!(knIBRX~Ebbp$uJ^3?##i7k zYxZQOV&8PJT`iaPzMgt-d*;slv5IouY0qThHof3`e1<`ecgDWovoC*=eelmts(aD# zc+QuFoVTrwLyQ&Z7$ z7K{8={@!FapVR;Jag%hT*~Z5s@8!g?e*Ii}>C&GFC!Q*~>exK>I+yjf=Ejrz%{TJA zW4vM(wq`>&?~T(}8^x{{N;iMDQwmD^x7k-_!G}9~k?XQ1v0PPueM;}q#FekAj}@I} zV5!T0{L8O?x!R74yL*0LywRSn8hEn8Hcg?XX4^;m&u6~ppY!FlG`JtNUQi+Zy}{G# z!RB&{6(^lu^z`)E7lB^qGOuvwi9fd3$@NLX^C0iE$TW|&lk%s%Dq{$H-Yofl!hm+}^Kyl{<8 z{`vCvx7&}l+&g+OG1~r!uWpon=%TO*^BuQ09I_S2@T9oICcPyej>$+y(u^V2=O&$iVW>hqX!oeKT9O}}--b|w6>X?V~6A-h`LKlk+?(D+Ke z(J8lwtzuCbif`sy)QKFp&-Ou?VVw;qC;hr)Z2oxqzCU?2FK22CpEt5U6j1)+bCCOV z=>-N03ijx1Sz5sS?nm#_^A8t2>=ggcwl1>5|NP^K9cLaqcl#))W0E|#u`x&GJWrk2 zyx#1z53yf^n)WO|_H@n1*oX6aW>2{M!f>f~Y3#F=8zl-F-q$4No;3b+;;Xe}$w}sd zbStJSd*12zf4lbT88g>uw)IVHheUtv>-{p%{<*2#S z_uMYCtyps_ZptFPoeN{ndj8p~P<2DY;P|aXhD(fGWuEu%CLEs^yRP{e=c%{rgW`@& zmizp2p5;Z8mGxIeuKb?7GGeP${>(n+7YcCr;oAG5t-D!XQ z`%H_)tObwe7T$U;qBZ^d@j!Q<|IZzQCi71|-P^nD+)7#gRdVk4{AXP6nX0`kSz&v> zd|pU@^6c%-a_l;DE!;jWYpU3vbM1b<@!!qthO;ki+WYg^#;N}MBj*dGzPSJ8$NP#s z8-A&~>hJ4$v?KfJ9Vr=S`k$l&t-c) zdmOq~aB*?gk{hesB`beRIRCc(ma)aKVd=RAvzoL7- z`AavYLo)fcEW6%6l*SpFSGbP_sV1JO1gr z{hS7K8V>kGYcnvj6vu6?N&X+w7XSI}fug=&!tOvdU~J!j_SX5YW#UKn+g zrwKw*}*o1s&|GoY3b-8`A{&F&$mvb9>=M}zuu+iOF zrz+vlGX5eJjFRM|PkF}Vgn&qgO)s$v=B=+r3zAu%++RPUvGi5*h z7PFtlux3rpv&Usq8Lv0Ip7`{r`?*~|4;~bGJh!qyR+m{I_~3*6`%g27#X40-_#`SD zUPyV{dXTq!^2~#g-;D%zpI*73no)~kZQ_n|H)daW_tSX8gwpWRsip3XwtVbbldtwx zPChHU{(0%d)AJ5GeiP8~%(}MEcl+kWBBAX&?*|sEygtvjNN+>m(**%0xzTxd^p8|u zR7w!*pH^~s3gBcmk73^R})v>_R0CP zP9^beq~pFbZOVJTocq5yW$QNC9a&2y9rvGktR$`LBeiC6+_Q=|%brh^U1-_FWV2ZM zb=%WrA0<;Bn3>2O%zE84 z3pnzd<;vGz?;PYl8t%=Ot6#hB6w9-(CI((bIunnY=R4#YZ>;$^J741BuP;SWJbBwa zXL_=SBz=ob?vV?%@lHOk%6(Y#RmZwt3mwFn>!n{F#Zrky+1ItgfRc`uVebV~wwZ$(t%dE1wUC#O_qR%S& z@vd`wUMf87iD)m==wWItPLN@4zjMuKgXv{a-Ez0W+qXpBweA)EZLWBG&)N8)xYr7% zAC(ODd&)muISk7qOMgn|Q; z(%oNkQ~dpJW~GQj46&axKK**fC+rU_Q+r(ae9tz`-1Ntvthec#arVp$nbSR8`CjOYorO0e@@}8W&1*Z+ zJMG@FPfJTQ&q{~bGDenVGwfcI&HD1=oWJ|*7Hs95@@{Wb)wp(C*U=)1ECnUjHiI_R{3vvfc0hEIQu!$4$%fdbs<} z8u>4Fjt7}q@?RZYQJFE{BK<>l@|hBO<*kvnNf-O?Z0S`M%;{dRs5-mkZd3j@1N(Qm z3!L=~C(nNR_`HnrH&2;;D(_1cH(gtQdcy6U*BWIHpIl~hKK%Ov9h!xn2EC}g@0)ZlA=Qd&%1_zj9{y(?4A%$io!xVPdRd z1v=((lAFIRI6r57{@k3@lYOUHj{VxWrzd~y`7^?Ol_?L-xbNBVv@1PrTHmP&hZz_1 zZ2mGc{AzO#|FYcDg*DpmXYpO%S@*c=qObKF_2+X>a(5IxnwflT`p3nk$EsbQ zp1J4o zGMjQWe~oWLl_D_OT*0(JJ;d|fj zIHz2|!PFSV#n-p%TIwzl-rjlq2G_h@Srm8ZuKdosJULg9nSb%c_I{V1XA!IGA3O8D z&ux=g_hRdG&Z)y7fHRtYEB`u>P;zic~R)Gkx!#>~Cm3T_&S@ zd70Q7F*~grrLBiw#5Vb`xjk>ITyDv1##}jdUin1^$-en76|T2_4fo;O_3XfctE*@J z-Els^ScLgsj$c=y4bSHTyE^_=n_U0c7!|nx$^r9l2l;+%U2IeS;J8=x|8uzq9x>(J zcxF&|=X2Pix6#KtetuUyq4|3H&K90W+80iLugtPPUwR;}LGtC^1#|X!XY~lXXO-Nn z)V!_FzTf?3=Bb!^38xi?lRc{+|ERlHvF>Natx~mA(@nFFaB*E*al>(;+)dM2rRN@L zpINJWs`&hK`&EfHt285)8L#w)dVy)&a`B+op{HG#1sXO4yFL+CJ!s2!`c`xd_i~1fUWrq>zE4t1 zzTSAlyGml((!T!;@`9&6dTA^^ImPzZ95?^#EB;%Znlqm(YrcTijFawVOl-fd^8LE$ z5XWHusn}xP)bvHlt_~F}^DUPYzNs(WEnmN0=`zm}+0x^m&u?!%``SBZX@UIH#GiIn z(!LS*x9}$~@O|$QT#(KDfMc(DoaI@I%O^c;FK^Lbf8*Zqrb7&$KW+N{rg08qOtH4iC7-OwxFoj zxJ6>x<4yB6?hASHbo=-0J5^VWcYHopU3m2(c*g)UL!H0@``C9cqcaw^>P^{H`W}=^ zE`;5(FZ@%)V9)Y^ok7MH)N9%GyYu>kaQO=Bb2il_5x+hbbStDPUD@znB)G;-Y9oW}8EM|S%m2%+D7L;mu23eY9dO~k z*aadzeU;tVc7-lz&aL^fT<&RPK=6e=$2{-u$7epN-diTk$ick6 zpkIUUd6h)}>QIL~zKE^)Z#+ePgDh7pQZq2Uo~g;R<y8&5EedofSm*b{&gb3zx8|o$ebMieIX68pEUa3d@$C!Cl*Au5Pp^59sxx`3`B&cy zh0~tS?!9YvF6!i)yz?(4<)f$F`=4QS+34eqHOFI$|EHupR`{;Yz&2MRbKTd~g$BlA zpFD2=3;R?WK6CfQJC5B-nn&W3=g&SbcjL2WQB2#EKW{m@QZ={SU;I3QXL7DXK<)Or z4#)j=-JFD1 zhkW+>?|+>CXmOs+^SVEaix2*FJYPNQ#*f0Kg=PZ%O;?SWcDjd_vCKQ?#}yWlZ2Yo* zj%L*CEsOgkeH;Pj%>MY_j>dhT^q`rFjbwfQzn{J|3Au>E2BOMT`w zeb_b2hVku>b7#NUYTS=6=W_s81Pma{jf|4lYyesIzC zYv5zUA6ML_{J6Jg;TIh)-S07-q7_?g7A@b>-08N*RO4LFv3WDM?_JSzh5N$2=6jKL zuU;PCbor|Ob@w?ZpC~M^+Bf&Sw%^xG_5;NQ1>Kh~SOqxrK0V#A>=W0K$j)iam+zdY zPPk${ZS$!)Kf@mxZLHbR7b4CbB6hq_?!jI2TFLc0K222VZ%uol(=eay!{lmpf7{X< zXLPn)a1s|!)!q#n2w2Fy=&$hceAn46f4(}WJzcbrx9r31_`S^Xc7LtrM1TIvxKGmMYN3(<9dIf(}^7b_UG4tbvp2^eH6WWS=@19}bCev|DG@4)q zEOl_mi`zUSrz>D`i{Ag*nXe0zf8O4FFaFufit2~EFI22N>%hHTHM`$E;A6~n^{X#F z=B>RLV{~u#@sBs1XEeT^%Q+!cviZ{6)A^RWra8Wp+ooU@7!Z+QWw+&Z+~#+pOrN;w zXWv`tzF?{N?19eXOlw$(qTtO20(2%wGPFY4wD#)7DHaJSrP|&RCpv zi~ja4xOnZoNvsBnzx4ZnKG(UNI>-5v!ORQ|m+viW$H|E%tGAEmTb&Q>Igh*%hl1VyO zl8;6Ev2;%5KY#sl|J%Hp*_8z=+Qn5^W$zdF?~Iwh_{fj{(>7O07w*0!=U6Rr&fPob z^T|JXJ9FRf_`B_SMf>7yh1vD5GM6#jxfAd6eV=K70LNs>5Xpw5)oc&sk~RLu*)I)a zo1Z=1v2B&~9A=d}8qu=aZa>}5+r4Y&nPFOM@ZrksYQ8PsjMQ^)?Y#Q`yt_*LzW)AS z($l={j|p>Z(zv|0u5P~k*Cl^foWIon|IQTAu&sCXr)BP(cB<|?b6(|-z&eim+iSo6 zNxBy`|MMTF$KUkyUYgZ^@cO^Q=K1Gio6_$!WmJCbSQaf}yg`$hzn48A>YLu{?Qf)~ zo8Df>^>Z6slG=TE2W^G*5W=t~`6-60pSN9W$$cbBCd%_guv;5cV^;rRQ;E?!1e z>(pDWb~n#g*RRg z&a2go=7@3d=~j5 z@V+@i8P|rD>#~n6j%&VBxB2+W=7O;4ZzOL$)sS00EzSJd^%-Ih;#ObNYhaU+n^|(< z!0udyO%q#Z?%u4!ykYJ8hyPAG?iD=qY0Dz^_@z~|s+Y65+_$!q`+w>P_Ef zH=fR@TP@O8YIl!u_4k0J2ezNo6YTFiKHK2Dcl!FJ`)6Lt`u_Xn-Ac9n8~40;c~tCS z?fzNfjxQsvP1m24b?Ho1bM~HjTle(gS2LZj2h6)MIqLu8hsu%r4;O7Sx$=7oqw{J1 zy}q&GmHQGZUGuZw79X=@l1|}$Ajx~}^Y_}95^Ix}e0!tXQdFQ*bj6(_-+43Dr#}2>Ap%@dDR zX201y!$@J}>DH_==I_7GRP_E`{>u9wt8-ik8`EE_<(K!?#GLzf^1k_pX-`9b#n!QX z$vnMcsZaUempt<=yKB!yoZtBUeDK4_%Re32-|jv&Vf){(hJ6Z677ll`PCSUe7S{Vl z;$-gAjemBoPugcuH?8kv%Wtp0xrv+hdHf8N3)yaR*5X*t$C71hXPb4ktQN{UcRKhu zPpqsF|DQDtvrqM(KCwVmW6!ktPj@s2rq#^RINkI*xHRChajb>Ix^h#`beY3*e2#M` z$reaCXln2I_v-k^KI!)dm+pSP;R5UB`HSve{yq`1y=B)9&-9C+&W}^P_}lpw`?x`? zg!-YYgm%4uIs4;z`5nUicEyzubssJ{ssF!Oq&aKXqKVUcPri{n*tSo$$9*s3HtxCo zyrKRA%nlXDH_xoN5%Y{q`JZ(8&fNzW2Uw-~d<)RElXl+zwy@$l_O3nl z$yh-pdfl;G4^%f)v%R#Qyx!P zyTXQ*tIu^y|M7aha*FSS{*!Zf=SjXay7%;@Rnk({3Q4hgDO_1qD0koRoh z?>}{C=9IH>*toNDEwa?#$9S^cR&1+m%Cq%MJm0??E?9oNE9qAp>xOyOtBhs*ty5!8 zIB$5FF*oHzgMq9s_eYVmhFPZ=cj#>rEd711>dPMG4KB6kj})_A_+UM4`$_v*5m6R* zLlV=(-p%HJvHNdq`M(Q~KfafJvg>4`@%s#O$DPkNZSS3?{C%~~_l#{NlB?ZyKIgW5 z+}KJc(lNWQ>f!!KbOmm_;;Ug>a3`(nzB4M=wmt8zI9bH z($0Tug|9C>Wx34!-pO>MP0u+TF7I&IwMK4(o8YUHJi9Cn1yauQEQ(mMBJo9`k--J` zI~&*M|6P%tQS*M+)8nRE8xybgZqRzaCZ6G=d0q1f`(u~PH{P*H+qv!LZw{~C&EoQ} z*TkRexy>ce#}F8%cG~~*x2l=PJ}^8pEH69N{7Kip#wW%1&yv$zJS=9p9u?cSJcTJF zzBEm!_}+z!Ygk{D|4Tivv(H>2C9U$P(apQ_Za2zLKN|5!Wvq zHm9_kwI;?tGpO3am|Us5HbPN zA8ndb`}+Qit!arrI)bMOpYBbsi{YDZdL%h=>)MdY^9K}P^9ua_#&af4v8je9sK}Bl zNw(+S2jzs5sq**Z>u(xYocI0y_}1xtZLNAU&N2K*WU${}{^`oEnnv-cjD@Y|+<#VO zECkJdzFzWI_;^3#k3fd|-4@1i8PmAzw$)qPefaRU;#0zQ=|2^x_H|dN2W(qnBA`^Y z+|nTN{>{V8in8qQ&F%&WPhU`2neH%uX33w7?FIc}5;=*?p?{vTo%QnWevz0sPwI{1 zBX6be4|F?>7e4883PA@mcvc_r-In z?60bY3o|gIy|@+_q4S_W7Ojrj(644&6YkbytDiEW%Ea7$KTHW&0L*d z`ZTqBwp|aq%14W}TA63RrdG9VXgm9R_0IiQ*p`bt)2NEg%wPZYb>?O@SN#Kb*36!K zo=0XwknTy7WB2-X`wnvGd6yko{PEq_*Yj3QYnT5jVQR;0TQTj>+mt7!*_>}$R~9d_ z+7qr|K8;%_ZA$O)uVt3ku75eA_dHhbXn)h21o>9insaH@JL4*9n3ohwrq45SyWOz( zWA2s0-se&i@9%#e)br`tJUjF!gPpEqYUS&OcEe5-G>mGtuuD$GYVX63mZ(>(V5&l!an$GRua?ikMC zIq+he`&;Q}ukD|o{VhGu@%eG{Rq4~G)vntcQNkMPPj^f2 z`P|n2;nrUE^M{W+xnwigb3ZtawC*O(revRBA|&^Kx;OVZ9>_EO&~86_`lwU7`Sb_o za&_i)|IcV|T)FyYs_V=5w=TQYF)vo!bXPuf+0*2?)8zIoNOiW+&$v0cvH$Lt{4|%8 z!*=@NWlpgVHz znboGH{2JWu3=h+|y1NAYPd3==IX^#rkJrJ2H?E?_CfV`r0iNgA`=6|l3pyzJHRuFG zBDcAer;Sfq!?W)>zfL*mn}w!T2~>U)xmxUXR%Xwcr=O%UIba|pBjG~w48r#*bFMC-IfwtUI&f)lSK)KlxOu^QBoGiq7?!%wZ0VTo+kk`mJAW){W(x{5}g# zzoQ;G_qQ6a&!6MAx2CPz<|tg4x97RsG|O*6#v181pO?=?bWB8ab+r<;F!FxxA2$Sf5tek|GYt^8le<^MCo-(F3w zsqedGcFrj2=M6lL-B{>zmwX z_}^wwer#_OEV=4>G;=GLghrM;7gK{rbHJ6t%QA9@BbSNstq6JMmi6R($^9k5?;S!m z{d$}nsQtC`nxE0%%eVTbyliNzva6c(Vch}wJ?HaJUVpbS^5pFP_kWW=_(!L#5w3py zxAdNNc#qIV1Gmo&Yx5jFSfw7Q;hBHEsV~A~-tpX&e|FvT8>>$MJ z`#5OVgo*CG7q)enKHe$!a3!18>BjPn)(OJmFSoWEKi=@ZDm*zLI?3fdyNAV>9gl^s zoqqZ8+6URM-=_I$@|Z;4Ea^OXTK@CC&STSG99-mGpzR zn#iQwak-~9d;{7cc9JtKGFk|5IH5 z-p4;aTKE{NH}1=p-Tr^)JY7Eh%euMWY)p3=H%#!|VH78s;jZC7kL~q}edd1y4&{T^p_JkW8-3N^gxDPKW|C>6mZrbyT z^jR|xe|~KG^_($VWXb%hG^s1!=dG)ifBzslFvHGklI_%9b5{~2${m|^~O4WjCaWfiD z``<FpACl7uTP* zdj0kM=jq?HPg$P(K4*)M)vNR)dv9*rCir^RWxc)YY+{%hW-pK5aoL~2F=Te-&T9p; zuib2VxulBOJ!tR4nF`f4x7a2-EnJkc$M0C3_IqjH`_J~c@63N?to5R&M8|qPlj+&m zs{EH9Kh6xBb!K&My>`Ws`%}VCC!2Gg-jiyz;%(mTHJQqZq6Rt=uN@C(RmUx4EO9+# zBqz>bNf7IP_!HN5?^yPn@kKGw- zu>&U$`X3Aa{OGN=>)|6ehf0z$E+U@R!{I zb{oSMO+49Pzgj+C&8<1UF8y`}ONhhaCz9WPq?PiXx?0L2GXHXN|MWK}Y`)G*j5T_% z#x~o1?Z->+7d^6^k|-(PSeaLU%k9|X|1)l+>~x&z@ZjQ{WQUlS=eJ(}D--JS_sEpK zs<$_*4}5-6>z6pw=eVMu`<_>G>(&%kT~9fh!r=36-WwaA%=dl?C1vmDzKY3j582PF z)0J7UXJ_5{j{c`tti^9$?%5e^oBp;)!P0!9>jUdk$B!{5{QD8X_DUx|uYFDRoli;; z4{Ph+rl#}DzwOnvn;sU;-{Jr6_2P|Je;0qB(N#Nf`t;je{r)=ZV_(VpAReAsDeb_uf znHkK}MV=H097$gFac1ec=Z3GIroBHlspnY9xxmwwpBBxwR4U)NXYswN%B}Az_{6tH z-=5i@w)lGF!g!v%S7$oR84GUCTr=n5?X#tq%~?&>y}8Lat0YBIO)vDGd!H0TNTboz zRHk25x0CtzU)h|$=KKlS?IpjDO)A&FB2y5%@UGzWep5Zuy8O*K=g&8))jvBc{!RD1 z`u9nxcP|y4JwH$D?^m-)TXWz4Usf%`obY`1Kd-wCN4*mh-n14lGBdCIqkMv`>u61} zw50968kJMO9dgxg$-UkFQOKS1n(bNT*Y=gmPNilpZutM~%UT__TM>Uh6fTJLeo}I^ zxo_{so-3PsHD~|+WISDavg@ z#|xjEv8Cjmy%${@^_O9>_`;{hk1t5u^mwLASlHZ`sdBXr`_7tv<3HYK*Is`AheBN8 z)t57k^ru`9W~h@naQ@9)o6>iXwa;;Prkpzo?#lc#%J_feqcp=GmWKCsIdOVow-VUp zf4-9avG(%%!#B6acfN27j=wQ;Vc_!TZ!P>Acs(6Ve#|_0viHcv4k_NR?(3iAh9iA1SOjeTl)czz&&p|hc;dd(WjXE-)(hmnJG;C*PV?-{ z@RG_qz0NC6_%L1czL0w2nMwh1_Wt#f+zg{jYw|BbPS-T?U7*F2qYBtur^S{)%2|wErd-$-+g<1El z<8Mwpr?>o)v*HrDAcn=<<}ekt!{QUqoHZ_;bJxY?!EH;RUw_Gv9Zmz{g3t*M;)_d z-gPd>!k>MCTil~CrfGZ6^KmT|Ub?Q9@p|Zq^iLl?m9vO37UclFCDT! z(<~$8biU73(VKj#b-t;t_Tqc1PgI7x^xG+1tG%Y59lJ@+`20*8Ew{a=ZheyZaN?uU z-n7W`xv6&_Oq$zez3%Su+3SA`g>7bd?!@`mrs03y`zI^gq3fGxH$S_!1Uw{Gp9$KX zF3V8IcEFksv`+vsko-cg=F>p^{uvm#2ATcrbQ8FSm>zO!^{rn|Sk44ld;IEUfR zZkOq1d0v5s%fIOKxcBUOXePDT@Z*Yx^M5YZW*ca-+ zuqW(VS^BJF3Cu^f^vpS6{cmj|x4=Q$2Al6${hPHOKhk{?E@<{3pPBut!lLh!KK`%z zGI!ZZIh`1HhGyYH$yu}G{_Hc3&06g))~w9C=W|I6JNMJuMJ09a3z{A$E%OmGe>be`1x1IuX(aRXUz22`d?SV_NUQi@3eUj|M{I>`EilD z)@em^)17ul{;`VO`)sIxG;Pkcy25soQ+qUQ&VH=O;Co!u^MCfgHSGqvzV`$sNp9Qu zU(Qx3d3R!F(d|oy=SvQ}n*3UM)-4$Zlc4(EGkcE3)$;6+;$LjD=$^Z6qVl$n0( zS$;dNI>q1eTu1d1OJ&pji3K~T zGnwN{ikVgVrulqLGx_oURlft{3*S$eC~NS(G6vh$0QdvmuyVA-I3mZYklg0px4fSZ}`7m z98>Ntxq8}h{hvLZ2P62We`Q>H|M>K?xyPR0dTg+s=gH0Dg}?tjdJ|}y)+p1#=2kb; z;!MQ08}@~Bd*miXwfo$3YhL00*~aD4&DkeyKL2=h|BUwXy_3?&n2tsnw?Xwc*Q0 zVZ9bvEZar8mt4Ge{O(28yo{dXYkFUb|2pffc)I`bPRFLo4^MY7tA0CrINdw<^P;RG zsn4dT?pNd3s(p)o;Pde zfku~iE??Mo{XKi$HzX9E%VxU9_#&bBI`b)hh94f+xxOrRIqN;a_UDg?^G2X851poKWn}du$yqVNddS;1SL$=BLP0Xu;-^y<;TX$b4{;vDGr>B4OYHzRV zT&by9wQ5$(Ecd4ew+J5o`KWH^-t>Nx_whF`x1ARJym9^1PrdH;o9^vO^uOIOsjv2p z=V}MN?=NM_&$+D3Ej+hgxr#3=>wDI*p19dM+V2)Gn&15T_?_6gT^m_DtZbimT1k0D z9y0mX(BJPObnP(XMlxI3j#5vXOI_dpD4zRaTh_hn$vb2G z)hvA<`0)hRZrC)(a*pgp$#)-by9us1X(nyZ|8L3OWLCDy=&oIgSvr+ZPCPjpH~VLd zO||^xPTQU5E+@a1ygli&_49+5_suqsd)0W-=Gxhi@CDD=p0viMd^_{~>sPaWJ|?T{ zpZ9FnxAMNj_9UWmEsxc#zQ1>4Y(+T5A0HQbvM0sV)O^;)xK-|R>&!pB)xT)`uBI~O zUPX-EH@1*{&rhwj$-Wm;Ue-SEl?rp*ffuPWmaeWWh)s_++3MHx-bc>vliLIT({%SbA{N5~g{UFvUmUf?`gybydeO!HfZ&lUx__BuYcS`uz?R{eiS|g^=AkXsQ zzs~nBpuR`DWAWxa;3>v@j<@qI>R21(nLgZSu&6rmCPoFc;5h#vyIh^|Ji8lnr-`sd z9C>_fli$7Nzsgu%?BK{b-Epzt22Vs?%LLh{oF8mc3fJ$Fu0NY#E|qom!J!5|=7h9w zM$EgadJ1P)Jw5r|F!lF6_s1a%i+0HTsWy2OwxHVbY~c4cr!>DL<@6v@i)Y*nj`D+V*YGi2|FWw6>dsi&3yx!RCId9qQ z>whBlnR@+tTcakFV58vf>*R37{;DJQ>9)*u_N;fViX5F}z`W#jzK)|SOQ4Z);1urJ zC$lbinhI{%F7x1vLD#IK#dEv|Ys?@4cUU=h3&b59UpE{B1Z@yK0{D3iIbnvvwUV zj9fP}eBn!nv=686ryhw3uUs8>`g3N;FZ;YXGhTmvF1F3?nwE$8HlD8=0{*%430lay zvn1q5Th%|T?p3beGc`jw(`bWf`kM2qW=vs!@>tFoeB7ZpVSUNJ3y(uQZ@;#AzgJ7) zK!ER!{yDp!{Q2*p*Zfh#U)g-d@x?)w`vd#5)N|)P)>v4$MP<$Gixu|a?!CXm_yc!; zsn{Q}Q~IyPZ#{3HjHnN6o0ayZr?==#s?_~Zm;Tijt0mIcwcb1bHF8$}Iv1k{+#>rD zrpQmf`ET9ia;f|7b6>1omU`ls;Wvjfr>vhBo~T^?CPZxNrKAa095yto_=WB3(zwjC zz&74C)!4K)?e2x$a$Dms?dpi0=w`Q5f5ncP^5*h89~9!Ye-{wjm0-pGU^(NTC-+VU z`^%XbgIY@F`cGdkg5(PWP`;49_2h-U6{vGzwcE1me#MWwKVHn7{&?rDn#qe4w*|)d zxh+=q|9D$y1!Kj`^ae>a%eNVRPbT~mnLe3|!LYs9JBQWDD7o!;XPaY*oR-`BS%&8W z^SI`H$~Vo+iFSK!ZhprnA$R}!Gke(@*)B<1q&Ijl|B10Hb6L?;&&uFsyuk2B(nj4J z@6DC}LZ>iV^f)L~e{^l`KXqmL%$pyJUVJ=P{y(1W(#_vF@w)%b9A=;8{C4k)0@JLG zb!R2c7j541clPs*iz?=%u?c{d?Kzsw%{UNqWv3gP(wUjEo0!{v?ESmV#^?X8d*Ut0 zwxU;@`ORMze!p}0LBqmbDetdM-gn#jn@ec_{x{Oqit7RnZ=B1}#IDdBHK&b9ZR7mn zyU%tdD)jpU0A zP2=l!D}B#>N?`lRWBu2PE6p@lU7y(-{ZS%Tf93T1x8GSkjP@;<)%SN>a^lYWpMG0C zzb$k+&RpWf_uQ{b8s>RhU%Se;$IR{hmCx1o`TesUZ(rnivE_=m`&r2E))CQ(|dCB zbN;{k`ds?Iz`x~Jj(pA!UB1}s@1*zzQPB&}@?I|gCe%~@^XcpMHMLduh5G0B8Oi?M zoO8H!Tko3l9kuJvo!BI2G5c<)%ihaY)()Sgtmp5q5A&O6yW;trZ<05!xnDhOx!&2s z;@$Kewj0AGKOf0lsh76rlR2}3^EK7l*Y>__T7 z#&@0%*dixHHu7%F5$R_WHPiStX;y#T=EWB)4la4H;NufHj$H|k{s$fRzLDGMQN=S` z@A~4Ks>_yVmL1M5+8;mDX3mdww!P_z5(0M=`!(6_^L%(=^j5BX@$&gq2_FS#XGNr~ zO+4?bAhlZLiLtY#^t+msy2l+#&rY@1NHHI>97s{RYl7 z9a|!yEe}&foYn`|`H3DV6na5A4}&S^rH&`nN$qm3CEJbGA;_`mHl}Ts-XP zy}$ijRNwOK{b!6P+@9KRt(s%R*pMT$A?E6jS9e^Pb7Y>I=-M(>y)oXg-}v6%{M+xu z4?bq9R=c&k?6lt)(sbTcOn0OefKwCJ2ug-PwU?5;(uH+Dbn%J8m!OR-d-T`HA!Z^uI+i* zh{RsrvK2OeuD(9uxX|mRq{1SGwb$%}Wtv5P1R991D41~Wa!-`mSHZiF^(T7m-|zpW zS%3aqo8vR2r^Ve1E{xOKZ~0z}*O>jlg3pPY()B%`YrdL)R`ZxO+xDxsw{5d9f7P>V z&4ar&RoYW_&D(o>y+lF!Ps0i6mV6CzEK5ZH3atCN`~M?fb%#4lrTZq{IDO$#T;uJl zG4hW;>WOr8%gvn_BLDS=+q2vMZcd!RvnVn~ne|4*EFQkph8V{=2c3SLyw%hv|0{a? zvXwd|Q@%ysn6doh>OY0G8Xe1S7eAVK(M-6=?&pjUHulZD%r@Oy@?+Y1?A2t;bJ-R? zox!XqDsg4Y+BJ*q?o>U!T=Cua`-7$K^JhKGUD#sRTIPR0Ummi!-pNheXm&Js)}!sx zzs|?I8UBei$g>xm1&`m(xBVBj=l#O%iU02e&Ttg#INfw+@#2a4DT_Dm@@d;~Y5z^9 z>wV9^BtNK_*gG%IWQzHtr+oJdw@&*r^Gwd;)6wQ-vmW+eW_Y?(PChK@vH$louj@Qw z!z%xX9o}2I=*=5h=|?}S%8YlpolCJ?;cle%u#s(+%$3mF>%HeSy!A6>W>8Q5`{ZW& zah;B*E%ilkgxzW+~O{e!va%Q^M7Fo&H3MX&mEm{-CS&{QAHF0yY z!_C|M_t$6d=D*Nj^>3S@t&#tpE(VY9Wv<8T%NAIFd}W+4fp<}y-{s9Gt0Nuqzuh^- zvxMhBhWrw_+L|jmrz6eHOClMZ_otMec&6I>cz-N=slWN`+_TNMzZy18(P7t}{qJna z?Rk;QMI$bm$)wJmd2+FP^fSwYwG)^*FNS2Q%AQ?R*zCr;anD-m@F+WlS(k6Lq;J~z z%iw33e$Xo6Tx-4kKabA%l(@}_FAKI7pp@r`uaJ)OG{gHlGd@Pj8~y!ue`cZCztVn5 z(A9E9 zgKE2s1+IG7PYd{MKDj4T?DWCQ#d>a)AGXgap8R*m#H0PcOzqqyE9Wh2^=06HerB!X z;iCrAo_x7oW*&GZ&c5V+yoO?9^S^nvUVC{8r#(L}*f4MM{Klf!oz~3XwpDj+oncpB z7PqCpNMP!5`}c~b^SpKyPJJ2rrg2a1SEB;ivh}vv@vEAX*XMjUn^nG``ol%*PELl| zC%ZRsnd_VJkN!ZM_23Oqg+)FPPxE0T~ z{F$4$N8PVAKVNTOGe0${PQ>N$eXGecAD`WqK5yI27pvaaUMZ^+S#u?K&Nsi;K9$-Z zln4C&Roq?M&N6}a3Agf1{pK%opZUXLhJV^Weu{ACE^I!_XIJ#=?T@$aaoxqQ zWoNzW=VmsR+m^cQolCm1^A{G0g9o-nbj0NsCgv{dDK+nMSv)~I^Q$&yH9Mbtk8V7*PUz9ose1W0JGvb=T~s;fF1Bi6`{{VYCWBO~zRN`~y~B9h zZ}pq4DOfDgT&w(}{Ux92r$aisB<5V&vRHiLbZ6eWstDfSJ{k*-FZi&6c_ZJmGdVR0 z6aE$lAK=&`5x>fMS^hP)Ga+jfIx07PT6DMK{@fr_{xxr21bqHrI8S%)nT%7ZEhn_@ zT@G#5ba33o^(EP)yxH%RT>7UK)-&GCj}csO+&wdI)vSBV{w&+G`=-ktKhc5|F11;m z$74S+q&TpO1}7@b9?;r=brg7(wlZ^UQ3Z1J%j5oL1xJPlt=ij<48^=EH+Z(ysp!ntO;=JCg7k7`@Cr7E*} zT%8@>ZxMRlJ}-aT{HqJA+&+A~B`yc;N^oqaSrJFa~(E8Pr71gN^uK%v}x12n)Z=qSx zr@uu!A-ifG?M;0(b^24$``NWAHii?HNUJ_tadZze-?!8%hOVh!0v0y1?N03oH9fCv9Ik#h4(YR@9FQ9%i48y$$>xTADgr8DxDgt`ex4Y zSx48N%s(sdY2nKrBG%1)q-1LPKIOoJmu9tW%ol(4Hbyn(p7_zKQ)%pOuN-$AI?=y$ z^}|hu2kNqALt{2E?|FOc@{Yf|^b@CEyYIxgmhq2HgFI+N>f+%v(78uZ8jHE(UxRwz z+_FM%=Ue=9+mdYe|5W1VqKy}X*~1@z4&AQ*`=U36;mcC{nJFg}ZisPYy(l|usKINT zlYgK)-g?&Qv)dQ9%S$huZFuAJ^DS?~(}I|lJd(VN%>K;uYRZ^crNuh?tGZuo z5)&~u&sJnmf6je;UYG;3)wQzv`5$LDsF%HYSkWH;Rz0?Ka+qr6)Qp-}ipw9%{FFGF z_d$Jk^cum_M_*5RooKS+%*}_)b~g4|Llge)ah`Z zziqQ?=enf$hq+fO9~Y|6dVYoZ_ERBurMKk~&mv`CSofVzp8krtI{a3-tg~;}vyanX zhc3OpnEi{)edX=R(mf)-E7^_L?C*M;c&*(W^!vyXMi(vn$-ArAQgvsap0ZV>Z}l(1 zbVW&zl>L@DS0>I7JHFZIh*9q@`Sf3N{@JX5uKe~m`-BRn?-9?vOKV>oub$+-JdpLp z3V*%k;#a%ml8c3Af==+%XCtK=O?ed=n z3zmOf8Ql|+fAja*M<2r^>%wX!-G9{xvz}JuKK)d?L$3H+Z)I?S&+Ub_#tqAVC4Q8! z*pmLVSdW+W{FdCpyD6nnlQt}P@Am5A$)B6wX)w$=8?$KL{(mcM~{+J}3JGJKf zPE&(`!(WR0etszkuFCtc`tt8vjWcH)`zHH*=0oFIk)M>MzTRZm|M{)s-Lz!|o12;% zQf4q+kN%Qivf()IhrEs;W>Eph(rd+6v$Ln4T5r2s&-FuxZKQ5&Ld>u9G$GU9nwin& z`i{TP&TIP9=V)uTAbj`p^Y8u(Z(3}(m*-qzn#K2`Bj0OU)T=A(5T9c0H(PwlH^tdQwh$4wIbY_uS*HS^IM~-gtc3sqcaH zZ{D2Glah*K=IXkeE&K3H*v@Fie&YkP7-yeppQ_ljY36mV&y%j-*^_9zt=up3T!Y;2 zqh}txpWV%KW7GEuB9YRc?)g?|*s#oU39a&JOXqo@3d^+Fh)Gu6@{~X^Y>E3^>+`PezX>}#H+}GM_ z>5q@CEvL@d)?BX5{(H?otuaxw-xN zX?t((yV+3rc&7U2#fgu0h&?`6xiYoxv6Q?>S##mCgMT7#?YerjBKop5o3?Jxxe}B5 z&&N*hJO4HL=d+#&w`rQp^H)8#nZ3z^%^*uZEv{Xx{d9!kwWoL3CZ1WmDM*UznbD7( z3(IGo(fS+eU@gDBfp^{hFP3*oFW2sP_vxtR+sX^#3^n!*ldIMJmpY#ZFaO}~+%&Nm zyo8X|`?q?ZJnM&AhB}r5qU~qSxjM1R->v7ad;HM+@yh1AdD{$`7f6XJO?cQg;m!on z@}kX(H$SBxXj{Ay_(yV%ULtE%@Ge~Yv)KKph1 zcZuqAOV#g`Ftm%!tG&g>d;H|Sqg8*sI#U_e>dF;*3H_c~f5zKr$EPc+Q&fssn>K&` z`^(JD>5+}S{c)}7@1GwIO)lo1lr%b4_4obHb@5?l;QFl0D$l%Yvan19+ZD)-oR;M3%`JcsC)S=gOZ}jdh zcX!ro^=11R+dgBm)Vbh=yShv5*zatc;>{HQ(66tN>rmOI^VbE`UuRlxo10o4|N6Pw z(-l)?!min5zH|Kk(dSN|>W5wZVeIzF-v-th+EF7IDyib|!TUDh`? zSn90xdRi*_mQVIpndpnDu5BB)xH~+%zvzn36)VYS_t{o2F{!Gp@%vyIfBvfP{du{Y zBh#!;=fC8aH=TNKUFtpN9bUViPwxNeb!_L`{hwy-vpMvC_3zkktZmauFHX$veYGxI z?CbhH?`v{bU-MNs_Tt{mx>@%xAA2`p>B;-2R=+v;ruJWy>!gF1LMp%6C~C)k&JJ;G z3v0Q(V|q_q$Ex`4HSYpnre?)w&&?4pm3bbqwp(cR#cRj)t?qq&viZm7?RH(7{5tv! zKMWb{i(kLnd;b0wqu^yeGe0c|dix8^P}QGap0{7}zFF&(Hp}oba)(obPkx6f+IY8#?;G&G)r$pE2*f1WRz+lP&wTEGAlME6%VD zElpkPT-kP(QMTTy_*Yn7&+q0X>s`M0eVi`w-Y-A3z`RVwHv43!+g;{Atc>R*r=2Za zSo@&Z^|--zMu+&Ij>>fbaa9iwzmYY#zsQ>N&no+p^PwLLPk*{P>D|r>zF&9$FJ-dc zc=giKtLxHz19aw3d2;%7?LP4fwzppuMbJs+pOzQf$MTHGXQ+V2>f zC1uBJC*5{iEN|h+lCnrK{`A{ZQ2~3>R|YVz#i@U{-e~`+n>|fRNN`_ja{b!u>rzdnir+qI3#wc1KL35wi|K1>rPwc2 zGW?wSxom&`r&(gJXZ2l`*!}q4%HsLc&nNjGPdt3pZ}xJLPxg#ICPtUPw=KWi z876P}5Ge?_e5Z)Ev%ZvTDB1-F&oZkbfH z^G}(Yy@AtQb(5GisUOR0ZESAsOy5)X>J!`EIbXMnpE4FyNwT*8zy8)8$)t;?RV;es z$^sAR*Tr+)`?W*9AVdAfcr~Hsp3+J?JNFosM_dS z`z}!|+fyxBYm(dHZliqn7nO>y*S^}#e)`pn<@#R!*WDye*q%8gR~dUMAbLXjtJG@( zubU=$TsF>538@&7W$p5-EfBnuf z#=C8Q&pGaTH}zHZif_C7G#9YVPF~ZS9Q^wFzB{+;vmFAnIeEonzpY`?Sa~E=|Nr_8 zwfp=pmP((Hvh=j6`ttI=R?Nb8ddeA5li7adeu=wgx3(nhU4@|HtJBqSyzjJLuHAY` zeM`6M;$yeG4ZkRNF1+60lYLx0fB*kwQQ39(o6W6r5^b-G$aWO}l@jycXMBk-de+)L z-7`yWT{;;g&%H3RCqF^4b)BKmovq~&@^-zSt)HK)ezfQ;<6`mG9y_!cpIW`JIr06O z!#lzJ;3vEH_dI3z@+kVXnEvS!ezkjbJJ(q8FQ|PcwPWp#s{CAfB*XOS% z{d%SH`-jt;txtZ=TK`Mu-rpO?>ODDqK>Z!6(A zC&&6>_aR5Qz&R^k&Q@2re=2-Ixcn^UT}^-Fw!T)c{U7p~X>ZMwD|>!btTE`?f1K-$ zJ<}?_HII{Qzw6lFVtetZe_s2vlVZ=T*UYQ;yK!Ol>hEkGKU`HE8n(4wP?@kg{ZsC) z9F?=4`@V}@3r=lu`hG9$c){6+{%4=xo5g!`_fn;_&)*e9uSk107AOcSDhtT}dSbY# z;jQD9BR`}xFIYrglLhT-LSMd)dLma7k?S4QpWb8CFVtD5JAJP0 zcZ+QvHap!H^trcA{Nyddm}d27@wcOErQkW^ zZw9g98T_h3FHLu}r1HKmkiCEF{e&-mJR59o%}nPg(|(`u_WbqldpB%m{~~Ab>Otl| znO}X{bM~ED@SSy*-}%{>gI3#p6>qSu3O zWc!CN-glw5_(1OT_i3MGefDOBXmd0iR5NTce)+tG?Rw*3H=ji9&d=XdQdi$yHC;c2 zUuk3b+?U5^O>&RFE4J4BQpFGVttW3}-`wWF_GtH()3r^JA)wQhW}g#?B_oJ;ycsmX`=Z3(B(ce zjh-%?dfIw>Jnw`3Y#-v8D!#N`t<-q(s^rM}x<7M&O!co}j@xCIw}5$q|SunPMZ{o#pqiL~qKxUAO++ipS;8KG)sHJW8ckxU=VmiZTicF){Ey|d>nOK{Pk^%=^l5EdQ0v6w(Xx-qRLP2 z`~S{AD0?GcrIx_?Y14Z_m(^_-?#y2Acdb&MsWSGWIOiO;4yk7SDuRGHH zRT`e0J&wC<-YkEf{QLW!&o(t1+ZSA|TJ>dd&wkyq6%3d5{(0=7)+re0bNcFr!Z$N~ z9)Io2u6UX&Y%4jh{&ac%)#feg=NH?&`+JWgK*;RY6wfmgHF#yOvfa~*=iJmgHR1Hj z<6=K;a-45EIz9WU68G(rnYQJOLy6z^O|YwJJ`y$i#6I1!FTZ3j9-sNf+MaL9hqK=k z>f9^r4^4k^Del&uX{&V)Z@zTWaoNffs|#B%Z=HB#)&4mly*0WEl?sZ_?Va29QYvbH z-0wom>4saEs<2)+%uN5yc;nPZyHm;ce#J+v*zMbK|7^I+{l957sb}qOyqEbI-~D=F z`L>l~xhQ`1{RcAT1`8NAHqN>SzWZ`T=rurvI-<@@^6 zh7-%z$My2t{GR@y{{Kbkg%8(XvDRy_tZlY9P*!zH!&9VxuGFF2FFTl-3ii11Ee~(a zx_n{o$JwVn-n?AAczZ67eAT~+CRal$o`i0Y7FcNW{nKjqsn?C$0%IKK%Po$(Glyq2q45>&lb7(CJNlx8=+;#XD6{~`H)aQD-T)hb-uzb&eZDc^MTA!ECWNJ(H& zprVa!e$mS6oaW}Im2djKaVS~!8*iIA!Qq?7NtW&Bg=?SW>z@0h{BuoWl4ujdr-&u8 zcX#VtO?>FcIW^AJOa5Ic#8FTgmq-CM^2tPRY;x*)DI26T`n1 zs9noaGLLIpdHAR1Pp?Cl&M&?r99uq@BfU=jz|}a7^*jICxaw*Cy5(&BEXZBS`Q(B? zVRe-)>>@G8)0%mhUcZ}jJ^H&{aX#;L_1A~y=BW7W5P#eL`O2lg^H%Yyvd#>gJmc!C z4dvpCSLf|rUwv|(-mUo7nK53(8WJQG&jd>;NUWG};! zPqwB{w!e8gtNgc2RB&{xV9vhJKeUzf;?_-$jN(6SeKP;*uJf<|te%&Ce36{`KCQpA zmIm()cye3Y|FrD;s$)fS7ksg-b7(nvW_jQ9PpfNpR&_qO^Xq~@`Hd*^%b9-!w^x4o zd^`SoX3h86_C4Wodm>(#q`LnzXRxn${cdmnoh?e>F7W%HZ}X+VCB5SG)7IPn8#T;l zEcm^wv@+s}^88Bex_>v{AKN^?x~6)=S`Hfp=E+=-EMJ_s@=CSi>*pUDD;LDpC8#M1 z_y1-*J7G_-M1W(RulW8_fhDqu4Gc1?3>H+YN3MvCcz^LwCDY8D;GkX$vGXr(JG5MD z)LoM_=i&ATVTtVD8Em#(uDTXi5xw!8bNBX-!YjAVJHBk8bLP=~Rf(w`D?c3yc%c02 zK>cn0q{WXlzjJv59SyIcR23N)|xvbuhD7O6yvs=#RcK#e|49!?qqVA z;X2>k>i#rCkqJ|(e>^>4ce9L7aAmJ4?}Fr-pJ&g{yK`%2Z~xLS!RI&3?0dh~wzDBm zbM9dy$q%O|s2x4;e?`PQBf3o?F7fUm;|&M*+EhzLGq!Ivvi*ADU&wo(t;?&X#d%kH zcN}--5={(7<(Ek(7OTP(UT zyz}*K*Xdmkp5I!T`kwo(Ov(|BIlI3sD`qlie&Kzey>ZFwj6E5GOCE6SnO|_IP}$?y zWg+c+HF-t@*}rUvn$z*IuQ|lxNQ$bK%_6Gs~mSU2~t!xN~EM^^sk*YuEqGuRW=roS6NvEH8eq@UxHN``x4W z_HKNfrj)+ryPf33*I)Pl`P*W6CGAG;p8Z9Wyp9){+Wq=)_N(0O4KFp1-2E19ztCKL z!Kb^fhn+a)N$r(sJbStL_3^!dProxM|D2mE`L&-V-BhmTTzc#sxn07klkWX~c1JF% zbx+A6@Aq6LyehHl440?g+>`vl_{pP_8c!5n{+wGm|Mbi+|qS3-r>AktcTAI);;<^*Q$X+*!%DXWDrtlLmIKu-3g=0^JWx-yZvPWt#FI zt6QQR=cWJpKIGtk-Sx=$^m-0C*>Fdz9+x9=H|!Oh%`V>h5yD*ekMBK)$W?~Vx2Ao4 zwDS2DnQ~qaxr$Yr+Z(PLEa*CVDLG&HPxX?u$Fh{=cGt#VYknt1N{-cfakQ z)*8O3YM!jn%Z7cf{5~LR2yyLWX z%)ILhr|v&;aIez$!nQP1+cp0~uk*;KcLZLSXYX08>&3Eb?xMaq`*TZQ)J0W(-lS*$ zIDh9lhb7;pd{5J@{(a}?7Vn*}{w_&b_)08&Uf|{|Ije@4we#kMRiDlc*j}!3>WiIX zUGVG|dnevYJ|fHPc_GkRHE6G{W=Yz@%)ITls=oYK?c~3TPe-3)!>WCE)K|)SJ@Jh2 zh?i$GnlLYgN4;~K*euWLt7a1$IlQlLOFCb;{a zrJHk3#NX3>WoFmibK0LAD>R$b_)2vLyWG(kQALF|;R^lV zQol^U5nOluLx1d>D=z-+%raGh8G0TcJ>q-AyV@p|uIPBQ(Ax78>%=*>?t6W{7UViv zS-pIt=xAD_d*s@lWnbTQen0>9)!S8x7Vb`}%^!1)f7-6*osnJDtjS|{$WFJi%Zl;w zk*)jU_pu8z?R;O8SHQDniW2j*(0dZ@e2dcdi`6zZJ+=@o65U{T==3c2z0o13FK#Z@ z+&;^hn`ebW)eZRo|NJHQOLU7S^*@={&%5<#sbiR&Yre<4usC_ng9!d z`S66Y)upPxw!AmGsFr*8P|YmS>L;v8wI_5lF3qUP7ipP&Z{@q*nYGb#Cx0$ppyu=0 z)-CV;qTH6t-^FFJV!!{gsyg;QJ0`zAF>{OWo%gvd^Cz?fvYF){OuJWmT72c^=g)a( z@Y%gz?Z4Ci`~NK6O4-w|XRUMB%GW!Ufj|En~R&ET8k-rXs8zu!9gex33ABCYpFPdT4Eojd8A?e94!?$7qFVh>$< zbz7*)f_p!I2N!REGxV{RxZ6HGEdsp=gY)C6(LT+|8pCo6-u8N)GcOj+ZKLQzSR0y@$W0v z`OMl}pIZ0-yqUpgnpJt+v`1Yfe?p1+MQ!^RYVY-KmG52h(AM1lplCwiCwJG*p0|O! z1y?tjDcs4G(Y+@;* zar(q(H(SP==D(PlzOjG3RO4O0%H69xTmD`q_W9N3HBDxpe@Q=h z&GDeEp6&Ls>Vq%7N^2i{q5AmSxxXv*m+pA7al&ipxCd;EbZ z?9<{83GMs59X8IndD33%-QW?=O`vfd>4yId2kcosl!96`%HQYx|NNu%`99|PfBq!j z-de%)=F^X9ojbE-F8!=#xx!E@@m`zbiQ;jNE5>tVPWRuJs;c5y^T6Ig-u`oCl*;=r z69W(LvwRYMP*rEO_;t;HH=g&eld1~7U68ZWSy(UuKW2~wHM63uIE zc5m?Ey?wG+J@IWvfJH!**)E01(@ulVa~z5C_z*S>M< zx9!~a>OfuhbRVOSFKd~O{5x>f=D~{>$?rU)+^;@UU^{Gm^SW(pbcVXB#QDj!>wYfE zw0qs#;{Nvfe)H)W%IbR+g~dWnLCq(k``k%c|cpyjypM zuX?@eYyaDY8jTAN{Ipbv&$f2==}oArJL&2fz2MbrzWu=`P5V{e+`5$YFvT-APEM(F zJMTrg*Wpz1WI$Z~36R@7G=Te7hw+H*SvXp2oX}wy(QaUzEK2n!u5lVaeHoY+KIYUBK$cV;hHZza(2)!oj{=<~$_3v=F|h8x#D>6sqrC?wjr z{Gs`I&cjV<`g*yWn>Q;TxO8FrgigshXHr6zdX}2qwhY{GOMa$vdMk^C+3cm9ht4*B ztGLqtncZ^T)RHivlor)bqU^$=Z42eZwH?EqbCnfma5m1nq#^TYzNVK;y0p6$|N52p zmQ`n(2|es-pEvC(i_vM0LmKOT@2stM*y>gKEOx4X^XkQGE$97+JRVW%`}*A1BRspN zW$PS|*V|!sJ49gKwY|^h2K}uSs4jJR5vjY`J8D{K%=JHl@A^UwuS%t(!kjeChFFRqLFNvOw!XnVov`>fg(p z*juo4;nRC3isv4)TX8(PcIwMw$*KMSCVgv3R&x0iCmC+^aCz$6iM5hT&VJXf%z0sP zVZ#=_;MH=!VsB4&&;7>cd{b`!yXQY%`UQRWWu0g}aSErwlA3#$WcW6&f4(=>Tjizt z0@-i-H}k1}xv}jl&w;1e(b9^#7dQXQ+4D}=bm#lSe5-bUUpMWqLiw`L`>#DXolN6$ zPQ-O=Ov}1)Wuv@X_v^iLzMtID^!b;^i|l#(+FshIDCwWryKmmj@ifMf0Opus=HS5~j{6BKFMgMlW21%d6fmTp=#;_Ilv`x7pGW>#Gj^jO~4PJzQU(VRv@dwwLF) zenwZGue@BRlPrgr{Q2%P>^XETSs>^?7 zs{Oo7>EWX%-II!?BQ9|tVlQ+HSNr8wXwW^+yE?#2^u)5NJ*5`Y9=EvUxiYMJe&ycd zJ?(dbZ}e`MRQ>kIdcJol=jVRB`)lblhR=sTt(srOB|GWg;`I6Li&Cv}%Qv0wni&>w zKXA`a8M9@}9|U^5^evZ+x6=DlV^_6)*=DU&8>9Yd8ySALzct?WZEo0%EJnwv3OnT& zt~t`t?w(@1FE3<&<%xvvGd`KVPkE_z@k`A7M^EM&>MVbKu5wj+>$7|39QIeWTwJX8 z_4u;Y>wnH%AmQlObfuC-@5zF5jJn(TzeQd9d9?U??i+ovma?ix5|?b6mVEy#dUf5q zT4`f#mrkbp>?`N5laBd6{pZ|=UR9jCzc2HeY-IFu%H<#4I?Cr`@woPvrzmGBYmrnn6)LUKZ*7e&WKYxUtJhQe{wqy3J zsTPNJB`!Rj|4outXqH0j*AgYuI{x)nUMSx;tnFFxeg1vjux-~Sy)!pY+8biDnyb}I zX@Y56?Rnu&ML((EKR#@G@xDrY+WVsD{cPvoT%NAEsQ*Xh%H<0mZ~68y@$Ke=RZenN zf-j8s@D^{|RK71*>N!`y_SyS;SW?zx@9In3ZT7ACcG&B(yIo zvbRIeaQAO4%)7hr$%iSHxvonp|E;P$v-(%K^|JYfE6T2Xd|fWLuKV`c-)E1{tG{>K ze7ZH8D(C)>TkCtu?Y}1Oc{NeI{F9I7lX|uf%G=-F`+dV#8`M$NG}rt(_Zhfh&wA?V z+}rONK+6~^!Oi)J=l6)(|G)VD*k*mZeX*C>A8>65aZs0=C^CWD;lF|jhiA8iwf_Ei zAAX6Z53^~zdNkGGGfJouBeSfi_5-qA13@N z;(t~Cdhj~w4ytorE2zpT*pF7v;?|6|I|Jx*~5sIXkJb6IcLkDYZ_z1A+z zHCi8)T%)SivD@bV%ER}5SwuN>Zn$85ee1c4re~7xFw60;O?X;nvZ6d;i*;F&LvD2E`YV;J0YV|SmzAyN*k3Ds{qgb6t4q^AS8ltg{_f#) z(@S#?ewBY-_jKaZ+z-3gKK;D#``OL<-*3+{t7Q3hR6FF9?C8`JKk^cJFva+gt!MF7`LEo=!>$506|K2Dh{r?)P zS37HUocA)F-+PSx$K?YaN~`Yus@6W0IW6pK(ygrClzCkZDY5(HO?uY%W=YRkkbCt0 zg|EHq|1jPAeZ~F5vg7ulH?mIk{jq9zzqj=Jz5V+#UBTtLx8t|@r@$=j0KNBj>==H$ zW~dW75DaR%D}e?h#Xr{Dd_Vi+%vC|IlE6nFi&eTrN}iclvHjXv8~f?#*EcH-n6xeD zGJihv^Z?)ahGecu>hD|+^Ic zUf(ES!XWgLJ;5UXyzRQCfQ5YQmew0oKlRrxd|R?$an0B)keyw^!Uf@Vvh4tD{=gV$4U%stySmUg3(=OBW;ogFUN;NrG zcGdCalt?pI7aZ9*F+(n2jsMf_PqNXwu8B>U^f;&Dx4cpONiM!9$k<4xasFvE}(+$%5n; zJf7tnzBzu{cxAGH0J|ceMSJDiM#XvlVQFW6)%1nRCY>+kudcG3X!p!5Zu_FUk#}xi zUm8{1m%Y+T@5(-IQ3I#lT-I6ktNM2JGw$S{X?M-%*^zIW`#lW$n8o`R{{8&t)2-08 zBBmP`?%wxr{&7cv$XWiS9NJq;Vm32mFM$Qu5YRR>-Q-?KSZZi;-O&ikI1{apY-H%FKr8bds;h;Z)()r$%*#==Kpqo zef64!<&*vWR!8?QezNk!nXVO=s%FMt7n)SD%71Hi;1rt@rJ(m^TX@xfpFOTr9#!}4 zy;h!Z#BRPxeY>7nFhthmu03A2Pda0o`|Z``jI-D)o*w1A|M$u958tBq?+-pc#c3Yv z2WN(VFW2t={;x#(Fu1&yJbBOf9+>5N`sv);>)AdWW~gI0uo#r873W*qw#C=H%dGh@ zIsd5W-jXAqmFzD)Gf1pSC|h8)F4a?^_wO?PD_`~n2818vzqWAU9T_o(M-$I1G_0NT zRC#vWjWrDn^;f=Jn4=}|?RQTfYBDDXkazIr4YKPCe_DBU49>{Mr*~BhboK~UuYg?q%*7mmJ z!9TbqY-dU-m854MFg4WgNuGM$Lnc)5w~WRb27C6ib7o{m?D_d+mvAG)6V<=_`j#$z z_qumO^xGqans4n^U!FDZ$l16IzwZ%C)9*9NhX0*l^Y_ov=CrcQud9=9owQN?I%UDP z?>B6>q_b+f-GAr!Lex;;scFihn}==NU?|UaLuE+j99?x|loA{3XHQWu-9e$_eq z$F%GJ1^2x^$^THaeKmW=eG!KF>>q*|{{36K`+M9DXiMGO_uKrtpb|ZmOYi-ie^w0t z84kqn&Wx24t9*A<{lmZX`N!VxDd1*jw)wNs+(Xc7LJ8NLJO-vJreiiK=?q7Iam?DQ z{3+S`vP&KBw8i~p|N08l9x<$mt1QgD8rfk}JLSrRT$Y#HFI3mr#YZ2^wLF~9{O5@D z2I-F*1q^Q3{JYYe-)yHE^W5ppR^NPvlZ*X3MOoJ{ag;OMKX_{2(p~m%0;^eHJ^p?2 zl6;|*%>j*fYaiD#IvjfE$~|q@A?6F`J3=}hNO?l;#1f|0OLb-Q zPClNOm~ULO&}>KCW&LEOFFj)3RUZ%BK6cOR)k;2h$>pyqrLHrllnPm$y=wZFQRT&_ z$N&`&jz7n_SuZ}fatr#>yNf#|3ffGxWH>Ubry9VUNjy^NFAJwyoOxdzJB@ z74D_m?!TzKwq0EM%Td;=H&6Q1ovYG&yR7^by>UrjG}QlFdsc-^gQ`|Orh zHTML53M=iibn?G{p~Q2;y)6l{&e{t_R05s3K62{Jj|_VMY4(=-uL9ELA9A{FEHF@w?_Nh(tI=isg>tGp1Q8s z8|kp}m)F-+%XRzz%gHSely7{Q>8%>H`_Jdy`s%!~?Wg1(-~0JI?r-Ft=eqL8!tH-$ zf<|Q08R|Yh0id9+6B`?2En z{inEBRrRzlEmt&&Y%Hpan?I>#Z+f@s7glxVAdA4N*R1=*EIphZ$#ywpXxTaDkgeP~LW>1D7Z zeLmCn3Ex&67g%uQF2{Ek%el9o+G$G8JNckPc-Ztf_myVbALL`;vgI1b-V7)t=XN6)wTsK+MR!YdPz;Dvaq<< zHQ5y1+mr7Usn4y5{odU5M><~Tgm%G%SFfeEd^5cKn$yNXmdWJT)@|8)^`06&zMz@t zUYmG;bH5GSA?YGb<=38@B2MPK;(zjSdCL0gpPBow8kg|rly<*ZH97l4`qSS1pLb18 z_iB0bcD=V0YyaJ9KTd}Go)ue}{#{+He*T5T{GU3e^1qdTPXF$q%BwZO;#SeQ&2H{l zZz>YK<9h?*qHk4A+2yA1c(3|ucICHIm#S?T9xtDCplrV+ro-O*cb;bG4 zgLm#ltWEM`_#KzKu`T!YmuH+O{vG%g>lJa*QI#=v%?Yh5u(bfff9=lw5w5cK%DA@o zTgLyL*O&cIt;nifx8UCI+BId@_pVaQy!!3xo-0;bwLfD|u6b21s=nY)sGI-n_cjx* zG4ZeUjMdvv!J~C>#s1ZO`zHO~_3YQmvo-vQGppt)y!meX-gVj4*gf8sTRzG?WZ${& zV@!=cOWf}l;veRz+jni>`_0m)GGQnC1AEYNv-R*SpjYkB4qA_6bQCmb!_837eW0Il zN9o~LHX=o(yAFVtTZYg7QMIR{wq@VPwNK_X&EhH(dUWBq{vlp2w`0lICE9uz@_9F; zzhAM!n0fW9+Ubc6r?j14N6K?^JLxxEsomhR{-U>kJ%5qvp~6?m>Fj3f?QQvcQ+1X+ z@i@2Qy1e1`))$sJPkL_8+}dZ>8GrS*_N^TmGAdDDmhX?Aeei&4ZCN0sH7l=i zLeih3zqT6ZPyB6sI3=*}u+x`cK_1=TN`81ZY)=MI+w>au^r{X{-1fKb(`6HR$Y_7POXIRA?shaMTmRQ}Y;e4DQGYDaI#jdkzW^8eg(GOPD|cKpAi zM;Wuvx*P2I^zHSu=HmA)HDQq%!f*MMnvS?{*%-C|`>J7yo%X!p`=BQp=K8&L2fXY_-L2Uy|CTHc3aeQ>yM87 z@~10&7EA1UYPH|Ydi!GS+UvTtrzGNoR(zXhQ}@;Gg6+xg9Xe}w&zl}OZTIAw=Woj8 zCzw2Av=(TsW3RP;?{VG#^oLDb?Y7&WmWbc9qV(dnu{7U-$Z_de{mL2OIXQ+6VNT51$TQv+}3! z-Xf+cvhuN_e-h*BeR|waaa=y`?!)@DL80HnBJ`o%*NO9X&AU*LBO7ij9LoMh^n8)Q z+T295)dusWPhQ$u8c`qZRB6WYaQgk9$HLwvs{Wjkuw;5X^R%L{^Q-oLKQ=SoaoMd` zxAtwYw7owgoyEt^F6MMK}(;uE6 z<=Ph+?U&v9eCG4FG;5h~f1C5CXU#oOR@lMM@qQm0&%AoxhPJJ$j3+k#-&UpjWzF{B z<7TG$5vOw>@BSi~RTAm{BG7B^`PPqXII5R@tP6KiJ;e8X)4O#0b?VoHz6+`p6y4&w z)l^f?G2v-^0?$jYLs6aH{H169*qLvM^*ZCKEjvYS|LWd5a=ewcr#=+;-~XBYby3^; z_YfSQDb>_Ol_TqcKpZ;Fl(e>h$i>%fqqyMs<=F`H~ zum8AL&NwhgZAsf-{nmCH#kqIe`+7e}wgc0 zeO8B6p3mC{Zt9){ z8s8NzO@IA$U(>D`&ma*aapIOtAgBSWlNdDQ^lRIzXw37$ACVVP>AfvPH zz?(Ov(;jjyXjA!A!^Fp{UAen&mT}v?Ur`?WvuxN6?>;)SU+nQh$HND#wrpzH(th># zdaL#PLC0L9_taFd$;L|sd~*2R_DEmh%|uZztDVyy>@0lw{J8FQH;*;1%>S|Nd{=Na z?Rf56>Dvnv^3)D|*}h_}(mdz?swQf;-#+%>lsQ{Gp~mNVww+47-1FDFxY{;;-jes% zq$`L&v_<#!0+t!;e)CPABw^FAB;;GvdN+Z~j30v-etX;c{&Zs8`?ts={-$!!{O2EC zZ8xb-%YQt}dY$Snv8R_JlGvh-S8ldf{^n`Cy)46TlfS3^@`M%E>rFOB>utV$ze{HI zEftqz%cj@KrRSFFH(mpS$}J{e8D9BYtdh;f`h!j z_LMy<{yHJJWOwpypN+Xu+zYq-Taj|3DAV(~?pn{A7n!m?URX6t`0@6_`zx2=rl zet&_Z(SNq?{jcX(qPgNbwI2B&PqqzzH2v3hoAe)3Tkb#dt?Zhxb~T^+$16UHag(pB zDJU{JoVR;F@oaKIM)R~MyE)zO-4L%-|8_UZ(|zvpP|dI142%7$&EB6_|7VL*{!_yj zuWxOterEi7*3zTR5@^772>r@wyKt)0(o@NIj1 zuylz3ly1NLnm1hUYfl?jTz))xbCu*LZwAOB$y(?l$-^2~KR*Yz-YXq;?kV2Q_+vFg zoz#KrcQ;t^x6Zln;r0AKW`DZvcl4f*i)G+=F!?}h)xX{g#`gUxffMozeQo7U_U_;R z`oXTMjFO*k`nR(yTbT7L_dMTI+M*uEER?wLr_hfJM?U*qlAXpJVAgb0ex>ZKhn7{G zQLlN|R-RaX@p8Urx1vnCv)%Lc>+jX?ly%h8o2PMlJy*u+mVc5gr)x##O@I9Rgq7Tt z=%sbvEBHS=PG29pcEtt<=LwaPDW_FmtoQNOKg{*XBJ%Fd?&A+zrxs**+^dbQd^YuX zO%{9m2EG%?4B3`Ezr8N*@$<_sAU$W_ona#&(5|4PP5^U^eeRsxjTKARnIowy&~s$Buu6YZab7UTkza>Tc$~FoG$M- z_bI&l_J=|1hS~Y^8TQu?U)cIB>+;t0_h&rb&)*}b;ThMsBQ$q|Nu93SuD0!G9{lE9 zel@stZI{99nvc&nERDT(nb|}n{feB*r1j-DP8`0dwb6dpzr>YY57yX9Z+4%bHT}2A zb)oymw;HT>S@_xGz|McWgx+2~u{tnqX>-@4z?XH*d$u1=d#zTsp5s8s{OT_Y51xO? zERg=yl<`xwKyp=n&`qmjOxcBtTz;?KHT%YF>EA(b6YFf-_oZ6=kvSw5cI=<+l;un2 z$g@X%n!zp|xc&OPHNm$(kDe{diHtl>C*49 zVkc66&DvbAF8uP_vE<`7>{N|RZEZQ$tFFD(Yjwf+()$gzZQbA7pGTHdK6O35``#Cs zd;fmjzy0#PW~&YJgWrrb53b#|ya{l4a<5FFE40~9GqU6@E57QS=sE%V~Ob{x0&oQZAlfz(w#-(D0 zsX8`}jeB|IswK?WpUV1NKkn9L*S7n~@d`!No(rqb-G2P_4daTEP=9?_W{*Vct#@oE zxxRgrzv6pug$viymk0Xhy?1LmdfvyH{l`VKo2!>HJ!XCqUUa-u=vn!WmK5E3Yo+gN z59zpXWR?GVH|(ES?G=%?C!hcCeGntJ+w#u5y7$x0-)CNbZ?E6u9jWgF6nPRoSkp%@jFT`c`oBmTPhk&hMK3|M-R} z6P4M0t_JHIuTlRQTmSMxU4iW(KSn!tN3(6J4*yrIrD3@du0x}Cr@v@fBb5FxlPpO>-U0hT1`KEF8TLj5mlb)yXMy178UZ;)OpV6@zCzN zw15fELi^}H`zrob?b)EO}9}&Ux}GlP_EKm9G@t{3chP|7z{>pF#E84x730{got%H5xA`t~cL(^7TQ6}9T*$geBEtozn# zD_{BjnRPk)lBbN%Uw_&4b7$87d29bnmD4@^IoQv_?edqg{PlqeMe7MvX7wlul z{NOm_pYNb~(?7o2#^6Ty?m2t6&ocrs_5JnU->Ks|;Lq?w8a(!Le(w(!yAN+J|G2=t zo>~6m%bN=iY;N;-tk2~TzChA*56`u<2yc02QIBATxXx)_@>8{bbRTA~`g_Ao$@L(U z>Qj^Z2X9Hu2)}K!;l50tk~stclla7_J&QdSLLcF zxM##TJKu_9h@P^U>zI|o%YVV|)829FqQ`x*S8>q3f8o?iIw>?O9&Su6QuTdQlQ{Z_ob{E7Bk;kPUH zTv+w9`%zTJiGsDstK5R}t^fNjU7luHIs4Yx&wr1o{j}5UI9s?kE3N&<+4p{*&a6+# zPksM%>W$6QrW;>LF7lkNY<6VVwZcP!mM(Sk$}9WcOnf}GFI4(bmD(pi>5aF-ou;Lm z>~C%8I_E^;c}(k*wnrW$q|59N#2= z5n-uU#z zIp4Wk|5g_|J^H?V->=OT=Y#h*U$^}R9!QL5_;X_I?(g&VLZ?ViyUIP;310iMY>yA9 zw4TdQCw9O(FKT+bYu)Fc+aHVDeUq*D$Gtvc{gd`+rp=63`Wog>)?ta8`en6TY9mj_ z=fX)0e@}nB^58w6e8pUzy&Ne{`V;M085gl|9qqJT_Vj0_RxUSdl~cUuq;0P@%=z4| zYmz>pG17jL=^xu$c1-_%23jynzcW3!#mkP@%<=x4^4O}{j@Tu7>a1J&zcbi>XH)s` zCeCG|`l+)^3VJwH#a2vbdMnGd%KF1BTjzBb3pReMecHL?t4!4KP=5c&_Fd8&=H6sa zcpEQ${L|AbkI#7U3TwG*LcDZUf4R?+6}YvajV7Ef;w?i1)1#Gj zuViN)-`St6nlv{clUv|ou zkMC82j$15?beac$*uRi|4IH3N{v%jZKdlY9M)%|L5RoVlq=0A3BS^5tJ5A|#R zi=Jm5+Oae1UYhLY_S+W0q2}_ef$P4{eYQAs@qF8gfZEA~q@UOD2o%da>WN!3tI9v=oyNr-_sf%idL1j073<%* zq~7$^p1D?To7>|<|4-|FXnB2>eujiORJryNkcHd^Ol&m%rz3 z^`p1x(O2yjZ=1?DukWGO`|IXfp%z~Iy|28#dbh28)t6sa)TX*Gxv!XQrLaEn`L(3$ z-S-+-wZC5WYp3q5S@F+b#A#ewwYGBIo^PV+;C$guvF~( z%6cPced5ed%cq^T-p+tH`J zVtGiNOh~@{qlGy z=DNankul#LyncC{J6_wGmKp1$e9OG{w|Gh(tG&+4&Fbo}7vH=2+W5%*IqD(T1-2#M zRqna?=Kl(PVJ;Rv_oS1G-4fLYzBaY2Ybn0(@o-7K^QTXrjep^Wc=Ar~3MtaxIHU67 zdaFfMm((4K)$cCy|L)PZN|qtzj`qzJZ^I{D^7PGJUH!v_b4{n&<)Ub*;xo>+i|78b zd?WTb#NG9;`M#&$o)v$)v-|A+?AsyyuO1wE@3AE0gB^pVa-aR0zxSlfwQ~~fw)J@3~u zyYJOks`}>tms=!PTfP6~k9P;I#YbuF{krPn>bIwION~}L9xr*PzwOBHgbPxB3#<~? zUO#^4-A(b$Cc+ns;6)Ky>9EYH{Tads=N9=Zr-!UkqxK6y7S52|99m0$6SA#=Eo1Eg5^By*dDYq z{FxkG{(f%p%=zHvN4=Bfe-SfKLnQbgc++(_Bj_4qh6keGJ?&TzeAeH~_P+kx-XCY5 z-)~_ys#wNfP&7Q9odD{Bh7vH$!tiEZU+WzdS zX{W_SWbAC;{yDZ$a7kv5IlF7A@0tW-)?)e?>N`|x_WQdE&D{}ua}}O z>09YU^?zRbDTrl}>OV`BLo464he+4T9ooFX>bc+XPUnrUI4gT=l?>V^ock@a{-@QI zC4W4Y2dwJbT&R;3=~WV*^5{m?ebeuC#nn%z{q$By-mm2`|Mc*XW z|8C!Fc_4oC*{r0kN{OF;T$!f9IQ4Xd-P^nAPsPnXt+(=fZECh|>({jlv*P`dGhe4~ zJnr_U?8wjFhi|Vp=<=WcefsTM6MOf9(4e<-)PHDnZOOX7kw-mYb*=V$SG%$XpSH}` zHFIk%D{It?&Rc(PxP0HQ!}Jr!1Fut;wz?f(IH~Qkxk)23lQ+Xvz8@9tGUTs9Rvw5^|hbN68| zOY?u<(@*E#u4e|V0$4oz+S9~|>2{yZ{@iiD-}*eR=IRFrnf}*|9}MRx?*AMZ&?&62 z$A-h)?N&ppjmsi?E+K)l`76=|Y+J=e^0nF?sIV;T-@%@8ewl6Og*i6Xy27o|R?N?) z^klz~zWF>w;dKB*CjXz{#3j0un*YR1Y!{hi!Rsv%B-Ew6a8fhZPvw7dC5ISXas$}^(W@4Bm*Lud2NAsqZ zPdU_P=x6*#I^p@nI_t=v+%;DU8iTq1SM(|*9E!HQ^|W?LfZ7Dxvp;rk+c-1UMnv!H zwQU+AZU%Lps};7MFJHI+mE_uajb1l2dKXl=TQ2;~=r`p@l&|ffYQ5@PVft+vM^?u* z+_H*Yd_(STvQ5LR!@U#kH}0u7d8sUa-S6E>4aJj&OREEKRL58s)%PwbRkQqlQg})H zq1AfpdhZ!t&EM#iwn_2Y>4|e<-aJju=uIw^(Ou*39iFs4YxAqsk7qo;VCwx=yFKb; zu36RB-Y;G~8t?Dh7G=gL?s?*RzHq<1v)Q}JK{bKedw$+&ySih6o^Q}o@z|D*TZi(W z{kgp(&Evf8pX7ME#rbkI)zeNsc0GDru+!X2t+Z&R-s0<#*HZT!KUF*Fx81d_*CyLn zEZ&xwzc0M{_ln>DV$NHgig>m9xymN?>{IUNeWvZZ=To-DbV+(o@8mg;m+wD%!#YPX zs@U4?uKT33;SckEetup!&wXdqe4)Cl-fCaFwO3iMsgqB>DkbW#Jh6SgwvhMUZ^x|L zTGza0&=Ytf=XtQpSQRQ^`B!ESEl6Np_P+6TRN0r(no|qv?tcn9 zvbAbs%o-Jg+v^uvJ1?Ga$Nlk*$EUx)60O=`boWVU*dCjMPWS+GCpzxGwros|k zYlAsguWy*=enU*RQf~ev<*Ksz&sH;pwEelVM|9z%M3Km8!j-p@S52?}Z0YiR-fGhy zQlAfSTI&aYy|S@<(jSL+^{P^}a^JSDJs>1D^@*HqqIOg26o$JI`A`1}eogakImdls z-T_1K3)i`Q{VeD?&KlC^t_k6)NKYw;}M#p=_~&$n@tZMc3(>@@q# z;=JuA%r2Tn-JZU+{YqusyCX8!zAkjGUX@$*qjSRI@DyL3l--qouax_5`ab2{^&k5` zd2r``iBqnVJ-++Q*WNS99OwHi=C41!Y|Ap|caM~>qIs2vjqSa>!exd8Pm%PruxA02! z{3$2!+rCEjju`4IY=`SJ&w16gZ7R&Tg*9O1HHH)`-? zn3u4=xkc*0az*>5ZHwd-?D;+yR$H9U(Ot-OR=j`nMYAf0xoghwsZ8R3VeysqgY~+& z7H-4M4Ju#ebZ`FS)GW$=dZEN^4wsx6QtLf6F1+$BytQrZu8(sLY+#Ol*?(0z;IvIk z$&ZZn56!>E?B%LrYkCuKUfgLZdjjuE$yydo>;B%)jgyRiEwHXS*+T04=V?Ds!V!tCa`tJk!$lLE-p7IntoqQXj}eMtqu3OjTo!8 zv95e@Z|%Lb_V}yaee_+w%6`#fVcD;B$ zFMsFy#rGq`KfmB+u={sKEb>_3wA(WqKP#~Rnh?jyzAR5uo^!(u(~|rP?^SX`nYWhB z^B47qVSK~s=bV+hJ=b=dd-smmaHVxm&2o30lx*M; zm8#7Qi}kcspKyGya{t||@Ltn{o_p1D&*Vzo?waDZeqO!jvA3^Q-?$gSd~Czae_Jk2 ze4li_a?9Myo!4hPPr3hB^kiGk^S$8)iTC%$*`;oj6`8jBX~?}$$#Y#{UZq z`IUdwKhE{9!(F7kK8eqR{TY>+YWu)VcaN^=aV?p?j6t zGrv^567b)v7Z=VOakx5ZuV2#Qtx_)6vi+9Hggc$vyUy=#!!@ynj#OsGN1+YbfA+-` zXI$cRxf;zW_WtnUTV2_j8$EyiS$?onLo_7l>r|#XmQSW7^V=$9?)!Z&lG%2)_R*6q z!i%bEdE&)?U4HGySkSg-i{@>}g)3goM9;r@9we67E_$*r@DL44V^0+Chj2$LzQ1jCCI=882 zQlt2!>+vQhY6T8dwZ*^Q%=!7p{{8F$(*!eAB@69j?peH=X7W|%@?N*Cr#|c6S8us0 zx+KgfFqwISZltrUDev`b=D+)I`Mq*~Y5Q{JlC-_AzLE5xmMM9){}RE)5UhVA9C^SUM|0Df6(G$o%Mbi zm#-vG-IXqz)o-xv_S=Zb9!dNRKd+i>U2&^1RqNv}`}{p~1K;11O*OT0kKN?A&3*lm zxLdckfBrL#Te(nYe&x0MzbZfec>Vfj{i^xr81sAk;&pA;3nst4wf^y}@J`{A8~?w3 zd1%VSq2z z#9H=eCa49no$(J(!~PoZr26dh`(^+CKE6+O{;xxeZ#!?Ecix1lj%C7awiQAPt{#u% z74^#JO;B;3G2KD?bO6(etxtWdmZjI#sx19J@34~W&Ci?%p3Quo5ILbFurKa#6u-a{ zxxN29_GRqw6P;(;VY)U+?bXZej2~C`eX+Pwcft6?xr2&tyc0Ig7iy5LYMXm){m;iz zoV^*X|F$hT_k4OQ`{br|d^M%svu`hc+Pf=_f4#@)kHuc4DFO4Xj_k}@xV`(3tmsdN zy?iCFyp$EA}PE)#Q*EGeSHrL)m;9{d6^!H(JSgzV49idFXH!k*A2d9-P0AdZW!(P zdS&s=hkkWw8Rv7~I?j0+e$(={TjqxeZ+03rE&Ag#`-Nq*N9HG;)p2q!((9OwTB2`y zf9L=Dqoe%F8T*eUL#OJB_`4vH+v zH+>X3H(5Pob-vo%;@rsa`_+934R_$#+wyp2^*P~}n=trg$>0Ezr9lS8uy`?B^qNXEUX;b<9p&>|+)y`XFWbWNrHq z+0Sn)MUUTkGE4YdD3h^CiTB&{zjdCU*p+ubbk)|da&!L0JD)#&KCh8~*R|atukBu6 zGm=m7m0K&h=-aA8&7aoGAGz>hR(K7g|NfufKW<%L`z>|bTkWViN$(%$s?FD)0JWKG zmY)7wFc~t&m##9sJkOk=Ui5%H%ZIJ-F}_#F?>E-}{Fr~hTb*?Q)19#OGVBi@*KhRmX`Vi)mW7kwaGSya9C?`h>q@4rtD)^EALYLk`76!kq5JH@B|X0=u_ zbkScdVeEK@m9b%MTu$a;rjK!7ejKa4{i)1?(UEiSrs;ggEj|m~+Nt*|`F-rGwJDO> z;@XzS3vX_mbC&(&^~STs`nP(XtX)3eRQ9yu#4{#UZu0A|ChIeYvCNbFwekB>UYX!6 zhS!;QB!T!GU*&qFiKb_yZLT2A5hls4puWB6oPFIA-o}62y_oC+77QeV% zPs-9y_`eipH~jqm);A8v<=NY}^=fkN%liGzz?y7g;y1=1G<+`$b`?$sB8{4O?Ejgb(Z(Z@tx-F~cPdxRhr2ot&_I+jE z!If8@2wKj2zO~^EPpZW0s~%NPuIj{JEYo;7<*4%o)7|@??=`L~Uo>&0me8^9FFzh_ z+|&0nhRbQuyy~5{yEa)z?B5;~azFd#{P%L}g5%Cao?il-GS-yiZK}{p=qySGR_)*VVRPGG))YmwZdJW%uuHFMcaK=en4}^}B)( zU2priG`1E&;Q|Eb6fcQgNhx;rm#;+XZXX= z@csU->i17|sz7t&Mo+s{s>@R#%(f?=&b>X(@JF2CpEN`NebCwuoBx-xKX9MlC%*sd zA7Rx8%LU{Po_Uqh(e>fQiT;H;>h^N;{;yl4aO}~`tyPaU#?6b|7H8Sm(s@9{ZNi1w zt9Ggm?T?TH#Q0*75icu>*D6K0jlhjqL^5T9F6^2!#YXh{bi+yKZ++U9-m$hSIKFYMV214d?dzP2bAOpU5V<@5 z*p^$z6sI*;JSa_xX0ALFDp%!o>+RhC%da11Hel|4bu((|_1CXlUwrmsjCwDv`r1TC zMWB`~<-C5Jts7mU0di?6@^9|P=*Bt&e z#U)7T>~-(8&ZjRJ`U`m;ULt3Leb;}!fBuK@@f_Rr zQ<*nKssFYSuA61mK8H7d=^M+*zctox<(gF-Qy`Ppzx#s0cHLL3o5CktJNwb9E&WVX zk&-6i<;omXv37^LEe@gB7zxe$D`8_{Y zvFsC)DL&NKV0%8bDB%#JJ?rhO+8zs;gwnlN?3S6gk*WIS-S)5M>Ve-B=CDX@yZSie z>#oD;5=wmrGJ-Tj@WAxDbS zBPrh4b4yeH&$;&c%R6QmN>zKEcF&AtVYW>IUIa5m`l5OQ? zaXquWpLW(xY@3y$RL*}XEPIE#(fUfu819+Z-|IAe{IR5_Uto6B8dRuDZUwFu_HoeoNomHQS9BJ@GzMq?1uNTL=)c$1UTX*p4z8&|sMKv$kEl_Rq zd_A+pnwAGfd}7seZWW%qUA@V5&g<=Qx6gf>yvcm`uT_0h*3HwOb+5iW$>!hrzah`p z9!`I^bZyDnXS3(mnzMEE8O)EGKB;zs%{##tuX~ndp0N8QTPd@H@7}$zCpU$!-~Vi~ z=i$cbAEw{?q-gW=hx)tVYa$c>iyq*=zpFa`n9W?H)KgRR9V-n&lEF>jJ2PVL?fk2! z^ZfVT$ID79C7!gj#s5CC{qgjFA7+0zbX9rv@}rFG1|kXz_@}7!$}G6fYjkLNDu1_X zEQ2`Tq&XWVaE0&9J@B35K~MjKsn0{03XX6abWGu~ROOfEwp>-EpTcqBccLnv@rSi7 zr`X=CXPLkM;`#G0?>I8&icGnq94Q*qQL}jMr=3}M>$ul1*J4rnEUd>Zoi6cE!L&Tn zlkevZt{vw-AK&_c?{FHoD$CwlhlbB8Z$w1OnG_Ez%Du||t39vg%ImrY`Hw-5^3)l` z*FIk5{o<7FlN^CvjYrpg2y35s-n)12k9)UPST`ti|1Nqb?_9FY^vUy5`|ES=LtVn#qE8zVWx9|Ot-qE zqLtZan==kZ$M;m*yshs0TC&&MYN^JjAG}H*H(Y&uZ=<34w}a;+@~8ayzB5X&`kxVp z_vg*xrF*|FNMT(1tjuWtdriK|uok)0^P3}%Z@#_Dd#4uYq`1l27eC7@udUwlv*Yr$ zRPA1u1Oe$Y%a?QrR|kHY^ln4b6;sLi#|4l3&%1rKkNHjIx8C_%m)UHZI_2Wub!t+Z zLYBm-o_@dO;it&@lRNLaDNC&T`Tfv@u=|fy`EL3C@3%XXdvV{y>84>#`JQJk%)ODb za;dTH`9H6tIs7-zs%Qv(?E2k7Uw-zz7;)`GGm_cLY;9&N>aAYA>;18;l{NF1E?ITU ztljr$LVSGrdwaE2)-2cW-VV6W{CrBSc9FuTr#;8`7JSXxZ^6JTJ#+VV^=H{$GxYXb zXtpcXPv8HuPG|cM$2S5gJ0lL-z3tq#=GMc|$;IW8>c3CVJ-K$p&F>F4r+f)=1;%4gy){^%Xg8LlHZ*4pK(UpmK7edzW+n#-y!L`?~HG3Q>XGX{kR7j zb~^?gb_@QN`oAw5oS17)g0=*(GyLaln9uUz3GeF90VkfXlRs?#|HkDX50>BSdi_>1 zkEOm@=hX8;#-9_XKYA|xwsE)Y(bzvb5kd~#Mt~2`4HfL@WYH(Fa9<#?>)M$$=KwXg8x3bvQGEn_tH#Pe%3x}&~VG& zr`kJj{`9@kB20k=v;PLoP1(f$V`X^472!mSuQB?Q&T*xEj4|M!EpDe?{n)trw#k>P z*81mOU;en9L1FI?y(7W>y0^Kn&OBF}W0iMI+Do=xw)^?~ZI#`dru}<%am~D@$3N>9 zv+JGglCZD*(|bXsv#xI=!^-B4(P-_vMC^?dOR4GY3Dq zGMwwqe$mae(R{;ti~F+QdJ3mqXSWUa=X|K;V{)A-UR--d=x@#we_NDtOYNR)>l1$* z?78I2qqZ}Qb6M-kQe9oHB;;Pph~K0)lY{$_{;{i`97}CuKkd5P_TPAiTr$U`>z>AU z_cjz>Pk1%a;>3gfx0bxEId|>k^Ixg8Htx428&ztGB<;Ko=XKV2C!4=s`8VY4>73?u zOIOtj1pI7W^mn)H&6%xxZhwh7xvy=XU;{&#&<5tW3_=~!mK-_KbKc3UV-I(pR5dZ^ zWUpGTBIA?&F(3mz4E$1veD4LXkMXSM*Z8H+kee-k1^#xR&=cRPt`xYqKP#8-&)M*u%YC1p_4}XS+Mk#nzy48z z-|z2R;UNA^btX?fe+kj@4|%pSUUjvneY}0c40gM|J@5A9U9Gqb-Rs3nHJK>~| z?*BR4AI$qO@vjr7z{jXX+vjr~&Yd?Y{DH@lqciKgrTCe>7Wvz5F`2t9S#z?Yn_|j> zZJX71e=MHU`LrRPx5CB#3XA7~O*0K{b6(odA7VQXIq%w5<#no*|DvS8 z(IBPU3m<#mwt5pB>v&!M z>!WQSW9<7h*&o_&Nv|+@@qOwFqeCCIw0-oE3w-1{!&6E2=cSnRg}qiy zzBcjtM1@D6x@EZp`{W$G`(}i{x;g!OyQ{uPrNYlG^2xaYtLG>eM~c6_wj?%mMh5Tw zO1@34Q`)cW+hg`B;`@iWzY}djf3v-x{c&^D;!BntHzt1JzU1x6t3EMi^2Xy+r<|JA ztDW-oR{J@x{n8)IuIHviPZMei=>8To$K?EGt?kB_swF4x;tG`7eYo<`qF47bf+u{o zng8R?y}9pMxBO9Payw+u`uWPV+s{N*&iCb{Jc#2sB~$8fd*SN|lV{!hc6CR`6n>++ zKlci@%&2;EbZ+W|htHk5kH!CcpIf$eruFuV&nwjanI&zB&rkmpSiT|7a=ri8#9h~{ z{iIfHm7O+W-m=?H_u>|BUtCe~%Jx;zzW1zG|4sdF``sq&bc&JT`aR3$t(m4gpF){I|N1UmYj`G+RM z|A)Syqwn+oT{M3vKL58_%`5JHHUCv_o^JH`svwOLGZ3n;+b4h2GoAHUrR)K*b)T>BXY#z3tX*|q(0j+l zWb21js`D+snYgGlyj`>ZRI<6ehRS{LZ!6;cAP{8?A`M{E$MrkA4Xe+jeW;ZGBJZxT&ET|GSJ65-^GOZa_ZThbsFx~t%w2D6 z`*!uOjqgS8eBJ!Y=mW2}anx$Ar?cN$oYUREPJe!iu94&FYQgVwx|Q-x>;C+)i*28K zD`~Iy+?%H_+5U55+MuTM>S}ranHArAHB{RV1ozwb^)jzp>+@dux?`(yi*_*|qqwm^ zMv%YS$&xKEr3{5kfBxUYW)LdyMmck#vBBkiwy`I_{_<$q+JFCQcF$jvs9@Fahdq*v zeAP-#*QB0_+wOP!o?KViGJn|vuQ;!5+b}%V?ne_Y(JZrMqtUmBb`3}1v+=~mwn(AwdVKJlyRoJ9_4t}lGq zFM20A?pg3F>f1BXtzORl=|48^JNkQ7{=M?48lH!$uI}cSuw7#IH*Ecic~ZtzUYb7x z_a0sIvZ8F-paawam)rGpZB}Ytr@7S-$k~GXGqDfp-GqAKPe|sQc%ZvTWL({{EtT-Q4=e zzp{is-n#rRfAw9lOL|pBlFc)>EGyXawrZ}|d7USdZfQ@yIC<~y3ELv~TUdl23|Z)} z%gzu!DgL#M*M5sN&jR*tW0v^+^MCsLyG^;)>t1iTm@V(XpcrsO)#K5^RTCD42%c1) z>Tz)iN06R+Xjxs}Ba8id>hq`V`%*Mjb+wZFs!PhDYO1xK|EA8(_r5Y!#(jOwi-#6{ zYrEEK*r~dSF*dRAA7Ez?+EHC9QTaQN+ zm$5i5wv(B9>)L+RTz&7?GaK)@ZLlf~t-7-2Wz7vG^=bFwShj_Rt1W8Ch~GN*|JRW1 zVV6$H3GdCdvDmBrI`Ow`)bE`1-P2mH8})HLEA@GNGUQQI`hl&&MP})nIzlebe0}lC zH7kA*w`(FN1$)A})1!_T%AWsi%68CtXLj+V#WUP2?kiR(pE_oH_K#Qpl+z~9jFvY% z`LkO-{m`-BPhWRjd!T=0%f2wp?fiGOZ^oT$`)9j5`JFKPMWej`wYf8RlK!8#`=Q(On_YfgoMWoQFRH7$ zT-ZVE?DLh8+yON$ziN}EUr#;Zu06l>qeV145YcXZ~QzP{(wDdHR}jQzxXy{a~y4(E0u0v*+>hi^TuLHym8U_U2i_&bsu9mik5S zCaNrW@1XKRYtE0&^Uu02TEeE$cu7|*yl&l|`n0m&H?RA-()Q=sep}Wy{lCS(*>UML zu9re5{rj?dzRr5l&3~=@GjDc&&lBml(#Pw3ir4JRo#e{*>$~8EZ$gWwSFYbQe-WS4 z@f9jxlJ9NX7QIv~{^i~L>l@s*Y_2YDxt`$t{CN3fLobg`skhNN_fLPYI=D~jd76sy zj(HLvSLrKM#2?$895Zu@&sPn%TDME{e(NMAg)Qc+jF}SB`91N!**jB>$6J>E_%gY4 zbxVFqnepZm_N(vZRk*CmJ+2gZx@D=`^Oa#`Cf!S}{9JfQ`_hhSnvzpbdWd|y@%zUI z(YWnD(`C5Tll^~hUw32GbIrTVE012RpEGUilr1~~ndj}lE5t1gyM3Pj#zlqGFE^Aw z-|~JJU(XZW{Tl?g^gsTnd;f!uT=kE`JKn#0KKb=Bl}{!O|0NID?=O4& zZ0%{tOyRPcubciav4EuHDKRnj^|}r6>>u`?Xl7p4QS<1g`J?9fRpRshd|I6#Sj+b0 zh{vijy=7aZ>#fq?A506BYmf71@zL&?w6Wh!5$?zhx#RSExEYF#N0NyghFJVF|&cuutc{h6?C4Jy`I0g4vF> zI#b_viEXV~Blw~Fq9@B+j>5CKIwA*;vy>_Z`FW=NN9-5KKCrn&uOP<_Iv+5`GuCb&hIb%$#JN?`7K>r zIx&4oJgdf{?A6QNza8DZ@b#97MxIgr?@oK1tJt~gt?#iXGk-gag}(6DdJ}vr+4|MR zsjtFi7^ScK&C~zr*`fPxrOjW7$&W(&Zg0FH{@qips?@JCw%jSEYKr`ZE27ySr%PR_ z)fV8`%k_oB(VIOwtLCZq$-4im^;M3jGtQ2`xIJJ0=8N|?A7A0-T^x7wvefj4JLj&w zTqeHigr|9&vWb)b`@U-bJ9pd`?)q}?088?=e<`2U?j_6Zd9M9qcK<(4xn1uyeRe8a zGW}p>_N z%9wC2{Znmu$3C84&i~&%u!S3?@b+bW=07&C_;26K{$1eG;$|$A-E-{3w{6KY7BarizOdSBH&O{w^#eS zF8)-azgfBWrreP-u2oVGw{3cRQf%R73;VPA+pjD&$>V9fdE@AGzGJq3Bh0_)&ds;k zJ}qIpP0;!aSAE#Te*8#fVcTx`?(XxjUW4S{*Pkt%`hMbxXzgd>K1D_gP5b;td3+t6HBHniV?9d|NFKe z$9kE9RrJBWf)M%1G7aln>f$rDTKyFN-WUAH?w9uDb-xvMM4SGf=lH{G+mwQTA{Wko z?-cZV{?E8Ed0+D1&R;H*)ZA7%>P(r)wOu(aXO54vT7YHmrtFnr6JFHmM7$D|Ir}vE z=Dgx8g*vUNri(Z}Y?&7woyy2$dE->+>^x0{owjNsrE4#X*VM4Rw|%H7$>j3;_IEAS zP1CjCtg?CJe|l9dV@`I?m+E`R^?&tMaZf&$`aJ*I{6E&qKV8|ER{Pq@XVDz-zBHrc>JEuH(7-{&9lDOUH|z= z@{j%V{vDfFwc*SExlcAeG3VKmc0i~3@o6!`ql?TF*cFbuM1Q-vE>dOE`spkAeiU92 zapxB6+_lLlZ2i)gAp$Q%ek6Uf5@G-ICZ4%}r!Cu5$sLJJM^E%mef1!lcVCBrR#oi1 zw%d~*J}a|z=P=?inbhG{B+;4n__V`bX9>BBE55x>P`QylCuO7Y#dDT|GaQw8GE=L6 zGrp+yJ@m`9W$w#lg&jZh*nVhUoG|f9+1`nDGB4ZT)h`w9l4}fad*AYM*ZrI$M%|NF za%Y9^zw@O@SU%=o8N)>88>T&`*B3wW6T6r;F^$z~_KC6r>HCv@%}m>{?dJJLj~{Co z&Sl6xHshM};_=_#NhMn6Sy|`S=54a$60MSCKkF_utJZ#!{~orF5?7YwWt-nxGxb@; znjP;9B670}Rcg62m$5uvIc0Uu{=GXx%GNy=XP?4jl)2JZGu33y8soox4)?`F{!Z+? z(Bo4Od#tGX@7K6ZyfQE3TpJ(XI&J)Nd5iqyoyoVK%{DaBTCDshU)uHd_j9KU|16!p zIeFHvB9=SJM`kenTx|NNcGCOihTmy>e)r7(5kFn0>G&I|lLrh}o%wa(JWJ&&@AvMl zLVt6<8h%axcE-`PJm~l=fAXx9pZQ_)mwC5c=jwRnNPO*jd+hVaUl#2@_zHHb z+pRwPXL_wR*Y9=b*?SLkotH=}zpH-n*q+RXFMVP+3!Cu^rBD6&-_CO9*1N~EB))E0 zD)#ky$1SDs)))S})_t3@c5&;Ceq}-XeQN@Cz5P_^XutgLm3_a1XW2D}Xl~wbH(yFn z`?3GJ<<}p);gon#*wZq9o$jyGC*me1F6!%a)V@BiEUDVdplJ41dHtmi{xmNCxUSv4 zX}$HH8DDa}l z=Uyj-&+lj4|LI5dhm+~?ml>0G$5utz9jKdO{o-Db;<{3mUZn{QZ)gAS=)cf+z1%_h zUEl3{_1pSqI=hLeZjQb4{od_9%SuT`=58StuN&3;2i#6v@e`3d)s-CEp`fF2^x)K{ zuH;yzjY&^>TysRXn9OT8a*Jztb@E=yH4ov2#nFFyUn!NkJ_^13sCT1e*trF=eJN2( zdzOAn$xv>NR*HGF*E-3ES4#0J#|N{djkVjqO#GeytN-M*gkL$ykL;}6{)TROv8StP z>$cZ3S}vE&x43vM>f(2nD}TS9;n$jY@OSl(on^b+A0&F`-&XQejS{V_a#!EBSfcU7 zzVbUImRtGn$9+k0{ZgX4_ z)UlG|YM1j6Z*~$@y1Ux^R@6(5?8RR`RWD&Z&)FMy_Q9hY?RWgAKbWYzrB*7XZ+D_|d?kO2Gs~r&ejc$pZ&+tB8E-o~tN3*5uLbAXs`fuF`c=eJ zt?5*s8{U@oqB$! zUeD`V_3`bqPxm(Zs88*3T50ops@U2{hUyb*G6HKvbA8?x?_OYAv*oe-hdTlDo#OMq zn6CUNdD{N@#aT7(GQTaWBF*aJtj_t?zT3R(Tb1bdm#5Pvd3{qk_&Ub5XVdATIU<(f z+doCkpL%v)OoaVB{y$GH@3XJE|M|x|cl)mF?=^NW&rflg$NFJ1L*2Jqy|d%@<)lIq z@pU&p+e}C!VtOa29V~LdpZN#-^tGq2PH3{Pd8YegtNK3X`Sl;)y*=@xIBfCHA9HV} z-nQ0PyVG@jo~O$dBNxY?{PnGm`HFJe&vChaW}FgsdGRl)hZ`AHH*KG_HTz=SX}52t zfB*32PUc&|&eZC-MyJd1{+e^ap@sK1sYFiGD{AT5>(_Rjp;gCC=wjA|Evs$rvC0Xi zZqR=%(70J}LiTkRp+hIw?oB`a@77kqXD2!X+81iR&CEP9`?dJr4;$w8+sQ6&n4*yT z�I_&hf=x3`iPS7chxJfZz5f4lfjmuW%ME|+AT@>Bou=%bH`@4{GlW&g_fH9N}X zAJ|P@`lodE^n3F4}V;nKczasgY&anVc9<=2bm ziS{~t&Nx&k8!+MSDQ#KfbG9wJyfd5|-|a{$dMZR(Pw~taSap z9m^`Fs4c(pq-f9cMN|0&cWl`gQMo@ZUZpel{mT@g+9=yV+tB{k@#4(qrkZ@3x<$~w z^#tc#`!zh*o!8iWYkRliWXFrrnW5i)t^QhJKXt|De;F>{=gn2xc_5|f`{GkutJm-Q z@Lgw@no!TFI1Zk9ck_&;?R@vu z?@nh1ZCL()&FyCH_fJ>wOEc(PeO~2$M7}?GTUlYe|JUM$b}8k#a^1DJk5pGbW8bB> zvM)yXzVA1swLfotIKtk4;<44{Z9g=fPTE?Fe-G-po|3J4KQ;Q$r||oKmE@{l*gu{f z_xZW{FGJTS(;5Dp*eY!M>tWvl`@zkGPn#xpzkYt7^}%z-J+C*F?&K=U z-pjrJ-ng8sWBa^&z2qL2Bl9ouDOgvg+c)>_Iem{QZkx%RZU5(8 zjc#;MVDh`d@M2=6)W?)1JyQ)goj+G7%Qe|mgL6vRMem-5_&<4qxi$Yp9xR`bvO4+g z#ENChnN}<)7JSsRVAkC0ChZPAH#Y8?krE(uzSEWcWdEh@6AL;Q>~iZ*OPTsjm&v_k zj*@$|mxHJC?&t5T`6tb~H<@#v-!X%ozAMvw<-3hi4*AzwE!lE3F3Vnia&oNI$K}6X zmw&U|W6yxg^xb^Y!zZ{v9*)%r}c(KfK|t;uHhz z7wYf#Ppq?<9+Tf!ko9%j-^Is7>I&cH1Wsp{Xq@o=^zsx7gLS5N_~-k6oV;FlT`=3# z3;$P>|7>DfKC`FnF7t$& ztGt9N-&QXPocLLAQvZiN+Yj1yUzdIvVs?Jpm$^2RCce4svO`Des)gHo!^*3Dy{|*Q zHFad#-O{-xZ96SGY1M+Qr^}lsa-3->dpCRQ>y>iGpH!+Z9>4YQlTXKo{j>I6J>Ssx z+?M6lw~4pRlTO%8c6*!r^7zbfSJk?o6o2aYD|@$1 za%a}Q!xJ~%Q@^ZgxBuwt#)MGG!0#P5*1z#oj!OShzt?(KtnMZKx$@tZAF&L|l4H!C z7JXXr&0q0nFWmT^Y4=3a7~_kTi`xuxoeUq3It#bf_`#t#=%R~M^3nJFIE9AEor?~ldj_wzL@E4uC9nbE@T zezCCYq?Y|nGx~$S`6Rrtw_|ne%DkbO`hd9HpO@GSP9QYPv{OHIc zR@pC|4Lp-O6n6>mEy*(BbpN|U?pmJTf-uWzj;t|p$^|=ObKMiU+s^E;YpoX3Oieyp zU8osZd}m*^(b}@5Z@;Gr+Jt4REZ#AFV#1?;A2+mpTy7_^hUwS7=kwG0_dPzW1o=G&WICSHu5$tp7AY4X3`?+cR`xg1yPUb11|hrB>5^I7s+ z`~&|N@_yg+V%uX6yX&lXkN2#3*5RP~`G-WmweVe^H<6Oj;XhcJ@{~V6{&-`h=;3t% zH~U|7K54D4RB1h9w(t9N;h^$O=?QD1Ij72;(L0&0EB^k<+#?>>)Zcs8=zXX>R(9gV zdXG;>KbNh27yL@$*S=D>ASLPbw*~#9jy<3HUR?bA>&er8JFsfBsx#bMeE!t!e>Dfb z1vo#iPPwtnU4Q%EdLnN7lY&W1se#U&-H=Z2Epg{B-}4o$pFdT3Mbv zYkVYLC16s`mtgfr$ER=kv*%psYUApv!?HE$wr01#?-f7J-oESY^XsLr@8AA9>zi@k zs#ojR3%`hXv;4ozahbo>HJlEr=WH%ao$34S+VM5zA6HKA@BeK5YO~Ta6UzgO|8Cl9 zr@p!N&)Rj$S0_H5_+gJ!*}K{MA97c`KP-Q+w%mUD7Hids{>(p)GyHoBYPqH=%?B+E z($qJ${F*B6Rk)Mg$2Za+PtUJ1xBLCHy1kgE%1B_1 zeIb8`ed<^CTCuweF9ua#V7}nMaM*5*T=ze1hdbTpzfAC0$x*O)`L~$Ec6BeRHyJu! zUbuLJc$9V8@6D|q6Xk4QG_bli9o^^J)Uud?*D9g=#ZTLcq@J3a?LU9)am~;Cb<8;A zj*>z9VphfZp%OXi6ExjifBcBte@2eyrGewg0Iuafp6uXyt?umfYB@K92aDW;f0>$L zv;7+{oqVQZ;r_2RWPY^uh7*T{YK;yBPMl)RHFNpDwRI~>MJ)=KFFC(MJjKU%rNRo~ zO@abXKL(s!^mmWnHPc_4&+)c?KO??&&F@LSBiv@r{BMzw^U|g`Y3gsgZ=KKVy!tO? zr%vf9*zKNR#lC#*l?PideV?lR;OAC#nTKN6W#&d}e@&J7y(2HfXGV7R+GDS8tlPG% z=bzMd`F+=C{Ez6m(X%I6`sVf=d9SyZCGK9Yn$Ub!*~eB$%&+0e?{9B~1}sW3TNU=7YH^yFZwCuc(~kx?enT@r9bBk1XY`{oS|yc3Ie>@4xQVEaYcRU@FkI{_(=? z%gVj6_3J19zd9+Zs^(SpeC3@d|1IWx?B01kvrvcOf@R-<(_1f3m%6jwSpTvA#3SeC z&)f7h;eYYU-P6~e4xJ#%y8r(b>kqf*S90$wdA*MB*4EI zy-J{lhb3xO_`81R@U6GcUcT__W7mt_RlNN(r}iH4x?-v<_hZ+y(;H>KI{K+gCvK8( zjCuI}$!3X}3AHB{9Nec?8viMzpq8(EuH*@EhG|vre{K6E#xGXy=}-hcDLc;g?_USj)%vd2Z)q zi}$@cPd+ABr%rNp%oC`*o~d%mDErZobn8oNt}I%5Mt+aD*Ds@=W|InUd9hranX}EV zXQFSN*|*ll&pK7!zmIt)ZIyk$bmCQC^L6@h;--)4AB$SPJUnm8%i2})R&{rx+yoj+ zsH(QWCAU+t=fM~ zWOns8J&g~x&)p19Ke;$HXYS42P$JOzh;(y`~Rcj=Xof!}oc! z@WD0whdw&6w0T+fs%Odu?d|(3cm3qwe?Nq|UN8T~9DDs$_xHmY{k285m)rkm&GMW3 zd(MgI#h=&s9Q_fpcBi72z`L}nIk(R}JJVEsuCL-h(6%l(-=*Ur!L$#lj)i?hx1 z>K<)^&L>Y-ulDbURQaN6;@8jrH*1*B{NdW^YfrUK6d$kt_}YID|Nnn4-K$)Ln%Apw z{dL$^{K{E7p5fN^1@U1(zX`(BmeOu(&XKn!nCOuA)bGZ7C`z~bDKCV!{U3P2Y z{KGqfr1`#7?B~h3&S7}%%D&Pv`Eqzs+h+g4}6wEAf*GOKp{QrtNY#b!3GR`)k{x z^;0jeP+M>RTKGJ}>+R>o)eoFDIDSUXZ^NsYg6g!B&ZTQi0%h0xdz@sXOey)pcS!t=eV*6}{y9xKR+>My5e=E*pet2`$# zXC)kuB|i{MQ@Fc&O7iL>w*O}wV4Sn!!M>Eu#_WF=|GVeqmR5cL(MKj(_HR3K+-9bn zT=V$5#q)2ADwQNJ?pt5t)~R~8KJ@n{!Gfd0e5>EHN`INsf8$&E?LJ0{OEq3u7vkLV zlQL)dzuoNV{rYA0l%G>3ZMW&(RCV=RU46Qc$NcR^_75lax2&|wH?5D|&{nm{)IxdB zqs_}-TSj@#KU2|r!z=INY`cHSyUvB>ojqx{YTx?*so9Cr--E7iSRP*{zs+j1$El59 z{>^x5+F$J2|NM2rn&g=8$8NbP zt37_&r^_zN%!~U3mpste%#l(q-RlXAU+;xA3aa^axCA*S^85Bbua&%? zyiP(<&fg(K(@J~Ujqa9%90!b2k{YZhmy0HE37obs`2PKG=O<3MP%`;icsIxC1T9t8 z-E%cgt-r?hb#7^V_S)}L=B8Nh(^I~AX4y9VC6mq9S-UIGs!uOI^lh<8w9E#+>R*PI zS4v%udM%jpcIAqi(-7klyFxRvlWi$&o{m8#NT*H*(U)6MZ$`cKY!GmD4ee8+NIg*omno?Po! zv)sL2peLj&!}(M!H}09>vaD3KrF;3g3iMBIl`$->(sNI^f70iAJm<#0GuNm1ZMzP94e9OD^+mI{8~N20o~@Z4HviJK5a#*fk~g=D^Df&b`u0q5_;m~Y z>RE4scW2nYiJ5c1T+eD*NA)kmi@OCIy<;~{D_gF6HF;C@ekU$}tMD_+{qC-GuRW&j zW_|2>U$N%qim=1+Eq}^of3DwGwIpT!uVu35KTUs8wLq};mUyku!(HbY)>M4i_x!`% z{u-X^?`qRF9Gns|kL^P;L*2()y|cILMMGDMU7End4_Pg?zF_B$x_=6wX;s@B=lv{~ zdLNXx`z-e7mT>-Y@wh$NKRj!-3j3NivGOw5eaWy=%lm74p3Y#n`1kLdT@FD9PqHi9tbVc1!A2n1LF?x6zfU=2+aio^ZZg|qYiuPy!OyoS`{IGJ-a@bmc%*@AYWLe$5pHSRA z?f9W%Zr`1|i>=+984J&RTc__Csj$)X&U}+qex6a*=a#Vkp8I=V^H$ZB*ZcZiGTzkQ zk>4;i=~8p!LytL@FZRfP6!=IVm zd|py-)xX(Lvm^O@nW6kvyU1JN312KHXL#?k+b6MMJO6@ZzwU_lwx=9Qidp+}>4b{) zAEvAiJ9j!-{ziQAl0X%Mq>x=}l$NXyvVN@L?xf28*OV#X_bGSFT-`S9MfK^~5pRO; zo;q4GX*nm8-T5W%+stQXZk``^$%|1Y@TK7F$W`83g?=-|PyV(zOg;Bh+4Xg|f8?0Y znzl>$#Y*e#8k?l{$+vIJ6u-@zCF8w0`Ob3vUz5Iv#vgo;-W|4y$L#d`wf~q}-2NT4 zX0~sCa^2O}?c=97y?rf$zb)B+55kmG3f-?1965wmq8WyyG@XTcQo~Ncis)Y3SN3! z$$I+e*U$OPA3ihuTMe$kxnE1xy*BQD_>oWs?MKjl33r+L6chlrcwBD0zuOy}7UUt)qU=0`0SWu4W1dzGswR3}@Bf zp{l6)@IVP)h1-ck9*)f>Yxov?DW6k%T}atQBI2pxrEgkSGbh%G?h_Yx)^yX6+8D5u z-Dg69$%NY#JvUBX^0YEpcU-w3|M$DQel|>7zM0Ho&7G5fwdX~TU8EqV^*82yMwe4n zrfz>6X0MfZl{G!}?whw4lU|!S8x{F;PS$Zc^rlQfdc9|D&0Eb$Eq}v~AF1g)p4}gk zDAB8!T-~_fLZNK`nf9|`6B+WCDq9|FD73CW(qz#kwsM(ZZB{zF$xoU0wyARKfBP1u zNZ)RLo~?aZX=k6b#@UxeJO3A!c3<2Q=5*OaJ0#yl`n}}J>l^gNR<(bB^!W8wKGo3Z zy+3cA2&|YX?rK}}cGK6kPKU3DJtTWtl9m`ZUOct@=zGqM>ub&&`M$TiPMGtlpvCum zyIFz`&*y3UT^*>aQ~mLQB8oP zM;@Qnvy^1pxhUaf^^K2J8?SCzTEkO&r(>QQSL32BUO(>0MP$6+r^}@C=BfK*!IQSv zf;kmEW=>?0*4*XcvHFgrWZK%kBXKhE*R`D-CoU<{et!ITwcKsR`KHyy`%2<(Xom;9 z5=`XT{&7RdJZ{(Ys#oX3?%jH^^{b&?iSNs5J1NB#wt?||ExF&;%u-EGpZ&v9Z{ZT{ z?JH|(Fb4p53tqDbEh9o5;>5dyn(P;Z%{FwHk__I={1+Tw2QD%o2Y?eZrTx-*Sx; zKU@}Bz!##i;Qdz3fR)!jSoYQ=H>o%U@}0ZAFFmc^J1ixIx8HGE14oGZ{Oeb01mA^L zEc?5gVMnWksf2R1*LPO7zjGO+${S8OL~Y}C`g?EQP1n6%5BC>6+Tr>sGDYrs;`7pe zJMZk>&(F&6X56p-Efktnm-E*)FVk-3l!PE_m+g69-4Cs6+&HJ}%89~n;`7qGZ&)kO z)xPH2#l)K7zdlI@e z10JhyOBCB0@ls0p?U`woGuFQ5ahf@!Xu9&ho|K5g76nlWeR9u!?qWZf_Oz>p?NjCX z&#s-xvESGB8f#78>mu}Cf3bborF-janmpfKdd|>Y&2hxpt?5X$eE4)X57XRZCw2=4 zd>3 zl>OxYJZjJPjQelS9V)wGnd1I^@!Xv}+g~4lWHn{&%*A=jy!YkZo%!SL<#~Q@IFGze z|Nm`y;DZM9{l7j}+*g(d4Ix#xzuo)jsXyZ%frj{fWslR|sesy+MyXuy{`lE}*G$Dd zEGqo_M~=as!Bu?iBj;QGc(Xe9fP`6`xLjFS}5|=p+)_Vy&F8-eA$vpE>h8 zcdX_)wCxhtj{?iP*YjE0l@?q$F}1fs^KHJH$|qCH2jUMGN8~B{`MLa+T(cz5GEMt+ zHS==WLk=3R6*}HcNq%0j-hSKit4Ckjn0oaetUj=?S5WDko5d}+t?T!`Z~b%9)2Vst zqqxqz**X86rv+X3KFfsHh+*={oi>KSYc?nJ{Mx*W>*`ZY+q>co9$yR}o^dh#%@M!4 zn(>qAt7Nt%uQxUchOj27@X7~Azo_fJ`IUz`?1)JBtSG~4wsP5}&o{b7Mz;UFbH1{F zpVIYrvYY=t>vR79=wGs%n{1UznApwJDhFRgR#vJrSwu}+`0}yaBnCPEM{5Mn{s;j@=T>f#E1n11XIuELT|4Q5^?U}hx zF6h18LW6IU*6!jjIQ~hmTHhwcWpa@IM2<7ZPptd?@70;hft!9=*x9gu`~J&%lKbMb zvF>rNxodj1uVHx9|8~z=^Oj#bdGozJHTQ8#bei-nT=wOO-ObWSo)zydA72|9dGS<& z^0&{uF}E%i9upF^_3Hm#!_20n-&5|W-fSf6X!dx^l8g6dU3Ppsd+8k6{VREYc$^MS zNH-O_cI|25f0uWKd&D=1o)LF{6!3PEz2KYZ_aXNFoWfOm?WJ#?{%h=H@b0Sm-p79) zihSLEMLEk-KvJT!GF$oeUi;TCBZ@s&8{a;^!DFV8%;TNwk1u+$y1n}OCsX5nR>#Yo zkpME~s{^;l9Nc(wz=a?lv;{WhMqg|ZSLtW`S1LHmU zwg30r_Yhgf-tfLttyCoBmcA~N`ZT3437W#@XVy&AOwRFQXn)<*%5kJ^wa9`iEKGNP z^>eJdy;0{M!N@ZRuvDMbjyQ=CUS`@k4PJP*; ze8yz10O|a@<(IzPzRfLgq4vdze^-|MoFnMK^}I6jUaHowT@$(I$X&Uv89z0memkRZ z(YnO9+Y0W7H+3Fg-f(@z3i0T(otHe^Hm;wMwr|^vWo#ACYtL}pwJ=LQ^1jKf4P2}@&Bt{$pgI~ z<}!ZSyZ8P#kNp<&o-z8>yG%-PJ=*x^?DtvS>+?6HEZBbOz0EDFRf0Fl7uD>^c9~=> z#3ROfI^`*sI&&Ll%dFA=qrJD^ylun)ysAX)Z-Q8lsyrlmA z?)=Tp`rD^&^l&H)R{P$NWWIIV^!Ug_XHT4z%D%nojMAFC{LR+d!n!-nrFQkLUVmig zN|B1Gx45TX&hY)}-gn__SmPPJi8ft=^|#92t!529#sb=J zX#L84h4+3L#xZ}p^iyeP-1+-;(^9`@+D(6b`o8hrH@_#YON=eu@0qaYFk^LQ-+RlD zJ+FD^9|8>=rPTS{oLJBJz#TNExe~T$I!5;9@4Z&wVsqJ?Dc!H1zjwTS|9yVUHob7i zdAq-A{dw)bU;O|1%l#!vdd!WC0xy~7e6{_dRKTX-VtI7G?yvU>fdR)~srV_ET=Sds zrqhkp=;iW@!8|`QwjAfUV8QVE$*HEGYm8p0hx|M3wk6NYy6mydW0}LLSB0wVIX&kB zIu!~YTwVP9&yIcP^`|YJ^s!oO;q-%tc;d8K4*yNvU2)2bC8)q(r*^rM^Q=Xil|H&( z@=RRn{5?CTVwL-^LJ@i4d^PTgolBR$)Tv#6g2Se0OA~Xl&yB*6g|~Ht{F-A~G9K?U zd^vIHvn^7`Ip!43F}9d@I(6ID_w8$!ygX@lv}N+PRJ+5P7K`6L@@CHAS8ZE$C3&gj z9{I+?{MGKR&7QmGSgepf`SADl%p*Z6|HCf2cZ&YCaeMT$(C_@30{!1!ch0Xb6AD%S z_wCW~lGula;qed4eo9PUVBW|#%?fiBYVbnx#_%9 z&RsK9GY{c@xBmCz9a`?WCHFpS9G&*qwC7=w%Xqz$HTJ}GvxS9XZe>*=12?~gC9eQ34QX6Yl{ z1GnWWq~2G(IK1Qe8*TMlGo3!Yzwqtl@9oneN6h%_tSaJq3|_{h8SHoJ=-1Dzx|iOk zGuV`zd=Nxh^c-CckX+CU2%G zZy0yKt?m(#Y5X(e(&hEClgkYQL{4(Ee)MC!Dj2eTpYfGLnYL%u*lzxm3s|eCy7Wd} zwae1wcU{zZe2XtDf6i9k$X{~q&&8ILPJL`COdodq)s+aY+oU0wR~EamB;Lj~%J{^w zYPKvdm;HLbG~UmQIK+|n>te+0kRSghujNypti$wv+7H9;Q43vF56tvKTq8_R6#DqSfm!RGvPN;j{YMo9&nWIDF4uJ3V*X|3eNe%l7*4 zUAlconz2lIvh2OBQ9I_dD=n@3_j=Yj6XEwyGrpx4HFxU76;Iib{4jgw54r2zGlDKD z=6yR~qk37)e}1_2j;UFjf(&1B&pfRcGr8YP;JDrYg>wWg-R8WI+^2je(#G45<(Uir z_q6^enz57rM6JL7>rlCs>a<0*dG1b%TVzlAT^22PH0k)++=Yu5D!c5v_dVbHSfBIJ zw~EW&e?5NprrnqGcd9F7FXj7%O09lU`0`Xs<*C&Xde#1pk3V0(H}##c_9Kg3ehcTP zT)(lr&@NTKy5~v!w=E0Iu2{Z(5?7;n`0F*>e~-SO{hW0)>-VqRx=Z`EY}8@6*2}=N zZKLA)T-K*2_Gi3(^DgQ5W{!9}{x^3Uca(f7?Yq)jw``F<|BwH(`X<*-xZbGr^s4_C zzT0sZA6v=oeSiALJ9oRL?C*AyUsQ>R(a zxN}Eco&BwQb@mJo-g$>T=kkDz6}?smtvxC`ov+Otods*vaqe|~L(KuhqK-Ur85b{PLVbKE3X zHQIHtac|6rz5o3f>-?U4_-Lz?*|Pkvjxc-9@-uO@Ic8@zohp2{S}y%i)9oi34%)}} zJ)c<3eD2zxHDZ@epUnJy@6D}yIq6F0mn@wYyGvg$4n|7En zbKAyc9cSLW-FD(~k=PD7$%RRe7d%-g*c|%m@sur+Hpi_BQ)Zqkd1o(dEt7kE-m2PX zTUJWVT*AUVxjjt#{oIpg>khbe7|lFv_RW@Y?|Q$SRH^=eE%i|=_`NzdpW7%G*M3W~ zI@3Y<=bKa8ra#ikEk*wh=JW`=HlUo%(GW8#8W0?s;5svCKgRhIsdmK_(GOvHv36SwZstRZ%ZxIHvYGZ zcXQ$k3Hu(b^LNMjLbdd}auXAtmAS2b9KSC+Fth8KapbF8oO^69KKEbOfBgC%h3L#j zbFSOnFpReJzIDA~JIkK=H}72moktwQ2Sx__(znOX>c?#}0(WPgW_AC2HOmNGG4IO)4OX6I z_$S%0zZ$fHzOvBvaDLr0!$0qW^A8pFevrDq!19o1uyoNZzuWHTmngXfT#c%_GSAg- zVcr1++3gwouen|BU|hQQ#ENTae%qcl$WLx&lkIWHm{_$bf|YIG&i~6F@HFfANTj7i zG{5F>(Moy}KTYl8`JJ^Af5JOXKJS+uBlgDlJ6$?IzowCaNpGp7coSld?@XI+4R>fxu6h#&CwidpNJX)wKP5 zLh7sKwo;YoId=->yAPQDlDIR^C9ppEVaE=)HzrM<_ivWR=ib_||CZ^27n@suJuOz6 zG|MOFxCI02&)rMSXPYLSdnJ?jWyic9`;vK5vc0a%`g7Xhh19cYFEdNi5;XVQ97yqY zyS4M{t#WnEIXYKD=4#peKX+hBaZLB4swXYWZZlr`9@ci!PCME&yzXby-`gGsSqsZF zJkMV5vp4vDg2#H=`ThG>q(P0;T3Em4d*}QgyIx4oW1ASA`RKd1`h4Re=Tesp z@AxjwB<*Wm@13)bUn;e2T6{i<_eFT$Z^gdcsF%UECv0nUR=Y@?kIr{Le*8bHUw`*9JWiW{bVE?UnoE&y#;e{JX0&X{phe0~2>ujhurGOg?5uwbYzfg*#rmD`q2QF5>ZOD>p?H*=|G}}x?~lsYK6GR- ze6{*QT&CNfkNrQnT1-0E-szgkv3sjt?S8vnmV{5vmla;!{>fmqvWRQWQ`?JwX7RS& zShU^Z?4qp)6)c-QxN1|D#81tZndQ2@o0IvQZ zb#dlG&x0lFH}ZTaexV`MU>Lf5*_V_D_P4y&o=pj86|7QD*^)E;t4`*Y>-XkKG#qX@ga_@zG7FAr46E^aDaI`}uTD-!~b?w^R`m-v#tt;p6&5`RA zSt}L&cppQJegEDkbw|H_eIJp2_u3ri8NXkoXV$#>wmswi(|7AH);TZz&ID9 z`T1Jcv@|RZEq>kbV@jdc-bG!v%IgG)YrG{Jp`$jHRG4Y#MtlWKJcC42Peb&ohha3T58^O=O5}-zt^h1 zuSWlEZK|fFE#oxTPZ7U-djDy!P&~WrYT$z-9Lt~NsQ9S_G~DuZR_31T(wV=|I5D}w zY3T~hzB8x3`CrapJD@Bz)x`Pwfs_5gM;Mu(E)V*|D5zr}BzgICr`2`Whx`YEg|t%A ze{Y`Yw`RL=`(UgHo8H{FPAnGO)O=+*=k{+N>Z*b}?7W|!oKU^6%H(aj%C#hsS(BaI z%tSYK9$ry-B|@(EWHC#}Kas74k5X0SkBjpueH6$(T@#Zd5J%eJFJ?;|BL5 z9-80XVt*P>I`*FBC(n6?IuBW!dY(D*jlbVWb!&z6mY(}HljleJ-5+-6Gwl?w|J-Y+ zJl)M|ZuQ%b>wVISL^k}F=8V3);rsOB9`BuH33tzV&(Eyi-?PSfgS!0o!?z2&g_x_^ z+>HN8AUfJcE7bLG|-}v@bd+Q<2^ok|%_D1`}4(;9e_~XuA@1QM;HmU0-uPXd{ zKVEuo-uJ-TLd9F%xyL?F?u=V!-ZydG(Or5o?zuCt@A)=w{exQmdYS%v|5cXVnP|iO z;5fsdLtCZI^J8JP@>BKlf8AN9z#~0BwVpis^|Lu+$$k4H9o~L|ksBX;pI60R_xoi2 z(a*;>vz~g>s+SbbF}7h}EA#&7@_jkQk?TKyED|!CB*>-q`RlFa z90g)WW*9^-UNqNxg|V`j@|SZdE;-KMb)TGwij&^_*LCxkoi^96)N4y6mfyL>VzEyB zTDV}mNyC-!2g$h;TikB+Ju!2>`J!ycXWKtJrmWkORk`+}*YU#5pM5e@1?z8my-!)V zuA#1U&wUNu^TuaYq62R(KEA_euKvfm!*72Z#`aI?Da$vI6|1y-Hf3I&?>+rK%k?Wh zRUPsOcWF|bXB<0Y(?&~?>#bUUjV>K&;Z)nM{oSut;o>&o^5{96TpOmc&ege-m(ZKD zsrG+Fb@s$uiSOsS&$~n(nHqcgao~%XrMtc@V*cKDYJu)p~y`ZFhy!Kxb z|C@{+jxTl3^aCS&-#p*9>cuJ1`P#=LuO3g4HkQ@Ay*pp`^frA3+w{^;+rO|&-~NC8 zr0uncx2MAb|9;lqdwy4VDraiV-L8KozeHa@*tNy~7uTF$bL2M1%a!e!y8C&+$93j4 zT=~@>gipSi2c9`(1kW7WmEMHzw4A=ar{gF%LC*YSIsvp6o$tYO#y@Ml!=8GbDBd2| z8vp-G^+)-6bu0{3AyZwSOI$hl(uVQ>$Na!51%(5z7?c8&s%L~c`HF4f*zd<7@G$B3 zugL0NlfVzh8(Vk1ChM+~feD>z~ zP3Nsbjgog6f8~^2v;DQlUv-H-)6b#CeY+TFavC$4A7#Meny76I1h3hfp@Sl)X*+QM#|ko)1$NZgOjjs!EJaj(W?b)Bo-CvBWJm?ycJ6 z9-MM0^|6nR!G(MKf8Mg3)GlcATx?F=)#*mZZk`v6T{b!B&6?fkimv%acW%47)g$=a zwSvC*cY*QeIF#pJm0T+Pdc{eu1yw6HOz&@LA6Wkzuo-3(qAKndBS_oozp*UQ+a+TfAN~{lUW%U z6c{{R97Fo8GmjT{zV4R#>^0YQa&LG+eA1Vsy1VQ2B{{Qqef=`$-g&n-7ympt+w!w_ z={>Ox(=G+KRK4FSzpv}~$1`DZ_S1W3d-trkGBfpY;FJ3v-)0`$9vy!3+IDZByYuFQ zm-~FZ&|Y}{W_a1FIZB_b8TP%u)jRwDOL%2ne{$X)$o8En>pNp&?DZM`$u)duu6X=3 ztJw6($LI2g*4zA(__sejo>zfM*6ont#Pm!n-jF<(hRK#v8(DYp70C1)bnSj3eM0!) zWv&$ct#32fetg`z$6uEDl;5nQ#S4sXN+0E#GT&5Z>zq@@ zlUy3yK3Zrb=T?6SsCgY%zBMa%+vc?Y%u$C_- zyPG6*PXw));L1ABvnukl>4C*8l|4J|x!pQixXEZ6`?JW%LXo6?)nd(x|`m&S6-Z1#V4V-Q)kuW*332@t}j#O`)#xQY3_EXNH=cX)pOr& z%-)>mzFK$L{--}5Y)H#i?sw@vu+072tzC~=W}mIzeEF@?Uz2Z6t_!1=2F$R#XsXq{ zl4+6No_QH2FXx5%Bw1C?a$obxBK6{7<($37`Azm36PMhZdG*xu?=9OXSm|Doa_>^L@sCJX@5d*m-BjB7 zE3R&;hxopmkya;H{k^`g>iwN#)#cHv8#|M~TE|-Yt#wZ}k+>~&w{0W8&kDEhsb8dI zr(axtqk2Zp70K!A*_9WbDK~hxI{tO_pUTcny*sZ)>#pj*w5up9?D7TO$GJOY4PH!o zDgOJk>8Cx9K38`6%e&9bPi~3dcWvYHnIEFInybD2t^B=K@_qG_!xbOyEjN7H_hd3d z9mj$FyUHG?*#$z!Z1yKfPMi*&oi=)!ts{Q@{Cn09%?$rI8^U8ZS%o`r{rfO;`=jgg ze(=?NJi6Oyi>$zR#mjroh;`j~)#6(EAX9V8bn&;W5!+1KwY~29^WQe@{h%rIb$cVv zmh1DUKK;_O_KcY4wd!_0ZOy=p>zbYi0$lu!IlIqftMai_^%X3sXD?d87E-n_->;!3 zWyvAsw^8-C=Q@`8&OA}l7Mm{EBDFJ7Wr3%g%S=1BfC?9nD>v8KpV;c9k*HkTKi8yh zVkGy&1q@Ci_ctE%IN=;wc;{P(Nl$OBnKJuLbN2eTR!4R&(9FI%ea3~LK!+=RrH5>P zIQy;BY)w2aW7lmKVw9Xe-^6;}#JXpzy#hARm|xU&TcU8*{>SHA)E-=66XtogS>bkA z!t8!AN2ZXAeGAVsXZWjHSa#igFH`x_c1wM2zVX~tA1jmF(f8l#3-5Hhl@_>nkKEC( zD=$b1{GR!C@AKCS)+a_*MdeP8mwE8<>n`O+ZkGu+N^-yTzxLe{qH@gWVd3fXue4S+ zl+Vdldu$jV{ddo+slBF?>nE++ElLEvQ6E`@BO;D&tl@`>RX(1 z#aPX3f^)7jto2dcXTuuP4nvY4LQqP8JICZUY&z|}Dk9SuriCb8j ztelgr8S(30UGf)=?-A94;fpL*fBKiYwNQKU-X9U)J~{t$VzIAfTE%~Uqgu5~$|z*zV)mNuRpP1{=}oI9dUj_o9ok$U#kx}>~A_Cn%lp2 zTF}Jv)%I&_85Cs~?@Ku+hACO1DA(WSeVx1sVsU z_R6)s$*s3PaQ=4T-TD3Bmu@MUd!uIkWTnQMxVFE4rl>sOaPSvAr4XYWXt9X9qv3zk zv}I#UO~wG{)Oki z8LsMiJHc^BP0QPq<7aozJoETO*tG)(pLqoDnCtEkxp>NqKL*w_a`*D8@7GD1bh+Bi z;riF4LlY8z+ZLVoifqwc&h>25oJ*J2tem*tW?A=_$?-ZG2PUvhi&tY1_;c>W9gZ)@ zOY`-urXIh&^~{Myw;S(o7gp1FWU=k*MfVetK9S7wMup034^%jsz!&dDJ$5jE)=dYbY1yU_I8<5+uD^$-?m#t@0?hYuyNpTmX#Ql z+n>ts&$#RD`+9z@+U=-QEvq^OS7!xhyLRs1sK5MO+xFS-FPgP--s!!<{NVWN8y(YT zdOglsX(#S=U&{34+uN(T0~>3uf2n-;{L8zlRsGTSsk}F~u-*4uvt-|f16G^wAGcP$ zzjhJ-JYDxae-EC2^mhG!j&swJ7rme2@=vuveqY(+XUp}XCxVmXr&Cj8jzShh2LF?K z`smls%3t+>9Epz zv0dBVUKZ~ZW1S#y#6_star^D<{+=An|JQC^ zSKWDJ?$r&#zc*C(7^PM!Znbq?oVL<>cb?GS}NZZ{X|aSc!6W}&I2dxFSj1|yIi)ZcIP~0CC}r}Z>XRB zzGI%zm)oT$FD*G1_kOL?#xt4<)}Q+(YIHxD`rG}=;a>+HuY0|*-*rj(&-)fhkzL33 z?)|$cb=JIn*QftlAMN}7qqOJB49jgbZcK_-Z=c*{^EBbgowR^E#^+2VjvKEF+9#GB zt=yXT`0+}YMvEd#NeQK2Z;Y2$uso>#Y?|A2UvT4;y7E#{V~Z?tPzr z#@_#=)9a<@_|+4C-aJ}0qj&b)yT5HF?RwlJIiF$Y9(UJYwToXzh4)`zsj~9Fdib_p zqt2QQwZD%2Q+P40e$yqNdCz|9hy8r*&roQ;fA1a<8@aNx8HSse3;oM^{85#O$8^un ztMLbt`)ee=-~X%Xvs3x!{)^vU{%(fNI`7$(`sb^8D!3mV(-ae9AJ6copP`QJfV5uZ zTx~`9zmLoxhRgq#u6Wg2-SDd6jFVvXx4Xf$RvBTcrs@rfOsjLQ8$1jTu-3fMafEg0 z8WyL5*w=0?A&g4O3}=pbv#4C~PQAXtprT%dq4}W@n~SK`71>UnqQs)p%I}mu9uJUp z7j%=jvGq#HyqYt&Q(mY~;!5N0J&}Bp!CrNfRb<*%(JvnM?{**ZU;gb$_Tz}emC2Fw zn`4e2UsJogE4Xx4MOB2_yt|vuPE&PZddKN}v3EoE@879`%MQ$to7nHVzfV(0msjO_ za_;oHT@{F&y1vv8^325Tt8sbxV|%R zq3F#0srECbUVCuyncb0a*JB+zyY03~e0}(0^^UgN-`^OwMO|F~c<1w37K-8r{~Hz= zem}BN{&&=in>+M={3*Yr;wEV{b5gKUE&u)vQ8~{~%sc$z(`?OJdvoPk49eeEU5&jv zebM_P&t<+=e2cJOFW58jUAoY@^Y2}wZ(Z(K+w`;Q!b!c#n@a0E7HoTL+;Uc5E%Ix; z+Krz-bA9+?;&|5w-AseD!(miu;G<4=?_1->F%y;?MLWkzqe*NIRI* z3ECOiFLrYNA1K>)AdmW~gI05IcR%Iq$eIoga74*QwV%H@@HXyubZnjialk z-@Jt1c{9Y8|IEpBwB2>S@AbUeK(h<0-mg7&fZK6{^v`tn(9?n+9&;>xqx*y-Kttuq z31Q{@80md}{kzSSOID`zyB;=4*mLz!VD-n{%f5H7b*l(lyhh~6sc-L+qcv+vZXA>9 znCR&>k7?qOZsix(^@IN1@J#%FCUthdsS+WlmyhmY;HUAuT)xntK>{{#(To!=~-{pqdCOU_;@3p=tgeA0yz>V0Zk3m+Gr zDr>N6IGKAr`s7=t3ERTrIZL${iYq3qOaGGHr)RkO*T%3_ZB?=?eJ#^^8z(QAc;oq| zd$&ByqDsw~u2}kiAmpkthv|{f`=UoS*-$`T5>^ z-`Orl>mE$K@+oE&-(P9_pB0iHg9LMrWKX+qe6x+)r0SCG$v39kBs#gS+DgA{5|e*p zta|UhyS4%6v1$ieO__>+w2HCKO3<>hnVhvpWWx) zv;K9)Dc8DVCv*0EukB$95xUSB>%VqYcFrE|l)qcejH@H!AA4Ir&bgj$_4SR91#e!Q z+L!QeIWnI6HfbLDc4*qRtx6O2hy3?ge^5SX!TE?^UqqA{KTp~3uqAump{*)ms}EOR zv--s&zglC*_X6(sHGd!f*mk`(=9J&fiQ)`@bQT_+TR~u&#&Y8|M6wJb>?-)6>_Yh+xPx3lW6zoP1be(GIe5W!(?qS z%NqwD2ssM;n>JD9_^t3@z*uW=h+#*)!&-PGJpBg?p>NIQoc%dtpEN0X8P^+^S2(BALqX< zu{lLR`lY|VaKtoCO2O1=W7 z)3*v==*BHRa(|xw?R05j1*b!iOX3+n{kxQIo6oZK894wfTeL)*@MnS zZR-%~o$_UqRT`^JzERVvv)pmUb5tJu;E1y?sd4!F@-*X|z8Sxd9ohFS^tDxp;Zz{$u|ZWDCdN`Dl7@{hESBJ?YnP6o1)lD4Tla`tO*Ax6eW@23Ms$-Z#-A zZl-Md-$iFP3!Vvg(_O0l`|UiJnx!YM>%Y@?f3#A(_oYqpuiF-W3&NC7X1y(p{kU|= z$91dhmI!f{zg->oT5v{|c`Wy~UE50*{Iy)Q?qHqhi|2>guDsmE^5fMSvsBBi>*rs~ zZP~u9Bx~-O=XX}TFIywB=WQeRp5F`kAI{snp6BVZC7&E2lXd;^+aUY>Q@gzSilEaY z`huX;RnG87reQmH4VPT~zr>mkAHP4Ce12cmpPlEcmmECk*!xBMQ%ORKukw#$Q~X$^ ze+HWcRNdyD(74>~OwNTlTSMIrBSj+ z_P;dMA-Fv^`N}Fz_p&gp)f1Ont+P57Iol`5a-n#l``vt@qPbsZGd^QtY0`2l>ZyJj zDXX1i5-1vd^DFCAj(T+?6R%^(4tVu?ez>(Jc~g7(n#t^if7aGZ)t>xz_L|7H-BVL1 z(QSnr$|Rj+U0hUkRG}u3w+5v>P@FS~YL~ znz4S@(gKy*s^>HO`c~@rs=wX*yDK{J%l|hgm6h|4)e7y_eX#F<;M|&X%4_~U<@)0P z=guM9u6+kqmh3&x{dMmAn2=4C_LFMs1z&zXT66Hy=4q+Y**X6LZk1n7spg1XHR(FT zikv;~Kb*N?U`=Eu^^*!wGYppJpdMU{> zeP9NivT6_OGZ>}%@7txm9Nd2}db&PPZ{7U+tPiRg|5!9!kAaM{JieTN`2W8r+aGi5 z-`UDN<;K6Nx5n>3hdZk+4ohZvef`yw_^@dY!<#E+v@l-qbX1d$_>%k1M=3${p^q|4 zpX{BE39A~v*4%M;t@V{r&~D=k%htyxRb9!BH_W)s_cX-YEWhB#Qn+`G+r68nTy4=) z7CK#QzqH8qDjTb^XZlyoi6s-h%=2EkBlL9Gcd@lD7wcCnd0jSf>AN+v>t(%s&Y$|b z*<_x!;K_NXE^}tyUjJdk(rK~gLQ$>9IUZ~*+pwm0?PN)*kH_nl6vSMRohWkhlDgJS z_9G{D^MpP5^<&2T?)jEqRh;4<{mCg-%QyFSkN&0ZYoC2_edw2x4I$5UzAK*-o9k#f zF)_DSMUnZ@wP#I-#R3!S#82wx&*i+u^x)dHV}@U@tEvYdzk4s_*ph-|*=zE;)ysnz zKW#0{efIbFtAahAZmXheea;+-Tan_hQ%?H&)xu>*HwA8wxYpTi_K&;oV80F1h8C+S zK0OM5XJ{Fpn=?bf{PySbzn}f;6?+(XbGQACDC1ihd(4#8D*F#{T`TX|XYE?@BzfNC zgI;2WJB1dP86R4Id!cZRvgFf?)vPPD1H>w#&TkT|H91_>BL20wQ zY3WRPkjZo+_5D?qTD`~b(_GcLE$@DMaer61>LHB}f1W+xmzTdQDgVsz{dp@d|7)Fa z$avEJ1K;AJ%bzP)u zUDRu#MT~2g-cnw7%zZ-772_f;X3e=8fkw@V4&B#^CY^p|9HiQ8V$3kN)M&%(?=NpF zhxlBVn7VMns_Ur}&DVLetkzbFJicJk`-}i~Jd~?OF(B4Y1og*-F?wxIk3uHgN zI}+`q*tK@e#QMAIma={F`~K$fU#9Rbm6VT#kqIvG`@S!k`u&C7w`w-4v&(1Qz3!lp zT{7Y8-IMb;Hmv$7>iX+l_cF0-k!5M{C9(4P|)?9lNaUm9{*VV z-eRT1bFs;rF4kMPuG+rHjQI{zbv5UweM_>8>*D{#|)w{k47H%ll89aJ#fuby8#H{_p(@U$1-F^iyiz^Ec~T zyo7G-f6UXh>(g_cvaqjx)4EM+9T(dEjOvvsY_t0px36vI`?VWl-IGpUmtNprK5=f+ z{;ugOvv*e}c1u`i?tbz9@rzeK3|1c2F5BF4K5lo|{JMzex4V~p*iy&v>~NvK%X<5D zN2`~_#?&4Y3cN2=HTU8KxbC%*Vd?LfY{@^DO6>CzY~Sl1OL|}+ z+<8Y|jr)5FzXEGf{ngrkJNVSx-uyZfe|8-YuT`Lrc-4WYksWsHebINA5F{h&etuAop$V;X~>4#jETZqXReR4JaDQk zYGu#a&lb}k+dR%V(Nl0snN2bEu3f71;TO9L*LGx@XGdkX+>Gp3n!op4hIIdnGhw%S z0~yIH($TVzwwvOrS@$3{f3zfF4}0_ zwD@3n-C|Ov)$Lx6QzgZ++FDZ%NSvO*SJ%5g{soO6O0z*spMK?LTMi)PK@mjfXobQkk)KkN20! zxof^MwjZ~n)edG5jzW@9g z?w7wkcJ}}GP0%wMg8wNM?N(n6tvOXer{Z!q{AWDyoAHnMbkGsy{dFJD{!VOHK!aV zgv! z7a4Z7A8$Io+{xBfoHf5Rf3t1Ug+9%x2QSv99dDXu7xa32_8R*?cl#t~Mo(Be3#imyl*9L!T``=eL#ntX;taN0( zD#x0u9#+;D_;;+=YFtp4Rm;>cW17jm-H-k}tef@CZBAB8nvD3?!}|;h1^=F3SK4%c zp5?TEl`5rY#BOjLy!QCwDz&M0s&;oTHzX-ntl1sSEB5w!aMPmYg>S?Zl|1%Ve5wAb z96R}2$D`og{ORSFK3cecep>(i*{Z!BjgI}n-xbzn&-we<=fw4fJ^9Qt!(-R4O3}aY z{p0H=arS{uwxE6RtlX|;ZfBEfsXyuv#y2 z?({utB0l`~uT`)6ZTw$#-tN+C{mUB?Z!)y#?mFcms_eUI`opPHf{J<>!@LEh?z_k@ z{y8OQW63n0dCZ2g>dRe2K5SLF{;JP4Os{*_9`#&r#DmXn(!=3<)Y%XTlgm$uzox4 zn7iQl+Z&hOUcV+hK~{(BX6=fW!o*DmeY@9J*YvzTT_V~4>i%9??#OQ^cs}Pzv&)Be zcLi>m5?pcXUu{k8za}nWRW%=jo2yn>FMU;ME%*EAlF~ia_xn6HM;)^idcQvIxko|Y zOS#4s%uc$mmfqRV)%WJ^^{cOw9?ezOOrDgzJ$3UZqZhHe)Qk5n=4(8#vG&g|&wJ<3 z|Kl>eaysmTT*L2af%ZM;wchGa&i&02UbE=oy*GlMK2o1=Y|?*jckp%a7fa)cBG_60 z-uL~t_qNr!>R(A0&_4P0rEqWEz0I84H^1CGar5Ey-P11by0+H-wq4EJV#k$h{j)7| z0vklL)kPWKMT^w3J@s#xRHgiLP3`&lHnnRQ_i5j)j`(=)dOg?uZ@c=J?z0C^cR@G6 z{e+#89_r2(27)B0d)Ac;DPfD(D|-A(c9)>3u9SDMzm~?)f(erpj_dNSaIE(+YRI}++v6jzoWvz?LR;aG ztKX*?FF4uy?<@Zn?CW-Q|)82$*067iYKbb zsd`^NS^cswWWl?}6)(+=CoSI3AK!7~cAxBz2*(@#lU|!%TL0VczWSxT+HR9l6P{J{ zGTc#3FMDsYvFhx8zop-w?5fB~Iui0{pE&cOe<`&od+(l~ z`=OAD8k6@e+O;1JHAcw$n&!AL6?3>yf#gK zBE9{Lc7OIf=3g;-P5%q|?elK_v2inql=b+SnUbbZXO4Py zkx(Ni+y1`(r=>3bpZ>W#@_Z}yI?$=Yt0O%6@;i%cJ9`RDWFhn)K)E zG6ZW9?V7!=e2f41Wx^i?6QRYC#~8OCUva&w%h~>2^8HC!;jhZwrreBGsB_Cm?APhJ zSYybW<IOD;1uBoy?YbND+tvSA%W76wm)$crXex0`6`^N3v&+okv_byc$ zHNO6wzuNJh-y@L)%hvWARnM5ba;N>L&$G|XJ;V1q`OX*H1ye-xYae9RTz9T-sXn)_ zNwZw#zjQ-=4QQ2eENtN8RD9U6`>K#t%BMu9b-#Yzzwqt*@8?c~jy;-h|KGsw$B*g{ z&(GhrZwS+sO}_i>PV}#THLnF`iU+F}u_P$B?y>1^oRJ-SsIHD@lSaq6gr%;Z3inP; zn8p)vPuc#<-xszsT!Xc5eGJb0_$Nv&NJ(YOf=6Oq!U@qocV9SAzF*BvJ+fY_Yl%eY zYe&1CX%i1H@Uhxf1#>!Vz3e$WX>mL-`hO`BnwZQ1uxRy&DNnZx$9@^)%R7q_(ekQ z+*HVXr+VyU4jTkd>(=KLC3}RS1?P{6vT=%4ogL%x8eBE=W=jMN1IQ`?L zduGPW`h5MO zj2A{Zm(0JqT%gMH)uqR~?lqQtEh@|P<9T=5B06>v`;4WV_Wc$$T(mu>j`c$~!$gj# zC$lD|T_{!Tp8j;-hpKqPDu*?;{f`29kKOvNAsCl_!^o~YM*r??fe`m4FS@6kI-$P# zf0J9>$Jma)KGEHFGbZ}|{L{ZJ(0XfAS+Ml+T8-1cu1w8J|Lc)|+kIW0Y0wt=Z5kW9 zZfsvD%P=ve*Y3fRIdNA{xos*uue^wN=7zJ!<}cR$TG`Ec*zD6RrYT!fs<~%w`>h$J zRxh;DL|3pzZ2M@a)F0ds^;hif@$a**o^Z-5?iRRGo$_Y-y5i+~ z3i8i>cz^A>`}=CX_q9(BSKQqzKBLI}(|gc-)nC|rmCw)Blm2)XgFB%27=b zJ(zo%Zqx-2+r9^x_b+<7cwc^T;A-Z9^B(#NhZb)v7c{$dd$YfCoya6Rg=O248*aNK zTZk+&T(sUJR{6(!m6$i1g{>E4OYC@jVv2`RkDxD?wy4C$K+b(~!QNH%$M^m_Ha926 z;_UKy>Gj4Z_HaB5U&^;{n{d?J55@MUzx_PTVb_1F=n!Xt(WR1Wwm+`vzB*s>^s}MY z@y5#6>bK+m=JD4Y^OID5Z?UShKPs`p?y~FgiT{lrKHeAD_F8Lhx=}}C9rI+%t!nNe zuj=YnH=K)-&pqYC&%9O=3Y~7UC*N4 zZ6}+V`u9>u>pRsyRo*h&Z@j)S&%H6z>f*#XpEAs&my26GH2UTA<+N>eg*}%^dZp^_ z77u;pncKefPvN$GxpH!x<<{VpBEr>S^TJznqV!&0U%9(s`$CsB{qA-AoA&sQEbkc}TmK`H_jX+U(e>u?8c(#PHFt1aboZB) z_9Gp^W-(@tc#0gHdwUwawoxB^H($1uXV6KGflvt)2aAWqr8719hR=bQaI=-=btX zjpd~$2fwtfeD5$#hpSuhCzERa9r?F2+_(1T_8X-7lxAMvc>mT^?KvG%p04UFwnF+$ zUk!~qYUh7HSCmnEbkp0V5mm7{`F%xeL!A9CRqgd*__QNa>w<*n?Fu${zQp@W@1JV7sGil@!lG*? zzE^xMx7tc#=fULE7W?-fUj+IlA5qOV?kir>qs+L%WaqcLI&vqCmoA>skSNu9+;~~k z+AHfdwyOti+Q=kTx#HsDNSE9HZoHdV`}pg=s6vrhzh7G2@SZPkRT-RfPQR$2EuC%%57tlP$C@W5cdmH`cAzw_L(s?R_q*zk1tsmXm){imHF7sTMz)o+I+*s<>g! z-ES}KuT|B^CFbv(`~M}^tlDe)UI|~imaUZU9Cco5{VIokg`A6ZH@^M2eQQC7-Q^>> zn`6yg(xT)e_3gw?_k3OuTO6Tv@87NS53KKhIBpT0_x45(*U4^%I%!@%`K9u@m&;jRE--uU|JTh_Zv**t?ul>{Y*zDDt)jlje3S}$@ET1lOv;JUn z$=0@5$mMll!A#D^IdNT^%UNcavUw+86uA~^Jv+ZzEA0E>y??(yipUdOcaY6c$lq0& z(YHv*YMt+|q_%x6iMuonPwa|bo19-FBJ$^+u-apts_U2ewh0-As$JeTF(59bPIBRq z@Yl7OJuaVD?ALK!F08b1e)4})q1PgT$yDAr3DsH>~cu$?2^lIXp7`I$vr1v?XB1O=-p}{nJA9Be`F(GWSH8FZoalXU&!S6T?=`cY-Zr_Y zwNLzeU;kUd)EFag!`G=%R_D{?{q~-`Sa~;oTgW`0KVMJmdmEu##BH+c{Hrw#)3hFM zU0U+gx}#cLcv;PMhGW0uYb+o5uK%aB@ApLeV}Hx*4L4q#;$p|~Kt6VN;pb%7-tC#6 zwobWxeiyVQcG^R4-TeRN8TqCAo`PpMC+hE$G?%MaxBGtRy6J@NW)6o=OjVPfFnNhP zi^RO{6fW;?-|Q#r^6*#&nocUx+4DTCTcs#g^v?D3-|pV-I`A%TmNWC&-X9k=rZcH~ z&&Vj;VcPWFeN$&_wpr?2Ev|E3M>jqzX?@3?aa@V>WzbXO<2+aD_B{yD>NB<8|C7n} zrljX~rXT-rR`1SueQveQo67HYlXN1tJx%uB#IjA1<@SMtH;%EToNT*idU9vB+pRBM zWlMH?SUn2xP~hPR(3tY5WzxlE$rJhlt1kY3w&?4|yB{tG8svUvW<0a8_bm&P*`}16 z$L)otsn%BS-y4y=?&q23bF=54?|WUGayFgk<(s|Nep}z4zjgo5HR=1@oqlbM%Kz0T zV7T`D^(jlP8d*(EOicVaXJ6(&zm_deQzrFw+NiRAowe%R6qhunqdEBtr7GiY+dTi> zen_54W|5)#Qc<%u!<^K2ed&`tuQp!GpMQO$Ox*FX=N=DxmI$ewEt{D-dFh#%d!jqI z=HFNT_$;^oh_JAZ?i$ZLY2l_Q?%USNdcAipndJ(2uGe{zyL|s1wc7m#M(cIGT-}y9 zCdux3{;B8L#%*%HyBT>4W9CjO*uHP~Yh%;Qkl#HCrZ3vcrs=obIsNW=mXUV%^EvGC zUoSLyu^wISRMUBgbBBfa6cwpXOLf`nzm`8|{IxUDa_PgjPYut`E1bU9CV3mZVYVIDB^!e8hr>(4?vp?|R>0AS$>-N>%L0@bW(s#@}b4T95<;$5P z0zFq|pU&IY^rvyz<3mfPYyEo^6Vjw1AG^?eqGap_|->&AfFMA-p>B9VJ z;mwtrkw>%)w7YYUzqD?6>$Bix_2;ng*_R~(kEcdg-g)o#w9w*UXTxieW0#*#Ixng` zrTWD6iyP)&)?twoJa2Y?+J?o~__AhCteJEE*~FVoC!=0J=bO0a+0K(?Hx3@2W7s+O zWnxas^sdB2{5GN>4L+==R9xOvb8kyp(N%WDBQW-#|Fwx9PRw`x zWAia~w(LupTbEC&uGLoFJ0nHv_Uo;$*R3);amX;Oul{O8(QA{nLaoYzMw6_zolZ-c z7;L&`kM!@$D*58Sb*wF?By^SbJXiMneD>Vmp1sf0muP7`o^zU0Yxi+|2A#|v4v|Cd z^Ovvr^(pX)=;WuVR%ZwZy7?NBf=q zYxaLUdHC_<_v(*#aefs(DSm76yz9sRz7l?!p1WXY0!w^aFvDrddf`8NPG#s`crKCi zciUUJ{9Vr%SG>I|@Aqw)Q_kS&sXJ%T*m*N9Q*w7ox9wT{MuLhj!qOjpZxkot#OOho7%FDEqp$9Qyy5D zIjNP$x*fl;!fA$+x7=2_J94x9WWW7++&=d?S6M=T-j*5DubPCZ3zvi?h1i-DKHVXu z5q`h$g&QBI)M55p>BVcTUvB#$zr2L^#`hOScg|g(Q_=P9MaZ(YIXv5>_sos#%C@mq4! z9L|in(z659|KFEgH+k0i3(aRE5)ZAiR|}iEB6+s2YTmT15}u)jCxYj_kmz6A=kjYt z*xPl#XWZg3P<^g8p>y$XaqhxXKc{@yys0#$R<~Uu$32Z{NR6V5NrI?jDa*Ue{~Sg#DQHx$f7IUs+o_`v2Y9^`M|DvVQ8CnL)k& zVPR=U zYG2#dZ` z)w?%cJ3sx6cjQi?$tS<>=;M1U6gj_Wb?^GB$a@vJ8}+q+UzjfMdAhRJ=KHgNHG6+X z=-XxyP|zdeY5Cf*7l}~m8Z^~I?=)EcRbNp_l?^1<6gFB z&zIfe`kDT~_@~hpG1-=xLK9B9@-b&UH8M=^vnp-)ER({Tu;Tu?`7SE|ja-_tW%N}& zXIMNm`ZlTmq_TR`$+!Y@b%9Lb)yGetH+A*>^^B!VWvTR{Sr@JayX7{#+ufzN>Y&lm z{*|929K}Pm-aY7lk`@2Vtbh8X9TQ7VTnpv?%`V*L#r5iE?VWt@=@*rEwdt;H`~P&` z&+neGnfg2xb;>W49j`OoIZ$DyF!`*X+P2g^Z`KJt=$Uv<%G1y9_NAC?>lw>TZ~vZI ztGsLz-|D%K_)hDmyJRU&Qm)BgGub_~S^M>?h|6z^?iWXEC>}e{A02HLZh2@iSb03wi-oCna$G?bdl{1fioe0g@7yW#_p6sii7Hu?eXT%_jkT(166qo3qm8l`+->> zWDXvE>B;;dpRvNaAv~_IcphuUkF)-@!gVhvUVpUNJa6IacOkJd?>_G=5<7O;Nu9~< z%?z%bkVIGUNFL#*rf%(*JVavtCA-I_zB#u=VcDx?XHV#qEt|di%mhJspH(xuPn`Nt zd@E^}?9}t$HvI8oSo3x6>*U!he_!*kd%gT?vUl=U<)(G5dm=>U{GRzBIY}@3@}enQ zs-y+0=E|g;^^8|&oAGpC>rRig$y1-K%ioYIV|VHI1`VFp2eaQ8?ovG4_a@@}iCnqx zFb`R-uH||;w#q@C;&R-jhi{v{UVZoSg?_L3M_$*-J$<0TK0n%0>t9dHgMASk=Y0;o z$_|<;;KjCK^VRE}t^aQGXYS<*K56)J!L=lzrrRmk7d7SI`@O;MeT2qY*_*S@SCyD% z%5cvsk2|-6-|FV$u+I~=Ok@drzC-AyWZ~O|j#CYsHf+6l{MPZ>&;JTu?h=k=tM+=r z_s`IDviCJB<*AS39u^<@*8XD8^=q%HGB53(bL8?>i=Yp$pY)%1lXg$wnfvPDO6#?q z6FHttYkbADPcH-KgZR*QD&Iq01^N7`mKjK-}^V_?nHu!(L zvwiLD#IPS9XY6);_HTRdJU+HF?BhRRZ)0bz-wY~` z9$NOE{_h$BDx(e+vxqNO-_HCaj-j6WfGoH%wfx)mN7LnN8UDXl-_K_L%`j%sPfsN^ zckg8!Uqp5W^Bc5Iv*wVFEuU1N)*x^=FfBn{-TL57!+CQfQ?-_#*~z!#v+cb9&!f1) zAM_kyUf~n^GUeP22|q(2wzNp@+Y+Klb^UkaykrbdE?M{T^c34y^J3OY7sU7mjWM$nwGgOyj2lu@5 z_l^XWt9Wf?+q$;)+=FcwYLC91JNIvTfYPMv({Ei9xH^L)Q>k*n+iMfA&#RcV;$0wD z>aJ%h&ff2g9R+jcMN_JGO`r2yG|han)4k6UpDurjs7?}yS-<=+$Enh4m*^E;`6|zp zdQ;wh{q-eta$xYbGTvWj&Ye18$Lw=p-TRo=C(Z@Oc)v^$KL5zBy!VYzNd3oK4BX7O zti@90SMFlc)ZjA6FZScz{&3&-o$dc#?0ID8pSs5OJm178H?^*OOPf1myL>xFrr@2YN57hJLC)13E`W+LZG^Pk)kI#;Sye)+N0 z>?j-Ij=THw%?`Yd|5Ui=Hway^xl<)dG(Fpr(`v zC?&=7K3LB9XLtDBY3a;%AFmkR`?!()wH>8n z=jUubzAj%Zb>&%WRW8PP+>dwG2G2J0wo`k!%+6YIgW{*-o;tzPe8Wtdrk;OvdP<0o ziT~FhwZZjrXIWG)b7gYf24q;+V_e-XVrXO<(~Le?Ir)#`tNpEm4kcPwr#te zaP}(q5zDN<#=CPpPac1~FuDE0@qIU%Z!i9uZy@wDET|-Sz3|q1?#d4q&6?;eWUP5& zi@^KoKIIy@OZ4S(E)*uuC_Z$aPeiQA|D|72zW7cRBq>CJ9UY{8JEg>hwoBH={zYgTLN+bouUm7FIYvr1S+#tFWL=vsBsiZ;|s& z1D~EMJwDz4%e@G*@9Nb|#o5>A=_SvT(A&yBTjHbDS7oi6fBracR-Tssac9<6YeCaV zL0_)$Ewr&rS>FGBQ`@cy=e?`8v3@t*c7o%jM@zaOk3{5;plYQT>!3&nXb^99E z`OJ9niHqJW)Cpy-lKj=vn?3LKqpiu;7ju0~t9$$LUP19oBZJj=M&585xgC89_^~s|InAI{{y?6cde4rwo*x(gy?bUd?cS;T=Qz)VFKyx2U8&pi+$4{; z`g5sjW@PGhgI12amn!Sb^sWB<+3!1Bq|)b=YkNh>2dSBfEhXZg`ZH%Q^>>LYj<5U| zDW%41+@u*C`lDusU8O{L{r~v8PYUI3{w#5mIU0OuPR1u2KQno?b!+uPYg-M~%-2s$ zo2b^oWq9E3i#gi@|JiOm`|94AzJM|<_wSb0a~C)Dti333-D`Qt7Gqr&tM!hrPxI-n zS-Ik*)b*C-nX7+pu8}R=YutEWbN;-|CsQNj;?8q?Yk%YaX3lq8$Jk%5&TO}_TCQ6v zbNZwHck}Q|sjCm{TW|f|_|n0Hd$+_{ZcJa|q!PVFG|gKzMj}$e<+bx+mm43mRU!l8 z*IhmR)XvEA#a{X6%+pU2->0WEmY>|Y6;_JP%Oc zkL$W%_J1pI$+eK-!J{uJ%nx=Ows!A)o)umEcjIxf{r_%ke-tkNyUJ$g?5{rE^2azu z6244jc*j!oNWXl~imZco^OI+2_-%f-Y}SIT)h}nQo<8SGVR~=vqs?1vT9QL<_nb4< zshrz!d6K*OoV)#hubaR9%KO_x<%-7oT-aKGD%p2QrlQFu{#CZ#^3qO6jM{doNxKz^ z2OU#du)s*|k_7ip@l)bW5uG-(ofqt?4w&y&l-1oQz2wQ|UllSv7H2NKl9>JXTWzy% z@>Qo2tJjrjYu*J_yg2=}p#M+g>2GyEOG~GJvI>~K@$1=B5582*Tky5__wKT952QMe z)Z4Z!*VeA(+x)mbM4R;~?^9{f2%AUu%+v~g9%WL_vh3NgFGe8V@58p2ajCD{?tZW_ zD}0muBEIbY>Qj@}NAIlhTe1A}zKEOAyYika-hbu5HJRs|qKvtjd#+Z`TBrK`n&*BA zw&E@IZik|88uCt_@Kdg*Ae?h$VMx`9rL|#~@_SiqLcZ_l`|?xZdMHogn%@%Z*|&SL zJJsI29C}iGb8Fx2TNZsTeAkyAiRZ~(x%jcmy46P`9G__#8>PRTJNNmuOdpMu=Sw~* zO}h9_R%U;xx53A!EHn0&JyFS*`R@GM**W%}&9!IK?{3!ineqPM!hY$mj?u@nd+V2H z)ZWxz@=>q8Ke7J#t*YZ+f>o;B3hpggzvNa9!?)rWe*XeDzp1S9Klf>O?(W0e?|wGe z_wyaUuGZy4jy7E{Z?yjZ_T$YSo-lA@iL2{_HmE`VP_3Y_>XQ?LJL<~+!LapU{hMPi$4b{ZSkosV&pI@5JhNYzPg zc^yxCdaB#^w{Jc)wjU4v+SR_XJA`?<Adqfb{)IExiB^A;3v(W&z}VIXHF6L z{ww27=G!+0bAKLxSEaV4r()KtTj&4xr+?je_Sk3c-xKuC#jA4Nym&tEbKu&PRI8cS zAFy=xx9?uRcJAY<3xC_buk$&cmYR1m^6a+k2RjY=7*}^Zo;iUdwNxSS%eDmf#i9`( zGrxcJ@hqNHEx&Qe^U7md4y9ZB1DFn1FFbN*1=kakzK=T(K4dDr8!_8<&H^D<8}XZb zuXE#Xzhu1LT9g-N^XgQe?nBFSD;IYet&>!HzlA?}wfpSK$UFRb^Y3mqSn{*#;Xl9o z$Bq9MC3Rn)GTAgX$I@=ORMh>0Q)=7iooQs@S+!y37rXPHw{?D-^!d+>4~f>gDv3Kz ztxY|2X8&f^iuv99BXmTs8%#>vGq1$Y*VN#qbZB7=Tfb1d_uOyi=bn-Nzkglg-@8Y` zZ<<}?yO{Q`Qg-sG{M}2UIqtgdw49#AWzY5Y)&1K2H}zNTb1Oc!wqe^r^L;;5r8$2*HZ`Kz74MH8d=a`kxr2k)6I_P*L? zBmLo``upSmza8g)&_91qv0{#y@z11`u6?HaEFPXYnYF|(`TD}$wKnHH7(V?hd(CIB zF1yC3v|ICLQm(Ri;lhbr>~E97PwtAF~UW4}AE_~4o=&-(nIe8|}QtnP+m z>Is(3H#^S14xX*Ka#^3>yyIRiD~z`!s=WEJd(!1Q>U!bNwXz#GU7j_i>cWSqG4s#n zb6Z#lMHtGYxfRVim8`U)ch9XenMtt?tFKm=8hjMzR4O}f{%U)B*w*Tqa~ZiWXFe}? zy}qk0rFUK0b`jx4H*FG&EGFqEON8;Qme`9mDEc?)HG3A)<7PnjOOj*8Lj}@Pp;!#$6%kyi@_OH`En5xPv{WN?Rv?qx% zPIAwGt(}suFPpu*tg?Ep`;}9HLT#4|*4frR-)3+!r8ZJIrs(zB{=N4%7YADAJPDc9 z_9dlf@d=fzC381jSoG6)SF&2WnBVe?<(uZlzMfaS#(uMt^I^W6>xCv?!;hX_vvJL` z)A3CgUr(>y_V@Pf%&%ELcV)XgGFsOh>h;ax{?7G>^;wS;_NTV)6!f^iujTcf^NLQr z96Vbk4Q+(?f4BYrx#IO-`2%;i*C#Dq%X-k7q2~R^n?Kvv?@|O0SK35x`1bxNB(<=E z%AowDs@q>o!|zUe-QRZq&lS$Pj}xyy`Y7%GdFma{lylc#Zf;?kbJ&8(?LseKsw&^t z_CBjWYKIQTW=5W{D^660<-^^qzdZ`+bfhXU^`;RSry_-}~csn#=t==X^h}mN{fBZO(gG zvZG_Fz+B0qDu=X)17+PCCAD7eCti*sEm2L#=br=LCaJ* zaI4zs(@)-8EHl(^+xB~Fj_zi@HGw;KeG26~@px@=n#$U~`MvBKx+{2W%L6l2)PAo? z_o*w26|~v?9;#sV%LO?J1?6xwC4JhDMnZ^B-`XHn*8iTe_VPF_YuB3 z*|j^{p9h)w>q#@qe=d}B{atw1XV0##Dtam@-MAmmZ*If1tscVyogM4sI!{1Go(Bt)6%UbC*@tsXWZ%h`(Z-6 zZB3f{(^-f8Pm1s{pSUit&Q~$y`=TwEKR>#5C#Txy$wI-}WlwH1Tg>X*I(P2V<7QqS zb_yRS3N4#3JC~E2Tj3dNgPE2F!-DedV$XARt@bKw-W6M}s?B8nq4=E1-m8naw98Dj zHB;U``TVda;UvcaTdBSa&E9jrn%ekFyDb$rIG3w8`|Ytz#oR)pgH`=c_e~DIY#Y4# z)*Q1-C%jEvS8FrhJ({ok>F4>!sj0_B&ph!inIX?*`m*d~%=vkfI-O#*W0cmP+*;xg zB6s_%?ym(8OmDB2>OY<}XL{dZzS0vrW+h!de(IB!=7w$R{m=hwRoQ-M&EhYqZZT`_ zM+Ym;Jfy#B(w5TTnID%5%@4kIc%sIo%HwaZ*cDlaZeHy#k$to3#G{qR!fzJG}2d`h3YlRdv&*`>I#M)xQ3cyJC*pS67db=Pz2@?Q-VeG)6~RBV&KE+~7U`qk#I)!h95En|~I z{om}bO^enHWavqMZTNF}rmk&+>XGFWd!AW8{?ya)I^%SqSEN+Jo^z#dpBHSh4g9w8 zaR1c$9Pd`aav!boq9i%5&C3oYMz6e;U-GlMN-ck81=G`$hgv^L6_zi*p1DM3yLYaD zb7d08H#qGYod0~~Ktl!&X*yp;Y_*S)z?z8vOZ#EnkTYO5)NGe`9XjKF{Ag z%m4R@`_fit+tn&>m!!qtX1Vm7Hl%bMJAz)capIwm;f<-acP3^T!>X19J~lZ<#r# zP<@YO`tlFW%7TYke9P3LmKXil^)!`zADfc#^}uI&Y&RClO%16z8+-V%WW+j=Vs;zt zJv-)3=ACh4#(@-;?X@addf~rU_BPdagxucNCw;eb;Xy~Q=bv+LT`3R#@^WWwOuJzD zpXsuP*Zeb9TEBJ0#hVHCt6iRFZ(hHRwe_BfR%C@s^V#D*oHNeecjn^!w=U7KR_|!h z=Hl;PY#jEkOO)6dBd1>0xk*X1WbX0H&sJSE{FZ#TH|K3{-%ryd&2OEY>e;8QBo~(U zg)lFXjcdDZ^!0A_ktZ_q|EGC5s7Zz_Z+*J^d+T|rr?oD(&()szXLNGOccV3TgGE>N zu3W9Q_pjWyDYsu`o4gC(BmXSfq|d)he9EfRQ*-`i`G20bdYjJqZXvv@ z{muK-&lwvpoeE#N+4k-#Mq8x<2#z(Ix5omMIC^Owzr1#%0H|&xb_Q zCQLK_W4R^zleJ`qi{NdQKI6&pIo$jgv!1u)oe;ao<-_17zI#Gt&0S6#lQUj>XL1~I zk!qFFnICb=Zgc5Z)`f-hyUo4@ZHjkrxO21i-8$R<461)0ZPvT?Fwxd>?Rv4;#C7w| zUpr%QJo2by^bWTlYqcfz?w$CcS$Ln~k>%^Hxj*i_a>cCT*eRq{r@c#I@GhCMdV>PsI)mWT|j)fI`4t`>>tV)*6(=qET;O+#-rR)3!Z_mcqKPfYVyPdz3GVIMSxbjW-po`YpH*?mm*s>}6orBSIW#P_j`$^Y2tjez* zdoA`W&wuZu33I%*Y&d*R_Rr!+X`AkQbUk^_pT!Zv_x9wH7k_p#?zYo9vc_K8VCBoy zw3MXfMnCGrmTf+KxL&VpZs;7by5gN~_d}O%S3h*VbAqPMo50)pkCRo3+_|&%tx%Z} zyP)`1Z2{Npvx|2b1{TI{wVHZvNfRw|{bNH|5S* z_PL2uU3HoH!DYR_j%T;uz3P`|zA3-C)pBb<*~AkYHX0hO(*HU4%+-Qr*PdP6YkzBY z=(cO?3eSK1vnTA>q^oR~@A|Ceev*ForPYG~&YODXw zziQq5Nez+v-Gnl8%f5f8T-EFusdkpHxs#c%{zOYu^Srgok91wC%i&iwFS#en#WVNs zRuQ>%g>R2G&6(24WpU#FcY{w$Tc=B`@w*?owSSjz#ILQw22<~KRd4uSxI3b+({FXH z@RY*2@0veJ&b_+A*RN_*@3nbH!^AE$*qvwRdYt+EccNO?A)9xf??*nIele)3xBNi{ zbN=y+$6M9Q_I*BXDfoSx$G<`gzuUo;XTEj!PBkf+{d&%od&hVE)O`7P;!2L=b(uRS z{HoqC`R@Fwo4O~hUtSr-@$}a6mkbXoXUpEJ_?{ijl@Km=6x}xG^z*WNXRb%~K7TCu`li6d>6Ui7ybTNf zMIWj&+x*g}uVlN}^SLK>y}Y%}Q1S_1QTFobxkoNMiFh($Q(0cT*sBX~j+x#0dbUJP zDK@#v;cCtu_TA^-MXm1lG_ro4uXI?(Y@5~kpZj*TpI!FR#`E3e>Bnog8b6(}?!*aG z|7_D;Z)eyTTOCZ-*0d759$CWOpMC$FT+1aM=H07ewEWA) zt+o2MZ&&R3p|e+~XLZ|~kXb&VYrO8>s7tP%BUGJLA6m0^uIb6l8CWKU!(4E#d<#uF0M&r_Wm0uF1&m3QOox?_L*t_+*QkW zcHaK;3*~j6Br9-UG?;sN`uVwqVa6|0FT``^TsIZU>8&{X`t zZ2JE2+hXku*3=_H)~ca_DK5gdmn3rCw*2Y(vS;r>zv5q(Yp1SX z=gs}tvN~epeCNhlm-M-RXR7$C)Tt|-mrATOep7uoaP#Iix91iNLH{aO?AM+1Ai7yd z#c#`w+8H*1rSqpIF5wqecbir4!<8+VKU>@5I`etn-+8H}Cyyr|FTVf$n#8$@*Slh8 z{t|QUcblZYuG_4CyHMAh>F4isi-IE_B%Klkxq>R1r@EG1SGU?d|l9H}v0rGyY;!5WQ!)*QMV7CfBcK8b8^_>5G%yl#I+Vy9ja~;~+$7@#WzEH+` znz_$36R}Sh4_o^!v^KOq^KAbMCkCeGEqi}*=sss?6FVl(zGv^gyhq;b_m+R%C{ZpQ z)@j5${jXeLQK;bUCkt)=S{^$ewECjX?5k%VM$OInW;8RRC)@5EpU&5U?9G+pzu*4+ zxyPPi$NO*RAFlnrU;g`@k0%%QICcG(JHRh9e{TJgRnkG=Ix1WXHWGNcq5JaWc7wU^ zzqhT8Y2N^=~e1{&hAt&99j6?#_vu7JIK}{p582T=`Wm{}b&ibJQNc**9s< zD?jeMyO#F1ojI-6O<$in|94E9*)!`Po-Ern-yTnxAA9Ifm3+>f(4*#U=aXmON>`iC zvx>tcg=IlotnA!dulD6G)KM$1?3uw6Qsf!?+01C&n&d^ZpU-_Byy?_F%R*BjPq$ku zC+San`1ZS`FsHaq_#B6>CsyCLo@McuzP9JN=_mKAj=73A{_Z)mGURT)MU38hZRH1i zttamW+bZWKegAcb?Ok-tIr885u^h>GC%^0lII-M!n-ORN37m7^Mbp!e^EeJ@utn5{Na>h7E( zX!$UGY2U)4&GSC}+FVu{|LE(VmD8q6m+zm=-?_uhYh~5N=%Xx=@>R<-EAv`RP1@^n zrdSD-i-;8|cBQ#Wym@2(FQ+ucaQ)KxUdffalLQj~*Wa1=>8r`D`_K1Gx|Q{r%{qPJ z{JCz6j;ANvES~f^!{V->T-w#&=dJhsi`xAAao^;#()(UlKG$~nX8ZpIo7|r7{2yLD zw&%#?TK(fW!@pY}Z~pvW3tOY8E$jM26jb|sNIi7)yv<;*`k8NSElX0NlKck6yv zeBBquKac(Q3H@Hzr(1d{Ex)T?k#GORH#ZK&x>#yTT&+Z9mhQe1auIKv` zkzVuqj;PGLYqt+gmGrx^;g^0JU(Ul>!i{bbYqws`F1423TC4EMsv-BaqRw-<0~c#} z6*etq{B5_CeObUfw>OL*Hvd(L$x!}u{?=v+hvkNE z#j1mz9=&{US?PwECl|f(S>c+#b4~NdJ%;Mcz8@>MOsL^d^?Po-YpHHbRtVeixeh1e z!oEiSTqTmSDd4)oW%HVMNo9WVOX_AU`1(7|`!@TvQ&G*msY@;?y-e7e`g@a>*4uS+ zbF(f?nD=Mq@gtv(&wXwnIAdb<9XDI{^Uuym7)^N19^p7WIOCR=b-Qk`uW8PP*_{(l zD$Q7X;AzClnMPi@k56g6*MEO?RYm&j52CA2e=1nN<-d=<>!Zw;NqNb0Ctk|jlAK!H zd-~B-k>e4e`Eg?NnJuQBeEUsq7w<2Z3tM^bei!qTjOCp%v65r$x40vwYqd{yt}8WN z^G@jFzh5&ecJ=%1KAHM>!E4=Zr(fS`DN5>ooWHkcPqxHb!Ou_ixl=4RecjQwc-!&p z_)mp3xA(q3tUFuUeCl({zW!vZdk@6>&Yydoa2Px&vyTTpC}XVW=O4%Npq*h4?*U!# z`U`)X(w=ggKMHn#juaLwT4~%jH~E{qaG6iq+KKgZ++-Ke6Dz(|kv46jP2IHw6@lcR z7c046aqd=#JbC18X3#Q0)oewXnJo!UNA5K2ekwKDH1BlZOo!KoM;1*zsKT`S*%`Z; z&Ua45{Blj1r}<7NX8E(^>vQLcW?a1Z?QUp8SlzOJPd@+rCLzlDCaR>U!nS9ou=&Id z56aRjtrt~Yo?0+*Md()P-Ns*Uu^r&u(#o^NZ0D;}nXNtxMLAtdCqH}sXXEM_p|N)U zUwX`fW!^nE{^mAm*6Xt!cKH+Ev%lduFSEDs@5_oK0fo9>*0$Td+SU8Abj_n%%r_m6 z2QmM4ZB0=5zR6%gjV<%^gP(s26iWOSI%&DhWVzw)m)%^`ysk^X50?67x@}&$jGNz& zkKOXO+Gb4iwBc2Lu~>*xQ&sDSE6@6~okFS~EuJjAyD|1^knE?)>DFtmUTHV%ED5c7 zcI1EZ&clC=7PVcCxcATR`=*VSC4Ki7zK^=}nI_foa*8Z>^2t=?u9pMS;n-2D08;$<_hy}08L%l$Z`fA#cEGqr8TzduXeSdgfm ztr?#mSNDynZTrcSDf0TKE!Rcftz6vu$hhJCtDN)CR0YcS7rrwssd>vi?|}37xsP49 z*Ou*wm-xW5?1Y*!?v~T^G;fn+Z^A%fAbu#X>SCk*3CLM=Z4R&nXk@^REf1+?ocS3VjOxcsxT)W{Ebq45?tPr4IzKgQ(wA2;=)BrHVcB-qz#X}hA78e6|4XffDRk;Q zp%c6JMc!KE7pPV@r=jjLR)3wXdHmCcQB_vhz)%&+QA`=O$m&2#$}@ z6$_m-@kipPqx0kH-0nx!Pni-Ns``wQ0Z10mecA3NG z^!45ki>F>)G0o5a%~r*C5uc*wAOE+h_idN>((1~Xz1!F=W{O{Sd6N5KuDx~i#Q1#= zre_`#Pn(iYpg&DU z`3xQt)BB4uUgawC3BEcjqUCe#hm6srKF_&lcu#%~xg0Tbrq+bZzhq_~cz)nz6vNWH zjn6N$sAgaJW;M@8ul3{9Y`c1QrxSPH+fSYPM~U&{UJ`548>7c>*jW4n3L)%(g{#$1cb^xk~8B=_rv*f|ytUt67;IHAL~ zYs@BSfXvAt5~pV9Dnr1=g$t92FChq`WebU@uljwrTKq0 zdA(^*)c^TsrATN(c1q9fd%ssCTJP+iS#<81(tE+hdv6!aoo_1Zc(z^7^Evx$@s?}5 z=RZw1ml8NsbFO{UvY>Y^eUn#zd|cFM zsWYer5>TO+{AYSRcv`Vl-&)VlKacT4IO89U2Ju*Mb7aTInmwPB`5%_s)#evuWu5S9 zp44bw-GA`l)ibg(S8FaFeA)MU;)CR)0VOvo&q*vYE>7Bc_|`jZ&n@ceGbZ^MzFD&R zCxd-^POre$A~ER`l{I18r>4F%fATw}x?ty;AE)o!S#$2S?BY}XhZ_7`e#O|zJz^Z=QZaPt&nQIT)g{E-o!JfV;*fZO|C6lnye%`HAAXXU48AN zDEZ@;-yAhda_T>R_S%xI2Y<_*-e$Pja_MjG>3b(;XNiU~e3}(j`pV!^LCedX{+D<4@sEz{;*abBn_K&*~EiIFElTRGVnP3*uzv}m!eLJnE zYQ*p_d{JxIuCv>3W=V##)Oy=pvzDJ`ok!imZ(o*u_!`$v!8w4At&iR;Lc4uN%%l%L3$J4~JE+?esU)cCsI%l@_ zQNESG_~x=^{5<|K;=V)8Ew#=Bkqz3|9F;mTT%=dTZ3SW!R6?p0FG`vRxw;TyLbSzAxe z-5q~Rywlfvw&0uKyT4O;Zq)sAa`ZD-Q|bVX82xC2IMt`QJC(sP=xV z`!zdTH>ADJ&F4pP(%hH_SN!-SE4SvI-56>o)b1DcL~`oNbw<@|q8;D&Ux`ui39%GC zu5K^f|NKnFrQ9{ODwFxPmc3oqpIyUv;I^^W;ha5t(y9#|-yYa}Z2rdL-M{7b=I-Gw z$-BSg$KyIv^&ig;#lAIPKJ)xXYnM5enO83yS}#;zfe*^-(Ihmtd{yQXN&Rg zJ$1KJ=X{7$jz4bpTB>aJExUYciT3Gdr(XT|J;rYO*Xeyq(Gz9$cmMUQdH(nPaoh5m zM+y767}S*i*)+)8*;&`WfzI(bB|2FOaf1dvcC>+pJ!F?1es{m>YVOW|89#cv^N;D< zRyC>T$uK6gFSh*is9&yBD|(hsrO7Vm)&ou|rZ;ZxjlOlT^hdhi`pl&0J9CewD6Ky3 zvy$C~=^Q8fyVh0H*XRaLO@8Z~;TqBwX`8JVt6jcvam(izj|D&9?E5>Xz zKb3#*oH6f7&)yd-TdJZ&;uQGbpHxxQSZ}G?=&@wo)0xLgn{yR7l#R+$mVN2g+GrMI zoaEx^UdDX9_;XR$K~BrE&f{M0V9OR}0;l$o1;s zXE|w^gNK@rU1)zNVeg`_#kG_D#~q241=}aB)mHnn%wUdmru?)oi?eIC7;6`AF3r-F z`o8s|=lSfb-^6CC&$O*P$N2cqW)sPmlh&She(~Ysxik+yxwYR*b?(})-8%iZ-NZ*? zD$~8YbZ2{X%H~|TJt?cV!{F0|%P%?CJ}y^ZwWf3?Q;y2nMNR!D7Zloe@60{=f$QqV zt^c%s9x=9#*H2zMU9iruqV(ErA5pRIn+km_{QcLLC#b!d^WpUs)nEH;Y8qTWF3;b# zK(|HyR+^Q4K$XZ_neV!{=RT78ROVj&+KGuTFiT9Eh-Fdh5XZVE`%f1NSIFl8j z-+Wzn{XLs6c`7qD#&o~d*vx+Dt99SEiVyehAJ6Wq|L;)G-4f3X*>JEAy5S(81J*0a z?&`igneD-O<_hbE@R-8lb++LCYt6UG40-`cwC}ER9$U;(%}a-ue6d_=UPsg zu_hqt!us99r|xg>?>oQmN#Ujz(Iz($i;u>4)1A(99@+TzV(qg&gW{>X9uh!_8nb%V=qtk z;&z_W9m%GX+}mRBcgzy#=KXrce)IOY&1O;)pFF>KbX&x}t<^cszt6Dr^)(5eP!1J3 zZQvRa5)--i;?`4JTCOJ6J}OibEh*u;L$UIz$MT3=T84(wr!`a&tLPlxnGQw7f!XU z-}H0slSeb6e$SiBQTb!d#uYo9GS=_Eap6Vlgda^FVSK_hve7q$8$_G@j;wiWX16$5 zzJ^uHa=PHI!kC@?4E>U;PaZS2T7Gp_Yvw$UeJ9g)u^0SX8oKgT|9WXj4;T5?-%s|Q zK7C%a*yDK1{5w9~g+DIsU_Ult`#;Um#uYM zdD4CRwU0~ne_Grtd2g9_H^k)B>;v+QKkOL(zy5f$(r_`TgwTj_hP6FSj~{(`Qg+6_ z!oSQ6dHX>VG&bL^cz-z8E`Owb-VSb`n2nQXp0sA@mO6j#%;Vp4>J%4G&`!8^=XA}t zC^5N-o!rGU{9pdvb;>r{&jEg?O24T5GAhJNQ&tN&sT628(n-> z(<~fOyVBaKY39Fzr1P?8W6_<&;^$kt_NOu2PqUH_SM$9O-_veXI7O4Wa{a66 z-~J0+Tz-G9$;q-z)s9Cpo6QPV9M9yla7;PhB=M-oYcTMls%3Z#59@uG;-WylGkBr&9iV?Z>Z2KC-Ba6pSx^{t+V6B=GD98Lf!qCvv5a+wu(8lcP;YfQ^N&o1`j6mUZtQaPqW8XjcwPAMOK$US zFHh!#BGa3h76%f|#dmAnJi2_HuXglQ%d%W8Z`q!AGPfCaFsi#++>z7nx0&;N%H+_x zRY6Ir=cFW$K9}yR?PXd1Q}bqF{;GYk;jYPjwhe0q>SU^l6`eX#OhOk3w%*=0f6824 zE3we6*AudKX>QS&T$ZM9Ek40;l8f?A@yow|W`3(RuAeQ^_-@1bLvxQ#m{GN9(s_Bc zKp)lACDH39pL}jQ*}zRD^5?8;&o=%|J*1~y&9iO#?ytJJewJH4{9j>k<=e|zwaH4p z?7yz9{JYBQkxbs_vqsAnFU#`EeY{*ne)rbv9EpF=YSg*XNSeZhf8-fO^DZgD0*CEIEY`_-Sm8!Xb@Deos?=%$o2?_t@#d#~m>U+l?}3Vaczw z&c%J|WXU`pyWOsL`@R2(dp@zs`~D7+_+ZcQu{XVcP@D;<7bQC+Eb`bARl zBZdMYeu+-m=BKuYR%{7uH;%vh`S+EJ>-)Tw?cUzH^zYin*E^k#Zpb{a?)me>xoNKQ z!aP2&GV_1@bGq@h&G+_WxBF+F|JwR6#%{It1Yy~3p$Vt6Unt5f7vz&-n&RnP{;Z!j zyj@*;AA`Efjde156GZ)F+)RU)XIAW8`PXjQn-$M3xq6=e)RdHU*4boq_U`6Y&t8?- z-%`2NdQydV>WdbBr(0)^^?ov*yP)NQ$1>k@Ph`!Q1z)o0uJ`9#`8-N9{D)i7k*l>< zb`yCzvrDfe6mm&3-wXa$6wm3z{ru!MQ>ST}izN829RI>5)h7^IXT|2n@~P%?+1iQa zKl7%}=bZ60TD|kyH&^w&pXSc`y-bm>S1I7?{U7yl`9JTl@@>8SzGT;Sv5HylLLIB^ zmw#5eX<^sQ<255%zSi&djkoEaQtx;#N}Blk%n9qQoxRNU$AkLTpOjc7-tpwwt$zm% ziZVAX>DyhKylF%8ahokxEpOfwo4!X3TGUY&oXJ74*puukeN zcs4y^(cC?}lbiDIY`k`zPvd>WyBU4)=Pt|?ioYQddf>57*WZ1m+HF>eTx#W$`X5SM{h0RjcY5hrDaqq1?j^?}xfS`!^=`h8mbQ>t zF^TV*y?XSbR~;wk%{YDQzQ*!lUwMb7&g{~fW`6egU#^p{)|IQtRqE`O zojqm3tXpfuPKy?=ITJipM0m!s9b1k5ym4NA{czc)xo=#VJKk3Il*V7GJWyH6^K*|| z?ZyKg_HpM|>2LnXT66BsjJHY2OH~#7p;uP;Ym z&rzDT_zCZMAJrX3OW#TaSbHB|dZf(FB68a5(~IuDS+iFxYL(%l$1l#^Z;}%Dc*{xZ z(_UMfCF(C~?BAPj*Im9ZX~y}N=MkoCZCacz2^6a%hfk_=6}B_D|2`5nsb?x=64Em&z>ph>!8vztM%5DZ!5X< zgAL`1_HI6vzwzrM^{>~=zAU(~Szv**lKk?bJuzYLOT5mfJl^&;{rYlisa~BYhPS_K zE_u1)(45!JljW|3hcRST95zjzzq{~ufZcgZ-m5cNIa89osrJkFttO{3`KXabEB->vWYbH&!LD-r4`{?BySosg?J0T3?=fYns~9eaj)SHo@!U zturmVmd(y8WR1(2zrFZPbD#30^X<3Z|3Clh)#sq|_C1^D{GN9G=;vAICmNsms^cOn z?*BDX!$0_Y=5^iR@3D29hPRHFW%;{tTfcn%K>c9bni*>~=SRks?Yrl8HSy1x*Ouq< zkKU@0`+wglK8CU4{agP>yWiE@zuWnEhiW} zvh?e(k+#py+|upa9LRYrCGOAvmKA$C-}x!COkHu}gktGAW5%WLZuY&b+4t9JLn6oH zo6mmV9Pf0Qao%G+}9Y=C7= zDo^E!C$iTc)^6XlCpYltlg}4_uTfbU)qMI)XxQtN1=}}V&dCV!v-_UA$0FqM!{>{( zU)f)Js{84@w#cW|ai^kuCssU;%uiG|pLF{5DGnu_)QwA*8+PknoUp>HDfLe5eElsy zEazOk{;bDyW$ruq`Twu)d~3VKGkjh2mkTqef4g#h;uXUn(G>UNV!Y-lbuWMXD3xp8 z;Xd1F!ubtf%&bqoeEV_ZMuGLh^Xj)8ZvOs{F|PQJzM%W^4Nc`tKl(xO4m+`B;fM9@ zXV!zK%bgxZg8Gy8%n#BT_xxIQyXfx6EC0g&Tw0ue%>M6_(;MIC7NmZxOzXW9@hT+V znl-KDN9C^-b<(j*!sK^L{_L^;y-vl^M%sW)y?9Y_i2jDxCf4m;cN^luN|wGi)V`gT zq!;`lHSZ2v_+`e;@xsg29WHQ-=Xuy!V0V9?f1>N&H8Xe2nOfmy7V&$zF=s17O8UDs zZ%%XU?%~;3?Pis_Fn+6ya?7Sor8*(1rmZWtd|tjtD~rp~`fDn8%Z2W$w#T!oW1ovZ ztFivYbLw!hU2u^`;)%*_H_n$8J9WG^kG60;S9`bFxy)$ifxhB*^R-^NE#ETzQE7gM z#+A>%->esoes(2olbN;s`DiZKQ-uF{`|Y* z$?W?xS>9wg$KKpC@7M9Ja~BQmC+$=2U1(Xf>BJS6r0$Q;l5ni`=2Hq z|FEq3eBtY7k|KIX*%@ojf4uo~H*DjA$UYO;*ur`P&}w3?2kV)B1TyIFxpgh39@KyQ zc&`0^PyNRuu?)wyf8q5@ak+HfK=ap^-xA;QLRx(0&ymPz7QQd@L3W)~2>YzvJ&KuY zS^n==RQ|7HFWly4x9W22S4lTEO~#9cn!mq=%$!s=;ftiEg-~sTNOf8M^aH$(DRS8Ic?wRPxg-5fA#c3jkzs}MVb7{&LL~t zA8y`$V(y<^W{$&~fTl4)4x8?ahoxXpQK(6rdKbt-#xynD^pq{aO*NuB0=Qtd{e($Hny`ul`AFaD> zw>v65@nAZ`ABl$lkAA$_Gvgv;hPx@CB_2He5Wf(#5Rd(UKf@3273u$${y2~x-&$V# z=If4%U)!#lysEQ#l6KW#u9uKjVA_QV^QRp@|Ms)Nf|@${$qj4XefqWNaW5zH>eE@p zpOn6NI`2z$nLGdcbC*On9lhKcQ_FX+k;%* zUH@cf^!~&8j6Z5V%yLVOSJ}TNcg-g0%OC8TmfA2_IPouRl$7ebe90$$n%kv7XRh=V zx%z0Ee zwdk_W$)c4*2|GICExqoeYW2{)qRr}#fg2_yJY+BR{AUM zgskLW)hy~&d-@Fjyz$_2-PHGdbDK-d?B#2|^}IUj_VW6cs+dQqNA8^!s+%@#z2--8 zXU(Rdo-Rv!;d9Sto?R*S$!(FYwQktUEvBc7qV!rlwPxQI>k8>yYx=ul_w`Ht=T-TZ zzRdkv*SGuJij1Dx5Z3gNjG~TU_31VF7r)xxOjtG5d2`WRJ7wm|o4l=?B*mvAg==oWTI?10B z#~)rh%e&|0yY`Q}rvH=MHd~f!`XgJ0du26c|Ds`gjkx~*hqd+QG4HUj&1Cq;)G(j% z!zb;$b6bxKo4-4<+y0xvz27gZHyl=L2~XMZh_8UX!sfQtuBp~GI_Y9la)pC79hNv~ zdp!Ki(q-w1g?r!KD|;SQwr<+hnXQ+N!=G&PeP}uR&hu&77Y}5b#6LU5wqZi)&2rUW zGj1@?IbbYQaQmD0kFy=yrX(9IS~q#Cv3l0>JriF@z4hKYarKS4^JmRJKKZzZvqIKw zu}`8kb&I!OKNY~_bG+^MSw$sF`|a6#_%-kUetT-a$Cb!v^DFhsDjnvV&p7vXwmYLt z&Xw33>z-WvY;=2$y}E{skHxL1EoMa#A=_kcM|EngJAB+|(r())-%Tg2Y>O;ienEIg zgznB}?MCIB@}2P)(v_KbZ_bgoKmP5d-QnL0E&p$g(QZGO618sI&$O)T}o37 z5S%~RXUG0$>--<itoW;XeC=dP_TN`z;;dsb-BD)&7v8^SM`-|KI1D2ko(Qk<1%R) zuZ3sQDh2Jyo;y68dY?@Es(elMeCz2Bj!+%LhiQoxUym=JR3#nAsWs!l=74$9LCmkd z^DdqJDtP(&`t-SdvBsbJPcD41pv2lx@<__U+vOqdMmsmF->#fj`dzz!>Dl9bAOF~$ zU7a##)d!RQbMe7*$~4;(m&ghCPs_KjVVkjK+dr383)=r5|M=N#vsTaTyd#&E%)2cx zQ|x*iciHB`n`c;**9YobYK6pnU0TBZzqe)2B;i}t{#P3urX8DhWb^+WyldV(zEv^D z{KaM_iA2*6Rp&V}e&-b5+^?PcxOjGamqCi6W8}khvz>qBH|+X!_@*)g%Fd)Jq2EdB0P z)QJV>*Ldu?C97Qf$8Xu2&sEBvTl^mV^f@P*E@gG~boY_JJGLJ;bD5-hD^uk#+o62B zoUnA2XA|a6))FvYnSSJc%r~bWg-gxUpYLORbpE)`?7zFV|292)(CfrjFlZ0M;#}*!}@mKt|&>0y6x~aV%Igb()mJqQO~DbJGrM~+nthnZIuTu7ZhD| zvz=F*TUqyeUHS*zBNJN~wn|wEPVjM?6_mbdp>^X=9fvZvS2vT^eb2a&#MQa{;RBelj3JHFtF;`Yf?lWWf3*=21abCxCC%~0dvnun=Vt4^HzwYlo=Z;uwk zhaxB4-Yd@+Uy(g2cf~2W)$MOrol=*!R+aAk^4#j?-Tq3xH!E!P?YB+Oy)^xQ%ucgO z1``*gn(9waRctZ7I``b+oSwD!beHy)c-u_&=M+~LSDv`~v&Z$Rb?2YIR{W&D*m})V z=C_-^xRu}RaXBU8o&8ERU-dwu&DN!1yM>SYS@otY5;BO~pVOAXA6oiS`P{1gIlLeL zunK%LS^9t>+-B3Ei`8fRPxSc3%>EcN``opyn`+n#jpp5!3%~TGJ}i9OLjGF6%?JCQ zxd+|z`EqpI+0Wa8t(1Q`ZGK+&-LBlx!|vU8BZkWV($6-tRP#&z2<1L4J9UOsl<957 zYscEly)(Jj=7*lCI(0+byZre@UYmmV?;lI||9|RL&)xK2@W6M__MMBc?K_92i{IQ| z0Vxh_+(F%ZF`wtZ_x^)+_RRi#Qs#d!KV}b;`L8Dz(#7>A7t~ynd|Z8^B06_r#HTwALfwIk8JRO3jF_4|dDW!vTz!+Zso>lUf%1!cE$-g` zx>MKqXIg6dyPO0i=0?r?(@s7AFwafFZ`GbQzlV0ZYX$3TYL&ibta)bqXWNW(?~L#3 zw*TK^bS5qO%hNS>t%BY@Ej=wxDj5-LGq-Isd?YZ7O}5`--H)4-YmUhrFm8K3X?o_{ z{2AvOzU(v?Y?cw5Pky|e;!i&zo-N6}_ z!fqz)SNpB5-b}mWDyHlK`5%pKPdSwgC^fcA9Z}H87Zgu;jZMgf&HPo6b#Jiuo zy=8wu*|KN`PjOHI&%D?7KS!QSnWMG(%^#~ePt{AIfBsyYx>SY#`cvKWx7NAj`)Noj zis#OIyYyC>+OCMuWm(Soi?#10{n|U_xOH=6t4BrHk3xy_jIkbv+OB=SSEu~egY$;f z`SvBx*PeZ%^xom|pVMw<-yZm^9B-bxar!nTq3Q{{AOG2S?ZduJ2e*~hoc5MGy8Zs| z-8)J@`viqKeu##whh85KU4o<$!wZ`kvIMmSbsOsW5BM|f_zfQLyAiB^)LOpI*zV7f zScW7H|Kj+S%y&CDZH>7<$S1ooZ4_$jbga97uhX^kocr~~OHCK0Df5}>+z&~8{Qbtn z_3KL19`)==F330=5wBuAB_-)ouKFuGBlh*p%0lj$-fzEd z2|lI6AXA^Nbb9XpxO-taGAHL6`mDRmlxNOoIcw$d5Wy8%_Mua5mToU=7b-N2h<)ZT zf8C~_6FG~`wikvznijgtt0*JmZcmuO?sBigN80BtT`~WsjQ!p94I6!Bu3gr7;F71p zx_4cMa+vC|eIF_c`1u9vd@sqheN&%g8@F31L++69C9i90RVyd{=_xi3zLe;>P{I;r1zeNSg)bw6G| zzjo5Oy1g2Tt5+ZTy{6*nT>l5w@9Xv7?Rsl`c<-Txe&!#J4Eqae%J%JkbquoOYKIkc zOxKB#0hH^NKxgUaGW6+r{+o0BxBX|WJ+CKTfBfj>?X*dU?uL8$CG0eI?Bpsha!>ym z7n2lu!?cuZ^W%G*?(3(|{TgN^%;zQ1xbJ!D#?95clIO48vv$tL?P7VKj93nxKc&3M zaEDT-$dlqfJt8JS7elIS)XM7pzfV!Pav{Zwt?I=Ta6>vOM8JX2JfzNFD@Q3{WL*5iXuroUtU zX2jTUdD|{J+wH+drijF^A5Js-Jc^vT=FyiuhCM4*1toi2I8((p&)I9*dhM;7-q-k^ zR9vdGgMXjX_s{31Eq(fH+1?pb8)a?Y`K;^R+jnY*2gj#*i(^+%(|^ z@T`u=yvLx0L#7S;xgVU5D~(=fUG`h|-sev9N8$3-qVw)q8ysBlm)-O+^}4i z7ocsu%4ymDvUl_5>5I?(cad?OqSDow(^sCEqLJc$Z`<3A?{gJ@>U7Kz>bWg;{!w!I z*D|$3%Py=G_Dp{=cWM3-CKIE=%T^bp&2sx?TOYcxo8{U}=bs_cGOho0rtZAZr4}v> zS|<Yw>1*|uHN?fMImFsn_E{BAGE zKKi^kp5si0=y_YAwUzVN?vdy#ENOOkI(q2G%-rvd51#G$=wqXvq@$DPRuwh-3zx9x z#FnV=4{LiH&q}Jj{qo1gda>-$zK5jjIZo!l49QkPFhWD|v1EvRa@Mdd= ztli|NChMm1;o3=8e&)Glx4ur=;p^~Pc5iQ) z%=?oSx~ukYT+ch>{FB+Q`8RI9E?Qf2K6=(!)%UyKPrO;)hmK}Mnb^GtN zvvT=+elM;#>}}uhc9~0-d1E=#k9&_df98*am)`QQtgU$T=*yGySwC!Mh%3FCyYpSe zpJUt~*0ta7`Cj+zUP0_spW3JM=0!g5OLdJuA!fb2d!oUmaj>c88&O6w^l{p?dW`QrLQbv_V&1Gt7>Zg zR!YtbbB@&NOile^p*2_H`c~oWcN5rSR-UZ=E^u&S&fNpI*JeBAu3uNB7QNPXO-v6< zOrG;LN1oqSlgiA}sy8;COP&2ayT$0mzVGVM`R2||M}N1U=*TfU-muh0`tdufwfkjz zqJkDh-A>=B#5sBOn+le*R?~&!9@o~rJMuhW-?=Fl9`8N={r^^@%C(x6D~)#n2IFANCUE!ax`LtYh&cY)K(*>gqmquLr?6`%&K)CUaP>Is7XC~g6W!vOe z%vtyC%D=vp&la1f&iQ&}-n7G&aeX!Qr9ywC-~Hl|+w*?=$3KhD-wmleUsxk>;JeKH zx%+=Z_pmuV`~~Z)bFBvT+C&f3b3AZo*z*BgJ-63?x>|Ak@cl-2yL$G9uiqashI#Lt zeE-gzH+IIycM2*`6Q9z5J|J1#*t%oy7MqwAR_wlWSzOp~ii)HD@%O`eL!B z-(&xWOU!KS67UgdMhO_Gvd&`CE=m!!LJOjWK9mb>Xmkww>F)ruGww% zg=^)`@yD)l1j>iUPxlFlmdaMX9lw%KE?qh8?;Yp&n+5+B+Wp*!!dWAT%Ls)r<` zs%HE?lUdULCFrwJZm#u|A1BgQyleORW+}PCWkP!=%N&h|rgJ7%USx~;_RH>EE&C%4 z?b5^kLi?{f{r-}HCRtu$^adY|1}GBw_b$RTINw+$wH$Z5LQu82`ZP zP4S$gKZW($JeU6a`ghF>X-@~)g8|QyV$?p(sM@;m(>ATjvo6x@LcG(mdDni9kqt_i zlkQLx>si0E$K~UXNv_B5p0DQmf9&u3!>8x{f0595sNpVv=k2il_4!<)EJSNL^ zT?D#8EntU;_;U5{3_my->N&suekcU$pyeObxBJ!m<4^BP4HxBaR}A@{@Y$Cwl}wV@ zfAOLCVJ^R=u1yPBms{=Ly0dq2^SRqoSpPqoTzTbd`jhj0x9+8V%2~O$GQ;0l<;E?U zhdH~BrN1tG5ukm#W|6egbG4)kr^~0#-@a70^xWUKem+sZt|dA5uGnDwsE328O2MnF zByRrI`Ms6yDsPOQPG0)h@T%pKmiZGsW0vhYY-+QpZ7S=d8)<&83hP{2S3m7;Vc!t@ z%Tz1=W~)r6FZ*g2hQ+3HYCee>{x#k8{;cHvl|H{;Kh)XFr}NbRdhd^uC$5^hF1z~j z-KUAmZeQ5j7RY%r(<0`B)Wn2sW=~#MEjj#XPKTGR$E`U{AH~Jj?5VMP&hqfex`{Pg z>?W_w#U>%Y z^lttNy6w9APT`irv)}(^uDSfNeexGpNA?f#%s&=B-u$^g9=hmTBPM^!;dS6mM2CDq zTSa(52XHup&WY+%|9<}PdYezOKbDK@^DAncwd6NAX(%KeSo*k%Z8y71_}bNl8!X;L zh^8bmOm#UCTYB-K-6YYCYbNgKN>MeKXPvfT*UTN8jsJ<6#?Kb1D$6arsdwG|((1*n z7v@M?%|HL?o#uO|WoL2|E?xXoDCwpr#dz{b!m^}@U}h=FEz5odi*J9OF4cEJaczt2 zYL=1h=yY$OvZ1(E?y;3Z=C}8T2Ke@{Dx9-VVv)oACr}|{tj&zd=tA6+F zFrO6WIr~hRU%`)3wIwqJOxFl5`xqAzd&_ivcJGJNFIEWNoE5s%So>ha)9cf>6-9*4 zEuN`#;rX;%KA}My9 z!+zj)-}!U(ui@qP%|_@FD~%e*9q5Csi|6l`e*fzq7+P`X&-~ahR zs~2@%e!o;lEi9x|;Qq$>?{-vW#x6Ym&bstzuGEIthF27>Csaxq%;`@zP?dl1{pQ>3 zS35Ly)P-{*M5^X&Q(X0Gn%zXF3zrH#{P~`r?Aq7YDYH{Cwa7kp=~I@Ym+}==b!@d~ zH`zW|<;ZJ!%H?+7sZH5lUo`g~d~59#|K?1gPWT?^pH*3i+ShtMeph zUCq~z$w{Wm&5TmMFAKbE(7DgNfAh?f_Sw_V>gxAjUF`GgCwK%nP(PXSTOf>|JH3g->i5c9lhsU z6H9bDPxP70;$I&E`u9CMcl_hE-}k%4?|*wawS@JMJHsDdhX0>G-u!usEey2T+-ac! zY-w`(R~Y4IUKjdiyh?9|!kuk@bM(W1uQc)utxBuTe$H0?<~Q5yZS#+xaBh^d zDqerKteS21QyquxrNUR!Ret5H%X#rzt>?v^@K^0yRfBsC8PkvSo=py@nq4h*tSqSg zXu$kHNAZbk+2@-Zy1bls>#9a?ZI*H4sjpVHCKKDM%wj`SfBla<`%?Go)+Kx&#D2YT z*}XM9eB-So-3Gb#r$D&d^|SZl8Z-<@g7JCCb0u8Zemom07V`d60a^VZCJdm)Wq z@>On`(xmGiZhL#ZZaV9p@(}hjUR9dRrDhwkbhXrWi+3@4-;V|#n`v_%PcYm4O`?ZPxVRrl%ca4}Xb;ds?4f8=~w%vi<9C2tfKdhquaUHak zT$|xfI>W!WtMg8m9`F4tSoe0L`NQk>A4@CJ-hW|TJ!?ZuY5N|l2Q$t{IG0Cun3nx0 zT={rr@UvTY6X$w_Fm-uvDLQj@C$sg7bf+}6$6snJ|E~UbT3~0+ztt@A^RJ7)aZj}T zUR&m2UjDG?hu;O$Fvg<$R#6Jvk(wDVf6Q@FTev9s&Z#8PhZ2`2A3UY47T5P6MgBmR zVHp2UiOiX+z9!B}u)VP~UYaAy#mMvagq_cR&JuK3Wf%A;A;-Jq-tG7>k6m|@GVH=W zNaXa*x^&5__vtKUn^k9$_V0PR$L-Or82R$B_pYtsF$<-5E^?j?T%5c!XAVQXW5d)+ z>n%@fT<6tCR>aB8-n->`PI~U?b7H2qWrKcKM&>;?T#~KAX3HM!u=4mC^_y?bT{8S= zeyN`;_>HU6MUL$fN+r4W225_}rN8`KHf_VVb=$qGkF8wO`*F?Ak2Z&$pT4Y;*IXQt zyk;(^y6y6U-YZw4zGV5u{jxjst#s-9t&`qfOyG)FH(dT%VJ1uHA^pDdmnPi{W-7S( z{YN6lg><{s`F6P_cH8}PH>Ihr?_9g|g7LpEog0@&HAI`q=I{EgTyfa@e*fFF=~Kc5 z{`fQed-f5&j9z442CQ54&>OT~dOO39YKFLSP`~QO8)N+gkQuU>)zh+{Rh&K~^~<(J z+lPTs`DO`o;M3=&z3F0_vMDVNCBoYk*Drl6Fu`p`P3^B z{QKNRtC%+gEZ1FP{QFqlvGd!et$i!GbNS=5KTC6z10|1VDTzFu+0*{)vy|qHgPl&Q zwR{tuvQ-3EZ_CN^nXmLwv^+>{M)HnR8{=)#AKx)PbuC`tW92rtYcGPG&(C@sI_u{7 zlOFn!-|LhX9-5jn_vp^`sS)#&8?xNw*YSHRbNui&wm@kzgh-+&Ie1uTl(w2s_P%W zdH8;xyM6s{fvEnw8{epyr0<$1YG(CkS&W-p)QW=_ABs<{yu-%#b)}wtS=y$o&Z*{- zk*POK!q4oi(r+iS|1MxgT!7!Y$wWuq!kTy(o1)h6_8ZC(gL^F?o`+@6F>a3!FIjuef8ZZLM39(YwKF!rLixA0Jd3$f#-pD`cxMa($D{I8q8+@FW9ATWKu^@m!_(%-Hr+FWo=hS}NU;d_;dy26Moj%a$3oD$t(dz<|G(_Y5UsDJflT{Dw5ED34T>+9efxf|0B99WIz!nunRA`j zI-2Z%o_hV^_Vf7WTkQu z{!|E0Y>W+=E`Hd&?49AB$y;VU`t`Z%PD>GQz=|U;t(Tt3NQgJwSnyxU;N@jkw{w%c zayPwhKmRz|fA)q+T$c||Senh#sx@t)7YnDT=#l3OJ*}ChS4hu2erf*KXY=!)u8mjm zI&!?BJ@ioB?QKhB8Si*Y{}Y@r?ULLckJo#)-R!(}sW$BU9(H!yBMA~G-Z#wqoBnwH z=O5jheN{Eh|5nbik+!*ZhbjNZX66lRkN^1lB`M&vVaEI~)+gsnzj*F&>i7F)sy3nz zH&{5mTl>C}qzEXTXDW&e(hX1#8r(b(-{cbVS zhOoZ-Mz;Si9Fsk{`+d_?z4nV?P4&xWyxwoYw)$M_74g5)2kzHbiOJWuzuYf&%l`G- z{W z;$5@pZT5c_sZ(v+^-n8oV6a$sc#c+xg82256V6?ibaZ|H;`3*QFAQ!C!qw(`vb~9V?zLdHBd>iBXx7*K4ExuckX0R~%HKRbXc-`+R zg`<4)yP9OTgv_$ZYnYoXXaD|}(DS)R@@jp4)m3{ue;$0#x8Fx%p4N}enWm*WOYddL zvO0GoAv+Mfv2vVeK~jb>j#^@RiFI#`_c7)-{0RqyZd>^(>HT1Ol?}PxPE11cz?&% z;?JFJ%$}fl)cSfS1eP`L7s$SS|JRveKg$Er+kH=$yxzxs{bB9*J8k+lWu^>we}p|3 zTK2l^aoinahb_M0&(Bu-oep2tThn0v`fA{d?Xk8EGZso$9bf3GU^VYMY%PFn%{#FT zTDrW;x17|oW)s)7O+OeR`G7GwH~lNG#Kv`dByZ2NT*qq7@_q;J`xl=#_|HoWhX;6p9}nu!FfjVj_&WAN6eZxanD{aI6rmX^U4o- zoA#;SIWA{)Ghgw4?xXt>uMcg}j7&c8+?_2?E_LgN?@rw*3rrup*3n>k$+g}yOW*2# z|K*ynT<>$QXa9ej~go9CSWc^@BGg_I)p2{C96DsK)ST+L3ko;hc)QUoU8XY%IRtx!$hyC67pow{Sp& zxkIAd?vkn<3#IFV!t0mKV(R9Q*!cLov+ets2VsmY7d__ADk^xzzx4H#+|#l}@7Er= zYR-D`YVKLyU0ZEUwVty^X@ovolc~HlQ0B?!+9@In4x2>1$&0z3xNrNG$a9b19E=Zf zJF-r@tuJtvOF&Frw#}Z&G<>Z8!uV4Dtb;+iQrD-))sGUD$adLjmzlB#0 z_+2-u&yxPg^X1lzZ|CeA4PWuRIsfPJd}a4}`lt2O`@*hUH}BZTSJ$q)?d3wH>Flwe zi%+Kia&72;ec^q7o$SHb>tDk()9S=^B2q<-yR7)`-DO|!`;5?x+ssORkCOWK|9g9b zrSprV^!~oab;hx~ciEX8Kk(Y`dU|$uu-+|;oIm^i2hRTcRc=L<#!Gjv^~N_Qr&qTx zTPJs0{cqov>q;Cijy^uN(JkHR*4LZg_m)2@yv=l9Cr-E_`*>^p&IRi;f0;1ve<{D! zvWBtrqPgYWW$&ee_q{StW>Hq&zBD8{pz!O`;}x%Oo_~0I-9BrnRa34W25nYc|5i?B z8LJVf7F~J8Jcjd65V%yX4KCfXznr;YKI@0SC;p4wT=BS&eSh`;*&nL;_we}l)#OcZ zvhdsb-2B#3nP%p)A3wizMAg0Q*&oJlEhX`$!k;I9BUelJf=OEpr#!pIoMXw~aHLj! z{?W?q>sXl&?&IsaU~9X+{}Nl+-DfdVpUL%{>g0OG^R;5}^!M9$w7vV;)K$2PZ%d*5 zyjz=J>S^0H|GeWclX;%=KC?yTnLny`<^7tnTAShcg)j4L{AJDy*?nY~a6M-Ab!JUg zzdQMH>${Aidap^El zXPtj^MR4lR&O7y=gqw@&_$_yF9NGBZ-R}3>IyvvUI@ixHk0;lyzdOhM{lsOn-adT6 zVZFVK&(w^S#gy4@G+WBd4PYq#0*U#-3%R~cBjv}n%9Iqna*A52+u zdfk4F-r_s*MPD6*=W97FE)+gtet6%?`=v+bOxnDoG`(s0^T20TUQZ+5c7*J63b<(f zPfzw*#pRj%kCn%Mmt50k8YCUc_{XY2{QoyvHkNUwBr8W?GOFscjes^3j03yM84f?wYxkU4}4fZ^|N%{8a z?Arau?Y+U$$1&lrBNBg@U3<2~dL38Qo?!QFtD_yN;^d!wn*2Na*8P+p>IM_;n%b>h ze$4Ck{?Pfek8k*vs$6hzU0>2K!QJ0~L~1_2JM~+PX?6d?iCZoPl|&_29LRe+yRg;2 zN?p_Ww{HRWy(*3qNfldI`b=CO9~J1zJ7fGKIb8d|TMYx5JLkpZ3vI;ODqb85d^zK^ zu-pZs1lbd^FQU`#r}l*Y*?p`wk>l9k2{&vare4`Ew)eo%qqdKD_kar#TlP|)?C`pb%pbVXmMKnLf6FWVXNDNDlbLWzG0g3 zON*hH?SYKCLh|{?F@_I9!|glX@BGLYQ+P7DJ9+x7uhk6qHdYt>=*(rG1ZgJyT+UJl zjZ092iRr<9_7B|*aa*1i`0aUD_vUEDecSwFJGrNqORr<9XS=mU*znB5&G+B9?aKSX znUG+yeV#dMsq}>4rlMI+Y`lVd7~fob^XJT$#3kFF*>xp0{yMV2Kc?(4%P)n5zH_g$ zOT~ky+Z;DM`LlY)v8MCyA8-CyvAO(+L9^5QHOUvAEc9u#Vn~&_eTV0kd=b0b0+&mM zTo-!H?(AK3W&WR;j9&aHNpltk_!V?aa}NkRwwyh8m)Ompsf-J2nI%dJ=3ElLP-}O4 z{rAOQJxuOy3*QnfPXDi?6El^w;9p2b5)9Go2Xl2Lo`)1%MY<%zYX8)zVSUZWZiTo57y>8?>OR?+b#0FKe^b-e+t`I zo(q%fSx&yRu#H*uTTW}n+&b@bZk^H39`3p<{$bl}zQW6*&&|Hrn!a4mu!sA={`)@!R<_jk)2*v?dSCeA0Nv;-V>~` z=+XUK>?ND$n!m3+9DmAFD}aqr?7)^yf)<6 z{N4O!MPdqLRoJU(A)VJ$Q*Teu=HZsS;_2nLf8u+^o;93$iiU-&{L1!Z<^S6JS82N1 z`I&o?<*ppG-QMiAE}+kAD~qprembaYsCZ{y1t z$#-JG>#y2Gm(IE@$rP5A)zo0bH+BA%`lqQfZ})SpI$hpZ`1)&k^7~uoV@v9Sb}&2; zXV{be{lSNix$KjnxpFNmSNiqzefu8A^uU(k-^XpqmM^Q4YV zXeo2*_qhig?DPvnm%RUyX{%gdKFN4OY^}{Cqqa9mfeMMI-2&EHJ5P8$>)qKx>kWo% z^~I5Gm4Z4C*Vcdgd7?&Uae3p$%X|SX2Rs-Z+m77EYp|MDA-%Kcu%{?(U{FIxodgP@}@S5HCtI8KEKTPO2i+_*>Am4~bKPIY=-&(er?a7NVW>&c zznv@IU;VPSeiwUp&#GEm!Cg<%rv;aLMcWDOpEkX&OVsj-4a4(aTjwyDR6eh`>;8Uu zF7pAN2<R8F_Ij>&uUOtmPW$-#{M&BkNxv^UA4@e~GB;Cd=1zx$ zZ+X==A{_(WU<&Um>5D5~$x}W*OySvSY_unZ~fE1xY z4zR9@dVu@y>U>x0`|qu{%bxbUUMs%t@Il+{kM!ksOL6_wa^%~cxynz1`)h@CNn1{d z@3skV%U-1&7Zh-2zgxEb_Ad z`HQW!FC0D)DrvYYWX_zn$p@2IVt$!Sek8Ct`8{LT|H_p-FDmnxX1cm7?2nzc!jNI_5QBuDf+*$u(aM`)nS=7n|Q7S9`I&$)4LoDs z=W=d>&z#z-d-K+Lmi?N#PENM{tnFnn-7{MP&L49B$#*GAgzr=N9*bISu2U?pQ`Fv; zxARx$q<=klzUsn!FT-g~3;RrztNQ2m>hF9cc&G02@(tC$4tDqWa~+UnsLS~N;6wR# zSr70i&`J^Q#&`%zc;({1dqo@GvwtXNIG1BNM|k~tn=e{5AMRa$xY~dIto0wCZC>&= z*kbu5-XFJextmWJ8@y?3w-e8GH0rsKd!r(G-ubJaHEn+C*xsLaNBqLJb*!s7cU=9M zW1n3j@O;6NdpQkxMZ&%tHUvfU3cX5Odu8oAm)7n}(;2_{=-j<=-M5;5W6iBSOFu>x z{c?RLb?;d$(}szMxxVal2<|dc3lKQHQby8=t1MvpgRWcsADE_3J-=t}`FH!6JeS^j z+$;BHtJF1NlLo?aY#)2S*o&J*4ReFrUYfNoJGas1@H-EC_pocNx7Tyl z-rr&Oe_eIOisD@?>1(YoueX;o_S>C(Uixk07TI>OiT|H6>@X7h_l@tw51IW-^ViDp z75;L48Q-1#GF(Q&CsJKv@scLFb-KGxzlpl{TAc^#kr?qB+1 zzvd~~GCXi+_%r)%^Wm@CnjwP-Q$NA##aAw`GwR>BGSo30uxH+|`DuaQmcHY%f8PDg zKlI-2gOQExC$^izfOLPV6 zo=|Hafjl-2;VrXoPy2hS>ttm3i_PzHjY=MyER<6+TEg6A%f>n5az&A(?d0=KGJeO| zUeu@PKV;_5y`gyGdPUCP$XfB+1=GKUuUpIU%TOdUQ*~`||9sgy>AB`n(zn{?*-Fec zUimRBhW0IPrkk{Hp%*XC~Qg`F{9X`@5fI?zi&3fBj>|U7~Yhf#{og zn+;D3i&<$_e63&KAi2Wz{pKc5)+TM2%!ao=>v*iqo8_$YjheGI$;xp#{{YP^0FW>Zs6SgdW5Vfx7%ba!5k;!}9ES9RS zmn!9c^=k6=^UMEydA#ss@$dJN((C^}Wr;lAV}3PK&e{1ND=U9+ZHdjdx3m18@0`*# zl`*5fZ`ri|#(10dHwJ5@=e536JYUQ5|Ba7cP5zZvUZ?F_9KK8IPE8Wd;CL`;;UnMl zeLdze&N}2W?gh6f|Y8i`(}u*zMQn?=E-v ztUoX`cFs8eL^wfXL4v8}7Zy7s0h4#aeOo_FTYV(KeAiDM$F|_9ueNRQym~C|e8nx6 zFA@(5b!R=hXr*sB)&AIpgZyl+kIa&%i%$Q#Sz&`)P~EE6>&jj)Kl60y`qKp=$r{ET zLO%{}@O+f6v*f{ogO^2*^xkv}t=lGW$f~R)Ij+%%->7u&df#1kZ3kx9cMD%Q#KmUE z8?~iE^4yIGlZQ#~8#dirpt@(F?Zc9}GV|A7?#orV-*|)VMbr|U7P{YKeF#8 z@14!Htf&0n&-q)$Z{4h--nSkNYp^maUAO4{x_!Rg`lT$tCfn9#1@S+4yXRwhL+h%Td)*KB z?^*b3uF%=Gy~p-f2<*1|yZeq7*x?%U*aweR<}*IONm&fg;(9`h;V z`udRN{7e+cih-Pb*4 z^>$y^_WzDgYh>jPxEJq#a&FB8kwaphzl^P(PG^%?YhdvF%F1iHtInmc`u@FD@l4Zh zuhN?@KKrIVi7fpe`FzFRb??_NYfA}_Yd)zxB~Rt|_VdiC`;IB+{XX=eKel$yBd#bf z|4enJh;6xYs{GkMXSJ5eaeOndYisiUyZgqf_TBIQw|-9gpk)viWPSU6@4uaPuIkD$ z|L-b4efxcyjoH#KYc5L%)+`aNs*`8jfAVSh-Iv@IzkSs@n*H$kB@tuQW@>u zZ)8`Qy@CCFykqg#wF`=0H}YjS#4?L{L`H1pDPoY0m0!DSzfDErpMZ3Yr5~sK ze7aih#o6~+2KC;rJ@y4JiRbBD;@6$`>&w!jyZwzG_QyZuRJPt;q5OTZ@8=WQKJ%Y{ z-11>xz449X&mTXtatvR>U&?gtQubTtE9$a0yBD8*A-%WWsp>?wzxVC;+N~!I7i>?^ zm$KHoy#CqK{B>vdZk-psZym?1{row*gZ@`sG<@r}CG3jQOV31x`)V@|M0 z?e+eS>v6w#E-=?z-VR#W5P#R!q9*J1L1?7a>cVTh$kmJg?v-ZvBh&Do^XGk2>90qA znb_653#)l_P&_eKH>AUC?ahfTmCk$1c{b)Z)e7=Vl(=$4Uw>fPgOrau>ucKNr+?y#KwJTC65Uypv)m42_wyJXqxHF>M& z{?@(V@#|Xt-Q%}E$mL~cGKL?vnPyb1-BbK3q>z2n?v?SzrR&^}u|>?Yf8WlO_1!M3 zzvPKhc&>csKi%`y+vnTwzSv|p*I4uP=ko{7@7pi-!u6%KUX{hHG2)k>zSnZ?^1K&zHAwA|gJ2!V` znI6qI2rr$}Fn34wSIwVyl)b9imK?8=T_zr2vGlWy!J}u{=N?}J^&eiH)LS+skoCiQ z#y>aS9eh{|uiRecFS;Y)y%d!5zOK1`@!vgZhCSj3%JZ$KOkpH3<8Ru1@w45%@yzZ0-y-YlU%pv)B3&uy#N`;5n!1~Ql7W_?&!3#jK5${)%j=c8 zTxWjPeqN?!dw#?EMQ5Hf?#jI?=~K1g#O*^&XSo`ZJs)~H7%Nz2ih?I>j_c^xnx$b>-*^+6- z?-K!y*SCJzJXQ9r#5%(nRw5c&KPIn;`px4~<&n%-t!VL}I(uWcLnPZ8rP&h#@2AgR zvT^I$2flNs|C8~%uz8Nv<>jTiD>et;aI&%fH)H*4iC^(18xq1Cw|(0ve>nBJ+^$XH zyN{KxopzyQ&5P;kRtnDco?8C7-LJPDxNuy=`qYuqTk}s#FfZbm+H9x)^=fjeoOD}l zL3xf;u;t_Phn;$(WhU8)?GLI}xK`h-u;bkK3N?uoFPT4|9sF^{*A#`d43mXWWzg{lSOFxA|1Sby>)( z{Kc@|`aI!T=f3||XSm1wz%`oh`H|Pg{Cm0N_k1t?@#^w&h6s20{HI(l8~Uc&nJ&ng zzwQDvXJdAw72=Mm)|@b66~ z@9bFh`scDY{kqm0TPu}&e;Vr^F;CYOSCnKKcQEYVzEt~ksrw1<_ctw{l)k-gRF@vL z-Tl|=>@TB+a>gI!yV=`kPfv&RHp2`z) ztF(Tf(zDlcB2_;Wb3dAy&zF6E{AT`A;|ZVE`Dsd5N340=W7u*w0d=x(6#$kKC^xxUx4uA4Q zyOy|L-k8n*V3tTjYz?n#;D_>-UB7I^oXSN@+>MmSO3>ICu?a3F?AR zU$FBpbPVjp%GDnltM^Nn+tw_*ZSwp}<(`Wx^fXv&A6@&H=_IN4@!F?J-0U6OcD^lT ztebeb|1{&?X#WHAVvG+QTJl6^%DLeBYi4iUYE>9TFY(QPzx>@6-{&!wH^P=rSypT* zo4^0(J4Wt)?(>cPcaqr}{TQBo>FeQ+`n&6`UY`BR{X42wYs+tad;P(ssuv4q%~M|f zdb8ik0NoADC4a+qnF~ogys~m_zD?X`EyeHiTQ}aTRX+c9ovyB+2#=J)f00k2QRj-?XE}M>U;AEpPsOzGbb=I_0a%=R4+gKF;Tv z7cJ#0*DA-9cg#tyL37IMjTZe2mrUQ8o6 z?!D4A{&OFRtvW6B?BgZDBnC<6sNGQ&F>kgXzO+5yy}_H`$KHON+5Kuw$n*HQ${NqA z7s)5jsQx3i{qz47DmTw&OMW=Dy6?la&GU~;oo?54#r5lZ#y!>FAAHc?1{)r^ay=T6 zl|a*b*0+Avt-lTGgO%HV6Oy^}S#8elf}M@*-me2;)yp4H@7yu+?JQ8@3i;@43jH z+LE~(487+)r~I(oyY36)gN+|QMylWUc*-#2e0Icy_xBZlo>9=9#C~jF%9Oroh20kB zsXTuxK1TNNI6f=i5Pe+C>eja;^BhMO=Gy!}SzR*qwt8Fd`F37(GG%psTUq&7_V?zTzaB4abhqx%WX;tsy}MHV!#D8M!1uO~OMBiq zSTBEHj)*LCFL-1b=!*ZaO=JlXv37^jxej0uHN3+FQ4__ade^G0Y#r{&37k}ndFtq=yt64XjU60HB%G=``f1WKbT=H$h`9%z};%pYB zecpH1bFKf8&fVyEJ~6L-VmFhSb=DlUtMj)U`^=spLY*>MGj>5lWu+db#j_2w~M+NJknwpLVXT`AMwuIbrbzYm5$oR}SSlG&;Rrxz}jAaQWO;>wB?BXFoLZTfwTa zsr1cU@1?6R@BUWxV97dr*>Y}Qn%FSFy!q!1UD3va(;jV3NH6M&YPhyouJT%+u=5_(9cl9)8!_>5zqvJ`@@t)Cz1@m( zMlYLtwJTnq-N$cs&-cE7n0a+cR&2(myf@K`*Dd4XntRqrtmyold-LzI`&)Q=)@u7r zTJWjsYe4bK+c%iK>hdJbTz_2Iulp@_W5E^o<4<#ZjW)~e`|Yvl->1)JwJ(gX8tiPV zZeJ>Dt^am^otfA_R%vdT+xr8}_kXavQ}$Ta!qnzxPjbz?R}u%-GyQmZxB2k;JnI>d zH7YCf+k}3A+v!uQ?!C;Ye}9#sj`KkMzPAy6yWZ_Cu;qKVQ?%T^?CT=q{>yHC8WB^w zN>k-qOIuw2GoA`K*xZ=dR51I>Dc{*^Sr~p+-a9mJdl+|e!;Pcij0r_AHqOqsyT4wH zXKC)O&CL@WTm17i9xpr}via?41D7pN4kaI-JSF*q@I&tTLWV^wZnM9BDppxJ`SSi- zpRcd!UVY$P`(2LdZ_7ic6m2>8_S23?gHwhtq&f_nWEzt{IhXzSW?{JVb?MY~+H33|_nvmizqiaVAmjLc4u)M~`#b;4WW4NgzR)Mo zzv@R??fJS;LxIWaH7-~Gu6%#e!1``Z{i67c3l&u>@R~ z7hchSoPBq~M{}DOQZIJt>RykpIeK`<-(%K=&%Ru2n-MhGj^n}H-R$l2@4}~D?)$(; zDE3^r_%Dv}L;r;X_fKz^Ima1(aJhVys$I?dv*0H9jkhNlXUr{p^Juc}nS~*1R_B~C zUXvv~fAytxS8i?d2xl$k3RrNTOShz+lVekGzOCh#E^pDQi)&+6Z5MgX_F4K$YM1;K zJ#UAF2fDtN)Xn!j_1yjLu8$07a&Me1ES>K1{Ig+6&$;iP4g3$phy=5=H{26{q8k1F z^~-$ph|%**blW>jCF(<=C4-Ot~4bC=1Qw{otnZRLG)W7Eq* zog9L+czHP&w6yv=-u-2p3Hbj9-~`V zgZ9O7Us*KsN_uH%$mbgUe`?Ra>(|-m?0-9J>wK)<=y}B+UEI3Pp|(MWUxqcxjp*_KZf_9 zY3VQiHPD84aS*%$S`TV1Xg0_*eGq1d+W>2NPXsl+_y13|SoiIZ`Mm{CKOfe)Gn?Ve zm-q$AZ}+NS{ASr~>!2tzT{Jv)?XI_{H~5=4vzI@+x6ACq4Vm&8_0PVAEnWKdi^2JP z+4Fh_G{wr~rU|{bH`_jSN$4BLmiu46DX1{j3I)&Eb%E&sldt4U*^r`nbJw>Qvga@U zTv{y@G54|?*Be2O7q<5M^j^Q)EZ-pIen5SKnJ+lk#EVrpFdRmc4%eQ$DDFUtE}0=_0gudW>Jv_CPbkC!Z%( z*G8B1-u~YBFrL5W=iRgiZxyRp*8dJnI6C2dQo;JEnXjEsF^lOKpV=%};hrfU&3{|h z=JD0z30vx`Z_YiTePH_Kuv(Y8cRC)I&)4}D$JG53dB7R7IX7|N^WzTL8~&z!U3}&I z>giwhma8*W*~v58$(_Gx z3opfTHDU8yA`OsXBAbTy&i~9Wx!HcXauvLmr*g0F!SM{AJZe)vaDFK`;H<$WT~j3KY*=RdbKBpT$di#d&6QS7EM}V|u6_G(+-k}n znXH;y{H5zNWti?&e`x(_#}M4_^jwasib11vQ}dkTtX6~DXMv97JZ z*T1~I>W$CVbcS0SUq0R6Iqk!WZM+|TU#p+2`Qvi+-&r?VR{Z(Csq*6@EjWip-1q58(j^S7r)Ka`yy_r=p%?Agt)SHB-W zI?`J!`@3ZON7|e_cw}Kl=N9CG)$z1*~1S4?UYwU-tN}6@w&4=&$)Zq$N&ph9noT zFJLZXm_D8R^0xO+ekEIIP7u(D&AM=NuKV{>HF@!->E9|jw_Gl|H`D3EYQD>^tieI; zR=nH+4WhXxev3@}#IyV1qZ?H{7xJ&3uFTme?DhPb-TJ)~tg4nzyT3p`*qSN3V$P4} zrYt5#Ocx4!jy2x?@X}B_c605f1wM*`^ZBov{S0TYDq!Nmc~_Pur#_b{slEB~`NVB8!5v$kFeRriD_vIk;pxF3)7Mk(i?q7^{kL{}|Itj!&M_|7`5r z8j>$?-w*pg?|c6GYv=Rq-@f+<+&cf4``FP{&rUc0AN z_|Nt~ZxR>y-fiQQ`j+Wb9gt+c|EJXd<9}Wp7vZ|NhWm`&`U%(acDXa0Pv(!;JH-6x z-RIJq+j1=nzf~HnC^+k;qTq7wTyn#b1)k?zFYhuDd+S>|-?lE8W9jVgQ|qJ*1HAla zFS=|!J;%!L^@q>Tb+Z0jE_?K9Lebf|C;v`2`lDAA%k)d+mS(}{V%^WX+IrI(=3ejm zx5s||z2IkY3Ub>IXK!CRyLVySlNnF$-L%}^aNe3rSz}v_w724db+1l*UHa9iCRJle z{pmfwu1t`-lhyxobF1ecw}Rbrr>c%{>sbGCxp)6;;kN_pY!AMR{XI`Z=j;Etikt6s zu3pkyA|u~?Dr4Tp4>z~nKfaaauL{%8@&%6Wh1&Dt))wCWTK;(J^?RaU)SrGyWq8l_ zA^-E7eIejVMsqc65H5%twDgJT06%kucmsIp)9cQ!sXspKjQ;p>@$3crSlL9cOtwnRUU*vsrcu#nAHqQdBE1DF% z&0n~{icQzx>e-yxZ5OQ4bON?aP-9Yen6Gs4FyGGepH-fUEclwft+FuE@9xU~n?JO^ z7D+j@;ly|AqF*m|c>dnCaQ)v2FW&q(@mX$}+k#%%NV_um{`M7iSC=_3$A?|B``uu% z@5I&ZE$S&Utan`)TJKK2l;7tVv(rXh+4lHn-KYJ5%dX6OwMqKorCOs8of~*#VvWl7 zq*dHe`KHQ#e_7SEt(+{3A2W(q+L@;OuT|L3vEaV=Vo&as=K@N9PW@@w=&?4wxpIE) z9-hA`X^geO(|;u&OsGG;vApJ!do?zdjAWbtgHT?`Lw8SZVaF8Fa{8*IYe zsuMPPqg5&>`}X}_k=)5I_unqkP>=f_yF>2%?&o5EjwXjoZ%Eh{$a%}qgkjD4mc8P~ zB265vzs+ZuF}Ir4Ak&U@N#nWu!q?~9sL%iLXP=~%ub=JBV^6=#SycIYSC&>_;pg6x zb@LgV*Phj4irC|*vvEUkz^Q_$!yIhKq+g3U8O9{O*uL!3y~9TqTx@pbFIybEdYXY3 z%Ws>WLovq=iR6X9J3W8StB~U>jyLZW?y_}Udiy}QL;B^iQ>LsNYy1|>O)q@b$$aim zsH^Owdrv-oI?*$Ky5*C~wHHEmy}93IlVyq8D?e|OA&&~Pgb^U(G^8XAE?(Sx9FVBZ9 zt6w>J4LpyW2QN@^w!Z)VnQnX0q0kR6+v8gA@A;l)^XJRbEtPi}m<94XxoZ-|7L(F5oYZDqBL?70+E~4S&pRRA69!!^YHI@StC|TE@KL-5UGM?ADFV+=06e zaa4TV_T}g)?kfom>W?*(PjBcs|2}z!(9Y!+eDi(I=kMN}@Akld%h&VC%dh9G^7~mm zWB&W|`aKIK#pHin!5sWM{bSDo=eCtW=Z`KiG|rLr<$V3&b)v$8&x`x)`DL~CJU`*Y z+qX0}_<8E;?(>0D3ZEAL-@)5f&GYBWAG@P6JfEI_zwqV2qf;;DIP5eFlCINBN*Awx zWUTpf=h@fMZkPMa#n$Ps3{r6YNy}R}C z!HUNrn?+f}V?T-9tNK=4arA2Zkxx~gzPp6q&e_+W2aksIW?0YBtCrX5*8OP4AB+t4 z>D0B!cT>LKg zky&yV7|X1~&;Mnf%c>zao$IyQtL^`8-aS6w_Ci8{VS?4>38!3FTCiTr(DH0$zNaeM z=)hJPdnZ8R+4J_t6YNg^thW1_KIK`+ypNyX7Pi`)f4=wUa|wY;cM0azH?}UF;pupr z!?JmOx%bV=OV79V_^)62Dtw*ISp#S9n_qQoKRGlra-3gSzO!=rydK{tiIbl1mG1j3 zworHF=Ej)UJYV<%>e?Lj)=T!(xWI z+V2kvYBwH&uFzY#44wt*nPuO;k7a(K&Hx``c@V6Bg#GkJlyctyPz}U_Ix}bB)~P@`u@S-|Vf}9Jl@4b(4C*3zN4=K5#8QUb;Ei{~Uve z!@=9%xC(2$g74kCzGBVq)9#B5doIhYH9Vu>b^FWTH*@W{QY==g^rs)>dc5bG?z@c) z0d=Tb8*ev7ZJ z_%+dpsW1I>Cxp!Xq;Add@U`Z)K)>IbeTTNyuJf~LboJ)5a7YwC(rWQ_z0bM*rLt)^ zPMkM*&>`dZX=Y=h<54crwK2~*Y|Hx`8@4Td zeBk<0z1E1wcitC9rCO!E;d*lRuhG`^dJbiBy`Ocq8)g6a{8!?Z;eybP-EDKd?GJ5~ zzVL{vKh-Ah;=U*jo%bxwKb-tIKP7$0%x3MK+p{-Lyg~iLwEOvUqkV5j?%E~Fqsw@# zG3oNn8-MDnY)zhgeDL$F`;_~uROe_uRdQJJG^JL8xesCAR#w`*z29(a=^Yk>`Pb89b!M9$o)@%n-Nw^A3~f#Y z>t1~obv9p_zv{^Hn~!@_7`@6SSM4%CxJP4}Z|$e#CHLmoLl;^6v=PWr z$YVIK{eP_k$CsW%x(s|OUl+8-hH~KWx{XkoiB4erm$hg z`Cl$G*C+O^XWwKb4v7 zKJ%!z)aSzSN4lPpnto0@&(+P!(6*h#T4C0!Vy~Zkpkd)+w@=RA@T&>qyHUw=M5^Jhd7vZ?ms=dRig-W2@@h3jQhb-%s3Ke%`D= zIWK7Uw6)F?k5Bl0J~{QC>y6L0f{D>%R4z@j&)^%l6xOJD8`xjd93YEXVlaGDBVJ_Xi(V!WQ3a zeT_kigw1{5zMo_IVaag6{m=Wgy}RCbN`Kf_oqzCde{3q-spYIwif`3S+A3G}h1t%+ zJi)d2_1f&2|DSC#wK$x=Mp$Xl?>paC^+a4hxa7OY_Zc}G*1tAb{&>qvqxPM14hVFX z&bd_PcJBB$o%|)Y=S#M@Dx6>5`Xu-5Mcc=+#c~dOUvzfAyAgV{HtoZ;b*mSpG*5aL z=(s57=IYa)!6jms^Ch_pS&UpdE-@SJ==i|9T=A*M)VMmoig{0^4rH%n`~E1~R^bRw zZg`2i>QZFgug%8}&e+~w|0-imVy=>0cI~a{JquU;*Xw3na_z^GqdgjDHinlFGBP5T_JZr!g|Zuri$Blq^k zIXR*=uU4-=)P8O+U%yRl=gwrAx}~{Sy{!EB?;m-nzRv#gp)c`!)nwDNr5@dyd_HE~ z1ZjZ-Je;aq)fXg8IR9qxsx!y-PB|R%oq=1rrtAC(&tn%()aPy7ZuN#En&Z&yyK+4r zer)j8Z|akqz#;P~-N>t!IVUP0uY3D7Q5Ve(lYh^-w(+>AT+0p1fE_D#G@q}%{Q0NO zlaG&CA}ls83RxzWwrRF!?Cg6_)l*qzUQ}>bZ2a5tVC~#|SHU@-0usHtk26i%$0v54 zH{tos!;>Y~?Ec!lv(L^qo8{-vS#QJR`&%Qd%I!i|`io{?U$l<1A-(V5%=a7RRjsu? zM&|#Mte>BLVgK%bJ~oVpH`V3L^5_4z<=i8$A1nU+ESFjSm+fWt!>fx@Z7#%2^1plY z_|e=i@Bdvgl~&!IYb*Ce^u_!)`yZ~~^(3?A{LS-^riRxG{+;Dv`Iiwg#E}CZ;;YN{P z%m2*TzG`_@SjhaQy`0}z&xe|%FUXy*z}M`-=)=Oj_-vjZ|1F{OUlmeb^6bu&$vU{I zhovATXHEC1-R%xfk6t~R{8~}*J~PXc&ci;ZarG?kn{Rv8 z%U}L0%Pf55_>q83UuT~8czmUWwPst~6J;Te6^7fb|H)Xkng*?RQf=$qTd!I6@8yjO zjYXf&uV_y+p5J*w_hikN%!s!;YwG+;d~&SLGs#+Z-eSHZ8xe4v&;I?b$6wDCx_(M` z|5Y6`-~Z*yyA9ipi`m@_+SK)vXYbhy*_>ftze}jy-u!V<{&9{4h5A3b)+zSK*6!`` zR=$%uw`zE5~{xAdahjuX@4{iSc*vwduS?Pu|ml4`X$)jrFnjThbaPI+F^%UYIa>8gI` z^S++ev@V7#mdlHEuZIiI=sdWh$?ll-qXU;WF-eKob6NCk;9&N70^GIJ--yA<7u zuM7eX)0YK1ZnoXu&$w}4qu3p-9j{d_rZCQCyxXCu$ef(%eCn6U!h1`vzuKx0@Os06 z*^cT98dmK1wdiY}q1pCB{uLT+t>mUqQpPy zysChD^VHw7f9amra>)Mp>&lG3`pOOSKIBDTyyUY%d(!>r+kRixd)jx^rPlopb>H## zje6nLrTpa^m-Xl|{BUL1zX4^0qG}y{vh|92p!@G?eLisTwHdax=FClKr!?TZc-#CeK&0*I0BE5RoFSnu(qAzCFl$LQa zZ9S%G_jhN55cjfb=g6*z$Gao6Y~J6RWM*?9`G)%Qtv`Fq_+6rI%FQ@&KU?I@g%zK_ z+4o!4iyctV+t^gM`mRHCll!O0^Rq68^w_bk==1-*XI8@MCErs7UIe>%@l1MkrRkEy z-vd)8ZtPzYel<|_{I8Og4Cfcx-DgfLtu|E2Da~4A^Idzx<#SE3vE1A0#WsCgaXeWu zj=#Zo_R7DTHKX6&xUu#9!4>6)ym}sq+?jGJ_|~?s-|An_$#J?bc5{jodp;9@36?#H<$3##u;U3uSk z(>>`oPtq%UssbcbRkm3bzhb&q_IUZnN80=MBR)<{$5Vz-d;p|Qy<>m+{y|X zA>w^ovwt=y$gg!U*8e#0`eXI;_{QVctl8u`r!ffL*(zx>Mef7TkcIyuFB&lJTX?mc*dhD(rNdEv^G|51EH2#gSyB6>_3tl{+{~%G z1`J=`eu(LLw~u|#oT4euk6KG9du(?yP3U(th`IU5?MTy})SD#}W_xG-{Zqp8`tj>q zr|)$hzt8(=uc6QxnFH@G{hRyZ@=vifD^-;5C06Nqy_Q@UWPf_wa=ANS_n$~OUE#jA zeH)jdeqEl@{`y~O)f+VXJl}u9 z*I2&wr7;i7-}5os8TKuF;r7kro&DyMc3X8*zpmL~_e^421iSbALzk@LY#w}GDVW@m zARF*c#?h1Y<>GJeH1Do?Z+OsXNpOk6gSNk}`{uZcid`|336@y0ck1WY5(g?9b{%Vw z?fERx;q7s3Ur>l$?}Bo>lk=J6b#{EneSL#L%)cP_&6Cv|{PuYo}YwUHa-} z)u$is4^}&vzutDqXcL>#g6FTloH$|qO<>B@^5%#0&-JhEetvp6TWnLZ!~T7S_8+&N zI=`;<_^fr8m%WvFIm<=L*&{AkW`8XIH_jdD64&`Im|p)Lc|G#W+6(*F3Qn0k<4Nr! zBeQv`2J6?k#v~+V-2K|a>IFB?wd&oQaxt9Yk48iMeOrr|eE3}2 z^TqJuJ2%q(clC9KAD#^M90J`QrMtd&Zm#%mn}0Cgu1>V!#$5H4R?)Y7ci+rqY|2s) z;5g7=<#}1N&&Km|Bt!6iha*nu-#%J4@-Rtqt$m&Fj?uQ`^L6E)yCVPf>|eS~L`ah* z(}C@-tz7Ur?{#YrWGd9IscM^39`^HRSB=ZPn@3+Nnx31suXv7(^&R$g#ioaak4eci zmr8uKeYmA-Z?|V+9>3O}{T>N3j%-(3aJ%82$AQz<`*n;S&H7#ZFNc$V&zASsdY21` zMflfqCx}F-2TZ;FUAv5B1M}-^pY*&M4sNUM7ya?7YVyVp?>$PsEsx(k`y6A>wH4R4 zZgI*Dx%T+f#ESO$O-bDKx;LIa7x}V%>%Dg`b52_?+;0$In8fP%;u`BIO?~AFCu&o6 zq+c{xHgW5V8H)3B#Y4J|ABuCoUSD0?;9&o*T*UIi;nH{e|NPONZr=qO(_Cj?Yab-N zmF+_|LtWPQ2Okb1TI)4o@Gg@u=s1Gw3_nsC>gyrx#9s@;A3A@(*V8_4p9q72PeR}J zd8}?*epgMq7a+wE<6F*Cpr zG9IHZ2Ip2pZP0qv^6}j+4uOPSdVL0ciA#D5*s^%)RHmxf3pa}TT4!$m&v@_1``5w= z6+KCFNgJ&!}r~6 zWp9gLEh?t+Nvi+On%V#Ri}_jJ?p>O)^;>1x=Z`$utIlQg-n8O&G;6Dw>K5{PW5bU1 z_rI+xUwbOH|MB#Dm-g}Q5US(T50l%le~ZHVn`$zrYrlTjv*6Jw@4mv{H|>vVum8tn zc0QNuKs&>p;_nYWtjmR-7N9j1USyXpD%r9>oZ$`g4^;;J+eH@YQU3kbKVJNd{?N|9 zhvoRz+_d6V=R;Q>V7dO|kKN>5n;DYd9u#D@WKMYDW5@sIQONw<&yg`T#a4lvFW&o? zQ{Wq1T{V5dw(Dj~|EifYPmq1_Gw)N6gVO=4<4W7-e+jSJ|Kz}@>rW)-XB9WJmhTbd z&$%_F{bhKFT~k$z-`sw#K9Q=IXNo1+9A6#LPW%--+ik-c)6i9n>-fsv@&+teooOg) zcIZmd!$(10Ved6UByM=E2`IE#YdTZAt?7+M@`M+O1{V%n&J`DB&YJgI&hJ%b5mW8c zzo`>4()|?ox0k;P*gB!-xMtM(fB#k7U)m+#e9yD@nzMdql5l_Urp5_nvL?-~8>Pyi=88G$wW&-u}M*QGM-l zP?K=oU!!|Pe`Rk-_D#IC;ym+@`wTK~9a29HWe{_I&zWyg=F0x%`*yqr_MfTIQ9E~ftZAO$veCE`(|yM zyu5;ItN79vJuw z+kZ;>o~SIc@#A6HDayv~{a9Z0s>~&>AH3j^5W95#-q+E7`NWS?VyAG>4?)iesBJ*5@yd8 z_v%;DjI|1t9RI%EIJdrdw$ru!oNv$^^9wC*IhgT>I@q@c!K*d17Dkj~8kAy?cGBJmdem*Yoe!T@5e%eY5}Z zDsTCB>dHr}SPq4T|K>PI2fsBt z^)yCrW%asng_MnX68zeGm;=^vPD#A*ka2GLub);+>)*WUzQC67IKo%@)A7&G_8gUe z^WrsQYpcOTwq2)R+AihW`TBg`=a+wL{!1*na#Hc8%uF%)D24Rn%0>RCHt*AY{U9WK zn!ReSEu(0w%HGeNhCQxEW_AaiYUa&7b8%97@56-n>8Gs!sod3`&%}Nt;^g_=?B|aD ziP>Gb-C+HU*Za<2%KsmE>UZJC9jE#j{=Zom9v}9ssWF&==EdH|^i<#^ZX|#%=j`=|UJ2{zow_&HU1+9#LE&o|Mj}_FF7Y23ZOK)$SlhP~k!JU7P zoV@LSub7DSCR5d$&c0z z`e!?n_(2Z2Hx&<mHnL9`Re0@3x^z8Q(EUu z*!)VzWXso=_phDIytvr+b>{rbKkrO=B^*-rrfTz^u06{B_w8TXUD^2Mo!fn;?T;1< zSJYKSJf8M?f5&^9;^~YFR|eEGJdoYZ-Y$O|z7lTbS$J{rRp(;KzWes9ALJO!b3sG6 z$NTk3-rMrg>dbnD^@UOH z{E0jL=bXF3tnT+R;^pQqx07s3f88|c+RL2hn|x-%iCsENT?@0f&9Y2gbZ7GOwYSeO zPuEaXvgTj=+3WGgj^*sCa?=bJ+?|>H{`mG@<^JuqpD#9*yxqMf{(sJtq{(+Hi$2XN zUt6_tcK>mw;`#V!B-xqs1C)^hFE<43*oTVpr=?Krl->w<$}n#HjTv(lr&T<3mR z`%meBMgROd`5zMnzu%oCKH;K%{QJPlmWMT2zGXkYYERAnvNCsTYu&jkwh;jzZ)Lwb ze1Gpl;T<{8IhUBdTF)77aKGL~Y ze_r>;>ErPi?g}Tcf6=to{<6n@C%;Rkg{rB>v$>^yq2Y%`=5M>J`cq_{vt;^%=b}p| znAEBo9Lm$HKR4gvTG*3{kLf=?ZrkVJxS;%3Ws72Yt<|xmD5){Zj{g8 z*~!A?vG41S#LV9D{8(j=it4I)8JrP%U}4_^=6k-ucuEo%9vWYsPI5e3^Mdr8_emer`*!{NKP~$RkMduuw1Vv+?PqQ#+-cbJEvH9y zMRRcBw$=Z5Y~F1@`r}_XtB%pNUFP-T5!2_hzA9Q%x14-tJ#}8 zNyzA0k^i~eD;Gl?o^RxFKetk$_9n-=#$OMgd)ig+(0r_z-Q2ine*J~d3(l|I6ZbjW z-mCD{dsn`jzAJ5P1-`#Dc)Z{AkZ*R|Z^ke0xBa_Qm-Jz|!i3vRmB-GjyQj!j{NX*= z=hRpr_vGVxwk`8dKXLnFd-=;w9+uR!CG%(HO*!uDetVy_TvOb}&nEZE9;bgiwc7rD z)oiXW|CuVTzdQKwE_}P1*4M3wfsf5GpmR#xt?$3zdb{tb%IlXOg=(Jc+y1~_b}x&6 z@8LIYk3#0(+q-?;UTe>wqD^OtFU!w)HhH4JVXK=fzBR00kQB>4C5TssvFd{1@dxYl z4^BKWQ)S&MRfQ9&f6q@`vv^hcOV3p&d`k^Ze43}gvf=o0>(J#A$?UV)E-aFGJ&Wmv z{L(^~2g0BKvhm)IFj{b7V&e5#$IdYv-L>*T5`)f`N1M+#SXm0*PG^lX^J1y}mi#m^ zuTd>}O7*O5VSYASgf4J@*V)ee<@M2J%3Jxo%LETi?G3u|OZ3^@DW8nLhq`N)O{|=r zGUt}@p*ep(-{-UWXgS&J>9Y0rnGbN-9a9kE4zF5qGwMS5q5J&}6((+X?xk@^o!sAV zz4TG<^?#z!CfWXFyXLk361inrD}NJF#_rz<@8{XFV|1sR{bQT??^J8s{r<4kctSMy zoZ07IMeh`uzh+^`n(UV{^-OP7bk#1HE!Zii$FA|`_7lnM=l?isUS0luw$xgHF+or$ zuSvyQlZA1%S^w$$CTFI1EVou97ySI+V-O?Iu)H){Tq;?lZ1vXX$1H_rZwoxwd*$I} zPp|sF#&Y*IPE$|_SZ2)W&eZgZ>vO8@h09;2+9pi23^|ecJio#Bu2qoy)#uCn9R1Q? zC7Q1fwoTsX?s{~}VVT2xZZel;Hg#WG-|CgRqn_hb+?zdKuMbTAWtp1Al9;Tn{d%Sa z!`4u{=YGEuW3%P%y)ti_tNs4k<+3BS%U@c*{qAP1?0@dxV=42mlN0A%Ij?C}Ex*kE zJpYU6jU2c4d5dvJyWD;EdghF8u@g7x*B=zTSN9k^FsJ)XiC+q{TDRN|CJ^zGELj-O`>_yvygYS@1l&?@^?82SEFa7%!|&LtJr z^JVkTn|xjP$A-aTUP9lISEso@BwMHp=*7TDli0++WUqMyApK|I5?v4D0{D3EX4z^8D^C#;<}W{SsR= zW1a0+m3yG(*Cg%#Tq}E{n17fu*l(>a`0)U~6w9l&7Ex_ku2}qcFQSVKYJVMvw!dsP z=H2MLTh8iGxJ>H(t-~eN=}cv!saB``&!?|GFo&(AjaisOaa%Doh;v=qIYtMTec-*t}e9bh4WWI*iuY-$=BKh+r zG%7qg9$2<{nei?x|MPOr=^432enloc-&k0*dcG*I1Tb8BmAh_x;X3CzOPdeY+s?W4 zGvWG-xz*P^Qd5rHFg;Na@T}5TkSDn1^~-g>^E2nC?%C}8G2>N$?(y2s&)-#^I9>bv zr^bues*BIlxi*<=v!(1^Tvm{3e*LV2UeV*C*GFq6&A%de;>KmS?1L)Jsp~H9pZv{s zuf)2?uf-~l8(e969elVWdi{TMZS76-93trA{v^nOE$?SM#HqVcC>PrS}Y`e|{`cV8GLPr+Q+ve$j=W z**uvyIFDH*ntqKsz?<;#xYdf&(?32C2svhb!lvW(<*C;sk9m6ev3c8tsx9w-VzS^8 zSF;OSvCQH_;;dHxEdL1yESKMHCb{V2%nqJ_npHvlaZmC+#aFE~t$y(Qe9)B23s$%M zS8K{H)<17}EB*D8>|lWxM?Y(QKC|G$;ewsVqM{B9ITt?NGcCBr?Lywoo9b^}-~UK^ zd4k(!%9pu3-=--f@jQGx-)!!4i>s?&6)wy-{#E%oBEu%ijp0v&VDN1}*TXl}2hX4U>-2ri;ymG?-mud6?$&=yw=4GYnP@faVpVl5P?_&>**kf|f%A*^ zYMfksWx;*hTkQQ6JLBt?9@+50b-I1m`@J89cl_J*Iq`hZW;xam#tip%R~P(vf|TbU zBl3JDXjn{|@sCZz|H9J?=M;$E`T3yy!QtoMKD_ufNpczEx14>6UN?8HJ6xmhwQ{+~ z@FLb?;U*-T(XJT>!AOidd@wsyU*X9{QUOLlG3vJ zO#kX5iZ300Ml!1Y-Bv%j-9>8qwDb=e-*4Vk_tOus<^6L*WYQaf#~&x}OJ0{hCt=PZ z+jqMC+wZ-6-Vs|h(RtM&HKWvkoJPKcz(u7ZpJI<0?=q__NqqO&qFA#v@$LKM7mni+gnUXI2_EA}EdM-Rl7|6%LeCC`_Fy0LG--B<-ky%e-Ee-EPKKVPzC|93Tp{Y($0yYNIkf`Q_lNTfEl@p2Ei5(Y4b5eAtsR(M8AREqd1V_~&Ok^}f9`eo37C@_60z_pTqp?)r00 z*codX-2YI?`lgOskiyZ-U`hFPiH%16O)=68RY4yo+W!xHHtV@&lrqPupBwep&5`%s z-?wPXwm*3}Uc9f;r#Q~D*X21C2>5L!u+z)u2%ii+(#5KkFNz3QYwVypB*zMHz zhm9-FrPim-e|t2eYPIr#gh}_)rm@yA?S8B8z2!#O(nq}4>m;|w{O61@l3{;5P3f;- zgZwR9i$9YQ7x8+dr@r}FNE?eiJz?Dn5$ zb_`=K=UQ^D#BV->^UWpV&*hhYWx4Xy#F>5iv0&Le+Y1xSjw)s}PGaQ_JQeW%!KCUr z*DgC*mPY@q7P`%+b*(tE)r|S;)Q3~7n0{~O`de9$_GUT9mD=S`_jr5Rd1m>u#Ws7+ ze!;k+&-g{0V`=Wo%7&tJ+qunRQ@0vc`G_^U-Tr>>dvrDRUyA_UpY%!}(cU zKUUWN+uUAZE6~MoCtxcfFjwZidFyWk(m;eCl~2x%2nuKQ)hH zt@ZCrp1%KqW6k?s`NN^p?XKMQmAuRR;4Z_z_cqI66ZVMHT!YRhgH|_kK8R=dai4L{ zEzk(<{Q4)iKm4n{->`VOpE6TD)9)Yo3?X^9Qp!`G=N7TQZ;*RyAQDwB{pHog%nNHC z?clqixwui1=@?6bYn~ZnympiGy^Bv2*_an`Fn>r7eDbxEv9osC+>A?V%yNYf4T}OA zt}~0uMF;$675VjC=Z4H&>-Fw^JRc}iX71O=CZ+?5eu-5N1s9Wjj&-BBd@z3eI&4=9)BZ67h@b>4_ zLl^(u+s^pImEr%_ZON7=r8XXtxBU?NWA11Dx&TEnNDntc8b^Rl%iOtlRb%-P;Q zBToc|oaT9%_58u+^ir}1 zx>8Y7UGSK3_8-}+Iy(}5pYHj*-d($lM|sbob(=JnYHim~ezNi8rBYvit23XEtQ1i; zpZ4`-rT>Csm$ok#;1BqrzF=!f>FeTK=D8PtZ@%$SJ^AYOEA`XTOMF6R-P;_`&C_5x zH~UFZ$bpQz-8{^a0>9EL-d6woUc@P|Nc$qQZRsUfzWquCH=PFv`>Lu+jgEkvX%vg0FRNQ@^OY)H|ho_JKIb_hoSpExtQ1l=yCy=k73f$(Ju1{0z48 z2*K6@+?{FFZMSxLjBvZ!?tfR_r#+wa+_veM(Y;I4%0F(rezv*LTHk8>tM#E@Z+} zGuFPD>iu5xQSq;7cWRvjZ5FPSRldHURkYU1-jaXA!2`bOwP!zGytdE2-tY0obC&ge z^R7Le%=ax%{UEa(htY-Zh6Ph5&S2zDyrUq}@08#ME+1KSfmFqyxycto<_Ik>)!)>-+JB11jdO>ite1&B__bx4oIj@w%hp1} za^>dRrdy9r@DyP@;QMGt=~-=)H^;*ke=R}7^484!y-&CK`Ms;x-`y{{nf&8?-Y=EB9dGt+xOQdD zdWIi{4EsTi^F8n*LxR-Z5s7bM-?#5&jDO@A{)scJe(P2|DYW2u^ZJANcfUv3{Q08# zwyR;U732I%4Ci;5enSznC`J&+s>{LaA)S}j~P)<9ykie=Rfdz|MF)`?!l^Xg$vH-8x>}M4?7uA zVE^Qd-TODmCeMRy-1@X6tu2%NZygfpwwIppdq>%Uw!58mx*uvQ!(#hu_sD1-wz(f{ z?|1c1YWbYC-Or~lT)V7a)MB~bg{IUAQjXq*e|6W|Ukj?brm^&S(9aWh)l--5FO2e! z_U5_0q2TPj&Fk#mKf7#pbN7i%TgmOmKAfK~Y!S4+_Lbkt_Up-4+Q0og<$Z0(-!}WB ztK)y9OaGeb^n2Iu{S1GuygT^tBBIea*9N}5%`5lH#eet87cBkxry4vmbn;_R&6hvX zAC7~j_ez;eSRNnAH1}I)che<3Ls|MoOd1>SmQ?ZNJYx)_MO*14PfOp_RZrha=GZPgT{^;!zu$);T?C z=j|AtDZP(Z=RA_gnX_c~YW0`zOy|B!*=3#Wt9SOytRHSt9!xC^jJpgU?8&ftSvk?u zYUWJw$tAnA4@z`+7I(f+&`6SQ+IY}olgf16+mlKyw|?Jqq^lN%hzr(e`DmH+dj z{>}D)6HErT&!1oHeOO4oBt@^x!`V!}c!^_wtNnR(rH{I{vuCqKZH<_@Wm3;$>)m-P z&T)lieA{Wl$vA0!3s+)S$gWkktB-to{rP^Y#e|RLLf3Oz-`Z{2c(eNB&BqGsO1=kc zw8Yyrd`_Gv`+9!tuQgUd&QFBH-rMWTzgc#D!lSLr92foX3oF)j*1rDg*4LYjUVZ-i zU)SA>zqRh__P*Rzx4fGj_v_k)ONmuy>d4kxi|mcwrM&6ITni)K&*HED^D`()Z1cYt zzTwvQ6}y%nVm+|$lz#Z1xo7WW<;dFIT6^uoty2G2x#@QoUk-b>_O7(j{mCVZm;Apc z%cEJ(!oYA~62~6~28IuNdVlQ=owP38)IKBj^y!(|_iLZ!+}-t9>8<6CDkEqA$rsiK z1U@^Z_Hh2$XWrVs-t4u>=9=*8e|nAK+^gd9x0lTMcepOpa=K?!$hvbWvty69H*D5g z@aXfZGM`|Jm&_9_*e*P|HMx4i*GavrC2K=2UD>s<tn*(! zPjQkC-M|0t{`|)?cWz$RtNi%DTDkhAitFPS_HVj$ZR5U2>owK9ou62|>9PO5V`+Nv ziPy}w|8M?0zxSp1yQBB*ZlgvI{f9{V~(j?j|seqWWM_2 zcR0US+wMu?Fqay55yUN{5vON6T_DV1?FwBvFgkMwduf1z0)rDWu z-?nGU&af4Wt-r;r*njhDl&sbvi6cHskEO2Dxm?0G|LmK|A*;`IpPQNU`QU{A?Y}P6 zZCKT?>Y8wSp52kjk5;XW49(ehXtiY@hoZ;d$|JYeDxKN>dCRxCb|zU-&MPFjrk2<7 z7EVo!Sj<29(FgSwVY`m5^czP*v+LH~$?+{r<7j$Rpm8R{C*E7pg7Z30`pR&TUq9v~BNwoYhtz`jTr=8}ju2=GRMg^J)!pi`8qp zL*!+SU9DaiwN>-a=HlwimT7GJzpc5n>cFpyn-A}^c=Gw+{WTsJzx6K_?XF`DTl!r4 zM^~oxxeswNuYPX+vAV^2qSx9}$9L6y{$BcUS-#)x=A>ozQ@%*wJy_s=o12k=;Xr5W z0e%Js2K`$r?(Yt{^xkvVnzvieY_9Fj{`zxn_=|t)+r1)vTc6o=SXQ=ZpO{9jou3|26rM#!>hDOzZOo%IA;k6@H!m_Wf*nb4+ccOiS#BCqCyC2Ozl zE4&(hd7s#=pEtAqaki{-y~?DvKYv+O#0%xAmt@~Zm!w_X_q4=T@xyBNoVs&yQcS1uL{Qhe)aiJTdzwX^w{NvPlgV%Z?Cx0?noca2BVMvUx#C7In z*;@&v)bJ<@c*T-cOB}%=&J+dTz!K>**)M z%gk7}Z*JNbvgiJq4f=n-{mOR`{-4>Bai{&r)yQ18C5vixI()Q!E^jao`M&gh%k}iN zcb8{xySLi-y3M{LRf?Irmy~<|y8JG|?K6ZHQ$*RD|cw3)fK zb#m^;Q=3eVbljH7+SRZ2dueFtW~Y5>`wki0-LCm%^ZayIxo`8R@cc~|4}YPn zx-KMp)tnrzpMUOM^V;mu_xbha+CSUQ?B%=dT=48U+po&5mp1!Nu5{0D_`mbsrYrWU z@gHxAyjc4A_oWB=ch&dK|Iuk;n=2o>+<)22iuk9`SKC~+=C*GYFv#IOn3?hPrifMh z>S5w6C@+%8LE9`W6g|9 zHuKN7H_cts;Ur>x?!EN+p4I2Sd`@iRw{}uU7fnr!^<8UsIcx8hNvF5{d|Z3sk@jAl zIbGU6O={PN$ZY@dx?O93mGnuA0M5kuYj1=+F8o{k)+6PwwZn zwI9o`#BZIlWy17b8-CBwyI-?D>{_L3L* znJ%X#wD#Q@wS7M=YZiXeU-xUvcca#TTkJa@O17Rad^2xqecH?7b1FX*On7CxpV(wB zT^M_MpT6(?<0apce%+as#<%SL-HO|5egv*^zq;~AetZ7SnQ?|8oYCC3URh5&C&Kgp zx5A$JVZ66LTRp#`Ui$Ug?$TSQmZz#r!^J{QSi=S@BmZowb+$@0iEd;JtB`{mPw}G;QaMGw!_if^mz)|^_-=pB>zl=;?={fb$q@0vQh#zb8gw_jdU zmHU5-%74xyjnh~w7OG~;w41eWKKkXn4ws7c<>!L;{L_`%t`}Ow{(rYbvGnhI*OIbvcwG9e^4GE4ASS2U5ENFHkVftd>95tXp7K+^ z_=Wyo*U#2!_3QRs@mKY4>elj!UQOPlwLddpd6k7~YrwhiH=c#1lb%E?P21F^f7_nd zAgA6`Mm~Jg(T7vtK41Oo($+JpW_7*a7^nLpez|DNw_^8&PN&0HEIqy?G$K4A65Hj=E~vTqXJ()NQm3=xWK2QI?<1uZ`+So{pNU+y)j81p z{qy-N`=rlq{`KbNQpW{*?+5-$Idr+p`PnNU*{M+>+n#Lv_o~cy<-gcY=h*nzi1{C< zhw+$&R^F=qH`(jcTfcnO+2^LY>r>~w zjgDD;{{0@O`xQm6zs$d_`(g9W+T^EN-kPUht(7}%bmq6QU4=)q>96Emx0t{3{~nk1 z`!dd1e`?c>#5JqBvfpf5t}DIvkU_}Sn_myjFY8m@%G9g<{*l;%!o!Cmq8O*O)g|u# zWmbRIV$N#$x7wQ@eb8HDv^MJV)TBiJ`_nFl=V@}izf^kTGk0Q!ZO0~M<5r22;W@X` zWx}1K8f5kvXTA`h7ykF=^0iU3({z8GKf6zOTb%rlrH)(f`rlf&?Paxq{nj0m{Eg>L z=5MP_O{iU#`1y~I=0EE#C1+y$52lBH`Sp8cxZJO4^B>k-7MuSu#$NOE67&2UOIL5Z zvve!>@ANp~NlWxScI~s4sN4Ovm4SgFp;F-kGXukcLep2@jXdp@U#5AcZ{IU#=eHaG zHh;M(J3aGv@p7G=@sVk-Qd-4M?+N3a(N?zkhh=)^?-LdCqB%Owtf@@hH+T8{xc(h! z$ED9^^B#{VNPYfs^W#6IH7llsm7895F+HmN@^jZ=NA9_oUg^p|iToPQ5p$WraE{@= zw!M5;XMPOUp1ga*=P6yx*8?WLa9(3@eSM~>S6_F!aM-L>um8Mp_#ac-njm$r?Kh9; zl&_u53%NFg?De{O$jrCT_xAa)`!j!49saJtGAroEJ+si?Ka-a|ta<$V28IKHP7l}_7#hNQe(k+FY2EZM(UYe6ZJD;!=ezySw7c6jFaP_P)$^nMWAVuw z^4}cVmnHAIFeu}8#9te|;?$X~3=5mq?fj(Ax2Y!kl*tN@)!%)jW-U<+k!$7qnsv}b znL=l)!9Z_mfZna7*G{%jpH7i|gL&c<$GJd4J2^X_aLgB39m(-|zFiCvN3Yqb+J@LbEoWxq6aI{EJNF zG!{O^l#`3UzmW>E*?;CdmrYCp0`u!)}DQ-^xEpTI-fo~|NPeBa>BVbx4yfD zb@JJFUuvIpY7n(w|3z|HV|*NUOwQh`n{#)$$G?33TKn>L|_^uW!65ey=jWdA{Zik$*pHXK4kB ztIv;@da+d3;j-DbAgNEGtH0Ijzp;BV&w1BAlZqbGzh^UlNq?+~JTQCr*Chwnu^wv` z`xGQzR=?!5`TfOHe?Am1n49{NU-hqBxxt-_-<&{!QUflK6ZCq1?e$juJ8#M9TXCmt zq-9^d+I(C8`hEM|hFo`if_K~5*Pji)Y8uMuB_<)d)nGx$vPEZ>O>H^*F!aXt_mj6( zY%yIPT6xtl)FS=2l)e4hdt63w&cUGzSbOW{ZacQc$T07H#&!PJldIdxYURa#KA+h( zF>^)Q^^>7Ks~H}1?JM{ea8UH#Tc1NmmN{tnOkaJ=_*d8dWv@KtZ>8qR@BY8T>Fm7J z73=1NcD}U#|AA+A`q#+a{@f>OQWJjdncZ}@p!bJy*Y@ktvCFm=%bK<~l=TTTv>&+I z-k8Z9UGFQu$eeY@N7?hg%FN$O@2g&@XT10Nvf>{OpXLP5zjQVF{k2T(`Exev`P|Wb zd3{&&!`NJX76t|eNcnO{;%oKJCGiu!6naL(YxK>x^{)iChhKHtr`&nC%RpK$JcIYu z^Y5NnJXU```o0xheKYgx0p(owS#4Efer8vVP0zM=zt>&?`%P1_%@Z0mERp4|Ln zF8}Js2Nk}YO)q8kmxM*%xwSE~Z+5+2q4dRon-c7~g)c-8srcTXe^ton?&4LyUajbe zs%rbT?&1E0Z_}TxdwpK+{HDzZ&b2SC`)_iGd%pADs`H<(e_-6SHa%>^>}~VDp1-x- zck5#=Pj2I;eP7zG87^4SVCid1?Q3`|P*heE(B>*?)e9vh#{({Qu8q-lfg| z>ebrsuT7WR85OHeP|2PCCC{_|mMqWZrcee3h6SQ5bqov)GpwNHJbV?e$!5YYNgDSFe}nzW({q1?_OD56k?Ig-=@gFhRztt@!BG zmVL+0uvb5+=3QpRHIb&fiqlPtcqEF9@hS&dmb@JDly*gHQ{ZYBU%$9uI{6*Jy_Vv(f=j5}5Uq4J)G2t_> z!r{HQ(-WWbD<Tb*HrZahK00`Mj3e{KDp; z_x$zsUBZt7a8I6L7Px#(c-M>EVL1M6{?h%o>SmV7SfuVc z`^aoI|MS}=eRt1)v&wDETbH^Zih`-FAA5F$M18z2!gccR9Jb_d#WJs2(w`hYwqdW8+PV{;&nw8hR+f%8 zymm#*Xy2~+$}bM@%epuJ&c#CS3(I!iAf-{SSV$ZL=te*R|UOG=Q+qP$p z<+PWt{pT&$xBI7NyL*R|tZ1O=L>1B0Wj5T3jjiRGsWU%@R@$X~5UmKZb@Ez0y~Z^} zW=-fZ&x|0A%S~RotKuZDE_rEtKWozjwS%cYEb|O+-if;M@A#nwKkltn(peW4QgT)+ z?n`2%)Rtq3J~4?BPB*Gdr?;+sxbtV(?1z4rKDS$M`Mkteb+-1enx%{Em$N4St4<58 znR)yEc?KWn^;@5y3eHA(1_lN{jm35EOFZ}MzMQ*?>)?e42^)j9+t=-UC%f0DJGH~RMl>RL zwdegqm)NT^w?;0k`tf}Au31YG<94lG8T;6RGwo5=>K#(qjtiO2Zcnob(w!1}y=g&7 zS-ecbPX)C(7ug*OR|nN!%{lh^L(QeI)rq}dGj!IOe{PJ==#UJbe|7cVL%+{{ZQ9qQ zf2VrSD+6z_sLKd{VL#$KNI$~(T*I%`#f_iBcv0ViK>Z!J#I3&{DG_w#+cp0758_s<1} zd;*uxo2|X$tsQmP>at|x$IUCkA6>nDwJlxff9#B}by5t+W*yr1>$_U*|2L)nFJEnb z7gYXqGVk-2&#s|wt=l2BX~jZtX<2Yc>TC7PCG#hK@$_7uS!r4Pc42zl>ho`RIQYv& z*%r&kCr%6d)p|jbuh>VlrX{U6NOVR?49BG_(=M|&WcobR-s5%DaY5)W)7G|sbHq4G zMZ%vi{aSjh&6uT0agXn%&S?uVN%X7nM2Q4ywK}Y{atw@`1Aa| zb8m)sESo=b?>m+ASDtAeE1mT9f#Hj>9b)&d|FK)>pPh;8inGVB&Oa1n+8I>- z)Nya^YxB}`EBVc3_@5_wntT50ewT3L%LYaUhK8N);O4pTy%qPPbzic1?$>-dW!iM( z?Z;f*>vum_s;xYqUAlrJ*DgKuqUXX-n!&{~Q^R6@7HIOWeDilpXzJxT`?qxEU#k{- z6v?o8Ma<4w+TwppbCyM$D(lVO@?}kXLs^|YvtOS5YLzVq4Cc-iPkZC5r7g|mwfau? z?KNqa|JG`Ia{p49Eic};`kJs7XZqQGZ|#pYQ)lnxYm5zkusV|?Lgjmm+V!u+e;!q= zvAp8lY$^Zi);=+nTj^$b7Q1WLeUmf|{j~IA_MJyt;$k!BZ;riu>%gz~ky0(y|K=R~ ze|NU5NZa?r_ov^SI%6i++7}+-Ilt!V**%s%Wttbmuj2Vzr8eTy^4-l38zH5^9uY_x znc4Ge?`Dqv%3$C?IUg6MvJ74Vb^=)k*Zkb=4^2#x!_FLSZ zz>WT}wE$bgFWc<<5aZ;a?)lg=AoKX`+F#dJ)wv}EYo9F8PxPA~yE|ZAYi9PfSI^It z%->8tsix%=xk z-SVurhwKtP>s4Ovy?d~r8d8P!v4Ok(b4uL)-ZKmR{8uj*6f7J6>R(RZ9>3}>yWdR7 zbGoMP=fhu{ZvAPJxnN=#lu0(u2;Pxr8f6EIdefdXAf17PB-_me`-E_0l zk-kR{)~}R0z1`7Q{q;|?nRY$i>BoRbF`=-dE6C z@O|m06-gKFPu$-&f42C%>Ss)csuZT#9p7TQV(V+3=WEYhn7L>EwrJk_bG1H1hj3Kr zK3KhdA@6I>*Q?Io%bv9|y)ntA*?@1?ZIYv}y}7MFb z(NWF972@C4uvghtd^#AHF0?P?_mybVWr365rvL7l>dH9d{&A6$c9}<~+WTLAV`snp zynM1^;0^UVu4``@MpXwJO!jqN-Ph&$buPcdN|<*`|MQW+ZvQCH;$kw~>U?Rp>R-=t1D(Dt#taM$1&b6RVUT;}{ame=dne^h+Op~C(=%(E zk9ytx_rvV2b=6L>(>9!zP7I;><`V5DVl5%|$Jd(I9u10e6_=N9*UW4UjtUIR&z77W zdiWXh>I-tlEH2lcT@J7Nx%J#Chc8YYlI{85a%wx$&-=Xl*}8499Y@dYNxvQ#Z{c2B zulMiI$723mn_AaJ{9jk;UcDP3F+-bWRceu_b^462;@f_&vbNs0lFL~1oq68tm-Twm zao!J&zfLXA+`6cK*~{k)`UwFwk^fTkc*6M#!K{1xsMU;MW8SIWTi;Okoz2|gd zWyXCYtM_lJPF0KW4J7_&e94`fl*9 zUu$+>iM14(_T~Acdsk(7Q;UF zkmdPxf;-pLD&Mud&IhKuCnic=ShAMuvRKDIiTJ%w`@c7OPJ8pd|9kd_x8k*5 z*SFTa{9{pH^QUg_t<#4bUBBm4A8nkw>^X<7)#@&z`1{YItHZ9AAN|skXlvGee*K!2 zRhQzgyZhN$d_8}A`;ITUCWmcL%f5`B(Dr^Zf9Ykevr0cL*XU0EKj-zqlt}Ay_uY4F zE|8u5_xj9v+W-1Ywr<|~dZ}Zgl-%$A>UQV6nNNIqA1>vPA5-ZOp1(K#`J7*S+jch_ zPbsM_H~5nTE#Jf;F%9ZSI$m1u^=rbCUQkD}x4UoOw&zN@I7dg#(s-#~Ke$$Xv6bif_28WM>K~UHRM-CaZ2YHYYy2{kHJz))(_5!+ zs}If)4sZG?p*v^oO4B84*Bf)bIkZbhhPyn*FYW!+)$E@$8^qh|%ToWJ+Wv=Ueq+2p z2lL}?>oOm_Zua~C=FxepBhxcO??(i=7rqWzY5Bmr`ScDa{k5CcoSWHp{H4{U_k~hS z?W>M%nVVI!X8nPl`Q?9VGr6w5wOMVI9J}vjVrsL=6Kjh=@RW*Of{r7xr-H_g* z#XN8WXhTl#uf3O5YXdG>hw7^wIz%aL=b9H+M4XlxKdSljSo`;->koe(b)3N8 zckEQQVz|_bXIhI(k20<}`{?t<#rxBw3R=Id3-u5WPr6km|LbOD&C$CNnNy=;<9E!D?anjvQLtD1lF+eZPX+FcUo+Szc4)?{9IqAk7llm5DMm%r@TkZ)Hz z$*%45bB^v$o(eELl@7zRj$KV^LO*c>uPI*bf#p!o>g0Q{95(bO11qgG%qOy*`)DgGL6jqvFoVoGy9)!lw4)NAs5tb}ZgF+wwW{ z{$&?VZHpF|61L!|@q;yAAH6wn;>QA&wYRu`Utj(0QkTAb+|LK} z4m<7lI9l!2eBZYUj}w;0ofKbhn0H-ro#^&oUv95?q;Gqyy``)_S$x6L(9|+9`{nxm zec#`jtk&9n=&Hc2&0Dg~x4Q9e{?qmHUS{^$pr2pv%B7rbqHh8yhP1qWB$ub#Q2-|JU6 zs5W|Qxx;h*-F?3IZT-qImLD?y-@nawkvVs( z>e5z^uVD*9Q&ZOb+%0-d@|yH2#@eOJ@+Z$yJ-=+_q0e(l{a?=7{4S*Y>5EF6m8oz0 zRrYSTmdMKoPgx$=18!it;_y*^f;64|2V7H=if^=ZQEg+9{#5&3|_?Qh(= zRhQl;PujL+&zzm6dRD()&FlWUefRlm3yrStICJ%+Q|QXQpN?^jU3{ zoO}Dr20h!quU|b$PFyy3(mmam`%BmlKabYoVqjp<@dkIP4tzFw_1$mk7wJiPQy|U9 zbg}C%x5S^TRKHvMTQHe?E0mm2}z5x6$vf>}pNVexLkm!V-V4Uw0AhLq8UX*SJkyeLpv` zWb=~wnV@bFsA}1Nt8QhPY{cVLD>rF$Y+SW&BX^xmyy(<(2R|py->9WMJ2Cy>1X=rR zrx>gFv)87y*~M8s)(z=wwXL0+5LGL7{mIX53tPF$x9=-DbF03s;q3WkrwV(o=Yj_d-^!Out)BO2TF=dr+3P=f zt$ys3A$;$=NR<7r1qQbF51A~<;!FFJ&Asr|=MS4ar^XknPUmlO>W~O${B_{ucImIj zZ-3SK!?pRLQ}Zd4Kit{p7yW+Wv)E+!e;dxVr!w}wOc#zSZ`*M$?BVT9FU38d*IFEY zv-`*Ap6IE^jK9}#hja6+Hf>FR-hBVk-uZ1?L$xpYy!^aw`?H???fbYc&8vNQZsN|z zwFx=*4_@U?-uw0pd&$3J`Re}So%!CoK-0AgA@!xY5+oz4N`O{K+|ztnt}^!;s0wLJ znwocir|);WpG8wsIbNw;JtV(hH+O2~5-)rCgrDD+TIl#3R@uLP{g1B0%ev;Dymn-J zmyff(@S)uThkDgFP7K}pQ{W7f>3RF^SNEKr&fWjJ=vT<0oV^7#hPC=9Cg~P3pWh*8 zxG(C~G!q%wG}cw$>i*6W6S!sh*Go*TSUz{Z#h=Xun<~%EySqJ9`PcaqtE}G6;ePjg z%hvQ2Dr=cie(%wV(3z@vp6hQ!`R;W#pY_(B;^#89)qMGP(!XH%f`$W~UEpy&3of_6 z_tZcu8uCNWOBihYeL$@?@3@)muKdF$D?Wbyv1G^Bbg|s*S&PH+&t|OGU2$5f?{i{s z)YjBoz7Ens)7Q)3Fi$FLQ`z|CU!5=Q*cuQq4Ur z$zD+>Hh)pAbGBD}?R4#shobMEZ}|7)W?R^-g;9FB%ca8Qf4%nVx|X+k`_B5J-#?0% ziB{WPG5xpulF8xo@26{ryfO_fzIEzt^~2|q`?BuF{e5!H`fBXg7K32Lm&TLqF39p! z1~4!%9PoAl^-LIKTtRI)&+Q&n)wi=}rt`n6ox5+tXWgntA6~7Y5UtLkG@T} zGnsV7;{Dn1f4W-5jB$6S1y8>Ia%*kIbrbyy?Oyw|&fMeweJt1Qa%4@SzU%R6UCm4G zxOQE;cX`!?OMfpd*qHS&^2)l&VQyw?54CT2xTE6fzNgD&vlSD6Sn_E*i)bwMziz*| zN(PghBcpeqxXkB+v}JVnF+48e{}Adt=0f>)&FQtbb?c-hNs@z?9X-cmIwb z3yz-uI{DFtbK#t~s?Q#bvYNhD?%Y*p6ZvhC+$XD!&RAdZIW#xyZhB(!idUOMTNBRS zDqr^f>2vvIjnhLPh_3TGKW{xh$6>3#)(=C?9$TH={O1wZv1I~!^VUk7XV_9U&(4MC zyYTtbo4xF!m!5rZ9i*D^YaeTc-HWN#Zb7j z*(!gpze|`=wvrW8WC%fujN>Q3V~K8_`xPN$iSr_DLbvDccRIY>T-7vns!!pJ^v1wo z*ZKU}HPP<-<5x^seL8gOJD=Ol%M^oFc&%wqc^T!@Aj#w?U-5JA-_lJdry1N{&-Lz4 zHb9kro(j|9mIUf9ZF8=KM&#t{Yc4kIYOTB9K z^4ovx$9binm)XmHmh8WvXKI`GvYO}k?Y+0s^`}-nZnNE$_F6V-`-e3Km+d^|Cw^J^ zE}>$<+oKGiwJyq#qCrCXYqkF5FM*!_SAqJ#?%(%1&A(mPStc8yeE-yDu7@?LvzF<~ z)TYjF^;A1kdwS9LOB({X9Os9eOW#PZ)CIvZM{Hia{nEw7cIr{z8)7R{-ZBVkP z*8z>*eQ<}2b6d;=Po^^*Ke^)m?wG4J`@L_)o!+B0<>fy0bJySQzPIA}G1;GDQ-W5! z``kEfJ;Rs8X!p>L>HhuP&pmFtNZD`Jy=%_fcgf4hcYEu%`QM5~Bh2EpTPhRh?zHyj z_;DzE_Q~|)Ef3c8IN4;sd^tb%@62Pm9*-+)>~5{z&hYj4kL(}0*Rq1S)>=9LKD(vs zf_u)t%%h?WzPVA(2PB#jR$rSFdhq%D`SbTmToXz2j=Ft5SX}I@aJt=!?Kv`P*)EUt zz-!v9Z^dzdmIcT_Q`p57_fLn0{;Ku4Gz~OZ%_p+Du% zyHtl&zIcDK{lLGQKVKhf%-sW|kcKLUi_Ku%lvTf17^ZnwMksf3eHIKg|!Uus`!`^C`#sMOW>O zRm*4Bos<23Yu-ZJ-vLK8)&>}^UGqhB=FKO@6K|`vCg^Xm<~4kleeLbltWuQF6{(WEE_O~|i)%@!xovr#T znwJ?npMOGH=(C>-)Ol||dbQ_=?dq}d8w~*_lhjf{_EhiCJj#^ zb>$4^#dYtaJm*jQvTWORqxE9lthJ@*U4Pxa`}{@0OyAXe*BG5%wMi#n(xsQhn{U_M z+P81*GLiGIxs9LHTnU}8ES~lz_453`)h`S8$u3(j@fV~zr0Rb2=E@i`S-`xUo)Ft2L9V+XOUC&F6`^`^xroP!%jZ8@4qzn_`l@^&pCfD zdA)Lb-qvpmmRjHY7CBLTSIy<`r8k%TzH(B$b>=_6OJDCE{O}o)za!p(hjAJ#4PSi^ z^Z2!WQl0yyOwjO^ZE?lkyt{=vc0QGKV|V^KSFOGirK4VdF;J>d-+4lpSgAdUy6S{Vle+_ zIr+-%4bl1ctCnBWy)dkgQOgcIAC;km#?!s~)XkI>-NQ zuT%Zb$3k!IHmI$-vx(vS_P<*k)aTw#cbp$O@h5`@Z|{?P?>#=f)w%rPM8ww_^Fz}& zf4LMk@0gbO@rzN;JD%SzzO^mjq1dhRTYqm>UJ^LR-YE7n_2lM{_N|sRPoL~7`kA&$ z?2qn>j;O+8x;~FT=(S8Wd5?9|SLc>MAQH%cTkK!ws7L2zA>;Me)M*j=h=Lkz3#8L%-&?zar(}@hmqR1)bqBl%9tH{`u_aTKTF?+ zzU|oZ>pc6~%&Dn0DQ0W$O>xrLvCH^c=xq5*tjp_zGfkD0wtMedXDv~;8q)Gzp$r<* zXLxpF#r@MNe}z5Gy{k%hubvst-W9s5_W9FY?@vx&sj+s|x~#{VnyYd?GcI6tXua*< zwfcCCXzYx);j20ht=OTPzA(UZ+PUeMOZHc-NNGPLAYixFJK4W_POz2i~-|LdMYQhAggFi_6-`afY(4w;bI@!!OGsC343NJi=e9W)t zuf>`#SLZ%7meszzYR!dcv%Kq5qu*V5^=E;>W#vhElfFE^dvJmaXz*u7Fr?wcnQ-O( z+KDBLm)xJQWgBQx;x7BS3u~?QE`R@?J0q+&@@e#}kRRXX2i>`K`FtJs)N;iq*_ts;R3(m*u$4%#dFCv>S+EnNoXO*tM?$YKB7ufU4YFF>^j&6-= zO^~wtB{rwbZ8qzR>z7sjvR=Kvef_+gUp=$#aYsMWp0_t|{k@G(^>U+p!%wNcnf^u4 zbN(B?Hg?DWWW!QO^{YN1aQ}BBPx{EDhiIVCAl`6;fXk7qKSot4%FE8z4MAY}?Y!zh3=5^1DCw z#q-+}e|1?z_pfLB;%j#KX63f}6)(82R{fLwF~M-|{O7k9{Mxp{_cKTC)Q56T1(soV z=9$d9e*KP@$(9)1(pRSr?@Bvu{LA66@P!rkcRO9J z+24IT?)0809kDN0ZN*<_?>>JmDe~{D%U7C=cz@ZfzP9<*{=P@sCT;7VuKIgPXlb3= zf=S;Whs}OyBYQO0^{ou3_58kh>$2BU@@8I&1wQ>-zpu*Lr*v}`TT9{J%+Noi3<~DK3#Qoh(Gw^`qjXdesQlp`SNGqh8BMB!c3RH&%X_B5HyIlLHaq4 zy}$OxT-rbFi=k)wwmoxpem(Q>>#sX~r@ub9JUh!V?AEJG?Y@OqBOWjxS|(YyaFzi} zUD(_7gH!T_Z(W&nxxI5+|JI9JCY%o6{_|%|qFQ{$$;`E0wF+tJr$c?t&u?2$INOI? z)>-skkZAkDD1DathdEz=^Bqk5TlZ#bYg5r{?Yrk&FHJDKJlpKeHS2Bn7M60K=P-Ud z<%^tW{T*4JZsoV2ap;79kYY}KN8tYLaaVKpORKESskAJ9eX(}^mGttMHFw#s?YOY! zp4Mgd_+y7m<0GG)PyDlH=a!{QLf@ovG0tku_RV#=yy0wnk=M4Hf_5^Kcdy?On|{NZ z_g#*BbTEgLcdvT!k2lXRY`VNHe7$&xPgM7$y=UDSKjXpyL5KazvZC%kSlf9 z_s;Dvymz0w+E|$W%&zX*oc#Tn?{Dka&;Bf~b@r9jxiip8(o{5Wgg`k!+^g9lPQ>Kwm5|Cm|(?R94G zY=2EY?aNsXt3OO$a&_*;b$9+O(6jj)&0Eg(Twi7HYHNvqwUDmUhfC00H8XJk_sNs& zbYJ%7u1}4V)d+k2O?LXreaqw46-xe3deXdf+01&olFw@$*7l~q`=&X$IPGL*-xceN zOveK}C7cZJKe~MW`{_kq`vX>npK4Djv_7{b=-jj4CqqB|eEes1RcIo|?>9YRtS{1k zF8v;4Ht+VK{RO4}D}MxRnCvN@b7$S^ZFg2){n@B&b2IhrdzIMxvOMx$E%m_e*kuyS-KmoDp?0jJFhLFA8ma(A0HnkFDzW!1cAGT$(z}CqfBbo)%BnIBDdz0A)kl0__w{krYtXgdu?~gu~&Du z?ml!Sc#@sMOXIr-KNLVFI}1vn;khwz|8~zy?>&BnW(I9(oyGob-s&1H+k*8GfY+_uc(MR)qs$PLfJgXZp^ z5%y@QfJ! ztzpudz5MzSrky)J<-UyHRKq%-pW8Vi{e9ZSpO+F0%I%}4-i_F~nyn}O&C*=U%M54d zdw*h#mvVXb>0pvYd}+wEoX^)cBwT1;8Oku@bdvAtjxTG2-~KA&pSi>@?A0b?xr@=} zcNhEZ+i^rV{@Xs4m%H92{5T64%zbbJGU+m{GjRWO&tJvm(tG8TDi+cGy^kA4w)K3MykgZ1-#+Bwsvc}BYKZ&1BSD`yPzU_nVn$29SpEJ)U zbbQZwH*Zhe6FXV-F$mo9tWt^PTZ`<%_L{Tt3*U^7{ByS;O% z(cZ$paEV2 zruS2K<^Fc9`jhadqh@KO%%Q25v+Uy~XPjdRDe75&$or?*{LHO$Lm&J+;PcMby8Mp8 z<~Yq2FAI-8+5dHC{iK+y2{mhLgg)Io|IflYeMkEa)r`wOO(Lrw{?k#-jocf5J#TOL zdYh;1z2}7{E%^)DudBYh`C)M`cr(d?kIvws9G&3Bb?=`}vQv904(^mreK}8E@522z zRn7CH%cZ`1uKsVseWfOK0Y5{nM@Hg|t^0Y_>K^{~MciVw98dAbKf4~Sa>|~c`TT5b zXnfWAmooP9X3Hise)hZ?x3VURcgDFt-t(u+CSTv|wQtL(^&#s_=N{gb_1SsXhcEeV zjY?VnTrTb2-Tbg0(z$GS4B3kp@yzY-J<(Oqe#hSV7WM3E@nh3nwa?A&{(mCY8=Ill zdf}YbjZY`bvahdft9@HL`~LHK!_9At5*IA0b^00|JR@vZam4PkuT})OhReq1emyvE zZQ&XluHQM|;%c|e-+$Pmr+c-)>)W}mg%2dpi|^U6J2pIbXYlIJ%!howub6fD`&LM@ zS^z0L7))M$FY^5FcFA3J?#)j{&#paYH+x-tTmSOn-`Bl2MOH8LI$L+}Q{#gFOHZ%5 zrSszRCzTW2y5^5pS!?DUf0_POwCg$Rug^bM?H1V7y5Q`$t;Le|$Ms`ZFWP%5Ds}$W z-(O7oj;8b_*c$OLKGeQ$w|2hGYrovMz11hrC(o>oxm2z4HxRxGq+zmjBWR&y!%9%? zbt&I#m*b_bY156D8~wd|@A_+Q>+_d`+rwQC&da}Bxg>sD+Eymt^sh@7&Yho|esJN| zZ(pWXJltQnCCzb8YtyW_4}Xcamwug= z|FTzl-{lV}289uqmaEh*v6isA3tq6uaE2XR7%-SFu6th!%5DAdR>@uQ*L}9@FFrIX zH-6#tbiPR1wMdIFk3j3QCU-U`>m2#4>+tm4%cE}{*Iv?_AEVvUI`g*krVr;t@~4EoufwN?y*fkM_MG7ydzV_dM1H?N3hA=ltuqS9NS})CuwF6|YX;tDpR3-MfSz zcOlV~un&^6W@KJ@|98r&tVQPA_D-w(`eh;SuRrH)vU!+^$xAx{(|RtSYvEyj$-`P z=i2{sdMD+3OFjF(xA1S?-sIDhmT)ei6YeeAM;L9kWJ+LfWpLjU|+b>Pz6 zXs*vc-$b3&b#|U1-gGRfN-uhP=*Op%uSTZE-T8NU`=2w*$|s%U4cYYWa=7dj|GB08 zaiypD;~q?o3!69T3!~@!mwavQx4~2H4L@DMnfpPd~`8w($phrN5J9HMY6TwncrOuq1}l~-o@EtJ3iXM&#H-+wF4sw=fFxj+5Ozjp~c zmP5wyX4Hc#V1_tQyIah2yT>lj7~bmV$Ff0VMZbrBVmhxLCDvmxemT|xpyP?exBBA zUGjCB_10aV?+DI+X!K1LJXVztSv$s{&Id`U`jB3hF=*#6xN4BI-w?SycfZg5`}^yp z?nPdhwwmiu&4g*{Z*6n!A1hm}e(-s%Wp1^U(67n{#TlEmZ>%=3H|SN_{N#=pQ`^j% zjV3BJPj97v2~NMe@a*dH{VSgD@UhW)speUKO_oQq7PL*|LlY!fR$O%ZdrvA<@o2T` z+T2RZVy(;f-_|zo+wj@OwzOiY%1Y(TLZJgcFPz!_?Thi3OObVAOO__aJ*+$W`FMoE z4AB$%Cu+34gHskC*{54 zYnx&Rs%fqUGL>{P!6?<(E)ABxH#8;PgJ{i_X8)1bkSOg|u7>->vu83$Z2!(veKfRw+xt^{E-YPczi9is!u4XG4(q?%Irqsw zmrK>Vnja=Z#y<{p_JTVB2Lg>>eZRLVYu|lWP*d=&?H0%FZ|^K)pMOte>%%P@&M)aT zEf(iWyZp2A>P9h{Uo#tiE{VEu=)jKHXHNiAy}Y&#ZFFw|N|Hy86auhWtV)hOoqiveN7&4)s=Y{Jzo@tzRmx?{#`{PWN6n_o^`$aNw9{F-yee{~wmUpl({zI?9xlMPEC9fF!&kgNpV zOUz)g%J*DAF^LHplsJ+u06cXr9|$G5-qs&8LWa4}lVHP=3O_SPRh&N~EnepT)3 zl1+ZU#F*jlzB1q6J7*Xz39`A_mlEo@wMI0g_L4` zaga>g*B!Y3`{h-u=9~j9HO+e7X#Dl(+v%?^{(Y_5x^2!)lZMZ|=BByFGvC_OKAqQE zVrO$Erb6OeZu+*`%_k*SUtf4P{llrP=U*&8w<~yd_i_o@94fmWO{kcuw{a@_V zl|aLpH`T8?Th~v0b>62{%;@E&%kmdRXTQJJRr68e-dE1G6TYxdx_4ieryOP%H^i=M zJ-_yHtJFqa3I*i@+tL>%cefSKmaF>pWrgeV`46Y7>e_66`CF8m@$^Z%#MO5M6W7h} z=f1z8u7BO#qIR=2cdB*rKf8Q4pS12ZU)y)cwtI%t(CQ@&yt>GK@)u6e^;zKRB|U!W z?Xs99$NAUIJa_N3+QT`mwPAnNTOBT(f3-QX{_D@WeYP22SM7eapswn*ZPnLZ?){Hr z=M~6J{i5gjKfc^x$#KwhbHg=AhMK{>xGukU)rTj0CtU-riU`rTZdosrjS(c3s=5eOaep)vVc`TjwF3yDR?Z7afl`)4v3InwPU5ehwLXVSt*d zy}0hZD5#YQE{ksM-x0RmexL9CilS~6-{{h?t97&38fWcUw=HyHe9TjEt>0E!CI61i zt@=H)JmW2sfuGw7_BDfrRr;lULvGX}$ce5_<#GQhdyQ?#kNR`j`2?&DUDV z_34;r_4zxYpCUD8_&@s|`QrPht><4YKffzDeO=w2xzd(~cUEWl-4BP1V=yd%w$A)}_+5fWe=w+oD2AL~a^Q~i*Xq}*d;Kq!P6`7BXUUF;3*lw4t9H+; zn94VOr&0J(^`o2riERqH?e~A*y74DN?jc2v$@Qm^-t{p~uo z;x~bw|2Hq$F8qxVbhVt(+pJ1Ui*IF~zv5M6oo;|! zm0-Ex5a@)U1DlLqeK+&?rR#a!GwR}}qJk3Hu+Wn~7rsmQQ34qvXm|`cOX$ER&Vj+7-%@5B)Ht*j~~==kD;~kCbL)H|1~c0_pEZhoqe$T(*khuyB1PsGu%4F z13Dyz;dE5F!JjotKC9f-$jm=|`rzm7;g@(Pol}1U+MTuGP9Qks7(f-><|X`|zfwQ` zzO+Y6^>4c8{;P=Sn!)~ui5nCToq_wmCr`?oSdw}>+wn=g2YAqXF*NPjEL^G%Qlzr0 z`QdfdSk;%$RsL>x`qbf9BPiZ-TWUd)0q(7!eh!09;+6MnL1onYiCdOEeX3)A-t*Ut zCH^JshyOx)unf;c!KDC$4L_uC(R&%cZSS z{++i(KD%01edX_vvoC*pK|@TK6%tVoSZA;VPWSkw>bW~A?%c_g>8sMKG!wzj*<%p$ z1C*8yben);scQa`*DAVO_RJB!n&`RR<5xks!JXTX4$=b`$RY^_{fjH^S2r)2t@?NI zw(CVrKfOK8%h(UUhbCQ%iIDN01A#_J(KNG|-*eYOYl*sT&@emMAPL%H%TO@IhiT1c z)w>!mUrw8D-2ZJ=mDzJaaOysA(HRnAGR%wX@;8Gvx2t~K9j^J(-n%Nk+~CetsIyWw z->HAe!oa}Lkeqep{off&qE%vVev69wlnQP&uZPw%7LgY(34=neZ=vUf(y2@86<@aN z>OZgewQ$M&$t9wY(2$9ShDM>$tMAvmewBK@p9YF08EuSMn#K$%xGc_ra+GRqOz747 zC!hSE2#TX0&Cr~38nO$JVN1%D_pvLp_TBH_x_8?27q3ArzMasJC^`a3uo)*+6n48@ z()Ye~_ft_^Pwb>R&r7P1v~xjD3!LE+_e|f(+VsH9w5^wDP~?J852Cp{74*vFuNXyA0;90MGX{Sen23Zsz@K z!;<(*AAj4foARaJ>(|0 zE9C!u&XRubU;K9u7X0^)l?Ivj;0I&~twH$4iu=_|m(=UOd>;2i^IyE@|8>?9{~o+p z3tC6WP+$WMGtY!8?_)JVweANS{-3*6S=Pqem8}Ljh(U(`48)_852) - - - - - - - -Function reference • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/docs/reference/install_torch.html b/docs/reference/install_torch.html deleted file mode 100644 index 22442f16f..000000000 --- a/docs/reference/install_torch.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Install Torch — install_torch • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Installs Torch and its dependencies.

    -
    - -
    install_torch(
    -  version = "1.5.0",
    -  type = install_type(version = version),
    -  reinstall = FALSE,
    -  path = install_path(),
    -  ...
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    version

    The Torch version to install.

    type

    The installation type for Torch. Valid values are "cpu" or the 'CUDA' version.

    reinstall

    Re-install Torch even if its already installed?

    path

    Optional path to install or check for an already existing installation.

    ...

    other optional arguments (like load for manual installation.)

    - -

    Details

    - -

    When using path to install in a specific location, make sure the TORCH_HOME environment -variable is set to this same path to reuse this installation. The TORCH_INSTALL environment -variable can be set to 0 to prevent auto-installing torch and TORCH_LOAD set to 0 -to avoid loading dependencies automatically. These environment variables are meant for advanced use -cases and troubleshootinng only.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/is_dataloader.html b/docs/reference/is_dataloader.html deleted file mode 100644 index 4963f41a6..000000000 --- a/docs/reference/is_dataloader.html +++ /dev/null @@ -1,205 +0,0 @@ - - - - - - - - -Checks if the object is a dataloader — is_dataloader • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Checks if the object is a dataloader

    -
    - -
    is_dataloader(x)
    - -

    Arguments

    - - - - - - -
    x

    object to check

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/is_torch_dtype.html b/docs/reference/is_torch_dtype.html deleted file mode 100644 index a25b3fb7a..000000000 --- a/docs/reference/is_torch_dtype.html +++ /dev/null @@ -1,205 +0,0 @@ - - - - - - - - -Check if object is a torch data type — is_torch_dtype • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Check if object is a torch data type

    -
    - -
    is_torch_dtype(x)
    - -

    Arguments

    - - - - - - -
    x

    object to check.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/is_torch_layout.html b/docs/reference/is_torch_layout.html deleted file mode 100644 index f3d02486c..000000000 --- a/docs/reference/is_torch_layout.html +++ /dev/null @@ -1,205 +0,0 @@ - - - - - - - - -Check if an object is a torch layout. — is_torch_layout • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Check if an object is a torch layout.

    -
    - -
    is_torch_layout(x)
    - -

    Arguments

    - - - - - - -
    x

    object to check

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/is_torch_memory_format.html b/docs/reference/is_torch_memory_format.html deleted file mode 100644 index 9352ef7d6..000000000 --- a/docs/reference/is_torch_memory_format.html +++ /dev/null @@ -1,205 +0,0 @@ - - - - - - - - -Check if an object is a memory format — is_torch_memory_format • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Check if an object is a memory format

    -
    - -
    is_torch_memory_format(x)
    - -

    Arguments

    - - - - - - -
    x

    object to check

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/is_torch_qscheme.html b/docs/reference/is_torch_qscheme.html deleted file mode 100644 index 4ab4b9943..000000000 --- a/docs/reference/is_torch_qscheme.html +++ /dev/null @@ -1,205 +0,0 @@ - - - - - - - - -Checks if an object is a QScheme — is_torch_qscheme • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Checks if an object is a QScheme

    -
    - -
    is_torch_qscheme(x)
    - -

    Arguments

    - - - - - - -
    x

    object to check

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/kmnist_dataset.html b/docs/reference/kmnist_dataset.html deleted file mode 100644 index e6723725c..000000000 --- a/docs/reference/kmnist_dataset.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Kuzushiji-MNIST — kmnist_dataset • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - - - -
    kmnist_dataset(
    -  root,
    -  train = TRUE,
    -  transform = NULL,
    -  target_transform = NULL,
    -  download = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    root

    (string): Root directory of dataset where KMNIST/processed/training.pt -and KMNIST/processed/test.pt exist.

    train

    (bool, optional): If TRUE, creates dataset from training.pt, -otherwise from test.pt.

    transform

    (callable, optional): A function/transform that takes in an PIL image -and returns a transformed version. E.g, transforms.RandomCrop

    target_transform

    (callable, optional): A function/transform that takes in the -target and transforms it.

    download

    (bool, optional): If true, downloads the dataset from the internet and -puts it in root directory. If dataset is already downloaded, it is not -downloaded again.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/mnist_dataset.html b/docs/reference/mnist_dataset.html deleted file mode 100644 index d9eb3855e..000000000 --- a/docs/reference/mnist_dataset.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -MNIST dataset — mnist_dataset • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Prepares the MNIST dataset and optionally downloads it.

    -
    - -
    mnist_dataset(
    -  root,
    -  train = TRUE,
    -  transform = NULL,
    -  target_transform = NULL,
    -  download = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    root

    (string): Root directory of dataset where MNIST/processed/training.pt -and MNIST/processed/test.pt exist.

    train

    (bool, optional): If True, creates dataset from training.pt, -otherwise from test.pt.

    transform

    (callable, optional): A function/transform that takes in an PIL image -and returns a transformed version. E.g, transforms.RandomCrop

    target_transform

    (callable, optional): A function/transform that takes in the -target and transforms it.

    download

    (bool, optional): If true, downloads the dataset from the internet and -puts it in root directory. If dataset is already downloaded, it is not -downloaded again.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_adaptive_log_softmax_with_loss.html b/docs/reference/nn_adaptive_log_softmax_with_loss.html deleted file mode 100644 index 8bb8c2fa7..000000000 --- a/docs/reference/nn_adaptive_log_softmax_with_loss.html +++ /dev/null @@ -1,303 +0,0 @@ - - - - - - - - -AdaptiveLogSoftmaxWithLoss module — nn_adaptive_log_softmax_with_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - - - -
    nn_adaptive_log_softmax_with_loss(
    -  in_features,
    -  n_classes,
    -  cutoffs,
    -  div_value = 4,
    -  head_bias = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    in_features

    (int): Number of features in the input tensor

    n_classes

    (int): Number of classes in the dataset

    cutoffs

    (Sequence): Cutoffs used to assign targets to their buckets

    div_value

    (float, optional): value used as an exponent to compute sizes -of the clusters. Default: 4.0

    head_bias

    (bool, optional): If True, adds a bias term to the 'head' of the -adaptive softmax. Default: False

    - -

    Value

    - -

    NamedTuple with output and loss fields:

      -
    • output is a Tensor of size N containing computed target -log probabilities for each example

    • -
    • loss is a Scalar representing the computed negative -log likelihood loss

    • -
    - -

    Details

    - -

    Adaptive softmax is an approximate strategy for training models with large -output spaces. It is most effective when the label distribution is highly -imbalanced, for example in natural language modelling, where the word -frequency distribution approximately follows the Zipf's law.

    -

    Adaptive softmax partitions the labels into several clusters, according to -their frequency. These clusters may contain different number of targets -each.

    -

    Additionally, clusters containing less frequent labels assign lower -dimensional embeddings to those labels, which speeds up the computation. -For each minibatch, only clusters for which at least one target is -present are evaluated.

    -

    The idea is that the clusters which are accessed frequently -(like the first one, containing most frequent labels), should also be cheap -to compute -- that is, contain a small number of assigned labels. -We highly recommend taking a look at the original paper for more details.

      -
    • cutoffs should be an ordered Sequence of integers sorted -in the increasing order. -It controls number of clusters and the partitioning of targets into -clusters. For example setting cutoffs = c(10, 100, 1000) -means that first 10 targets will be assigned -to the 'head' of the adaptive softmax, targets 11, 12, ..., 100 will be -assigned to the first cluster, and targets 101, 102, ..., 1000 will be -assigned to the second cluster, while targets -1001, 1002, ..., n_classes - 1 will be assigned -to the last, third cluster.

    • -
    • div_value is used to compute the size of each additional cluster, -which is given as -\(\left\lfloor\frac{\mbox{in\_features}}{\mbox{div\_value}^{idx}}\right\rfloor\), -where \(idx\) is the cluster index (with clusters -for less frequent words having larger indices, -and indices starting from \(1\)).

    • -
    • head_bias if set to True, adds a bias term to the 'head' of the -adaptive softmax. See paper for details. Set to False in the official -implementation.

    • -
    - -

    Note

    - -

    This module returns a NamedTuple with output -and loss fields. See further documentation for details.

    -

    To compute log-probabilities for all classes, the log_prob -method can be used.

    -

    Warning

    - - - -

    Labels passed as inputs to this module should be sorted according to -their frequency. This means that the most frequent label should be -represented by the index 0, and the least frequent -label should be represented by the index n_classes - 1.

    -

    Shape

    - - - -
      -
    • input: \((N, \mbox{in\_features})\)

    • -
    • target: \((N)\) where each value satisfies \(0 <= \mbox{target[i]} <= \mbox{n\_classes}\)

    • -
    • output1: \((N)\)

    • -
    • output2: Scalar

    • -
    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_batch_norm1d.html b/docs/reference/nn_batch_norm1d.html deleted file mode 100644 index ca25d62f3..000000000 --- a/docs/reference/nn_batch_norm1d.html +++ /dev/null @@ -1,287 +0,0 @@ - - - - - - - - -BatchNorm1D module — nn_batch_norm1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D -inputs with optional additional channel dimension) as described in the paper -Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

    -
    - -
    nn_batch_norm1d(
    -  num_features,
    -  eps = 1e-05,
    -  momentum = 0.1,
    -  affine = TRUE,
    -  track_running_stats = TRUE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    num_features

    \(C\) from an expected input of size -\((N, C, L)\) or \(L\) from input of size \((N, L)\)

    eps

    a value added to the denominator for numerical stability. -Default: 1e-5

    momentum

    the value used for the running_mean and running_var -computation. Can be set to NULL for cumulative moving average -(i.e. simple average). Default: 0.1

    affine

    a boolean value that when set to TRUE, this module has -learnable affine parameters. Default: TRUE

    track_running_stats

    a boolean value that when set to TRUE, this -module tracks the running mean and variance, and when set to FALSE, -this module does not track such statistics and always uses batch -statistics in both training and eval modes. Default: TRUE

    - -

    Details

    - -

    $$ -y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta -$$

    -

    The mean and standard-deviation are calculated per-dimension over -the mini-batches and \(\gamma\) and \(\beta\) are learnable parameter vectors -of size C (where C is the input size). By default, the elements of \(\gamma\) -are set to 1 and the elements of \(\beta\) are set to 0.

    -

    Also by default, during training this layer keeps running estimates of its -computed mean and variance, which are then used for normalization during -evaluation. The running estimates are kept with a default :attr:momentum -of 0.1. -If track_running_stats is set to FALSE, this layer then does not -keep running estimates, and batch statistics are instead used during -evaluation time as well.

    -

    Note

    - - - - -

    This momentum argument is different from one used in optimizer -classes and the conventional notion of momentum. Mathematically, the -update rule for running statistics here is -\(\hat{x}_{\mbox{new}} = (1 - \mbox{momentum}) \times \hat{x} + \mbox{momentum} \times x_t\), -where \(\hat{x}\) is the estimated statistic and \(x_t\) is the -new observed value.

    -

    Because the Batch Normalization is done over the C dimension, computing statistics -on (N, L) slices, it's common terminology to call this Temporal Batch Normalization.

    -

    Shape

    - - - -
      -
    • Input: \((N, C)\) or \((N, C, L)\)

    • -
    • Output: \((N, C)\) or \((N, C, L)\) (same shape as input)

    • -
    - - -

    Examples

    -
    # \dontrun{ -# With Learnable Parameters -m <- nn_batch_norm1d(100) -# Without Learnable Parameters -m <- nn_batch_norm1d(100, affine = FALSE) -input <- torch_randn(20, 100) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_batch_norm2d.html b/docs/reference/nn_batch_norm2d.html deleted file mode 100644 index 34a8884a5..000000000 --- a/docs/reference/nn_batch_norm2d.html +++ /dev/null @@ -1,286 +0,0 @@ - - - - - - - - -BatchNorm2D — nn_batch_norm2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs -additional channel dimension) as described in the paper -Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

    -
    - -
    nn_batch_norm2d(
    -  num_features,
    -  eps = 1e-05,
    -  momentum = 0.1,
    -  affine = TRUE,
    -  track_running_stats = TRUE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    num_features

    \(C\) from an expected input of size -\((N, C, H, W)\)

    eps

    a value added to the denominator for numerical stability. -Default: 1e-5

    momentum

    the value used for the running_mean and running_var -computation. Can be set to None for cumulative moving average -(i.e. simple average). Default: 0.1

    affine

    a boolean value that when set to TRUE, this module has -learnable affine parameters. Default: TRUE

    track_running_stats

    a boolean value that when set to TRUE, this -module tracks the running mean and variance, and when set to FALSE, -this module does not track such statistics and uses batch statistics instead -in both training and eval modes if the running mean and variance are None. -Default: TRUE

    - -

    Details

    - -

    $$ - y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta -$$

    -

    The mean and standard-deviation are calculated per-dimension over -the mini-batches and \(\gamma\) and \(\beta\) are learnable parameter vectors -of size C (where C is the input size). By default, the elements of \(\gamma\) are set -to 1 and the elements of \(\beta\) are set to 0. The standard-deviation is calculated -via the biased estimator, equivalent to torch_var(input, unbiased=FALSE). -Also by default, during training this layer keeps running estimates of its -computed mean and variance, which are then used for normalization during -evaluation. The running estimates are kept with a default momentum -of 0.1.

    -

    If track_running_stats is set to FALSE, this layer then does not -keep running estimates, and batch statistics are instead used during -evaluation time as well.

    -

    Note

    - -

    This momentum argument is different from one used in optimizer -classes and the conventional notion of momentum. Mathematically, the -update rule for running statistics here is -\(\hat{x}_{\mbox{new}} = (1 - \mbox{momentum}) \times \hat{x} + \mbox{momentum} \times x_t\), -where \(\hat{x}\) is the estimated statistic and \(x_t\) is the -new observed value. -Because the Batch Normalization is done over the C dimension, computing statistics -on (N, H, W) slices, it's common terminology to call this Spatial Batch Normalization.

    -

    Shape

    - - - -
      -
    • Input: \((N, C, H, W)\)

    • -
    • Output: \((N, C, H, W)\) (same shape as input)

    • -
    - - -

    Examples

    -
    # \dontrun{ -# With Learnable Parameters -m <- nn_batch_norm2d(100) -# Without Learnable Parameters -m <- nn_batch_norm2d(100, affine=FALSE) -input <- torch_randn(20, 100, 35, 45) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_bce_loss.html b/docs/reference/nn_bce_loss.html deleted file mode 100644 index 9f6987f69..000000000 --- a/docs/reference/nn_bce_loss.html +++ /dev/null @@ -1,271 +0,0 @@ - - - - - - - - -Binary cross entropy loss — nn_bce_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates a criterion that measures the Binary Cross Entropy -between the target and the output:

    -
    - -
    nn_bce_loss(weight = NULL, reduction = "mean")
    - -

    Arguments

    - - - - - - - - - - -
    weight

    (Tensor, optional): a manual rescaling weight given to the loss -of each batch element. If given, has to be a Tensor of size nbatch.

    reduction

    (string, optional): Specifies the reduction to apply to the output: -'none' | 'mean' | 'sum'. 'none': no reduction will be applied, -'mean': the sum of the output will be divided by the number of -elements in the output, 'sum': the output will be summed. Note: size_average -and reduce are in the process of being deprecated, and in the meantime, -specifying either of those two args will override reduction. Default: 'mean'

    - -

    Details

    - -

    The unreduced (i.e. with reduction set to 'none') loss can be described as: -$$ - \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad -l_n = - w_n \left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n) \right] -$$ -where \(N\) is the batch size. If reduction is not 'none' -(default 'mean'), then

    -

    $$ - \ell(x, y) = \left\{ \begin{array}{ll} -\mbox{mean}(L), & \mbox{if reduction} = \mbox{'mean';}\\ -\mbox{sum}(L), & \mbox{if reduction} = \mbox{'sum'.} -\end{array} -\right. -$$

    -

    This is used for measuring the error of a reconstruction in for example -an auto-encoder. Note that the targets \(y\) should be numbers -between 0 and 1.

    -

    Notice that if \(x_n\) is either 0 or 1, one of the log terms would be -mathematically undefined in the above loss equation. PyTorch chooses to set -\(\log (0) = -\infty\), since \(\lim_{x\to 0} \log (x) = -\infty\).

    -

    However, an infinite term in the loss equation is not desirable for several reasons. -For one, if either \(y_n = 0\) or \((1 - y_n) = 0\), then we would be -multiplying 0 with infinity. Secondly, if we have an infinite loss value, then -we would also have an infinite term in our gradient, since -\(\lim_{x\to 0} \frac{d}{dx} \log (x) = \infty\).

    -

    This would make BCELoss's backward method nonlinear with respect to \(x_n\), -and using it for things like linear regression would not be straight-forward. -Our solution is that BCELoss clamps its log function outputs to be greater than -or equal to -100. This way, we can always have a finite loss value and a linear -backward method.

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where \(*\) means, any number of additional -dimensions

    • -
    • Target: \((N, *)\), same shape as the input

    • -
    • Output: scalar. If reduction is 'none', then \((N, *)\), same -shape as input.

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_sigmoid() -loss <- nn_bce_loss() -input <- torch_randn(3, requires_grad=TRUE) -target <- torch_rand(3) -output <- loss(m(input), target) -output$backward() - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_bilinear.html b/docs/reference/nn_bilinear.html deleted file mode 100644 index e2cd608a0..000000000 --- a/docs/reference/nn_bilinear.html +++ /dev/null @@ -1,257 +0,0 @@ - - - - - - - - -Bilinear module — nn_bilinear • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a bilinear transformation to the incoming data -\(y = x_1^T A x_2 + b\)

    -
    - -
    nn_bilinear(in1_features, in2_features, out_features, bias = TRUE)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    in1_features

    size of each first input sample

    in2_features

    size of each second input sample

    out_features

    size of each output sample

    bias

    If set to FALSE, the layer will not learn an additive bias. -Default: TRUE

    - -

    Shape

    - - - -
      -
    • Input1: \((N, *, H_{in1})\) \(H_{in1}=\mbox{in1\_features}\) and -\(*\) means any number of additional dimensions. All but the last -dimension of the inputs should be the same.

    • -
    • Input2: \((N, *, H_{in2})\) where \(H_{in2}=\mbox{in2\_features}\).

    • -
    • Output: \((N, *, H_{out})\) where \(H_{out}=\mbox{out\_features}\) -and all but the last dimension are the same shape as the input.

    • -
    - -

    Attributes

    - - - -
      -
    • weight: the learnable weights of the module of shape -\((\mbox{out\_features}, \mbox{in1\_features}, \mbox{in2\_features})\). -The values are initialized from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\), where -\(k = \frac{1}{\mbox{in1\_features}}\)

    • -
    • bias: the learnable bias of the module of shape \((\mbox{out\_features})\). -If bias is TRUE, the values are initialized from -\(\mathcal{U}(-\sqrt{k}, \sqrt{k})\), where -\(k = \frac{1}{\mbox{in1\_features}}\)

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_bilinear(20, 30, 50) -input1 <- torch_randn(128, 20) -input2 <- torch_randn(128, 30) -output = m(input1, input2) -print(output$size())
    #> [1] 128 50
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_celu.html b/docs/reference/nn_celu.html deleted file mode 100644 index 28f07fdeb..000000000 --- a/docs/reference/nn_celu.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -CELU module — nn_celu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function:

    -
    - -
    nn_celu(alpha = 1, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - -
    alpha

    the \(\alpha\) value for the CELU formulation. Default: 1.0

    inplace

    can optionally do the operation in-place. Default: FALSE

    - -

    Details

    - -

    $$ - \mbox{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1)) -$$

    -

    More details can be found in the paper -Continuously Differentiable Exponential Linear Units.

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_celu() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_conv1d.html b/docs/reference/nn_conv1d.html deleted file mode 100644 index 5c37fbd8a..000000000 --- a/docs/reference/nn_conv1d.html +++ /dev/null @@ -1,344 +0,0 @@ - - - - - - - - -Conv1D module — nn_conv1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 1D convolution over an input signal composed of several input -planes. -In the simplest case, the output value of the layer with input size -\((N, C_{\mbox{in}}, L)\) and output \((N, C_{\mbox{out}}, L_{\mbox{out}})\) can be -precisely described as:

    -
    - -
    nn_conv1d(
    -  in_channels,
    -  out_channels,
    -  kernel_size,
    -  stride = 1,
    -  padding = 0,
    -  dilation = 1,
    -  groups = 1,
    -  bias = TRUE,
    -  padding_mode = "zeros"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    in_channels

    (int): Number of channels in the input image

    out_channels

    (int): Number of channels produced by the convolution

    kernel_size

    (int or tuple): Size of the convolving kernel

    stride

    (int or tuple, optional): Stride of the convolution. Default: 1

    padding

    (int or tuple, optional): Zero-padding added to both sides of -the input. Default: 0

    dilation

    (int or tuple, optional): Spacing between kernel -elements. Default: 1

    groups

    (int, optional): Number of blocked connections from input -channels to output channels. Default: 1

    bias

    (bool, optional): If TRUE, adds a learnable bias to the -output. Default: TRUE

    padding_mode

    (string, optional): 'zeros', 'reflect', -'replicate' or 'circular'. Default: 'zeros'

    - -

    Details

    - -

    $$ -\mbox{out}(N_i, C_{\mbox{out}_j}) = \mbox{bias}(C_{\mbox{out}_j}) + - \sum_{k = 0}^{C_{in} - 1} \mbox{weight}(C_{\mbox{out}_j}, k) -\star \mbox{input}(N_i, k) -$$

    -

    where \(\star\) is the valid -cross-correlation operator, -\(N\) is a batch size, \(C\) denotes a number of channels, -\(L\) is a length of signal sequence.

      -
    • stride controls the stride for the cross-correlation, a single -number or a one-element tuple.

    • -
    • padding controls the amount of implicit zero-paddings on both sides -for padding number of points.

    • -
    • dilation controls the spacing between the kernel points; also -known as the à trous algorithm. It is harder to describe, but this -link -has a nice visualization of what dilation does.

    • -
    • groups controls the connections between inputs and outputs. -in_channels and out_channels must both be divisible by -groups. For example,

        -
      • At groups=1, all inputs are convolved to all outputs.

      • -
      • At groups=2, the operation becomes equivalent to having two conv -layers side by side, each seeing half the input channels, -and producing half the output channels, and both subsequently -concatenated.

      • -
      • At groups= in_channels, each input channel is convolved with -its own set of filters, -of size \(\left\lfloor\frac{out\_channels}{in\_channels}\right\rfloor\).

      • -
    • -
    - -

    Note

    - - - - -

    Depending of the size of your kernel, several (of the last) -columns of the input might be lost, because it is a valid -cross-correlation, and not a full cross-correlation. -It is up to the user to add proper padding.

    -

    When groups == in_channels and out_channels == K * in_channels, -where K is a positive integer, this operation is also termed in -literature as depthwise convolution. -In other words, for an input of size \((N, C_{in}, L_{in})\), -a depthwise convolution with a depthwise multiplier K, can be constructed by arguments -\((C_{\mbox{in}}=C_{in}, C_{\mbox{out}}=C_{in} \times K, ..., \mbox{groups}=C_{in})\).

    -

    Shape

    - - - -
      -
    • Input: \((N, C_{in}, L_{in})\)

    • -
    • Output: \((N, C_{out}, L_{out})\) where

    • -
    - -

    $$ - L_{out} = \left\lfloor\frac{L_{in} + 2 \times \mbox{padding} - \mbox{dilation} - \times (\mbox{kernel\_size} - 1) - 1}{\mbox{stride}} + 1\right\rfloor -$$

    -

    Attributes

    - - - -
      -
    • weight (Tensor): the learnable weights of the module of shape -\((\mbox{out\_channels}, \frac{\mbox{in\_channels}}{\mbox{groups}}, \mbox{kernel\_size})\). -The values of these weights are sampled from -\(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{in}} * \mbox{kernel\_size}}\)

    • -
    • bias (Tensor): the learnable bias of the module of shape -(out_channels). If bias is TRUE, then the values of these weights are -sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{in}} * \mbox{kernel\_size}}\)

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_conv1d(16, 33, 3, stride=2) -input <- torch_randn(20, 16, 50) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_conv2d.html b/docs/reference/nn_conv2d.html deleted file mode 100644 index 3c2a0ce4b..000000000 --- a/docs/reference/nn_conv2d.html +++ /dev/null @@ -1,361 +0,0 @@ - - - - - - - - -Conv2D module — nn_conv2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 2D convolution over an input signal composed of several input -planes.

    -
    - -
    nn_conv2d(
    -  in_channels,
    -  out_channels,
    -  kernel_size,
    -  stride = 1,
    -  padding = 0,
    -  dilation = 1,
    -  groups = 1,
    -  bias = TRUE,
    -  padding_mode = "zeros"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    in_channels

    (int): Number of channels in the input image

    out_channels

    (int): Number of channels produced by the convolution

    kernel_size

    (int or tuple): Size of the convolving kernel

    stride

    (int or tuple, optional): Stride of the convolution. Default: 1

    padding

    (int or tuple, optional): Zero-padding added to both sides of -the input. Default: 0

    dilation

    (int or tuple, optional): Spacing between kernel elements. Default: 1

    groups

    (int, optional): Number of blocked connections from input -channels to output channels. Default: 1

    bias

    (bool, optional): If TRUE, adds a learnable bias to the -output. Default: TRUE

    padding_mode

    (string, optional): 'zeros', 'reflect', -'replicate' or 'circular'. Default: 'zeros'

    - -

    Details

    - -

    In the simplest case, the output value of the layer with input size -\((N, C_{\mbox{in}}, H, W)\) and output \((N, C_{\mbox{out}}, H_{\mbox{out}}, W_{\mbox{out}})\) -can be precisely described as:

    -

    $$ -\mbox{out}(N_i, C_{\mbox{out}_j}) = \mbox{bias}(C_{\mbox{out}_j}) + - \sum_{k = 0}^{C_{\mbox{in}} - 1} \mbox{weight}(C_{\mbox{out}_j}, k) \star \mbox{input}(N_i, k) -$$

    -

    where \(\star\) is the valid 2D cross-correlation operator, -\(N\) is a batch size, \(C\) denotes a number of channels, -\(H\) is a height of input planes in pixels, and \(W\) is -width in pixels.

      -
    • stride controls the stride for the cross-correlation, a single -number or a tuple.

    • -
    • padding controls the amount of implicit zero-paddings on both -sides for padding number of points for each dimension.

    • -
    • dilation controls the spacing between the kernel points; also -known as the à trous algorithm. It is harder to describe, but this link_ -has a nice visualization of what dilation does.

    • -
    • groups controls the connections between inputs and outputs. -in_channels and out_channels must both be divisible by -groups. For example,

        -
      • At groups=1, all inputs are convolved to all outputs.

      • -
      • At groups=2, the operation becomes equivalent to having two conv -layers side by side, each seeing half the input channels, -and producing half the output channels, and both subsequently -concatenated.

      • -
      • At groups= in_channels, each input channel is convolved with -its own set of filters, of size: -\(\left\lfloor\frac{out\_channels}{in\_channels}\right\rfloor\).

      • -
    • -
    - -

    The parameters kernel_size, stride, padding, dilation can either be:

      -
    • a single int -- in which case the same value is used for the height and -width dimension

    • -
    • a tuple of two ints -- in which case, the first int is used for the height dimension, -and the second int for the width dimension

    • -
    - -

    Note

    - - - - -

    Depending of the size of your kernel, several (of the last) -columns of the input might be lost, because it is a valid cross-correlation, -and not a full cross-correlation. -It is up to the user to add proper padding.

    -

    When groups == in_channels and out_channels == K * in_channels, -where K is a positive integer, this operation is also termed in -literature as depthwise convolution. -In other words, for an input of size :math:(N, C_{in}, H_{in}, W_{in}), -a depthwise convolution with a depthwise multiplier K, can be constructed by arguments -\((in\_channels=C_{in}, out\_channels=C_{in} \times K, ..., groups=C_{in})\).

    -

    In some circumstances when using the CUDA backend with CuDNN, this operator -may select a nondeterministic algorithm to increase performance. If this is -undesirable, you can try to make the operation deterministic (potentially at -a performance cost) by setting backends_cudnn_deterministic = TRUE.

    -

    Shape

    - - - -
      -
    • Input: \((N, C_{in}, H_{in}, W_{in})\)

    • -
    • Output: \((N, C_{out}, H_{out}, W_{out})\) where -$$ - H_{out} = \left\lfloor\frac{H_{in} + 2 \times \mbox{padding}[0] - \mbox{dilation}[0] - \times (\mbox{kernel\_size}[0] - 1) - 1}{\mbox{stride}[0]} + 1\right\rfloor -$$ -$$ - W_{out} = \left\lfloor\frac{W_{in} + 2 \times \mbox{padding}[1] - \mbox{dilation}[1] - \times (\mbox{kernel\_size}[1] - 1) - 1}{\mbox{stride}[1]} + 1\right\rfloor -$$

    • -
    - -

    Attributes

    - - - -
      -
    • weight (Tensor): the learnable weights of the module of shape -\((\mbox{out\_channels}, \frac{\mbox{in\_channels}}{\mbox{groups}}\), -\(\mbox{kernel\_size[0]}, \mbox{kernel\_size[1]})\). -The values of these weights are sampled from -\(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{in}} * \prod_{i=0}^{1}\mbox{kernel\_size}[i]}\)

    • -
    • bias (Tensor): the learnable bias of the module of shape -(out_channels). If bias is TRUE, -then the values of these weights are -sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{in}} * \prod_{i=0}^{1}\mbox{kernel\_size}[i]}\)

    • -
    - - -

    Examples

    -
    # \dontrun{ - -# With square kernels and equal stride -m <- nn_conv2d(16, 33, 3, stride = 2) -# non-square kernels and unequal stride and with padding -m <- nn_conv2d(16, 33, c(3, 5), stride=c(2, 1), padding=c(4, 2)) -# non-square kernels and unequal stride and with padding and dilation -m <- nn_conv2d(16, 33, c(3, 5), stride=c(2, 1), padding=c(4, 2), dilation=c(3, 1)) -input <- torch_randn(20, 16, 50, 100) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_conv3d.html b/docs/reference/nn_conv3d.html deleted file mode 100644 index b31fe1dc9..000000000 --- a/docs/reference/nn_conv3d.html +++ /dev/null @@ -1,349 +0,0 @@ - - - - - - - - -Conv3D module — nn_conv3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 3D convolution over an input signal composed of several input -planes. -In the simplest case, the output value of the layer with input size \((N, C_{in}, D, H, W)\) -and output \((N, C_{out}, D_{out}, H_{out}, W_{out})\) can be precisely described as:

    -
    - -
    nn_conv3d(
    -  in_channels,
    -  out_channels,
    -  kernel_size,
    -  stride = 1,
    -  padding = 0,
    -  dilation = 1,
    -  groups = 1,
    -  bias = TRUE,
    -  padding_mode = "zeros"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    in_channels

    (int): Number of channels in the input image

    out_channels

    (int): Number of channels produced by the convolution

    kernel_size

    (int or tuple): Size of the convolving kernel

    stride

    (int or tuple, optional): Stride of the convolution. Default: 1

    padding

    (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0

    dilation

    (int or tuple, optional): Spacing between kernel elements. Default: 1

    groups

    (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    bias

    (bool, optional): If TRUE, adds a learnable bias to the output. Default: TRUE

    padding_mode

    (string, optional): 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

    - -

    Details

    - -

    $$ - out(N_i, C_{out_j}) = bias(C_{out_j}) + - \sum_{k = 0}^{C_{in} - 1} weight(C_{out_j}, k) \star input(N_i, k) -$$

    -

    where \(\star\) is the valid 3D cross-correlation operator

      -
    • stride controls the stride for the cross-correlation.

    • -
    • padding controls the amount of implicit zero-paddings on both -sides for padding number of points for each dimension.

    • -
    • dilation controls the spacing between the kernel points; also known as the à trous algorithm. -It is harder to describe, but this link_ has a nice visualization of what dilation does.

    • -
    • groups controls the connections between inputs and outputs. -in_channels and out_channels must both be divisible by -groups. For example,

    • -
    • At groups=1, all inputs are convolved to all outputs.

    • -
    • At groups=2, the operation becomes equivalent to having two conv -layers side by side, each seeing half the input channels, -and producing half the output channels, and both subsequently -concatenated.

    • -
    • At groups= in_channels, each input channel is convolved with -its own set of filters, of size -\(\left\lfloor\frac{out\_channels}{in\_channels}\right\rfloor\).

    • -
    - -

    The parameters kernel_size, stride, padding, dilation can either be:

      -
    • a single int -- in which case the same value is used for the depth, height and width dimension

    • -
    • a tuple of three ints -- in which case, the first int is used for the depth dimension, -the second int for the height dimension and the third int for the width dimension

    • -
    - -

    Note

    - -

    Depending of the size of your kernel, several (of the last) -columns of the input might be lost, because it is a valid cross-correlation, -and not a full cross-correlation. -It is up to the user to add proper padding.

    -

    When groups == in_channels and out_channels == K * in_channels, -where K is a positive integer, this operation is also termed in -literature as depthwise convolution. -In other words, for an input of size \((N, C_{in}, D_{in}, H_{in}, W_{in})\), -a depthwise convolution with a depthwise multiplier K, can be constructed by arguments -\((in\_channels=C_{in}, out\_channels=C_{in} \times K, ..., groups=C_{in})\).

    -

    In some circumstances when using the CUDA backend with CuDNN, this operator -may select a nondeterministic algorithm to increase performance. If this is -undesirable, you can try to make the operation deterministic (potentially at -a performance cost) by setting torch.backends.cudnn.deterministic = TRUE. -Please see the notes on :doc:/notes/randomness for background.

    -

    Shape

    - - - -
      -
    • Input: \((N, C_{in}, D_{in}, H_{in}, W_{in})\)

    • -
    • Output: \((N, C_{out}, D_{out}, H_{out}, W_{out})\) where -$$ - D_{out} = \left\lfloor\frac{D_{in} + 2 \times \mbox{padding}[0] - \mbox{dilation}[0] - \times (\mbox{kernel\_size}[0] - 1) - 1}{\mbox{stride}[0]} + 1\right\rfloor - $$ -$$ - H_{out} = \left\lfloor\frac{H_{in} + 2 \times \mbox{padding}[1] - \mbox{dilation}[1] - \times (\mbox{kernel\_size}[1] - 1) - 1}{\mbox{stride}[1]} + 1\right\rfloor - $$ -$$ - W_{out} = \left\lfloor\frac{W_{in} + 2 \times \mbox{padding}[2] - \mbox{dilation}[2] - \times (\mbox{kernel\_size}[2] - 1) - 1}{\mbox{stride}[2]} + 1\right\rfloor - $$

    • -
    - -

    Attributes

    - - - -
      -
    • weight (Tensor): the learnable weights of the module of shape -\((\mbox{out\_channels}, \frac{\mbox{in\_channels}}{\mbox{groups}},\) -\(\mbox{kernel\_size[0]}, \mbox{kernel\_size[1]}, \mbox{kernel\_size[2]})\). -The values of these weights are sampled from -\(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{in}} * \prod_{i=0}^{2}\mbox{kernel\_size}[i]}\)

    • -
    • bias (Tensor): the learnable bias of the module of shape (out_channels). If bias is True, -then the values of these weights are -sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{in}} * \prod_{i=0}^{2}\mbox{kernel\_size}[i]}\)

    • -
    - - -

    Examples

    -
    # \dontrun{ -# With square kernels and equal stride -m <- nn_conv3d(16, 33, 3, stride=2) -# non-square kernels and unequal stride and with padding -m <- nn_conv3d(16, 33, c(3, 5, 2), stride=c(2, 1, 1), padding=c(4, 2, 0)) -input <- torch_randn(20, 16, 10, 50, 100) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_conv_transpose1d.html b/docs/reference/nn_conv_transpose1d.html deleted file mode 100644 index f499ebd0b..000000000 --- a/docs/reference/nn_conv_transpose1d.html +++ /dev/null @@ -1,342 +0,0 @@ - - - - - - - - -ConvTranspose1D — nn_conv_transpose1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 1D transposed convolution operator over an input image -composed of several input planes.

    -
    - -
    nn_conv_transpose1d(
    -  in_channels,
    -  out_channels,
    -  kernel_size,
    -  stride = 1,
    -  padding = 0,
    -  output_padding = 0,
    -  groups = 1,
    -  bias = TRUE,
    -  dilation = 1,
    -  padding_mode = "zeros"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    in_channels

    (int): Number of channels in the input image

    out_channels

    (int): Number of channels produced by the convolution

    kernel_size

    (int or tuple): Size of the convolving kernel

    stride

    (int or tuple, optional): Stride of the convolution. Default: 1

    padding

    (int or tuple, optional): dilation * (kernel_size - 1) - padding zero-padding -will be added to both sides of the input. Default: 0

    output_padding

    (int or tuple, optional): Additional size added to one side -of the output shape. Default: 0

    groups

    (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    bias

    (bool, optional): If True, adds a learnable bias to the output. Default: TRUE

    dilation

    (int or tuple, optional): Spacing between kernel elements. Default: 1

    padding_mode

    (string, optional): 'zeros', 'reflect', -'replicate' or 'circular'. Default: 'zeros'

    - -

    Details

    - -

    This module can be seen as the gradient of Conv1d with respect to its input. -It is also known as a fractionally-strided convolution or -a deconvolution (although it is not an actual deconvolution operation).

      -
    • stride controls the stride for the cross-correlation.

    • -
    • padding controls the amount of implicit zero-paddings on both -sides for dilation * (kernel_size - 1) - padding number of points. See note -below for details.

    • -
    • output_padding controls the additional size added to one side -of the output shape. See note below for details.

    • -
    • dilation controls the spacing between the kernel points; also known as the -à trous algorithm. It is harder to describe, but this link -has a nice visualization of what dilation does.

    • -
    • groups controls the connections between inputs and outputs. -in_channels and out_channels must both be divisible by -groups. For example,

        -
      • At groups=1, all inputs are convolved to all outputs.

      • -
      • At groups=2, the operation becomes equivalent to having two conv -layers side by side, each seeing half the input channels, -and producing half the output channels, and both subsequently -concatenated.

      • -
      • At groups= in_channels, each input channel is convolved with -its own set of filters (of size -\(\left\lfloor\frac{out\_channels}{in\_channels}\right\rfloor\)).

      • -
    • -
    - -

    Note

    - -

    Depending of the size of your kernel, several (of the last) -columns of the input might be lost, because it is a valid cross-correlation, -and not a full cross-correlation. -It is up to the user to add proper padding.

    -

    The padding argument effectively adds dilation * (kernel_size - 1) - padding -amount of zero padding to both sizes of the input. This is set so that -when a ~torch.nn.Conv1d and a ~torch.nn.ConvTranspose1d -are initialized with same parameters, they are inverses of each other in -regard to the input and output shapes. However, when stride > 1, -~torch.nn.Conv1d maps multiple input shapes to the same output -shape. output_padding is provided to resolve this ambiguity by -effectively increasing the calculated output shape on one side. Note -that output_padding is only used to find output shape, but does -not actually add zero-padding to output.

    -

    In some circumstances when using the CUDA backend with CuDNN, this operator -may select a nondeterministic algorithm to increase performance. If this is -undesirable, you can try to make the operation deterministic (potentially at -a performance cost) by setting torch.backends.cudnn.deterministic = TRUE.

    -

    Shape

    - - - -
      -
    • Input: \((N, C_{in}, L_{in})\)

    • -
    • Output: \((N, C_{out}, L_{out})\) where -$$ - L_{out} = (L_{in} - 1) \times \mbox{stride} - 2 \times \mbox{padding} + \mbox{dilation} -\times (\mbox{kernel\_size} - 1) + \mbox{output\_padding} + 1 -$$

    • -
    - -

    Attributes

    - - - -
      -
    • weight (Tensor): the learnable weights of the module of shape -\((\mbox{in\_channels}, \frac{\mbox{out\_channels}}{\mbox{groups}},\) -\(\mbox{kernel\_size})\). -The values of these weights are sampled from -\(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{out}} * \mbox{kernel\_size}}\)

    • -
    • bias (Tensor): the learnable bias of the module of shape (out_channels). -If bias is TRUE, then the values of these weights are -sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{out}} * \mbox{kernel\_size}}\)

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_conv_transpose1d(32, 16, 2) -input <- torch_randn(10, 32, 2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_conv_transpose2d.html b/docs/reference/nn_conv_transpose2d.html deleted file mode 100644 index fec88b2fb..000000000 --- a/docs/reference/nn_conv_transpose2d.html +++ /dev/null @@ -1,361 +0,0 @@ - - - - - - - - -ConvTranpose2D module — nn_conv_transpose2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 2D transposed convolution operator over an input image -composed of several input planes.

    -
    - -
    nn_conv_transpose2d(
    -  in_channels,
    -  out_channels,
    -  kernel_size,
    -  stride = 1,
    -  padding = 0,
    -  output_padding = 0,
    -  groups = 1,
    -  bias = TRUE,
    -  dilation = 1,
    -  padding_mode = "zeros"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    in_channels

    (int): Number of channels in the input image

    out_channels

    (int): Number of channels produced by the convolution

    kernel_size

    (int or tuple): Size of the convolving kernel

    stride

    (int or tuple, optional): Stride of the convolution. Default: 1

    padding

    (int or tuple, optional): dilation * (kernel_size - 1) - padding zero-padding -will be added to both sides of each dimension in the input. Default: 0

    output_padding

    (int or tuple, optional): Additional size added to one side -of each dimension in the output shape. Default: 0

    groups

    (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    bias

    (bool, optional): If True, adds a learnable bias to the output. Default: True

    dilation

    (int or tuple, optional): Spacing between kernel elements. Default: 1

    padding_mode

    (string, optional): 'zeros', 'reflect', -'replicate' or 'circular'. Default: 'zeros'

    - -

    Details

    - -

    This module can be seen as the gradient of Conv2d with respect to its input. -It is also known as a fractionally-strided convolution or -a deconvolution (although it is not an actual deconvolution operation).

      -
    • stride controls the stride for the cross-correlation.

    • -
    • padding controls the amount of implicit zero-paddings on both -sides for dilation * (kernel_size - 1) - padding number of points. See note -below for details.

    • -
    • output_padding controls the additional size added to one side -of the output shape. See note below for details.

    • -
    • dilation controls the spacing between the kernel points; also known as the à trous algorithm. -It is harder to describe, but this link_ has a nice visualization of what dilation does.

    • -
    • groups controls the connections between inputs and outputs. -in_channels and out_channels must both be divisible by -groups. For example,

        -
      • At groups=1, all inputs are convolved to all outputs.

      • -
      • At groups=2, the operation becomes equivalent to having two conv -layers side by side, each seeing half the input channels, -and producing half the output channels, and both subsequently -concatenated.

      • -
      • At groups= in_channels, each input channel is convolved with -its own set of filters (of size -\(\left\lfloor\frac{out\_channels}{in\_channels}\right\rfloor\)).

      • -
    • -
    - -

    The parameters kernel_size, stride, padding, output_padding -can either be:

      -
    • a single int -- in which case the same value is used for the height and width dimensions

    • -
    • a tuple of two ints -- in which case, the first int is used for the height dimension, -and the second int for the width dimension

    • -
    - -

    Note

    - -

    Depending of the size of your kernel, several (of the last) -columns of the input might be lost, because it is a valid cross-correlation_, -and not a full cross-correlation. It is up to the user to add proper padding.

    -

    The padding argument effectively adds dilation * (kernel_size - 1) - padding -amount of zero padding to both sizes of the input. This is set so that -when a nn_conv2d and a nn_conv_transpose2d are initialized with same -parameters, they are inverses of each other in -regard to the input and output shapes. However, when stride > 1, -nn_conv2d maps multiple input shapes to the same output -shape. output_padding is provided to resolve this ambiguity by -effectively increasing the calculated output shape on one side. Note -that output_padding is only used to find output shape, but does -not actually add zero-padding to output.

    -

    In some circumstances when using the CUDA backend with CuDNN, this operator -may select a nondeterministic algorithm to increase performance. If this is -undesirable, you can try to make the operation deterministic (potentially at -a performance cost) by setting torch.backends.cudnn.deterministic = TRUE.

    -

    Shape

    - - - -
      -
    • Input: \((N, C_{in}, H_{in}, W_{in})\)

    • -
    • Output: \((N, C_{out}, H_{out}, W_{out})\) where -$$ - H_{out} = (H_{in} - 1) \times \mbox{stride}[0] - 2 \times \mbox{padding}[0] + \mbox{dilation}[0] -\times (\mbox{kernel\_size}[0] - 1) + \mbox{output\_padding}[0] + 1 -$$ -$$ - W_{out} = (W_{in} - 1) \times \mbox{stride}[1] - 2 \times \mbox{padding}[1] + \mbox{dilation}[1] -\times (\mbox{kernel\_size}[1] - 1) + \mbox{output\_padding}[1] + 1 -$$

    • -
    - -

    Attributes

    - - - -
      -
    • weight (Tensor): the learnable weights of the module of shape -\((\mbox{in\_channels}, \frac{\mbox{out\_channels}}{\mbox{groups}},\) -\(\mbox{kernel\_size[0]}, \mbox{kernel\_size[1]})\). -The values of these weights are sampled from -\(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{out}} * \prod_{i=0}^{1}\mbox{kernel\_size}[i]}\)

    • -
    • bias (Tensor): the learnable bias of the module of shape (out_channels) -If bias is True, then the values of these weights are -sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{out}} * \prod_{i=0}^{1}\mbox{kernel\_size}[i]}\)

    • -
    - - -

    Examples

    -
    # \dontrun{ -# With square kernels and equal stride -m <- nn_conv_transpose2d(16, 33, 3, stride=2) -# non-square kernels and unequal stride and with padding -m <- nn_conv_transpose2d(16, 33, c(3, 5), stride=c(2, 1), padding=c(4, 2)) -input <- torch_randn(20, 16, 50, 100) -output <- m(input) -# exact output size can be also specified as an argument -input <- torch_randn(1, 16, 12, 12) -downsample <- nn_conv2d(16, 16, 3, stride=2, padding=1) -upsample <- nn_conv_transpose2d(16, 16, 3, stride=2, padding=1) -h <- downsample(input) -h$size()
    #> [1] 1 16 6 6
    output <- upsample(h, output_size=input$size()) -output$size()
    #> [1] 1 16 12 12
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_conv_transpose3d.html b/docs/reference/nn_conv_transpose3d.html deleted file mode 100644 index e929e4949..000000000 --- a/docs/reference/nn_conv_transpose3d.html +++ /dev/null @@ -1,354 +0,0 @@ - - - - - - - - -ConvTranpose3D module — nn_conv_transpose3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 3D transposed convolution operator over an input image composed of several input -planes.

    -
    - -
    nn_conv_transpose3d(
    -  in_channels,
    -  out_channels,
    -  kernel_size,
    -  stride = 1,
    -  padding = 0,
    -  output_padding = 0,
    -  groups = 1,
    -  bias = TRUE,
    -  dilation = 1,
    -  padding_mode = "zeros"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    in_channels

    (int): Number of channels in the input image

    out_channels

    (int): Number of channels produced by the convolution

    kernel_size

    (int or tuple): Size of the convolving kernel

    stride

    (int or tuple, optional): Stride of the convolution. Default: 1

    padding

    (int or tuple, optional): dilation * (kernel_size - 1) - padding zero-padding -will be added to both sides of each dimension in the input. Default: 0 -output_padding (int or tuple, optional): Additional size added to one side -of each dimension in the output shape. Default: 0

    output_padding

    (int or tuple, optional): Additional size added to one side -of each dimension in the output shape. Default: 0

    groups

    (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    bias

    (bool, optional): If True, adds a learnable bias to the output. Default: True

    dilation

    (int or tuple, optional): Spacing between kernel elements. Default: 1

    padding_mode

    (string, optional): 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

    - -

    Details

    - -

    The transposed convolution operator multiplies each input value element-wise by a learnable kernel, -and sums over the outputs from all input feature planes.

    -

    This module can be seen as the gradient of Conv3d with respect to its input. -It is also known as a fractionally-strided convolution or -a deconvolution (although it is not an actual deconvolution operation).

      -
    • stride controls the stride for the cross-correlation.

    • -
    • padding controls the amount of implicit zero-paddings on both -sides for dilation * (kernel_size - 1) - padding number of points. See note -below for details.

    • -
    • output_padding controls the additional size added to one side -of the output shape. See note below for details.

    • -
    • dilation controls the spacing between the kernel points; also known as the à trous algorithm. -It is harder to describe, but this link_ has a nice visualization of what dilation does.

    • -
    • groups controls the connections between inputs and outputs. -in_channels and out_channels must both be divisible by -groups. For example,

        -
      • At groups=1, all inputs are convolved to all outputs.

      • -
      • At groups=2, the operation becomes equivalent to having two conv -layers side by side, each seeing half the input channels, -and producing half the output channels, and both subsequently -concatenated.

      • -
      • At groups= in_channels, each input channel is convolved with -its own set of filters (of size -\(\left\lfloor\frac{out\_channels}{in\_channels}\right\rfloor\)).

      • -
    • -
    - -

    The parameters kernel_size, stride, padding, output_padding -can either be:

      -
    • a single int -- in which case the same value is used for the depth, height and width dimensions

    • -
    • a tuple of three ints -- in which case, the first int is used for the depth dimension, -the second int for the height dimension and the third int for the width dimension

    • -
    - -

    Note

    - -

    Depending of the size of your kernel, several (of the last) -columns of the input might be lost, because it is a valid cross-correlation, -and not a full cross-correlation. -It is up to the user to add proper padding.

    -

    The padding argument effectively adds dilation * (kernel_size - 1) - padding -amount of zero padding to both sizes of the input. This is set so that -when a ~torch.nn.Conv3d and a ~torch.nn.ConvTranspose3d -are initialized with same parameters, they are inverses of each other in -regard to the input and output shapes. However, when stride > 1, -~torch.nn.Conv3d maps multiple input shapes to the same output -shape. output_padding is provided to resolve this ambiguity by -effectively increasing the calculated output shape on one side. Note -that output_padding is only used to find output shape, but does -not actually add zero-padding to output.

    -

    In some circumstances when using the CUDA backend with CuDNN, this operator -may select a nondeterministic algorithm to increase performance. If this is -undesirable, you can try to make the operation deterministic (potentially at -a performance cost) by setting torch.backends.cudnn.deterministic = TRUE.

    -

    Shape

    - - - -
      -
    • Input: \((N, C_{in}, D_{in}, H_{in}, W_{in})\)

    • -
    • Output: \((N, C_{out}, D_{out}, H_{out}, W_{out})\) where -$$ - D_{out} = (D_{in} - 1) \times \mbox{stride}[0] - 2 \times \mbox{padding}[0] + \mbox{dilation}[0] -\times (\mbox{kernel\_size}[0] - 1) + \mbox{output\_padding}[0] + 1 -$$ -$$ - H_{out} = (H_{in} - 1) \times \mbox{stride}[1] - 2 \times \mbox{padding}[1] + \mbox{dilation}[1] -\times (\mbox{kernel\_size}[1] - 1) + \mbox{output\_padding}[1] + 1 -$$ -$$ - W_{out} = (W_{in} - 1) \times \mbox{stride}[2] - 2 \times \mbox{padding}[2] + \mbox{dilation}[2] -\times (\mbox{kernel\_size}[2] - 1) + \mbox{output\_padding}[2] + 1 -$$

    • -
    - -

    Attributes

    - - - -
      -
    • weight (Tensor): the learnable weights of the module of shape -\((\mbox{in\_channels}, \frac{\mbox{out\_channels}}{\mbox{groups}},\) -\(\mbox{kernel\_size[0]}, \mbox{kernel\_size[1]}, \mbox{kernel\_size[2]})\). -The values of these weights are sampled from -\(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{out}} * \prod_{i=0}^{2}\mbox{kernel\_size}[i]}\)

    • -
    • bias (Tensor): the learnable bias of the module of shape (out_channels) -If bias is True, then the values of these weights are -sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{groups}{C_{\mbox{out}} * \prod_{i=0}^{2}\mbox{kernel\_size}[i]}\)

    • -
    - - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_cross_entropy_loss.html b/docs/reference/nn_cross_entropy_loss.html deleted file mode 100644 index b986b77ca..000000000 --- a/docs/reference/nn_cross_entropy_loss.html +++ /dev/null @@ -1,277 +0,0 @@ - - - - - - - - -CrossEntropyLoss module — nn_cross_entropy_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    This criterion combines nn_log_softmax() and nn_nll_loss() in one single class. -It is useful when training a classification problem with C classes.

    -
    - -
    nn_cross_entropy_loss(weight = NULL, ignore_index = -100, reduction = "mean")
    - -

    Arguments

    - - - - - - - - - - - - - - -
    weight

    (Tensor, optional): a manual rescaling weight given to each class. -If given, has to be a Tensor of size C

    ignore_index

    (int, optional): Specifies a target value that is ignored -and does not contribute to the input gradient. When size_average is -TRUE, the loss is averaged over non-ignored targets.

    reduction

    (string, optional): Specifies the reduction to apply to the output: -'none' | 'mean' | 'sum'. 'none': no reduction will be applied, -'mean': the sum of the output will be divided by the number of -elements in the output, 'sum': the output will be summed. Note: size_average -and reduce are in the process of being deprecated, and in the meantime, -specifying either of those two args will override reduction. Default: 'mean'

    - -

    Details

    - -

    If provided, the optional argument weight should be a 1D Tensor -assigning weight to each of the classes.

    -

    This is particularly useful when you have an unbalanced training set. -The input is expected to contain raw, unnormalized scores for each class. -input has to be a Tensor of size either \((minibatch, C)\) or -\((minibatch, C, d_1, d_2, ..., d_K)\) -with \(K \geq 1\) for the K-dimensional case (described later).

    -

    This criterion expects a class index in the range \([0, C-1]\) as the -target for each value of a 1D tensor of size minibatch; if ignore_index -is specified, this criterion also accepts this class index (this index may not -necessarily be in the class range).

    -

    The loss can be described as: -$$ - \mbox{loss}(x, class) = -\log\left(\frac{\exp(x[class])}{\sum_j \exp(x[j])}\right) -= -x[class] + \log\left(\sum_j \exp(x[j])\right) -$$ -or in the case of the weight argument being specified: -$$ - \mbox{loss}(x, class) = weight[class] \left(-x[class] + \log\left(\sum_j \exp(x[j])\right)\right) -$$

    -

    The losses are averaged across observations for each minibatch. -Can also be used for higher dimension inputs, such as 2D images, by providing -an input of size \((minibatch, C, d_1, d_2, ..., d_K)\) with \(K \geq 1\), -where \(K\) is the number of dimensions, and a target of appropriate shape -(see below).

    -

    Shape

    - - - -
      -
    • Input: \((N, C)\) where C = number of classes, or -\((N, C, d_1, d_2, ..., d_K)\) with \(K \geq 1\) -in the case of K-dimensional loss.

    • -
    • Target: \((N)\) where each value is \(0 \leq \mbox{targets}[i] \leq C-1\), or -\((N, d_1, d_2, ..., d_K)\) with \(K \geq 1\) in the case of -K-dimensional loss.

    • -
    • Output: scalar. -If reduction is 'none', then the same size as the target: -\((N)\), or -\((N, d_1, d_2, ..., d_K)\) with \(K \geq 1\) in the case -of K-dimensional loss.

    • -
    - - -

    Examples

    -
    # \dontrun{ -loss <- nn_cross_entropy_loss() -input <- torch_randn(3, 5, requires_grad=TRUE) -target <- torch_randint(low = 1, high = 5, size = 3, dtype = torch_long()) -output <- loss(input, target) -output$backward() - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_dropout.html b/docs/reference/nn_dropout.html deleted file mode 100644 index 95fa808ba..000000000 --- a/docs/reference/nn_dropout.html +++ /dev/null @@ -1,239 +0,0 @@ - - - - - - - - -Dropout module — nn_dropout • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    During training, randomly zeroes some of the elements of the input -tensor with probability p using samples from a Bernoulli -distribution. Each channel will be zeroed out independently on every forward -call.

    -
    - -
    nn_dropout(p = 0.5, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - -
    p

    probability of an element to be zeroed. Default: 0.5

    inplace

    If set to TRUE, will do this operation in-place. Default: FALSE.

    - -

    Details

    - -

    This has proven to be an effective technique for regularization and -preventing the co-adaptation of neurons as described in the paper -Improving neural networks by preventing co-adaptation of feature detectors.

    -

    Furthermore, the outputs are scaled by a factor of :math:\frac{1}{1-p} during -training. This means that during evaluation the module simply computes an -identity function.

    -

    Shape

    - - - -
      -
    • Input: \((*)\). Input can be of any shape

    • -
    • Output: \((*)\). Output is of the same shape as input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_dropout(p = 0.2) -input <- torch_randn(20, 16) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_dropout2d.html b/docs/reference/nn_dropout2d.html deleted file mode 100644 index efcc07a6b..000000000 --- a/docs/reference/nn_dropout2d.html +++ /dev/null @@ -1,243 +0,0 @@ - - - - - - - - -Dropout2D module — nn_dropout2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Randomly zero out entire channels (a channel is a 2D feature map, -e.g., the \(j\)-th channel of the \(i\)-th sample in the -batched input is a 2D tensor \(\mbox{input}[i, j]\)).

    -
    - -
    nn_dropout2d(p = 0.5, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - -
    p

    (float, optional): probability of an element to be zero-ed.

    inplace

    (bool, optional): If set to TRUE, will do this operation -in-place

    - -

    Details

    - -

    Each channel will be zeroed out independently on every forward call with -probability p using samples from a Bernoulli distribution. -Usually the input comes from nn_conv2d modules.

    -

    As described in the paper -Efficient Object Localization Using Convolutional Networks , -if adjacent pixels within feature maps are strongly correlated -(as is normally the case in early convolution layers) then i.i.d. dropout -will not regularize the activations and will otherwise just result -in an effective learning rate decrease. -In this case, nn_dropout2d will help promote independence between -feature maps and should be used instead.

    -

    Shape

    - - - -
      -
    • Input: \((N, C, H, W)\)

    • -
    • Output: \((N, C, H, W)\) (same shape as input)

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_dropout2d(p = 0.2) -input <- torch_randn(20, 16, 32, 32) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_dropout3d.html b/docs/reference/nn_dropout3d.html deleted file mode 100644 index 32d4545df..000000000 --- a/docs/reference/nn_dropout3d.html +++ /dev/null @@ -1,243 +0,0 @@ - - - - - - - - -Dropout3D module — nn_dropout3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Randomly zero out entire channels (a channel is a 3D feature map, -e.g., the \(j\)-th channel of the \(i\)-th sample in the -batched input is a 3D tensor \(\mbox{input}[i, j]\)).

    -
    - -
    nn_dropout3d(p = 0.5, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - -
    p

    (float, optional): probability of an element to be zeroed.

    inplace

    (bool, optional): If set to TRUE, will do this operation -in-place

    - -

    Details

    - -

    Each channel will be zeroed out independently on every forward call with -probability p using samples from a Bernoulli distribution. -Usually the input comes from nn_conv2d modules.

    -

    As described in the paper -Efficient Object Localization Using Convolutional Networks , -if adjacent pixels within feature maps are strongly correlated -(as is normally the case in early convolution layers) then i.i.d. dropout -will not regularize the activations and will otherwise just result -in an effective learning rate decrease.

    -

    In this case, nn_dropout3d will help promote independence between -feature maps and should be used instead.

    -

    Shape

    - - - -
      -
    • Input: \((N, C, D, H, W)\)

    • -
    • Output: \((N, C, D, H, W)\) (same shape as input)

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_dropout3d(p = 0.2) -input <- torch_randn(20, 16, 4, 32, 32) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_elu.html b/docs/reference/nn_elu.html deleted file mode 100644 index c68ba52e1..000000000 --- a/docs/reference/nn_elu.html +++ /dev/null @@ -1,231 +0,0 @@ - - - - - - - - -ELU module — nn_elu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function:

    -
    - -
    nn_elu(alpha = 1, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - -
    alpha

    the \(\alpha\) value for the ELU formulation. Default: 1.0

    inplace

    can optionally do the operation in-place. Default: FALSE

    - -

    Details

    - -

    $$ - \mbox{ELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x) - 1)) -$$

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_elu() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_embedding.html b/docs/reference/nn_embedding.html deleted file mode 100644 index a8881ef38..000000000 --- a/docs/reference/nn_embedding.html +++ /dev/null @@ -1,311 +0,0 @@ - - - - - - - - -Embedding module — nn_embedding • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    A simple lookup table that stores embeddings of a fixed dictionary and size. -This module is often used to store word embeddings and retrieve them using indices. -The input to the module is a list of indices, and the output is the corresponding -word embeddings.

    -
    - -
    nn_embedding(
    -  num_embeddings,
    -  embedding_dim,
    -  padding_idx = NULL,
    -  max_norm = NULL,
    -  norm_type = 2,
    -  scale_grad_by_freq = FALSE,
    -  sparse = FALSE,
    -  .weight = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    num_embeddings

    (int): size of the dictionary of embeddings

    embedding_dim

    (int): the size of each embedding vector

    padding_idx

    (int, optional): If given, pads the output with the embedding vector at padding_idx -(initialized to zeros) whenever it encounters the index.

    max_norm

    (float, optional): If given, each embedding vector with norm larger than max_norm -is renormalized to have norm max_norm.

    norm_type

    (float, optional): The p of the p-norm to compute for the max_norm option. Default 2.

    scale_grad_by_freq

    (boolean, optional): If given, this will scale gradients by the inverse of frequency of -the words in the mini-batch. Default False.

    sparse

    (bool, optional): If True, gradient w.r.t. weight matrix will be a sparse tensor.

    .weight

    (Tensor) embeddings weights (in case you want to set it manually)

    -

    See Notes for more details regarding sparse gradients.

    - -

    Note

    - -

    Keep in mind that only a limited number of optimizers support -sparse gradients: currently it's optim.SGD (CUDA and CPU), -optim.SparseAdam (CUDA and CPU) and optim.Adagrad (CPU)

    -

    With padding_idx set, the embedding vector at -padding_idx is initialized to all zeros. However, note that this -vector can be modified afterwards, e.g., using a customized -initialization method, and thus changing the vector used to pad the -output. The gradient for this vector from nn_embedding -is always zero.

    -

    Attributes

    - - - -
      -
    • weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) -initialized from \(\mathcal{N}(0, 1)\)

    • -
    - -

    Shape

    - - - -
      -
    • Input: \((*)\), LongTensor of arbitrary shape containing the indices to extract

    • -
    • Output: \((*, H)\), where * is the input shape and \(H=\mbox{embedding\_dim}\)

    • -
    - - -

    Examples

    -
    # \dontrun{ -# an Embedding module containing 10 tensors of size 3 -embedding <- nn_embedding(10, 3) -# a batch of 2 samples of 4 indices each -input <- torch_tensor(rbind(c(1,2,4,5),c(4,3,2,9)), dtype = torch_long()) -embedding(input)
    #> torch_tensor -#> (1,.,.) = -#> -0.5531 0.2969 -1.9168 -#> -0.7095 -0.1328 -0.7352 -#> -1.5311 -0.6539 0.7804 -#> 1.5343 0.1139 1.1985 -#> -#> (2,.,.) = -#> -1.5311 -0.6539 0.7804 -#> -0.1120 0.9578 0.1195 -#> -0.7095 -0.1328 -0.7352 -#> -0.4247 0.6266 -0.1286 -#> [ CPUFloatType{2,4,3} ]
    # example with padding_idx -embedding <- nn_embedding(10, 3, padding_idx=1) -input <- torch_tensor(matrix(c(1,3,1,6), nrow = 1), dtype = torch_long()) -embedding(input)
    #> torch_tensor -#> (1,.,.) = -#> 0.0000 0.0000 0.0000 -#> -1.2943 -1.0279 0.6483 -#> 0.0000 0.0000 0.0000 -#> 0.4053 0.7866 -0.3922 -#> [ CPUFloatType{1,4,3} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_gelu.html b/docs/reference/nn_gelu.html deleted file mode 100644 index 57885d648..000000000 --- a/docs/reference/nn_gelu.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -GELU module — nn_gelu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the Gaussian Error Linear Units function: -$$\mbox{GELU}(x) = x * \Phi(x)$$

    -
    - -
    nn_gelu()
    - - -

    Details

    - -

    where \(\Phi(x)\) is the Cumulative Distribution Function for Gaussian Distribution.

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m = nn_gelu() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_glu.html b/docs/reference/nn_glu.html deleted file mode 100644 index 117725434..000000000 --- a/docs/reference/nn_glu.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -GLU module — nn_glu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the gated linear unit function -\({GLU}(a, b)= a \otimes \sigma(b)\) where \(a\) is the first half -of the input matrices and \(b\) is the second half.

    -
    - -
    nn_glu(dim = -1)
    - -

    Arguments

    - - - - - - -
    dim

    (int): the dimension on which to split the input. Default: -1

    - -

    Shape

    - - - -
      -
    • Input: \((\ast_1, N, \ast_2)\) where * means, any number of additional -dimensions

    • -
    • Output: \((\ast_1, M, \ast_2)\) where \(M=N/2\)

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_glu() -input <- torch_randn(4, 2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_hardshrink.html b/docs/reference/nn_hardshrink.html deleted file mode 100644 index 3fc589f2e..000000000 --- a/docs/reference/nn_hardshrink.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Hardshwink module — nn_hardshrink • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the hard shrinkage function element-wise:

    -
    - -
    nn_hardshrink(lambd = 0.5)
    - -

    Arguments

    - - - - - - -
    lambd

    the \(\lambda\) value for the Hardshrink formulation. Default: 0.5

    - -

    Details

    - -

    $$ - \mbox{HardShrink}(x) = - \left\{ \begin{array}{ll} -x, & \mbox{ if } x > \lambda \\ -x, & \mbox{ if } x < -\lambda \\ -0, & \mbox{ otherwise } -\end{array} -\right. -$$

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_hardshrink() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_hardsigmoid.html b/docs/reference/nn_hardsigmoid.html deleted file mode 100644 index 4290cdbcb..000000000 --- a/docs/reference/nn_hardsigmoid.html +++ /dev/null @@ -1,224 +0,0 @@ - - - - - - - - -Hardsigmoid module — nn_hardsigmoid • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function:

    -
    - -
    nn_hardsigmoid()
    - - -

    Details

    - -

    $$ -\mbox{Hardsigmoid}(x) = \left\{ \begin{array}{ll} - 0 & \mbox{if~} x \le -3, \\ - 1 & \mbox{if~} x \ge +3, \\ - x / 6 + 1 / 2 & \mbox{otherwise} -\end{array} -\right. -$$

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_hardsigmoid() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_hardswish.html b/docs/reference/nn_hardswish.html deleted file mode 100644 index aeff39b39..000000000 --- a/docs/reference/nn_hardswish.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -Hardswish module — nn_hardswish • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the hardswish function, element-wise, as described in the paper: -Searching for MobileNetV3

    -
    - -
    nn_hardswish()
    - - -

    Details

    - -

    $$ \mbox{Hardswish}(x) = \left\{ - \begin{array}{ll} - 0 & \mbox{if } x \le -3, \\ - x & \mbox{if } x \ge +3, \\ - x \cdot (x + 3)/6 & \mbox{otherwise} - \end{array} - \right. $$

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_hardtanh.html b/docs/reference/nn_hardtanh.html deleted file mode 100644 index d959dddda..000000000 --- a/docs/reference/nn_hardtanh.html +++ /dev/null @@ -1,244 +0,0 @@ - - - - - - - - -Hardtanh module — nn_hardtanh • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the HardTanh function element-wise -HardTanh is defined as:

    -
    - -
    nn_hardtanh(min_val = -1, max_val = 1, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    min_val

    minimum value of the linear region range. Default: -1

    max_val

    maximum value of the linear region range. Default: 1

    inplace

    can optionally do the operation in-place. Default: FALSE

    - -

    Details

    - -

    $$ -\mbox{HardTanh}(x) = \left\{ \begin{array}{ll} - 1 & \mbox{ if } x > 1 \\ - -1 & \mbox{ if } x < -1 \\ - x & \mbox{ otherwise } \\ -\end{array} -\right. -$$

    -

    The range of the linear region :math:[-1, 1] can be adjusted using -min_val and max_val.

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_hardtanh(-2, 2) -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_identity.html b/docs/reference/nn_identity.html deleted file mode 100644 index 8ce1f5eb9..000000000 --- a/docs/reference/nn_identity.html +++ /dev/null @@ -1,213 +0,0 @@ - - - - - - - - -Identity module — nn_identity • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    A placeholder identity operator that is argument-insensitive.

    -
    - -
    nn_identity(...)
    - -

    Arguments

    - - - - - - -
    ...

    any arguments (unused)

    - - -

    Examples

    -
    # \dontrun{ -m <- nn_identity(54, unused_argument1 = 0.1, unused_argument2 = FALSE) -input <- torch_randn(128, 20) -output <- m(input) -print(output$size())
    #> [1] 128 20
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_calculate_gain.html b/docs/reference/nn_init_calculate_gain.html deleted file mode 100644 index 33069b6fb..000000000 --- a/docs/reference/nn_init_calculate_gain.html +++ /dev/null @@ -1,209 +0,0 @@ - - - - - - - - -Calculate gain — nn_init_calculate_gain • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Return the recommended gain value for the given nonlinearity function.

    -
    - -
    nn_init_calculate_gain(nonlinearity, param = NULL)
    - -

    Arguments

    - - - - - - - - - - -
    nonlinearity

    the non-linear function

    param

    optional parameter for the non-linear function

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_constant_.html b/docs/reference/nn_init_constant_.html deleted file mode 100644 index 081b9dc2a..000000000 --- a/docs/reference/nn_init_constant_.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Constant initialization — nn_init_constant_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the input Tensor with the value val.

    -
    - -
    nn_init_constant_(tensor, val)
    - -

    Arguments

    - - - - - - - - - - -
    tensor

    an n-dimensional Tensor

    val

    the value to fill the tensor with

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3, 5) -nn_init_constant_(w, 0.3)
    #> torch_tensor -#> 0.3000 0.3000 0.3000 0.3000 0.3000 -#> 0.3000 0.3000 0.3000 0.3000 0.3000 -#> 0.3000 0.3000 0.3000 0.3000 0.3000 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_dirac_.html b/docs/reference/nn_init_dirac_.html deleted file mode 100644 index 73aa5202d..000000000 --- a/docs/reference/nn_init_dirac_.html +++ /dev/null @@ -1,217 +0,0 @@ - - - - - - - - -Dirac initialization — nn_init_dirac_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the 3, 4, 5-dimensional input Tensor with the Dirac -delta function. Preserves the identity of the inputs in Convolutional -layers, where as many input channels are preserved as possible. In case -of groups>1, each group of channels preserves identity.

    -
    - -
    nn_init_dirac_(tensor, groups = 1)
    - -

    Arguments

    - - - - - - - - - - -
    tensor

    a 3, 4, 5-dimensional torch.Tensor

    groups

    (optional) number of groups in the conv layer (default: 1)

    - - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_eye_.html b/docs/reference/nn_init_eye_.html deleted file mode 100644 index 9dc9030f1..000000000 --- a/docs/reference/nn_init_eye_.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Eye initialization — nn_init_eye_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the 2-dimensional input Tensor with the identity matrix. -Preserves the identity of the inputs in Linear layers, where as -many inputs are preserved as possible.

    -
    - -
    nn_init_eye_(tensor)
    - -

    Arguments

    - - - - - - -
    tensor

    a 2-dimensional torch tensor.

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3, 5) -nn_init_eye_(w)
    #> torch_tensor -#> 1 0 0 0 0 -#> 0 1 0 0 0 -#> 0 0 1 0 0 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_kaiming_normal_.html b/docs/reference/nn_init_kaiming_normal_.html deleted file mode 100644 index d5d58686d..000000000 --- a/docs/reference/nn_init_kaiming_normal_.html +++ /dev/null @@ -1,240 +0,0 @@ - - - - - - - - -Kaiming normal initialization — nn_init_kaiming_normal_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the input Tensor with values according to the method -described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a -normal distribution.

    -
    - -
    nn_init_kaiming_normal_(
    -  tensor,
    -  a = 0,
    -  mode = "fan_in",
    -  nonlinearity = "leaky_relu"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    tensor

    an n-dimensional torch.Tensor

    a

    the negative slope of the rectifier used after this layer (only used -with 'leaky_relu')

    mode

    either 'fan_in' (default) or 'fan_out'. Choosing 'fan_in' preserves -the magnitude of the variance of the weights in the forward pass. Choosing -'fan_out' preserves the magnitudes in the backwards pass.

    nonlinearity

    the non-linear function. recommended to use only with 'relu' -or 'leaky_relu' (default).

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3, 5) -nn_init_kaiming_normal_(w, mode = "fan_in", nonlinearity = "leaky_relu")
    #> torch_tensor -#> -0.5594 0.2408 0.3946 0.5860 -0.4834 -#> -0.0442 0.7170 -0.3028 0.4015 -0.8906 -#> -0.5157 -0.1763 0.9366 0.4640 -0.5356 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_kaiming_uniform_.html b/docs/reference/nn_init_kaiming_uniform_.html deleted file mode 100644 index 62e5e6ce1..000000000 --- a/docs/reference/nn_init_kaiming_uniform_.html +++ /dev/null @@ -1,240 +0,0 @@ - - - - - - - - -Kaiming uniform initialization — nn_init_kaiming_uniform_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the input Tensor with values according to the method -described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a -uniform distribution.

    -
    - -
    nn_init_kaiming_uniform_(
    -  tensor,
    -  a = 0,
    -  mode = "fan_in",
    -  nonlinearity = "leaky_relu"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    tensor

    an n-dimensional torch.Tensor

    a

    the negative slope of the rectifier used after this layer (only used -with 'leaky_relu')

    mode

    either 'fan_in' (default) or 'fan_out'. Choosing 'fan_in' preserves -the magnitude of the variance of the weights in the forward pass. Choosing -'fan_out' preserves the magnitudes in the backwards pass.

    nonlinearity

    the non-linear function. recommended to use only with 'relu' -or 'leaky_relu' (default).

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3, 5) -nn_init_kaiming_uniform_(w, mode = "fan_in", nonlinearity = "leaky_relu")
    #> torch_tensor -#> -0.7460 0.2070 -0.1066 -0.4344 -0.4666 -#> -0.5351 -0.4524 0.0950 -1.0077 -0.2169 -#> -0.9525 0.8753 0.0070 -0.4553 -0.3445 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_normal_.html b/docs/reference/nn_init_normal_.html deleted file mode 100644 index a7962cbc0..000000000 --- a/docs/reference/nn_init_normal_.html +++ /dev/null @@ -1,223 +0,0 @@ - - - - - - - - -Normal initialization — nn_init_normal_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the input Tensor with values drawn from the normal distribution

    -
    - -
    nn_init_normal_(tensor, mean = 0, std = 1)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    tensor

    an n-dimensional Tensor

    mean

    the mean of the normal distribution

    std

    the standard deviation of the normal distribution

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3, 5) -nn_init_normal_(w)
    #> torch_tensor -#> -1.0569 -1.0900 1.2740 -1.7728 0.0593 -#> -1.7131 -0.1353 0.8191 0.1481 -0.9940 -#> -0.7544 -1.0298 0.4237 1.4650 0.0575 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_ones_.html b/docs/reference/nn_init_ones_.html deleted file mode 100644 index ebf2f5e6a..000000000 --- a/docs/reference/nn_init_ones_.html +++ /dev/null @@ -1,215 +0,0 @@ - - - - - - - - -Ones initialization — nn_init_ones_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the input Tensor with the scalar value 1

    -
    - -
    nn_init_ones_(tensor)
    - -

    Arguments

    - - - - - - -
    tensor

    an n-dimensional Tensor

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3, 5) -nn_init_ones_(w)
    #> torch_tensor -#> 1 1 1 1 1 -#> 1 1 1 1 1 -#> 1 1 1 1 1 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_orthogonal_.html b/docs/reference/nn_init_orthogonal_.html deleted file mode 100644 index 661a3085d..000000000 --- a/docs/reference/nn_init_orthogonal_.html +++ /dev/null @@ -1,225 +0,0 @@ - - - - - - - - -Orthogonal initialization — nn_init_orthogonal_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the input Tensor with a (semi) orthogonal matrix, as -described in Exact solutions to the nonlinear dynamics of learning in deep linear neural networks - Saxe, A. et al. (2013). The input tensor must have -at least 2 dimensions, and for tensors with more than 2 dimensions the -trailing dimensions are flattened.

    -
    - -
    nn_init_orthogonal_(tensor, gain = 1)
    - -

    Arguments

    - - - - - - - - - - -
    tensor

    an n-dimensional Tensor

    gain

    optional scaling factor

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3,5) -nn_init_orthogonal_(w)
    #> torch_tensor -#> -0.2147 0.0073 -0.0312 -0.0439 0.9752 -#> -0.8268 0.5222 0.0419 0.0979 -0.1802 -#> 0.3963 0.5329 -0.0498 0.7371 0.1148 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_sparse_.html b/docs/reference/nn_init_sparse_.html deleted file mode 100644 index c9b963d67..000000000 --- a/docs/reference/nn_init_sparse_.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -Sparse initialization — nn_init_sparse_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the 2D input Tensor as a sparse matrix, where the -non-zero elements will be drawn from the normal distribution -as described in Deep learning via Hessian-free optimization - Martens, J. (2010).

    -
    - -
    nn_init_sparse_(tensor, sparsity, std = 0.01)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    tensor

    an n-dimensional Tensor

    sparsity

    The fraction of elements in each column to be set to zero

    std

    the standard deviation of the normal distribution used to generate -the non-zero values

    - - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_trunc_normal_.html b/docs/reference/nn_init_trunc_normal_.html deleted file mode 100644 index 9ed52ecb0..000000000 --- a/docs/reference/nn_init_trunc_normal_.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Truncated normal initialization — nn_init_trunc_normal_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the input Tensor with values drawn from a truncated -normal distribution.

    -
    - -
    nn_init_trunc_normal_(tensor, mean = 0, std = 1, a = -2, b = -2)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    tensor

    an n-dimensional Tensor

    mean

    the mean of the normal distribution

    std

    the standard deviation of the normal distribution

    a

    the minimum cutoff value

    b

    the maximum cutoff value

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3, 5) -nn_init_trunc_normal_(w)
    #> torch_tensor -#> -2 -2 -2 -2 -2 -#> -2 -2 -2 -2 -2 -#> -2 -2 -2 -2 -2 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_uniform_.html b/docs/reference/nn_init_uniform_.html deleted file mode 100644 index 9e974bcd2..000000000 --- a/docs/reference/nn_init_uniform_.html +++ /dev/null @@ -1,223 +0,0 @@ - - - - - - - - -Uniform initialization — nn_init_uniform_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the input Tensor with values drawn from the uniform distribution

    -
    - -
    nn_init_uniform_(tensor, a = 0, b = 1)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    tensor

    an n-dimensional Tensor

    a

    the lower bound of the uniform distribution

    b

    the upper bound of the uniform distribution

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3, 5) -nn_init_uniform_(w)
    #> torch_tensor -#> 0.8556 0.9331 0.3515 0.8071 0.4948 -#> 0.6075 0.9042 0.7181 0.7329 0.7563 -#> 0.2584 0.5293 0.9757 0.3030 0.3341 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_xavier_normal_.html b/docs/reference/nn_init_xavier_normal_.html deleted file mode 100644 index bf0255588..000000000 --- a/docs/reference/nn_init_xavier_normal_.html +++ /dev/null @@ -1,223 +0,0 @@ - - - - - - - - -Xavier normal initialization — nn_init_xavier_normal_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the input Tensor with values according to the method -described in Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010), using a normal -distribution.

    -
    - -
    nn_init_xavier_normal_(tensor, gain = 1)
    - -

    Arguments

    - - - - - - - - - - -
    tensor

    an n-dimensional Tensor

    gain

    an optional scaling factor

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3, 5) -nn_init_xavier_normal_(w)
    #> torch_tensor -#> 1.2535 -0.2197 0.5425 -3.0052 -4.2446 -#> -0.3570 -1.6970 -2.0154 -0.5348 2.7582 -#> 0.8714 -0.8924 0.7675 3.2553 -1.4333 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_xavier_uniform_.html b/docs/reference/nn_init_xavier_uniform_.html deleted file mode 100644 index c925e4da3..000000000 --- a/docs/reference/nn_init_xavier_uniform_.html +++ /dev/null @@ -1,223 +0,0 @@ - - - - - - - - -Xavier uniform initialization — nn_init_xavier_uniform_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the input Tensor with values according to the method -described in Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010), using a uniform -distribution.

    -
    - -
    nn_init_xavier_uniform_(tensor, gain = 1)
    - -

    Arguments

    - - - - - - - - - - -
    tensor

    an n-dimensional Tensor

    gain

    an optional scaling factor

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3, 5) -nn_init_xavier_uniform_(w)
    #> torch_tensor -#> 1.3397 1.1040 -3.0453 -1.7935 0.9545 -#> -0.0194 -2.4483 2.9345 2.2750 -2.4048 -#> -0.4406 -2.2409 0.4155 -0.1573 1.9776 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_init_zeros_.html b/docs/reference/nn_init_zeros_.html deleted file mode 100644 index 9e4a29058..000000000 --- a/docs/reference/nn_init_zeros_.html +++ /dev/null @@ -1,215 +0,0 @@ - - - - - - - - -Zeros initialization — nn_init_zeros_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fills the input Tensor with the scalar value 0

    -
    - -
    nn_init_zeros_(tensor)
    - -

    Arguments

    - - - - - - -
    tensor

    an n-dimensional tensor

    - - -

    Examples

    -
    # \dontrun{ -w <- torch_empty(3, 5) -nn_init_zeros_(w)
    #> torch_tensor -#> 0 0 0 0 0 -#> 0 0 0 0 0 -#> 0 0 0 0 0 -#> [ CPUFloatType{3,5} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_leaky_relu.html b/docs/reference/nn_leaky_relu.html deleted file mode 100644 index 884c40ebb..000000000 --- a/docs/reference/nn_leaky_relu.html +++ /dev/null @@ -1,240 +0,0 @@ - - - - - - - - -LeakyReLU module — nn_leaky_relu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function:

    -
    - -
    nn_leaky_relu(negative_slope = 0.01, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - -
    negative_slope

    Controls the angle of the negative slope. Default: 1e-2

    inplace

    can optionally do the operation in-place. Default: FALSE

    - -

    Details

    - -

    $$ - \mbox{LeakyReLU}(x) = \max(0, x) + \mbox{negative\_slope} * \min(0, x) -$$ -or

    -

    $$ - \mbox{LeakyRELU}(x) = - \left\{ \begin{array}{ll} -x, & \mbox{ if } x \geq 0 \\ -\mbox{negative\_slope} \times x, & \mbox{ otherwise } -\end{array} -\right. -$$

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_leaky_relu(0.1) -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_linear.html b/docs/reference/nn_linear.html deleted file mode 100644 index d5a6fee86..000000000 --- a/docs/reference/nn_linear.html +++ /dev/null @@ -1,248 +0,0 @@ - - - - - - - - -Linear module — nn_linear • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a linear transformation to the incoming data: y = xA^T + b

    -
    - -
    nn_linear(in_features, out_features, bias = TRUE)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    in_features

    size of each input sample

    out_features

    size of each output sample

    bias

    If set to FALSE, the layer will not learn an additive bias. -Default: TRUE

    - -

    Shape

    - - - -
      -
    • Input: (N, *, H_in) where * means any number of -additional dimensions and H_in = in_features.

    • -
    • Output: (N, *, H_out) where all but the last dimension -are the same shape as the input and :math:H_out = out_features.

    • -
    - -

    Attributes

    - - - -
      -
    • weight: the learnable weights of the module of shape -(out_features, in_features). The values are -initialized from \(U(-\sqrt{k}, \sqrt{k})\)s, where -\(k = \frac{1}{\mbox{in\_features}}\)

    • -
    • bias: the learnable bias of the module of shape \((\mbox{out\_features})\). -If bias is TRUE, the values are initialized from -\(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where -\(k = \frac{1}{\mbox{in\_features}}\)

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_linear(20, 30) -input <- torch_randn(128, 20) -output <- m(input) -print(output$size())
    #> [1] 128 30
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_log_sigmoid.html b/docs/reference/nn_log_sigmoid.html deleted file mode 100644 index b75b58183..000000000 --- a/docs/reference/nn_log_sigmoid.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -LogSigmoid module — nn_log_sigmoid • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function: -$$ - \mbox{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right) - $$

    -
    - -
    nn_log_sigmoid()
    - - -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_log_sigmoid() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_log_softmax.html b/docs/reference/nn_log_softmax.html deleted file mode 100644 index e20e5a05a..000000000 --- a/docs/reference/nn_log_softmax.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -LogSoftmax module — nn_log_softmax • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the \(\log(\mbox{Softmax}(x))\) function to an n-dimensional -input Tensor. The LogSoftmax formulation can be simplified as:

    -
    - -
    nn_log_softmax(dim)
    - -

    Arguments

    - - - - - - -
    dim

    (int): A dimension along which LogSoftmax will be computed.

    - -

    Value

    - -

    a Tensor of the same dimension and shape as the input with -values in the range [-inf, 0)

    -

    Details

    - -

    $$ - \mbox{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) -$$

    -

    Shape

    - - - -
      -
    • Input: \((*)\) where * means, any number of additional -dimensions

    • -
    • Output: \((*)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_log_softmax(1) -input <- torch_randn(2, 3) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_max_pool1d.html b/docs/reference/nn_max_pool1d.html deleted file mode 100644 index 7a707ed7b..000000000 --- a/docs/reference/nn_max_pool1d.html +++ /dev/null @@ -1,268 +0,0 @@ - - - - - - - - -MaxPool1D module — nn_max_pool1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 1D max pooling over an input signal composed of several input -planes.

    -
    - -
    nn_max_pool1d(
    -  kernel_size,
    -  stride = NULL,
    -  padding = 0,
    -  dilation = 1,
    -  return_indices = FALSE,
    -  ceil_mode = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    kernel_size

    the size of the window to take a max over

    stride

    the stride of the window. Default value is kernel_size

    padding

    implicit zero padding to be added on both sides

    dilation

    a parameter that controls the stride of elements in the window

    return_indices

    if TRUE, will return the max indices along with the outputs. -Useful for nn_max_unpool1d() later.

    ceil_mode

    when TRUE, will use ceil instead of floor to compute the output shape

    - -

    Details

    - -

    In the simplest case, the output value of the layer with input size \((N, C, L)\) -and output \((N, C, L_{out})\) can be precisely described as:

    -

    $$ - out(N_i, C_j, k) = \max_{m=0, \ldots, \mbox{kernel\_size} - 1} -input(N_i, C_j, stride \times k + m) -$$

    -

    If padding is non-zero, then the input is implicitly zero-padded on both sides -for padding number of points. dilation controls the spacing between the kernel points. -It is harder to describe, but this link -has a nice visualization of what dilation does.

    -

    Shape

    - - - -
      -
    • Input: \((N, C, L_{in})\)

    • -
    • Output: \((N, C, L_{out})\), where

    • -
    - -

    $$ - L_{out} = \left\lfloor \frac{L_{in} + 2 \times \mbox{padding} - \mbox{dilation} - \times (\mbox{kernel\_size} - 1) - 1}{\mbox{stride}} + 1\right\rfloor -$$

    - -

    Examples

    -
    # \dontrun{ -# pool of size=3, stride=2 -m <- nn_max_pool1d(3, stride=2) -input <- torch_randn(20, 16, 50) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_max_pool2d.html b/docs/reference/nn_max_pool2d.html deleted file mode 100644 index 7804fca4a..000000000 --- a/docs/reference/nn_max_pool2d.html +++ /dev/null @@ -1,283 +0,0 @@ - - - - - - - - -MaxPool2D module — nn_max_pool2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 2D max pooling over an input signal composed of several input -planes.

    -
    - -
    nn_max_pool2d(
    -  kernel_size,
    -  stride = NULL,
    -  padding = 0,
    -  dilation = 1,
    -  return_indices = FALSE,
    -  ceil_mode = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    kernel_size

    the size of the window to take a max over

    stride

    the stride of the window. Default value is kernel_size

    padding

    implicit zero padding to be added on both sides

    dilation

    a parameter that controls the stride of elements in the window

    return_indices

    if TRUE, will return the max indices along with the outputs. -Useful for nn_max_unpool2d() later.

    ceil_mode

    when TRUE, will use ceil instead of floor to compute the output shape

    - -

    Details

    - -

    In the simplest case, the output value of the layer with input size \((N, C, H, W)\), -output \((N, C, H_{out}, W_{out})\) and kernel_size \((kH, kW)\) -can be precisely described as:

    -

    $$ - \begin{array}{ll} -out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\ -& \mbox{input}(N_i, C_j, \mbox{stride[0]} \times h + m, - \mbox{stride[1]} \times w + n) -\end{array} -$$

    -

    If padding is non-zero, then the input is implicitly zero-padded on both sides -for padding number of points. dilation controls the spacing between the kernel points. -It is harder to describe, but this link has a nice visualization of what dilation does.

    -

    The parameters kernel_size, stride, padding, dilation can either be:

      -
    • a single int -- in which case the same value is used for the height and width dimension

    • -
    • a tuple of two ints -- in which case, the first int is used for the height dimension, -and the second int for the width dimension

    • -
    - -

    Shape

    - - - -
      -
    • Input: \((N, C, H_{in}, W_{in})\)

    • -
    • Output: \((N, C, H_{out}, W_{out})\), where

    • -
    - -

    $$ - H_{out} = \left\lfloor\frac{H_{in} + 2 * \mbox{padding[0]} - \mbox{dilation[0]} - \times (\mbox{kernel\_size[0]} - 1) - 1}{\mbox{stride[0]}} + 1\right\rfloor -$$

    -

    $$ - W_{out} = \left\lfloor\frac{W_{in} + 2 * \mbox{padding[1]} - \mbox{dilation[1]} - \times (\mbox{kernel\_size[1]} - 1) - 1}{\mbox{stride[1]}} + 1\right\rfloor -$$

    - -

    Examples

    -
    # \dontrun{ -# pool of square window of size=3, stride=2 -m <- nn_max_pool2d(3, stride=2) -# pool of non-square window -m <- nn_max_pool2d(c(3, 2), stride=c(2, 1)) -input <- torch_randn(20, 16, 50, 32) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_module.html b/docs/reference/nn_module.html deleted file mode 100644 index 8848bc1fe..000000000 --- a/docs/reference/nn_module.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Base class for all neural network modules. — nn_module • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Your models should also subclass this class.

    -
    - -
    nn_module(classname = NULL, inherit = nn_Module, ...)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    classname

    an optional name for the module

    inherit

    an optional module to inherit from

    ...

    methods implementation

    - -

    Details

    - -

    Modules can also contain other Modules, allowing to nest them in a tree -structure. You can assign the submodules as regular attributes.

    - -

    Examples

    -
    # \dontrun{ -model <- nn_module( - initialize = function() { - self$conv1 <- nn_conv2d(1, 20, 5) - self$conv2 <- nn_conv2d(20, 20, 5) - }, - forward = function(input) { - input <- self$conv1(input) - input <- nnf_relu(input) - input <- self$conv2(input) - input <- nnf_relu(input) - input - } -) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_module_list.html b/docs/reference/nn_module_list.html deleted file mode 100644 index b03a9e1bf..000000000 --- a/docs/reference/nn_module_list.html +++ /dev/null @@ -1,224 +0,0 @@ - - - - - - - - -Holds submodules in a list. — nn_module_list • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    nn_module_list can be indexed like a regular R list, but -modules it contains are properly registered, and will be visible by all -nn_module methods.

    -
    - -
    nn_module_list(modules = list())
    - -

    Arguments

    - - - - - - -
    modules

    a list of modules to add

    - - -

    Examples

    -
    # \dontrun{ - -my_module <- nn_module( - initialize = function() { - self$linears <- nn_module_list(lapply(1:10, function(x) nn_linear(10, 10))) - }, - forward = function(x) { - for (i in 1:length(self$linears)) - x <- self$linears[[i]](x) - x - } -) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_multihead_attention.html b/docs/reference/nn_multihead_attention.html deleted file mode 100644 index f7b9e3a96..000000000 --- a/docs/reference/nn_multihead_attention.html +++ /dev/null @@ -1,289 +0,0 @@ - - - - - - - - -MultiHead attention — nn_multihead_attention • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Allows the model to jointly attend to information -from different representation subspaces. -See reference: Attention Is All You Need

    -
    - -
    nn_multihead_attention(
    -  embed_dim,
    -  num_heads,
    -  dropout = 0,
    -  bias = TRUE,
    -  add_bias_kv = FALSE,
    -  add_zero_attn = FALSE,
    -  kdim = NULL,
    -  vdim = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    embed_dim

    total dimension of the model.

    num_heads

    parallel attention heads.

    dropout

    a Dropout layer on attn_output_weights. Default: 0.0.

    bias

    add bias as module parameter. Default: True.

    add_bias_kv

    add bias to the key and value sequences at dim=0.

    add_zero_attn

    add a new batch of zeros to the key and -value sequences at dim=1.

    kdim

    total number of features in key. Default: NULL

    vdim

    total number of features in value. Default: NULL. -Note: if kdim and vdim are NULL, they will be set to embed_dim such that -query, key, and value have the same number of features.

    - -

    Details

    - -

    $$ - \mbox{MultiHead}(Q, K, V) = \mbox{Concat}(head_1,\dots,head_h)W^O -\mbox{where} head_i = \mbox{Attention}(QW_i^Q, KW_i^K, VW_i^V) -$$

    -

    Shape

    - - - - -

    Inputs:

      -
    • query: \((L, N, E)\) where L is the target sequence length, N is the batch size, E is -the embedding dimension.

    • -
    • key: \((S, N, E)\), where S is the source sequence length, N is the batch size, E is -the embedding dimension.

    • -
    • value: \((S, N, E)\) where S is the source sequence length, N is the batch size, E is -the embedding dimension.

    • -
    • key_padding_mask: \((N, S)\) where N is the batch size, S is the source sequence length. -If a ByteTensor is provided, the non-zero positions will be ignored while the position -with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the -value of True will be ignored while the position with the value of False will be unchanged.

    • -
    • attn_mask: 2D mask \((L, S)\) where L is the target sequence length, S is the source sequence length. -3D mask \((N*num_heads, L, S)\) where N is the batch size, L is the target sequence length, -S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked -positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend -while the zero positions will be unchanged. If a BoolTensor is provided, positions with True -is not allowed to attend while False values will be unchanged. If a FloatTensor -is provided, it will be added to the attention weight.

    • -
    - -

    Outputs:

      -
    • attn_output: \((L, N, E)\) where L is the target sequence length, N is the batch size, -E is the embedding dimension.

    • -
    • attn_output_weights: \((N, L, S)\) where N is the batch size, -L is the target sequence length, S is the source sequence length.

    • -
    - - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_prelu.html b/docs/reference/nn_prelu.html deleted file mode 100644 index ec2da259c..000000000 --- a/docs/reference/nn_prelu.html +++ /dev/null @@ -1,270 +0,0 @@ - - - - - - - - -PReLU module — nn_prelu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function: -$$ - \mbox{PReLU}(x) = \max(0,x) + a * \min(0,x) -$$ -or -$$ - \mbox{PReLU}(x) = - \left\{ \begin{array}{ll} -x, & \mbox{ if } x \geq 0 \\ -ax, & \mbox{ otherwise } -\end{array} -\right. -$$

    -
    - -
    nn_prelu(num_parameters = 1, init = 0.25)
    - -

    Arguments

    - - - - - - - - - - -
    num_parameters

    (int): number of \(a\) to learn. -Although it takes an int as input, there is only two values are legitimate: -1, or the number of channels at input. Default: 1

    init

    (float): the initial value of \(a\). Default: 0.25

    - -

    Details

    - -

    Here \(a\) is a learnable parameter. When called without arguments, nn.prelu() uses a single -parameter \(a\) across all input channels. If called with nn_prelu(nChannels), -a separate \(a\) is used for each input channel.

    -

    Note

    - -

    weight decay should not be used when learning \(a\) for good performance.

    -

    Channel dim is the 2nd dim of input. When input has dims < 2, then there is -no channel dim and the number of channels = 1.

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - -

    Attributes

    - - - -
      -
    • weight (Tensor): the learnable weights of shape (num_parameters).

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_prelu() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_relu.html b/docs/reference/nn_relu.html deleted file mode 100644 index 21a181a9b..000000000 --- a/docs/reference/nn_relu.html +++ /dev/null @@ -1,227 +0,0 @@ - - - - - - - - -ReLU module — nn_relu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the rectified linear unit function element-wise -$$\mbox{ReLU}(x) = (x)^+ = \max(0, x)$$

    -
    - -
    nn_relu(inplace = FALSE)
    - -

    Arguments

    - - - - - - -
    inplace

    can optionally do the operation in-place. Default: FALSE

    - -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_relu() -input <- torch_randn(2) -m(input)
    #> torch_tensor -#> 0.2952 -#> 0.0000 -#> [ CPUFloatType{2} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_relu6.html b/docs/reference/nn_relu6.html deleted file mode 100644 index 3bc8d5d38..000000000 --- a/docs/reference/nn_relu6.html +++ /dev/null @@ -1,227 +0,0 @@ - - - - - - - - -ReLu6 module — nn_relu6 • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function:

    -
    - -
    nn_relu6(inplace = FALSE)
    - -

    Arguments

    - - - - - - -
    inplace

    can optionally do the operation in-place. Default: FALSE

    - -

    Details

    - -

    $$ - \mbox{ReLU6}(x) = \min(\max(0,x), 6) -$$

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_relu6() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_rnn.html b/docs/reference/nn_rnn.html deleted file mode 100644 index 343ee10ff..000000000 --- a/docs/reference/nn_rnn.html +++ /dev/null @@ -1,446 +0,0 @@ - - - - - - - - -RNN module — nn_rnn • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a multi-layer Elman RNN with \(\tanh\) or \(\mbox{ReLU}\) non-linearity -to an input sequence.

    -
    - -
    nn_rnn(
    -  input_size,
    -  hidden_size,
    -  num_layers = 1,
    -  nonlinearity = NULL,
    -  bias = TRUE,
    -  batch_first = FALSE,
    -  dropout = 0,
    -  bidirectional = FALSE,
    -  ...
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input_size

    The number of expected features in the input x

    hidden_size

    The number of features in the hidden state h

    num_layers

    Number of recurrent layers. E.g., setting num_layers=2 -would mean stacking two RNNs together to form a stacked RNN, -with the second RNN taking in outputs of the first RNN and -computing the final results. Default: 1

    nonlinearity

    The non-linearity to use. Can be either 'tanh' or -'relu'. Default: 'tanh'

    bias

    If FALSE, then the layer does not use bias weights b_ih and -b_hh. Default: TRUE

    batch_first

    If TRUE, then the input and output tensors are provided -as (batch, seq, feature). Default: FALSE

    dropout

    If non-zero, introduces a Dropout layer on the outputs of each -RNN layer except the last layer, with dropout probability equal to -dropout. Default: 0

    bidirectional

    If TRUE, becomes a bidirectional RNN. Default: FALSE

    ...

    other arguments that can be passed to the super class.

    - -

    Details

    - -

    For each element in the input sequence, each layer computes the following -function:

    -

    $$ -h_t = \tanh(W_{ih} x_t + b_{ih} + W_{hh} h_{(t-1)} + b_{hh}) -$$

    -

    where \(h_t\) is the hidden state at time t, \(x_t\) is -the input at time t, and \(h_{(t-1)}\) is the hidden state of the -previous layer at time t-1 or the initial hidden state at time 0. -If nonlinearity is 'relu', then \(\mbox{ReLU}\) is used instead of -\(\tanh\).

    -

    Inputs

    - - - -
      -
    • input of shape (seq_len, batch, input_size): tensor containing the features -of the input sequence. The input can also be a packed variable length -sequence.

    • -
    • h_0 of shape (num_layers * num_directions, batch, hidden_size): tensor -containing the initial hidden state for each element in the batch. -Defaults to zero if not provided. If the RNN is bidirectional, -num_directions should be 2, else it should be 1.

    • -
    - -

    Outputs

    - - - -
      -
    • output of shape (seq_len, batch, num_directions * hidden_size): tensor -containing the output features (h_t) from the last layer of the RNN, -for each t. If a :class:nn_packed_sequence has -been given as the input, the output will also be a packed sequence. -For the unpacked case, the directions can be separated -using output$view(seq_len, batch, num_directions, hidden_size), -with forward and backward being direction 0 and 1 respectively. -Similarly, the directions can be separated in the packed case.

    • -
    • h_n of shape (num_layers * num_directions, batch, hidden_size): tensor -containing the hidden state for t = seq_len. -Like output, the layers can be separated using -h_n$view(num_layers, num_directions, batch, hidden_size).

    • -
    - -

    Shape

    - - - -
      -
    • Input1: \((L, N, H_{in})\) tensor containing input features where -\(H_{in}=\mbox{input\_size}\) and L represents a sequence length.

    • -
    • Input2: \((S, N, H_{out})\) tensor -containing the initial hidden state for each element in the batch. -\(H_{out}=\mbox{hidden\_size}\) -Defaults to zero if not provided. where \(S=\mbox{num\_layers} * \mbox{num\_directions}\) -If the RNN is bidirectional, num_directions should be 2, else it should be 1.

    • -
    • Output1: \((L, N, H_{all})\) where \(H_{all}=\mbox{num\_directions} * \mbox{hidden\_size}\)

    • -
    • Output2: \((S, N, H_{out})\) tensor containing the next hidden state -for each element in the batch

    • -
    - -

    Attributes

    - - - -
      -
    • weight_ih_l[k]: the learnable input-hidden weights of the k-th layer, -of shape (hidden_size, input_size) for k = 0. Otherwise, the shape is -(hidden_size, num_directions * hidden_size)

    • -
    • weight_hh_l[k]: the learnable hidden-hidden weights of the k-th layer, -of shape (hidden_size, hidden_size)

    • -
    • bias_ih_l[k]: the learnable input-hidden bias of the k-th layer, -of shape (hidden_size)

    • -
    • bias_hh_l[k]: the learnable hidden-hidden bias of the k-th layer, -of shape (hidden_size)

    • -
    - -

    Note

    - - - - -

    All the weights and biases are initialized from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) -where \(k = \frac{1}{\mbox{hidden\_size}}\)

    - -

    Examples

    -
    # \dontrun{ -rnn <- nn_rnn(10, 20, 2) -input <- torch_randn(5, 3, 10) -h0 <- torch_randn(2, 3, 20) -rnn(input, h0)
    #> [[1]] -#> torch_tensor -#> (1,.,.) = -#> Columns 1 to 9 0.1563 0.2797 0.4653 0.8483 -0.5044 0.5032 -0.2032 0.8317 -0.0350 -#> 0.1632 -0.1904 0.5733 0.3198 -0.3562 0.3904 -0.6873 0.7901 -0.9472 -#> -0.6539 -0.6025 0.4797 -0.8375 0.7255 -0.4198 0.5030 -0.1419 0.2092 -#> -#> Columns 10 to 18 0.9481 -0.2581 -0.6185 -0.7787 -0.2685 -0.7144 -0.3700 0.4854 0.0008 -#> 0.8805 -0.2755 -0.9071 -0.5580 -0.0061 -0.8662 -0.7541 0.7855 -0.6157 -#> 0.5480 0.5395 -0.1759 0.2965 0.7805 -0.2651 -0.8080 0.2643 0.7689 -#> -#> Columns 19 to 20 0.3487 -0.1631 -#> 0.2535 0.5113 -#> -0.0188 0.3766 -#> -#> (2,.,.) = -#> Columns 1 to 9 0.1416 0.4498 0.1932 0.1637 -0.5115 -0.7125 -0.4544 -0.1721 -0.0345 -#> -0.7202 0.1668 0.1129 0.6700 -0.6155 0.2947 -0.4558 0.1086 0.1323 -#> 0.3006 -0.0124 -0.0014 0.5341 -0.0718 0.3542 -0.1502 0.4042 -0.5156 -#> -#> Columns 10 to 18 0.8057 0.2908 -0.1019 -0.2748 0.2799 0.6493 -0.7338 0.1910 0.1886 -#> -0.1154 0.1593 -0.5129 -0.6648 0.1733 -0.2496 -0.0886 0.2975 0.5137 -#> 0.8810 0.4194 -0.0103 -0.8285 -0.0348 -0.0102 -0.6628 0.1669 -0.4613 -#> -#> Columns 19 to 20 -0.0403 0.0080 -#> -0.0600 -0.4162 -#> 0.0908 0.6937 -#> -#> (3,.,.) = -#> Columns 1 to 9 -0.1978 0.2242 0.0024 0.3932 -0.4801 -0.4895 -0.5400 -0.0527 -0.4520 -#> 0.4544 0.0302 0.4917 0.2736 -0.5769 -0.1859 -0.4959 0.0229 -0.2535 -#> -0.5535 0.3675 0.5847 0.6636 -0.3288 -0.2481 -0.1065 -0.0289 -0.5147 -#> -#> Columns 10 to 18 0.8121 0.5476 -0.5889 -0.2491 0.5971 0.3482 -0.4202 0.5075 0.0695 -#> 0.8887 0.3603 -0.1642 -0.3072 0.2559 -0.0096 -0.6545 0.5044 0.5036 -#> 0.6373 -0.1207 0.0495 -0.3367 0.4293 0.4361 -0.3157 0.3224 0.6757 -#> -#> Columns 19 to 20 -0.0226 -0.0955 -#> 0.6364 0.2054 -#> 0.1772 -0.2871 -#> -#> (4,.,.) = -#> Columns 1 to 9 -0.5002 0.2480 -0.0165 0.4973 -0.7685 0.0885 -0.3330 -0.2697 -0.1477 -#> -0.5379 0.1719 0.2126 0.1891 -0.5105 0.2180 -0.5122 -0.1882 -0.4472 -#> 0.0806 0.0901 0.5329 0.3643 -0.6769 0.4601 -0.5399 -0.3066 -0.0994 -#> -#> Columns 10 to 18 0.4677 -0.0194 -0.3609 -0.2897 0.3666 0.0276 0.0770 0.5985 0.5201 -#> 0.6046 -0.2503 -0.4701 -0.1266 0.3423 0.1259 -0.2631 0.5912 0.1230 -#> 0.6537 -0.2490 -0.3203 -0.3803 0.0304 -0.0077 0.1981 0.6495 -0.0583 -#> -#> Columns 19 to 20 -0.0329 -0.2124 -#> 0.1306 0.0613 -#> 0.0430 -0.0534 -#> -#> (5,.,.) = -#> Columns 1 to 9 -0.3560 0.0896 0.2468 0.0908 -0.3990 -0.1175 -0.3947 -0.0834 0.1421 -#> 0.1891 -0.0772 0.2671 0.0296 -0.1929 -0.2009 -0.5507 -0.2240 0.2121 -#> -0.1833 0.2226 -0.0158 0.5592 -0.5925 0.0255 -0.6282 -0.1562 0.0561 -#> -#> Columns 10 to 18 0.5649 -0.0882 -0.4652 -0.2057 0.0088 0.0349 -0.0315 0.3252 0.6167 -#> 0.5626 0.3505 -0.2768 -0.4894 -0.0599 0.4348 -0.1352 0.2022 0.2273 -#> 0.2647 0.0037 -0.3756 -0.3976 -0.0172 -0.1532 -0.4150 0.3451 0.3110 -#> -#> Columns 19 to 20 0.2250 0.1283 -#> -0.0717 0.2627 -#> 0.1909 -0.1445 -#> [ CPUFloatType{5,3,20} ] -#> -#> [[2]] -#> torch_tensor -#> (1,.,.) = -#> Columns 1 to 9 -0.2977 -0.3901 -0.3494 -0.6523 0.3627 0.1448 -0.3341 0.2196 0.1126 -#> 0.2888 -0.7529 0.1781 -0.0379 -0.2393 0.3807 0.1044 -0.0212 -0.5096 -#> -0.1402 -0.3835 -0.2036 0.3084 0.1285 -0.3805 0.1103 0.0476 0.2100 -#> -#> Columns 10 to 18 -0.6325 -0.1108 -0.1481 0.0602 0.7081 -0.3749 0.6918 -0.4901 -0.2858 -#> 0.2888 0.4654 0.2154 -0.3173 0.4848 0.3496 -0.1522 -0.0645 -0.5102 -#> 0.2073 0.5197 0.0807 0.4554 0.0247 -0.2980 -0.3274 -0.1698 -0.0551 -#> -#> Columns 19 to 20 0.0842 0.0867 -#> 0.1297 -0.4188 -#> 0.6599 -0.5773 -#> -#> (2,.,.) = -#> Columns 1 to 9 -0.3560 0.0896 0.2468 0.0908 -0.3990 -0.1175 -0.3947 -0.0834 0.1421 -#> 0.1891 -0.0772 0.2671 0.0296 -0.1929 -0.2009 -0.5507 -0.2240 0.2121 -#> -0.1833 0.2226 -0.0158 0.5592 -0.5925 0.0255 -0.6282 -0.1562 0.0561 -#> -#> Columns 10 to 18 0.5649 -0.0882 -0.4652 -0.2057 0.0088 0.0349 -0.0315 0.3252 0.6167 -#> 0.5626 0.3505 -0.2768 -0.4894 -0.0599 0.4348 -0.1352 0.2022 0.2273 -#> 0.2647 0.0037 -0.3756 -0.3976 -0.0172 -0.1532 -0.4150 0.3451 0.3110 -#> -#> Columns 19 to 20 0.2250 0.1283 -#> -0.0717 0.2627 -#> 0.1909 -0.1445 -#> [ CPUFloatType{2,3,20} ] -#>
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_rrelu.html b/docs/reference/nn_rrelu.html deleted file mode 100644 index 5755b8fb0..000000000 --- a/docs/reference/nn_rrelu.html +++ /dev/null @@ -1,250 +0,0 @@ - - - - - - - - -RReLU module — nn_rrelu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the randomized leaky rectified liner unit function, element-wise, -as described in the paper:

    -
    - -
    nn_rrelu(lower = 1/8, upper = 1/3, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    lower

    lower bound of the uniform distribution. Default: \(\frac{1}{8}\)

    upper

    upper bound of the uniform distribution. Default: \(\frac{1}{3}\)

    inplace

    can optionally do the operation in-place. Default: FALSE

    - -

    Details

    - -

    Empirical Evaluation of Rectified Activations in Convolutional Network.

    -

    The function is defined as:

    -

    $$ -\mbox{RReLU}(x) = -\left\{ \begin{array}{ll} -x & \mbox{if } x \geq 0 \\ -ax & \mbox{ otherwise } -\end{array} -\right. -$$

    -

    where \(a\) is randomly sampled from uniform distribution -\(\mathcal{U}(\mbox{lower}, \mbox{upper})\). -See: https://arxiv.org/pdf/1505.00853.pdf

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_rrelu(0.1, 0.3) -input <- torch_randn(2) -m(input)
    #> torch_tensor -#> -0.0421 -#> 1.4246 -#> [ CPUFloatType{2} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_selu.html b/docs/reference/nn_selu.html deleted file mode 100644 index f38b8e60b..000000000 --- a/docs/reference/nn_selu.html +++ /dev/null @@ -1,231 +0,0 @@ - - - - - - - - -SELU module — nn_selu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applied element-wise, as:

    -
    - -
    nn_selu(inplace = FALSE)
    - -

    Arguments

    - - - - - - -
    inplace

    (bool, optional): can optionally do the operation in-place. Default: FALSE

    - -

    Details

    - -

    $$ - \mbox{SELU}(x) = \mbox{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) -$$

    -

    with \(\alpha = 1.6732632423543772848170429916717\) and -\(\mbox{scale} = 1.0507009873554804934193349852946\).

    -

    More details can be found in the paper -Self-Normalizing Neural Networks.

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_selu() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_sequential.html b/docs/reference/nn_sequential.html deleted file mode 100644 index afd123a4a..000000000 --- a/docs/reference/nn_sequential.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -A sequential container — nn_sequential • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    A sequential container. -Modules will be added to it in the order they are passed in the constructor. -See examples.

    -
    - -
    nn_sequential(..., name = NULL)
    - -

    Arguments

    - - - - - - - - - - -
    ...

    sequence of modules to be added

    name

    optional name for the generated module.

    - - -

    Examples

    -
    # \dontrun{ - -model <- nn_sequential( - nn_conv2d(1, 20, 5), - nn_relu(), - nn_conv2d(20, 64, 5), - nn_relu() -) -input <- torch_randn(32, 1, 28, 28) -output <- model(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_sigmoid.html b/docs/reference/nn_sigmoid.html deleted file mode 100644 index 912e815e9..000000000 --- a/docs/reference/nn_sigmoid.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Sigmoid module — nn_sigmoid • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function:

    -
    - -
    nn_sigmoid()
    - - -

    Details

    - -

    $$ - \mbox{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)} -$$

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_sigmoid() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_softmax.html b/docs/reference/nn_softmax.html deleted file mode 100644 index 9ffface0c..000000000 --- a/docs/reference/nn_softmax.html +++ /dev/null @@ -1,246 +0,0 @@ - - - - - - - - -Softmax module — nn_softmax • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the Softmax function to an n-dimensional input Tensor -rescaling them so that the elements of the n-dimensional output Tensor -lie in the range [0,1] and sum to 1. -Softmax is defined as:

    -
    - -
    nn_softmax(dim)
    - -

    Arguments

    - - - - - - -
    dim

    (int): A dimension along which Softmax will be computed (so every slice -along dim will sum to 1).

    - -

    Value

    - -

    : -a Tensor of the same dimension and shape as the input with -values in the range [0, 1]

    -

    Details

    - -

    $$ - \mbox{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} -$$

    -

    When the input Tensor is a sparse tensor then the unspecifed -values are treated as -Inf.

    -

    Note

    - -

    This module doesn't work directly with NLLLoss, -which expects the Log to be computed between the Softmax and itself. -Use LogSoftmax instead (it's faster and has better numerical properties).

    -

    Shape

    - - - -
      -
    • Input: \((*)\) where * means, any number of additional -dimensions

    • -
    • Output: \((*)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_softmax(1) -input <- torch_randn(2, 3) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_softmax2d.html b/docs/reference/nn_softmax2d.html deleted file mode 100644 index 7288011ff..000000000 --- a/docs/reference/nn_softmax2d.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Softmax2d module — nn_softmax2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies SoftMax over features to each spatial location. -When given an image of Channels x Height x Width, it will -apply Softmax to each location \((Channels, h_i, w_j)\)

    -
    - -
    nn_softmax2d()
    - - -

    Value

    - -

    a Tensor of the same dimension and shape as the input with -values in the range [0, 1]

    -

    Shape

    - - - -
      -
    • Input: \((N, C, H, W)\)

    • -
    • Output: \((N, C, H, W)\) (same shape as input)

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_softmax2d() -input <- torch_randn(2, 3, 12, 13) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_softmin.html b/docs/reference/nn_softmin.html deleted file mode 100644 index 59aa790e7..000000000 --- a/docs/reference/nn_softmin.html +++ /dev/null @@ -1,238 +0,0 @@ - - - - - - - - -Softmin — nn_softmin • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the Softmin function to an n-dimensional input Tensor -rescaling them so that the elements of the n-dimensional output Tensor -lie in the range [0, 1] and sum to 1. -Softmin is defined as:

    -
    - -
    nn_softmin(dim)
    - -

    Arguments

    - - - - - - -
    dim

    (int): A dimension along which Softmin will be computed (so every slice -along dim will sum to 1).

    - -

    Value

    - -

    a Tensor of the same dimension and shape as the input, with -values in the range [0, 1].

    -

    Details

    - -

    $$ - \mbox{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)} -$$

    -

    Shape

    - - - -
      -
    • Input: \((*)\) where * means, any number of additional -dimensions

    • -
    • Output: \((*)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_softmin(dim = 1) -input <- torch_randn(2, 2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_softplus.html b/docs/reference/nn_softplus.html deleted file mode 100644 index 9ed55c7ea..000000000 --- a/docs/reference/nn_softplus.html +++ /dev/null @@ -1,238 +0,0 @@ - - - - - - - - -Softplus module — nn_softplus • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function: -$$ - \mbox{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) -$$

    -
    - -
    nn_softplus(beta = 1, threshold = 20)
    - -

    Arguments

    - - - - - - - - - - -
    beta

    the \(\beta\) value for the Softplus formulation. Default: 1

    threshold

    values above this revert to a linear function. Default: 20

    - -

    Details

    - -

    SoftPlus is a smooth approximation to the ReLU function and can be used -to constrain the output of a machine to always be positive. -For numerical stability the implementation reverts to the linear function -when \(input \times \beta > threshold\).

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_softplus() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_softshrink.html b/docs/reference/nn_softshrink.html deleted file mode 100644 index db79678e3..000000000 --- a/docs/reference/nn_softshrink.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Softshrink module — nn_softshrink • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the soft shrinkage function elementwise:

    -
    - -
    nn_softshrink(lambd = 0.5)
    - -

    Arguments

    - - - - - - -
    lambd

    the \(\lambda\) (must be no less than zero) value for the Softshrink formulation. Default: 0.5

    - -

    Details

    - -

    $$ - \mbox{SoftShrinkage}(x) = - \left\{ \begin{array}{ll} -x - \lambda, & \mbox{ if } x > \lambda \\ -x + \lambda, & \mbox{ if } x < -\lambda \\ -0, & \mbox{ otherwise } -\end{array} -\right. -$$

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_softshrink() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_softsign.html b/docs/reference/nn_softsign.html deleted file mode 100644 index 30815b625..000000000 --- a/docs/reference/nn_softsign.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -Softsign module — nn_softsign • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function: -$$ - \mbox{SoftSign}(x) = \frac{x}{ 1 + |x|} -$$

    -
    - -
    nn_softsign()
    - - -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_softsign() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_tanh.html b/docs/reference/nn_tanh.html deleted file mode 100644 index 7a1a1f310..000000000 --- a/docs/reference/nn_tanh.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Tanh module — nn_tanh • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function:

    -
    - -
    nn_tanh()
    - - -

    Details

    - -

    $$ - \mbox{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)} -$$

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_tanh() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_tanhshrink.html b/docs/reference/nn_tanhshrink.html deleted file mode 100644 index 0bd1f23cf..000000000 --- a/docs/reference/nn_tanhshrink.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Tanhshrink module — nn_tanhshrink • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function:

    -
    - -
    nn_tanhshrink()
    - - -

    Details

    - -

    $$ - \mbox{Tanhshrink}(x) = x - \tanh(x) -$$

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_tanhshrink() -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_threshold.html b/docs/reference/nn_threshold.html deleted file mode 100644 index b7f432796..000000000 --- a/docs/reference/nn_threshold.html +++ /dev/null @@ -1,241 +0,0 @@ - - - - - - - - -Threshoold module — nn_threshold • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Thresholds each element of the input Tensor.

    -
    - -
    nn_threshold(threshold, value, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    threshold

    The value to threshold at

    value

    The value to replace with

    inplace

    can optionally do the operation in-place. Default: FALSE

    - -

    Details

    - -

    Threshold is defined as: -$$ - y = - \left\{ \begin{array}{ll} - x, &\mbox{ if } x > \mbox{threshold} \\ - \mbox{value}, &\mbox{ otherwise } - \end{array} - \right. -$$

    -

    Shape

    - - - -
      -
    • Input: \((N, *)\) where * means, any number of additional -dimensions

    • -
    • Output: \((N, *)\), same shape as the input

    • -
    - - -

    Examples

    -
    # \dontrun{ -m <- nn_threshold(0.1, 20) -input <- torch_randn(2) -output <- m(input) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_utils_rnn_pack_padded_sequence.html b/docs/reference/nn_utils_rnn_pack_padded_sequence.html deleted file mode 100644 index 89df73e9f..000000000 --- a/docs/reference/nn_utils_rnn_pack_padded_sequence.html +++ /dev/null @@ -1,246 +0,0 @@ - - - - - - - - -Packs a Tensor containing padded sequences of variable length. — nn_utils_rnn_pack_padded_sequence • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    input can be of size T x B x * where T is the length of the -longest sequence (equal to lengths[1]), B is the batch size, and -* is any number of dimensions (including 0). If batch_first is -TRUE, B x T x * input is expected.

    -
    - -
    nn_utils_rnn_pack_padded_sequence(
    -  input,
    -  lengths,
    -  batch_first = FALSE,
    -  enforce_sorted = TRUE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor): padded batch of variable length sequences.

    lengths

    (Tensor): list of sequences lengths of each batch element.

    batch_first

    (bool, optional): if TRUE, the input is expected in B x T x * -format.

    enforce_sorted

    (bool, optional): if TRUE, the input is expected to -contain sequences sorted by length in a decreasing order. If -FALSE, the input will get sorted unconditionally. Default: TRUE.

    - -

    Value

    - -

    a PackedSequence object

    -

    Details

    - -

    For unsorted sequences, use enforce_sorted = FALSE. If enforce_sorted is -TRUE, the sequences should be sorted by length in a decreasing order, i.e. -input[,1] should be the longest sequence, and input[,B] the shortest -one. enforce_sorted = TRUE is only necessary for ONNX export.

    -

    Note

    - -

    This function accepts any input that has at least two dimensions. You -can apply it to pack the labels, and use the output of the RNN with -them to compute the loss directly. A Tensor can be retrieved from -a PackedSequence object by accessing its .data attribute.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_utils_rnn_pack_sequence.html b/docs/reference/nn_utils_rnn_pack_sequence.html deleted file mode 100644 index afddfe328..000000000 --- a/docs/reference/nn_utils_rnn_pack_sequence.html +++ /dev/null @@ -1,232 +0,0 @@ - - - - - - - - -Packs a list of variable length Tensors — nn_utils_rnn_pack_sequence • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    sequences should be a list of Tensors of size L x *, where L is -the length of a sequence and * is any number of trailing dimensions, -including zero.

    -
    - -
    nn_utils_rnn_pack_sequence(sequences, enforce_sorted = TRUE)
    - -

    Arguments

    - - - - - - - - - - -
    sequences

    (list[Tensor]): A list of sequences of decreasing length.

    enforce_sorted

    (bool, optional): if TRUE, checks that the input -contains sequences sorted by length in a decreasing order. If -FALSE, this condition is not checked. Default: TRUE.

    - -

    Value

    - -

    a PackedSequence object

    -

    Details

    - -

    For unsorted sequences, use enforce_sorted = FALSE. If enforce_sorted -is TRUE, the sequences should be sorted in the order of decreasing length. -enforce_sorted = TRUE is only necessary for ONNX export.

    - -

    Examples

    -
    # \dontrun{ -x <- torch_tensor(c(1,2,3), dtype = torch_long()) -y <- torch_tensor(c(4, 5), dtype = torch_long()) -z <- torch_tensor(c(6), dtype = torch_long()) - -p <- nn_utils_rnn_pack_sequence(list(x, y, z)) - -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_utils_rnn_pad_packed_sequence.html b/docs/reference/nn_utils_rnn_pad_packed_sequence.html deleted file mode 100644 index 7fd5237e8..000000000 --- a/docs/reference/nn_utils_rnn_pad_packed_sequence.html +++ /dev/null @@ -1,273 +0,0 @@ - - - - - - - - -Pads a packed batch of variable length sequences. — nn_utils_rnn_pad_packed_sequence • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    It is an inverse operation to nn_utils_rnn_pack_padded_sequence().

    -
    - -
    nn_utils_rnn_pad_packed_sequence(
    -  sequence,
    -  batch_first = FALSE,
    -  padding_value = 0,
    -  total_length = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    sequence

    (PackedSequence): batch to pad

    batch_first

    (bool, optional): if True, the output will be in ``B x T x *` -format.

    padding_value

    (float, optional): values for padded elements.

    total_length

    (int, optional): if not NULL, the output will be padded to -have length total_length. This method will throw ValueError -if total_length is less than the max sequence length in -sequence.

    - -

    Value

    - -

    Tuple of Tensor containing the padded sequence, and a Tensor -containing the list of lengths of each sequence in the batch. -Batch elements will be re-ordered as they were ordered originally when -the batch was passed to nn_utils_rnn_pack_padded_sequence() or -nn_utils_rnn_pack_sequence().

    -

    Details

    - -

    The returned Tensor's data will be of size T x B x *, where T is the length -of the longest sequence and B is the batch size. If batch_first is TRUE, -the data will be transposed into B x T x * format.

    -

    Note

    - -

    total_length is useful to implement the -pack sequence -> recurrent network -> unpack sequence pattern in a -nn_module wrapped in ~torch.nn.DataParallel.

    - -

    Examples

    -
    # \dontrun{ -seq <- torch_tensor(rbind(c(1,2,0), c(3,0,0), c(4,5,6))) -lens <- c(2,1,3) -packed <- nn_utils_rnn_pack_padded_sequence(seq, lens, batch_first = TRUE, - enforce_sorted = FALSE) -packed
    #> <PackedSequence> -#> Public: -#> batch_sizes: active binding -#> clone: function (deep = FALSE) -#> data: active binding -#> initialize: function (ptr = NULL) -#> ptr: externalptr -#> sorted_indices: active binding -#> unsorted_indices: active binding
    nn_utils_rnn_pad_packed_sequence(packed, batch_first=TRUE)
    #> [[1]] -#> torch_tensor -#> 1 2 0 -#> 3 0 0 -#> 4 5 6 -#> [ CPUFloatType{3,3} ] -#> -#> [[2]] -#> torch_tensor -#> 2 -#> 1 -#> 3 -#> [ CPULongType{3} ] -#>
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nn_utils_rnn_pad_sequence.html b/docs/reference/nn_utils_rnn_pad_sequence.html deleted file mode 100644 index 9d35f9112..000000000 --- a/docs/reference/nn_utils_rnn_pad_sequence.html +++ /dev/null @@ -1,243 +0,0 @@ - - - - - - - - -Pad a list of variable length Tensors with <code>padding_value</code> — nn_utils_rnn_pad_sequence • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    pad_sequence stacks a list of Tensors along a new dimension, -and pads them to equal length. For example, if the input is list of -sequences with size L x * and if batch_first is False, and T x B x * -otherwise.

    -
    - -
    nn_utils_rnn_pad_sequence(sequences, batch_first = FALSE, padding_value = 0)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    sequences

    (list[Tensor]): list of variable length sequences.

    batch_first

    (bool, optional): output will be in B x T x * if TRUE, -or in T x B x * otherwise

    padding_value

    (float, optional): value for padded elements. Default: 0.

    - -

    Value

    - -

    Tensor of size T x B x * if batch_first is FALSE. -Tensor of size B x T x * otherwise

    -

    Details

    - -

    B is batch size. It is equal to the number of elements in sequences. -T is length of the longest sequence. -L is length of the sequence. -* is any number of trailing dimensions, including none.

    -

    Note

    - -

    This function returns a Tensor of size T x B x * or B x T x * -where T is the length of the longest sequence. This function assumes -trailing dimensions and type of all the Tensors in sequences are same.

    - -

    Examples

    -
    # \dontrun{ -a <- torch_ones(25, 300) -b <- torch_ones(22, 300) -c <- torch_ones(15, 300) -nn_utils_rnn_pad_sequence(list(a, b, c))$size()
    #> [1] 25 3 300
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_adaptive_avg_pool1d.html b/docs/reference/nnf_adaptive_avg_pool1d.html deleted file mode 100644 index 9b1e89528..000000000 --- a/docs/reference/nnf_adaptive_avg_pool1d.html +++ /dev/null @@ -1,211 +0,0 @@ - - - - - - - - -Adaptive_avg_pool1d — nnf_adaptive_avg_pool1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 1D adaptive average pooling over an input signal composed of -several input planes.

    -
    - -
    nnf_adaptive_avg_pool1d(input, output_size)
    - -

    Arguments

    - - - - - - - - - - -
    input

    input tensor of shape (minibatch , in_channels , iW)

    output_size

    the target output size (single integer)

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_adaptive_avg_pool2d.html b/docs/reference/nnf_adaptive_avg_pool2d.html deleted file mode 100644 index 1af950d67..000000000 --- a/docs/reference/nnf_adaptive_avg_pool2d.html +++ /dev/null @@ -1,211 +0,0 @@ - - - - - - - - -Adaptive_avg_pool2d — nnf_adaptive_avg_pool2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 2D adaptive average pooling over an input signal composed of -several input planes.

    -
    - -
    nnf_adaptive_avg_pool2d(input, output_size)
    - -

    Arguments

    - - - - - - - - - - -
    input

    input tensor (minibatch, in_channels , iH , iW)

    output_size

    the target output size (single integer or double-integer tuple)

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_adaptive_avg_pool3d.html b/docs/reference/nnf_adaptive_avg_pool3d.html deleted file mode 100644 index f0fb43fe3..000000000 --- a/docs/reference/nnf_adaptive_avg_pool3d.html +++ /dev/null @@ -1,211 +0,0 @@ - - - - - - - - -Adaptive_avg_pool3d — nnf_adaptive_avg_pool3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 3D adaptive average pooling over an input signal composed of -several input planes.

    -
    - -
    nnf_adaptive_avg_pool3d(input, output_size)
    - -

    Arguments

    - - - - - - - - - - -
    input

    input tensor (minibatch, in_channels , iT * iH , iW)

    output_size

    the target output size (single integer or triple-integer tuple)

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_adaptive_max_pool1d.html b/docs/reference/nnf_adaptive_max_pool1d.html deleted file mode 100644 index 88e4b2839..000000000 --- a/docs/reference/nnf_adaptive_max_pool1d.html +++ /dev/null @@ -1,215 +0,0 @@ - - - - - - - - -Adaptive_max_pool1d — nnf_adaptive_max_pool1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 1D adaptive max pooling over an input signal composed of -several input planes.

    -
    - -
    nnf_adaptive_max_pool1d(input, output_size, return_indices = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    input tensor of shape (minibatch , in_channels , iW)

    output_size

    the target output size (single integer)

    return_indices

    whether to return pooling indices. Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_adaptive_max_pool2d.html b/docs/reference/nnf_adaptive_max_pool2d.html deleted file mode 100644 index a114c3e35..000000000 --- a/docs/reference/nnf_adaptive_max_pool2d.html +++ /dev/null @@ -1,215 +0,0 @@ - - - - - - - - -Adaptive_max_pool2d — nnf_adaptive_max_pool2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 2D adaptive max pooling over an input signal composed of -several input planes.

    -
    - -
    nnf_adaptive_max_pool2d(input, output_size, return_indices = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    input tensor (minibatch, in_channels , iH , iW)

    output_size

    the target output size (single integer or double-integer tuple)

    return_indices

    whether to return pooling indices. Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_adaptive_max_pool3d.html b/docs/reference/nnf_adaptive_max_pool3d.html deleted file mode 100644 index d4ff2df41..000000000 --- a/docs/reference/nnf_adaptive_max_pool3d.html +++ /dev/null @@ -1,215 +0,0 @@ - - - - - - - - -Adaptive_max_pool3d — nnf_adaptive_max_pool3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 3D adaptive max pooling over an input signal composed of -several input planes.

    -
    - -
    nnf_adaptive_max_pool3d(input, output_size, return_indices = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    input tensor (minibatch, in_channels , iT * iH , iW)

    output_size

    the target output size (single integer or triple-integer tuple)

    return_indices

    whether to return pooling indices. Default:FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_affine_grid.html b/docs/reference/nnf_affine_grid.html deleted file mode 100644 index a90e6eea6..000000000 --- a/docs/reference/nnf_affine_grid.html +++ /dev/null @@ -1,229 +0,0 @@ - - - - - - - - -Affine_grid — nnf_affine_grid • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Generates a 2D or 3D flow field (sampling grid), given a batch of -affine matrices theta.

    -
    - -
    nnf_affine_grid(theta, size, align_corners = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    theta

    (Tensor) input batch of affine matrices with shape -(\(N \times 2 \times 3\)) for 2D or (\(N \times 3 \times 4\)) for 3D

    size

    (torch.Size) the target output image size. (\(N \times C \times H \times W\) -for 2D or \(N \times C \times D \times H \times W\) for 3D) -Example: torch.Size((32, 3, 24, 24))

    align_corners

    (bool, optional) if True, consider -1 and 1 -to refer to the centers of the corner pixels rather than the image corners. -Refer to nnf_grid_sample() for a more complete description. A grid generated by -nnf_affine_grid() should be passed to nnf_grid_sample() with the same setting for -this option. Default: False

    - -

    Note

    - - - - -

    This function is often used in conjunction with nnf_grid_sample() -to build Spatial Transformer Networks_ .

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_alpha_dropout.html b/docs/reference/nnf_alpha_dropout.html deleted file mode 100644 index 31fad0a03..000000000 --- a/docs/reference/nnf_alpha_dropout.html +++ /dev/null @@ -1,218 +0,0 @@ - - - - - - - - -Alpha_dropout — nnf_alpha_dropout • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies alpha dropout to the input.

    -
    - -
    nnf_alpha_dropout(input, p = 0.5, training = FALSE, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    p

    probability of an element to be zeroed. Default: 0.5

    training

    apply dropout if is TRUE. Default: TRUE

    inplace

    If set to TRUE, will do this operation in-place. -Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_avg_pool1d.html b/docs/reference/nnf_avg_pool1d.html deleted file mode 100644 index e817c31eb..000000000 --- a/docs/reference/nnf_avg_pool1d.html +++ /dev/null @@ -1,239 +0,0 @@ - - - - - - - - -Avg_pool1d — nnf_avg_pool1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 1D average pooling over an input signal composed of several -input planes.

    -
    - -
    nnf_avg_pool1d(
    -  input,
    -  kernel_size,
    -  stride = NULL,
    -  padding = 0,
    -  ceil_mode = FALSE,
    -  count_include_pad = TRUE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor of shape (minibatch , in_channels , iW)

    kernel_size

    the size of the window. Can be a single number or a -tuple (kW,).

    stride

    the stride of the window. Can be a single number or a tuple -(sW,). Default: kernel_size

    padding

    implicit zero paddings on both sides of the input. Can be a -single number or a tuple (padW,). Default: 0

    ceil_mode

    when True, will use ceil instead of floor to compute the -output shape. Default: FALSE

    count_include_pad

    when True, will include the zero-padding in the -averaging calculation. Default: TRUE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_avg_pool2d.html b/docs/reference/nnf_avg_pool2d.html deleted file mode 100644 index 7350448eb..000000000 --- a/docs/reference/nnf_avg_pool2d.html +++ /dev/null @@ -1,247 +0,0 @@ - - - - - - - - -Avg_pool2d — nnf_avg_pool2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies 2D average-pooling operation in \(kH * kW\) regions by step size -\(sH * sW\) steps. The number of output features is equal to the number of -input planes.

    -
    - -
    nnf_avg_pool2d(
    -  input,
    -  kernel_size,
    -  stride = NULL,
    -  padding = 0,
    -  ceil_mode = FALSE,
    -  count_include_pad = TRUE,
    -  divisor_override = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor (minibatch, in_channels , iH , iW)

    kernel_size

    size of the pooling region. Can be a single number or a -tuple (kH, kW)

    stride

    stride of the pooling operation. Can be a single number or a -tuple (sH, sW). Default: kernel_size

    padding

    implicit zero paddings on both sides of the input. Can be a -single number or a tuple (padH, padW). Default: 0

    ceil_mode

    when True, will use ceil instead of floor in the formula -to compute the output shape. Default: FALSE

    count_include_pad

    when True, will include the zero-padding in the -averaging calculation. Default: TRUE

    divisor_override

    if specified, it will be used as divisor, otherwise -size of the pooling region will be used. Default: NULL

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_avg_pool3d.html b/docs/reference/nnf_avg_pool3d.html deleted file mode 100644 index a82de3ee2..000000000 --- a/docs/reference/nnf_avg_pool3d.html +++ /dev/null @@ -1,247 +0,0 @@ - - - - - - - - -Avg_pool3d — nnf_avg_pool3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies 3D average-pooling operation in \(kT * kH * kW\) regions by step -size \(sT * sH * sW\) steps. The number of output features is equal to -\(\lfloor \frac{ \mbox{input planes} }{sT} \rfloor\).

    -
    - -
    nnf_avg_pool3d(
    -  input,
    -  kernel_size,
    -  stride = NULL,
    -  padding = 0,
    -  ceil_mode = FALSE,
    -  count_include_pad = TRUE,
    -  divisor_override = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor (minibatch, in_channels , iT * iH , iW)

    kernel_size

    size of the pooling region. Can be a single number or a -tuple (kT, kH, kW)

    stride

    stride of the pooling operation. Can be a single number or a -tuple (sT, sH, sW). Default: kernel_size

    padding

    implicit zero paddings on both sides of the input. Can be a -single number or a tuple (padT, padH, padW), Default: 0

    ceil_mode

    when True, will use ceil instead of floor in the formula -to compute the output shape

    count_include_pad

    when True, will include the zero-padding in the -averaging calculation

    divisor_override

    NA if specified, it will be used as divisor, otherwise -size of the pooling region will be used. Default: NULL

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_batch_norm.html b/docs/reference/nnf_batch_norm.html deleted file mode 100644 index 758554bf9..000000000 --- a/docs/reference/nnf_batch_norm.html +++ /dev/null @@ -1,243 +0,0 @@ - - - - - - - - -Batch_norm — nnf_batch_norm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies Batch Normalization for each channel across a batch of data.

    -
    - -
    nnf_batch_norm(
    -  input,
    -  running_mean,
    -  running_var,
    -  weight = NULL,
    -  bias = NULL,
    -  training = FALSE,
    -  momentum = 0.1,
    -  eps = 1e-05
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor

    running_mean

    the running_mean tensor

    running_var

    the running_var tensor

    weight

    the weight tensor

    bias

    the bias tensor

    training

    bool wether it's training. Default: FALSE

    momentum

    the value used for the running_mean and running_var computation. -Can be set to None for cumulative moving average (i.e. simple average). Default: 0.1

    eps

    a value added to the denominator for numerical stability. Default: 1e-5

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_bilinear.html b/docs/reference/nnf_bilinear.html deleted file mode 100644 index c87d9667d..000000000 --- a/docs/reference/nnf_bilinear.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Bilinear — nnf_bilinear • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a bilinear transformation to the incoming data: -\(y = x_1 A x_2 + b\)

    -
    - -
    nnf_bilinear(input1, input2, weight, bias = NULL)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input1

    \((N, *, H_{in1})\) where \(H_{in1}=\mbox{in1\_features}\) -and \(*\) means any number of additional dimensions. -All but the last dimension of the inputs should be the same.

    input2

    \((N, *, H_{in2})\) where \(H_{in2}=\mbox{in2\_features}\)

    weight

    \((\mbox{out\_features}, \mbox{in1\_features}, -\mbox{in2\_features})\)

    bias

    \((\mbox{out\_features})\)

    - -

    Value

    - -

    output \((N, *, H_{out})\) where \(H_{out}=\mbox{out\_features}\) -and all but the last dimension are the same shape as the input.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_binary_cross_entropy.html b/docs/reference/nnf_binary_cross_entropy.html deleted file mode 100644 index b8c9b524e..000000000 --- a/docs/reference/nnf_binary_cross_entropy.html +++ /dev/null @@ -1,227 +0,0 @@ - - - - - - - - -Binary_cross_entropy — nnf_binary_cross_entropy • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Function that measures the Binary Cross Entropy -between the target and the output.

    -
    - -
    nnf_binary_cross_entropy(
    -  input,
    -  target,
    -  weight = NULL,
    -  reduction = c("mean", "sum", "none")
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    tensor (N,*) where ** means, any number of additional dimensions

    target

    tensor (N,*) , same shape as the input

    weight

    (tensor) weight for each value.

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_binary_cross_entropy_with_logits.html b/docs/reference/nnf_binary_cross_entropy_with_logits.html deleted file mode 100644 index 918494367..000000000 --- a/docs/reference/nnf_binary_cross_entropy_with_logits.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Binary_cross_entropy_with_logits — nnf_binary_cross_entropy_with_logits • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Function that measures Binary Cross Entropy between target and output -logits.

    -
    - -
    nnf_binary_cross_entropy_with_logits(
    -  input,
    -  target,
    -  weight = NULL,
    -  reduction = c("mean", "sum", "none"),
    -  pos_weight = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    Tensor of arbitrary shape

    target

    Tensor of the same shape as input

    weight

    (Tensor, optional) a manual rescaling weight if provided it's -repeated to match input tensor shape.

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    pos_weight

    (Tensor, optional) a weight of positive examples. -Must be a vector with length equal to the number of classes.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_celu.html b/docs/reference/nnf_celu.html deleted file mode 100644 index 2df5207f0..000000000 --- a/docs/reference/nnf_celu.html +++ /dev/null @@ -1,216 +0,0 @@ - - - - - - - - -Celu — nnf_celu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies element-wise, \(CELU(x) = max(0,x) + min(0, \alpha * (exp(x \alpha) - 1))\).

    -
    - -
    nnf_celu(input, alpha = 1, inplace = FALSE)
    -
    -nnf_celu_(input, alpha = 1)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    alpha

    the alpha value for the CELU formulation. Default: 1.0

    inplace

    can optionally do the operation in-place. Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_conv1d.html b/docs/reference/nnf_conv1d.html deleted file mode 100644 index 3f8a34f33..000000000 --- a/docs/reference/nnf_conv1d.html +++ /dev/null @@ -1,243 +0,0 @@ - - - - - - - - -Conv1d — nnf_conv1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 1D convolution over an input signal composed of several input -planes.

    -
    - -
    nnf_conv1d(
    -  input,
    -  weight,
    -  bias = NULL,
    -  stride = 1,
    -  padding = 0,
    -  dilation = 1,
    -  groups = 1
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor of shape (minibatch, in_channels , iW)

    weight

    filters of shape (out_channels, in_channels/groups , kW)

    bias

    optional bias of shape (out_channels). Default: NULL

    stride

    the stride of the convolving kernel. Can be a single number or -a one-element tuple (sW,). Default: 1

    padding

    implicit paddings on both sides of the input. Can be a -single number or a one-element tuple (padW,). Default: 0

    dilation

    the spacing between kernel elements. Can be a single number or -a one-element tuple (dW,). Default: 1

    groups

    split input into groups, in_channels should be divisible by -the number of groups. Default: 1

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_conv2d.html b/docs/reference/nnf_conv2d.html deleted file mode 100644 index 076a71440..000000000 --- a/docs/reference/nnf_conv2d.html +++ /dev/null @@ -1,243 +0,0 @@ - - - - - - - - -Conv2d — nnf_conv2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 2D convolution over an input image composed of several input -planes.

    -
    - -
    nnf_conv2d(
    -  input,
    -  weight,
    -  bias = NULL,
    -  stride = 1,
    -  padding = 0,
    -  dilation = 1,
    -  groups = 1
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor of shape (minibatch, in_channels, iH , iW)

    weight

    filters of shape (out_channels , in_channels/groups, kH , kW)

    bias

    optional bias tensor of shape (out_channels). Default: NULL

    stride

    the stride of the convolving kernel. Can be a single number or a -tuple (sH, sW). Default: 1

    padding

    implicit paddings on both sides of the input. Can be a -single number or a tuple (padH, padW). Default: 0

    dilation

    the spacing between kernel elements. Can be a single number or -a tuple (dH, dW). Default: 1

    groups

    split input into groups, in_channels should be divisible by the -number of groups. Default: 1

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_conv3d.html b/docs/reference/nnf_conv3d.html deleted file mode 100644 index 209598860..000000000 --- a/docs/reference/nnf_conv3d.html +++ /dev/null @@ -1,243 +0,0 @@ - - - - - - - - -Conv3d — nnf_conv3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 3D convolution over an input image composed of several input -planes.

    -
    - -
    nnf_conv3d(
    -  input,
    -  weight,
    -  bias = NULL,
    -  stride = 1,
    -  padding = 0,
    -  dilation = 1,
    -  groups = 1
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor of shape (minibatch, in_channels , iT , iH , iW)

    weight

    filters of shape (out_channels , in_channels/groups, kT , kH , kW)

    bias

    optional bias tensor of shape (out_channels). Default: NULL

    stride

    the stride of the convolving kernel. Can be a single number or a -tuple (sT, sH, sW). Default: 1

    padding

    implicit paddings on both sides of the input. Can be a -single number or a tuple (padT, padH, padW). Default: 0

    dilation

    the spacing between kernel elements. Can be a single number or -a tuple (dT, dH, dW). Default: 1

    groups

    split input into groups, in_channels should be divisible by -the number of groups. Default: 1

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_conv_tbc.html b/docs/reference/nnf_conv_tbc.html deleted file mode 100644 index b9f90e3b7..000000000 --- a/docs/reference/nnf_conv_tbc.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Conv_tbc — nnf_conv_tbc • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 1-dimensional sequence convolution over an input sequence. -Input and output dimensions are (Time, Batch, Channels) - hence TBC.

    -
    - -
    nnf_conv_tbc(input, weight, bias, pad = 0)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    input tensor of shape \((\mbox{sequence length} \times -batch \times \mbox{in\_channels})\)

    weight

    filter of shape (\(\mbox{kernel width} \times \mbox{in\_channels} -\times \mbox{out\_channels}\))

    bias

    bias of shape (\(\mbox{out\_channels}\))

    pad

    number of timesteps to pad. Default: 0

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_conv_transpose1d.html b/docs/reference/nnf_conv_transpose1d.html deleted file mode 100644 index 9cd618c6b..000000000 --- a/docs/reference/nnf_conv_transpose1d.html +++ /dev/null @@ -1,248 +0,0 @@ - - - - - - - - -Conv_transpose1d — nnf_conv_transpose1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 1D transposed convolution operator over an input signal -composed of several input planes, sometimes also called "deconvolution".

    -
    - -
    nnf_conv_transpose1d(
    -  input,
    -  weight,
    -  bias = NULL,
    -  stride = 1,
    -  padding = 0,
    -  output_padding = 0,
    -  groups = 1,
    -  dilation = 1
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor of shape (minibatch, in_channels , iW)

    weight

    filters of shape (out_channels, in_channels/groups , kW)

    bias

    optional bias of shape (out_channels). Default: NULL

    stride

    the stride of the convolving kernel. Can be a single number or -a one-element tuple (sW,). Default: 1

    padding

    implicit paddings on both sides of the input. Can be a -single number or a one-element tuple (padW,). Default: 0

    output_padding

    padding applied to the output

    groups

    split input into groups, in_channels should be divisible by -the number of groups. Default: 1

    dilation

    the spacing between kernel elements. Can be a single number or -a one-element tuple (dW,). Default: 1

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_conv_transpose2d.html b/docs/reference/nnf_conv_transpose2d.html deleted file mode 100644 index c621ea578..000000000 --- a/docs/reference/nnf_conv_transpose2d.html +++ /dev/null @@ -1,248 +0,0 @@ - - - - - - - - -Conv_transpose2d — nnf_conv_transpose2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 2D transposed convolution operator over an input image -composed of several input planes, sometimes also called "deconvolution".

    -
    - -
    nnf_conv_transpose2d(
    -  input,
    -  weight,
    -  bias = NULL,
    -  stride = 1,
    -  padding = 0,
    -  output_padding = 0,
    -  groups = 1,
    -  dilation = 1
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor of shape (minibatch, in_channels, iH , iW)

    weight

    filters of shape (out_channels , in_channels/groups, kH , kW)

    bias

    optional bias tensor of shape (out_channels). Default: NULL

    stride

    the stride of the convolving kernel. Can be a single number or a -tuple (sH, sW). Default: 1

    padding

    implicit paddings on both sides of the input. Can be a -single number or a tuple (padH, padW). Default: 0

    output_padding

    padding applied to the output

    groups

    split input into groups, in_channels should be divisible by the -number of groups. Default: 1

    dilation

    the spacing between kernel elements. Can be a single number or -a tuple (dH, dW). Default: 1

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_conv_transpose3d.html b/docs/reference/nnf_conv_transpose3d.html deleted file mode 100644 index 2ba80f720..000000000 --- a/docs/reference/nnf_conv_transpose3d.html +++ /dev/null @@ -1,248 +0,0 @@ - - - - - - - - -Conv_transpose3d — nnf_conv_transpose3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 3D transposed convolution operator over an input image -composed of several input planes, sometimes also called "deconvolution"

    -
    - -
    nnf_conv_transpose3d(
    -  input,
    -  weight,
    -  bias = NULL,
    -  stride = 1,
    -  padding = 0,
    -  output_padding = 0,
    -  groups = 1,
    -  dilation = 1
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor of shape (minibatch, in_channels , iT , iH , iW)

    weight

    filters of shape (out_channels , in_channels/groups, kT , kH , kW)

    bias

    optional bias tensor of shape (out_channels). Default: NULL

    stride

    the stride of the convolving kernel. Can be a single number or a -tuple (sT, sH, sW). Default: 1

    padding

    implicit paddings on both sides of the input. Can be a -single number or a tuple (padT, padH, padW). Default: 0

    output_padding

    padding applied to the output

    groups

    split input into groups, in_channels should be divisible by -the number of groups. Default: 1

    dilation

    the spacing between kernel elements. Can be a single number or -a tuple (dT, dH, dW). Default: 1

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_cosine_embedding_loss.html b/docs/reference/nnf_cosine_embedding_loss.html deleted file mode 100644 index a8e21e8c0..000000000 --- a/docs/reference/nnf_cosine_embedding_loss.html +++ /dev/null @@ -1,237 +0,0 @@ - - - - - - - - -Cosine_embedding_loss — nnf_cosine_embedding_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates a criterion that measures the loss given input tensors x_1, x_2 and a -Tensor label y with values 1 or -1. This is used for measuring whether two inputs -are similar or dissimilar, using the cosine distance, and is typically used -for learning nonlinear embeddings or semi-supervised learning.

    -
    - -
    nnf_cosine_embedding_loss(
    -  input1,
    -  input2,
    -  target,
    -  margin = 0,
    -  reduction = c("mean", "sum", "none")
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input1

    the input x_1 tensor

    input2

    the input x_2 tensor

    target

    the target tensor

    margin

    Should be a number from -1 to 1 , 0 to 0.5 is suggested. If margin -is missing, the default value is 0.

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_cosine_similarity.html b/docs/reference/nnf_cosine_similarity.html deleted file mode 100644 index bc86e3d15..000000000 --- a/docs/reference/nnf_cosine_similarity.html +++ /dev/null @@ -1,223 +0,0 @@ - - - - - - - - -Cosine_similarity — nnf_cosine_similarity • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Returns cosine similarity between x1 and x2, computed along dim.

    -
    - -
    nnf_cosine_similarity(x1, x2, dim = 1, eps = 1e-08)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    x1

    (Tensor) First input.

    x2

    (Tensor) Second input (of size matching x1).

    dim

    (int, optional) Dimension of vectors. Default: 1

    eps

    (float, optional) Small value to avoid division by zero. -Default: 1e-8

    - -

    Details

    - -

    $$ - \mbox{similarity} = \frac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)} -$$

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_cross_entropy.html b/docs/reference/nnf_cross_entropy.html deleted file mode 100644 index d97f2ae53..000000000 --- a/docs/reference/nnf_cross_entropy.html +++ /dev/null @@ -1,237 +0,0 @@ - - - - - - - - -Cross_entropy — nnf_cross_entropy • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    This criterion combines log_softmax and nll_loss in a single -function.

    -
    - -
    nnf_cross_entropy(
    -  input,
    -  target,
    -  weight = NULL,
    -  ignore_index = -100,
    -  reduction = c("mean", "sum", "none")
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) \((N, C)\) where C = number of classes or \((N, C, H, W)\) -in case of 2D Loss, or \((N, C, d_1, d_2, ..., d_K)\) where \(K \geq 1\) -in the case of K-dimensional loss.

    target

    (Tensor) \((N)\) where each value is \(0 \leq \mbox{targets}[i] \leq C-1\), -or \((N, d_1, d_2, ..., d_K)\) where \(K \geq 1\) for K-dimensional loss.

    weight

    (Tensor, optional) a manual rescaling weight given to each class. If -given, has to be a Tensor of size C

    ignore_index

    (int, optional) Specifies a target value that is ignored -and does not contribute to the input gradient.

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_ctc_loss.html b/docs/reference/nnf_ctc_loss.html deleted file mode 100644 index 62e8152d6..000000000 --- a/docs/reference/nnf_ctc_loss.html +++ /dev/null @@ -1,245 +0,0 @@ - - - - - - - - -Ctc_loss — nnf_ctc_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    The Connectionist Temporal Classification loss.

    -
    - -
    nnf_ctc_loss(
    -  log_probs,
    -  targets,
    -  input_lengths,
    -  target_lengths,
    -  blank = 0,
    -  reduction = c("mean", "sum", "none"),
    -  zero_infinity = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    log_probs

    \((T, N, C)\) where C = number of characters in alphabet including blank, -T = input length, and N = batch size. The logarithmized probabilities of -the outputs (e.g. obtained with nnf_log_softmax).

    targets

    \((N, S)\) or (sum(target_lengths)). Targets cannot be blank. -In the second form, the targets are assumed to be concatenated.

    input_lengths

    \((N)\). Lengths of the inputs (must each be \(\leq T\))

    target_lengths

    \((N)\). Lengths of the targets

    blank

    (int, optional) Blank label. Default \(0\).

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    zero_infinity

    (bool, optional) Whether to zero infinite losses and the -associated gradients. Default: FALSE Infinite losses mainly occur when the -inputs are too short to be aligned to the targets.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_dropout.html b/docs/reference/nnf_dropout.html deleted file mode 100644 index e3a21289f..000000000 --- a/docs/reference/nnf_dropout.html +++ /dev/null @@ -1,222 +0,0 @@ - - - - - - - - -Dropout — nnf_dropout • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    During training, randomly zeroes some of the elements of the input -tensor with probability p using samples from a Bernoulli -distribution.

    -
    - -
    nnf_dropout(input, p = 0.5, training = TRUE, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    p

    probability of an element to be zeroed. Default: 0.5

    training

    apply dropout if is TRUE. Default: TRUE

    inplace

    If set to TRUE, will do this operation in-place. -Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_dropout2d.html b/docs/reference/nnf_dropout2d.html deleted file mode 100644 index d073239ce..000000000 --- a/docs/reference/nnf_dropout2d.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Dropout2d — nnf_dropout2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Randomly zero out entire channels (a channel is a 2D feature map, -e.g., the \(j\)-th channel of the \(i\)-th sample in the -batched input is a 2D tensor \(input[i, j]\)) of the input tensor). -Each channel will be zeroed out independently on every forward call with -probability p using samples from a Bernoulli distribution.

    -
    - -
    nnf_dropout2d(input, p = 0.5, training = TRUE, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    p

    probability of a channel to be zeroed. Default: 0.5

    training

    apply dropout if is TRUE. Default: TRUE.

    inplace

    If set to TRUE, will do this operation in-place. -Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_dropout3d.html b/docs/reference/nnf_dropout3d.html deleted file mode 100644 index 700a69e44..000000000 --- a/docs/reference/nnf_dropout3d.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Dropout3d — nnf_dropout3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Randomly zero out entire channels (a channel is a 3D feature map, -e.g., the \(j\)-th channel of the \(i\)-th sample in the -batched input is a 3D tensor \(input[i, j]\)) of the input tensor). -Each channel will be zeroed out independently on every forward call with -probability p using samples from a Bernoulli distribution.

    -
    - -
    nnf_dropout3d(input, p = 0.5, training = TRUE, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    p

    probability of a channel to be zeroed. Default: 0.5

    training

    apply dropout if is TRUE. Default: TRUE.

    inplace

    If set to TRUE, will do this operation in-place. -Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_elu.html b/docs/reference/nnf_elu.html deleted file mode 100644 index 0fda51150..000000000 --- a/docs/reference/nnf_elu.html +++ /dev/null @@ -1,228 +0,0 @@ - - - - - - - - -Elu — nnf_elu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies element-wise, -$$ELU(x) = max(0,x) + min(0, \alpha * (exp(x) - 1))$$.

    -
    - -
    nnf_elu(input, alpha = 1, inplace = FALSE)
    -
    -nnf_elu_(input, alpha = 1)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    alpha

    the alpha value for the ELU formulation. Default: 1.0

    inplace

    can optionally do the operation in-place. Default: FALSE

    - - -

    Examples

    -
    # \dontrun{ -x <- torch_randn(2, 2) -y <- nnf_elu(x, alpha = 1) -nnf_elu_(x, alpha = 1)
    #> torch_tensor -#> -0.7520 0.2844 -#> 1.3381 0.9215 -#> [ CPUFloatType{2,2} ]
    #> [1] TRUE
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_embedding.html b/docs/reference/nnf_embedding.html deleted file mode 100644 index 3389e5167..000000000 --- a/docs/reference/nnf_embedding.html +++ /dev/null @@ -1,250 +0,0 @@ - - - - - - - - -Embedding — nnf_embedding • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    A simple lookup table that looks up embeddings in a fixed dictionary and size.

    -
    - -
    nnf_embedding(
    -  input,
    -  weight,
    -  padding_idx = NULL,
    -  max_norm = NULL,
    -  norm_type = 2,
    -  scale_grad_by_freq = FALSE,
    -  sparse = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (LongTensor) Tensor containing indices into the embedding matrix

    weight

    (Tensor) The embedding matrix with number of rows equal to the -maximum possible index + 1, and number of columns equal to the embedding size

    padding_idx

    (int, optional) If given, pads the output with the embedding -vector at padding_idx (initialized to zeros) whenever it encounters the index.

    max_norm

    (float, optional) If given, each embedding vector with norm larger -than max_norm is renormalized to have norm max_norm. Note: this will modify -weight in-place.

    norm_type

    (float, optional) The p of the p-norm to compute for the max_norm -option. Default 2.

    scale_grad_by_freq

    (boolean, optional) If given, this will scale gradients -by the inverse of frequency of the words in the mini-batch. Default FALSE.

    sparse

    (bool, optional) If TRUE, gradient w.r.t. weight will be a -sparse tensor. See Notes under nn_embedding for more details regarding -sparse gradients.

    - -

    Details

    - -

    This module is often used to retrieve word embeddings using indices. -The input to the module is a list of indices, and the embedding matrix, -and the output is the corresponding word embeddings.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_embedding_bag.html b/docs/reference/nnf_embedding_bag.html deleted file mode 100644 index c695baaf4..000000000 --- a/docs/reference/nnf_embedding_bag.html +++ /dev/null @@ -1,267 +0,0 @@ - - - - - - - - -Embedding_bag — nnf_embedding_bag • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Computes sums, means or maxes of bags of embeddings, without instantiating the -intermediate embeddings.

    -
    - -
    nnf_embedding_bag(
    -  input,
    -  weight,
    -  offsets = NULL,
    -  max_norm = NULL,
    -  norm_type = 2,
    -  scale_grad_by_freq = FALSE,
    -  mode = "mean",
    -  sparse = FALSE,
    -  per_sample_weights = NULL,
    -  include_last_offset = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (LongTensor) Tensor containing bags of indices into the embedding matrix

    weight

    (Tensor) The embedding matrix with number of rows equal to the -maximum possible index + 1, and number of columns equal to the embedding size

    offsets

    (LongTensor, optional) Only used when input is 1D. offsets -determines the starting index position of each bag (sequence) in input.

    max_norm

    (float, optional) If given, each embedding vector with norm -larger than max_norm is renormalized to have norm max_norm. -Note: this will modify weight in-place.

    norm_type

    (float, optional) The p in the p-norm to compute for the -max_norm option. Default 2.

    scale_grad_by_freq

    (boolean, optional) if given, this will scale gradients -by the inverse of frequency of the words in the mini-batch. Default FALSE. Note: this option is not supported when mode="max".

    mode

    (string, optional) "sum", "mean" or "max". Specifies -the way to reduce the bag. Default: 'mean'

    sparse

    (bool, optional) if TRUE, gradient w.r.t. weight will be a -sparse tensor. See Notes under nn_embedding for more details regarding -sparse gradients. Note: this option is not supported when mode="max".

    per_sample_weights

    (Tensor, optional) a tensor of float / double weights, -or NULL to indicate all weights should be taken to be 1. If specified, -per_sample_weights must have exactly the same shape as input and is treated -as having the same offsets, if those are not NULL.

    include_last_offset

    (bool, optional) if TRUE, the size of offsets is -equal to the number of bags + 1.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_fold.html b/docs/reference/nnf_fold.html deleted file mode 100644 index b934f6ec5..000000000 --- a/docs/reference/nnf_fold.html +++ /dev/null @@ -1,245 +0,0 @@ - - - - - - - - -Fold — nnf_fold • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Combines an array of sliding local blocks into a large containing -tensor.

    -
    - -
    nnf_fold(
    -  input,
    -  output_size,
    -  kernel_size,
    -  dilation = 1,
    -  padding = 0,
    -  stride = 1
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    output_size

    the shape of the spatial dimensions of the output (i.e., -output$sizes()[-c(1,2)])

    kernel_size

    the size of the sliding blocks

    dilation

    a parameter that controls the stride of elements within the -neighborhood. Default: 1

    padding

    implicit zero padding to be added on both sides of input. -Default: 0

    stride

    the stride of the sliding blocks in the input spatial dimensions. -Default: 1

    - -

    Warning

    - - - - -

    Currently, only 4-D output tensors (batched image-like tensors) are -supported.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_fractional_max_pool2d.html b/docs/reference/nnf_fractional_max_pool2d.html deleted file mode 100644 index 5f41f39d9..000000000 --- a/docs/reference/nnf_fractional_max_pool2d.html +++ /dev/null @@ -1,242 +0,0 @@ - - - - - - - - -Fractional_max_pool2d — nnf_fractional_max_pool2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies 2D fractional max pooling over an input signal composed of several input planes.

    -
    - -
    nnf_fractional_max_pool2d(
    -  input,
    -  kernel_size,
    -  output_size = NULL,
    -  output_ratio = NULL,
    -  return_indices = FALSE,
    -  random_samples = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    kernel_size

    the size of the window to take a max over. Can be a -single number \(k\) (for a square kernel of \(k * k\)) or -a tuple (kH, kW)

    output_size

    the target output size of the image of the form \(oH * oW\). -Can be a tuple (oH, oW) or a single number \(oH\) for a square image \(oH * oH\)

    output_ratio

    If one wants to have an output size as a ratio of the input size, -this option can be given. This has to be a number or tuple in the range (0, 1)

    return_indices

    if True, will return the indices along with the outputs.

    random_samples

    optional random samples.

    - -

    Details

    - -

    Fractional MaxPooling is described in detail in the paper Fractional MaxPooling_ by Ben Graham

    -

    The max-pooling operation is applied in \(kH * kW\) regions by a stochastic -step size determined by the target output size. -The number of output features is equal to the number of input planes.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_fractional_max_pool3d.html b/docs/reference/nnf_fractional_max_pool3d.html deleted file mode 100644 index a7c86c2a5..000000000 --- a/docs/reference/nnf_fractional_max_pool3d.html +++ /dev/null @@ -1,243 +0,0 @@ - - - - - - - - -Fractional_max_pool3d — nnf_fractional_max_pool3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies 3D fractional max pooling over an input signal composed of several input planes.

    -
    - -
    nnf_fractional_max_pool3d(
    -  input,
    -  kernel_size,
    -  output_size = NULL,
    -  output_ratio = NULL,
    -  return_indices = FALSE,
    -  random_samples = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    kernel_size

    the size of the window to take a max over. Can be a single number \(k\) -(for a square kernel of \(k * k * k\)) or a tuple (kT, kH, kW)

    output_size

    the target output size of the form \(oT * oH * oW\). -Can be a tuple (oT, oH, oW) or a single number \(oH\) for a cubic output -\(oH * oH * oH\)

    output_ratio

    If one wants to have an output size as a ratio of the -input size, this option can be given. This has to be a number or tuple in the -range (0, 1)

    return_indices

    if True, will return the indices along with the outputs.

    random_samples

    undocumented argument.

    - -

    Details

    - -

    Fractional MaxPooling is described in detail in the paper Fractional MaxPooling_ by Ben Graham

    -

    The max-pooling operation is applied in \(kT * kH * kW\) regions by a stochastic -step size determined by the target output size. -The number of output features is equal to the number of input planes.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_gelu.html b/docs/reference/nnf_gelu.html deleted file mode 100644 index d855b1ccb..000000000 --- a/docs/reference/nnf_gelu.html +++ /dev/null @@ -1,216 +0,0 @@ - - - - - - - - -Gelu — nnf_gelu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Gelu

    -
    - -
    nnf_gelu(input)
    - -

    Arguments

    - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    - -

    gelu(input) -> Tensor

    - - - - -

    Applies element-wise the function -\(GELU(x) = x * \Phi(x)\)

    -

    where \(\Phi(x)\) is the Cumulative Distribution Function for -Gaussian Distribution.

    -

    See Gaussian Error Linear Units (GELUs).

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_glu.html b/docs/reference/nnf_glu.html deleted file mode 100644 index f507f43d9..000000000 --- a/docs/reference/nnf_glu.html +++ /dev/null @@ -1,216 +0,0 @@ - - - - - - - - -Glu — nnf_glu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    The gated linear unit. Computes:

    -
    - -
    nnf_glu(input, dim = -1)
    - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) input tensor

    dim

    (int) dimension on which to split the input. Default: -1

    - -

    Details

    - -

    $$GLU(a, b) = a \otimes \sigma(b)$$

    -

    where input is split in half along dim to form a and b, \(\sigma\) -is the sigmoid function and \(\otimes\) is the element-wise product -between matrices.

    -

    See Language Modeling with Gated Convolutional Networks.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_grid_sample.html b/docs/reference/nnf_grid_sample.html deleted file mode 100644 index 995435513..000000000 --- a/docs/reference/nnf_grid_sample.html +++ /dev/null @@ -1,277 +0,0 @@ - - - - - - - - -Grid_sample — nnf_grid_sample • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Given an input and a flow-field grid, computes the -output using input values and pixel locations from grid.

    -
    - -
    nnf_grid_sample(
    -  input,
    -  grid,
    -  mode = c("bilinear", "nearest"),
    -  padding_mode = c("zeros", "border", "reflection"),
    -  align_corners = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) input of shape \((N, C, H_{\mbox{in}}, W_{\mbox{in}})\) (4-D case) or \((N, C, D_{\mbox{in}}, H_{\mbox{in}}, W_{\mbox{in}})\) (5-D case)

    grid

    (Tensor) flow-field of shape \((N, H_{\mbox{out}}, W_{\mbox{out}}, 2)\) (4-D case) or \((N, D_{\mbox{out}}, H_{\mbox{out}}, W_{\mbox{out}}, 3)\) (5-D case)

    mode

    (str) interpolation mode to calculate output values 'bilinear' | 'nearest'. -Default: 'bilinear'

    padding_mode

    (str) padding mode for outside grid values 'zeros' | 'border' -| 'reflection'. Default: 'zeros'

    align_corners

    (bool, optional) Geometrically, we consider the pixels of the -input as squares rather than points. If set to True, the extrema (-1 and -1) are considered as referring to the center points of the input's corner pixels. -If set to False, they are instead considered as referring to the corner -points of the input's corner pixels, making the sampling more resolution -agnostic. This option parallels the align_corners option in nnf_interpolate(), and -so whichever option is used here should also be used there to resize the input -image before grid sampling. Default: False

    - -

    Details

    - -

    Currently, only spatial (4-D) and volumetric (5-D) input are -supported.

    -

    In the spatial (4-D) case, for input with shape -\((N, C, H_{\mbox{in}}, W_{\mbox{in}})\) and grid with shape -\((N, H_{\mbox{out}}, W_{\mbox{out}}, 2)\), the output will have shape -\((N, C, H_{\mbox{out}}, W_{\mbox{out}})\).

    -

    For each output location output[n, :, h, w], the size-2 vector -grid[n, h, w] specifies input pixel locations x and y, -which are used to interpolate the output value output[n, :, h, w]. -In the case of 5D inputs, grid[n, d, h, w] specifies the -x, y, z pixel locations for interpolating -output[n, :, d, h, w]. mode argument specifies nearest or -bilinear interpolation method to sample the input pixels.

    -

    grid specifies the sampling pixel locations normalized by the -input spatial dimensions. Therefore, it should have most values in -the range of [-1, 1]. For example, values x = -1, y = -1 is the -left-top pixel of input, and values x = 1, y = 1 is the -right-bottom pixel of input.

    -

    If grid has values outside the range of [-1, 1], the corresponding -outputs are handled as defined by padding_mode. Options are

      -
    • padding_mode="zeros": use 0 for out-of-bound grid locations,

    • -
    • padding_mode="border": use border values for out-of-bound grid locations,

    • -
    • padding_mode="reflection": use values at locations reflected by -the border for out-of-bound grid locations. For location far away -from the border, it will keep being reflected until becoming in bound, -e.g., (normalized) pixel location x = -3.5 reflects by border -1 -and becomes x' = 1.5, then reflects by border 1 and becomes -x'' = -0.5.

    • -
    - -

    Note

    - - - - -

    This function is often used in conjunction with nnf_affine_grid() -to build Spatial Transformer Networks_ .

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_group_norm.html b/docs/reference/nnf_group_norm.html deleted file mode 100644 index 0a9d8db92..000000000 --- a/docs/reference/nnf_group_norm.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Group_norm — nnf_group_norm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies Group Normalization for last certain number of dimensions.

    -
    - -
    nnf_group_norm(input, num_groups, weight = NULL, bias = NULL, eps = 1e-05)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    num_groups

    number of groups to separate the channels into

    weight

    the weight tensor

    bias

    the bias tensor

    eps

    a value added to the denominator for numerical stability. Default: 1e-5

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_gumbel_softmax.html b/docs/reference/nnf_gumbel_softmax.html deleted file mode 100644 index 6422a08ed..000000000 --- a/docs/reference/nnf_gumbel_softmax.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Gumbel_softmax — nnf_gumbel_softmax • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Samples from the Gumbel-Softmax distribution and -optionally discretizes.

    -
    - -
    nnf_gumbel_softmax(logits, tau = 1, hard = FALSE, dim = -1)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    logits

    [..., num_features] unnormalized log probabilities

    tau

    non-negative scalar temperature

    hard

    if True, the returned samples will be discretized as one-hot vectors, but will be differentiated as if it is the soft sample in autograd

    dim

    (int) A dimension along which softmax will be computed. Default: -1.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_hardshrink.html b/docs/reference/nnf_hardshrink.html deleted file mode 100644 index bce873134..000000000 --- a/docs/reference/nnf_hardshrink.html +++ /dev/null @@ -1,210 +0,0 @@ - - - - - - - - -Hardshrink — nnf_hardshrink • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the hard shrinkage function element-wise

    -
    - -
    nnf_hardshrink(input, lambd = 0.5)
    - -

    Arguments

    - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    lambd

    the lambda value for the Hardshrink formulation. Default: 0.5

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_hardsigmoid.html b/docs/reference/nnf_hardsigmoid.html deleted file mode 100644 index 0f5cfd882..000000000 --- a/docs/reference/nnf_hardsigmoid.html +++ /dev/null @@ -1,210 +0,0 @@ - - - - - - - - -Hardsigmoid — nnf_hardsigmoid • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function \(\mbox{Hardsigmoid}(x) = \frac{ReLU6(x + 3)}{6}\)

    -
    - -
    nnf_hardsigmoid(input, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    inplace

    NA If set to True, will do this operation in-place. Default: False

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_hardswish.html b/docs/reference/nnf_hardswish.html deleted file mode 100644 index 2da9a192c..000000000 --- a/docs/reference/nnf_hardswish.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Hardswish — nnf_hardswish • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the hardswish function, element-wise, as described in the paper: -Searching for MobileNetV3.

    -
    - -
    nnf_hardswish(input, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    inplace

    can optionally do the operation in-place. Default: FALSE

    - -

    Details

    - -

    $$ \mbox{Hardswish}(x) = \left\{ - \begin{array}{ll} - 0 & \mbox{if } x \le -3, \\ - x & \mbox{if } x \ge +3, \\ - x \cdot (x + 3)/6 & \mbox{otherwise} - \end{array} - \right. $$

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_hardtanh.html b/docs/reference/nnf_hardtanh.html deleted file mode 100644 index dbbe61da1..000000000 --- a/docs/reference/nnf_hardtanh.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -Hardtanh — nnf_hardtanh • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the HardTanh function element-wise.

    -
    - -
    nnf_hardtanh(input, min_val = -1, max_val = 1, inplace = FALSE)
    -
    -nnf_hardtanh_(input, min_val = -1, max_val = 1)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    min_val

    minimum value of the linear region range. Default: -1

    max_val

    maximum value of the linear region range. Default: 1

    inplace

    can optionally do the operation in-place. Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_hinge_embedding_loss.html b/docs/reference/nnf_hinge_embedding_loss.html deleted file mode 100644 index 6c27c9c36..000000000 --- a/docs/reference/nnf_hinge_embedding_loss.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Hinge_embedding_loss — nnf_hinge_embedding_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Measures the loss given an input tensor xx and a labels tensor yy (containing 1 or -1). -This is usually used for measuring whether two inputs are similar or dissimilar, e.g. -using the L1 pairwise distance as xx , and is typically used for learning nonlinear -embeddings or semi-supervised learning.

    -
    - -
    nnf_hinge_embedding_loss(input, target, margin = 1, reduction = "mean")
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    tensor (N,*) where ** means, any number of additional dimensions

    target

    tensor (N,*) , same shape as the input

    margin

    Has a default value of 1.

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_instance_norm.html b/docs/reference/nnf_instance_norm.html deleted file mode 100644 index 37f814f9f..000000000 --- a/docs/reference/nnf_instance_norm.html +++ /dev/null @@ -1,244 +0,0 @@ - - - - - - - - -Instance_norm — nnf_instance_norm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies Instance Normalization for each channel in each data sample in a -batch.

    -
    - -
    nnf_instance_norm(
    -  input,
    -  running_mean = NULL,
    -  running_var = NULL,
    -  weight = NULL,
    -  bias = NULL,
    -  use_input_stats = TRUE,
    -  momentum = 0.1,
    -  eps = 1e-05
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    running_mean

    the running_mean tensor

    running_var

    the running var tensor

    weight

    the weight tensor

    bias

    the bias tensor

    use_input_stats

    whether to use input stats

    momentum

    a double for the momentum

    eps

    an eps double for numerical stability

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_interpolate.html b/docs/reference/nnf_interpolate.html deleted file mode 100644 index 55c1540a5..000000000 --- a/docs/reference/nnf_interpolate.html +++ /dev/null @@ -1,263 +0,0 @@ - - - - - - - - -Interpolate — nnf_interpolate • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Down/up samples the input to either the given size or the given -scale_factor

    -
    - -
    nnf_interpolate(
    -  input,
    -  size = NULL,
    -  scale_factor = NULL,
    -  mode = "nearest",
    -  align_corners = FALSE,
    -  recompute_scale_factor = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor

    size

    (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]) -output spatial size.

    scale_factor

    (float or Tuple[float]) multiplier for spatial size. -Has to match input size if it is a tuple.

    mode

    (str) algorithm used for upsampling: 'nearest' | 'linear' | 'bilinear' -| 'bicubic' | 'trilinear' | 'area' Default: 'nearest'

    align_corners

    (bool, optional) Geometrically, we consider the pixels -of the input and output as squares rather than points. If set to TRUE, -the input and output tensors are aligned by the center points of their corner -pixels, preserving the values at the corner pixels. If set to False, the -input and output tensors are aligned by the corner points of their corner pixels, -and the interpolation uses edge value padding for out-of-boundary values, -making this operation independent of input size when scale_factor is kept -the same. This only has an effect when mode is 'linear', 'bilinear', -'bicubic' or 'trilinear'. Default: False

    recompute_scale_factor

    (bool, optional) recompute the scale_factor -for use in the interpolation calculation. When scale_factor is passed -as a parameter, it is used to compute the output_size. If recompute_scale_factor -is ```True`` or not specified, a new scale_factor will be computed based on -the output and input sizes for use in the interpolation computation (i.e. the -computation will be identical to if the computed `output_size` were passed-in -explicitly). Otherwise, the passed-in `scale_factor` will be used in the -interpolation computation. Note that when `scale_factor` is floating-point, -the recomputed scale_factor may differ from the one passed in due to rounding -and precision issues.

    - -

    Details

    - -

    The algorithm used for interpolation is determined by mode.

    -

    Currently temporal, spatial and volumetric sampling are supported, i.e. -expected inputs are 3-D, 4-D or 5-D in shape.

    -

    The input dimensions are interpreted in the form: -mini-batch x channels x [optional depth] x [optional height] x width.

    -

    The modes available for resizing are: nearest, linear (3D-only), -bilinear, bicubic (4D-only), trilinear (5D-only), area

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_kl_div.html b/docs/reference/nnf_kl_div.html deleted file mode 100644 index aa5eabc89..000000000 --- a/docs/reference/nnf_kl_div.html +++ /dev/null @@ -1,216 +0,0 @@ - - - - - - - - -Kl_div — nnf_kl_div • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    The Kullback-Leibler divergence Loss.

    -
    - -
    nnf_kl_div(input, target, reduction = "mean")
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    tensor (N,*) where ** means, any number of additional dimensions

    target

    tensor (N,*) , same shape as the input

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_l1_loss.html b/docs/reference/nnf_l1_loss.html deleted file mode 100644 index 5913fa925..000000000 --- a/docs/reference/nnf_l1_loss.html +++ /dev/null @@ -1,216 +0,0 @@ - - - - - - - - -L1_loss — nnf_l1_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Function that takes the mean element-wise absolute value difference.

    -
    - -
    nnf_l1_loss(input, target, reduction = "mean")
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    tensor (N,*) where ** means, any number of additional dimensions

    target

    tensor (N,*) , same shape as the input

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_layer_norm.html b/docs/reference/nnf_layer_norm.html deleted file mode 100644 index cdf70afee..000000000 --- a/docs/reference/nnf_layer_norm.html +++ /dev/null @@ -1,229 +0,0 @@ - - - - - - - - -Layer_norm — nnf_layer_norm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies Layer Normalization for last certain number of dimensions.

    -
    - -
    nnf_layer_norm(
    -  input,
    -  normalized_shape,
    -  weight = NULL,
    -  bias = NULL,
    -  eps = 1e-05
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    normalized_shape

    input shape from an expected input of size. If a single -integer is used, it is treated as a singleton list, and this module will normalize -over the last dimension which is expected to be of that specific size.

    weight

    the weight tensor

    bias

    the bias tensor

    eps

    a value added to the denominator for numerical stability. Default: 1e-5

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_leaky_relu.html b/docs/reference/nnf_leaky_relu.html deleted file mode 100644 index cf4c4b727..000000000 --- a/docs/reference/nnf_leaky_relu.html +++ /dev/null @@ -1,216 +0,0 @@ - - - - - - - - -Leaky_relu — nnf_leaky_relu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies element-wise, -\(LeakyReLU(x) = max(0, x) + negative_slope * min(0, x)\)

    -
    - -
    nnf_leaky_relu(input, negative_slope = 0.01, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    negative_slope

    Controls the angle of the negative slope. Default: 1e-2

    inplace

    can optionally do the operation in-place. Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_linear.html b/docs/reference/nnf_linear.html deleted file mode 100644 index fa05e8425..000000000 --- a/docs/reference/nnf_linear.html +++ /dev/null @@ -1,214 +0,0 @@ - - - - - - - - -Linear — nnf_linear • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a linear transformation to the incoming data: \(y = xA^T + b\).

    -
    - -
    nnf_linear(input, weight, bias = NULL)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    \((N, *, in\_features)\) where * means any number of -additional dimensions

    weight

    \((out\_features, in\_features)\) the weights tensor.

    bias

    optional tensor \((out\_features)\)

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_local_response_norm.html b/docs/reference/nnf_local_response_norm.html deleted file mode 100644 index f4fe80c1a..000000000 --- a/docs/reference/nnf_local_response_norm.html +++ /dev/null @@ -1,225 +0,0 @@ - - - - - - - - -Local_response_norm — nnf_local_response_norm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies local response normalization over an input signal composed of -several input planes, where channels occupy the second dimension. -Applies normalization across channels.

    -
    - -
    nnf_local_response_norm(input, size, alpha = 1e-04, beta = 0.75, k = 1)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    size

    amount of neighbouring channels used for normalization

    alpha

    multiplicative factor. Default: 0.0001

    beta

    exponent. Default: 0.75

    k

    additive factor. Default: 1

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_log_softmax.html b/docs/reference/nnf_log_softmax.html deleted file mode 100644 index 026926647..000000000 --- a/docs/reference/nnf_log_softmax.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Log_softmax — nnf_log_softmax • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a softmax followed by a logarithm.

    -
    - -
    nnf_log_softmax(input, dim = NULL, dtype = NULL)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) input

    dim

    (int) A dimension along which log_softmax will be computed.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. -If specified, the input tensor is casted to dtype before the operation -is performed. This is useful for preventing data type overflows. -Default: NULL.

    - -

    Details

    - -

    While mathematically equivalent to log(softmax(x)), doing these two -operations separately is slower, and numerically unstable. This function -uses an alternative formulation to compute the output and gradient correctly.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_logsigmoid.html b/docs/reference/nnf_logsigmoid.html deleted file mode 100644 index 159a3a9b5..000000000 --- a/docs/reference/nnf_logsigmoid.html +++ /dev/null @@ -1,206 +0,0 @@ - - - - - - - - -Logsigmoid — nnf_logsigmoid • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies element-wise \(LogSigmoid(x_i) = log(\frac{1}{1 + exp(-x_i)})\)

    -
    - -
    nnf_logsigmoid(input)
    - -

    Arguments

    - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_lp_pool1d.html b/docs/reference/nnf_lp_pool1d.html deleted file mode 100644 index b28b18b71..000000000 --- a/docs/reference/nnf_lp_pool1d.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Lp_pool1d — nnf_lp_pool1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 1D power-average pooling over an input signal composed of -several input planes. If the sum of all inputs to the power of p is -zero, the gradient is set to zero as well.

    -
    - -
    nnf_lp_pool1d(input, norm_type, kernel_size, stride = NULL, ceil_mode = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    norm_type

    if inf than one gets max pooling if 0 you get sum pooling ( -proportional to the avg pooling)

    kernel_size

    a single int, the size of the window

    stride

    a single int, the stride of the window. Default value is kernel_size

    ceil_mode

    when True, will use ceil instead of floor to compute the output shape

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_lp_pool2d.html b/docs/reference/nnf_lp_pool2d.html deleted file mode 100644 index 38afd20ae..000000000 --- a/docs/reference/nnf_lp_pool2d.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Lp_pool2d — nnf_lp_pool2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 2D power-average pooling over an input signal composed of -several input planes. If the sum of all inputs to the power of p is -zero, the gradient is set to zero as well.

    -
    - -
    nnf_lp_pool2d(input, norm_type, kernel_size, stride = NULL, ceil_mode = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    norm_type

    if inf than one gets max pooling if 0 you get sum pooling ( -proportional to the avg pooling)

    kernel_size

    a single int, the size of the window

    stride

    a single int, the stride of the window. Default value is kernel_size

    ceil_mode

    when True, will use ceil instead of floor to compute the output shape

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_margin_ranking_loss.html b/docs/reference/nnf_margin_ranking_loss.html deleted file mode 100644 index 7d9ab8622..000000000 --- a/docs/reference/nnf_margin_ranking_loss.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Margin_ranking_loss — nnf_margin_ranking_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates a criterion that measures the loss given inputs x1 , x2 , two 1D -mini-batch Tensors, and a label 1D mini-batch tensor y (containing 1 or -1).

    -
    - -
    nnf_margin_ranking_loss(input1, input2, target, margin = 0, reduction = "mean")
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input1

    the first tensor

    input2

    the second input tensor

    target

    the target tensor

    margin

    Has a default value of 00 .

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_max_pool1d.html b/docs/reference/nnf_max_pool1d.html deleted file mode 100644 index 3bb6df07c..000000000 --- a/docs/reference/nnf_max_pool1d.html +++ /dev/null @@ -1,244 +0,0 @@ - - - - - - - - -Max_pool1d — nnf_max_pool1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 1D max pooling over an input signal composed of several input -planes.

    -
    - -
    nnf_max_pool1d(
    -  input,
    -  kernel_size,
    -  stride = NULL,
    -  padding = 0,
    -  dilation = 1,
    -  ceil_mode = FALSE,
    -  return_indices = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor of shape (minibatch , in_channels , iW)

    kernel_size

    the size of the window. Can be a single number or a -tuple (kW,).

    stride

    the stride of the window. Can be a single number or a tuple -(sW,). Default: kernel_size

    padding

    implicit zero paddings on both sides of the input. Can be a -single number or a tuple (padW,). Default: 0

    dilation

    controls the spacing between the kernel points; also known as -the à trous algorithm.

    ceil_mode

    when True, will use ceil instead of floor to compute the -output shape. Default: FALSE

    return_indices

    whether to return the indices where the max occurs.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_max_pool2d.html b/docs/reference/nnf_max_pool2d.html deleted file mode 100644 index 745db5f01..000000000 --- a/docs/reference/nnf_max_pool2d.html +++ /dev/null @@ -1,244 +0,0 @@ - - - - - - - - -Max_pool2d — nnf_max_pool2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 2D max pooling over an input signal composed of several input -planes.

    -
    - -
    nnf_max_pool2d(
    -  input,
    -  kernel_size,
    -  stride = kernel_size,
    -  padding = 0,
    -  dilation = 1,
    -  ceil_mode = FALSE,
    -  return_indices = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor (minibatch, in_channels , iH , iW)

    kernel_size

    size of the pooling region. Can be a single number or a -tuple (kH, kW)

    stride

    stride of the pooling operation. Can be a single number or a -tuple (sH, sW). Default: kernel_size

    padding

    implicit zero paddings on both sides of the input. Can be a -single number or a tuple (padH, padW). Default: 0

    dilation

    controls the spacing between the kernel points; also known as -the à trous algorithm.

    ceil_mode

    when True, will use ceil instead of floor in the formula -to compute the output shape. Default: FALSE

    return_indices

    whether to return the indices where the max occurs.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_max_pool3d.html b/docs/reference/nnf_max_pool3d.html deleted file mode 100644 index 900fc670b..000000000 --- a/docs/reference/nnf_max_pool3d.html +++ /dev/null @@ -1,244 +0,0 @@ - - - - - - - - -Max_pool3d — nnf_max_pool3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a 3D max pooling over an input signal composed of several input -planes.

    -
    - -
    nnf_max_pool3d(
    -  input,
    -  kernel_size,
    -  stride = NULL,
    -  padding = 0,
    -  dilation = 1,
    -  ceil_mode = FALSE,
    -  return_indices = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor (minibatch, in_channels , iT * iH , iW)

    kernel_size

    size of the pooling region. Can be a single number or a -tuple (kT, kH, kW)

    stride

    stride of the pooling operation. Can be a single number or a -tuple (sT, sH, sW). Default: kernel_size

    padding

    implicit zero paddings on both sides of the input. Can be a -single number or a tuple (padT, padH, padW), Default: 0

    dilation

    controls the spacing between the kernel points; also known as -the à trous algorithm.

    ceil_mode

    when True, will use ceil instead of floor in the formula -to compute the output shape

    return_indices

    whether to return the indices where the max occurs.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_max_unpool1d.html b/docs/reference/nnf_max_unpool1d.html deleted file mode 100644 index 9baabdb74..000000000 --- a/docs/reference/nnf_max_unpool1d.html +++ /dev/null @@ -1,232 +0,0 @@ - - - - - - - - -Max_unpool1d — nnf_max_unpool1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Computes a partial inverse of MaxPool1d.

    -
    - -
    nnf_max_unpool1d(
    -  input,
    -  indices,
    -  kernel_size,
    -  stride = NULL,
    -  padding = 0,
    -  output_size = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input Tensor to invert

    indices

    the indices given out by max pool

    kernel_size

    Size of the max pooling window.

    stride

    Stride of the max pooling window. It is set to kernel_size by default.

    padding

    Padding that was added to the input

    output_size

    the targeted output size

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_max_unpool2d.html b/docs/reference/nnf_max_unpool2d.html deleted file mode 100644 index cd9c095d9..000000000 --- a/docs/reference/nnf_max_unpool2d.html +++ /dev/null @@ -1,232 +0,0 @@ - - - - - - - - -Max_unpool2d — nnf_max_unpool2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Computes a partial inverse of MaxPool2d.

    -
    - -
    nnf_max_unpool2d(
    -  input,
    -  indices,
    -  kernel_size,
    -  stride = NULL,
    -  padding = 0,
    -  output_size = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input Tensor to invert

    indices

    the indices given out by max pool

    kernel_size

    Size of the max pooling window.

    stride

    Stride of the max pooling window. It is set to kernel_size by default.

    padding

    Padding that was added to the input

    output_size

    the targeted output size

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_max_unpool3d.html b/docs/reference/nnf_max_unpool3d.html deleted file mode 100644 index de981fa25..000000000 --- a/docs/reference/nnf_max_unpool3d.html +++ /dev/null @@ -1,232 +0,0 @@ - - - - - - - - -Max_unpool3d — nnf_max_unpool3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Computes a partial inverse of MaxPool3d.

    -
    - -
    nnf_max_unpool3d(
    -  input,
    -  indices,
    -  kernel_size,
    -  stride = NULL,
    -  padding = 0,
    -  output_size = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input Tensor to invert

    indices

    the indices given out by max pool

    kernel_size

    Size of the max pooling window.

    stride

    Stride of the max pooling window. It is set to kernel_size by default.

    padding

    Padding that was added to the input

    output_size

    the targeted output size

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_mse_loss.html b/docs/reference/nnf_mse_loss.html deleted file mode 100644 index 918090775..000000000 --- a/docs/reference/nnf_mse_loss.html +++ /dev/null @@ -1,216 +0,0 @@ - - - - - - - - -Mse_loss — nnf_mse_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Measures the element-wise mean squared error.

    -
    - -
    nnf_mse_loss(input, target, reduction = "mean")
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    tensor (N,*) where ** means, any number of additional dimensions

    target

    tensor (N,*) , same shape as the input

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_multi_head_attention_forward.html b/docs/reference/nnf_multi_head_attention_forward.html deleted file mode 100644 index 65ae1ae73..000000000 --- a/docs/reference/nnf_multi_head_attention_forward.html +++ /dev/null @@ -1,334 +0,0 @@ - - - - - - - - -Multi head attention forward — nnf_multi_head_attention_forward • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Allows the model to jointly attend to information from different representation -subspaces. See reference: Attention Is All You Need

    -
    - -
    nnf_multi_head_attention_forward(
    -  query,
    -  key,
    -  value,
    -  embed_dim_to_check,
    -  num_heads,
    -  in_proj_weight,
    -  in_proj_bias,
    -  bias_k,
    -  bias_v,
    -  add_zero_attn,
    -  dropout_p,
    -  out_proj_weight,
    -  out_proj_bias,
    -  training = TRUE,
    -  key_padding_mask = NULL,
    -  need_weights = TRUE,
    -  attn_mask = NULL,
    -  use_separate_proj_weight = FALSE,
    -  q_proj_weight = NULL,
    -  k_proj_weight = NULL,
    -  v_proj_weight = NULL,
    -  static_k = NULL,
    -  static_v = NULL
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    query

    \((L, N, E)\) where L is the target sequence length, N is the batch size, E is -the embedding dimension.

    key

    \((S, N, E)\), where S is the source sequence length, N is the batch size, E is -the embedding dimension.

    value

    \((S, N, E)\) where S is the source sequence length, N is the batch size, E is -the embedding dimension.

    embed_dim_to_check

    total dimension of the model.

    num_heads

    parallel attention heads.

    in_proj_weight

    input projection weight and bias.

    in_proj_bias

    currently undocumented.

    bias_k

    bias of the key and value sequences to be added at dim=0.

    bias_v

    currently undocumented.

    add_zero_attn

    add a new batch of zeros to the key and -value sequences at dim=1.

    dropout_p

    probability of an element to be zeroed.

    out_proj_weight

    the output projection weight and bias.

    out_proj_bias

    currently undocumented.

    training

    apply dropout if is TRUE.

    key_padding_mask

    \((N, S)\) where N is the batch size, S is the source sequence length. -If a ByteTensor is provided, the non-zero positions will be ignored while the position -with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the -value of True will be ignored while the position with the value of False will be unchanged.

    need_weights

    output attn_output_weights.

    attn_mask

    2D mask \((L, S)\) where L is the target sequence length, S is the source sequence length. -3D mask \((N*num_heads, L, S)\) where N is the batch size, L is the target sequence length, -S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked -positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend -while the zero positions will be unchanged. If a BoolTensor is provided, positions with True -is not allowed to attend while False values will be unchanged. If a FloatTensor -is provided, it will be added to the attention weight.

    use_separate_proj_weight

    the function accept the proj. weights for -query, key, and value in different forms. If false, in_proj_weight will be used, -which is a combination of q_proj_weight, k_proj_weight, v_proj_weight.

    q_proj_weight

    input projection weight and bias.

    k_proj_weight

    currently undocumented.

    v_proj_weight

    currently undocumented.

    static_k

    static key and value used for attention operators.

    static_v

    currently undocumented.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_multi_margin_loss.html b/docs/reference/nnf_multi_margin_loss.html deleted file mode 100644 index 05a13bbcb..000000000 --- a/docs/reference/nnf_multi_margin_loss.html +++ /dev/null @@ -1,240 +0,0 @@ - - - - - - - - -Multi_margin_loss — nnf_multi_margin_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates a criterion that optimizes a multi-class classification hinge loss -(margin-based loss) between input x (a 2D mini-batch Tensor) and output y -(which is a 1D tensor of target class indices, 0 <= y <= x$size(2) - 1 ).

    -
    - -
    nnf_multi_margin_loss(
    -  input,
    -  target,
    -  p = 1,
    -  margin = 1,
    -  weight = NULL,
    -  reduction = "mean"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    tensor (N,*) where ** means, any number of additional dimensions

    target

    tensor (N,*) , same shape as the input

    p

    Has a default value of 1. 1 and 2 are the only supported values.

    margin

    Has a default value of 1.

    weight

    a manual rescaling weight given to each class. If given, it has to -be a Tensor of size C. Otherwise, it is treated as if having all ones.

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_multilabel_margin_loss.html b/docs/reference/nnf_multilabel_margin_loss.html deleted file mode 100644 index 096c4f893..000000000 --- a/docs/reference/nnf_multilabel_margin_loss.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -Multilabel_margin_loss — nnf_multilabel_margin_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates a criterion that optimizes a multi-class multi-classification hinge loss -(margin-based loss) between input x (a 2D mini-batch Tensor) and output y (which -is a 2D Tensor of target class indices).

    -
    - -
    nnf_multilabel_margin_loss(input, target, reduction = "mean")
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    tensor (N,*) where ** means, any number of additional dimensions

    target

    tensor (N,*) , same shape as the input

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_multilabel_soft_margin_loss.html b/docs/reference/nnf_multilabel_soft_margin_loss.html deleted file mode 100644 index 957fce827..000000000 --- a/docs/reference/nnf_multilabel_soft_margin_loss.html +++ /dev/null @@ -1,222 +0,0 @@ - - - - - - - - -Multilabel_soft_margin_loss — nnf_multilabel_soft_margin_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates a criterion that optimizes a multi-label one-versus-all loss based on -max-entropy, between input x and target y of size (N, C).

    -
    - -
    nnf_multilabel_soft_margin_loss(input, target, weight, reduction = "mean")
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    tensor (N,*) where ** means, any number of additional dimensions

    target

    tensor (N,*) , same shape as the input

    weight

    weight tensor to apply on the loss.

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_nll_loss.html b/docs/reference/nnf_nll_loss.html deleted file mode 100644 index 0391362ae..000000000 --- a/docs/reference/nnf_nll_loss.html +++ /dev/null @@ -1,235 +0,0 @@ - - - - - - - - -Nll_loss — nnf_nll_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    The negative log likelihood loss.

    -
    - -
    nnf_nll_loss(
    -  input,
    -  target,
    -  weight = NULL,
    -  ignore_index = -100,
    -  reduction = "mean"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    \((N, C)\) where C = number of classes or \((N, C, H, W)\) in -case of 2D Loss, or \((N, C, d_1, d_2, ..., d_K)\) where \(K \geq 1\) in -the case of K-dimensional loss.

    target

    \((N)\) where each value is \(0 \leq \mbox{targets}[i] \leq C-1\), -or \((N, d_1, d_2, ..., d_K)\) where \(K \geq 1\) for K-dimensional loss.

    weight

    (Tensor, optional) a manual rescaling weight given to each class. -If given, has to be a Tensor of size C

    ignore_index

    (int, optional) Specifies a target value that is ignored and -does not contribute to the input gradient.

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_normalize.html b/docs/reference/nnf_normalize.html deleted file mode 100644 index 4791597cf..000000000 --- a/docs/reference/nnf_normalize.html +++ /dev/null @@ -1,230 +0,0 @@ - - - - - - - - -Normalize — nnf_normalize • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Performs \(L_p\) normalization of inputs over specified dimension.

    -
    - -
    nnf_normalize(input, p = 2, dim = 1, eps = 1e-12, out = NULL)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    input tensor of any shape

    p

    (float) the exponent value in the norm formulation. Default: 2

    dim

    (int) the dimension to reduce. Default: 1

    eps

    (float) small value to avoid division by zero. Default: 1e-12

    out

    (Tensor, optional) the output tensor. If out is used, this operation won't be differentiable.

    - -

    Details

    - -

    For a tensor input of sizes \((n_0, ..., n_{dim}, ..., n_k)\), each -\(n_{dim}\) -element vector \(v\) along dimension dim is transformed as

    -

    $$ - v = \frac{v}{\max(\Vert v \Vert_p, \epsilon)}. -$$

    -

    With the default arguments it uses the Euclidean norm over vectors along -dimension \(1\) for normalization.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_one_hot.html b/docs/reference/nnf_one_hot.html deleted file mode 100644 index acf802ade..000000000 --- a/docs/reference/nnf_one_hot.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -One_hot — nnf_one_hot • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Takes LongTensor with index values of shape (*) and returns a tensor -of shape (*, num_classes) that have zeros everywhere except where the -index of last dimension matches the corresponding value of the input tensor, -in which case it will be 1.

    -
    - -
    nnf_one_hot(tensor, num_classes = -1)
    - -

    Arguments

    - - - - - - - - - - -
    tensor

    (LongTensor) class values of any shape.

    num_classes

    (int) Total number of classes. If set to -1, the number -of classes will be inferred as one greater than the largest class value in -the input tensor.

    - -

    Details

    - -

    One-hot on Wikipedia: https://en.wikipedia.org/wiki/One-hot

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_pad.html b/docs/reference/nnf_pad.html deleted file mode 100644 index 00b712046..000000000 --- a/docs/reference/nnf_pad.html +++ /dev/null @@ -1,248 +0,0 @@ - - - - - - - - -Pad — nnf_pad • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Pads tensor.

    -
    - -
    nnf_pad(input, pad, mode = "constant", value = 0)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) N-dimensional tensor

    pad

    (tuple) m-elements tuple, where \(\frac{m}{2} \leq\) input dimensions -and \(m\) is even.

    mode

    'constant', 'reflect', 'replicate' or 'circular'. Default: 'constant'

    value

    fill value for 'constant' padding. Default: 0.

    - -

    Padding size

    - - - - -

    The padding size by which to pad some dimensions of input -are described starting from the last dimension and moving forward. -\(\left\lfloor\frac{\mbox{len(pad)}}{2}\right\rfloor\) dimensions -of input will be padded. -For example, to pad only the last dimension of the input tensor, then -pad has the form -\((\mbox{padding\_left}, \mbox{padding\_right})\); -to pad the last 2 dimensions of the input tensor, then use -\((\mbox{padding\_left}, \mbox{padding\_right},\) -\(\mbox{padding\_top}, \mbox{padding\_bottom})\); -to pad the last 3 dimensions, use -\((\mbox{padding\_left}, \mbox{padding\_right},\) -\(\mbox{padding\_top}, \mbox{padding\_bottom}\) -\(\mbox{padding\_front}, \mbox{padding\_back})\).

    -

    Padding mode

    - - - - -

    See nn_constant_pad_2d, nn_reflection_pad_2d, and -nn_replication_pad_2d for concrete examples on how each of the -padding modes works. Constant padding is implemented for arbitrary dimensions. -tensor, or the last 2 dimensions of 4D input tensor, or the last dimension of -3D input tensor. Reflect padding is only implemented for padding the last 2 -dimensions of 4D input tensor, or the last dimension of 3D input tensor.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_pairwise_distance.html b/docs/reference/nnf_pairwise_distance.html deleted file mode 100644 index 79bfbca79..000000000 --- a/docs/reference/nnf_pairwise_distance.html +++ /dev/null @@ -1,222 +0,0 @@ - - - - - - - - -Pairwise_distance — nnf_pairwise_distance • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Computes the batchwise pairwise distance between vectors using the p-norm.

    -
    - -
    nnf_pairwise_distance(x1, x2, p = 2, eps = 1e-06, keepdim = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    x1

    (Tensor) First input.

    x2

    (Tensor) Second input (of size matching x1).

    p

    the norm degree. Default: 2

    eps

    (float, optional) Small value to avoid division by zero. -Default: 1e-8

    keepdim

    Determines whether or not to keep the vector dimension. Default: False

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_pdist.html b/docs/reference/nnf_pdist.html deleted file mode 100644 index fdb32b012..000000000 --- a/docs/reference/nnf_pdist.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -Pdist — nnf_pdist • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Computes the p-norm distance between every pair of row vectors in the input. -This is identical to the upper triangular portion, excluding the diagonal, of -torch_norm(input[:, None] - input, dim=2, p=p). This function will be faster -if the rows are contiguous.

    -
    - -
    nnf_pdist(input, p = 2)
    - -

    Arguments

    - - - - - - - - - - -
    input

    input tensor of shape \(N \times M\).

    p

    p value for the p-norm distance to calculate between each vector pair -\(\in [0, \infty]\).

    - -

    Details

    - -

    If input has shape \(N \times M\) then the output will have shape -\(\frac{1}{2} N (N - 1)\).

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_pixel_shuffle.html b/docs/reference/nnf_pixel_shuffle.html deleted file mode 100644 index e6f00ba1c..000000000 --- a/docs/reference/nnf_pixel_shuffle.html +++ /dev/null @@ -1,211 +0,0 @@ - - - - - - - - -Pixel_shuffle — nnf_pixel_shuffle • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Rearranges elements in a tensor of shape \((*, C \times r^2, H, W)\) to a -tensor of shape \((*, C, H \times r, W \times r)\).

    -
    - -
    nnf_pixel_shuffle(input, upscale_factor)
    - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor

    upscale_factor

    (int) factor to increase spatial resolution by

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_poisson_nll_loss.html b/docs/reference/nnf_poisson_nll_loss.html deleted file mode 100644 index b440e9213..000000000 --- a/docs/reference/nnf_poisson_nll_loss.html +++ /dev/null @@ -1,239 +0,0 @@ - - - - - - - - -Poisson_nll_loss — nnf_poisson_nll_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Poisson negative log likelihood loss.

    -
    - -
    nnf_poisson_nll_loss(
    -  input,
    -  target,
    -  log_input = TRUE,
    -  full = FALSE,
    -  eps = 1e-08,
    -  reduction = "mean"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    tensor (N,*) where ** means, any number of additional dimensions

    target

    tensor (N,*) , same shape as the input

    log_input

    if TRUE the loss is computed as \(\exp(\mbox{input}) - \mbox{target} * \mbox{input}\), -if FALSE then loss is \(\mbox{input} - \mbox{target} * \log(\mbox{input}+\mbox{eps})\). -Default: TRUE.

    full

    whether to compute full loss, i. e. to add the Stirling approximation -term. Default: FALSE.

    eps

    (float, optional) Small value to avoid evaluation of \(\log(0)\) when -log_input=FALSE. Default: 1e-8

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_prelu.html b/docs/reference/nnf_prelu.html deleted file mode 100644 index 673939269..000000000 --- a/docs/reference/nnf_prelu.html +++ /dev/null @@ -1,214 +0,0 @@ - - - - - - - - -Prelu — nnf_prelu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies element-wise the function -\(PReLU(x) = max(0,x) + weight * min(0,x)\) -where weight is a learnable parameter.

    -
    - -
    nnf_prelu(input, weight)
    - -

    Arguments

    - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    weight

    (Tensor) the learnable weights

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_relu.html b/docs/reference/nnf_relu.html deleted file mode 100644 index aa6ed2c21..000000000 --- a/docs/reference/nnf_relu.html +++ /dev/null @@ -1,212 +0,0 @@ - - - - - - - - -Relu — nnf_relu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the rectified linear unit function element-wise.

    -
    - -
    nnf_relu(input, inplace = FALSE)
    -
    -nnf_relu_(input)
    - -

    Arguments

    - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    inplace

    can optionally do the operation in-place. Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_relu6.html b/docs/reference/nnf_relu6.html deleted file mode 100644 index 258d84665..000000000 --- a/docs/reference/nnf_relu6.html +++ /dev/null @@ -1,210 +0,0 @@ - - - - - - - - -Relu6 — nnf_relu6 • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the element-wise function \(ReLU6(x) = min(max(0,x), 6)\).

    -
    - -
    nnf_relu6(input, inplace = FALSE)
    - -

    Arguments

    - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    inplace

    can optionally do the operation in-place. Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_rrelu.html b/docs/reference/nnf_rrelu.html deleted file mode 100644 index b635fbbb6..000000000 --- a/docs/reference/nnf_rrelu.html +++ /dev/null @@ -1,224 +0,0 @@ - - - - - - - - -Rrelu — nnf_rrelu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Randomized leaky ReLU.

    -
    - -
    nnf_rrelu(input, lower = 1/8, upper = 1/3, training = FALSE, inplace = FALSE)
    -
    -nnf_rrelu_(input, lower = 1/8, upper = 1/3, training = FALSE)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    lower

    lower bound of the uniform distribution. Default: 1/8

    upper

    upper bound of the uniform distribution. Default: 1/3

    training

    bool wether it's a training pass. DEfault: FALSE

    inplace

    can optionally do the operation in-place. Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_selu.html b/docs/reference/nnf_selu.html deleted file mode 100644 index 09ca4fa96..000000000 --- a/docs/reference/nnf_selu.html +++ /dev/null @@ -1,228 +0,0 @@ - - - - - - - - -Selu — nnf_selu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies element-wise, -$$SELU(x) = scale * (max(0,x) + min(0, \alpha * (exp(x) - 1)))$$, -with \(\alpha=1.6732632423543772848170429916717\) and -\(scale=1.0507009873554804934193349852946\).

    -
    - -
    nnf_selu(input, inplace = FALSE)
    -
    -nnf_selu_(input)
    - -

    Arguments

    - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    inplace

    can optionally do the operation in-place. Default: FALSE

    - - -

    Examples

    -
    # \dontrun{ -x <- torch_randn(2, 2) -y <- nnf_selu(x) -nnf_selu_(x)
    #> torch_tensor -#> 0.3549 0.1844 -#> -1.4839 -0.8035 -#> [ CPUFloatType{2,2} ]
    #> [1] TRUE
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_smooth_l1_loss.html b/docs/reference/nnf_smooth_l1_loss.html deleted file mode 100644 index 8648514dc..000000000 --- a/docs/reference/nnf_smooth_l1_loss.html +++ /dev/null @@ -1,218 +0,0 @@ - - - - - - - - -Smooth_l1_loss — nnf_smooth_l1_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Function that uses a squared term if the absolute -element-wise error falls below 1 and an L1 term otherwise.

    -
    - -
    nnf_smooth_l1_loss(input, target, reduction = "mean")
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    tensor (N,*) where ** means, any number of additional dimensions

    target

    tensor (N,*) , same shape as the input

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_soft_margin_loss.html b/docs/reference/nnf_soft_margin_loss.html deleted file mode 100644 index 54ef73a66..000000000 --- a/docs/reference/nnf_soft_margin_loss.html +++ /dev/null @@ -1,218 +0,0 @@ - - - - - - - - -Soft_margin_loss — nnf_soft_margin_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates a criterion that optimizes a two-class classification logistic loss -between input tensor x and target tensor y (containing 1 or -1).

    -
    - -
    nnf_soft_margin_loss(input, target, reduction = "mean")
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    tensor (N,*) where ** means, any number of additional dimensions

    target

    tensor (N,*) , same shape as the input

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_softmax.html b/docs/reference/nnf_softmax.html deleted file mode 100644 index 96192890f..000000000 --- a/docs/reference/nnf_softmax.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -Softmax — nnf_softmax • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a softmax function.

    -
    - -
    nnf_softmax(input, dim, dtype = NULL)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) input

    dim

    (int) A dimension along which softmax will be computed.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. -Default: NULL.

    - -

    Details

    - -

    Softmax is defined as:

    -

    $$Softmax(x_{i}) = exp(x_i)/\sum_j exp(x_j)$$

    -

    It is applied to all slices along dim, and will re-scale them so that the elements -lie in the range [0, 1] and sum to 1.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_softmin.html b/docs/reference/nnf_softmin.html deleted file mode 100644 index df967c8ec..000000000 --- a/docs/reference/nnf_softmin.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -Softmin — nnf_softmin • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies a softmin function.

    -
    - -
    nnf_softmin(input, dim, dtype = NULL)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) input

    dim

    (int) A dimension along which softmin will be computed -(so every slice along dim will sum to 1).

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. -This is useful for preventing data type overflows. Default: NULL.

    - -

    Details

    - -

    Note that

    -

    $$Softmin(x) = Softmax(-x)$$.

    -

    See nnf_softmax definition for mathematical formula.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_softplus.html b/docs/reference/nnf_softplus.html deleted file mode 100644 index 4a0100d15..000000000 --- a/docs/reference/nnf_softplus.html +++ /dev/null @@ -1,218 +0,0 @@ - - - - - - - - -Softplus — nnf_softplus • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies element-wise, the function \(Softplus(x) = 1/\beta * log(1 + exp(\beta * x))\).

    -
    - -
    nnf_softplus(input, beta = 1, threshold = 20)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    beta

    the beta value for the Softplus formulation. Default: 1

    threshold

    values above this revert to a linear function. Default: 20

    - -

    Details

    - -

    For numerical stability the implementation reverts to the linear function -when \(input * \beta > threshold\).

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_softshrink.html b/docs/reference/nnf_softshrink.html deleted file mode 100644 index 32230837c..000000000 --- a/docs/reference/nnf_softshrink.html +++ /dev/null @@ -1,211 +0,0 @@ - - - - - - - - -Softshrink — nnf_softshrink • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies the soft shrinkage function elementwise

    -
    - -
    nnf_softshrink(input, lambd = 0.5)
    - -

    Arguments

    - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    lambd

    the lambda (must be no less than zero) value for the Softshrink -formulation. Default: 0.5

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_softsign.html b/docs/reference/nnf_softsign.html deleted file mode 100644 index ce468c4af..000000000 --- a/docs/reference/nnf_softsign.html +++ /dev/null @@ -1,206 +0,0 @@ - - - - - - - - -Softsign — nnf_softsign • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies element-wise, the function \(SoftSign(x) = x/(1 + |x|\)

    -
    - -
    nnf_softsign(input)
    - -

    Arguments

    - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_tanhshrink.html b/docs/reference/nnf_tanhshrink.html deleted file mode 100644 index a95dbc3b6..000000000 --- a/docs/reference/nnf_tanhshrink.html +++ /dev/null @@ -1,206 +0,0 @@ - - - - - - - - -Tanhshrink — nnf_tanhshrink • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Applies element-wise, \(Tanhshrink(x) = x - Tanh(x)\)

    -
    - -
    nnf_tanhshrink(input)
    - -

    Arguments

    - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_threshold.html b/docs/reference/nnf_threshold.html deleted file mode 100644 index 5d7c6e790..000000000 --- a/docs/reference/nnf_threshold.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -Threshold — nnf_threshold • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Thresholds each element of the input Tensor.

    -
    - -
    nnf_threshold(input, threshold, value, inplace = FALSE)
    -
    -nnf_threshold_(input, threshold, value)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (N,*) tensor, where * means, any number of additional -dimensions

    threshold

    The value to threshold at

    value

    The value to replace with

    inplace

    can optionally do the operation in-place. Default: FALSE

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_triplet_margin_loss.html b/docs/reference/nnf_triplet_margin_loss.html deleted file mode 100644 index ba202431a..000000000 --- a/docs/reference/nnf_triplet_margin_loss.html +++ /dev/null @@ -1,255 +0,0 @@ - - - - - - - - -Triplet_margin_loss — nnf_triplet_margin_loss • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates a criterion that measures the triplet loss given an input tensors x1 , -x2 , x3 and a margin with a value greater than 0 . This is used for measuring -a relative similarity between samples. A triplet is composed by a, p and n (i.e., -anchor, positive examples and negative examples respectively). The shapes of all -input tensors should be (N, D).

    -
    - -
    nnf_triplet_margin_loss(
    -  anchor,
    -  positive,
    -  negative,
    -  margin = 1,
    -  p = 2,
    -  eps = 1e-06,
    -  swap = FALSE,
    -  reduction = "mean"
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    anchor

    the anchor input tensor

    positive

    the positive input tensor

    negative

    the negative input tensor

    margin

    Default: 1.

    p

    The norm degree for pairwise distance. Default: 2.

    eps

    (float, optional) Small value to avoid division by zero.

    swap

    The distance swap is described in detail in the paper Learning shallow -convolutional feature descriptors with triplet losses by V. Balntas, E. Riba et al. -Default: FALSE.

    reduction

    (string, optional) – Specifies the reduction to apply to the -output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': -the sum of the output will be divided by the number of elements in the output, -'sum': the output will be summed. Default: 'mean'

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/nnf_unfold.html b/docs/reference/nnf_unfold.html deleted file mode 100644 index 662109dff..000000000 --- a/docs/reference/nnf_unfold.html +++ /dev/null @@ -1,237 +0,0 @@ - - - - - - - - -Unfold — nnf_unfold • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Extracts sliding local blocks from an batched input tensor.

    -
    - -
    nnf_unfold(input, kernel_size, dilation = 1, padding = 0, stride = 1)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    the input tensor

    kernel_size

    the size of the sliding blocks

    dilation

    a parameter that controls the stride of elements within the -neighborhood. Default: 1

    padding

    implicit zero padding to be added on both sides of input. -Default: 0

    stride

    the stride of the sliding blocks in the input spatial dimensions. -Default: 1

    - -

    Warning

    - - - - -

    Currently, only 4-D input tensors (batched image-like tensors) are -supported.

    - - -

    More than one element of the unfolded tensor may refer to a single -memory location. As a result, in-place operations (especially ones that -are vectorized) may result in incorrect behavior. If you need to write -to the tensor, please clone it first.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/optim_adam.html b/docs/reference/optim_adam.html deleted file mode 100644 index 51b804c19..000000000 --- a/docs/reference/optim_adam.html +++ /dev/null @@ -1,239 +0,0 @@ - - - - - - - - -Implements Adam algorithm. — optim_adam • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    It has been proposed in Adam: A Method for Stochastic Optimization.

    -
    - -
    optim_adam(
    -  params,
    -  lr = 0.001,
    -  betas = c(0.9, 0.999),
    -  eps = 1e-08,
    -  weight_decay = 0,
    -  amsgrad = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    params

    (iterable): iterable of parameters to optimize or dicts defining -parameter groups

    lr

    (float, optional): learning rate (default: 1e-3)

    betas

    (Tuple[float, float], optional): coefficients used for computing -running averages of gradient and its square (default: (0.9, 0.999))

    eps

    (float, optional): term added to the denominator to improve -numerical stability (default: 1e-8)

    weight_decay

    (float, optional): weight decay (L2 penalty) (default: 0)

    amsgrad

    (boolean, optional): whether to use the AMSGrad variant of this -algorithm from the paper On the Convergence of Adam and Beyond -(default: FALSE)

    - - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/optim_required.html b/docs/reference/optim_required.html deleted file mode 100644 index 8316f053e..000000000 --- a/docs/reference/optim_required.html +++ /dev/null @@ -1,197 +0,0 @@ - - - - - - - - -Dummy value indicating a required value. — optim_required • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    export

    -
    - -
    optim_required()
    - - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/optim_sgd.html b/docs/reference/optim_sgd.html deleted file mode 100644 index fef15d1e7..000000000 --- a/docs/reference/optim_sgd.html +++ /dev/null @@ -1,264 +0,0 @@ - - - - - - - - -SGD optimizer — optim_sgd • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Implements stochastic gradient descent (optionally with momentum). -Nesterov momentum is based on the formula from -On the importance of initialization and momentum in deep learning.

    -
    - -
    optim_sgd(
    -  params,
    -  lr = optim_required(),
    -  momentum = 0,
    -  dampening = 0,
    -  weight_decay = 0,
    -  nesterov = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    params

    (iterable): iterable of parameters to optimize or dicts defining -parameter groups

    lr

    (float): learning rate

    momentum

    (float, optional): momentum factor (default: 0)

    dampening

    (float, optional): dampening for momentum (default: 0)

    weight_decay

    (float, optional): weight decay (L2 penalty) (default: 0)

    nesterov

    (bool, optional): enables Nesterov momentum (default: FALSE)

    - -

    Note

    - - - - -

    The implementation of SGD with Momentum-Nesterov subtly differs from -Sutskever et. al. and implementations in some other frameworks.

    -

    Considering the specific case of Momentum, the update can be written as -$$ - \begin{array}{ll} -v_{t+1} & = \mu * v_{t} + g_{t+1}, \\ -p_{t+1} & = p_{t} - \mbox{lr} * v_{t+1}, -\end{array} -$$

    -

    where \(p\), \(g\), \(v\) and \(\mu\) denote the -parameters, gradient, velocity, and momentum respectively.

    -

    This is in contrast to Sutskever et. al. and -other frameworks which employ an update of the form

    -

    $$ - \begin{array}{ll} -v_{t+1} & = \mu * v_{t} + \mbox{lr} * g_{t+1}, \\ -p_{t+1} & = p_{t} - v_{t+1}. -\end{array} -$$ -The Nesterov version is analogously modified.

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/tensor_dataset.html b/docs/reference/tensor_dataset.html deleted file mode 100644 index 4d4eaa081..000000000 --- a/docs/reference/tensor_dataset.html +++ /dev/null @@ -1,205 +0,0 @@ - - - - - - - - -Dataset wrapping tensors. — tensor_dataset • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Each sample will be retrieved by indexing tensors along the first dimension.

    -
    - -
    tensor_dataset(...)
    - -

    Arguments

    - - - - - - -
    ...

    tensors that have the same size of the first dimension.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_abs.html b/docs/reference/torch_abs.html deleted file mode 100644 index 86289261f..000000000 --- a/docs/reference/torch_abs.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Abs — torch_abs • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Abs

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    abs(input, out=None) -> Tensor

    - - - - -

    Computes the element-wise absolute value of the given input tensor.

    -

    $$ - \mbox{out}_{i} = |\mbox{input}_{i}| -$$

    - -

    Examples

    -
    # \dontrun{ - -torch_abs(torch_tensor(c(-1, -2, 3)))
    #> torch_tensor -#> 1 -#> 2 -#> 3 -#> [ CPUFloatType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_acos.html b/docs/reference/torch_acos.html deleted file mode 100644 index 7f0a03834..000000000 --- a/docs/reference/torch_acos.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Acos — torch_acos • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Acos

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    acos(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the arccosine of the elements of input.

    -

    $$ - \mbox{out}_{i} = \cos^{-1}(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.6137 -#> 1.1598 -#> 0.0958 -#> -0.2733 -#> [ CPUFloatType{4} ]
    torch_acos(a)
    #> torch_tensor -#> 2.2315 -#> nan -#> 1.4748 -#> 1.8476 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_adaptive_avg_pool1d.html b/docs/reference/torch_adaptive_avg_pool1d.html deleted file mode 100644 index c46cb1aba..000000000 --- a/docs/reference/torch_adaptive_avg_pool1d.html +++ /dev/null @@ -1,212 +0,0 @@ - - - - - - - - -Adaptive_avg_pool1d — torch_adaptive_avg_pool1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Adaptive_avg_pool1d

    -
    - - -

    Arguments

    - - - - - - -
    output_size

    NA the target output size (single integer)

    - -

    adaptive_avg_pool1d(input, output_size) -> Tensor

    - - - - -

    Applies a 1D adaptive average pooling over an input signal composed of -several input planes.

    -

    See ~torch.nn.AdaptiveAvgPool1d for details and output shape.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_add.html b/docs/reference/torch_add.html deleted file mode 100644 index 57bab752a..000000000 --- a/docs/reference/torch_add.html +++ /dev/null @@ -1,278 +0,0 @@ - - - - - - - - -Add — torch_add • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Add

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    value

    (Number) the number to be added to each element of input

    other

    (Tensor) the second input tensor

    alpha

    (Number) the scalar multiplier for other

    - -

    add(input, other, out=None)

    - - - - -

    Adds the scalar other to each element of the input input -and returns a new resulting tensor.

    -

    $$ - \mbox{out} = \mbox{input} + \mbox{other} -$$ -If input is of type FloatTensor or DoubleTensor, other must be -a real number, otherwise it should be an integer.

    -

    add(input, other, *, alpha=1, out=None)

    - - - - -

    Each element of the tensor other is multiplied by the scalar -alpha and added to each element of the tensor input. -The resulting tensor is returned.

    -

    The shapes of input and other must be -broadcastable .

    -

    $$ - \mbox{out} = \mbox{input} + \mbox{alpha} \times \mbox{other} -$$ -If other is of type FloatTensor or DoubleTensor, alpha must be -a real number, otherwise it should be an integer.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 0.2160 -#> 0.1973 -#> -0.1795 -#> -0.9024 -#> [ CPUFloatType{4} ]
    torch_add(a, 20)
    #> torch_tensor -#> 20.2160 -#> 20.1973 -#> 19.8204 -#> 19.0976 -#> [ CPUFloatType{4} ]
    - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -1.6998 -#> -0.1848 -#> -0.4348 -#> -0.7475 -#> [ CPUFloatType{4} ]
    b = torch_randn(c(4, 1)) -b
    #> torch_tensor -#> 0.9213 -#> 0.5193 -#> 0.3855 -#> -1.5317 -#> [ CPUFloatType{4,1} ]
    torch_add(a, b)
    #> torch_tensor -#> -0.7785 0.7364 0.4865 0.1738 -#> -1.1805 0.3345 0.0845 -0.2282 -#> -1.3142 0.2007 -0.0492 -0.3619 -#> -3.2315 -1.7166 -1.9665 -2.2792 -#> [ CPUFloatType{4,4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_addbmm.html b/docs/reference/torch_addbmm.html deleted file mode 100644 index 3ddde568f..000000000 --- a/docs/reference/torch_addbmm.html +++ /dev/null @@ -1,257 +0,0 @@ - - - - - - - - -Addbmm — torch_addbmm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Addbmm

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    batch1

    (Tensor) the first batch of matrices to be multiplied

    batch2

    (Tensor) the second batch of matrices to be multiplied

    beta

    (Number, optional) multiplier for input (\(\beta\))

    input

    (Tensor) matrix to be added

    alpha

    (Number, optional) multiplier for batch1 @ batch2 (\(\alpha\))

    out

    (Tensor, optional) the output tensor.

    - -

    addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor

    - - - - -

    Performs a batch matrix-matrix product of matrices stored -in batch1 and batch2, -with a reduced add step (all matrix multiplications get accumulated -along the first dimension). -input is added to the final result.

    -

    batch1 and batch2 must be 3-D tensors each containing the -same number of matrices.

    -

    If batch1 is a \((b \times n \times m)\) tensor, batch2 is a -\((b \times m \times p)\) tensor, input must be -broadcastable with a \((n \times p)\) tensor -and out will be a \((n \times p)\) tensor.

    -

    $$ - out = \beta\ \mbox{input} + \alpha\ (\sum_{i=0}^{b-1} \mbox{batch1}_i \mathbin{@} \mbox{batch2}_i) -$$ -For inputs of type FloatTensor or DoubleTensor, arguments beta and alpha -must be real numbers, otherwise they should be integers.

    - -

    Examples

    -
    # \dontrun{ - -M = torch_randn(c(3, 5)) -batch1 = torch_randn(c(10, 3, 4)) -batch2 = torch_randn(c(10, 4, 5)) -torch_addbmm(M, batch1, batch2)
    #> torch_tensor -#> 5.7025 7.7808 5.3946 0.1290 2.4487 -#> -1.9730 -3.0379 -5.4090 0.6009 -3.1469 -#> 4.6785 6.4997 -11.4732 6.3957 10.2272 -#> [ CPUFloatType{3,5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_addcdiv.html b/docs/reference/torch_addcdiv.html deleted file mode 100644 index 4f76063f7..000000000 --- a/docs/reference/torch_addcdiv.html +++ /dev/null @@ -1,260 +0,0 @@ - - - - - - - - -Addcdiv — torch_addcdiv • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Addcdiv

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor to be added

    tensor1

    (Tensor) the numerator tensor

    tensor2

    (Tensor) the denominator tensor

    value

    (Number, optional) multiplier for \(\mbox{tensor1} / \mbox{tensor2}\)

    out

    (Tensor, optional) the output tensor.

    - -

    addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor

    - - - - -

    Performs the element-wise division of tensor1 by tensor2, -multiply the result by the scalar value and add it to input.

    -

    Warning

    - - - -

    Integer division with addcdiv is deprecated, and in a future release -addcdiv will perform a true division of tensor1 and tensor2. -The current addcdiv behavior can be replicated using torch_floor_divide() -for integral inputs -(input + value * tensor1 // tensor2) -and torch_div() for float inputs -(input + value * tensor1 / tensor2). -The new addcdiv behavior can be implemented with torch_true_divide() -(input + value * torch.true_divide(tensor1, -tensor2).

    -

    $$ - \mbox{out}_i = \mbox{input}_i + \mbox{value} \times \frac{\mbox{tensor1}_i}{\mbox{tensor2}_i} -$$

    -

    The shapes of input, tensor1, and tensor2 must be -broadcastable .

    -

    For inputs of type FloatTensor or DoubleTensor, value must be -a real number, otherwise an integer.

    - -

    Examples

    -
    # \dontrun{ - -t = torch_randn(c(1, 3)) -t1 = torch_randn(c(3, 1)) -t2 = torch_randn(c(1, 3)) -torch_addcdiv(t, t1, t2, 0.1)
    #> torch_tensor -#> -0.3050 -0.1424 0.5617 -#> -0.3424 0.0045 1.0519 -#> -0.2932 -0.1885 0.4079 -#> [ CPUFloatType{3,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_addcmul.html b/docs/reference/torch_addcmul.html deleted file mode 100644 index d3d5f082f..000000000 --- a/docs/reference/torch_addcmul.html +++ /dev/null @@ -1,247 +0,0 @@ - - - - - - - - -Addcmul — torch_addcmul • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Addcmul

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor to be added

    tensor1

    (Tensor) the tensor to be multiplied

    tensor2

    (Tensor) the tensor to be multiplied

    value

    (Number, optional) multiplier for \(tensor1 .* tensor2\)

    out

    (Tensor, optional) the output tensor.

    - -

    addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor

    - - - - -

    Performs the element-wise multiplication of tensor1 -by tensor2, multiply the result by the scalar value -and add it to input.

    -

    $$ - \mbox{out}_i = \mbox{input}_i + \mbox{value} \times \mbox{tensor1}_i \times \mbox{tensor2}_i -$$ -The shapes of tensor, tensor1, and tensor2 must be -broadcastable .

    -

    For inputs of type FloatTensor or DoubleTensor, value must be -a real number, otherwise an integer.

    - -

    Examples

    -
    # \dontrun{ - -t = torch_randn(c(1, 3)) -t1 = torch_randn(c(3, 1)) -t2 = torch_randn(c(1, 3)) -torch_addcmul(t, t1, t2, 0.1)
    #> torch_tensor -#> -0.2008 -0.8560 0.9351 -#> -0.1664 -0.8433 0.9042 -#> -0.5670 -0.9908 1.2630 -#> [ CPUFloatType{3,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_addmm.html b/docs/reference/torch_addmm.html deleted file mode 100644 index 5bafc455f..000000000 --- a/docs/reference/torch_addmm.html +++ /dev/null @@ -1,253 +0,0 @@ - - - - - - - - -Addmm — torch_addmm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Addmm

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) matrix to be added

    mat1

    (Tensor) the first matrix to be multiplied

    mat2

    (Tensor) the second matrix to be multiplied

    beta

    (Number, optional) multiplier for input (\(\beta\))

    alpha

    (Number, optional) multiplier for \(mat1 @ mat2\) (\(\alpha\))

    out

    (Tensor, optional) the output tensor.

    - -

    addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor

    - - - - -

    Performs a matrix multiplication of the matrices mat1 and mat2. -The matrix input is added to the final result.

    -

    If mat1 is a \((n \times m)\) tensor, mat2 is a -\((m \times p)\) tensor, then input must be -broadcastable with a \((n \times p)\) tensor -and out will be a \((n \times p)\) tensor.

    -

    alpha and beta are scaling factors on matrix-vector product between -mat1 and mat2 and the added matrix input respectively.

    -

    $$ - \mbox{out} = \beta\ \mbox{input} + \alpha\ (\mbox{mat1}_i \mathbin{@} \mbox{mat2}_i) -$$ -For inputs of type FloatTensor or DoubleTensor, arguments beta and -alpha must be real numbers, otherwise they should be integers.

    - -

    Examples

    -
    # \dontrun{ - -M = torch_randn(c(2, 3)) -mat1 = torch_randn(c(2, 3)) -mat2 = torch_randn(c(3, 3)) -torch_addmm(M, mat1, mat2)
    #> torch_tensor -#> -1.4411 0.9520 5.5685 -#> 2.0314 0.6255 2.2542 -#> [ CPUFloatType{2,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_addmv.html b/docs/reference/torch_addmv.html deleted file mode 100644 index 27c8c5c2a..000000000 --- a/docs/reference/torch_addmv.html +++ /dev/null @@ -1,254 +0,0 @@ - - - - - - - - -Addmv — torch_addmv • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Addmv

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) vector to be added

    mat

    (Tensor) matrix to be multiplied

    vec

    (Tensor) vector to be multiplied

    beta

    (Number, optional) multiplier for input (\(\beta\))

    alpha

    (Number, optional) multiplier for \(mat @ vec\) (\(\alpha\))

    out

    (Tensor, optional) the output tensor.

    - -

    addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor

    - - - - -

    Performs a matrix-vector product of the matrix mat and -the vector vec. -The vector input is added to the final result.

    -

    If mat is a \((n \times m)\) tensor, vec is a 1-D tensor of -size m, then input must be -broadcastable with a 1-D tensor of size n and -out will be 1-D tensor of size n.

    -

    alpha and beta are scaling factors on matrix-vector product between -mat and vec and the added tensor input respectively.

    -

    $$ - \mbox{out} = \beta\ \mbox{input} + \alpha\ (\mbox{mat} \mathbin{@} \mbox{vec}) -$$ -For inputs of type FloatTensor or DoubleTensor, arguments beta and -alpha must be real numbers, otherwise they should be integers

    - -

    Examples

    -
    # \dontrun{ - -M = torch_randn(c(2)) -mat = torch_randn(c(2, 3)) -vec = torch_randn(c(3)) -torch_addmv(M, mat, vec)
    #> torch_tensor -#> 1.9265 -#> 1.5524 -#> [ CPUFloatType{2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_addr.html b/docs/reference/torch_addr.html deleted file mode 100644 index 6ac26d962..000000000 --- a/docs/reference/torch_addr.html +++ /dev/null @@ -1,256 +0,0 @@ - - - - - - - - -Addr — torch_addr • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Addr

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) matrix to be added

    vec1

    (Tensor) the first vector of the outer product

    vec2

    (Tensor) the second vector of the outer product

    beta

    (Number, optional) multiplier for input (\(\beta\))

    alpha

    (Number, optional) multiplier for \(\mbox{vec1} \otimes \mbox{vec2}\) (\(\alpha\))

    out

    (Tensor, optional) the output tensor.

    - -

    addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor

    - - - - -

    Performs the outer-product of vectors vec1 and vec2 -and adds it to the matrix input.

    -

    Optional values beta and alpha are scaling factors on the -outer product between vec1 and vec2 and the added matrix -input respectively.

    -

    $$ - \mbox{out} = \beta\ \mbox{input} + \alpha\ (\mbox{vec1} \otimes \mbox{vec2}) -$$ -If vec1 is a vector of size n and vec2 is a vector -of size m, then input must be -broadcastable with a matrix of size -\((n \times m)\) and out will be a matrix of size -\((n \times m)\).

    -

    For inputs of type FloatTensor or DoubleTensor, arguments beta and -alpha must be real numbers, otherwise they should be integers

    - -

    Examples

    -
    # \dontrun{ - -vec1 = torch_arange(1., 4.) -vec2 = torch_arange(1., 3.) -M = torch_zeros(c(3, 2)) -torch_addr(M, vec1, vec2)
    #> torch_tensor -#> 1 2 -#> 2 4 -#> 3 6 -#> [ CPUFloatType{3,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_allclose.html b/docs/reference/torch_allclose.html deleted file mode 100644 index 975ed4f9a..000000000 --- a/docs/reference/torch_allclose.html +++ /dev/null @@ -1,236 +0,0 @@ - - - - - - - - -Allclose — torch_allclose • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Allclose

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) first tensor to compare

    other

    (Tensor) second tensor to compare

    atol

    (float, optional) absolute tolerance. Default: 1e-08

    rtol

    (float, optional) relative tolerance. Default: 1e-05

    equal_nan

    (bool, optional) if True, then two NaN s will be compared as equal. Default: False

    - -

    allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool

    - - - - -

    This function checks if all input and other satisfy the condition:

    -

    $$ - \vert \mbox{input} - \mbox{other} \vert \leq \mbox{atol} + \mbox{rtol} \times \vert \mbox{other} \vert -$$ -elementwise, for all elements of input and other. The behaviour of this function is analogous to -numpy.allclose <https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html>_

    - -

    Examples

    -
    # \dontrun{ - -torch_allclose(torch_tensor(c(10000., 1e-07)), torch_tensor(c(10000.1, 1e-08)))
    #> [1] FALSE
    torch_allclose(torch_tensor(c(10000., 1e-08)), torch_tensor(c(10000.1, 1e-09)))
    #> [1] FALSE
    torch_allclose(torch_tensor(c(1.0, NaN)), torch_tensor(c(1.0, NaN)))
    #> [1] FALSE
    torch_allclose(torch_tensor(c(1.0, NaN)), torch_tensor(c(1.0, NaN)), equal_nan=TRUE)
    #> [1] TRUE
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_angle.html b/docs/reference/torch_angle.html deleted file mode 100644 index e0c61819a..000000000 --- a/docs/reference/torch_angle.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Angle — torch_angle • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Angle

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    angle(input, out=None) -> Tensor

    - - - - -

    Computes the element-wise angle (in radians) of the given input tensor.

    -

    $$ - \mbox{out}_{i} = angle(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_arange.html b/docs/reference/torch_arange.html deleted file mode 100644 index 743159b5d..000000000 --- a/docs/reference/torch_arange.html +++ /dev/null @@ -1,265 +0,0 @@ - - - - - - - - -Arange — torch_arange • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Arange

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    start

    (Number) the starting value for the set of points. Default: 0.

    end

    (Number) the ending value for the set of points

    step

    (Number) the gap between each pair of adjacent points. Default: 1.

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or stop are floating-point, the dtype is inferred to be the default dtype, see ~torch.get_default_dtype. Otherwise, the dtype is inferred to be torch.int64.

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    arange(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Returns a 1-D tensor of size \(\left\lceil \frac{\mbox{end} - \mbox{start}}{\mbox{step}} \right\rceil\) -with values from the interval [start, end) taken with common difference -step beginning from start.

    -

    Note that non-integer step is subject to floating point rounding errors when -comparing against end; to avoid inconsistency, we advise adding a small epsilon to end -in such cases.

    -

    $$ - \mbox{out}_{{i+1}} = \mbox{out}_{i} + \mbox{step} -$$

    - -

    Examples

    -
    # \dontrun{ - -torch_arange(start = 0, end = 5)
    #> torch_tensor -#> 0 -#> 1 -#> 2 -#> 3 -#> 4 -#> [ CPUFloatType{5} ]
    torch_arange(1, 4)
    #> torch_tensor -#> 1 -#> 2 -#> 3 -#> [ CPUFloatType{3} ]
    torch_arange(1, 2.5, 0.5)
    #> torch_tensor -#> 1.0000 -#> 1.5000 -#> 2.0000 -#> [ CPUFloatType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_argmax.html b/docs/reference/torch_argmax.html deleted file mode 100644 index 6e99af2f9..000000000 --- a/docs/reference/torch_argmax.html +++ /dev/null @@ -1,230 +0,0 @@ - - - - - - - - -Argmax — torch_argmax • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Argmax

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the dimension to reduce. If None, the argmax of the flattened input is returned.

    keepdim

    (bool) whether the output tensor has dim retained or not. Ignored if dim=None.

    - -

    argmax(input) -> LongTensor

    - - - - -

    Returns the indices of the maximum value of all elements in the input tensor.

    -

    This is the second value returned by torch_max. See its -documentation for the exact semantics of this method.

    -

    argmax(input, dim, keepdim=False) -> LongTensor

    - - - - -

    Returns the indices of the maximum values of a tensor across a dimension.

    -

    This is the second value returned by torch_max. See its -documentation for the exact semantics of this method.

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_argmin.html b/docs/reference/torch_argmin.html deleted file mode 100644 index 8a096e32c..000000000 --- a/docs/reference/torch_argmin.html +++ /dev/null @@ -1,254 +0,0 @@ - - - - - - - - -Argmin — torch_argmin • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Argmin

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the dimension to reduce. If None, the argmin of the flattened input is returned.

    keepdim

    (bool) whether the output tensor has dim retained or not. Ignored if dim=None.

    - -

    argmin(input) -> LongTensor

    - - - - -

    Returns the indices of the minimum value of all elements in the input tensor.

    -

    This is the second value returned by torch_min. See its -documentation for the exact semantics of this method.

    -

    argmin(input, dim, keepdim=False, out=None) -> LongTensor

    - - - - -

    Returns the indices of the minimum values of a tensor across a dimension.

    -

    This is the second value returned by torch_min. See its -documentation for the exact semantics of this method.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> 1.6530 -1.9398 -0.7858 -0.6979 -#> 1.3467 2.4378 2.4695 -0.0903 -#> 0.5428 -0.8464 -0.8918 -0.2703 -#> 1.0460 -0.3144 0.2131 -0.1355 -#> [ CPUFloatType{4,4} ]
    torch_argmin(a)
    #> torch_tensor -#> 1 -#> [ CPULongType{} ]
    - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> 0.3917 -1.7360 2.1245 -0.4908 -#> -1.2249 -0.1974 0.3145 -1.2540 -#> 2.5169 0.8670 1.2077 0.5393 -#> 0.2843 -0.6558 -0.7945 1.3721 -#> [ CPUFloatType{4,4} ]
    torch_argmin(a, dim=1)
    #> torch_tensor -#> 1 -#> 0 -#> 3 -#> 1 -#> [ CPULongType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_argsort.html b/docs/reference/torch_argsort.html deleted file mode 100644 index b8a5f3ab5..000000000 --- a/docs/reference/torch_argsort.html +++ /dev/null @@ -1,237 +0,0 @@ - - - - - - - - -Argsort — torch_argsort • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Argsort

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int, optional) the dimension to sort along

    descending

    (bool, optional) controls the sorting order (ascending or descending)

    - -

    argsort(input, dim=-1, descending=False) -> LongTensor

    - - - - -

    Returns the indices that sort a tensor along a given dimension in ascending -order by value.

    -

    This is the second value returned by torch_sort. See its documentation -for the exact semantics of this method.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> -0.8250 -0.5984 -1.2454 0.4598 -#> -0.9256 0.0695 -1.6829 1.5544 -#> 2.1622 0.7200 0.7667 -0.4872 -#> 1.1699 0.8607 2.5965 0.0434 -#> [ CPUFloatType{4,4} ]
    torch_argsort(a, dim=1)
    #> torch_tensor -#> 1 0 1 2 -#> 0 1 0 3 -#> 3 2 2 0 -#> 2 3 3 1 -#> [ CPULongType{4,4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_as_strided.html b/docs/reference/torch_as_strided.html deleted file mode 100644 index 954e35c20..000000000 --- a/docs/reference/torch_as_strided.html +++ /dev/null @@ -1,254 +0,0 @@ - - - - - - - - -As_strided — torch_as_strided • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    As_strided

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    size

    (tuple or ints) the shape of the output tensor

    stride

    (tuple or ints) the stride of the output tensor

    storage_offset

    (int, optional) the offset in the underlying storage of the output tensor

    - -

    as_strided(input, size, stride, storage_offset=0) -> Tensor

    - - - - -

    Create a view of an existing torch_Tensor input with specified -size, stride and storage_offset.

    -

    Warning

    - - - -

    More than one element of a created tensor may refer to a single memory -location. As a result, in-place operations (especially ones that are -vectorized) may result in incorrect behavior. If you need to write to -the tensors, please clone them first.

    Many PyTorch functions, which return a view of a tensor, are internally
    -implemented with this function. Those functions, like
    -`torch_Tensor.expand`, are easier to read and are therefore more
    -advisable to use.
    -
    - - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(3, 3)) -x
    #> torch_tensor -#> -1.5576 0.5216 -0.6254 -#> 0.5108 -0.2964 0.5801 -#> -0.7827 0.2806 0.0976 -#> [ CPUFloatType{3,3} ]
    t = torch_as_strided(x, list(2, 2), list(1, 2)) -t
    #> torch_tensor -#> -1.5576 -0.6254 -#> 0.5216 0.5108 -#> [ CPUFloatType{2,2} ]
    t = torch_as_strided(x, list(2, 2), list(1, 2), 1) -t
    #> torch_tensor -#> 0.5216 0.5108 -#> -0.6254 -0.2964 -#> [ CPUFloatType{2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_asin.html b/docs/reference/torch_asin.html deleted file mode 100644 index fe3c2598b..000000000 --- a/docs/reference/torch_asin.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Asin — torch_asin • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Asin

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    asin(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the arcsine of the elements of input.

    -

    $$ - \mbox{out}_{i} = \sin^{-1}(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.3857 -#> 1.8551 -#> 0.4113 -#> 0.7013 -#> [ CPUFloatType{4} ]
    torch_asin(a)
    #> torch_tensor -#> -0.3959 -#> nan -#> 0.4239 -#> 0.7773 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_atan.html b/docs/reference/torch_atan.html deleted file mode 100644 index d759b6408..000000000 --- a/docs/reference/torch_atan.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Atan — torch_atan • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Atan

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    atan(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the arctangent of the elements of input.

    -

    $$ - \mbox{out}_{i} = \tan^{-1}(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.7742 -#> 0.3914 -#> -0.0984 -#> 0.7190 -#> [ CPUFloatType{4} ]
    torch_atan(a)
    #> torch_tensor -#> -0.6588 -#> 0.3730 -#> -0.0980 -#> 0.6234 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_atan2.html b/docs/reference/torch_atan2.html deleted file mode 100644 index 0e0582ddc..000000000 --- a/docs/reference/torch_atan2.html +++ /dev/null @@ -1,241 +0,0 @@ - - - - - - - - -Atan2 — torch_atan2 • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Atan2

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the first input tensor

    other

    (Tensor) the second input tensor

    out

    (Tensor, optional) the output tensor.

    - -

    atan2(input, other, out=None) -> Tensor

    - - - - -

    Element-wise arctangent of \(\mbox{input}_{i} / \mbox{other}_{i}\) -with consideration of the quadrant. Returns a new tensor with the signed angles -in radians between vector \((\mbox{other}_{i}, \mbox{input}_{i})\) -and vector \((1, 0)\). (Note that \(\mbox{other}_{i}\), the second -parameter, is the x-coordinate, while \(\mbox{input}_{i}\), the first -parameter, is the y-coordinate.)

    -

    The shapes of input and other must be -broadcastable .

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 0.7384 -#> 1.5533 -#> 0.0480 -#> 0.5090 -#> [ CPUFloatType{4} ]
    torch_atan2(a, torch_randn(c(4)))
    #> torch_tensor -#> 0.3252 -#> 1.4989 -#> 3.0686 -#> 1.3146 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_avg_pool1d.html b/docs/reference/torch_avg_pool1d.html deleted file mode 100644 index 2799e95fa..000000000 --- a/docs/reference/torch_avg_pool1d.html +++ /dev/null @@ -1,232 +0,0 @@ - - - - - - - - -Avg_pool1d — torch_avg_pool1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Avg_pool1d

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    NA input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)

    kernel_size

    NA the size of the window. Can be a single number or a tuple (kW,)

    stride

    NA the stride of the window. Can be a single number or a tuple (sW,). Default: kernel_size

    padding

    NA implicit zero paddings on both sides of the input. Can be a single number or a tuple (padW,). Default: 0

    ceil_mode

    NA when True, will use ceil instead of floor to compute the output shape. Default: False

    count_include_pad

    NA when True, will include the zero-padding in the averaging calculation. Default: True

    - -

    avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Tensor

    - - - - -

    Applies a 1D average pooling over an input signal composed of several -input planes.

    -

    See ~torch.nn.AvgPool1d for details and output shape.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_baddbmm.html b/docs/reference/torch_baddbmm.html deleted file mode 100644 index 522f09378..000000000 --- a/docs/reference/torch_baddbmm.html +++ /dev/null @@ -1,303 +0,0 @@ - - - - - - - - -Baddbmm — torch_baddbmm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Baddbmm

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor to be added

    batch1

    (Tensor) the first batch of matrices to be multiplied

    batch2

    (Tensor) the second batch of matrices to be multiplied

    beta

    (Number, optional) multiplier for input (\(\beta\))

    alpha

    (Number, optional) multiplier for \(\mbox{batch1} \mathbin{@} \mbox{batch2}\) (\(\alpha\))

    out

    (Tensor, optional) the output tensor.

    - -

    baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor

    - - - - -

    Performs a batch matrix-matrix product of matrices in batch1 -and batch2. -input is added to the final result.

    -

    batch1 and batch2 must be 3-D tensors each containing the same -number of matrices.

    -

    If batch1 is a \((b \times n \times m)\) tensor, batch2 is a -\((b \times m \times p)\) tensor, then input must be -broadcastable with a -\((b \times n \times p)\) tensor and out will be a -\((b \times n \times p)\) tensor. Both alpha and beta mean the -same as the scaling factors used in torch_addbmm.

    -

    $$ - \mbox{out}_i = \beta\ \mbox{input}_i + \alpha\ (\mbox{batch1}_i \mathbin{@} \mbox{batch2}_i) -$$ -For inputs of type FloatTensor or DoubleTensor, arguments beta and -alpha must be real numbers, otherwise they should be integers.

    - -

    Examples

    -
    # \dontrun{ - -M = torch_randn(c(10, 3, 5)) -batch1 = torch_randn(c(10, 3, 4)) -batch2 = torch_randn(c(10, 4, 5)) -torch_baddbmm(M, batch1, batch2)
    #> torch_tensor -#> (1,.,.) = -#> 3.2697 -5.0643 0.0743 -0.2398 -2.5402 -#> -0.3596 -0.1524 -2.2537 -0.6132 0.4815 -#> 1.1825 -2.2500 0.8243 1.5010 -2.4894 -#> -#> (2,.,.) = -#> 0.4770 -0.8900 3.0012 2.0244 2.9934 -#> -2.0624 -0.7371 -0.6249 -1.4119 -1.0305 -#> 0.4525 1.1938 1.2075 2.4423 0.5840 -#> -#> (3,.,.) = -#> -1.5483 0.0002 -0.7736 -0.1712 2.3502 -#> 1.3820 1.9069 -1.1504 2.8244 -0.5037 -#> -0.7816 0.0485 3.1307 -0.7125 2.3957 -#> -#> (4,.,.) = -#> 3.2263 1.9973 -2.7929 -0.6880 -1.8358 -#> 3.9498 0.1835 -3.6300 -0.7907 -2.9265 -#> 1.5720 -1.5571 -0.5235 0.2169 -0.7204 -#> -#> (5,.,.) = -#> -1.5198 -1.4044 0.6454 1.6571 1.6412 -#> 0.6481 -0.1620 0.7348 -2.5747 -1.5232 -#> -3.9663 0.6486 -0.1782 -0.2130 -0.2005 -#> -#> (6,.,.) = -#> -0.7923 -0.1696 -0.0210 -1.4651 0.1979 -#> -0.2874 2.4903 -2.5324 0.1213 4.3363 -#> 0.8367 0.5843 2.6930 -0.5081 -0.7514 -#> -#> (7,.,.) = -#> 0.9376 -5.8062 -2.4161 -2.2368 1.7258 -#> -0.5255 2.0584 1.1016 -2.1323 -1.1418 -#> -1.8125 0.8110 -0.2142 1.9131 2.4363 -#> -#> (8,.,.) = -#> -1.3094 0.0064 -0.5161 4.1986 -0.5380 -#> -4.8329 -0.6216 0.9426 -3.9339 -1.2310 -#> 7.8403 0.3146 -1.0314 3.4608 2.3111 -#> -#> (9,.,.) = -#> -0.9910 -4.0243 4.6838 -4.8655 0.7247 -#> 1.0314 0.6343 0.5493 -0.0418 -0.5915 -#> 0.1801 0.7773 -1.0913 0.2247 -2.3853 -#> -#> (10,.,.) = -#> -1.1792 0.4361 -0.6693 -0.4414 0.9327 -#> -4.9029 -6.8475 -4.1729 -2.2513 0.6501 -#> 1.3470 1.4167 -0.9282 0.5063 -2.4436 -#> [ CPUFloatType{10,3,5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_bartlett_window.html b/docs/reference/torch_bartlett_window.html deleted file mode 100644 index db4c45d51..000000000 --- a/docs/reference/torch_bartlett_window.html +++ /dev/null @@ -1,252 +0,0 @@ - - - - - - - - -Bartlett_window — torch_bartlett_window • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Bartlett_window

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    window_length

    (int) the size of returned window

    periodic

    (bool, optional) If True, returns a window to be used as periodic function. If False, return a symmetric window.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type). Only floating point types are supported.

    layout

    (torch.layout, optional) the desired layout of returned window tensor. Only torch_strided (dense layout) is supported.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    Note

    - - -
    If `window_length` \eqn{=1}, the returned window contains a single value 1.
    -
    - -

    bartlett_window(window_length, periodic=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Bartlett window function.

    -

    $$ - w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \left\{ \begin{array}{ll} - \frac{2n}{N - 1} & \mbox{if } 0 \leq n \leq \frac{N - 1}{2} \\ - 2 - \frac{2n}{N - 1} & \mbox{if } \frac{N - 1}{2} < n < N \\ - \end{array} - \right. , -$$ -where \(N\) is the full window size.

    -

    The input window_length is a positive integer controlling the -returned window size. periodic flag determines whether the returned -window trims off the last duplicate value from the symmetric window and is -ready to be used as a periodic window with functions like -torch_stft. Therefore, if periodic is true, the \(N\) in -above formula is in fact \(\mbox{window\_length} + 1\). Also, we always have -torch_bartlett_window(L, periodic=True) equal to -torch_bartlett_window(L + 1, periodic=False)[:-1]).

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_bernoulli.html b/docs/reference/torch_bernoulli.html deleted file mode 100644 index 2064f9d4a..000000000 --- a/docs/reference/torch_bernoulli.html +++ /dev/null @@ -1,256 +0,0 @@ - - - - - - - - -Bernoulli — torch_bernoulli • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Bernoulli

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor of probability values for the Bernoulli distribution

    generator

    (torch.Generator, optional) a pseudorandom number generator for sampling

    out

    (Tensor, optional) the output tensor.

    - -

    bernoulli(input, *, generator=None, out=None) -> Tensor

    - - - - -

    Draws binary random numbers (0 or 1) from a Bernoulli distribution.

    -

    The input tensor should be a tensor containing probabilities -to be used for drawing the binary random number. -Hence, all values in input have to be in the range: -\(0 \leq \mbox{input}_i \leq 1\).

    -

    The \(\mbox{i}^{th}\) element of the output tensor will draw a -value \(1\) according to the \(\mbox{i}^{th}\) probability value given -in input.

    -

    $$ - \mbox{out}_{i} \sim \mathrm{Bernoulli}(p = \mbox{input}_{i}) -$$ -The returned out tensor only has values 0 or 1 and is of the same -shape as input.

    -

    out can have integral dtype, but input must have floating -point dtype.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_empty(c(3, 3))$uniform_(0, 1) # generate a uniform random matrix with range c(0, 1) -a
    #> torch_tensor -#> 0.8765 0.8092 0.3962 -#> 0.4623 0.3192 0.0298 -#> 0.7755 0.1732 0.0310 -#> [ CPUFloatType{3,3} ]
    torch_bernoulli(a)
    #> torch_tensor -#> 0 1 1 -#> 0 1 0 -#> 1 0 0 -#> [ CPUFloatType{3,3} ]
    a = torch_ones(c(3, 3)) # probability of drawing "1" is 1 -torch_bernoulli(a)
    #> torch_tensor -#> 1 1 1 -#> 1 1 1 -#> 1 1 1 -#> [ CPUFloatType{3,3} ]
    a = torch_zeros(c(3, 3)) # probability of drawing "1" is 0 -torch_bernoulli(a)
    #> torch_tensor -#> 0 0 0 -#> 0 0 0 -#> 0 0 0 -#> [ CPUFloatType{3,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_bincount.html b/docs/reference/torch_bincount.html deleted file mode 100644 index e5588960f..000000000 --- a/docs/reference/torch_bincount.html +++ /dev/null @@ -1,263 +0,0 @@ - - - - - - - - -Bincount — torch_bincount • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Bincount

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) 1-d int tensor

    weights

    (Tensor) optional, weight for each value in the input tensor. Should be of same size as input tensor.

    minlength

    (int) optional, minimum number of bins. Should be non-negative.

    - -

    bincount(input, weights=None, minlength=0) -> Tensor

    - - - - -

    Count the frequency of each value in an array of non-negative ints.

    -

    The number of bins (size 1) is one larger than the largest value in -input unless input is empty, in which case the result is a -tensor of size 0. If minlength is specified, the number of bins is at least -minlength and if input is empty, then the result is tensor of size -minlength filled with zeros. If n is the value at position i, -out[n] += weights[i] if weights is specified else -out[n] += 1.

    -

    .. include:: cuda_deterministic.rst

    - -

    Examples

    -
    # \dontrun{ - -input = torch_randint(0, 8, list(5), dtype=torch_int64()) -weights = torch_linspace(0, 1, steps=5) -input
    #> torch_tensor -#> 2 -#> 7 -#> 5 -#> 3 -#> 6 -#> [ CPULongType{5} ]
    weights
    #> torch_tensor -#> 0.0000 -#> 0.2500 -#> 0.5000 -#> 0.7500 -#> 1.0000 -#> [ CPUFloatType{5} ]
    torch_bincount(input, weights)
    #> torch_tensor -#> 0.0000 -#> 0.0000 -#> 0.0000 -#> 0.7500 -#> 0.0000 -#> 0.5000 -#> 1.0000 -#> 0.2500 -#> [ CPUFloatType{8} ]
    input$bincount(weights)
    #> torch_tensor -#> 0.0000 -#> 0.0000 -#> 0.0000 -#> 0.7500 -#> 0.0000 -#> 0.5000 -#> 1.0000 -#> 0.2500 -#> [ CPUFloatType{8} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_bitwise_and.html b/docs/reference/torch_bitwise_and.html deleted file mode 100644 index c0d1f81d5..000000000 --- a/docs/reference/torch_bitwise_and.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Bitwise_and — torch_bitwise_and • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Bitwise_and

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    NA the first input tensor

    other

    NA the second input tensor

    out

    (Tensor, optional) the output tensor.

    - -

    bitwise_and(input, other, out=None) -> Tensor

    - - - - -

    Computes the bitwise AND of input and other. The input tensor must be of -integral or Boolean types. For bool tensors, it computes the logical AND.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_bitwise_not.html b/docs/reference/torch_bitwise_not.html deleted file mode 100644 index 1740d2d36..000000000 --- a/docs/reference/torch_bitwise_not.html +++ /dev/null @@ -1,215 +0,0 @@ - - - - - - - - -Bitwise_not — torch_bitwise_not • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Bitwise_not

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    bitwise_not(input, out=None) -> Tensor

    - - - - -

    Computes the bitwise NOT of the given input tensor. The input tensor must be of -integral or Boolean types. For bool tensors, it computes the logical NOT.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_bitwise_or.html b/docs/reference/torch_bitwise_or.html deleted file mode 100644 index b036f68ad..000000000 --- a/docs/reference/torch_bitwise_or.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Bitwise_or — torch_bitwise_or • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Bitwise_or

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    NA the first input tensor

    other

    NA the second input tensor

    out

    (Tensor, optional) the output tensor.

    - -

    bitwise_or(input, other, out=None) -> Tensor

    - - - - -

    Computes the bitwise OR of input and other. The input tensor must be of -integral or Boolean types. For bool tensors, it computes the logical OR.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_bitwise_xor.html b/docs/reference/torch_bitwise_xor.html deleted file mode 100644 index 5c2d5ba04..000000000 --- a/docs/reference/torch_bitwise_xor.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Bitwise_xor — torch_bitwise_xor • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Bitwise_xor

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    NA the first input tensor

    other

    NA the second input tensor

    out

    (Tensor, optional) the output tensor.

    - -

    bitwise_xor(input, other, out=None) -> Tensor

    - - - - -

    Computes the bitwise XOR of input and other. The input tensor must be of -integral or Boolean types. For bool tensors, it computes the logical XOR.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_blackman_window.html b/docs/reference/torch_blackman_window.html deleted file mode 100644 index 1d4b34c6e..000000000 --- a/docs/reference/torch_blackman_window.html +++ /dev/null @@ -1,248 +0,0 @@ - - - - - - - - -Blackman_window — torch_blackman_window • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Blackman_window

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    window_length

    (int) the size of returned window

    periodic

    (bool, optional) If True, returns a window to be used as periodic function. If False, return a symmetric window.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type). Only floating point types are supported.

    layout

    (torch.layout, optional) the desired layout of returned window tensor. Only torch_strided (dense layout) is supported.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    Note

    - - -
    If `window_length` \eqn{=1}, the returned window contains a single value 1.
    -
    - -

    blackman_window(window_length, periodic=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Blackman window function.

    -

    $$ - w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right) -$$ -where \(N\) is the full window size.

    -

    The input window_length is a positive integer controlling the -returned window size. periodic flag determines whether the returned -window trims off the last duplicate value from the symmetric window and is -ready to be used as a periodic window with functions like -torch_stft. Therefore, if periodic is true, the \(N\) in -above formula is in fact \(\mbox{window\_length} + 1\). Also, we always have -torch_blackman_window(L, periodic=True) equal to -torch_blackman_window(L + 1, periodic=False)[:-1]).

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_bmm.html b/docs/reference/torch_bmm.html deleted file mode 100644 index 1f93f8d97..000000000 --- a/docs/reference/torch_bmm.html +++ /dev/null @@ -1,289 +0,0 @@ - - - - - - - - -Bmm — torch_bmm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Bmm

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the first batch of matrices to be multiplied

    mat2

    (Tensor) the second batch of matrices to be multiplied

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - -

    This function does not broadcast . -For broadcasting matrix products, see torch_matmul.

    -

    bmm(input, mat2, out=None) -> Tensor

    - - - - -

    Performs a batch matrix-matrix product of matrices stored in input -and mat2.

    -

    input and mat2 must be 3-D tensors each containing -the same number of matrices.

    -

    If input is a \((b \times n \times m)\) tensor, mat2 is a -\((b \times m \times p)\) tensor, out will be a -\((b \times n \times p)\) tensor.

    -

    $$ - \mbox{out}_i = \mbox{input}_i \mathbin{@} \mbox{mat2}_i -$$

    - -

    Examples

    -
    # \dontrun{ - -input = torch_randn(c(10, 3, 4)) -mat2 = torch_randn(c(10, 4, 5)) -res = torch_bmm(input, mat2) -res
    #> torch_tensor -#> (1,.,.) = -#> -1.1937 1.0490 -1.3460 -1.3636 0.2908 -#> -0.7399 -0.3916 -0.0894 1.5547 -0.5792 -#> 1.6370 -1.8825 0.6914 0.4735 0.2958 -#> -#> (2,.,.) = -#> 3.0209 -2.4298 0.3410 0.0615 -2.5501 -#> -3.8228 0.7082 0.9869 0.1536 1.1400 -#> 2.5718 -0.3476 1.3377 0.6290 -0.2315 -#> -#> (3,.,.) = -#> -0.2813 -0.3510 -0.6811 -0.8482 1.3861 -#> 3.3843 -1.2077 -1.9622 -1.1351 -1.8477 -#> 2.6732 -2.4184 0.7855 2.8759 -1.4808 -#> -#> (4,.,.) = -#> -6.8546 1.0791 2.1027 -2.8185 0.7520 -#> -0.9041 0.8896 2.4743 0.6284 0.2519 -#> 2.6052 -1.4564 -1.6375 1.3288 0.3487 -#> -#> (5,.,.) = -#> 2.5222 -1.6164 -2.2116 -1.0754 0.7719 -#> -3.6324 2.5302 0.9988 -2.1378 0.6788 -#> 5.6221 0.7932 2.1447 4.9035 -5.1887 -#> -#> (6,.,.) = -#> 0.2683 -1.0509 2.6643 -0.2398 0.4529 -#> -2.3240 -3.0188 2.6981 1.3544 0.8555 -#> -0.4469 0.3477 1.0020 4.7555 1.9801 -#> -#> (7,.,.) = -#> -1.5234 0.5375 0.0234 2.3384 -3.3980 -#> 1.3228 3.1686 1.4053 -2.2938 7.3319 -#> 1.9968 -5.2192 -0.6723 -1.0900 -3.2833 -#> -#> (8,.,.) = -#> -2.3741 2.0837 -0.4425 -1.5224 2.2040 -#> -0.7937 1.1621 6.6647 0.5726 1.9161 -#> -1.2275 -0.9221 -1.9841 -0.4629 0.8082 -#> -#> (9,.,.) = -#> -1.4034 -0.0159 -0.7663 0.1020 0.4187 -#> -1.1376 2.4816 1.0544 1.9942 -1.1878 -#> -0.8727 0.0230 -0.5804 0.0939 0.1387 -#> -#> (10,.,.) = -#> -0.4053 -0.3109 -2.1835 -0.1594 1.8523 -#> -1.8857 1.2782 3.0087 -2.7136 -0.9552 -#> -1.9781 1.0313 2.1664 -2.4844 -0.7711 -#> [ CPUFloatType{10,3,5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_broadcast_tensors.html b/docs/reference/torch_broadcast_tensors.html deleted file mode 100644 index 164b14018..000000000 --- a/docs/reference/torch_broadcast_tensors.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Broadcast_tensors — torch_broadcast_tensors • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Broadcast_tensors

    -
    - - -

    Arguments

    - - - - - - -
    *tensors

    NA any number of tensors of the same type

    - -

    broadcast_tensors(*tensors) -> List of Tensors

    - - - - -

    Broadcasts the given tensors according to broadcasting-semantics.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_arange(0, 3)$view(c(1, 3)) -y = torch_arange(0, 2)$view(c(2, 1)) -out = torch_broadcast_tensors(list(x, y)) -out[[1]]
    #> torch_tensor -#> 0 1 2 -#> 0 1 2 -#> [ CPUFloatType{2,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_can_cast.html b/docs/reference/torch_can_cast.html deleted file mode 100644 index 79fb56f53..000000000 --- a/docs/reference/torch_can_cast.html +++ /dev/null @@ -1,220 +0,0 @@ - - - - - - - - -Can_cast — torch_can_cast • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Can_cast

    -
    - - -

    Arguments

    - - - - - - - - - - -
    from

    (dtype) The original torch_dtype.

    to

    (dtype) The target torch_dtype.

    - -

    can_cast(from, to) -> bool

    - - - - -

    Determines if a type conversion is allowed under PyTorch casting rules -described in the type promotion documentation .

    - -

    Examples

    -
    # \dontrun{ - -torch_can_cast(torch_double(), torch_float())
    #> [1] TRUE
    torch_can_cast(torch_float(), torch_int())
    #> [1] FALSE
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cartesian_prod.html b/docs/reference/torch_cartesian_prod.html deleted file mode 100644 index 16340dd69..000000000 --- a/docs/reference/torch_cartesian_prod.html +++ /dev/null @@ -1,227 +0,0 @@ - - - - - - - - -Cartesian_prod — torch_cartesian_prod • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cartesian_prod

    -
    - - -

    Arguments

    - - - - - - -
    *tensors

    NA any number of 1 dimensional tensors.

    - -

    TEST

    - - - - -

    Do cartesian product of the given sequence of tensors. The behavior is similar to -python's itertools.product.

    - -

    Examples

    -
    # \dontrun{ - -a = c(1, 2, 3) -b = c(4, 5) -tensor_a = torch_tensor(a) -tensor_b = torch_tensor(b) -torch_cartesian_prod(list(tensor_a, tensor_b))
    #> torch_tensor -#> 1 4 -#> 1 5 -#> 2 4 -#> 2 5 -#> 3 4 -#> 3 5 -#> [ CPUFloatType{6,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cat.html b/docs/reference/torch_cat.html deleted file mode 100644 index 4fded00c9..000000000 --- a/docs/reference/torch_cat.html +++ /dev/null @@ -1,242 +0,0 @@ - - - - - - - - -Cat — torch_cat • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cat

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    tensors

    (sequence of Tensors) any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension.

    dim

    (int, optional) the dimension over which the tensors are concatenated

    out

    (Tensor, optional) the output tensor.

    - -

    cat(tensors, dim=0, out=None) -> Tensor

    - - - - -

    Concatenates the given sequence of seq tensors in the given dimension. -All tensors must either have the same shape (except in the concatenating -dimension) or be empty.

    -

    torch_cat can be seen as an inverse operation for torch_split() -and torch_chunk.

    -

    torch_cat can be best understood via examples.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(2, 3)) -x
    #> torch_tensor -#> 1.5078 0.8533 1.7774 -#> -0.7864 1.4110 0.6703 -#> [ CPUFloatType{2,3} ]
    torch_cat(list(x, x, x), 1)
    #> torch_tensor -#> 1.5078 0.8533 1.7774 -#> -0.7864 1.4110 0.6703 -#> 1.5078 0.8533 1.7774 -#> -0.7864 1.4110 0.6703 -#> 1.5078 0.8533 1.7774 -#> -0.7864 1.4110 0.6703 -#> [ CPUFloatType{6,3} ]
    torch_cat(list(x, x, x), 2)
    #> torch_tensor -#> 1.5078 0.8533 1.7774 1.5078 0.8533 1.7774 1.5078 0.8533 1.7774 -#> -0.7864 1.4110 0.6703 -0.7864 1.4110 0.6703 -0.7864 1.4110 0.6703 -#> [ CPUFloatType{2,9} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cdist.html b/docs/reference/torch_cdist.html deleted file mode 100644 index 385700576..000000000 --- a/docs/reference/torch_cdist.html +++ /dev/null @@ -1,222 +0,0 @@ - - - - - - - - -Cdist — torch_cdist • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cdist

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    x1

    (Tensor) input tensor of shape \(B \times P \times M\).

    x2

    (Tensor) input tensor of shape \(B \times R \times M\).

    p

    NA p value for the p-norm distance to calculate between each vector pair \(\in [0, \infty]\).

    compute_mode

    NA 'use_mm_for_euclid_dist_if_necessary' - will use matrix multiplication approach to calculate euclidean distance (p = 2) if P > 25 or R > 25 'use_mm_for_euclid_dist' - will always use matrix multiplication approach to calculate euclidean distance (p = 2) 'donot_use_mm_for_euclid_dist' - will never use matrix multiplication approach to calculate euclidean distance (p = 2) Default: use_mm_for_euclid_dist_if_necessary.

    - -

    TEST

    - - - - -

    Computes batched the p-norm distance between each pair of the two collections of row vectors.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_ceil.html b/docs/reference/torch_ceil.html deleted file mode 100644 index 0c413d78a..000000000 --- a/docs/reference/torch_ceil.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Ceil — torch_ceil • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Ceil

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    ceil(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the ceil of the elements of input, -the smallest integer greater than or equal to each element.

    -

    $$ - \mbox{out}_{i} = \left\lceil \mbox{input}_{i} \right\rceil = \left\lfloor \mbox{input}_{i} \right\rfloor + 1 -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 0.9465 -#> 1.5480 -#> -0.6969 -#> -0.4820 -#> [ CPUFloatType{4} ]
    torch_ceil(a)
    #> torch_tensor -#> 1 -#> 2 -#> -0 -#> -0 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_celu_.html b/docs/reference/torch_celu_.html deleted file mode 100644 index 30d7f4672..000000000 --- a/docs/reference/torch_celu_.html +++ /dev/null @@ -1,202 +0,0 @@ - - - - - - - - -Celu_ — torch_celu_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Celu_

    -
    - - - -

    celu_(input, alpha=1.) -> Tensor

    - - - - -

    In-place version of torch_celu.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_chain_matmul.html b/docs/reference/torch_chain_matmul.html deleted file mode 100644 index 72b4647aa..000000000 --- a/docs/reference/torch_chain_matmul.html +++ /dev/null @@ -1,227 +0,0 @@ - - - - - - - - -Chain_matmul — torch_chain_matmul • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Chain_matmul

    -
    - - -

    Arguments

    - - - - - - -
    matrices

    (Tensors...) a sequence of 2 or more 2-D tensors whose product is to be determined.

    - -

    TEST

    - - - - -

    Returns the matrix product of the \(N\) 2-D tensors. This product is efficiently computed -using the matrix chain order algorithm which selects the order in which incurs the lowest cost in terms -of arithmetic operations ([CLRS]_). Note that since this is a function to compute the product, \(N\) -needs to be greater than or equal to 2; if equal to 2 then a trivial matrix-matrix product is returned. -If \(N\) is 1, then this is a no-op - the original matrix is returned as is.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(3, 4)) -b = torch_randn(c(4, 5)) -c = torch_randn(c(5, 6)) -d = torch_randn(c(6, 7)) -torch_chain_matmul(list(a, b, c, d))
    #> torch_tensor -#> 2.2025 6.9263 -12.0433 -1.8318 6.1157 -1.9091 -2.5474 -#> -9.2675 3.6580 -10.9555 3.7499 -0.9984 -2.1468 18.3629 -#> -4.3318 -10.0159 20.3315 2.5116 -9.5372 3.4920 7.3516 -#> [ CPUFloatType{3,7} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cholesky.html b/docs/reference/torch_cholesky.html deleted file mode 100644 index 25dd30962..000000000 --- a/docs/reference/torch_cholesky.html +++ /dev/null @@ -1,236 +0,0 @@ - - - - - - - - -Cholesky — torch_cholesky • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cholesky

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor \(A\) of size \((*, n, n)\) where * is zero or more batch dimensions consisting of symmetric positive-definite matrices.

    upper

    (bool, optional) flag that indicates whether to return a upper or lower triangular matrix. Default: False

    out

    (Tensor, optional) the output matrix

    - -

    cholesky(input, upper=False, out=None) -> Tensor

    - - - - -

    Computes the Cholesky decomposition of a symmetric positive-definite -matrix \(A\) or for batches of symmetric positive-definite matrices.

    -

    If upper is True, the returned matrix U is upper-triangular, and -the decomposition has the form:

    -

    $$ - A = U^TU -$$ -If upper is False, the returned matrix L is lower-triangular, and -the decomposition has the form:

    -

    $$ - A = LL^T -$$ -If upper is True, and \(A\) is a batch of symmetric positive-definite -matrices, then the returned tensor will be composed of upper-triangular Cholesky factors -of each of the individual matrices. Similarly, when upper is False, the returned -tensor will be composed of lower-triangular Cholesky factors of each of the individual -matrices.

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cholesky_inverse.html b/docs/reference/torch_cholesky_inverse.html deleted file mode 100644 index 6c559ffd6..000000000 --- a/docs/reference/torch_cholesky_inverse.html +++ /dev/null @@ -1,232 +0,0 @@ - - - - - - - - -Cholesky_inverse — torch_cholesky_inverse • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cholesky_inverse

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input 2-D tensor \(u\), a upper or lower triangular Cholesky factor

    upper

    (bool, optional) whether to return a lower (default) or upper triangular matrix

    out

    (Tensor, optional) the output tensor for inv

    - -

    cholesky_inverse(input, upper=False, out=None) -> Tensor

    - - - - -

    Computes the inverse of a symmetric positive-definite matrix \(A\) using its -Cholesky factor \(u\): returns matrix inv. The inverse is computed using -LAPACK routines dpotri and spotri (and the corresponding MAGMA routines).

    -

    If upper is False, \(u\) is lower triangular -such that the returned tensor is

    -

    $$ - inv = (uu^{{T}})^{{-1}} -$$ -If upper is True or not provided, \(u\) is upper -triangular such that the returned tensor is

    -

    $$ - inv = (u^T u)^{{-1}} -$$

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cholesky_solve.html b/docs/reference/torch_cholesky_solve.html deleted file mode 100644 index 02ae006d1..000000000 --- a/docs/reference/torch_cholesky_solve.html +++ /dev/null @@ -1,261 +0,0 @@ - - - - - - - - -Cholesky_solve — torch_cholesky_solve • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cholesky_solve

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) input matrix \(b\) of size \((*, m, k)\), where \(*\) is zero or more batch dimensions

    input2

    (Tensor) input matrix \(u\) of size \((*, m, m)\), where \(*\) is zero of more batch dimensions composed of upper or lower triangular Cholesky factor

    upper

    (bool, optional) whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.

    out

    (Tensor, optional) the output tensor for c

    - -

    cholesky_solve(input, input2, upper=False, out=None) -> Tensor

    - - - - -

    Solves a linear system of equations with a positive semidefinite -matrix to be inverted given its Cholesky factor matrix \(u\).

    -

    If upper is False, \(u\) is and lower triangular and c is -returned such that:

    -

    $$ - c = (u u^T)^{{-1}} b -$$ -If upper is True or not provided, \(u\) is upper triangular -and c is returned such that:

    -

    $$ - c = (u^T u)^{{-1}} b -$$ -torch_cholesky_solve(b, u) can take in 2D inputs b, u or inputs that are -batches of 2D matrices. If the inputs are batches, then returns -batched outputs c

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(3, 3)) -a = torch_mm(a, a$t()) # make symmetric positive definite -u = torch_cholesky(a) -a
    #> torch_tensor -#> 4.8833 -0.7896 -0.4785 -#> -0.7896 1.0348 -0.2048 -#> -0.4785 -0.2048 0.8552 -#> [ CPUFloatType{3,3} ]
    b = torch_randn(c(3, 2)) -b
    #> torch_tensor -#> 0.5712 -0.1153 -#> -1.2014 0.0291 -#> 1.1547 0.9237 -#> [ CPUFloatType{3,2} ]
    torch_cholesky_solve(b, u)
    #> torch_tensor -#> 0.0975 0.1667 -#> -0.8489 0.4068 -#> 1.2015 1.2708 -#> [ CPUFloatType{3,2} ]
    torch_mm(a$inverse(), b)
    #> torch_tensor -#> 0.0975 0.1667 -#> -0.8489 0.4068 -#> 1.2015 1.2708 -#> [ CPUFloatType{3,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_chunk.html b/docs/reference/torch_chunk.html deleted file mode 100644 index 796c98a33..000000000 --- a/docs/reference/torch_chunk.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Chunk — torch_chunk • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Chunk

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor to split

    chunks

    (int) number of chunks to return

    dim

    (int) dimension along which to split the tensor

    - -

    chunk(input, chunks, dim=0) -> List of Tensors

    - - - - -

    Splits a tensor into a specific number of chunks. Each chunk is a view of -the input tensor.

    -

    Last chunk will be smaller if the tensor size along the given dimension -dim is not divisible by chunks.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_clamp.html b/docs/reference/torch_clamp.html deleted file mode 100644 index 77e9449e7..000000000 --- a/docs/reference/torch_clamp.html +++ /dev/null @@ -1,295 +0,0 @@ - - - - - - - - -Clamp — torch_clamp • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Clamp

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    min

    (Number) lower-bound of the range to be clamped to

    max

    (Number) upper-bound of the range to be clamped to

    out

    (Tensor, optional) the output tensor.

    value

    (Number) minimal value of each element in the output

    - -

    clamp(input, min, max, out=None) -> Tensor

    - - - - -

    Clamp all elements in input into the range [ min, max ] and return -a resulting tensor:

    -

    $$ - y_i = \left\{ \begin{array}{ll} - \mbox{min} & \mbox{if } x_i < \mbox{min} \\ - x_i & \mbox{if } \mbox{min} \leq x_i \leq \mbox{max} \\ - \mbox{max} & \mbox{if } x_i > \mbox{max} - \end{array} - \right. -$$ -If input is of type FloatTensor or DoubleTensor, args min -and max must be real numbers, otherwise they should be integers.

    -

    clamp(input, *, min, out=None) -> Tensor

    - - - - -

    Clamps all elements in input to be larger or equal min.

    -

    If input is of type FloatTensor or DoubleTensor, value -should be a real number, otherwise it should be an integer.

    -

    clamp(input, *, max, out=None) -> Tensor

    - - - - -

    Clamps all elements in input to be smaller or equal max.

    -

    If input is of type FloatTensor or DoubleTensor, value -should be a real number, otherwise it should be an integer.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.9506 -#> 2.2284 -#> -0.7040 -#> -0.4355 -#> [ CPUFloatType{4} ]
    torch_clamp(a, min=-0.5, max=0.5)
    #> torch_tensor -#> -0.5000 -#> 0.5000 -#> -0.5000 -#> -0.4355 -#> [ CPUFloatType{4} ]
    - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 0.9982 -#> -1.4524 -#> -1.4201 -#> 0.5077 -#> [ CPUFloatType{4} ]
    torch_clamp(a, min=0.5)
    #> torch_tensor -#> 0.9982 -#> 0.5000 -#> 0.5000 -#> 0.5077 -#> [ CPUFloatType{4} ]
    - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 1.9805 -#> -1.3783 -#> 0.7469 -#> -0.5865 -#> [ CPUFloatType{4} ]
    torch_clamp(a, max=0.5)
    #> torch_tensor -#> 0.5000 -#> -1.3783 -#> 0.5000 -#> -0.5865 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_combinations.html b/docs/reference/torch_combinations.html deleted file mode 100644 index e4e0e223e..000000000 --- a/docs/reference/torch_combinations.html +++ /dev/null @@ -1,240 +0,0 @@ - - - - - - - - -Combinations — torch_combinations • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Combinations

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) 1D vector.

    r

    (int, optional) number of elements to combine

    with_replacement

    (boolean, optional) whether to allow duplication in combination

    - -

    combinations(input, r=2, with_replacement=False) -> seq

    - - - - -

    Compute combinations of length \(r\) of the given tensor. The behavior is similar to -python's itertools.combinations when with_replacement is set to False, and -itertools.combinations_with_replacement when with_replacement is set to True.

    - -

    Examples

    -
    # \dontrun{ - -a = c(1, 2, 3) -tensor_a = torch_tensor(a) -torch_combinations(tensor_a)
    #> torch_tensor -#> 1 2 -#> 1 3 -#> 2 3 -#> [ CPUFloatType{3,2} ]
    torch_combinations(tensor_a, r=3)
    #> torch_tensor -#> 1 2 3 -#> [ CPUFloatType{1,3} ]
    torch_combinations(tensor_a, with_replacement=TRUE)
    #> torch_tensor -#> 1 1 -#> 1 2 -#> 1 3 -#> 2 2 -#> 2 3 -#> 3 3 -#> [ CPUFloatType{6,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_conj.html b/docs/reference/torch_conj.html deleted file mode 100644 index 919a3dc4d..000000000 --- a/docs/reference/torch_conj.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Conj — torch_conj • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Conj

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    conj(input, out=None) -> Tensor

    - - - - -

    Computes the element-wise conjugate of the given input tensor.

    -

    $$ - \mbox{out}_{i} = conj(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_conv1d.html b/docs/reference/torch_conv1d.html deleted file mode 100644 index 6d5137784..000000000 --- a/docs/reference/torch_conv1d.html +++ /dev/null @@ -1,4820 +0,0 @@ - - - - - - - - -Conv1d — torch_conv1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Conv1d

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    NA input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)

    weight

    NA filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kW)\)

    bias

    NA optional bias of shape \((\mbox{out\_channels})\). Default: None

    stride

    NA the stride of the convolving kernel. Can be a single number or a one-element tuple (sW,). Default: 1

    padding

    NA implicit paddings on both sides of the input. Can be a single number or a one-element tuple (padW,). Default: 0

    dilation

    NA the spacing between kernel elements. Can be a single number or a one-element tuple (dW,). Default: 1

    groups

    NA split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1

    - -

    conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor

    - - - - -

    Applies a 1D convolution over an input signal composed of several input -planes.

    -

    See ~torch.nn.Conv1d for details and output shape.

    -

    .. include:: cudnn_deterministic.rst

    - -

    Examples

    -
    # \dontrun{ - -filters = torch_randn(c(33, 16, 3)) -inputs = torch_randn(c(20, 16, 50)) -nnf_conv1d(inputs, filters)
    #> torch_tensor -#> (1,.,.) = -#> Columns 1 to 8 8.7199 1.0094 -13.1435 0.0848 10.3420 0.6087 4.9930 -1.3194 -#> 4.9928 -0.9228 -0.9986 6.1375 -2.7563 6.2688 -4.3247 1.3281 -#> -9.2853 2.2857 5.2282 -3.3548 -1.1207 0.3963 0.6191 9.8601 -#> -2.9242 10.2787 0.3779 3.2870 -0.1333 5.6178 6.8783 0.1472 -#> -3.6903 -1.2163 11.9645 -7.1134 -7.8627 8.8960 -5.3701 6.3564 -#> 6.0586 -13.3361 8.7976 5.4943 -0.7770 16.2518 -1.2318 -3.5980 -#> -2.6689 7.9637 -3.4276 -8.6586 -11.7605 7.9358 3.0729 -3.9882 -#> 4.5930 -2.0741 -3.8087 2.1398 0.5135 -4.2471 -6.8810 -0.7988 -#> 8.2812 1.7671 0.9025 -1.8145 -4.3674 -2.3088 0.6176 3.8401 -#> 9.8749 2.9536 2.1752 0.1801 -4.7035 -4.8083 -2.0966 7.7104 -#> -4.8894 -5.0632 10.0122 -17.8657 14.6597 -3.3046 -14.7129 8.5806 -#> -8.5251 -10.4482 13.8896 8.8005 1.1426 10.7473 -8.9987 -1.4510 -#> -0.4190 6.8991 -5.3740 4.5935 -17.9217 -4.3224 -7.6038 5.2284 -#> 4.8968 7.2210 -3.0931 1.1218 -3.9569 -6.7213 7.2451 0.0891 -#> 2.0933 2.8404 -0.0990 2.7687 -4.0503 12.9643 9.7891 6.1938 -#> -0.1327 4.4571 -4.0763 0.9068 -4.0663 -10.0672 -0.0225 1.3389 -#> -9.7440 14.3030 -2.2208 2.3737 4.2655 -4.8818 -6.3157 -14.4964 -#> -3.8432 -18.8804 5.3663 1.4313 -1.3751 14.9081 -9.7717 -4.8676 -#> -3.7739 0.8794 1.7302 -10.1387 2.1366 -12.9728 -9.7771 22.9757 -#> 2.7529 9.6604 -0.1306 -3.2509 -3.3979 -0.0270 9.5813 1.2052 -#> -1.1247 -1.7801 1.5065 -2.9020 6.6147 0.8074 -6.8228 -8.4092 -#> 10.0025 6.9134 -9.1085 8.0784 -11.5030 -9.0789 10.6144 -9.2909 -#> -7.9290 6.5677 6.5561 -1.8320 11.5627 -5.7025 6.3629 4.9404 -#> -11.5437 8.3430 -13.9013 -4.2953 6.8770 -10.3218 6.7874 2.5812 -#> -1.8688 -0.4796 -2.9052 1.1717 10.4609 3.9477 2.4715 1.7198 -#> -2.8262 7.9209 -3.2288 -6.6791 -5.2385 -4.3199 2.6352 2.9522 -#> 6.2078 -0.4560 6.5245 -3.6146 -1.6950 14.1103 5.0830 -5.4658 -#> -11.5664 6.8556 2.3652 4.2702 1.0913 -5.0231 1.3486 -16.3077 -#> 8.8823 -0.4775 -1.9547 10.6024 1.7667 -2.6328 12.5331 9.6971 -#> -11.2919 12.3110 6.9462 -8.8800 -1.5003 -14.4211 -7.1624 7.2424 -#> 2.9990 -6.5829 10.0200 5.3001 2.1273 -3.6609 -12.9631 7.9098 -#> -3.6909 11.1726 7.8032 2.4063 7.1658 4.1017 4.1518 0.2259 -#> 1.0179 6.3694 -1.5287 5.6457 -8.5666 -2.8587 5.0281 7.5907 -#> -#> Columns 9 to 16 2.7100 12.4777 -0.7324 -7.0967 -8.4348 0.8085 6.8330 0.4832 -#> -8.0836 -5.8170 3.4022 -9.3509 10.5116 -4.9803 6.4073 0.3220 -#> 0.1177 -4.8427 -9.6902 -4.1170 4.2751 4.1760 7.5186 -2.3325 -#> -0.2762 -10.6201 -1.7163 0.3247 21.2705 -3.6339 2.3409 -1.9524 -#> -5.4666 1.8799 7.4607 6.1014 -5.0309 -0.7846 -7.0460 -4.5347 -#> -14.8343 1.0224 2.7581 1.0455 -8.7523 6.5568 2.4569 0.8886 -#> 1.1306 8.4311 6.7053 7.2054 4.8025 0.7849 12.7978 10.1318 -#> 1.7782 0.2690 -2.7999 2.6726 -4.2082 -5.3613 13.9660 -4.6798 -#> 2.3140 -8.0598 12.3022 4.7510 0.3521 0.5352 -5.9258 3.5649 -#> -3.9661 -1.8614 1.3968 -5.5604 3.0089 -9.1651 -4.2411 1.4253 -#> -6.1841 17.0519 3.7948 8.4733 -14.7091 8.7843 -6.6218 4.4110 -#> 1.9766 7.1204 -14.9206 -10.7534 -8.4386 -3.9708 4.7609 -10.6990 -#> 15.3699 -7.0543 5.9875 2.9363 9.7296 -1.8657 3.1239 -3.5793 -#> -3.2610 3.2806 7.3320 9.7861 -1.4700 4.6751 -1.0152 5.4633 -#> 4.6915 -7.1968 1.9738 9.5179 -6.9344 6.6227 -1.7615 -4.0994 -#> 12.9562 -5.4254 -4.4734 -3.8013 1.8657 8.0770 -13.3441 3.3371 -#> -8.7960 1.4661 7.6683 -12.3310 11.6751 -13.0036 -1.9325 -2.9310 -#> -8.7788 10.2001 7.3673 -9.2273 -6.8593 -1.2400 0.5811 -6.0189 -#> 2.1427 6.4209 0.6752 9.6093 6.0686 2.9096 9.4132 6.9639 -#> -6.5691 5.4340 -2.0061 -11.7639 -5.7487 -12.4004 12.9011 3.9542 -#> -7.6302 3.3180 -3.8970 -15.9881 -3.6270 -1.2098 1.5831 -4.1935 -#> 11.1702 -0.4212 1.5514 3.8853 4.7498 13.8274 -3.8186 8.3544 -#> -9.0928 2.6163 -5.1443 9.0578 6.0795 -3.2900 0.8558 5.4144 -#> -3.7635 14.0854 -0.3645 -2.8304 11.9087 6.8293 0.3143 4.1031 -#> -3.6399 3.6001 0.3297 -10.6195 -22.8159 -4.6401 -6.4364 -2.2262 -#> 4.5382 0.7714 -5.7943 15.3865 -6.2597 2.9687 7.7204 -7.6626 -#> -1.1954 1.3419 3.5047 6.7636 0.5723 -3.9505 2.3417 0.7854 -#> -3.7300 4.1058 -8.3983 2.9162 -12.2176 10.6979 -12.7928 -4.0314 -#> -6.2145 -8.7189 -11.9263 -8.0741 -15.0889 -15.3207 3.2689 -9.3045 -#> -3.6201 -1.4019 -4.1480 8.8221 3.6578 -1.4179 -12.9980 -2.9236 -#> 3.1550 -3.8547 -9.1263 5.0425 6.9819 -7.1466 -8.7011 -15.4836 -#> 3.3937 -11.3399 -8.4114 -9.2620 2.7354 -16.1142 -0.4008 -9.2902 -#> 14.1278 -11.2060 0.8862 -2.8045 -7.4519 9.9396 -3.1323 0.3984 -#> -#> Columns 17 to 24 3.1652 2.7114 3.4294 3.0415 -4.4903 7.3292 -7.9222 5.6389 -#> 1.4022 -2.9618 4.4276 5.1812 -3.8627 -7.9557 1.3882 -5.7022 -#> -0.7707 0.4761 1.1342 -13.3373 0.1454 -9.6590 -10.9706 -8.7114 -#> 2.3547 3.2183 11.7203 -4.3086 -10.5229 7.3772 -9.7069 -10.1956 -#> 6.7410 -11.6240 -0.2382 4.6611 7.6330 -1.6570 3.7988 14.0638 -#> 6.2723 5.4443 5.0403 -11.4443 9.5750 9.6919 -5.5292 4.9020 -#> 3.5478 9.5459 -7.2635 0.9142 7.1907 0.9225 -0.5947 9.1271 -#> -7.7508 13.0199 0.7921 -3.7426 -1.0259 -3.3604 -5.9647 5.9305 -#> 9.3377 0.7645 -0.9862 -2.8337 -1.9219 -2.1858 -2.1245 -5.5627 -#> -0.3122 -6.7192 1.9777 6.8633 12.8850 -9.8542 2.4686 -7.5124 -#> 11.0900 -14.9795 3.5174 -3.2619 16.1453 -6.4522 12.5797 12.6404 -#> -5.9324 -2.8032 5.1964 -1.0824 -1.9832 11.7757 -1.7279 -12.9944 -#> -0.9892 1.0205 2.8183 -7.3203 2.3917 -2.5111 1.4563 -3.8504 -#> 7.3162 1.6155 5.1525 -12.5349 11.1861 -7.4035 -3.2327 -2.9030 -#> 7.1859 5.1134 -0.2741 -4.0530 -1.2997 -3.2875 -5.5183 15.7646 -#> -8.1788 2.5854 5.3686 -2.9653 8.9160 -4.7501 -5.7845 -0.0098 -#> -12.0708 -1.6919 -3.5657 2.9483 10.7586 0.2813 2.4652 -9.4908 -#> 0.5983 -5.5621 -1.6855 12.0777 7.8527 6.7515 -3.6835 -2.2488 -#> 4.0004 13.8937 17.0219 -16.7366 1.2763 -9.2189 12.1063 6.0094 -#> -3.6126 -3.3000 -1.6039 10.1845 -2.7015 -11.2980 8.8211 -1.4717 -#> -4.4065 -2.8283 5.3857 7.3212 -15.1150 -6.8182 -3.2339 -11.4930 -#> 5.9961 14.4878 -7.1496 3.3353 -8.7106 1.7533 -4.1133 -3.2559 -#> 7.3600 19.3142 8.8778 -5.9481 8.3435 0.9410 11.6001 3.9670 -#> 10.8095 -7.0179 13.0225 -2.6706 6.3683 -3.4559 24.2514 -12.8641 -#> 3.2058 -7.5246 7.2564 2.0544 -1.8178 -7.5897 7.9397 -2.8945 -#> -5.4792 13.4542 5.1535 -3.1458 4.5727 7.0280 -3.7451 19.4841 -#> 4.7460 -2.8855 -13.2574 -4.7093 -8.3299 -5.1462 -5.0900 8.6444 -#> -10.8531 -6.6294 -9.2172 -6.9031 14.4248 -4.8154 -2.9415 1.8398 -#> -6.2820 -4.4764 -2.3139 4.8700 4.6623 -12.3261 -3.9658 -0.6185 -#> 1.0061 -5.7484 3.3581 0.1569 19.8596 7.6068 -0.7496 2.7470 -#> -2.2016 6.4260 -2.1709 -11.6076 -5.6707 0.9438 -6.6296 9.2304 -#> -13.8891 -0.0952 2.0144 -1.3961 -1.1307 0.9833 -5.6071 -2.3964 -#> 7.1253 3.4768 -1.7254 3.0641 2.3469 4.7614 0.0285 5.2199 -#> -#> Columns 25 to 32 -5.7640 1.9080 1.2179 -7.9288 12.6428 -4.0817 -2.0562 11.2799 -#> -2.2999 3.3650 -3.3909 4.6736 2.4997 -0.5393 -8.2946 11.0434 -#> 0.4672 3.7375 -6.1090 5.6665 0.1840 -1.2466 3.4214 2.1810 -#> 16.8931 1.4244 -2.1984 -6.3534 9.9076 5.2015 -8.9448 2.1251 -#> 3.4824 6.7484 -2.2112 3.6076 0.1031 6.6900 7.2862 -4.4783 -#> 1.2703 -7.0325 -10.5537 2.3520 -14.0131 -8.6101 2.5236 4.7246 -#> 6.5031 2.1143 -7.2054 -3.5723 1.5327 -2.3223 13.5636 1.2073 -#> 2.6270 -10.5701 0.3349 7.4437 1.2394 -11.9173 2.2026 1.5314 -#> 3.6801 -10.6600 7.3837 -3.9585 1.3472 3.7613 -11.5850 -5.6722 -#> -0.3205 0.1430 -8.6536 5.9411 0.8691 -1.4013 0.8575 9.8608 -#> 6.6989 4.2341 4.1919 9.8073 -13.1589 -0.6517 10.5697 -4.4361 -#> 10.4385 1.2819 -12.3164 7.7010 -3.0824 -7.2327 3.1755 0.4660 -#> -0.6344 11.4283 1.1485 3.0558 0.5925 -0.7444 -0.7708 4.2235 -#> 13.7591 -4.8287 2.2579 -7.3116 -9.8958 10.0413 -1.5291 -8.6872 -#> 2.3379 15.0105 6.5214 8.6823 -7.9255 -2.5331 6.9940 -9.1324 -#> 17.5126 -5.5142 8.5011 -5.0201 5.6609 9.2456 -6.1677 3.4066 -#> 2.7979 -5.5795 -8.3789 -8.7183 2.8860 1.6986 1.9887 8.5494 -#> 1.4318 -1.6808 -7.4402 -0.1204 7.6516 5.0772 13.7477 3.2697 -#> 12.2700 15.0287 -0.2295 15.0833 0.3382 -10.1724 -0.2717 -12.9545 -#> -2.9782 -0.0518 -3.3041 0.6671 -6.4112 -0.1517 10.1593 -1.5037 -#> -8.0853 -10.9545 3.6043 -9.2561 1.8679 5.7242 -10.7073 -2.8222 -#> 9.8356 -9.7044 16.5548 -3.7865 -4.3693 8.5636 -6.1174 -5.1056 -#> 7.9162 3.0483 -3.3383 4.8383 -7.7680 -6.6377 3.4518 -2.8278 -#> -7.1266 7.2581 -1.7810 -8.9348 4.6869 -5.0878 -7.0578 6.4613 -#> -14.1705 -1.9353 -5.3650 2.5194 0.2712 1.1505 -7.4139 -11.8516 -#> 6.0882 2.5719 -1.0495 12.0958 1.7734 -4.2679 16.0315 -4.3643 -#> 5.2256 -1.9650 0.6906 -2.4795 -8.6869 -5.6020 -11.8749 -6.4854 -#> 0.8150 -3.5122 -8.1720 -7.3898 -15.8716 -2.2908 14.4807 -9.1374 -#> -5.1087 -3.3034 0.2836 4.4421 -9.0222 7.1890 -0.6107 -11.7751 -#> -0.4007 4.7543 -6.2101 -4.1952 -6.2441 10.7278 12.6808 6.7488 -#> 12.5466 1.6176 -6.0263 5.8591 -2.0679 -16.3913 -3.3983 -2.6660 -#> -5.7903 3.3609 -9.2619 3.9730 -6.3071 -0.9969 -5.8838 -4.9410 -#> 1.3117 1.3398 10.9463 -3.0687 -8.4949 7.5141 -6.1267 0.4574 -#> -#> Columns 33 to 40 5.2150 -0.8799 8.5244 8.7060 7.5206 5.6204 3.4728 -2.8515 -#> -7.1945 -2.2905 -5.6205 -9.4417 2.0720 -7.6105 6.4689 -3.4050 -#> -3.1793 3.3743 1.3336 -13.1295 -2.0912 -1.7854 4.5045 -2.4045 -#> -12.8614 5.7727 -6.9273 -9.1353 4.9521 -4.8614 3.4216 3.9188 -#> -3.9518 -1.9401 0.1467 6.3261 1.4010 8.1285 11.6837 -2.6874 -#> 3.4330 -5.8609 -5.7545 0.2943 2.2022 -3.8233 4.7208 -8.1877 -#> -4.1200 -3.3579 -1.6158 -2.2032 -4.3891 2.5318 11.8702 -1.2812 -#> -4.3724 -2.4815 -7.6249 -0.3565 -6.4236 -6.1582 3.4271 -2.6058 -#> -10.7067 -2.7378 -0.1568 0.4353 -2.4969 13.3673 -4.5670 1.2707 -#> -15.9498 4.6342 -3.5398 -2.3704 2.9344 -3.9178 7.6102 3.9654 -#> 5.2910 -6.9972 -1.8721 4.3733 1.1638 4.6027 5.1656 7.6044 -#> -6.5072 0.3133 -9.6089 -2.3442 -2.4470 -1.7199 5.8528 -6.2555 -#> -4.4756 2.8104 8.7608 -6.9807 -1.2307 2.2073 -9.4628 14.5121 -#> -0.8752 0.9772 -0.6482 -1.2494 4.9640 4.4118 1.1982 -2.9184 -#> -1.4969 -2.8102 8.4710 -4.1947 13.4710 15.7840 8.0034 6.4894 -#> -0.2018 -2.0787 3.6000 -5.0466 -6.3977 -0.3397 -2.1683 5.1826 -#> -10.4754 -0.3989 -2.1770 7.0205 3.4139 -9.8878 -0.6335 6.0262 -#> -2.2778 7.0196 -4.0415 -0.7292 -0.8091 -2.1652 5.3104 -10.2415 -#> -4.7832 6.1902 -6.4281 -16.2450 -0.6198 -1.2905 7.3274 13.9358 -#> 0.0250 0.0059 2.8493 7.5505 7.3472 3.1271 3.9622 14.2142 -#> -7.1615 -4.8397 -3.9963 -2.8790 -11.1888 -3.5380 -8.0007 -17.4729 -#> 6.1410 -7.7925 3.5944 11.6301 6.0241 5.4524 -3.4412 1.0908 -#> 9.0182 -4.6797 -7.1141 7.6652 1.9939 -8.9450 4.6569 2.0778 -#> 8.6951 -0.7674 8.8390 -2.0409 -1.4114 -5.7077 -10.2438 -6.6126 -#> -0.7592 -7.9487 6.5387 -19.3390 0.3024 -2.0058 3.5009 -6.7498 -#> 6.0412 -5.7854 6.8616 3.3522 2.0884 2.2317 12.6853 5.7927 -#> -1.7431 -10.2967 -2.6837 13.5075 1.5764 -0.3518 1.4739 1.8059 -#> 11.0760 -16.0045 0.1230 -9.1960 4.6352 -1.8363 3.4795 -4.1980 -#> -6.6729 3.4266 -1.6780 -10.0093 6.0663 0.8971 13.7264 -5.1570 -#> 2.7899 -3.6841 7.6861 -0.9843 -1.9141 -4.7011 -3.1319 7.7179 -#> -9.1538 -4.4516 -8.9869 -2.2559 1.1936 0.6045 0.1807 -3.2672 -#> -8.1173 5.0338 -8.0610 1.1754 -1.3898 1.5216 -1.7338 3.0696 -#> 4.5485 -4.0602 14.4818 1.3694 -0.8208 3.5496 6.0590 -6.4393 -#> -#> Columns 41 to 48 9.4318 8.2171 4.8322 5.6457 -2.4645 -3.5706 -0.8075 4.8571 -#> -3.2900 0.4726 -2.3633 1.8494 -2.6713 -3.3732 -5.7716 -4.3053 -#> -0.2045 -11.8373 -13.0920 -5.4249 2.9510 -3.4678 -15.6115 -8.6613 -#> -1.0374 -2.1204 -9.4928 -0.0420 5.7950 3.1081 -1.5467 1.4160 -#> 2.2251 -6.1046 -3.2651 2.6999 2.5576 10.5800 0.0160 -3.9492 -#> 9.1404 4.3808 6.6542 -0.1789 0.4081 8.8088 0.6046 -0.0137 -#> 1.1672 -9.2990 3.7059 5.6774 2.8614 -2.1775 -7.2604 0.4836 -#> -2.4184 -0.9147 -0.6182 1.0150 3.7945 -2.1332 1.4857 -7.8693 -#> -6.0545 -8.6096 1.3435 0.2288 4.7465 -0.0030 -7.0416 -1.5885 -#> -11.9655 0.3257 -4.6491 2.0680 -3.0774 -0.2861 8.1254 -4.1858 -#> 0.5986 12.9359 -1.3932 3.2026 4.7596 4.9578 0.6192 -0.7744 -#> 0.2748 4.1774 -1.7001 -4.7775 0.3853 0.3061 -3.2432 8.5125 -#> -11.3921 -10.8563 -7.5818 -1.9139 -3.8404 3.6539 5.9986 -0.6856 -#> 7.9886 -7.6804 -0.7950 2.8417 4.4662 9.4306 0.1284 11.4431 -#> -1.4610 -1.3248 0.5573 -4.3987 -2.9653 -3.4342 -0.6057 -0.4561 -#> -1.3849 -9.5639 -2.3433 1.1506 7.7221 1.7906 3.4410 1.6867 -#> -1.6394 5.4429 -8.0806 -0.0369 0.6217 -3.6089 7.8226 6.9275 -#> 13.5281 -1.9440 4.2859 -6.6300 -2.5808 10.4666 6.6420 5.9351 -#> -7.1382 0.0638 -2.3715 7.4408 9.4569 0.4644 -4.9758 -6.1014 -#> -3.6463 10.5673 2.6788 2.2272 7.1652 -0.5320 -10.1751 -13.5356 -#> 6.0480 -6.9958 -12.2500 -4.8509 2.3519 -1.9778 -14.9620 3.8193 -#> 4.9883 -8.4463 10.3489 3.0552 0.4646 -7.8505 1.3567 7.2660 -#> 13.4826 10.6962 4.5866 4.7238 8.7162 5.6177 5.2107 6.1307 -#> -3.1070 0.8094 -0.3173 4.1823 -7.6181 -4.1219 2.5528 20.6973 -#> 4.1262 0.0812 10.5087 6.9784 5.2514 3.9877 -13.4908 -0.9355 -#> -6.2435 -0.0535 -5.1731 -1.5473 4.3737 -7.7088 -2.1305 -1.1972 -#> -4.0223 3.8423 -0.1538 2.1298 3.1662 4.6899 -4.0121 -8.6478 -#> 1.9742 0.8946 -9.8064 -1.7442 -1.2579 -0.8046 14.5273 9.2468 -#> -5.3971 1.5371 -2.6447 2.3005 -2.7475 -1.9236 -11.5593 -9.2965 -#> 5.1362 3.7165 -5.0594 1.5171 6.5340 4.1253 13.0958 8.7482 -#> -2.3735 -2.9054 4.5685 1.3250 8.4590 16.7741 3.8116 1.4827 -#> -24.0291 1.0120 -9.4348 -3.3122 4.4437 -0.8187 1.9867 -5.7997 -#> 11.1663 -8.7557 4.2210 2.3879 -1.6097 0.6809 -6.8775 -2.3145 -#> -#> (2,.,.) = -#> Columns 1 to 6 -7.1509e-01 -4.9349e-01 2.9598e+00 7.5520e+00 4.0061e+00 -1.3150e+00 -#> 6.1158e-01 -6.8831e+00 4.3357e+00 2.3711e+00 5.0670e+00 4.3449e+00 -#> -5.1513e+00 -1.9952e+00 3.0471e-01 -1.4798e+00 -2.9636e+00 1.1523e+00 -#> 7.4474e-02 1.0948e+00 -6.2086e+00 -5.7473e+00 3.9698e+00 -3.6172e+00 -#> -1.0056e+01 1.9371e+00 -1.2662e+00 -1.7345e+00 -1.1842e+01 3.6392e+00 -#> 3.7177e+00 -8.3396e-01 -6.0881e+00 4.9506e+00 -5.1576e+00 -4.8864e+00 -#> 2.7897e+00 3.9768e+00 -1.1350e+01 -5.2308e+00 -2.3766e+00 1.1203e+01 -#> 5.9575e+00 3.1428e+00 -5.9637e+00 5.7530e+00 7.2610e-01 5.6093e+00 -#> 1.1167e+00 4.4847e+00 7.6154e+00 -1.3624e+00 8.2594e+00 -9.0724e+00 -#> -4.8284e+00 -1.0704e+01 2.0032e+00 2.9894e+00 -6.4011e-01 8.4435e+00 -#> 5.1141e+00 -1.6564e+00 4.4674e+00 6.0807e+00 -6.4299e+00 5.6468e-01 -#> 2.3772e-01 6.5366e+00 8.5935e+00 3.8245e+00 -1.4917e+01 -9.2021e-01 -#> -5.6431e+00 -1.2715e+00 -2.1304e+00 6.5598e+00 -5.9600e+00 -3.6707e+00 -#> -4.7215e+00 -1.9434e-01 2.5668e+00 1.0392e+01 -3.2271e+00 -6.6734e+00 -#> -3.0612e+00 -2.3705e+00 -7.3181e-01 9.4870e+00 -7.3197e-01 -2.5297e+00 -#> -5.7609e+00 -8.1802e+00 -7.4856e+00 -1.3887e+01 2.7613e+00 -5.9915e+00 -#> 7.5561e+00 6.5578e+00 5.6733e+00 9.0824e+00 1.1058e+01 1.6211e+01 -#> -2.8835e+00 -4.0863e+00 2.6817e+00 6.0484e+00 -3.5239e+00 3.4253e+00 -#> 8.4178e+00 -1.9318e+00 -8.1999e+00 5.6324e+00 -4.5409e+00 6.2325e+00 -#> -4.9633e+00 1.1019e+01 3.7780e+00 1.7794e+00 -4.6708e+00 -5.6795e-01 -#> 5.0768e+00 5.8880e+00 -2.3387e+00 -2.4749e+00 4.1631e+00 2.0668e-01 -#> 3.3728e+00 1.9753e+00 1.2435e+01 -9.1491e+00 6.8930e+00 -1.4042e+01 -#> -2.3147e+00 1.1081e+00 -4.7888e+00 3.3629e+00 -5.7519e+00 7.9487e+00 -#> -4.1190e+00 -6.3947e-01 -1.4461e+01 -6.3951e+00 -6.1554e+00 3.6205e+00 -#> 1.3226e+00 5.5740e+00 -4.9470e+00 -3.4072e+00 5.9575e-01 -7.4203e+00 -#> -2.0237e+00 6.2413e+00 -1.3620e+01 -4.2507e+00 7.2215e+00 6.4567e+00 -#> 4.3053e+00 7.2772e+00 8.3178e+00 3.6260e+00 -4.1942e+00 -1.9330e+00 -#> -1.4517e+00 7.2922e-01 4.5117e+00 -2.4268e+00 7.4411e+00 6.0721e+00 -#> -1.0672e+01 -5.0188e+00 1.7881e-01 6.3910e+00 -4.9103e+00 -1.8536e+00 -#> -6.9459e+00 -5.0136e+00 -2.8328e+00 4.1931e+00 -1.0879e+00 8.8608e+00 -#> -1.3535e+00 -6.3363e-01 6.6245e+00 8.1844e+00 -4.6843e+00 -3.0662e+00 -#> -1.7060e+00 -5.8109e+00 -2.4222e+00 -1.0309e+01 -8.6567e+00 3.7424e-01 -#> -9.0191e+00 -5.1409e+00 -2.7915e+00 -1.0410e+01 -5.4462e+00 -1.1519e+01 -#> -#> Columns 7 to 12 -5.9516e+00 7.0156e+00 5.0552e+00 8.3654e-01 4.9012e+00 3.2226e+00 -#> -2.9401e-03 -8.3668e+00 -3.8962e+00 1.0038e+01 -3.0033e+00 -8.2599e-01 -#> 3.8983e+00 -8.2420e+00 -2.4075e+00 1.6270e+00 -1.6823e+01 1.3287e+00 -#> -1.0277e+00 1.8767e-01 -1.2692e+01 1.2294e+00 -1.2903e+01 1.2650e+01 -#> -4.3204e+00 -8.9256e+00 -5.2164e-01 -1.7049e+00 -2.2844e+00 -8.9570e+00 -#> 5.9251e+00 2.8970e+00 -2.0009e-01 -3.1560e+00 5.2960e+00 -5.3078e+00 -#> 1.7958e+00 4.7085e-02 -7.6300e+00 8.0213e+00 -1.4238e+01 -3.1199e+00 -#> 4.0685e-01 8.8669e-01 -1.9305e+00 9.5970e+00 4.0827e+00 -5.9016e+00 -#> 3.5766e+00 3.4390e+00 -5.6902e+00 -1.2657e+01 -5.3466e+00 -3.8703e+00 -#> 1.9449e+00 -9.8307e+00 3.2450e+00 2.4425e+00 -3.7293e+00 8.7565e-01 -#> -1.5291e+00 -8.5767e+00 6.2224e+00 4.7074e+00 -1.7078e+00 3.0609e+00 -#> -3.9321e+00 6.1785e+00 5.0283e+00 4.1094e+00 -2.6448e+00 5.3437e-01 -#> 1.5058e+00 -1.2001e+00 -9.9301e+00 7.9571e+00 -4.7609e+00 -1.0210e+01 -#> 4.2221e+00 -3.1459e+00 -2.5754e+00 3.1745e+00 -1.0673e+01 -4.2940e+00 -#> -1.5951e+00 -2.1660e+01 -6.0590e-01 1.2761e+00 -5.5640e+00 -4.4963e+00 -#> 3.5914e+00 -7.2424e+00 -4.2301e-01 -2.1719e+00 -5.9560e+00 -6.6360e+00 -#> 6.0457e+00 9.1813e-01 9.8854e+00 1.5404e+01 8.7826e+00 -1.0195e+01 -#> 7.1532e+00 1.1020e+01 -7.9245e-01 1.8356e-01 -1.0282e+01 -2.5896e-01 -#> 4.4396e+00 -6.3894e+00 -3.1537e+00 -1.0250e+01 -9.5840e+00 -3.5273e+00 -#> -1.0148e+01 -6.4415e+00 7.3811e+00 1.6038e+01 -1.2954e+00 -7.3381e-01 -#> -1.1356e+01 1.0164e+01 3.7982e+00 1.1379e+01 -1.3215e+01 -4.7850e+00 -#> -7.0512e+00 3.6091e+00 -1.1422e+00 -7.8434e+00 8.2024e-01 3.2626e+00 -#> -5.2845e+00 -3.2287e+00 1.0512e+01 3.9971e+00 -5.6834e+00 -9.3933e+00 -#> -1.4016e+00 9.6409e-01 8.2726e+00 1.9828e+00 4.4276e+00 3.6313e+00 -#> 1.9920e+00 -9.7004e-01 5.1981e+00 -9.5342e+00 -5.0760e+00 3.3793e+00 -#> 2.1394e+00 -1.4262e+01 3.0598e+00 7.2985e+00 1.9970e+00 -9.2220e+00 -#> -1.0893e+01 -2.5566e+00 -6.1387e+00 1.0846e+01 6.5455e+00 1.6814e+00 -#> 3.2075e+00 -1.5686e+01 1.4660e+01 6.6920e+00 2.2215e+00 -1.4393e+01 -#> 3.2561e+00 -3.0157e+00 -2.8714e+00 -8.9107e-02 -8.5308e-01 9.6009e-01 -#> 6.7504e+00 9.9947e+00 1.3110e+01 -1.0746e+01 8.8372e+00 -1.4285e+01 -#> 9.1524e-01 2.6967e+00 1.3832e+00 7.8529e+00 4.4973e+00 4.9536e+00 -#> -2.6921e+00 -1.4808e+01 -2.9850e+00 1.8306e+00 2.6230e-01 4.2523e-01 -#> -1.2366e+01 -7.5979e-01 -2.1096e+00 -6.5637e-02 2.7424e+00 -8.5872e+00 -#> -#> Columns 13 to 18 2.7000e+00 8.5381e+00 -8.1091e+00 -3.7162e+00 2.0213e+00 -6.0458e+00 -#> -4.4232e+00 -1.0786e+01 1.4304e+01 7.0479e-01 -3.7465e+00 -1.9488e+00 -#> 2.8797e+00 4.6008e-01 7.6718e+00 -2.5439e+00 5.3121e+00 1.3722e+00 -#> 1.9172e+00 3.2784e+00 7.7748e+00 -1.2554e+01 6.0663e+00 3.9239e+00 -#> 1.9770e+00 1.4078e+01 -6.5417e-01 9.7094e+00 -2.4134e+00 5.5477e+00 -#> -3.2059e+00 6.4861e-02 4.7822e+00 -6.6546e+00 -4.4499e+00 -1.5853e+00 -#> -2.4581e+00 -1.5303e+00 4.5577e+00 -3.0146e+00 1.0402e+01 9.5618e+00 -#> -6.2991e+00 -5.5900e+00 -5.3919e+00 -1.0916e+00 9.6959e+00 -5.6915e+00 -#> 1.0740e+01 9.5805e-01 -4.2546e+00 8.1128e+00 -7.7091e+00 -2.4287e+00 -#> -1.1507e+00 5.1993e+00 8.7242e+00 1.1963e+01 -6.3006e-01 -3.7769e-01 -#> -6.9138e+00 -1.0091e+01 -1.2608e+01 8.1199e+00 1.6238e+00 3.1721e+00 -#> -1.6155e+01 7.7175e-01 1.0307e+01 -2.4856e+00 1.0481e+01 -6.2984e+00 -#> 3.8670e+00 -2.1379e+00 -1.2605e+00 2.7508e+00 7.6017e-01 -8.3812e+00 -#> 5.5454e+00 6.7137e+00 -1.7055e+00 -7.7823e+00 -3.4515e+00 4.7732e+00 -#> 7.6535e+00 9.3814e+00 -8.8797e+00 -1.1818e+01 -8.5267e+00 -1.4578e+00 -#> 2.7738e+00 1.0396e+01 3.6270e+00 3.0116e+00 2.7857e-01 1.8120e+01 -#> 3.4237e+00 -1.0749e+01 5.3512e+00 2.4723e-01 -7.9703e+00 1.9826e+01 -#> 6.5276e+00 9.1472e+00 2.5897e+00 5.6845e-01 2.4023e+00 9.8481e-01 -#> -8.0553e+00 -1.1198e+01 -1.0056e+01 1.4838e+00 6.0982e+00 1.8073e+00 -#> 7.9459e+00 -8.7685e+00 2.4101e+00 4.0183e+00 -2.7991e-01 8.6546e+00 -#> -1.1821e+01 4.5998e+00 6.9386e-01 -4.8410e+00 3.9323e+00 3.4028e-02 -#> 6.9009e+00 6.5700e+00 -2.3530e+00 -2.3630e+00 -3.5682e-01 -3.1213e+00 -#> -6.3269e+00 3.8343e+00 -7.5480e+00 -1.1199e+01 -8.8526e+00 1.1089e+01 -#> -7.9600e+00 -2.6078e-01 7.3612e+00 3.3860e+00 -5.8622e+00 -5.7458e+00 -#> 1.6788e+00 -4.5105e+00 4.8601e+00 2.6536e+00 6.3036e-01 1.6862e+00 -#> -8.7453e+00 1.9969e+00 -2.7020e+00 1.2625e+00 8.6836e+00 4.4179e+00 -#> -3.8124e+00 -5.3169e+00 -1.0316e+01 -6.2008e+00 -1.0265e+01 -4.3392e+00 -#> -1.1196e+01 1.0953e+00 1.2303e+01 -3.2832e+00 -2.6740e+00 -8.8153e-02 -#> -4.3849e+00 9.3394e-02 1.0517e+01 6.6309e+00 -1.0079e-01 -2.0375e+00 -#> 2.8490e+00 1.0117e+01 -5.2329e+00 9.0272e-01 4.3376e+00 7.2262e+00 -#> 1.2064e+00 2.9931e+00 -1.0497e+01 -1.0496e+01 5.1515e+00 -1.6065e+00 -#> 1.3753e+01 -3.8291e+00 1.2658e+01 -2.3645e+00 -1.1169e+01 4.3685e+00 -#> -2.9462e+00 3.2668e+00 4.3312e+00 4.1991e+00 6.5311e+00 -3.7727e+00 -#> -#> Columns 19 to 24 -2.6109e-01 4.8078e+00 -1.0124e+01 7.8367e+00 -4.4960e+00 -9.2124e+00 -#> 3.4842e+00 -8.3740e-01 1.0619e+01 2.2888e-01 -9.4949e+00 4.2166e-01 -#> 7.1282e-02 5.1503e+00 8.8166e+00 -3.2567e+00 -3.4595e+00 2.0536e+00 -#> 7.7086e+00 -1.0302e+01 2.3211e+00 -1.3219e+00 -6.5876e-01 -9.8129e+00 -#> -3.6886e+00 1.1903e+01 -2.9881e+00 -7.3948e+00 -1.5627e+00 8.1673e+00 -#> 1.1306e+01 -6.6918e+00 -3.6204e+00 -4.8952e+00 -9.2597e+00 -6.2369e+00 -#> -6.9676e+00 -1.6389e+00 -2.3276e+00 3.5074e+00 -2.0643e+00 -2.0283e-02 -#> -4.5878e+00 -2.5588e+00 8.6070e+00 3.8829e+00 -3.9444e+00 -3.7486e+00 -#> -5.5344e+00 8.6413e+00 8.5727e-02 9.4498e-01 8.3532e+00 -1.1366e+01 -#> -5.5513e+00 2.5488e+00 7.4590e+00 -3.5227e+00 -5.4778e+00 7.7005e+00 -#> 6.5902e+00 -6.7006e+00 -1.9534e+00 -4.8660e+00 -7.5983e+00 1.9447e+01 -#> -1.2766e+01 6.2877e+00 7.3611e+00 -7.5964e+00 9.8168e+00 3.7307e+00 -#> -1.1571e+00 3.2945e+00 3.3334e+00 -6.9614e-01 1.3975e+00 8.6417e+00 -#> -2.3076e+00 -3.3192e-01 3.1283e+00 -1.2837e+01 5.1154e+00 -5.8279e+00 -#> 5.5291e+00 7.0720e+00 -6.0436e-02 -5.0244e+00 -1.6342e+01 5.6834e+00 -#> 4.0753e+00 -8.6386e-01 -1.2163e+00 -3.3384e-01 8.5434e+00 -6.3283e+00 -#> -8.1850e+00 7.5152e-02 -5.8536e-01 1.3266e+00 -7.6313e+00 1.1692e+01 -#> 1.2035e+01 2.2418e+00 1.5214e+00 2.7325e+00 -4.7900e+00 -8.3553e+00 -#> 1.3710e+00 -5.7864e+00 3.9161e+00 4.7640e+00 9.8295e-01 -8.4390e-01 -#> -5.9023e+00 -7.4171e+00 -5.0537e+00 -4.7018e+00 -8.9029e-01 9.8228e+00 -#> -9.1306e+00 -1.9524e+00 8.9289e+00 3.8039e+00 1.5887e+01 -5.0845e+00 -#> 7.2528e+00 -3.6954e+00 -3.4254e+00 -4.3860e-02 5.0786e+00 -8.6250e+00 -#> -1.7334e+00 3.8103e+00 -2.5993e-01 -1.1297e+01 -1.1125e+01 6.7070e-01 -#> -1.3782e+01 5.9581e+00 -3.7445e+00 7.2762e+00 8.2591e+00 1.3241e+00 -#> 7.8407e+00 -3.1490e+00 -2.0267e+00 2.5580e+00 1.0221e+01 -6.0490e+00 -#> -4.8752e-01 -9.7989e+00 3.6149e+00 6.3880e-01 -6.0927e+00 6.9155e+00 -#> -5.2781e+00 2.3281e+00 -2.9401e+00 -5.2770e+00 -4.5600e+00 4.0959e-02 -#> -1.6510e+00 -4.4628e+00 -4.4317e-01 -3.7385e+00 -7.0257e-01 1.2179e+01 -#> -1.4263e+00 2.4627e-02 1.5154e+01 -8.5295e+00 1.1547e+01 -1.7261e+00 -#> 3.3542e-01 3.9312e+00 -1.0944e+01 2.7019e+00 6.4122e+00 2.6792e+00 -#> 4.4669e-01 1.9376e+00 7.9560e+00 -3.4105e+00 -3.0819e+00 2.3268e+00 -#> -9.2093e+00 -2.2787e+00 6.0683e-01 -5.0750e+00 -4.6972e+00 2.2780e+01 -#> 3.7401e+00 2.3183e-01 -5.3432e+00 -7.5792e+00 1.1843e+01 2.6668e+00 -#> -#> Columns 25 to 30 1.3633e+01 1.1635e+01 -1.4768e+00 -1.0947e+00 -1.4935e+00 7.3367e+00 -#> 1.8347e+00 -5.9848e+00 -1.5196e+01 8.0386e+00 -8.6412e-01 5.7371e+00 -#> 3.3975e-01 -8.7520e-01 -2.1590e+00 6.9778e+00 2.7767e+00 4.6087e+00 -#> 1.4119e+01 -3.1869e+00 -7.2740e+00 9.6347e+00 8.3509e+00 -9.9526e+00 -#> 1.7852e+00 -6.6034e+00 1.3139e+00 5.3587e+00 6.7300e+00 1.1495e+01 -#> 1.0884e+01 -3.6163e+00 -6.1070e-01 9.3564e+00 1.5856e+00 -1.4446e+01 -#> 4.5013e+00 -3.0506e+00 -1.3709e+00 -6.1256e+00 -1.4894e+00 6.7897e+00 -#> 7.1776e+00 -3.4181e+00 -5.2673e+00 -8.4402e+00 -1.3334e+01 9.0230e+00 -#> -4.5190e+00 -8.1797e+00 1.2852e+00 -1.2342e+00 1.4442e+01 3.5929e+00 -#> -4.9083e+00 -8.2237e+00 -7.7480e+00 1.4833e+00 -3.7700e+00 8.9328e+00 -#> 1.3677e+01 -1.1703e+01 -3.4264e+00 8.4007e+00 3.0622e+00 -3.9277e+00 -#> -1.2444e+00 -7.7115e+00 -1.1126e+00 -4.7788e+00 -9.1684e+00 1.7096e+00 -#> -7.9805e+00 1.9402e+00 5.8282e+00 -1.0984e+01 5.7442e-01 4.8096e+00 -#> 3.5863e+00 -6.9901e+00 2.0761e+01 -6.0529e+00 1.0542e+01 -5.5653e+00 -#> 4.7324e-01 1.0031e+01 1.2682e+01 5.8382e+00 2.4513e+01 1.7300e+01 -#> 4.3019e+00 -3.9498e+00 4.4878e+00 -2.3613e+00 8.3003e+00 -1.0475e+01 -#> 6.1743e+00 -6.1079e+00 -1.0839e+01 -4.8769e+00 -6.2840e+00 7.5247e+00 -#> 1.1283e+01 -1.8325e+00 -7.0253e+00 5.0291e+00 -2.7680e+00 -7.1598e+00 -#> 2.6188e-01 -6.6821e+00 -1.2407e+00 7.5910e+00 -1.4712e+01 4.1615e+00 -#> 1.2098e+00 7.7760e+00 8.4132e+00 -1.8960e+00 9.5166e-02 1.1113e+01 -#> -8.5597e-01 -1.1365e+01 -6.1514e-01 -7.5014e+00 -4.4777e+00 7.6538e-01 -#> -5.3641e+00 8.4976e+00 7.7201e+00 -9.8481e+00 1.3061e+01 2.3271e+00 -#> -5.7804e-01 -2.1340e+00 6.5594e+00 1.0442e+01 2.3031e+00 5.4915e+00 -#> -2.4073e+00 -7.2948e+00 -7.1055e+00 -1.4424e+01 -1.8628e+01 6.5668e+00 -#> -1.7887e+00 -1.0561e+01 -3.0666e+00 1.3548e+01 1.8072e+00 -8.3541e+00 -#> 1.4815e+01 2.1536e+00 -2.1050e+00 -2.4299e+00 -2.1874e+00 7.0530e+00 -#> 1.2392e+01 1.9511e+00 -5.1508e+00 4.0476e-01 1.3191e+01 1.0705e+01 -#> -3.2279e+00 1.7266e+00 -4.3829e+00 -7.9983e+00 2.0262e+00 6.8517e+00 -#> -8.2418e+00 -8.7575e+00 1.0860e+01 1.2190e+01 -1.1073e+00 7.0043e+00 -#> -4.0054e+00 7.2396e-01 -1.3193e+00 4.3663e+00 -1.4141e+01 6.7344e+00 -#> 8.4796e+00 -7.0270e+00 -5.3384e+00 -9.5140e+00 -5.6786e-01 3.8349e+00 -#> -1.6548e+01 7.2795e-01 7.1365e+00 8.1874e+00 2.1921e+00 -9.6058e+00 -#> -3.1823e+00 -8.5109e-01 4.5027e+00 4.7013e+00 8.7304e+00 -3.1466e+00 -#> -#> Columns 31 to 36 -3.0502e+00 -5.4226e+00 -1.1866e+00 -7.7360e-04 1.0046e+01 -1.4339e+01 -#> 5.1785e+00 8.5924e+00 7.3401e+00 -9.1732e+00 6.5585e+00 4.2616e+00 -#> 4.7791e+00 1.9069e+00 1.2301e+00 -3.1632e+00 1.0141e+01 -7.9537e+00 -#> -3.2250e+00 1.1265e+01 8.3408e+00 -1.5957e+01 1.1140e+01 3.0385e+00 -#> -5.7449e+00 3.2804e+00 -3.5045e+00 3.9281e+00 -4.7560e+00 5.1381e+00 -#> -3.3620e+00 3.1483e+00 6.3762e+00 -3.0654e+00 -5.8521e+00 -2.6027e+00 -#> -6.8715e-01 -1.3580e+01 2.9583e+00 -2.8945e+00 -2.2106e+00 -1.0597e+00 -#> 2.3841e+00 -2.2713e+00 5.1123e-01 1.3546e+00 2.8196e+00 -4.8460e+00 -#> 4.1300e+00 -8.9717e-01 -2.0092e+00 8.0245e+00 8.9510e+00 -5.7317e+00 -#> 4.9242e+00 5.6605e+00 4.8302e-01 -1.6416e+00 -5.6424e+00 -3.1269e+00 -#> -1.7472e+01 9.0286e+00 -1.1657e+00 1.5655e+01 -1.8243e+01 1.5363e+01 -#> -1.8474e+00 4.0897e+00 7.5385e+00 6.4631e+00 1.1732e+01 -1.5875e+01 -#> -2.9430e+00 1.0304e-02 -6.3027e+00 4.3613e+00 7.5438e+00 -7.5815e+00 -#> -6.3004e+00 -2.0406e+00 -2.1198e+00 -1.7317e+00 5.3290e+00 1.1506e+00 -#> 4.4363e+00 -7.1078e+00 -2.2689e+00 9.1593e+00 -1.0209e+00 1.4142e+01 -#> -1.0158e+00 3.4533e-01 1.0040e+01 -5.2964e+00 -3.8510e+00 -9.8925e+00 -#> 7.0940e+00 -1.9105e+00 -2.6435e+00 -6.7222e+00 4.9688e+00 -9.4728e+00 -#> -1.4549e+01 5.3767e-01 2.3201e+00 -1.9899e+00 -5.1085e+00 -2.1957e+00 -#> 9.1778e+00 1.1308e+01 -4.9178e+00 -2.6880e+00 3.7381e+00 -4.8390e-02 -#> -1.4211e+00 -4.6613e+00 -5.0277e+00 7.5841e+00 -5.6116e+00 1.0896e+01 -#> -1.3916e+00 1.0658e+00 6.3661e+00 -3.2695e+00 8.0748e+00 1.1913e+01 -#> -5.4840e-01 -7.0615e+00 -2.1461e-01 5.8277e+00 4.4998e+00 6.1279e-01 -#> -7.2273e+00 -3.3353e+00 -2.2451e-01 -4.2120e+00 1.4607e+00 2.1736e+00 -#> 2.3888e+00 7.9467e+00 -1.4923e+01 -2.8997e+00 -1.4515e+00 -1.0238e+01 -#> 1.9038e+00 -2.1767e+00 1.7820e+00 5.0317e+00 9.6143e+00 3.5390e+00 -#> -2.2836e+00 -6.7059e-01 -3.3277e+00 2.3968e+00 -6.2656e+00 7.1541e-02 -#> 1.8024e+00 -4.6275e+00 3.8931e+00 2.2845e+00 9.2879e+00 2.6737e+00 -#> -2.7062e+00 -6.9413e+00 -2.2579e+00 9.6534e+00 -2.0443e+01 1.0024e+01 -#> 7.2623e+00 3.7980e+00 6.2083e+00 -5.2031e-01 6.6343e+00 2.8769e+00 -#> 4.6087e-01 -1.1342e+00 -1.0071e+01 -1.0014e+01 -1.0012e+00 -1.6799e+01 -#> 1.3046e+01 1.2031e+01 -5.9934e+00 2.7704e+00 5.1693e+00 -9.1025e+00 -#> 2.3357e+00 3.6832e+00 1.0729e+01 2.8181e+00 4.0101e+00 2.8323e+00 -#> -3.7210e+00 9.5575e-01 9.1658e+00 -3.9453e+00 6.6812e+00 -9.8705e+00 -#> -#> Columns 37 to 42 8.0274e+00 1.3473e+00 -7.9683e+00 -2.5021e+00 -1.4562e+00 6.9043e+00 -#> 6.4800e+00 -6.4930e+00 6.5987e+00 1.6992e+00 3.3423e+00 2.9007e+00 -#> 4.1236e+00 2.8806e+00 3.4910e+00 9.0047e+00 1.3609e+00 -4.1131e+00 -#> 3.9045e+00 -2.7661e+00 8.0995e+00 -3.2099e+00 -6.3028e+00 3.6100e+00 -#> 2.8595e+00 8.5890e+00 6.9759e+00 -3.6375e+00 1.2716e+01 -5.1055e+00 -#> -3.9744e+00 -3.7970e+00 4.5694e+00 -4.4010e+00 4.6595e+00 1.0435e+01 -#> 8.7296e+00 2.9286e+00 -1.9703e+00 2.7617e+00 1.0797e+00 2.7736e+00 -#> 4.3076e+00 -1.6706e+00 -7.8943e+00 7.5354e+00 -6.1941e+00 3.9286e+00 -#> 1.2360e+01 -5.4219e+00 1.6949e+01 -6.1366e+00 1.3807e+01 -6.2802e+00 -#> 1.7763e+00 6.6658e+00 -1.9258e+00 7.6167e+00 4.0521e+00 -4.5945e+00 -#> -8.7879e+00 2.0683e+00 -1.3782e+00 -1.0502e+00 4.1240e+00 -9.3366e+00 -#> -2.4919e+00 4.6335e+00 5.6993e-01 5.8056e+00 1.3667e+00 -3.8362e+00 -#> -7.9760e+00 -9.7185e+00 6.3919e+00 5.8327e+00 -5.5591e+00 -1.0145e+01 -#> -2.4361e+00 -1.3595e+00 5.3784e+00 -1.0564e+01 4.4731e+00 -7.7008e+00 -#> -1.2498e+00 1.1055e+01 1.4361e+01 4.4318e+00 -9.1977e-01 -1.0886e+01 -#> 7.8499e+00 -4.4737e-01 4.0138e+00 -1.6863e+01 3.4583e+00 -8.8853e+00 -#> 5.6519e+00 7.7085e+00 1.0316e+00 -5.9979e+00 1.2462e+00 -5.8032e-02 -#> -6.5523e+00 -4.4294e+00 1.6930e+00 -8.1491e+00 -1.3399e+00 -7.3746e-01 -#> -2.9941e+00 -7.9544e+00 -9.6285e+00 2.6299e+00 3.5760e+00 -3.2629e+00 -#> 5.6632e+00 1.0023e+00 -3.3555e+00 8.9834e+00 -2.5112e-01 -3.7210e+00 -#> -1.3401e+00 1.2614e+00 -1.3780e+00 -1.5681e+00 3.4846e+00 -2.9290e+00 -#> 7.9777e+00 -9.5111e+00 9.9007e+00 7.6525e-01 -7.4262e+00 -2.2465e+00 -#> -1.0764e+01 1.0823e+01 -1.8126e+01 -8.9734e+00 -3.3309e+00 7.3897e+00 -#> -2.4367e+00 -9.3883e+00 5.1017e+00 1.9732e+00 1.5514e+01 -9.8860e+00 -#> 1.1193e+01 -1.3586e+01 1.2199e+01 -6.2468e+00 4.8108e+00 -4.9684e+00 -#> 5.5543e+00 -7.2836e+00 -1.2312e+01 1.6544e+00 -7.8411e+00 -8.5071e-01 -#> 7.2632e+00 7.6805e+00 1.0372e+01 4.6467e+00 3.2371e+00 1.8547e+01 -#> 1.0000e+01 4.6672e+00 8.9041e+00 6.0691e+00 2.6341e+00 -1.5674e+00 -#> 1.2061e+01 3.0764e+00 5.6641e+00 4.6102e+00 -1.0707e+01 -2.9058e-01 -#> 9.3883e+00 4.1780e+00 -1.0755e+01 -3.1317e+00 1.2084e+00 -6.2495e+00 -#> 1.5567e+00 1.9683e+01 1.0854e+01 2.5242e+00 3.8949e+00 4.5147e+00 -#> -8.4709e+00 2.0079e+01 -4.0331e+00 3.4815e+00 -1.0787e+01 -2.4349e+00 -#> 8.2260e+00 -1.2772e+01 5.0200e+00 -5.5445e+00 -2.8086e+00 -3.2149e+00 -#> -#> Columns 43 to 48 -3.8896e+00 6.5787e-01 -1.2978e+00 -6.1221e+00 1.3124e+00 -6.3121e-01 -#> 3.2791e+00 -2.4867e+00 1.8503e+00 -2.1419e+00 -2.8203e+00 6.7540e+00 -#> -3.9395e+00 8.9447e-01 4.1483e+00 2.9906e+00 -1.8324e+00 -1.3498e+01 -#> 9.0459e+00 2.9160e+00 1.3991e+01 -3.4683e+00 -7.5850e+00 9.4991e-01 -#> -4.8166e+00 4.3716e+00 -4.0342e+00 1.5501e+01 6.5063e+00 1.4848e+01 -#> 4.3978e+00 -1.7978e+00 -1.5569e+01 9.5838e-01 -4.2077e+00 1.1983e+01 -#> -2.2132e+00 5.1870e+00 -2.2836e+00 7.6397e+00 -3.4778e-01 6.4687e+00 -#> -3.0285e+00 -6.3110e+00 -7.4775e-01 -4.4857e+00 -6.5898e+00 1.2399e+00 -#> 8.5546e+00 9.6174e+00 5.5361e+00 1.3995e+00 7.3978e+00 6.0620e+00 -#> 9.5426e-01 -4.6008e-01 2.7788e+00 -1.6533e+00 7.6717e+00 -6.0897e+00 -#> -2.3392e+00 -1.4206e+00 9.6478e-01 1.2578e+00 4.4325e+00 3.5684e+00 -#> -1.2031e+01 3.2264e-01 -1.2314e+00 5.9877e+00 -1.8689e-01 -6.1992e+00 -#> 3.6786e+00 4.4235e+00 7.3856e+00 -3.5121e+00 1.8254e+00 -2.7950e+00 -#> 1.2859e+01 3.8752e+00 3.0138e+00 2.1199e+00 -2.3312e+00 8.4692e+00 -#> 3.6537e+00 -3.2655e+00 6.4011e+00 9.5566e+00 1.0377e+00 1.9657e+00 -#> 9.0634e+00 -6.8571e+00 4.1418e+00 -2.2360e+00 -4.1616e+00 -2.5369e+00 -#> -1.2561e+01 -7.0413e+00 9.6420e-01 -1.5377e+00 7.4733e+00 -6.1888e+00 -#> -1.2041e+01 -4.9432e+00 -6.8733e+00 7.2480e+00 4.7230e+00 1.5316e+00 -#> 4.2213e-01 2.5705e+00 -4.9289e+00 8.1845e+00 -1.2568e+01 -6.1808e+00 -#> 3.1592e+00 -2.7227e+00 -1.4107e+00 6.9731e+00 2.3468e+00 -2.5774e+00 -#> 4.4478e+00 -1.9829e+00 2.7573e+00 -2.3223e+00 -1.0544e+01 2.5697e-01 -#> 1.6394e+01 4.0235e+00 1.8288e+01 -1.6814e+00 2.0892e+00 1.2139e+01 -#> 3.9782e+00 -2.6290e+00 -4.9761e+00 1.6872e-01 -6.4128e+00 4.5709e+00 -#> 6.5372e+00 7.4668e+00 -6.9902e+00 1.1342e+01 -9.0094e+00 3.0885e+00 -#> -2.4901e+00 1.1389e+01 -6.9001e+00 8.2024e+00 -1.1017e+01 -4.0060e+00 -#> -4.9509e+00 -5.8122e+00 -1.0876e+00 7.2729e+00 -7.2931e+00 6.0226e+00 -#> -9.5747e-01 1.3897e+00 -9.5474e-01 -5.0532e+00 3.3397e+00 1.9763e+00 -#> 2.7213e+00 -1.0482e+01 1.0440e-01 5.5811e+00 -1.7081e-01 3.2723e+00 -#> -4.6305e+00 2.3510e+00 -2.4568e+00 -6.0458e+00 -6.0839e+00 -7.8381e+00 -#> -1.0843e+01 6.2862e-01 -1.2367e+00 5.5577e+00 -3.5569e+00 -8.7925e-02 -#> -2.7422e+00 1.8663e+00 -5.8871e-01 -4.5779e+00 -2.7187e+00 -1.7621e+00 -#> 3.8242e+00 4.7493e+00 8.6695e+00 -5.1289e+00 -1.1561e+00 -1.6367e+01 -#> -2.5585e+00 4.8995e+00 5.4630e+00 -1.4587e+00 -6.8408e+00 1.0571e+01 -#> -#> (3,.,.) = -#> Columns 1 to 6 1.4080e+00 -1.1899e+01 -4.1353e+00 -1.4412e+00 1.1742e+01 6.9489e+00 -#> -6.5218e+00 1.3255e+01 9.3847e+00 -7.3147e+00 1.4185e+00 2.9938e+00 -#> -9.4088e+00 9.8435e+00 7.5546e+00 -1.8330e+00 5.6999e-01 2.4329e+00 -#> -2.1506e+00 -1.1168e+00 1.6671e-02 7.6816e+00 7.6185e+00 -1.3157e+01 -#> -1.4543e+00 -7.0075e+00 3.7290e+00 -6.4805e+00 -4.2380e+00 -1.1300e+01 -#> -6.9435e+00 -3.1541e+00 1.6184e+01 2.3992e+00 2.1464e+00 -2.0194e+01 -#> -2.1261e+00 -6.1874e+00 -3.1801e+00 -9.9955e+00 4.5779e+00 -3.3643e+00 -#> -1.3131e+00 6.6850e+00 -6.6825e-01 -3.8057e+00 -2.1247e-01 -1.0433e+01 -#> -5.0201e+00 -5.4811e+00 1.9074e-02 -9.6455e-01 -6.4131e+00 6.0250e+00 -#> -5.4076e+00 1.1422e+01 5.0324e+00 -2.3835e+00 -5.3782e+00 3.2404e+00 -#> -8.0323e+00 2.0626e+00 -1.0257e+01 2.4690e+00 -4.1333e+00 -1.6341e+01 -#> 8.1692e-01 -4.8066e+00 6.5308e+00 -2.0152e+00 1.1058e+01 -1.1816e+01 -#> -1.1623e+00 4.4053e+00 4.9868e+00 -1.4910e+00 -8.6254e+00 8.2777e+00 -#> -8.3532e+00 2.3937e+00 -1.1702e+01 5.5676e+00 -4.8145e+00 -6.8998e+00 -#> -8.3821e+00 -2.0785e+00 -8.5879e+00 -1.1150e+01 4.8695e+00 -3.8867e+00 -#> -1.2349e+00 7.4407e+00 3.5352e+00 -2.9630e+00 -4.7452e+00 4.3327e+00 -#> -7.6731e+00 9.8579e+00 -5.3611e+00 -2.5492e-01 -8.7314e+00 4.6041e+00 -#> -5.3861e+00 -9.1160e-01 7.6677e+00 1.7004e+00 7.4107e+00 -6.2495e+00 -#> -2.6204e+00 3.1218e+00 -5.8771e+00 -9.5579e+00 -9.5801e+00 -6.1502e+00 -#> 2.1210e-01 4.4249e+00 -1.3583e+01 -5.0736e+00 -1.4737e+00 9.9051e+00 -#> 1.1629e+01 5.7636e+00 4.6826e+00 -2.0306e+00 3.1641e+00 -3.3694e+00 -#> 4.8854e+00 -7.1501e+00 -1.1292e+01 -2.5348e+00 5.3458e+00 1.3115e+01 -#> 8.2982e-01 -1.4568e+00 -8.7658e+00 6.9908e+00 1.3195e+00 -7.1090e+00 -#> 1.1800e+00 1.6513e+00 6.2211e+00 2.4865e+00 -1.1569e+01 1.5910e+01 -#> -1.0067e+01 -2.4248e+00 3.5204e+00 -7.3729e+00 -2.9552e+00 9.0173e+00 -#> -3.5460e-01 -1.3474e+00 3.3893e+00 1.2785e+00 4.2084e+00 -1.0641e+01 -#> -1.9705e+00 -1.6608e+01 -3.1503e+00 -4.9205e+00 -5.1441e+00 -7.2497e+00 -#> -4.0333e+00 1.4794e+01 -1.0558e+01 -5.8430e+00 -1.0755e+01 -1.7470e-01 -#> -1.1416e+01 1.0601e+01 -3.5518e+00 -1.1902e+00 -4.6416e+00 5.6309e+00 -#> -6.7081e+00 3.0187e-01 -8.6661e-01 -5.8872e+00 2.0574e+00 -3.1048e+00 -#> -7.0169e+00 -5.9670e+00 -8.7838e+00 -1.1772e+01 -4.3665e+00 -1.3870e+01 -#> 6.1087e-02 9.9251e+00 2.8213e+00 1.0690e+01 -1.8414e+00 2.7020e+00 -#> 7.8980e-01 -3.7714e+00 1.1692e+01 -1.0431e+00 3.6993e-01 -3.0131e+00 -#> -#> Columns 7 to 12 4.9066e+00 -4.1308e+00 6.7264e+00 -2.3971e+00 2.5494e+00 3.4488e+00 -#> 6.5412e-01 6.1340e-01 3.3838e+00 -8.8767e-01 -5.3286e-01 1.1592e+01 -#> 8.5030e+00 4.7017e+00 2.5309e+00 1.8400e+00 -2.3989e-01 5.0525e+00 -#> -2.8190e+00 1.1768e+00 2.9686e+00 9.4875e-01 -2.0928e+00 2.8620e+00 -#> 8.0581e+00 2.0097e+00 7.7453e-01 -2.4825e+00 5.6598e+00 -5.6388e+00 -#> -2.9977e+00 5.2568e+00 -8.4047e+00 4.8200e+00 9.3105e+00 -1.2028e+00 -#> -1.1490e+01 4.0066e+00 9.3038e+00 -1.0326e+00 8.8266e-01 8.2433e+00 -#> -1.9693e+00 9.3338e-02 6.7674e+00 -7.5838e+00 -1.2921e+00 4.9577e+00 -#> 1.2455e+01 1.2788e+01 -1.2791e+00 6.4981e-01 -3.5957e+00 -1.3183e+00 -#> 9.4231e+00 -2.2993e+00 4.4472e+00 -7.1652e+00 -2.1302e-02 3.9951e+00 -#> -2.4195e+00 -2.5335e+00 -4.7614e+00 -2.5586e+00 2.0540e+00 2.6202e+00 -#> -1.3300e+01 8.5292e+00 4.0447e+00 -6.2759e+00 7.4482e+00 7.2431e-01 -#> 4.9680e+00 -3.3235e+00 -4.6155e-01 -1.5015e+00 -1.1129e+01 7.0367e+00 -#> 1.1640e+01 -2.5281e+00 -6.0034e+00 1.1838e+01 8.8062e-01 -1.9703e+00 -#> 5.5088e+00 3.4637e+00 -8.0601e+00 3.6713e+00 9.8656e+00 -4.1082e+00 -#> 9.0013e-01 -7.9194e+00 -1.2030e+01 6.5047e+00 -4.0442e+00 3.4924e+00 -#> 1.9017e+00 2.0474e+00 7.3447e-01 4.4541e+00 -8.6128e+00 -1.1041e+01 -#> 3.9773e+00 5.6824e+00 -3.7343e+00 -6.4544e+00 5.0678e+00 -1.2625e+01 -#> -1.3919e+01 -7.6696e+00 -8.0680e+00 -7.8409e-01 1.7832e-01 1.4216e+01 -#> -8.4426e+00 -6.3279e-01 9.9402e+00 7.9904e+00 2.1366e+00 9.8434e+00 -#> 1.0340e+01 2.9289e+00 7.5236e+00 -3.0736e+00 5.6299e+00 2.1383e+00 -#> 4.8554e+00 2.0273e+00 -3.4944e+00 9.8330e+00 -1.5486e+00 -7.0196e+00 -#> -1.3181e+01 -6.1692e+00 -4.3927e+00 -6.9112e-01 7.3283e+00 -4.3668e+00 -#> -1.0650e+01 -1.0113e+01 -1.0493e+00 -4.0480e+00 -5.0376e+00 1.5352e+01 -#> -1.2744e+00 1.3469e+01 -8.7806e+00 4.8216e+00 4.3525e+00 7.1390e+00 -#> -7.6099e+00 8.2266e+00 -1.6163e+00 -5.2979e+00 -9.2686e-01 4.1946e+00 -#> -6.8688e+00 6.8039e+00 4.5720e+00 2.1791e+00 3.2972e+00 2.7397e+00 -#> -1.3702e+01 5.0406e+00 -2.5053e+00 1.6890e+01 2.2438e+00 7.1325e+00 -#> 1.4510e+01 3.9684e+00 -2.3852e-01 4.7563e+00 3.9079e+00 1.0018e+01 -#> 3.8940e+00 -7.0659e+00 -5.8890e+00 1.1028e+01 -8.5083e+00 -7.1714e+00 -#> -7.7616e+00 -1.2060e+00 1.5313e+00 -1.0961e+00 4.9758e+00 -2.1184e+00 -#> 6.0980e+00 -1.2272e+00 5.8412e+00 1.2258e+00 -2.6513e+00 5.4603e+00 -#> 6.5693e+00 -2.6360e+00 -1.1088e+01 3.7412e+00 4.6298e+00 2.0834e+00 -#> -#> Columns 13 to 18 4.6010e+00 4.5067e+00 -2.9038e+00 3.2502e+00 -2.4335e+00 -6.4512e+00 -#> -2.3157e+00 -6.3810e+00 1.3949e+01 9.6802e-01 -3.6449e-01 2.2528e+00 -#> -3.6608e+00 -8.8017e+00 5.9599e+00 -3.7491e+00 -7.6035e+00 6.1058e+00 -#> -4.8018e+00 2.0252e+00 4.9238e-01 -9.8625e+00 4.6778e+00 -2.1808e-01 -#> 3.1025e+00 8.5312e+00 -3.7468e+00 6.2848e+00 -5.9987e-01 4.7689e+00 -#> 3.6285e+00 1.5422e+01 -3.4136e+00 1.2394e+00 -6.1809e+00 -3.1180e+00 -#> 2.5461e+00 -5.0396e-01 3.0065e+00 -7.7716e+00 -1.0346e+01 4.0124e+00 -#> -7.0728e-02 3.7410e+00 1.0579e+01 -4.4932e+00 1.1285e+00 -6.4617e+00 -#> -7.7204e-01 -9.0712e+00 -1.7770e+00 -9.2219e+00 -8.7108e+00 -4.0555e-01 -#> 9.1434e+00 5.0025e+00 8.2765e+00 2.4627e-01 -1.8783e+00 -4.6973e+00 -#> -3.2545e+00 5.0161e+00 -3.9063e+00 -1.1353e+01 5.4595e+00 -6.0954e+00 -#> -4.9873e+00 1.4954e+01 5.8090e+00 -6.2336e-01 -4.7916e+00 3.4780e-01 -#> -4.5335e+00 -3.1057e+00 1.1861e+00 2.7490e+00 2.5365e+00 1.1029e+01 -#> -1.5909e+00 1.3848e+00 -5.3683e+00 -5.9884e+00 -3.4089e+00 6.0434e+00 -#> -1.3089e+01 6.8337e+00 -8.6937e+00 -5.4593e+00 -2.6766e+00 1.0728e+01 -#> 2.8165e+00 -4.1133e+00 5.6637e+00 -4.4917e+00 -1.4141e-01 -1.4887e+00 -#> 9.4678e+00 4.1728e+00 1.1035e+01 9.4205e+00 -2.1007e+00 -7.6966e-01 -#> -1.0080e+00 2.3142e+00 3.3514e+00 1.3970e+00 -8.1402e-01 8.2785e+00 -#> -3.4290e+00 -3.6558e+00 -1.9663e+00 -1.4807e+01 -5.8848e+00 -3.5223e+00 -#> 9.5822e+00 5.5018e+00 1.1599e+01 -1.9601e+00 -2.5891e+00 5.5822e-01 -#> 5.1442e-01 4.4396e+00 -6.9159e+00 -6.6224e+00 -7.4509e+00 -5.4584e+00 -#> 3.9008e+00 -7.7933e+00 -3.8777e+00 -9.7138e+00 8.1011e+00 -1.8866e+00 -#> -6.4980e-01 1.0553e+01 1.3711e+00 3.4205e+00 6.2344e+00 -6.0786e+00 -#> 1.8012e+00 -2.5126e+00 -6.1118e+00 -4.8493e+00 -2.3870e+00 -8.4272e-01 -#> -8.4451e-01 3.0856e+00 -4.3986e+00 -5.1790e+00 -1.4728e+01 -3.6166e+00 -#> -2.4438e+00 1.3056e+01 1.2298e+01 -5.6175e+00 8.8998e+00 -9.7530e-01 -#> 1.0519e+00 8.9182e-01 -3.7485e+00 1.4638e+00 -2.2603e+00 -1.1745e+01 -#> -6.2835e-01 -3.9113e+00 -5.2103e-01 -1.3101e+01 -5.4891e+00 -3.1151e+00 -#> 3.8050e-01 -3.9765e+00 3.3705e+00 -5.4369e+00 -7.1983e+00 -4.7236e+00 -#> 5.7476e+00 4.3498e+00 1.7391e+00 9.4122e+00 -1.8259e+00 4.8131e+00 -#> -5.2306e+00 1.1402e+01 2.8967e+00 5.5618e+00 -7.5690e-01 -2.9042e+00 -#> 2.3695e+00 -8.2757e+00 -4.8955e+00 -7.9524e-01 -2.1519e+00 2.2029e+00 -#> 5.9470e+00 5.0308e+00 -6.3217e+00 4.2271e+00 -5.8797e+00 -1.2538e+00 -#> -#> Columns 19 to 24 4.0035e+00 -5.2533e+00 -6.4376e+00 -6.5796e+00 1.4593e+01 3.5199e+00 -#> 5.3346e+00 -1.0014e+00 8.6347e-01 2.0348e+00 -5.6212e+00 -4.0300e+00 -#> -2.2729e+00 -1.5539e+00 2.4310e+00 1.7948e+00 1.5205e+00 4.4759e+00 -#> -1.0538e+01 -2.0725e+00 4.6372e+00 -3.4391e+00 -2.4950e-01 -2.3709e-01 -#> 4.2838e-01 2.8630e+00 3.5305e+00 1.2936e+00 -2.5255e+00 -4.0722e+00 -#> -2.2387e+00 3.0365e+00 2.7049e+00 -1.3206e+01 -4.8693e+00 1.7665e+01 -#> -1.0460e+00 3.7885e+00 -2.7064e+00 7.5554e+00 -7.9784e+00 -1.5450e+00 -#> 3.3267e+00 -2.1692e+00 5.9835e+00 -6.4481e+00 -7.5086e+00 3.9535e+00 -#> -2.4311e+00 -3.8278e+00 -5.4211e-01 -8.2869e-02 3.1314e+00 -1.1352e+01 -#> 4.5032e+00 -1.3754e+00 -1.0011e+00 3.0971e+00 -6.2162e+00 -2.0818e+00 -#> 1.2915e+00 -6.8684e+00 6.6977e+00 -2.4609e+00 1.3056e+00 6.7367e+00 -#> -8.9935e+00 -9.3973e+00 9.1078e+00 1.0718e+00 -1.8343e+01 2.3391e+00 -#> 6.7598e-01 1.4605e+01 -1.1669e+01 1.4837e+01 -4.9263e+00 -8.4995e+00 -#> -8.4471e+00 3.9360e+00 -5.0993e+00 1.2821e+00 -5.0476e-01 -5.0610e-01 -#> -3.1034e+00 -1.9458e+00 -1.6512e+00 4.0102e+00 -1.5717e+00 1.5329e+01 -#> -9.0065e-01 -3.1436e-01 -1.4189e+00 -2.0881e+00 2.7689e+00 -9.9803e+00 -#> -1.0392e+01 6.7957e+00 -8.4666e+00 1.5654e+01 8.5171e+00 -2.7840e-02 -#> 5.7474e+00 -7.4794e+00 2.5581e+00 -8.2204e+00 -2.3948e-02 4.2277e+00 -#> -8.4238e+00 6.8594e+00 -7.1296e+00 1.5019e+00 -7.6827e+00 8.1506e+00 -#> -7.1825e+00 -2.6377e+00 -4.2360e+00 1.5290e+01 -8.4564e+00 -1.9189e+00 -#> -1.6717e+00 -6.7846e+00 1.0160e+01 -1.1922e+01 4.1626e-01 -7.3792e+00 -#> 5.8180e+00 -7.7029e+00 3.5438e+00 -5.4828e+00 1.0892e+01 -1.7366e+01 -#> -4.1492e+00 5.8430e+00 -8.5405e-01 9.1512e-01 -9.1028e+00 8.8594e+00 -#> -2.9390e+00 1.2791e+01 -1.4800e+01 8.0902e+00 9.1215e-02 -7.9433e+00 -#> -1.1290e+01 -4.3278e+00 -6.7345e+00 -7.3926e+00 -7.8704e+00 -7.1902e+00 -#> 8.8550e-04 6.6792e+00 6.1034e+00 9.4450e-01 -8.4841e+00 9.1573e+00 -#> -5.3408e+00 -4.3279e+00 -2.6200e+00 7.4204e+00 2.9669e+00 4.2542e+00 -#> -4.2130e+00 3.1756e+00 -9.8007e-01 -3.4946e+00 3.6135e+00 4.5236e+00 -#> -3.6319e+00 -1.5918e+00 -4.6717e+00 1.3942e+00 -4.0734e+00 1.0169e-02 -#> -5.5155e-01 8.8678e+00 -2.8303e+00 4.7980e+00 1.5487e+01 -2.1578e+00 -#> -1.0643e+01 -9.3310e+00 -5.1527e+00 5.4748e+00 -2.3128e+00 1.1993e+01 -#> -4.4540e+00 8.2229e+00 -7.8324e+00 5.7167e+00 -2.1282e+01 5.6597e+00 -#> 1.6077e+00 5.2613e-01 6.0516e+00 -8.0079e+00 1.0206e+01 -9.7924e+00 -#> -#> Columns 25 to 30 1.1147e+01 3.6391e+00 1.1187e+01 6.0805e+00 -8.1869e+00 -2.5905e+00 -#> 5.2926e+00 -1.6961e+01 -5.4181e+00 -3.6479e+00 -4.9755e+00 -2.2046e+00 -#> 4.7799e+00 -2.3298e+00 -3.9841e+00 3.9436e+00 -2.6750e+00 -2.1315e-01 -#> 6.8501e+00 -8.3940e+00 8.5949e+00 -7.8190e+00 -1.7399e+00 -5.6473e+00 -#> -1.1091e+01 1.1763e+00 -3.5075e+00 -3.0827e+00 4.8371e+00 1.9554e+00 -#> -1.1648e+01 -7.4380e+00 2.7608e+00 -8.0752e-01 5.0588e+00 2.9817e-01 -#> -7.2856e+00 9.5683e+00 -1.2037e+01 4.4913e+00 2.2812e+00 -5.4674e+00 -#> 3.0411e+00 -2.4650e+00 -6.0758e+00 6.5565e+00 3.3859e+00 -1.2842e+01 -#> 1.2164e+01 -1.1720e+01 4.6296e+00 -4.5861e+00 -1.8319e+00 -3.1555e+00 -#> 1.0095e+00 2.8889e+00 -3.4291e+00 1.0095e+00 -4.2277e+00 7.2100e+00 -#> -8.5960e+00 -2.2444e+00 -4.6157e+00 2.9012e+00 3.8361e-01 -6.3091e+00 -#> -5.5840e+00 -1.8335e+00 6.8453e-01 7.2422e+00 5.8593e+00 -6.2295e+00 -#> 2.0426e+00 -3.1267e+00 -3.0833e+00 1.8640e+00 -3.1724e+00 2.6324e+00 -#> 1.8683e+00 -4.9115e+00 5.0103e+00 2.4655e+00 -5.9479e+00 5.0536e+00 -#> 7.5598e-02 -7.1535e+00 -4.4489e-01 4.7277e+00 -5.1581e+00 3.8179e+00 -#> 1.1880e+01 -2.5464e+00 1.2672e+01 -5.9125e-02 -4.3747e+00 1.1664e+01 -#> -1.0828e+01 3.0879e+00 -1.4164e+00 2.4949e+00 -8.1771e+00 -1.1576e+00 -#> -6.1593e+00 3.6951e+00 1.3597e+01 6.8700e+00 3.7079e+00 -5.8486e+00 -#> 2.5296e+00 1.7619e+00 -4.1247e+00 -7.1495e+00 -9.2967e+00 -2.0392e+00 -#> 1.4032e+00 2.5314e+00 -1.4011e+01 4.0010e+00 1.7084e+01 4.9672e+00 -#> -6.2591e-01 -4.5542e+00 5.4845e+00 8.8774e+00 6.3592e+00 -5.5222e+00 -#> 6.6866e+00 -6.4466e+00 3.6383e+00 -5.8592e+00 -2.6308e+00 2.5872e+00 -#> -8.4094e+00 3.9811e+00 -9.8913e+00 -2.0240e+00 -8.8618e-01 5.7595e+00 -#> 8.8510e+00 4.8119e-01 5.9794e+00 -2.5156e+00 -7.9376e+00 6.2095e-03 -#> 5.2374e+00 -3.6271e+00 1.6991e+01 1.2048e+00 4.1467e+00 4.2666e+00 -#> -9.1448e-01 -5.3934e+00 -2.2018e+00 4.8980e+00 3.2072e+00 -1.5705e+00 -#> -1.4598e-01 -3.9422e+00 -1.3923e+01 -2.8437e+00 4.3032e+00 -6.9459e+00 -#> -9.6621e+00 -4.9686e+00 6.9225e+00 -2.1751e+00 -1.7244e-01 1.2816e+01 -#> 9.4945e+00 -1.7000e+00 5.5441e+00 9.0715e+00 2.7920e+00 1.0386e+01 -#> -7.8475e+00 5.6721e+00 2.7749e+00 -1.0268e+00 7.0137e-01 7.0984e+00 -#> 3.0558e+00 -1.8220e+00 5.1956e+00 -7.3876e+00 -9.1895e+00 -3.0264e+00 -#> -3.3453e+00 9.7614e+00 -7.0201e+00 9.7704e+00 3.7403e+00 7.6579e+00 -#> 1.2433e+00 -8.8167e+00 7.2628e+00 -3.4548e+00 3.0066e+00 4.6408e+00 -#> -#> Columns 31 to 36 1.6280e+00 3.6802e+00 -1.1593e+01 -8.4596e-01 -1.7400e+00 6.1596e+00 -#> -4.5575e+00 4.7161e+00 1.3676e+01 1.6125e+00 1.5714e+01 1.5754e+01 -#> -1.8076e+00 2.8713e+00 3.8487e+00 -1.0413e+00 4.4413e+00 6.8242e+00 -#> 3.1493e+00 4.0503e+00 -1.4582e+01 -1.5412e+01 1.5087e+01 -2.7381e+00 -#> 3.5763e+00 -6.4330e+00 -2.3951e+00 1.6168e+01 -1.4622e+01 6.6627e+00 -#> -2.4222e+00 -8.8587e+00 -3.3878e+00 1.8356e+00 2.1590e+00 6.4357e+00 -#> -5.4561e+00 -4.7786e+00 -5.5594e+00 8.7320e+00 -5.4292e+00 6.9659e+00 -#> -2.4925e+00 5.7615e+00 3.0381e+00 5.1190e+00 6.9788e+00 -3.4237e+00 -#> 4.2632e+00 -1.4803e+01 4.0556e+00 6.8307e+00 -3.7379e-01 2.1806e+00 -#> -2.8327e+00 -3.2625e+00 9.2088e+00 -5.7277e+00 6.3689e+00 9.3465e+00 -#> 1.1018e+01 8.0445e+00 9.3478e+00 -5.5861e+00 1.5302e-01 3.1772e+00 -#> 8.2271e+00 1.5902e+01 1.8643e+01 -1.6779e+00 1.8905e+00 1.0224e+01 -#> 6.3268e+00 -6.0640e+00 1.0101e+01 -5.8077e+00 -4.8274e+00 1.0012e+01 -#> 5.0458e+00 -7.7735e+00 -9.2099e+00 -5.3822e+00 -2.3859e+00 -3.3018e+00 -#> -4.3210e+00 1.1542e+01 -1.9341e-01 1.0544e+00 -5.4314e+00 7.5066e+00 -#> 5.5280e+00 -1.2632e+00 -4.0221e+00 -6.5578e+00 -6.1401e+00 -4.2676e+00 -#> 6.8111e+00 -6.7595e-01 1.1877e+01 -4.4416e+00 7.3254e+00 9.2634e+00 -#> -9.3897e-01 -7.3323e+00 -5.6501e+00 -4.2338e+00 -1.6136e+01 -7.9817e+00 -#> 5.1431e+00 7.9962e+00 1.9244e+00 -1.3078e+01 9.7229e+00 1.4527e+01 -#> -6.6730e+00 9.3903e-01 1.7861e+01 4.9748e+00 6.6223e+00 4.5511e+00 -#> 5.7490e+00 4.0505e+00 1.2850e+00 1.7379e+01 6.4363e+00 -3.4994e+00 -#> -4.3550e+00 -1.3790e+00 -4.9837e-01 1.6309e+00 7.2332e+00 -9.8394e+00 -#> 5.2478e-01 6.5799e-01 -9.2388e+00 -3.2802e-01 -1.0465e+01 -7.3347e-01 -#> 1.2429e+00 -7.9775e+00 6.9857e+00 -4.2260e+00 -4.6722e+00 1.1488e+01 -#> 1.9202e+00 -3.3812e+00 -3.2940e-01 -1.7986e-01 -4.8731e+00 3.0378e+00 -#> -1.2325e+00 1.7000e+01 -1.5116e+01 2.6105e+00 6.9141e+00 3.5265e+00 -#> -4.5038e-02 -1.0016e+00 1.0130e+01 1.7839e+01 -2.6167e+00 7.1525e+00 -#> 3.8105e+00 1.5240e+01 -6.2467e+00 6.8072e+00 1.5233e+01 -1.2775e+01 -#> 4.2361e+00 1.1523e+01 -4.7938e+00 2.2597e+00 9.2862e+00 -5.7732e+00 -#> 8.5660e+00 1.7525e+00 -1.1605e+01 -1.7779e+01 -1.0388e+01 5.5783e+00 -#> 1.7085e+00 9.5260e+00 -3.2841e-01 -8.4488e+00 9.9827e+00 2.2759e+00 -#> -8.8871e-01 1.1511e+01 7.0996e-01 -1.5810e+01 3.7052e+00 1.9111e+00 -#> 1.7095e+01 6.1128e+00 -3.5600e+00 7.4983e+00 -1.8792e+00 3.0595e+00 -#> -#> Columns 37 to 42 4.0209e+00 2.8236e+00 3.2228e+00 4.9068e+00 -1.0765e+01 -1.8393e+00 -#> 1.7493e+00 -1.6852e-01 -8.9894e+00 -7.7516e+00 -5.7265e+00 1.5782e+01 -#> -7.5828e-01 5.2742e+00 -6.7648e+00 -7.0245e-01 -2.9208e+00 8.0485e+00 -#> 2.4751e+00 2.0166e+00 -2.7255e+00 -1.6698e+01 2.6687e+00 2.0290e+00 -#> 5.5240e-01 -2.9833e+00 -1.0485e+01 -4.2613e+00 -3.7978e+00 -4.5257e+00 -#> -5.4438e+00 -4.8938e+00 -1.2284e+01 2.8564e+00 8.7059e+00 -2.1239e+00 -#> 3.2328e+00 -4.8299e+00 -8.4738e+00 5.2165e+00 -6.1057e+00 -2.3035e+00 -#> 9.0472e+00 -1.7072e+00 1.4483e+00 1.0006e+01 1.4309e+00 3.3362e+00 -#> -3.5516e+00 -2.4131e+00 -7.4484e+00 -9.3446e+00 -2.2438e+00 -5.8856e+00 -#> 4.3916e+00 1.3265e+00 -9.2051e+00 -6.4683e+00 -1.0181e+01 1.0631e+01 -#> 2.4456e+00 -6.5465e+00 6.4855e+00 -2.8299e+00 -1.2262e+00 1.0795e+01 -#> -4.5987e+00 -5.7546e+00 -3.0917e+00 1.2375e+01 8.1699e+00 4.7183e+00 -#> -9.2398e+00 1.1088e+01 1.1573e+01 -1.9905e+00 -1.2787e+01 6.5136e+00 -#> -7.4235e+00 -2.3060e-01 9.7640e+00 -1.0802e+01 -2.6236e+00 1.8933e-01 -#> -1.0108e+01 -2.2754e+00 3.0799e+00 -8.2495e+00 -6.9606e+00 9.3663e+00 -#> -7.5995e+00 7.7299e+00 3.7903e+00 -1.0401e+01 5.5817e+00 4.9853e+00 -#> -5.1197e-01 1.0524e+01 -7.7887e+00 7.9674e+00 -1.1456e+01 -1.8496e+00 -#> 3.4752e+00 -7.9746e+00 1.3573e+00 -3.7112e+00 -7.2776e+00 -3.8574e+00 -#> -1.8658e+00 3.9683e+00 -1.6261e+01 3.5811e+00 3.0788e+00 1.8561e+01 -#> 1.0342e+01 -2.8909e+00 -2.8083e+00 7.6817e+00 -4.0105e+00 4.0795e+00 -#> 3.1097e+00 -1.7027e+01 5.6430e+00 8.0713e+00 3.7843e+00 -2.7920e+00 -#> -5.6453e+00 -8.9694e+00 1.8651e+01 -1.3044e+01 -4.0992e+00 -5.1164e+00 -#> -4.7247e+00 2.1068e+00 -6.8930e+00 -3.1100e+00 -4.0142e+00 2.4032e+00 -#> -8.0732e+00 -1.9362e+00 -1.1289e+00 1.5146e+01 -1.2932e+01 3.7773e-02 -#> -3.3798e+00 -1.0183e+01 -2.1320e+01 4.0629e+00 7.0527e+00 5.3845e+00 -#> 1.3099e+01 2.9590e+00 -5.3575e+00 -1.3653e+00 1.5970e+00 -1.6306e+00 -#> 6.9089e-01 -4.2401e-02 6.2614e-01 8.6173e-02 5.2735e+00 5.8539e+00 -#> -6.8782e+00 -8.2778e+00 8.0748e+00 7.1342e+00 5.1705e+00 2.6406e+00 -#> 6.2406e+00 -6.6000e+00 -6.3177e+00 1.2859e+00 9.0834e+00 1.1542e+01 -#> -1.0031e+01 1.7066e+01 -4.2424e+00 1.1230e+01 -1.5471e+01 -1.2751e+01 -#> -3.2882e+00 9.8471e+00 6.1404e+00 -4.0524e+00 8.4977e+00 5.9648e+00 -#> -1.6528e+01 8.3521e+00 -9.0226e+00 -1.2466e+00 8.3971e+00 8.7195e+00 -#> -3.5397e+00 5.0278e+00 3.5069e+00 3.1022e-01 1.0142e+01 -2.0094e+00 -#> -#> Columns 43 to 48 1.9703e+00 -1.1875e+01 -8.7695e+00 1.5051e+00 -5.7029e+00 -9.7498e+00 -#> -1.3301e+00 3.2313e+00 8.9848e+00 -1.0432e+01 -4.4717e+00 -7.2384e+00 -#> 7.5183e+00 1.2554e+01 7.1470e+00 -3.7589e-01 -2.4162e+00 2.9486e+00 -#> 3.3490e-01 4.8699e+00 3.7211e+00 -1.0333e+01 9.6389e-01 -1.0573e+01 -#> 9.7084e+00 -4.1592e+00 5.4356e+00 -6.3258e+00 3.1986e-01 1.1790e+01 -#> -9.9423e+00 -1.5987e+01 -6.0567e+00 8.4694e+00 -1.5238e+00 -1.0579e+00 -#> 8.9344e+00 5.8672e+00 -7.3183e+00 4.8573e+00 -1.2020e+01 2.9273e+00 -#> 1.1320e+01 -7.6255e+00 -3.5554e-01 1.0035e+00 -8.6486e+00 -6.9284e+00 -#> 1.2469e+01 3.7959e+00 -6.8073e+00 1.0302e+00 1.1334e+01 3.4938e+00 -#> 4.6032e+00 -2.1861e+00 -2.2557e+00 -8.5205e+00 -9.0304e+00 5.3963e+00 -#> 1.2137e+00 -7.5389e+00 1.7085e+01 -6.2938e+00 2.4187e+00 8.8205e-01 -#> 8.5736e+00 8.6609e+00 -7.3895e+00 -5.0710e-01 -1.4946e-01 -2.8082e+00 -#> 5.7984e+00 1.0131e+01 5.3564e+00 -7.1073e+00 2.3574e+00 8.9853e-01 -#> 1.5896e+00 1.8233e+00 -2.4928e+00 -2.7644e+00 -2.4445e+00 3.6724e+00 -#> 3.1770e+00 -1.2907e+01 -3.4434e+00 -7.8347e+00 -9.8390e+00 7.6037e+00 -#> 7.2079e+00 8.7224e+00 -6.1744e+00 6.8033e+00 -1.0701e+00 -3.7301e+00 -#> -6.1776e+00 8.1282e+00 -1.6816e+01 4.8213e-01 -1.7013e+01 -6.6154e+00 -#> -1.8096e+00 -8.0818e+00 7.6369e+00 4.6508e-01 1.3007e+00 -2.2696e+00 -#> 5.6270e+00 5.2678e+00 -1.9481e+00 -5.9225e+00 -1.8582e+01 1.7727e+00 -#> 7.5104e+00 -3.5144e+00 1.7004e+00 -6.3550e+00 -5.8357e+00 3.4854e-01 -#> 1.6668e+01 -1.5817e+00 1.3947e+01 -2.3133e+00 8.9867e+00 -5.4141e+00 -#> 5.5480e+00 4.2205e+00 2.1355e+00 -5.3126e+00 1.0447e+01 -3.6338e+00 -#> -9.6799e+00 3.6726e-01 -1.1408e+01 -5.9977e-01 -1.0750e+01 1.0392e+00 -#> -4.2397e-01 -3.0862e-01 5.3942e-01 -1.0992e+00 7.5872e+00 7.4528e+00 -#> 6.6743e-01 -3.1385e+00 -1.0539e+01 1.2112e+00 -1.9948e+00 2.6654e-01 -#> 1.2855e+01 -4.1853e+00 -4.4663e+00 -3.0913e+00 -2.1435e+01 -1.0684e+00 -#> -4.6279e-03 1.4366e+00 -1.3314e+01 -4.3680e+00 2.9159e+00 5.4549e-01 -#> -1.4838e+01 1.6832e+00 1.4140e+01 1.0610e+01 7.4335e+00 1.5544e+01 -#> -5.9024e+00 -5.5648e+00 -8.7734e+00 -7.4661e+00 -1.0869e+01 1.4613e+00 -#> -3.0699e+00 4.7420e+00 -4.3134e+00 5.4277e+00 -6.0626e+00 2.3346e+00 -#> 3.9549e+00 -4.3669e+00 -1.1736e+01 -6.6775e+00 -7.9589e+00 -2.7425e-01 -#> -1.5342e+01 5.3356e+00 -1.0145e+01 3.7000e-01 -4.6578e+00 5.8591e+00 -#> 3.7243e+00 2.5135e+00 4.8050e-01 -6.2709e+00 5.8081e+00 -4.3069e+00 -#> -#> (4,.,.) = -#> Columns 1 to 6 -2.4260e+00 -1.6090e+01 -7.1397e+00 1.0959e+01 1.3156e+01 -3.1173e+00 -#> -8.2181e+00 -1.3502e+01 3.9274e+00 -2.2057e+00 -1.2749e+01 4.7140e+00 -#> -1.4480e+01 -2.6388e+00 1.6621e+01 2.2499e+00 -1.5909e+01 9.4288e-02 -#> -4.2047e+00 4.9874e+00 1.2744e+01 -2.2830e+00 -6.1745e+00 -3.4464e+00 -#> -1.0277e+01 -1.6134e+00 -8.3036e-02 -1.7949e+00 -1.4716e+00 -1.4627e+00 -#> -2.1850e+00 -6.9099e+00 3.0435e+00 8.3562e+00 2.9605e+00 -5.9025e+00 -#> -1.0164e+00 -4.8070e-01 2.9863e+00 -1.1825e+00 -1.4028e+01 4.0764e+00 -#> -4.2190e-02 -5.4516e+00 6.1648e+00 -5.6370e+00 4.4230e-01 5.5009e+00 -#> 3.7369e+00 6.2467e+00 6.4830e-01 3.9464e+00 4.0394e+00 -1.3070e+01 -#> -3.4354e+00 -1.3006e+01 1.2709e+00 2.2926e+00 -7.9340e+00 7.8264e-01 -#> -2.8094e+00 -6.3679e-01 3.3087e+00 -4.7293e+00 1.1885e+00 8.2875e+00 -#> -9.3574e+00 -1.2533e+01 5.0777e+00 6.9207e+00 9.7479e+00 1.9588e+01 -#> -4.3638e-01 1.3491e+01 -6.4486e+00 -7.1892e+00 7.7435e-01 -9.9856e+00 -#> -1.7874e+00 9.6274e+00 1.0126e+01 -1.0308e+01 8.8940e+00 -8.6108e+00 -#> -1.1105e+01 8.8923e+00 6.5329e+00 -8.6803e+00 -7.5524e+00 -8.0187e+00 -#> 4.4636e-01 4.6858e+00 1.1691e+01 1.0431e+00 -7.0344e-01 -8.0854e+00 -#> -5.0888e+00 -1.2481e+01 -4.9545e+00 5.0573e+00 -1.8414e-01 3.1990e+00 -#> -8.5629e-01 -9.0537e+00 4.4783e+00 1.1009e+01 4.8588e+00 -4.0643e+00 -#> -3.3022e+00 2.5722e+00 1.6664e+01 -2.9806e+00 -1.4120e+01 -4.9962e+00 -#> -5.7592e+00 -1.0260e+01 -8.1434e-01 4.3060e-01 -4.0868e+00 9.3831e+00 -#> -1.3060e+01 -3.0198e+00 1.7335e+01 5.5972e+00 7.4274e+00 5.9574e+00 -#> 3.5454e-01 1.7126e+01 -2.0991e+00 -9.9543e+00 3.3188e-01 -6.5695e+00 -#> -3.2862e+00 3.9254e+00 1.3965e+01 -1.2239e+00 -1.8622e-01 3.0077e+00 -#> 8.3303e+00 -9.2190e+00 3.1816e+00 1.9540e+00 8.2113e-01 -6.3173e+00 -#> 6.4037e+00 -6.7632e+00 7.7021e+00 1.1969e+01 5.9819e+00 4.0527e+00 -#> -1.1441e+00 -7.0357e+00 5.4759e+00 -4.3076e+00 -8.1542e+00 2.4943e+00 -#> -3.9106e+00 -7.4675e-01 -6.9691e+00 -2.8430e+00 -6.4367e-01 9.7454e+00 -#> -9.9073e+00 -4.1061e+00 1.1572e+01 -1.0203e+00 2.5985e+00 1.9412e+01 -#> 3.7332e+00 -7.6847e+00 9.5770e+00 -3.4412e+00 5.8689e+00 1.1729e+01 -#> -6.3888e+00 3.3612e+00 5.4892e+00 2.0501e+00 8.9452e+00 1.8355e+00 -#> -1.4714e+01 -4.1082e+00 -1.1987e+00 4.5001e-01 3.4602e+00 2.8930e+00 -#> 8.4743e+00 1.4654e+01 -2.0721e+00 6.1471e+00 -3.8771e+00 3.2316e+00 -#> -2.5601e+00 1.2247e+01 -3.2863e+00 -6.9482e+00 7.3815e+00 5.2209e-01 -#> -#> Columns 7 to 12 2.7039e+00 1.7928e+01 4.7722e+00 -9.0033e+00 -9.2337e+00 4.3650e+00 -#> 5.6106e-01 -3.7155e-01 -9.4022e-01 6.6389e-01 -1.0687e+00 -3.6676e+00 -#> -1.5103e+00 -4.8982e+00 2.8042e+00 3.2289e+00 1.7656e+00 1.3508e+00 -#> -1.7560e+00 -1.2062e+00 -4.4098e+00 -8.6041e+00 -9.1194e-01 -2.4839e+00 -#> -7.7607e-02 -1.4647e+00 -1.4750e+00 2.2109e-01 -9.2688e+00 -1.6978e+00 -#> -6.4080e+00 -1.4036e+01 -3.3036e+00 7.0697e+00 -2.8365e+00 -1.5730e+00 -#> -8.7269e-02 2.7889e+00 6.2123e+00 3.2134e+00 -4.1613e+00 -4.4587e+00 -#> -2.1674e+00 -1.1504e+00 5.9939e+00 1.1103e+01 1.1826e+01 5.6860e-01 -#> -6.9300e+00 -6.7035e+00 -7.3591e+00 -7.8506e+00 -2.8402e+00 -7.3483e+00 -#> -1.1257e+00 2.5082e+00 2.6712e+00 -3.2684e+00 -4.4637e+00 8.8603e-01 -#> -7.6516e-02 -1.4251e-01 -2.3874e+00 1.1411e+00 -2.4513e+00 -1.6663e+01 -#> 4.6774e+00 -1.4641e+00 8.1328e-01 -1.1810e+01 -1.5955e+01 1.2982e+01 -#> -8.5431e+00 3.9702e+00 9.8489e+00 4.6478e+00 1.2068e+01 4.8349e+00 -#> -5.8179e+00 -8.1493e+00 1.6114e+00 -4.0638e+00 6.5257e+00 -5.3299e+00 -#> -7.2035e-01 -4.5514e+00 -1.9175e+00 1.3576e+00 9.6702e+00 -6.4111e+00 -#> 3.2116e+00 -2.5445e+00 -4.9105e+00 -8.8980e-01 1.1377e+01 -3.6236e+00 -#> 1.0368e+01 2.7730e+00 8.0303e+00 -6.5360e+00 -1.2322e+01 2.1166e+01 -#> -4.8024e+00 4.8266e+00 8.0571e-01 8.9774e-01 -8.2069e+00 -9.2629e+00 -#> 2.2174e-01 -6.4808e+00 -5.2895e+00 3.6308e-01 -1.2931e+00 2.7188e+00 -#> 9.5745e+00 1.2801e+00 7.4423e+00 1.8955e+00 -4.1224e+00 -4.7624e+00 -#> -5.2236e+00 -1.0175e+00 -5.3479e+00 1.6259e-02 1.3361e+00 7.1376e+00 -#> -7.6194e+00 6.1334e+00 1.1134e+00 -9.8276e+00 7.6407e+00 -1.5565e+01 -#> -1.8772e+00 -1.9989e+01 -1.6736e+01 2.7651e+00 -3.2357e+00 6.1813e+00 -#> 8.6555e+00 1.2206e+01 7.3953e+00 -1.3803e+01 -9.0671e+00 1.8454e+01 -#> 6.6007e+00 -5.4982e+00 -7.9111e+00 -1.0212e+01 -1.3995e+01 -2.5820e+00 -#> 3.3626e+00 -2.6789e+00 7.5463e+00 8.0132e+00 7.1050e+00 -4.7084e+00 -#> 3.1330e+00 1.9449e+00 -7.4689e+00 1.5632e+00 -5.9301e+00 6.4092e+00 -#> 1.0197e+01 -7.0770e+00 -4.1250e+00 -8.2758e+00 1.3048e+01 -7.7559e+00 -#> -2.1499e+00 -6.4168e+00 -2.3384e+00 -1.8222e+00 1.1717e-01 3.8442e+00 -#> -6.0073e+00 -8.4099e+00 3.9294e+00 -6.3322e+00 -6.4771e+00 2.1426e+01 -#> 1.1076e+01 5.8835e+00 -4.9446e+00 -4.7285e+00 2.9562e+00 1.0060e+01 -#> 3.8793e+00 -1.3364e+01 -5.9460e+00 -5.2039e-01 4.9388e+00 9.8313e+00 -#> -7.5788e+00 -4.2444e+00 2.7747e+00 2.6616e+00 4.5422e+00 3.9646e-01 -#> -#> Columns 13 to 18 -6.5245e+00 2.3812e+00 -2.7277e+00 -2.9581e+00 -1.6089e+01 -1.4964e+01 -#> -5.1098e-01 -1.6415e+00 -1.0149e+01 5.5287e+00 4.1055e+00 1.2482e+00 -#> -6.7670e-01 -1.7101e+00 -4.9976e+00 1.0970e+01 -3.4336e+00 -5.6223e+00 -#> -4.6039e+00 -1.9907e+00 -2.7878e+00 -1.1976e-01 5.3809e-01 2.7278e-01 -#> -4.1515e+00 6.1336e+00 -2.5220e+00 6.6164e+00 9.2006e+00 3.1525e+00 -#> -3.0194e+00 -2.8319e+00 -2.1512e+01 2.1852e+00 9.3475e+00 -8.1556e-02 -#> -2.9080e+01 2.7905e+00 7.8276e-01 2.3943e+00 1.5815e+00 -3.1924e+00 -#> -4.5630e+00 4.8802e+00 -6.8771e+00 -8.7013e-01 -1.4001e+00 1.2690e-01 -#> 5.6586e+00 8.6122e+00 1.9926e+00 -2.5550e-01 1.9946e+00 3.0214e+00 -#> 5.9062e+00 -3.4057e+00 3.9138e+00 -3.8029e-01 -7.9910e+00 3.1446e+00 -#> 1.0425e+01 -7.9493e+00 3.6418e-01 1.0828e+01 -8.4890e+00 2.3251e+00 -#> 2.3559e+00 3.4553e+00 3.1563e-01 1.0489e+01 -6.5857e+00 -1.4040e+01 -#> -7.9710e-01 4.0536e+00 -3.0672e+00 1.1442e+00 3.5079e+00 1.6066e+00 -#> -7.5029e+00 1.2243e+00 -3.7898e-01 -1.5373e+00 -1.1446e+00 3.8205e-01 -#> 4.1850e+00 2.2051e+00 -2.0903e-01 2.1436e+00 1.8623e+00 -3.8784e+00 -#> -4.1479e+00 -7.1423e+00 -3.1687e+00 -3.1377e+00 5.9941e+00 5.1574e+00 -#> 8.0884e+00 5.1589e-01 4.0641e+00 -1.9410e+00 -1.3332e+01 -7.8220e+00 -#> 8.4895e-01 8.6939e+00 -8.5540e+00 7.4821e+00 4.9653e+00 -1.1706e+01 -#> -1.3710e+01 -9.1676e+00 -2.5768e+00 9.1837e+00 -1.1243e+01 2.3341e-01 -#> -4.1771e+00 -2.4854e+00 2.1148e+00 -4.6356e+00 -2.6337e+00 9.0549e-01 -#> 5.2531e+00 -3.7544e+00 -5.2746e+00 4.3894e-01 6.3111e+00 -1.2990e+00 -#> -3.5439e+00 -6.1807e-01 9.6415e+00 -8.0851e+00 4.2410e+00 7.7130e+00 -#> -6.7433e+00 -1.0340e+01 -8.5594e+00 2.3174e+00 -2.7162e+00 -8.6086e-01 -#> -2.7265e+00 -7.5501e+00 -3.1762e+00 1.0278e+01 -8.0296e+00 3.2575e-01 -#> -4.1769e-01 -2.5689e+00 -9.3748e+00 2.6912e-01 -4.4217e+00 2.3118e-01 -#> -4.7241e+00 3.1261e+00 -3.9767e+00 -3.7091e+00 -2.0489e+00 2.0303e+00 -#> 5.1013e+00 1.4020e+01 -4.9716e+00 -9.3442e+00 1.9353e+00 -4.5956e+00 -#> -4.8233e+00 -8.7770e+00 1.9722e+01 9.5561e-01 3.9089e+00 1.3546e+01 -#> 9.2608e-01 3.2052e+00 -1.4554e-01 -1.4802e+01 -5.1632e+00 6.9924e+00 -#> -5.7905e+00 -5.4141e+00 4.2075e+00 6.7678e+00 -1.7884e+01 -3.1346e+00 -#> 1.0392e+01 2.7993e+00 -2.3305e+00 7.8083e+00 -1.1962e+01 -1.3522e+01 -#> 5.6182e+00 -2.6997e+00 3.7665e+00 1.6071e+00 -3.7697e-01 1.3203e+00 -#> -4.3505e+00 -1.3015e+00 -1.3011e+01 -7.3237e+00 4.3552e+00 6.8349e+00 -#> -#> Columns 19 to 24 -4.3832e+00 1.1854e+00 3.7849e+00 -8.7515e-01 -7.2142e+00 2.8712e+00 -#> 4.3580e+00 1.0377e+01 7.7775e+00 5.6452e+00 -5.5160e+00 -4.8094e+00 -#> 1.2200e+00 2.5590e+00 7.4564e-01 8.7451e+00 8.5624e+00 4.9214e-01 -#> -4.0737e+00 1.1564e+01 3.7737e+00 5.8098e+00 -9.9780e+00 6.1329e+00 -#> 8.3322e+00 -8.3092e+00 -6.6719e+00 -1.1653e+00 9.0612e+00 -6.9816e-01 -#> 4.1872e+00 5.6975e+00 3.3598e+00 1.7068e+00 -1.0912e+01 1.0734e-01 -#> 6.7030e+00 -6.7618e+00 1.2650e+00 -1.8857e+00 1.7936e+00 1.0692e+01 -#> 1.0883e+00 4.4177e+00 -2.1538e+00 1.1302e+00 -3.1243e+00 1.4657e+00 -#> 2.5484e+00 2.1354e+00 -5.3882e+00 2.5681e+00 9.9810e+00 -5.4780e+00 -#> 7.7740e+00 1.0476e+00 -5.1584e+00 8.7806e-01 9.8774e-01 -1.1787e+00 -#> 2.5723e+00 -1.0043e+01 -2.5171e+00 1.2171e+00 6.1552e+00 1.3662e+00 -#> 4.5510e+00 -1.4972e+00 1.1797e+00 9.6993e+00 1.1976e+00 -4.3668e+00 -#> 2.2118e+00 -2.7551e+00 -8.4045e-01 3.4012e-01 9.2944e+00 3.2099e+00 -#> -9.9009e+00 1.7620e+00 -3.0801e+00 7.2096e+00 8.1377e+00 8.4507e+00 -#> 1.2373e+00 -2.8196e+00 -2.6450e+00 -7.0677e+00 9.0234e+00 6.5156e+00 -#> -4.0219e+00 8.0798e-01 -3.0108e+00 -1.4071e+00 6.3210e+00 6.3155e+00 -#> 4.1826e+00 1.0785e+01 -7.9641e-02 -8.0781e+00 -2.8322e+00 5.8314e+00 -#> -1.6334e+00 -8.2829e-01 -5.2327e-01 9.1560e-01 2.7875e-01 1.0949e+00 -#> 1.1560e+01 7.1775e+00 2.4676e+00 4.3689e+00 1.2348e+00 1.5355e+00 -#> -7.2999e+00 -8.7090e+00 -1.0109e+00 8.0552e+00 5.2843e+00 -5.5434e+00 -#> -5.6621e+00 2.0950e+00 5.6926e+00 8.5302e+00 -1.8420e+00 4.9828e+00 -#> -6.2905e+00 -3.2019e+00 3.9112e+00 -2.8016e+00 -2.4425e+00 -3.9356e+00 -#> -1.2319e+00 9.3284e+00 7.1342e+00 -2.9960e-01 3.5464e+00 9.6238e+00 -#> -2.5003e+00 3.7505e-01 -1.8017e+00 -2.4822e+00 -1.3950e+01 4.2405e+00 -#> 6.2448e-01 5.0793e+00 -2.1631e+00 4.3120e+00 -6.7088e+00 -6.2485e+00 -#> 1.0608e+00 8.4343e-01 1.4154e+00 -8.8833e-01 -4.9350e-02 5.2178e+00 -#> 5.0803e-01 -2.5242e-02 5.2353e+00 -4.7372e+00 1.6922e+00 2.6130e+00 -#> -8.1313e-01 -1.4678e+01 -8.0687e+00 -7.8823e+00 5.9716e+00 9.7268e+00 -#> -4.1983e+00 1.7083e+00 -4.8165e+00 1.0524e+01 2.4571e+00 -5.8272e-01 -#> 9.0055e+00 1.6781e+00 -3.9620e+00 -1.9208e-01 7.7751e+00 4.8966e+00 -#> 5.6446e+00 1.0289e+01 -2.6237e+00 -9.7269e+00 -1.8522e-01 -1.3218e+00 -#> -3.3620e+00 -1.8233e+00 -3.1495e-01 1.1295e+00 5.1915e+00 -6.8499e+00 -#> -1.2493e+00 -3.7749e+00 -4.4679e+00 4.6988e+00 6.2839e+00 1.0712e+00 -#> -#> Columns 25 to 30 -3.7678e+00 -5.7242e+00 -6.5666e+00 -6.8208e+00 -5.8472e+00 -4.0306e-01 -#> -3.7068e+00 -1.8190e+00 -3.1648e+00 6.9638e+00 5.9712e+00 4.9328e+00 -#> -1.0388e+01 -5.5448e+00 -1.4448e+00 2.6815e+00 3.7214e+00 -3.2213e-01 -#> -3.6283e+00 -2.1454e+00 3.2638e-01 6.5090e+00 3.4894e+00 5.7031e+00 -#> -5.3661e-02 4.1527e+00 2.4702e+00 -1.5813e-01 -1.6505e+00 1.4394e+00 -#> 1.6428e+01 -9.1191e+00 1.1358e+00 -3.5391e+00 8.9095e+00 -2.4697e+00 -#> -4.4852e+00 1.1873e-01 -3.0818e+00 2.8583e+00 2.7108e+00 5.9310e-01 -#> 3.1718e-01 5.4803e+00 -7.4583e+00 -3.3241e+00 1.9538e+00 -9.9190e+00 -#> -5.7366e+00 9.0325e+00 -3.6218e-01 1.2094e+01 -5.1567e+00 2.4442e+00 -#> -1.0432e+01 4.0087e+00 -5.2226e+00 -3.0613e+00 -2.6841e+00 4.3142e+00 -#> 1.5683e+01 -4.8294e+00 -3.7603e+00 -3.9085e+00 6.4568e+00 -9.4047e-01 -#> -8.2675e+00 -1.2175e+01 -2.7009e-01 3.1945e+00 7.9773e+00 -9.3286e+00 -#> -1.1884e+00 6.6128e-01 5.1019e+00 5.5271e+00 -1.3284e+01 -6.6113e+00 -#> -1.3139e+01 4.7815e+00 1.3458e+00 7.1244e+00 -8.1554e+00 5.0782e-01 -#> 4.6021e+00 5.5465e+00 1.0623e+01 -6.7340e+00 -1.0824e+01 9.9315e+00 -#> -1.2730e+01 1.4776e+01 -2.8510e+00 1.9954e+00 -6.1477e+00 6.8560e+00 -#> -8.4356e+00 3.8520e-01 -9.1840e+00 1.9059e+00 -8.1112e+00 -5.6377e+00 -#> -7.3018e+00 -2.0424e+00 2.1029e+00 -1.0376e+00 2.2140e+00 -6.5560e+00 -#> 5.9514e+00 2.8834e+00 8.2532e+00 -1.2182e-01 1.4292e+01 6.1602e+00 -#> 2.3185e-01 -5.6710e+00 -1.6720e+01 -6.4373e+00 -8.8326e-01 1.2590e+00 -#> -8.3497e+00 -1.0511e+01 -9.8981e+00 1.9591e+01 7.4912e+00 4.6404e+00 -#> -6.4806e+00 9.1930e+00 3.6603e+00 6.1261e+00 -4.8635e+00 -1.2633e+01 -#> 1.6575e+00 1.2219e+01 1.8400e+00 -5.0897e-01 4.8157e-01 -1.5647e+00 -#> 1.0697e+01 -1.0563e+01 -1.9335e+00 5.2464e+00 -4.9309e+00 5.6560e+00 -#> 2.7579e+00 -1.0974e+01 3.7751e+00 2.4941e+00 1.2820e+01 1.2087e+01 -#> 1.0323e+01 9.6038e-01 -8.0909e+00 -1.2246e+01 5.8800e+00 -8.1793e+00 -#> -3.2346e-01 5.5698e+00 -4.4115e+00 9.1758e-02 -5.0301e+00 3.8046e-02 -#> 5.3821e+00 -8.0975e+00 3.9839e+00 -1.6710e+00 1.3352e+01 -6.0166e+00 -#> -1.8801e+01 -7.5684e-01 -6.5811e+00 2.7727e+00 8.5961e+00 8.7461e+00 -#> 5.9716e+00 -2.9117e-01 6.6215e+00 -6.3897e+00 3.0783e+00 -7.0034e+00 -#> 3.3100e+00 5.9482e+00 7.1441e+00 -7.2146e+00 -1.1453e+01 -2.1975e-01 -#> -2.5174e+00 6.1783e-04 3.0374e+00 9.1811e-01 1.3462e+00 1.2635e+01 -#> -1.1931e+00 -5.5093e+00 -6.1567e+00 -2.6138e+00 2.6214e+00 1.4476e+00 -#> -#> Columns 31 to 36 7.4223e-01 7.0131e+00 1.1629e+01 -5.2268e+00 -1.1719e+01 3.1106e+00 -#> 2.6765e+00 7.4811e-01 2.4381e+00 -6.1843e+00 8.3653e+00 1.0713e+01 -#> 5.0892e+00 1.7012e+01 5.5125e+00 -1.1288e+01 4.5462e+00 5.6505e+00 -#> 6.4937e+00 5.3456e+00 7.8426e+00 -1.6293e+01 -2.3455e+00 -5.8268e+00 -#> -1.0484e+00 3.4260e+00 -8.2399e+00 4.6738e+00 -5.2327e+00 7.4706e+00 -#> 5.3485e+00 -1.8475e+00 -3.6222e+00 -1.6178e+01 -3.4572e+00 3.2129e+00 -#> 6.6275e+00 -2.6183e+00 1.6539e+00 4.8539e+00 -5.4083e+00 5.7612e+00 -#> -2.7518e+00 5.2740e+00 1.5759e+01 -9.9001e+00 2.3535e+00 7.7896e+00 -#> 3.7825e+00 -3.4907e-01 -3.4481e+00 -2.5707e+00 -9.7787e+00 1.5958e+01 -#> -3.8520e-01 1.4803e+01 3.4473e+00 -6.6064e+00 4.9638e+00 7.6164e+00 -#> -2.5500e+00 4.3077e+00 -1.0892e+01 -4.6185e+00 3.9399e+00 9.3895e+00 -#> -8.5954e+00 5.5902e+00 9.9969e+00 9.0837e+00 -7.0463e+00 1.6710e+00 -#> 2.7788e+00 7.4384e+00 8.5017e+00 -2.4923e+00 1.0762e+01 5.9373e+00 -#> 4.4875e+00 1.5368e+00 -1.6538e+00 -1.0821e+01 4.6451e+00 -1.2634e+00 -#> 1.2521e+00 1.4079e+01 2.2609e+00 -1.0919e+01 8.3839e+00 -3.6383e+00 -#> 1.1817e+01 2.9383e+00 -4.2285e+00 2.2827e+00 -1.1505e+01 3.6831e+00 -#> 5.6361e-01 1.7811e+00 -2.0413e-01 8.8456e-01 -2.2689e+00 -3.1501e+00 -#> -9.8936e+00 3.8421e-02 1.3489e+00 -7.7164e+00 1.4918e+00 1.5608e+00 -#> 3.9265e+00 1.5115e+01 -4.5694e+00 -7.6374e+00 3.5958e+00 2.6907e+00 -#> -2.7697e+00 -1.5410e-01 5.8248e+00 3.0651e+00 9.2409e+00 -4.3196e-01 -#> -3.9996e+00 3.8280e+00 7.0900e+00 -9.7899e+00 -1.5215e+00 1.3456e+01 -#> 1.0321e+01 -9.7283e+00 -4.8336e+00 1.3471e+01 4.9134e+00 3.0929e+00 -#> 8.3774e-01 4.2876e+00 -1.7407e+01 2.7746e+00 -6.0241e+00 -9.6043e+00 -#> 3.1691e+00 8.8499e+00 -9.8104e-01 5.2230e+00 -8.6498e-01 1.2157e+01 -#> 9.0028e-01 -7.4834e+00 -3.0958e+00 -4.7875e+00 -1.0619e+01 1.0254e+00 -#> 5.0236e+00 1.2426e+01 1.5218e+01 -4.1620e+00 -5.4289e+00 7.4496e+00 -#> 1.5874e+01 -1.8470e+00 -5.5536e+00 1.0463e+01 -1.4672e+01 -4.7601e+00 -#> -9.4839e-01 1.9456e-02 -2.4531e+01 -1.4408e+00 4.2728e+00 -7.0230e+00 -#> 9.5121e+00 1.6671e+00 8.0547e-01 -7.9168e+00 4.5085e+00 -9.3673e+00 -#> -1.4331e+00 -3.4387e+00 -8.9806e+00 3.4347e-01 -1.6345e+01 -8.6711e-01 -#> 3.4529e+00 7.9604e+00 7.3007e+00 -1.6455e+01 -9.1844e+00 -7.5894e+00 -#> 4.7911e+00 6.6002e+00 -3.2026e+00 -9.1167e-01 3.9497e+00 -1.9500e+01 -#> 1.6120e+01 -1.0085e+00 2.9139e+00 9.0391e+00 -4.1158e+00 1.2126e+01 -#> -#> Columns 37 to 42 -4.2708e+00 -6.2193e+00 4.0405e+00 -2.4626e+00 2.6114e+00 -6.6725e+00 -#> -2.6733e+00 5.4875e+00 -9.1574e-01 1.0587e+01 1.4299e+00 7.1512e+00 -#> -1.1510e+01 -1.1695e+01 -6.2071e+00 -8.2175e+00 1.9661e+00 1.0048e+01 -#> -2.6016e+00 -7.4609e+00 -5.6747e+00 9.3854e+00 9.3149e+00 5.0030e+00 -#> -1.1570e+00 8.6847e-01 4.5684e+00 1.1916e+01 4.5815e+00 3.9475e+00 -#> 4.1254e+00 5.6743e+00 -2.8369e+00 8.3233e+00 -6.2624e+00 -6.4872e+00 -#> 6.2880e+00 -1.0629e+01 4.8851e+00 4.4807e+00 7.8539e+00 2.9114e+00 -#> 5.6523e+00 -9.5010e+00 1.1585e+01 -7.8069e+00 -1.9712e+00 -1.4402e+00 -#> -9.8762e+00 1.1291e+01 3.9450e+00 7.5963e+00 1.1955e+00 1.0262e+01 -#> 6.1205e-01 -3.9418e-01 6.0771e-01 1.7916e+00 4.0193e+00 1.2516e+01 -#> -5.3330e+00 5.4140e+00 1.0709e+01 5.9039e+00 -2.1101e+00 5.9015e+00 -#> 4.4010e+00 -5.8462e+00 2.4776e+00 -2.7191e-01 2.4018e+00 -5.4125e+00 -#> -1.6926e+00 3.5603e+00 6.8201e-01 -1.0361e+01 -1.1898e+00 1.4208e+01 -#> -8.8385e+00 9.4390e-01 -1.0417e-01 7.5702e-01 5.1242e+00 6.3443e+00 -#> -1.0421e+01 3.4307e+00 1.0905e+00 -3.4570e-01 -4.2475e+00 3.7947e+00 -#> -8.2029e+00 -7.5056e-02 -1.0317e+01 9.6688e-01 5.8398e+00 6.9069e+00 -#> 9.2056e+00 2.6418e+00 -6.2371e+00 3.8774e-01 1.1345e+00 -3.7623e+00 -#> -4.0129e+00 -4.6145e+00 -4.4591e+00 -1.5093e-01 3.8242e+00 -2.6517e+00 -#> -7.3270e-01 3.5610e+00 9.5007e+00 5.1863e+00 5.7790e+00 -9.9534e+00 -#> -1.9771e+00 -4.4519e+00 2.3197e+00 -5.2061e+00 -4.5916e-01 -1.5046e-01 -#> -6.4935e+00 -5.2702e+00 4.9656e+00 -7.4239e+00 9.6984e-01 5.0983e+00 -#> -3.6458e+00 1.0499e+01 -3.4077e-02 2.9104e+00 -4.5600e+00 9.1534e+00 -#> 9.5156e+00 -1.5982e+00 4.5251e+00 3.1438e+00 4.4952e+00 -1.8068e+01 -#> -2.3347e+00 8.9090e+00 -3.1034e+00 -5.2686e+00 1.9010e+00 3.1109e+00 -#> -1.6672e+01 7.5201e+00 -1.2067e+00 3.2212e+00 -9.8372e-02 -1.1015e+01 -#> 1.0232e+01 -6.7055e+00 1.3532e+01 -2.2495e+00 -3.1926e+00 -3.1087e+00 -#> -5.6343e-01 -2.0494e+00 3.1293e+00 8.3727e+00 6.9515e+00 -7.7970e+00 -#> -3.8374e-01 4.6507e+00 -1.0472e+01 -1.6164e+00 9.6006e+00 6.4874e+00 -#> -6.7306e+00 -5.4101e+00 5.1182e+00 -7.9834e+00 9.7989e+00 -5.6655e+00 -#> 3.6640e+00 -1.7696e+00 -4.1505e+00 1.7499e+00 8.3987e-01 4.7474e-01 -#> -4.6932e+00 -3.6107e+00 6.9508e+00 8.5656e+00 6.0091e+00 -3.3539e+00 -#> 8.8946e+00 -6.8784e+00 -5.4160e-01 8.3567e+00 -8.4307e+00 1.9961e+00 -#> -3.1567e-01 6.1672e+00 -1.2873e+00 -3.1027e+00 -7.7037e+00 4.4967e+00 -#> -#> Columns 43 to 48 7.6586e+00 -1.1518e-01 -3.6124e+00 -6.9019e-01 5.0078e+00 -7.1079e+00 -#> -1.1350e+01 5.9555e+00 6.9061e+00 7.6141e+00 4.6341e-03 -9.8206e+00 -#> -8.3167e+00 -4.8917e+00 6.2786e-01 3.4504e+00 3.6465e+00 -8.0655e+00 -#> -9.8720e+00 -1.3697e+00 1.8162e+00 -1.2960e+00 5.4253e+00 -8.4163e+00 -#> -4.6093e+00 3.1744e-01 1.3845e+01 5.9917e+00 -6.8247e+00 1.5222e+00 -#> 2.9278e+00 7.6591e+00 8.8834e+00 -7.3206e+00 3.5923e+00 1.1554e+00 -#> 1.7499e+01 -7.5501e+00 1.0134e+01 -2.2161e+00 2.7105e-01 -1.2830e+01 -#> 4.5848e+00 -6.8604e+00 -7.4688e-01 2.7601e+00 1.7959e+00 -4.4080e+00 -#> -6.2159e+00 1.0061e+01 8.0681e+00 4.7329e+00 -1.4557e+01 -5.9783e+00 -#> -1.4388e+01 6.6257e+00 5.5512e+00 1.4502e+01 2.5892e-01 1.5548e+00 -#> -5.8538e+00 1.7142e+00 3.0457e-01 5.8071e+00 -1.3670e+01 1.0826e+01 -#> -2.2469e+00 -8.5539e+00 2.7219e+00 -3.7882e+00 6.9489e-01 4.0771e-01 -#> -1.2400e+00 -6.6279e-01 -5.0088e+00 1.0212e+00 4.5081e+00 2.4033e+00 -#> 6.0568e-01 1.0213e+00 4.9064e+00 -1.2058e+01 -5.7127e+00 1.8151e+00 -#> 7.8649e-01 3.0735e+00 9.0810e+00 -1.4522e+00 -2.7879e+00 -1.1300e+01 -#> -6.7457e+00 -3.5366e+00 -8.0993e+00 2.4395e+00 3.8280e+00 2.8154e-01 -#> 3.8816e-01 4.0043e+00 -1.2529e-02 2.9227e+00 1.1307e+00 -2.1515e+00 -#> -1.3813e+00 -7.7966e+00 6.1247e-01 -6.6544e+00 6.6106e-01 6.3762e+00 -#> -2.4359e+00 -4.7479e+00 -1.0501e+01 3.6424e+00 -3.3815e+00 -7.2181e+00 -#> 3.5248e+00 4.5957e+00 1.1000e+01 2.9740e-01 -5.6136e+00 8.5737e+00 -#> 3.5406e+00 6.4048e+00 1.1231e+01 -8.7433e+00 -7.5803e+00 1.0159e+00 -#> 8.7339e+00 1.2499e+01 3.4785e-01 -1.0078e+01 -6.6816e+00 -5.8729e+00 -#> 6.4248e+00 -5.9144e-01 5.8935e+00 -6.0223e+00 -8.3323e+00 5.0163e-02 -#> 9.3207e+00 1.0922e+01 -2.6929e+00 -1.4812e-01 2.8792e+00 1.0079e+01 -#> -1.1273e-01 -3.4145e+00 7.7179e+00 -3.9226e+00 -3.9568e+00 -3.7776e+00 -#> 6.0739e+00 -1.0924e+01 6.6230e+00 8.0777e+00 4.8874e-01 -8.7335e+00 -#> 6.0373e+00 -2.6559e+00 6.3964e+00 -3.3931e+00 -4.7059e+00 -4.6125e+00 -#> 1.0763e+01 3.2660e+00 1.2023e+00 1.4326e+01 2.6127e+00 5.9575e+00 -#> -5.4855e+00 -7.0947e+00 9.2428e+00 6.1904e+00 -4.3986e+00 -5.3961e+00 -#> 6.7367e+00 2.6316e+00 -3.6548e+00 9.4662e+00 7.7264e+00 5.8823e+00 -#> -6.9419e-01 -7.8668e+00 8.8550e-01 1.0576e+01 6.2078e+00 -4.0643e+00 -#> -8.6446e+00 4.2446e+00 -2.4906e+00 5.2612e+00 9.2999e+00 7.0488e-01 -#> -5.8305e-01 -7.3184e+00 2.9134e+00 -4.2438e+00 1.0961e+00 -5.6040e+00 -#> -#> (5,.,.) = -#> Columns 1 to 6 -2.3830e+00 1.5045e+01 1.0755e+01 1.9093e+00 3.4693e+00 6.0668e+00 -#> -9.1152e-01 -3.0114e+00 -2.5333e+00 5.3111e+00 7.9649e-01 -1.6620e-01 -#> 3.2936e+00 -8.9781e+00 -3.2925e+00 4.2987e+00 8.5330e+00 -2.5871e+00 -#> -6.7483e+00 -1.5892e+00 -8.2601e-01 8.3264e+00 2.0445e+00 8.9829e-02 -#> 7.6095e-01 -3.3332e+00 2.8401e+00 -6.2223e+00 3.0014e+00 5.3401e+00 -#> 4.4991e+00 6.8539e+00 -7.9476e-01 -1.1602e+01 -1.2376e+01 5.7659e+00 -#> -3.9050e-01 -6.8403e+00 3.2067e+00 2.6319e+00 2.6960e+00 5.4775e+00 -#> 2.5490e+00 -2.2545e+00 1.9085e+00 1.9497e+00 -5.6462e+00 -5.9350e+00 -#> -7.9047e+00 2.6436e+00 2.0883e+00 -4.8206e+00 1.5255e-01 9.9853e-01 -#> -6.8098e+00 -4.4973e+00 -9.4591e-01 4.4095e+00 6.2232e+00 4.2034e+00 -#> 3.6400e+00 4.5510e+00 -1.4693e+00 -1.9791e+00 1.4600e+01 -1.1596e+01 -#> 2.0117e+00 -7.4495e+00 1.9576e+00 1.4078e+01 -1.7327e+00 -7.9045e+00 -#> -5.4675e+00 -8.1726e+00 -2.1059e+00 6.7968e+00 -4.1634e+00 7.1000e-01 -#> 3.3354e-01 -2.4415e-02 1.1163e+00 5.2675e+00 4.8768e+00 -1.1194e+01 -#> 5.9835e+00 8.5104e+00 4.7339e+00 1.0464e+01 4.9154e+00 2.1113e+00 -#> -1.3915e+01 -1.9716e+00 -2.9983e+00 -1.9405e+00 2.1733e+00 -9.8436e-02 -#> 7.1030e+00 -2.7523e+00 3.8541e+00 -6.1061e+00 6.9082e-01 4.5209e+00 -#> 9.2541e+00 -1.7739e+00 -4.2750e-01 -9.3434e+00 -6.3315e-01 1.9368e+01 -#> -3.5566e+00 -1.6541e+00 4.1912e+00 4.9319e+00 9.8950e+00 -1.2191e+01 -#> 1.1695e+01 -3.1335e+00 -3.6334e-01 5.4959e+00 1.1974e+01 -3.9265e+00 -#> 5.5305e+00 -2.7223e-01 -8.4738e+00 3.1758e+00 -1.2866e+00 -6.1654e+00 -#> -5.3902e-01 -3.0807e+00 -9.3326e-01 7.4006e+00 -3.2220e+00 7.1673e+00 -#> -5.6331e-01 4.7113e-01 1.0444e+00 -5.5636e+00 7.4316e-01 -1.0495e+01 -#> -5.2943e+00 -3.6060e+00 -2.2940e+00 -2.6019e+00 1.6932e+01 -9.5823e+00 -#> 1.2445e+01 1.6621e+00 1.4975e+00 -4.6527e+00 3.0234e+00 -3.0627e-01 -#> 3.7138e+00 -7.4142e-01 6.6150e+00 -2.3159e-01 2.8262e+00 1.0662e+00 -#> 7.6823e+00 8.5604e+00 9.3044e+00 5.1059e+00 -6.4475e+00 -5.8448e+00 -#> -3.1239e+00 -6.4697e+00 2.3946e+00 3.6733e-01 -7.1365e+00 -9.1770e+00 -#> 1.0079e+01 1.0610e+00 7.7564e+00 9.0786e+00 3.1420e+00 -1.1080e+01 -#> 3.1758e-02 -6.1169e+00 -2.4867e+00 -7.9838e+00 1.3619e+00 -9.4099e+00 -#> 2.5039e+00 9.3481e+00 6.4029e+00 3.7382e+00 -3.6803e+00 -1.0931e+01 -#> -7.1225e+00 -5.6279e-03 5.9118e+00 1.0263e+01 2.1115e+00 -7.7262e+00 -#> 2.5962e+00 -4.0675e+00 1.1823e-01 4.6199e+00 -8.2061e+00 7.5710e+00 -#> -#> Columns 7 to 12 1.8408e+01 1.5652e+00 -1.9543e+00 -2.8085e+00 -6.8231e-01 4.1349e+00 -#> -6.5164e+00 1.4820e+01 -1.1288e+00 4.5189e+00 8.7818e+00 -4.2647e+00 -#> -7.7523e+00 7.2089e+00 1.1656e+00 -2.2606e+00 2.2263e+00 -8.8486e+00 -#> -6.4213e+00 -7.8116e-01 -1.3705e+01 -1.4288e+00 7.0685e-01 -9.6210e+00 -#> -5.2904e+00 -4.3724e+00 -4.5616e+00 -2.1462e+00 -1.6026e+00 2.4151e+00 -#> 7.6076e+00 1.4017e-01 7.1753e+00 1.6275e+00 -1.8538e+01 -6.3133e+00 -#> -3.0048e-01 1.1206e+00 -2.7181e+00 -8.8819e+00 1.1768e+01 -2.3927e-01 -#> 3.9040e+00 1.5906e+00 -4.6165e+00 5.6143e+00 -2.3985e+00 3.8737e+00 -#> -1.8581e+00 4.4859e+00 -8.5661e-01 9.1416e+00 -7.1321e+00 1.5359e+00 -#> 2.5870e+00 6.4013e+00 -3.5112e+00 3.0193e+00 -9.9813e-01 4.9914e-01 -#> -5.6749e-01 -2.5634e+00 -2.0049e+01 7.6160e+00 -5.6121e+00 1.2002e+01 -#> -5.1016e+00 4.5954e+00 -6.6194e+00 1.0558e+01 8.4648e+00 4.0876e+00 -#> 1.9074e+00 -4.4138e+00 1.6856e+01 -2.3015e+00 9.8041e+00 5.1201e+00 -#> 7.9012e+00 -7.8831e+00 6.1398e+00 3.3781e+00 -1.0034e+01 1.1867e+00 -#> 3.8663e+00 -8.9898e+00 8.8156e+00 -1.6206e+01 1.1986e-01 -2.6682e-02 -#> -3.2041e+00 -1.4711e+01 -1.0443e+00 5.8869e-01 -9.3162e+00 -3.5679e+00 -#> 8.5277e-01 -6.4199e-01 -6.1192e+00 -1.5057e+01 7.4858e+00 1.3985e+00 -#> 2.5524e+00 1.4245e+01 -5.8290e+00 -2.5738e+00 -9.5414e+00 -2.3828e+00 -#> -1.0419e+01 -1.1870e+01 -3.9730e+00 1.5484e+00 6.0266e+00 8.5218e+00 -#> -3.8284e+00 1.5833e+00 -6.3376e-01 -1.2201e+01 5.7151e+00 1.7104e+00 -#> -7.7268e+00 4.3423e+00 -1.8297e+00 1.2690e+01 6.7800e-02 8.8895e+00 -#> 2.4643e+00 2.1095e+00 2.8859e+00 4.3288e+00 6.2184e-01 4.8834e+00 -#> 1.5286e+00 -5.3391e-01 6.7303e+00 2.7903e+00 -2.8789e-01 -4.8311e+00 -#> 5.6804e+00 -1.5724e+00 4.5631e+00 1.4864e+00 1.0664e+01 7.5194e+00 -#> -5.1199e+00 -6.2939e+00 -1.4950e+00 -2.8765e+00 -3.7088e-01 -3.6455e+00 -#> 9.5212e+00 -1.0249e+01 4.2535e+00 -1.1122e+00 1.0850e+01 5.5438e+00 -#> -9.8939e+00 -7.7922e+00 -6.7318e+00 -3.9111e+00 -5.4714e-02 -1.3669e+00 -#> 4.4817e-01 -1.5928e+01 7.6097e-01 -9.1389e+00 8.9798e+00 -6.3461e+00 -#> 1.1088e+00 -5.1600e+00 1.5623e+00 4.1705e+00 -3.6206e+00 -2.3324e+00 -#> 2.9760e+00 -4.8346e-01 2.1871e+00 -7.7891e+00 -8.0293e+00 -6.5323e+00 -#> -1.4006e+01 -1.1111e+01 -9.3578e+00 -1.0229e+01 -9.0496e+00 -5.3950e+00 -#> -6.5811e+00 -4.4025e+00 7.0217e+00 -1.9153e+00 1.4510e+01 -6.2039e+00 -#> -8.7036e+00 -6.6167e+00 7.2552e+00 8.6312e+00 3.9875e+00 7.1604e-01 -#> -#> Columns 13 to 18 -4.0327e+00 1.2063e-01 3.8963e-01 1.2082e+01 4.4529e+00 -4.0982e+00 -#> 7.4974e+00 1.8638e+00 -8.1714e+00 -2.7034e+00 5.9391e-01 -1.8888e+00 -#> -1.9006e+00 -4.8901e+00 -5.2321e+00 -1.3496e+01 1.1133e+00 -1.3292e+00 -#> -1.7714e+00 -6.2307e-01 -1.4108e+01 7.9459e+00 4.0040e+00 4.6520e+00 -#> -5.9653e+00 -6.6982e+00 2.3026e+00 -4.1065e+00 -9.7532e-01 -4.1826e+00 -#> 9.5455e+00 -1.2973e+01 9.3023e+00 8.9305e+00 -2.2556e+00 -8.2025e+00 -#> 6.3662e+00 2.3125e+00 6.1421e+00 -2.8569e+00 -6.1378e+00 3.1209e+00 -#> 1.7458e+01 1.5194e+00 1.1149e+00 -1.0232e+00 -5.4569e+00 4.5391e+00 -#> -8.9644e+00 5.6622e+00 -9.7496e+00 6.8962e+00 2.9958e+00 -5.5083e+00 -#> -3.4634e+00 -4.3375e+00 -3.3078e+00 -1.6976e+00 -1.8537e+00 -8.7774e-01 -#> 6.9377e+00 3.8605e+00 6.0268e+00 2.3274e+00 -8.8593e+00 -2.4879e+00 -#> 6.8199e+00 -5.9747e+00 -7.2865e+00 -1.4146e+00 7.5257e+00 -2.5840e+00 -#> 5.0461e+00 -6.7386e-01 -8.0948e+00 -6.2207e+00 -4.3244e+00 -6.1133e+00 -#> -2.8252e+00 -2.5870e+00 1.8028e+00 -3.6711e-01 2.0952e+00 3.6568e+00 -#> 2.3060e+00 -6.2086e+00 3.9923e+00 -1.4150e+00 -8.5676e-01 5.8699e+00 -#> -1.3242e+01 6.3704e+00 -1.0038e+01 2.3710e+00 -1.4868e+01 6.5075e+00 -#> -2.8410e+00 -6.0744e+00 9.4370e+00 1.7102e+00 5.2457e+00 -7.8648e+00 -#> 8.1169e+00 -9.1841e+00 8.2035e-01 4.0471e+00 -2.7658e-01 -3.2713e+00 -#> 7.9194e+00 -5.5048e-02 -3.5546e+00 2.4541e+00 -9.2249e+00 -5.8647e+00 -#> -1.7885e+00 5.6227e+00 9.0222e+00 -1.3317e+01 -3.9801e-01 1.6702e+01 -#> -3.9880e+00 8.6878e+00 -2.2664e-02 -7.4790e+00 -1.3203e+00 1.8476e+01 -#> -4.4812e+00 5.0602e+00 -3.5708e+00 1.2414e+00 -2.9848e+00 1.2678e+01 -#> -4.5570e+00 -2.6359e+00 1.4333e+01 9.2020e-01 4.0976e+00 4.4490e+00 -#> -1.1185e+01 3.1190e+00 -5.5076e+00 4.0855e+00 6.6168e+00 1.6649e+00 -#> -6.8375e-01 -2.9971e+00 3.8258e+00 5.9877e+00 6.4271e+00 -5.3766e+00 -#> 1.2921e+01 -1.8491e+00 1.1426e+00 -2.6788e+00 -1.8496e+01 7.4915e+00 -#> -7.3414e+00 3.5322e+00 2.5229e+00 5.7388e+00 1.1160e+01 -3.6650e+00 -#> -3.9620e+00 -4.8352e-02 7.4024e+00 -7.2069e-01 -9.0369e+00 1.8158e+01 -#> 1.4811e+00 -2.8406e+00 2.1601e+00 -6.3998e+00 8.4908e+00 7.1127e+00 -#> -1.0033e+01 -8.8568e-01 4.8732e+00 1.6056e+00 6.6930e+00 -8.4509e+00 -#> -3.1729e+00 -1.4420e+01 2.9933e+00 9.6449e+00 6.0507e+00 3.3586e+00 -#> -5.9448e+00 -4.6698e+00 2.9528e+00 -4.8673e+00 3.8821e+00 2.8102e+00 -#> 2.5439e+00 5.1470e-01 -2.2484e+00 -7.2786e+00 -2.3403e+00 -1.0638e+00 -#> -#> Columns 19 to 24 9.0982e+00 5.1736e+00 -2.4757e+00 1.5844e-01 -6.7332e-01 5.6665e+00 -#> -4.8000e+00 -8.6078e-01 9.5131e-01 -2.8858e+00 1.2703e+00 4.7499e-01 -#> -7.5245e+00 3.5997e+00 5.3406e+00 -3.8828e+00 5.1932e-01 7.5683e-02 -#> -8.4505e+00 1.1701e+01 -2.4831e+00 -1.4745e+01 5.4654e+00 -1.7338e+01 -#> 1.0567e+01 6.2607e+00 -3.6660e+00 -8.7202e+00 -1.5690e+01 -2.2930e+00 -#> 9.8490e+00 8.0237e+00 -3.6052e+00 3.3250e+00 -7.4190e+00 4.9683e+00 -#> 7.4106e+00 -6.2680e+00 5.1907e-02 -1.2005e+01 -6.8563e+00 4.7717e+00 -#> -9.6498e+00 -3.7699e+00 1.3658e+00 4.0453e+00 6.3397e+00 2.1112e+00 -#> 3.6101e-01 2.1361e+00 -5.9951e-01 -7.0478e+00 3.9619e+00 -1.2897e+01 -#> 1.7499e+01 1.4941e+00 -1.6669e+00 -1.9513e+00 -1.1608e+01 6.2823e+00 -#> 5.6085e+00 3.7327e+00 -1.0657e+01 6.8685e+00 -2.5067e+00 -2.8697e+00 -#> 4.8413e+00 1.7147e+00 3.9855e+00 -2.3646e+00 -1.2719e+00 5.9345e-01 -#> -1.1901e+01 2.1154e-01 1.2861e+01 6.5933e+00 5.5342e+00 -1.1736e+01 -#> -4.1619e+00 -4.0502e+00 4.5874e+00 -5.9631e+00 6.2003e+00 -1.5919e+01 -#> 3.2160e+00 6.1556e+00 5.7512e+00 -2.4275e+00 1.1169e+00 -7.0630e+00 -#> 3.8809e+00 -5.3835e+00 5.9786e+00 -1.2241e+01 -1.6439e+00 -1.5627e+01 -#> 1.7291e+01 2.2233e+00 -5.2146e+00 6.4464e-01 -5.5866e+00 1.7714e+01 -#> 5.3964e+00 1.3962e+01 1.9331e+00 -1.3314e+00 -5.3025e+00 -2.3913e-01 -#> -7.8175e+00 -7.1026e+00 -6.0704e+00 -8.0185e-02 -2.7631e-01 -3.9497e+00 -#> 2.5051e+00 -6.0993e+00 -5.4260e+00 -5.7393e+00 -3.3067e+00 9.7217e+00 -#> -1.2314e+01 -1.6606e+01 1.5940e+00 -6.1850e+00 1.7046e+01 -4.5048e-01 -#> -8.8948e+00 -5.6061e+00 5.1760e-01 -4.5070e+00 2.5624e+00 -1.1760e+01 -#> -8.3118e+00 -4.8301e-01 2.4386e+00 1.1577e+00 -5.4625e+00 9.3602e+00 -#> 1.0364e+01 -1.7660e+00 -7.1697e+00 4.0364e+00 6.2778e+00 8.9278e+00 -#> 9.0088e+00 3.4713e+00 -1.4689e+01 -3.7752e+00 -2.6339e-01 -5.4922e+00 -#> -6.4503e+00 7.0307e+00 -2.5707e+00 -4.4928e+00 -3.8815e+00 2.7975e+00 -#> -4.7806e+00 -1.3645e+00 -2.0122e+00 -2.8309e+00 3.8261e-01 9.4296e+00 -#> 1.8947e+00 -7.1179e+00 2.2631e-02 3.1296e+00 -5.7349e-01 6.5689e+00 -#> 2.1592e+00 -2.2114e+00 1.0351e+00 -1.8950e+00 -2.5478e+00 -7.2731e+00 -#> 9.4142e+00 3.9147e+00 -3.7307e+00 6.2922e-01 -2.9651e+00 7.1303e+00 -#> -2.8823e-01 7.4542e+00 -4.3850e-01 -7.6315e+00 -3.2843e+00 -6.0237e+00 -#> 9.5521e+00 -1.9974e+00 2.2915e+00 2.4075e+00 -7.1246e+00 3.7398e+00 -#> -4.8636e+00 1.7748e+00 9.8526e-01 -3.3251e+00 3.6598e+00 -1.3092e+01 -#> -#> Columns 25 to 30 3.1280e+00 1.2788e+00 -5.9366e+00 -4.2194e+00 -1.0509e+01 1.7713e+00 -#> -5.3974e+00 -4.3479e-01 4.8893e+00 4.0898e+00 5.8615e+00 -5.5451e+00 -#> -7.2648e+00 1.4969e+00 -6.0060e+00 -3.7986e+00 4.8079e+00 6.1958e+00 -#> 7.6044e+00 -5.9375e+00 -1.1993e+01 3.3922e+00 5.0549e+00 9.1746e+00 -#> 5.0515e+00 -5.0973e+00 4.8219e+00 1.0619e+00 4.5165e+00 -8.5143e+00 -#> 2.8204e+00 -3.9292e+00 9.8225e-01 -6.2513e+00 3.4724e+00 5.7119e+00 -#> -5.8743e+00 -4.5231e-01 -8.1410e+00 -4.4791e+00 1.2651e+01 1.2361e+00 -#> -7.2702e+00 -2.2595e+00 6.5974e+00 3.6935e+00 -1.9022e+00 7.6575e+00 -#> 9.8234e+00 2.3628e-01 2.1644e+00 1.7129e+00 -6.3852e+00 -1.3977e-03 -#> 7.5595e+00 -2.3019e+00 9.2416e+00 2.9271e+00 4.4853e-01 -4.5047e+00 -#> -2.7705e+00 -7.2757e+00 -2.2790e+00 -2.7667e+00 -2.1357e+00 -3.7666e+00 -#> -1.5240e+00 -2.3198e+00 -1.0283e+01 -3.7943e+00 -9.4341e-01 6.0867e+00 -#> 2.9003e-01 1.1639e+01 5.3857e+00 -3.1820e+00 -1.7843e+00 1.6590e+00 -#> 1.1793e+01 -5.1962e-01 -1.2450e+01 -7.9430e+00 -1.1940e+00 2.2993e-01 -#> 3.3375e+00 1.0644e+01 5.7075e+00 -6.2523e+00 1.4935e+00 -8.8530e+00 -#> 7.4632e+00 -1.0253e+01 -5.3447e+00 2.2636e+00 -3.4865e+00 -2.5092e+00 -#> 6.9494e+00 6.0295e+00 2.3967e+00 -4.1855e+00 -8.0001e-01 -6.9067e+00 -#> 6.3739e+00 3.9918e-02 -5.2436e+00 -6.9196e+00 4.8604e+00 1.7641e+00 -#> -8.2620e+00 -6.7295e+00 -1.7506e+00 4.9274e-01 -5.8497e+00 4.8315e+00 -#> -8.1358e+00 -8.7697e+00 -1.4823e+00 -1.1388e+01 -4.1414e+00 -4.4856e-01 -#> -2.1427e+00 -8.0484e+00 1.3658e+00 -4.8648e+00 -1.7214e+00 2.5082e+00 -#> 4.4764e-01 -1.6163e-01 -2.3081e+00 -3.4154e+00 -3.8190e+00 -2.5088e+00 -#> 6.5203e-01 -6.3120e+00 -2.4546e+00 -4.3488e+00 -4.5031e+00 -4.1094e+00 -#> 8.2619e+00 2.1131e-01 7.1995e+00 3.4129e+00 -4.1694e+00 6.2864e+00 -#> -1.2033e+01 -1.0293e+01 -8.4255e+00 -1.1377e+00 -7.0015e+00 1.5763e+00 -#> 1.9668e+00 8.1584e-01 1.2777e+01 3.1784e+00 -6.6701e+00 -3.4124e-01 -#> -3.6915e+00 -5.8549e+00 -4.4516e+00 4.3056e+00 4.6994e+00 -2.7244e+00 -#> -1.6473e+00 1.9608e+00 -5.7647e+00 -7.5848e+00 4.9922e+00 -4.6011e+00 -#> -8.8363e+00 3.1260e+00 -2.4390e+00 1.9239e+00 -1.3892e+00 3.3748e-01 -#> -1.2075e+00 7.8508e+00 -3.4638e+00 -5.1220e+00 -1.4918e+01 -1.8710e+00 -#> 1.6721e+00 -1.1214e+00 -1.0962e+00 2.9899e+00 -4.2842e+00 -1.8938e-01 -#> -2.8022e+00 4.7344e+00 4.4270e+00 6.5299e+00 1.0474e+01 -4.4890e+00 -#> -5.0150e+00 2.8116e+00 -1.5807e+00 -4.7746e-01 -7.7342e+00 1.1266e+00 -#> -#> Columns 31 to 36 3.5927e-01 -5.8005e-04 -1.1270e+01 9.0515e+00 -8.1627e+00 6.4540e+00 -#> 3.4068e+00 -1.2006e+01 5.3405e+00 8.2016e-01 6.0324e+00 7.1262e+00 -#> 3.7822e+00 -2.6076e+00 2.8620e+00 -5.2815e+00 -2.5095e+00 -1.0144e+00 -#> -8.2290e-02 -1.3884e+01 1.2595e+00 -3.4814e-02 -9.7531e+00 5.2547e-01 -#> -1.4943e+01 5.3147e+00 5.4917e+00 -1.0074e+00 9.0445e-01 -1.3210e+01 -#> -9.3631e+00 -3.5228e+00 4.4674e+00 -1.0704e+01 7.5457e+00 -6.0601e-01 -#> -1.3818e+01 5.2119e+00 -1.1345e+01 3.5436e+00 1.3895e+00 1.4796e+00 -#> 2.4844e+00 -8.3415e+00 6.8261e+00 4.8637e+00 5.8557e+00 1.5788e+01 -#> -6.6571e+00 -1.9480e-01 -5.0670e+00 5.2520e-02 -9.8149e+00 1.1303e+01 -#> 5.5721e+00 -6.1646e+00 1.1623e+01 -1.4157e+00 -5.3222e-01 -5.4600e+00 -#> -6.5203e+00 -6.7455e+00 7.7968e+00 -9.9367e+00 1.3339e+01 -1.4284e+01 -#> -1.4378e+00 8.9679e+00 9.4038e+00 -8.1249e-01 6.5240e-02 3.7578e+00 -#> 9.4793e+00 -4.9221e+00 -1.6958e+00 2.6819e+00 2.1806e+00 -3.3611e+00 -#> -1.5861e+00 2.8447e-01 -1.2740e+01 -8.7952e+00 5.9439e+00 -3.9432e+00 -#> 4.3443e+00 -6.5303e+00 -7.6826e+00 -4.1726e+00 7.0762e+00 -1.4766e+01 -#> 1.7967e+00 1.0627e+01 -8.8136e+00 3.6239e+00 -9.1490e+00 -2.4560e+00 -#> -1.2485e+01 8.5619e+00 2.9441e+00 1.5589e+01 -4.7064e+00 1.8462e+00 -#> -4.0600e+00 -1.4710e+00 4.7904e+00 -1.8557e+00 8.3307e+00 -7.1752e+00 -#> -3.9976e+00 -6.5843e+00 2.6554e+00 -3.1964e+00 1.0752e+00 -4.8778e-01 -#> 3.3116e+00 -1.7098e+00 3.2721e+00 -4.4763e+00 -2.2594e+00 -7.9010e+00 -#> 5.7161e+00 6.5650e+00 -1.6615e+00 -1.1369e+01 4.7180e+00 5.7694e+00 -#> 8.5136e+00 -5.9878e-01 -1.5651e+01 8.4650e-01 -2.4974e+00 6.7638e+00 -#> -5.8394e+00 5.7140e+00 -1.1210e+01 -2.2551e+00 1.6443e+00 -6.3403e+00 -#> 4.9703e+00 1.8214e+01 -9.8342e+00 -3.6146e+00 -5.6450e-01 7.4347e-01 -#> -7.1601e+00 8.6449e+00 1.8380e+00 -6.6168e+00 -9.3282e+00 4.5143e+00 -#> -7.4665e+00 -4.2576e+00 1.4170e+01 3.6051e+00 -4.7992e+00 3.7910e-01 -#> -1.4914e+01 3.7157e+00 -8.1508e+00 7.3911e+00 1.0948e+00 4.0697e+00 -#> -1.0161e+01 3.9304e+00 3.7996e-01 -1.3344e+01 9.3577e+00 -1.5207e+01 -#> -1.7293e+00 -2.0529e+00 1.0785e+01 -9.5662e+00 -1.9826e+00 5.8388e+00 -#> 2.3011e+00 4.4566e+00 -1.1964e+01 -7.5399e-01 -9.7352e+00 -6.9948e+00 -#> 2.0763e+00 -1.1806e+01 -4.8473e-01 5.3601e+00 2.5147e+00 8.4158e+00 -#> 7.8955e+00 -2.6015e+00 6.0200e+00 -2.1845e+00 -1.3762e+01 -6.8676e+00 -#> 4.4075e+00 1.2753e+01 1.1472e+00 2.4227e+00 -1.0693e+01 4.7613e+00 -#> -#> Columns 37 to 42 -1.1020e+01 6.6465e+00 -1.9290e+00 -4.8945e+00 1.8490e+00 1.5339e+00 -#> -4.5310e+00 -1.0638e+00 -4.4853e+00 7.1065e+00 -8.2337e-01 6.9402e+00 -#> 1.7499e+00 -3.6581e+00 1.2350e+00 2.8491e+00 1.7408e+00 -1.7779e-01 -#> -1.4229e-01 5.2913e-02 -2.4037e+00 8.6961e+00 -1.7492e+00 5.9939e+00 -#> -5.8223e+00 1.6047e+00 6.7784e+00 2.6981e+00 -1.2013e+01 -1.1739e-01 -#> -1.6281e+01 -1.5035e+00 -2.1397e+00 -6.4374e+00 6.2523e+00 -9.6294e+00 -#> 2.9919e+00 4.3445e+00 1.8871e+00 8.1929e+00 -1.2139e+01 -1.4848e+00 -#> 2.7343e+00 1.6345e+00 -3.4733e+00 3.3497e+00 6.7508e+00 -1.8764e+00 -#> -1.9815e+00 4.4974e+00 -1.5160e-02 -2.7958e+00 -4.8445e-01 -1.2368e+00 -#> -2.6236e+00 -1.4458e+01 5.1467e+00 4.9547e-01 -3.0636e+00 -5.2946e-02 -#> 1.2763e+01 -6.6685e+00 2.1419e+00 -2.5938e-01 1.0607e+01 9.4662e-02 -#> -2.5186e-01 1.7765e+00 1.8338e+01 5.5510e+00 -1.2427e+00 3.7455e+00 -#> 1.2176e+01 -1.7097e+01 -1.3656e+00 5.5532e+00 -7.6164e-01 -8.6892e-01 -#> -6.6048e-01 -4.9274e+00 1.1193e+01 -3.6997e+00 -6.0456e-01 -2.1174e+00 -#> -2.6654e+00 -6.7153e+00 4.3796e-01 8.9276e-01 3.0882e-01 6.6746e+00 -#> -3.7119e+00 -4.4686e+00 3.3810e+00 1.2998e+00 5.5979e+00 1.9030e+00 -#> -2.1550e-01 -7.2725e+00 3.9841e+00 1.9504e+00 -1.3238e+00 -9.6834e+00 -#> -1.7437e+01 7.4582e+00 -5.9427e+00 5.0374e-01 -2.0163e+00 6.8246e+00 -#> 1.0537e+01 -6.8816e+00 3.1621e+00 4.3694e+00 1.6787e+01 4.0453e+00 -#> 7.4132e+00 2.5091e+00 5.2410e+00 6.6752e+00 -7.1528e+00 -4.8371e+00 -#> 6.0238e+00 1.1466e+01 2.0985e-01 1.3284e+01 -6.6727e+00 9.7171e+00 -#> 1.6460e+00 1.2047e+01 1.4384e+00 -9.1026e-01 -3.0676e+00 -3.0724e-01 -#> -2.9586e+00 -8.5117e+00 2.8998e+00 -7.8197e+00 -9.8610e+00 4.7346e+00 -#> 3.0021e+00 -6.0272e+00 2.6469e+00 -4.5248e+00 -1.1962e+01 -5.6412e-01 -#> -2.9277e+00 1.6119e+01 -4.9798e-01 5.0180e+00 1.2726e+01 6.9309e+00 -#> -1.4897e+00 -8.5421e+00 -9.3005e+00 6.3357e+00 2.9906e+00 -3.1236e+00 -#> 3.2158e+00 1.0030e+01 7.0613e+00 -3.3065e+00 -7.8101e+00 1.4496e+00 -#> -3.6055e-01 2.4626e+00 1.1457e+01 8.1908e+00 9.5694e-01 -1.1264e+01 -#> -6.4157e+00 -2.8063e+00 6.9518e+00 9.7039e+00 1.0435e+01 2.9756e+00 -#> -2.5457e+00 -2.9342e+00 -1.4990e+00 -1.3760e+01 5.3558e+00 -1.0135e+01 -#> 2.4038e+00 8.8341e+00 1.1209e+01 1.9843e+00 3.2433e+00 -2.7260e+00 -#> 5.9133e+00 -8.8468e+00 3.7391e+00 3.1379e+00 7.2138e-01 4.3503e+00 -#> -9.0470e+00 2.9551e+00 -7.0717e+00 4.9854e+00 4.3781e+00 4.0203e-01 -#> -#> Columns 43 to 48 -8.8934e+00 -5.8731e+00 5.3382e+00 3.8283e+00 -7.9933e+00 -6.6487e+00 -#> -2.6201e+00 6.9511e+00 -1.7930e+00 1.0116e+01 3.7670e+00 9.1283e+00 -#> 1.2525e+00 7.8141e+00 -2.4204e+00 -5.5882e+00 6.7728e+00 1.0990e+01 -#> -9.0517e+00 5.1123e+00 2.6250e+00 -3.6983e+00 -1.6602e+00 3.9326e+00 -#> -1.8962e+00 2.7367e+00 -1.8428e+00 -2.0395e+00 -5.9638e+00 1.1027e+01 -#> -4.4575e+00 1.3333e+01 3.1724e+00 7.7592e-01 -5.7508e+00 1.6969e+01 -#> 8.7714e+00 1.4718e+00 -6.6618e+00 -7.8995e+00 9.0566e+00 9.4957e+00 -#> 4.8238e+00 6.6510e+00 -8.4335e+00 1.5356e+00 2.9097e+00 5.2194e-02 -#> 8.9002e-01 3.0509e-01 3.3963e-01 -4.1054e+00 -4.2206e+00 -3.0510e+00 -#> -1.1020e+00 -4.3733e-01 -3.6850e+00 7.9086e+00 4.6608e+00 6.0527e+00 -#> 7.2235e+00 2.0171e+00 -1.2581e+01 -1.5761e+01 -6.6077e-01 2.3741e+00 -#> 3.0645e+00 6.5877e+00 5.2796e+00 -7.6957e+00 -5.3312e+00 9.6305e+00 -#> 2.5498e+00 -3.3503e+00 -4.4238e+00 -1.2314e+01 7.3962e+00 1.7007e+00 -#> 3.7125e+00 -4.4944e+00 -3.4737e+00 -9.5028e+00 -3.9384e+00 -1.1472e+00 -#> 2.9937e+00 1.5265e+00 3.5508e+00 2.3970e+00 9.5820e+00 1.5473e+00 -#> -1.3902e+00 -8.5131e+00 -1.1774e+01 -4.6225e+00 7.6096e+00 -7.9541e+00 -#> 6.0351e+00 5.2485e+00 7.6588e+00 4.2709e+00 4.7346e+00 6.0520e+00 -#> -3.9830e+00 7.0588e+00 6.1215e+00 4.3871e+00 -1.1102e+01 8.4514e+00 -#> -2.8928e+00 -7.0470e+00 -9.8818e+00 1.0352e+00 4.5459e+00 -8.3517e-01 -#> 7.1982e+00 -3.6810e+00 -1.4942e+00 -9.4427e+00 1.7525e+00 4.1326e+00 -#> 9.4196e+00 3.0754e+00 1.7681e-01 -1.2273e+00 -7.9381e+00 -1.5840e+00 -#> 9.9200e-01 -3.7385e+00 -4.5607e+00 -9.1025e+00 -1.7741e+00 -5.9780e+00 -#> 3.4331e+00 6.9655e+00 2.2767e-01 5.4729e+00 -1.9004e+00 1.0142e+01 -#> -2.0826e+00 -6.2107e+00 3.6577e+00 2.0191e+00 -1.2671e+00 2.2451e+00 -#> 3.1745e+00 -1.8666e+00 9.5549e-01 1.1877e+00 -5.7058e+00 -1.1480e+01 -#> -3.5149e+00 1.5049e+00 -5.9846e+00 5.1825e-01 1.1530e+01 7.2957e+00 -#> 1.3030e+00 2.6066e+00 1.7635e+00 -9.6033e+00 -4.6952e-01 6.4410e-01 -#> 1.0071e+01 1.2886e+00 9.9078e-02 -1.1346e+01 2.7033e+00 -1.6566e+01 -#> 3.3214e+00 -8.9271e+00 -1.5329e+00 1.2822e+01 7.3061e+00 -1.0610e+01 -#> -5.5313e+00 -1.9182e+00 5.2385e-01 3.3351e+00 -2.3038e+00 -2.5890e+00 -#> -9.6380e+00 -2.2434e+00 4.5545e-01 -2.4699e+00 -8.2808e+00 -7.3125e+00 -#> 5.7026e+00 2.7890e+00 -1.1418e+01 -2.5375e+00 6.9807e+00 4.0363e+00 -#> -4.7068e+00 -5.1611e+00 -9.9217e+00 2.1581e-01 5.1793e-01 1.5048e+00 -#> -#> (6,.,.) = -#> Columns 1 to 8 -0.1104 0.9378 -5.7425 -1.3886 -6.7944 -1.2199 2.5925 -9.2208 -#> -9.2785 1.3463 2.8895 6.0180 -2.2107 -3.1544 9.8532 -1.1469 -#> -2.0518 -13.8740 -2.3745 6.4815 -3.4840 -8.7533 2.0470 -1.2614 -#> 2.8974 1.6251 -6.4410 11.9340 -4.1402 5.6601 2.2437 1.0130 -#> 2.1063 -0.8892 6.5428 0.7713 1.8376 0.2168 -1.7869 -3.1655 -#> 5.9192 -6.5299 3.9429 -4.7417 -2.0345 -2.1108 1.4094 -1.7040 -#> -3.1214 -9.4695 7.8207 -5.2906 3.8265 -3.1306 0.2918 8.0468 -#> -2.8765 -5.4424 5.3099 5.6219 -2.0720 -3.4595 6.4237 9.0764 -#> -6.5373 2.7311 5.2222 3.8423 3.1656 0.4355 8.0006 -2.0814 -#> 1.2809 2.4835 1.5944 4.1153 -2.1983 -3.9559 -3.0186 0.6905 -#> -12.6721 7.8146 11.8049 -1.7205 -10.0410 8.1629 3.5770 -11.8054 -#> 5.8688 -5.7280 6.1080 3.1844 7.2086 -9.3712 -2.7592 6.2454 -#> -5.4817 8.3479 0.4329 -4.7231 -3.7640 -0.2761 -4.6210 0.6497 -#> -2.6736 -0.6957 4.6696 0.0148 -5.5836 0.8055 0.7237 -2.8764 -#> 5.1874 2.4803 -2.1401 4.0009 0.3659 0.4488 8.4825 6.3955 -#> 8.2776 -6.1439 -6.7428 0.6655 4.5106 -7.2390 -1.9144 -5.6041 -#> 2.6683 0.6469 -7.0735 -0.0103 9.7698 -1.6489 -1.4062 0.4159 -#> -3.5536 -11.1788 8.0697 -5.3634 0.5343 5.5538 7.8198 -7.0964 -#> 7.5448 3.3799 -3.9270 0.0477 7.1459 -2.2052 0.3239 2.4638 -#> -8.3648 11.6064 -1.8365 -2.8855 -3.7194 -9.8075 -13.9457 2.6624 -#> -0.8695 -7.6880 2.9305 1.6563 -4.7491 -5.6331 7.2559 7.0108 -#> -4.5930 8.6262 10.1692 -1.9337 -1.3028 1.9578 4.1001 -1.4597 -#> 5.8933 4.6195 0.6673 -3.3505 4.2870 -3.4126 -1.0499 -1.0670 -#> 3.0959 11.1196 -11.3394 -2.6640 -3.7993 -3.4703 -4.4409 4.4927 -#> 7.0263 1.0446 -5.2210 -0.0563 7.9781 3.2414 4.7680 0.0977 -#> 8.4570 2.5366 -12.1487 8.7612 -3.6473 -6.9408 -9.0835 3.5213 -#> 1.4681 12.0926 4.3367 -7.4203 5.1335 -1.2544 1.0279 2.6569 -#> -1.6785 -21.8863 -1.3839 9.7845 -9.6162 -2.6612 3.2954 -1.9311 -#> 0.9169 -1.5492 -3.9720 3.8593 -0.8790 1.1036 1.5049 6.8214 -#> 0.2175 -10.2392 -8.1670 -1.4911 -2.5520 -10.8965 -1.0136 -5.1678 -#> 1.3053 0.3541 -2.9467 7.1714 4.1810 2.3582 4.0887 4.2044 -#> 5.4859 11.4342 -12.2243 6.8399 2.0426 -0.6062 -4.4571 6.7048 -#> 14.3603 -3.2200 3.9387 1.3679 -3.8398 -8.6160 -2.1590 -8.0406 -#> -#> Columns 9 to 16 -6.3904 5.2458 -4.8878 0.4777 9.6190 -4.0347 6.2520 0.1535 -#> 5.3624 -4.1868 -9.0603 6.5989 -2.7368 -0.5048 -8.6676 5.6638 -#> 5.2559 3.3481 -7.0247 -1.2221 11.6998 5.6450 -0.9032 6.0717 -#> 0.3988 8.7230 1.8028 14.9125 0.2944 -0.6893 1.6754 -1.2014 -#> 5.9161 -2.8328 11.3242 -0.0847 1.8416 2.2938 -4.5816 2.5918 -#> -1.9162 -1.6693 12.8858 -7.4261 -4.7459 21.0233 -0.7926 -13.2537 -#> 0.4529 -1.3662 16.3296 -6.9726 11.5936 -2.3820 -12.0824 -0.4903 -#> -3.9553 2.5013 -4.9634 -13.3355 -3.9944 -0.6187 6.8524 -4.1107 -#> 4.6945 4.5045 -8.6546 10.3891 -2.7178 -5.6847 4.6090 1.6181 -#> 9.8551 -1.0476 -7.6735 9.0922 5.5801 2.0157 -3.8528 14.7383 -#> -1.8485 2.3732 5.4091 -0.7128 9.2158 -4.9523 -13.8347 -14.1544 -#> 1.9425 -4.4296 -0.9140 -20.1580 3.1129 -4.2815 -1.1541 -4.7674 -#> -6.3371 -1.7931 -2.5522 3.0294 -5.5946 0.2522 2.1318 6.1523 -#> -6.9545 4.2920 3.5247 12.1743 -8.3309 1.5324 -4.0184 -2.4786 -#> -7.9861 0.6720 8.6008 8.4768 -5.7279 6.4261 -0.0801 -1.1222 -#> 2.8641 11.7266 -2.5167 11.6780 -3.7370 0.2652 7.3983 3.9098 -#> 9.1588 -3.0015 -3.0287 7.1194 -4.4060 0.8970 -6.1486 5.8799 -#> 1.1350 4.9105 5.6519 -7.8276 5.2783 3.6180 -5.6088 -4.1530 -#> 11.4123 0.2572 -2.4716 -1.5631 -4.3751 -8.8379 -9.4847 -10.3646 -#> -2.2827 -5.8110 4.0167 5.5697 -1.9213 -6.4974 -6.3152 3.8903 -#> 0.8398 3.9075 -4.3331 -8.2620 -0.2703 -12.2609 -1.9502 -0.2135 -#> -12.2079 -1.3780 -1.2939 10.9357 -1.0795 -15.5522 3.0758 10.4788 -#> -1.6880 -4.5991 12.9073 -0.1889 -3.7366 3.0858 -3.7235 -6.3634 -#> 14.6158 -10.9498 -2.9490 14.3120 11.5878 8.4827 10.1251 7.4441 -#> 12.6866 -0.0641 -3.6279 3.0155 -9.3858 -11.3412 -11.1634 -9.6604 -#> -1.7954 3.4595 3.4319 -3.6742 -8.5487 -3.0773 3.5025 1.9246 -#> -2.6488 0.0993 6.1076 -3.1861 1.9818 -3.6518 6.4687 -0.0724 -#> -1.3800 -9.8271 2.9700 5.3824 -0.3110 7.3517 -8.2606 -11.3658 -#> 7.2609 4.6560 -10.1995 8.5112 -9.4829 -10.5180 -6.1653 -0.7339 -#> 6.4446 3.1358 1.7575 11.6717 15.9693 -1.8292 -1.2986 -5.1633 -#> 5.2860 6.0090 -0.7773 -4.0574 2.2034 8.1937 10.7889 3.1794 -#> -2.7170 0.8778 7.5877 0.2280 -13.0934 12.6423 -10.7424 2.5844 -#> -3.7412 1.8666 -0.7106 -0.6447 2.4800 -1.3900 2.4915 -3.1562 -#> -#> Columns 17 to 24 5.4172 -8.8975 4.1241 4.2239 -9.0144 0.6235 -4.9852 -5.5359 -#> -6.1860 14.5444 12.7085 -4.9095 -1.4238 -1.5653 -4.4326 -0.0120 -#> -6.4332 15.0012 7.7659 -0.6413 3.6668 7.6917 -0.7941 -3.8065 -#> -4.8550 0.6845 -5.9768 1.8772 -7.2331 7.2820 2.7222 -3.4189 -#> -1.8828 -5.6188 3.9142 -15.6999 1.0825 3.6080 0.5859 0.2142 -#> -10.4254 -7.3322 7.6011 12.1679 2.1166 -1.3719 -0.8404 -5.9731 -#> 1.6563 -8.6208 0.9193 -1.9948 4.1875 9.4993 -1.0747 -8.5283 -#> 3.6731 1.8565 -0.7910 9.2543 4.0691 0.0453 -3.9086 -7.4447 -#> 1.2494 1.7534 0.7568 -3.5535 5.5141 0.9877 0.9665 3.8092 -#> -7.3750 5.0936 5.8954 -5.7369 -3.3362 -4.8037 -4.0630 -7.6349 -#> -15.0747 6.5869 10.2412 -8.1852 12.6544 -6.4481 -17.7733 9.8440 -#> 2.3890 5.0567 2.5480 11.3571 6.9356 1.6431 -4.5357 -2.4146 -#> 11.5287 3.0665 -12.9552 10.2215 -10.5193 -0.5883 4.4301 -2.9194 -#> -4.5341 4.6156 -11.1645 5.2721 4.7755 -5.4269 8.8919 -4.1058 -#> -2.5422 -4.8962 -4.2533 -3.4713 0.4350 -0.3875 5.2587 6.7581 -#> -2.2825 -1.3043 -5.7796 0.6123 -1.6119 -9.6504 6.3327 -4.8924 -#> 11.4267 3.9958 -5.8304 -0.8209 -9.3814 -1.0441 7.5002 -10.5179 -#> -7.2332 -2.1754 21.7108 -6.8779 0.6091 2.9913 -5.5717 -9.2769 -#> -8.4591 6.1532 -3.9296 0.5712 -5.5937 2.2535 -12.5900 -2.0844 -#> 4.4383 5.7097 -7.7355 -5.1943 5.3091 4.7351 -3.1911 -7.3453 -#> 2.7565 17.1407 7.5476 2.4632 18.5448 -0.6328 1.3705 -5.2688 -#> 21.0880 -6.0673 -15.0749 -6.9460 -0.4218 -10.5325 7.6761 7.2181 -#> -13.9597 -5.9834 -13.9455 3.4727 13.5404 2.1127 6.0688 3.8601 -#> -9.5446 -6.9907 -11.8360 -0.7782 -3.4148 0.4085 -7.5634 9.1145 -#> -7.9267 4.0797 13.3777 0.9393 7.7659 7.1630 -9.1600 -2.5893 -#> 6.0249 -5.8716 -5.5973 0.0046 -3.0231 1.1144 -5.0819 -5.3707 -#> -4.0046 -13.7106 -4.8585 4.0724 6.5528 8.7553 3.9177 6.3200 -#> -0.9138 6.5573 8.3198 2.7524 4.8368 -0.0342 4.3763 0.9721 -#> -4.3229 19.7568 11.2584 5.4611 -1.0099 -5.6638 -2.6794 -7.9756 -#> 3.7537 1.4670 -7.9778 1.0656 -12.9156 2.0157 6.9521 0.2425 -#> -5.8054 -7.1049 -2.3444 -1.4620 -7.0817 3.2761 2.1241 0.6728 -#> -4.7399 8.6810 -0.3137 12.5848 -2.7645 -4.2000 -7.7583 -4.0197 -#> 6.5134 -6.5004 -1.0067 3.1483 -7.6219 -9.4831 2.1260 -2.9960 -#> -#> Columns 25 to 32 0.9164 6.6364 -2.1096 7.6167 5.2051 -3.5309 5.7607 -3.6761 -#> 5.7481 -6.2620 5.5865 -7.7751 6.8103 4.0659 -5.4968 3.3758 -#> 8.8301 0.1947 1.3354 -10.1364 2.6818 -6.0935 -2.1317 5.1515 -#> 3.2282 10.2814 -1.9183 -5.0089 0.9938 0.0229 -14.7824 11.1888 -#> -1.7901 0.0106 0.7380 3.1113 0.0016 3.8805 8.3862 7.7820 -#> -5.4735 9.7038 0.6526 1.3334 2.2150 -16.1218 -2.6737 12.9847 -#> 7.7840 -3.3068 -1.8455 2.6265 0.7157 -3.4875 8.9484 1.1720 -#> -5.0259 12.4743 -4.9562 4.6295 0.6454 -10.6554 -1.6643 11.3980 -#> 5.6431 -4.1585 -3.5017 -4.5217 -6.4074 2.7111 -0.2705 2.2997 -#> -4.3305 -5.4521 13.0141 -1.0215 -2.0584 3.4156 4.8674 12.2027 -#> -2.6645 -3.5395 -15.7281 3.9482 -7.8991 0.9436 -1.4279 -2.3085 -#> -21.3975 -6.5419 -0.5706 10.4837 9.4136 -14.3615 -14.6530 9.4419 -#> 10.6879 -8.3461 -4.0221 -4.7406 -8.1651 0.4021 6.4712 -5.6879 -#> 3.2240 -2.9612 0.0767 -8.3518 -6.7247 3.3232 -3.6010 -3.9666 -#> 10.8131 6.4351 4.1059 -3.3593 -8.6990 -0.5441 8.8988 -9.9437 -#> -11.7232 -2.4128 4.6083 -4.7411 -12.0841 8.8367 -2.9589 0.9392 -#> 6.9387 -11.6099 13.2340 0.9739 8.6156 -11.7220 7.7174 1.2421 -#> -3.5701 -0.7452 -2.5017 6.0676 1.6873 -1.5639 -3.9503 9.2895 -#> -1.7005 5.3688 -5.0744 -16.4163 -10.0591 -11.3082 -6.0288 -1.3911 -#> 3.5844 -5.8183 4.4966 -0.8732 11.8576 4.8436 1.3823 -1.7042 -#> -6.3087 5.5004 -10.4076 -2.8330 -7.5559 0.0676 -10.2145 -0.1479 -#> 4.1106 -1.4924 -9.4611 4.5932 -3.8251 16.5333 1.7181 0.8679 -#> -6.7011 4.7048 7.9716 -4.6916 3.7326 -8.1865 -15.0386 -4.2498 -#> 2.4939 -2.1954 7.4570 -0.5020 4.1974 1.0839 11.5044 -6.8840 -#> -6.2699 -12.1483 2.7677 -7.6698 3.2706 -6.9778 1.7840 -10.8523 -#> -8.1987 9.3442 -1.6294 1.6090 -3.3236 -11.7136 -0.4056 11.0062 -#> 10.5299 -1.8471 0.9151 -0.6181 4.6984 -2.4208 -5.0834 -1.4955 -#> -3.2630 2.9769 0.9128 -4.3088 -10.9615 1.7562 10.8109 -7.8176 -#> -2.5736 -10.3437 11.3399 -11.4009 -1.4814 0.4352 -0.8255 -4.6240 -#> -9.0465 11.5223 0.9622 -0.6233 3.3622 -9.5351 8.7453 3.0839 -#> 0.4572 3.4590 7.2394 1.7829 4.6249 -0.4822 -1.4148 10.4267 -#> 2.5418 -7.5339 9.3177 -9.9249 -0.6547 -6.0251 2.0060 -3.2288 -#> -9.2620 1.0335 -8.6599 -0.5788 -5.1153 1.5086 2.8250 -4.3265 -#> -#> Columns 33 to 40 -11.8986 2.4147 -4.4610 -0.6107 3.3662 -8.5069 -2.2273 -9.2873 -#> 8.6256 -1.8284 9.2563 -3.4672 -0.0532 1.5168 -5.4890 3.4163 -#> 4.2299 -1.9203 1.9084 -2.1578 -10.2429 7.3712 0.1574 -2.3494 -#> -1.5205 -7.9155 7.4539 -18.9782 19.1242 -7.3024 -4.1140 5.9851 -#> 11.3259 -2.9690 -0.6773 6.6274 -1.2912 3.8586 5.5946 4.4924 -#> -1.0683 9.5736 -10.4562 27.6726 -11.6011 -16.5427 14.6381 5.0497 -#> 7.0892 -9.6719 -9.7624 1.9728 -13.5009 7.0491 4.0457 -5.3395 -#> -7.4001 3.7149 -4.0817 -8.0094 -7.2760 -3.4291 3.6974 -1.5636 -#> -2.8440 -3.4581 -5.7945 -11.4628 6.9835 -9.2022 0.4153 0.5739 -#> 12.5440 -7.6764 0.5098 1.7730 9.1909 8.1671 2.5764 -7.0154 -#> -15.5586 7.9803 6.0739 -10.7840 -12.0563 12.1422 7.7948 -3.1358 -#> 5.9472 -2.5652 -0.9360 5.3704 1.3411 0.7240 11.4107 -11.6393 -#> 8.1663 -5.4020 8.3506 -17.4386 -0.8662 2.8202 6.6108 -3.2091 -#> 1.4430 -6.1873 0.6227 -7.8972 -9.4365 0.6525 -3.3555 -0.8793 -#> 6.1050 -16.9247 6.6229 -5.1295 -18.5341 2.2928 -2.2324 -5.7622 -#> 9.0676 -5.8671 5.1432 -8.3789 8.0141 8.3037 7.0876 6.2444 -#> 9.7063 1.2566 -10.7937 -0.6233 -1.8329 -8.1201 1.5637 1.3777 -#> 2.8862 2.2535 -0.1103 8.3647 -7.7593 2.0481 5.5800 3.2890 -#> -5.4787 -6.0615 -15.2475 -3.8781 -7.9978 9.5445 -4.6079 -0.9424 -#> 8.5528 -0.5881 4.5892 2.4927 -3.2778 8.8345 -3.8547 1.1981 -#> 0.0472 -3.2210 11.5313 -10.6498 -2.6684 -0.0521 -8.7467 0.4957 -#> -3.0700 -6.1665 6.6928 -15.0433 3.9053 1.0258 -1.8824 0.8121 -#> 1.9634 3.3713 -0.2318 5.9410 -6.4410 -0.9862 -14.5837 18.1802 -#> 0.7374 -9.0851 -4.4673 12.4889 7.7687 6.9073 -7.1165 -0.6474 -#> -1.6195 1.2593 -19.5939 21.1321 -5.2771 5.0347 -4.9280 4.1432 -#> 3.3800 2.1993 -10.3884 -0.5506 -3.8106 6.3740 1.3545 2.2678 -#> -12.3134 -3.8762 -1.9338 -3.3150 -4.5496 -18.2740 -7.0708 5.3476 -#> 6.4340 -3.6236 11.0587 11.1597 -18.1282 13.3269 -13.9402 -2.0978 -#> 1.6286 -1.0577 -4.4468 7.5563 0.7859 11.6447 -11.9411 -3.2172 -#> 1.3110 6.0144 1.8548 4.5404 -7.4083 5.3819 3.6763 -4.2610 -#> -7.4247 -1.7670 -4.6530 -8.1285 -10.1503 -3.5548 0.2605 -7.1283 -#> 0.1491 -3.1582 8.1519 0.3861 5.1820 2.5664 3.2590 -3.3111 -#> -0.4734 2.3086 2.7129 1.1263 9.1693 9.1878 10.2963 6.6774 -#> -#> Columns 41 to 48 1.2782 3.0907 1.9709 2.3417 -4.3050 7.1534 11.8273 0.9176 -#> 2.4463 10.8948 1.6810 -8.5839 -0.7853 -4.7783 -14.4342 -11.8971 -#> 1.7757 5.7692 5.3072 -4.5191 -3.9519 6.7591 -0.8277 -3.8367 -#> 2.7664 12.2129 -13.4740 -5.2795 16.2868 -3.6188 4.1092 -1.3353 -#> 9.7374 -6.3342 -17.3494 -0.5017 -9.1257 4.6217 3.1513 3.2992 -#> 4.9675 4.2960 -21.1272 20.9616 -4.4320 1.8313 6.9209 4.1419 -#> -0.6570 6.6272 -0.8664 10.3004 -7.1146 10.9799 -2.9945 -2.8342 -#> -6.3293 3.1892 2.5886 5.4950 3.4890 -8.0250 -2.8254 -7.9372 -#> -0.5784 3.8178 4.4441 -3.1310 7.4993 3.6207 -0.3728 2.2499 -#> 8.4700 -1.6866 -3.0571 -16.1363 5.3445 -0.7077 -9.9704 -6.9214 -#> 2.5221 -11.8837 8.1810 1.1480 -4.3493 8.9619 -4.5526 1.7608 -#> -12.1878 21.2674 -6.3019 -5.0895 -14.0484 -0.5744 2.9402 -5.4836 -#> -7.0631 5.2959 7.0089 -3.0844 3.8373 -6.6631 2.1493 -0.9894 -#> 2.0537 -0.0306 -1.7520 -3.4060 11.9724 1.3590 4.3287 12.5580 -#> 12.4126 -4.2870 -4.4063 -1.9916 7.4882 3.6379 -0.4937 10.1923 -#> 1.7027 -6.4505 -2.7387 -16.2455 12.9007 0.3193 -9.1811 9.0046 -#> 2.1747 0.5451 -11.6460 -13.3928 0.0783 -4.0526 3.3838 -17.6555 -#> 4.6698 2.2650 -13.3213 6.2734 -15.1414 3.1142 4.6771 -1.2094 -#> -2.7839 0.2344 8.5908 4.0064 3.6063 3.4178 -3.9916 -4.0202 -#> -10.4147 -11.0731 1.7277 -4.9056 6.9644 -3.1199 2.0394 -2.1820 -#> -5.5745 -2.2343 5.6448 6.1782 7.3012 -7.1318 -10.1754 -5.7040 -#> -4.8389 4.2046 7.1973 -1.9157 8.2896 -0.3394 -12.3002 10.6009 -#> 4.0387 -2.4189 -3.1629 -2.7025 5.4084 1.8913 2.7038 9.0425 -#> -8.2393 12.7998 14.6245 0.2574 3.2928 4.0283 -3.1100 -17.5313 -#> -9.2878 -1.9203 -6.5422 7.5714 3.6611 7.3589 -3.7316 -9.5962 -#> -1.1382 -0.0783 -10.7222 -6.2943 9.0036 2.3743 -2.7191 -0.3087 -#> 0.0976 1.9307 -4.1910 5.6042 0.3211 4.8762 9.9717 11.4200 -#> 5.8096 -6.6802 -3.5446 -9.9357 3.0509 -1.8566 -7.1458 5.7246 -#> -1.5739 -1.6134 0.8694 -13.7485 8.9703 -8.6950 -7.3309 -1.9867 -#> -1.3322 -1.9676 -8.1164 -11.3705 -4.6452 10.2379 7.2234 -2.2219 -#> 0.1392 5.5978 -9.3507 -3.7589 -5.3242 2.3767 8.0046 2.3059 -#> -1.6345 -10.6635 2.6171 -2.6985 4.7007 -0.0966 3.1772 1.3217 -#> -9.4622 6.9922 -7.3082 4.2840 0.9404 0.6788 -3.7414 0.1027 -#> -#> (7,.,.) = -#> Columns 1 to 8 -8.3868 -11.6401 7.4697 -10.9227 -1.2344 -0.8900 -8.8770 -5.4839 -#> -9.1322 4.3897 0.3318 -1.2337 5.0459 2.4164 -1.0493 0.3225 -#> 0.1665 5.2499 -0.4661 -2.1035 -2.2735 1.1229 1.1841 1.3380 -#> -2.3096 2.9836 -0.8848 -14.8167 6.2941 -7.0506 -2.1243 12.7500 -#> 10.8477 -7.4534 -3.2469 1.2711 -1.6800 2.5467 1.2383 5.5295 -#> 5.1895 -2.6360 -9.6760 9.0771 -11.6362 3.2688 -2.5761 -4.0012 -#> -6.1945 -9.9513 2.7478 -14.0589 -5.7439 -4.8767 -6.6987 16.0320 -#> -1.7465 2.0612 5.0697 -4.8202 -0.9129 -1.0709 5.3457 -3.9324 -#> 3.5950 -0.1859 -6.9557 -6.4294 1.4565 -4.4959 14.1353 2.4524 -#> -12.4705 0.6877 -3.4191 6.5834 5.5183 -1.0149 1.1827 5.6798 -#> -8.8835 2.0619 -3.5445 8.5120 -7.9080 6.9911 8.6304 -8.9595 -#> -0.2742 -3.0854 -1.6339 9.4392 -2.5067 4.5785 0.2035 -5.0767 -#> -1.1434 15.9596 -7.8063 -9.7865 10.5698 -4.6604 8.0900 -5.7061 -#> 4.6076 3.9945 -11.6087 -5.4445 -6.3514 -2.9826 -1.0471 3.7196 -#> 12.9841 5.3269 -6.8384 0.2756 -5.1947 -6.7814 2.5640 -7.7269 -#> 2.2016 -1.5726 -2.6084 -0.5966 8.7939 6.1295 -0.2765 0.4567 -#> 1.7501 2.1831 2.6268 4.4627 9.1659 -1.7995 -2.6477 0.7981 -#> 0.1504 -7.4290 -3.9983 -5.3382 -1.8106 0.6926 -6.7663 12.2016 -#> -8.6294 10.0757 -7.5659 6.8896 -6.0096 6.9586 -4.1332 3.6935 -#> -1.4324 4.3200 6.0882 6.4074 -4.5371 -13.4335 3.0922 2.4905 -#> 6.0976 -1.1818 10.5174 -4.9773 -5.7739 6.8962 0.0486 3.7851 -#> -4.0463 -1.4940 1.7253 -16.4487 2.5028 -6.1684 4.3875 7.6539 -#> 7.5972 -0.5269 -2.3114 6.6299 -8.5260 -3.5701 -16.3837 0.6222 -#> -8.7690 -5.4894 -4.1165 5.5410 4.2613 7.8740 -11.9896 -5.6817 -#> -2.9779 -3.2116 -11.2902 7.1702 -9.1442 5.8912 -4.4738 3.3884 -#> 6.4202 2.3732 -0.1645 -4.8198 -0.4243 -1.2116 0.7092 -4.4674 -#> 5.3454 6.0369 2.3749 -5.2803 -0.7246 -2.2842 6.0546 -0.1393 -#> 1.7873 1.5501 9.4551 11.0980 -7.7700 14.2810 -6.7579 -0.5943 -#> -3.9084 9.7229 -3.9989 3.4151 -2.5499 3.7245 -2.2462 1.4619 -#> -3.2414 0.1511 12.3477 9.7800 -3.8685 3.8956 -13.8782 -1.4243 -#> 5.0264 3.0037 -7.3815 9.3482 10.0306 2.9168 0.5762 -5.2767 -#> 3.6499 -5.1904 -9.1577 5.1506 5.4749 -2.8899 16.6732 -6.3274 -#> 3.2116 -2.8429 3.4621 -5.2504 5.2777 8.3226 -5.6161 -11.3883 -#> -#> Columns 9 to 16 0.1044 0.9257 -1.7411 -12.9353 -1.1161 -2.5187 6.6271 -4.6543 -#> 6.4146 6.4546 -0.6852 -0.9331 3.4367 10.3163 1.5969 1.0194 -#> 9.9608 6.6149 4.0068 1.5514 4.0437 0.5026 -0.8534 5.0826 -#> 6.3817 -2.3573 1.7044 0.2486 8.7588 7.6900 -7.8460 -1.7487 -#> 6.5979 5.1956 -0.4842 7.8987 2.7213 0.9117 -0.3715 -2.7825 -#> 9.8294 -3.1727 8.8739 -1.6314 -3.7998 0.8782 -10.0484 8.0967 -#> -6.6380 6.3176 -10.2232 2.1496 8.0068 6.6707 -4.9896 -10.9107 -#> -19.6346 4.5560 4.6483 -10.3726 -4.4241 -0.3028 -3.2161 10.4890 -#> 10.0427 9.7625 0.8205 10.1058 -0.2017 2.8767 2.2373 2.5954 -#> 6.4168 2.5372 4.0594 2.1162 8.3249 14.2594 1.9229 2.2237 -#> -1.2217 -11.7178 -4.6981 -7.9874 -4.3094 12.9896 -2.1611 -1.9043 -#> -2.7255 -11.3130 -13.3637 -3.7082 -2.8801 4.3433 -12.1371 13.4229 -#> -4.5561 3.4566 4.1829 10.1662 5.0826 -6.1936 -6.7400 -4.1677 -#> 4.8390 -1.7285 -2.7652 11.2970 4.4895 -6.7624 -8.2958 -6.0062 -#> 4.2228 2.8737 1.6859 15.0594 -4.6857 -5.1865 7.1145 -14.9673 -#> 3.8024 2.3836 -2.7731 14.1042 -3.3697 2.4403 -8.3130 2.2377 -#> 2.1825 9.9036 -8.2547 -19.5848 16.7161 6.8862 11.2340 -0.6450 -#> 1.9039 1.6240 -5.4858 -6.3526 -6.1712 3.0947 0.7988 12.7938 -#> -3.8852 -13.2789 -1.2641 -3.7055 4.4524 7.2319 -9.9409 -2.3498 -#> -15.0849 5.1506 -0.8828 -9.4088 8.0829 -0.0959 3.6027 -13.6473 -#> -1.5873 12.1405 -3.7498 -0.2601 1.4899 6.2359 -9.1811 -1.0767 -#> -5.0776 -0.6590 -1.7319 9.0051 4.7089 2.1270 -2.0193 -4.1000 -#> -8.3452 5.3808 -5.5685 -2.0289 -0.4346 -1.4210 -2.9761 0.2022 -#> 6.6507 -1.0421 -5.2787 0.5100 9.9340 -4.4988 7.4089 -7.7939 -#> 11.7048 -10.1678 -6.2539 -5.6852 1.4961 0.2818 9.4267 -2.1771 -#> -13.4982 10.8678 3.8737 -5.1592 6.8410 0.9065 -1.2240 -8.9981 -#> -13.6598 8.9172 0.6429 0.0794 -3.5587 -6.8124 -9.3900 -2.4623 -#> 12.8951 -6.3400 -1.7720 6.4668 7.2949 -1.0787 -0.7375 -11.4979 -#> -4.4058 3.9306 2.9124 0.6470 10.7702 -6.2025 3.5430 -2.4585 -#> 14.9334 -7.0435 9.1913 -5.1234 6.4600 6.1955 4.8577 -0.3465 -#> -4.0835 -2.4654 6.2225 -0.5559 -9.6441 -11.2900 4.6662 17.0918 -#> -4.6378 1.4535 4.4265 13.6624 9.1190 -7.6378 -0.3699 -2.8796 -#> 0.9298 -4.5409 0.4691 5.7132 2.0187 -0.3962 -6.2617 -4.4942 -#> -#> Columns 17 to 24 -7.5082 0.1230 -2.7170 -0.1290 1.2378 3.9310 -6.8861 -2.4757 -#> -0.0840 -4.9533 6.8870 -7.8175 -6.2897 -1.5212 12.2053 1.7018 -#> -6.1950 -5.3380 8.6784 -1.1482 -13.9410 -14.6168 7.9137 3.0913 -#> 2.9134 -8.0645 1.5240 -5.6552 -3.8008 4.0944 -0.5454 -8.5642 -#> -2.7359 -4.8647 -4.7398 3.6420 4.1403 -0.2886 -4.6023 -1.1916 -#> -4.4233 1.7021 -9.9913 12.8842 7.4480 -4.9905 0.0126 1.7723 -#> 0.5143 -6.9647 8.9175 2.7165 -0.2401 2.0856 1.3035 -3.8266 -#> -1.7071 -3.9459 4.0166 1.7316 2.3844 -5.6508 0.4939 6.4315 -#> -1.7874 2.9283 -1.7397 -0.0795 3.3628 -3.7478 -3.3556 2.6575 -#> 3.8874 -5.4597 1.9906 -2.7408 -3.4235 0.8202 16.5486 1.5903 -#> -13.6912 7.5320 3.8591 -2.7932 2.2483 -5.1478 9.2281 11.0863 -#> 14.2475 11.0989 -1.1390 -4.1648 -10.9931 -2.8091 14.1621 8.3148 -#> 4.0171 -24.1954 7.6173 6.6532 -1.9288 -2.6925 2.4648 8.5419 -#> -1.1056 -3.7104 -8.6558 7.8332 3.5572 -4.8852 5.6026 -7.8859 -#> -17.2301 -14.5154 -2.0305 0.4276 -9.1197 -0.3856 -9.3708 3.1188 -#> 0.1942 -10.6688 1.5796 11.6256 -2.3149 -0.3170 -1.3611 -3.2544 -#> 8.5874 3.6442 1.8841 -5.7845 3.7858 3.3507 9.5682 5.7652 -#> 11.5020 7.4198 3.1556 7.7805 4.3205 -6.7041 3.4949 -0.9564 -#> -20.2656 -5.5543 8.3369 6.5278 -4.8215 -6.9655 8.4572 -8.7750 -#> -2.4090 -6.5655 0.6052 -7.9955 -2.2705 1.3170 5.0470 -6.7168 -#> 2.3647 9.7501 0.1719 1.5766 3.1177 1.5264 5.3542 -6.0455 -#> 5.8564 -6.1934 -3.3479 -0.8891 -4.3840 13.8145 -6.9400 -5.6010 -#> -12.5772 -2.0369 -4.0395 -4.4490 6.7978 5.7791 -2.5945 -7.7926 -#> -2.7811 12.2068 8.0313 8.7803 -3.9315 2.2293 16.3355 -9.4390 -#> -4.9157 21.3081 -4.7641 -0.2722 0.8232 -7.7434 7.1377 -10.3087 -#> -16.9968 -18.4087 6.2145 7.1472 1.6623 4.9139 -7.8575 2.1788 -#> -4.1799 -10.8815 -1.5725 -13.0412 4.1585 2.2265 -13.8721 0.6302 -#> 9.3972 5.2940 2.4569 5.7679 -4.9076 12.6545 9.4319 -5.0808 -#> 1.1354 0.0392 -5.1914 -9.7269 0.4172 -2.1484 14.0104 -10.9378 -#> -8.9589 5.7229 -7.1192 5.9937 2.2431 11.6666 5.2665 2.3037 -#> -9.6188 -2.3606 8.3819 -5.6156 -7.0418 -2.6749 2.5972 0.8289 -#> -0.9066 -14.1249 0.7172 -3.3330 -2.2977 3.1394 -2.7918 8.9389 -#> -7.4333 -3.1721 -8.1599 4.1023 -1.1054 -1.7108 -0.0041 4.4734 -#> -#> Columns 25 to 32 6.2032 6.7606 -4.1842 4.8856 4.8326 -4.3465 12.9020 -1.9198 -#> -4.9915 7.2119 -13.3811 12.4029 4.2098 -8.6987 -7.5963 -10.2318 -#> 3.2876 0.8499 -10.0451 10.1758 9.1603 4.5728 2.2774 -5.3308 -#> 6.9995 -2.8632 -17.0167 4.8331 13.0833 10.4276 -6.8767 9.1409 -#> -12.4603 -7.5971 0.9850 3.2682 -1.8272 -9.1431 11.7883 -14.3354 -#> -5.0676 0.1846 -2.6840 0.9372 -13.7782 6.9465 -10.2780 -4.0720 -#> -2.2802 -7.5383 3.5250 2.1399 11.5853 -7.8419 -4.0121 -3.3568 -#> 0.4598 -6.3054 -5.5410 13.9453 -2.0206 -7.8521 -1.9166 4.1174 -#> -4.2545 -2.3393 7.3020 12.9533 1.3055 3.4879 6.2869 -5.5537 -#> -12.6416 -3.1648 -10.2565 -0.2521 -1.3447 -10.9668 -0.7903 -17.2056 -#> -3.9141 -9.5369 3.0149 21.3584 -2.6780 1.7901 5.7324 -17.4045 -#> 10.1366 4.0803 -5.2090 22.8942 -9.7008 -9.1265 -3.6588 -1.8557 -#> -4.3599 -13.6794 5.6573 -10.4187 -1.9024 0.6204 1.9504 -1.9618 -#> 0.9198 -9.5261 5.4805 -1.3540 2.4746 9.3641 7.0959 -0.9933 -#> -8.8033 -11.0557 13.0802 -6.0954 12.3576 8.5847 16.7252 1.8883 -#> -5.7972 -4.5999 -3.2640 -12.8288 3.2058 4.2547 -2.3899 -2.1646 -#> 7.3529 -7.6689 1.1825 -13.8196 8.5992 -0.3931 -5.4558 3.0841 -#> 3.8626 0.6250 -15.1615 5.8399 -9.6220 0.8828 1.3470 -3.3132 -#> -8.2905 -6.0210 -6.0656 17.1575 8.8731 1.6172 1.9336 -2.0237 -#> 4.8286 1.5069 11.3829 -1.7471 5.2813 4.3474 -6.8825 -5.2249 -#> 8.4692 11.5821 -8.9529 11.3588 -1.6938 -5.6908 -3.0364 -2.1104 -#> 6.3942 4.8667 15.7654 -2.2110 -7.7429 18.1713 -8.2298 4.1817 -#> 5.3835 -2.9582 -5.8010 -4.3772 0.1724 -4.1213 14.8204 -4.8059 -#> 9.6845 0.8019 -10.6839 -13.3050 -10.2778 -5.5199 0.4439 -10.2108 -#> -7.2615 6.5667 9.5359 18.8324 -0.5216 8.7538 -9.2066 -5.9030 -#> -0.3073 -15.2456 2.1572 -3.2268 -5.6128 -1.0913 -2.9713 -4.1415 -#> 5.9096 -4.1621 1.9846 9.2107 14.1094 3.7912 8.5795 -0.3664 -#> 3.1452 -3.1311 11.1002 -6.0726 -3.6456 6.7602 -9.3967 9.3666 -#> -10.4010 2.7401 8.1540 12.5843 3.1052 -10.2762 -4.5395 6.4634 -#> -1.8610 -6.9201 -18.4132 -11.7961 -3.1464 -0.3100 4.7452 1.2053 -#> 0.6977 -13.1071 -13.5327 13.9274 8.3351 3.5292 7.3812 5.6499 -#> -13.9419 -2.8361 9.5517 -16.0587 8.9735 -15.3313 1.8182 3.1891 -#> -8.8529 4.9793 5.3233 2.8270 -13.7933 5.3210 -6.3498 -4.2234 -#> -#> Columns 33 to 40 -4.6260 8.8620 3.4329 -8.1481 -8.1702 -0.7852 2.0633 -2.5541 -#> 9.5929 2.5161 -5.7370 7.1015 2.3320 -6.9793 -8.9219 5.1713 -#> 6.1647 1.8937 4.1104 19.2877 1.8289 -11.5295 -3.7615 7.3228 -#> 2.2258 -5.6179 0.3055 9.3003 -11.9471 -4.2971 -6.7805 14.6903 -#> -6.3973 -2.0035 -2.7854 0.8171 7.2534 -9.8019 3.8554 -7.0032 -#> 1.0929 -7.6663 -11.2568 4.7428 -4.0117 12.4513 5.8052 5.8733 -#> -17.8153 -1.4327 5.2808 1.4281 0.3969 -17.7094 3.8365 -10.8317 -#> -7.7704 4.2667 -4.6862 6.3226 0.9491 -1.5931 -0.6221 7.8181 -#> -3.7231 5.6704 4.0881 -1.1873 -4.5026 -0.5250 2.7140 0.5003 -#> 12.6789 3.0519 -6.3219 -0.5452 1.5616 -9.3017 -15.5234 1.3124 -#> 5.1097 6.3707 -4.6902 -3.8234 -8.2346 6.2555 7.4859 -11.0259 -#> 10.0714 7.5715 -2.5473 13.3906 -2.7765 -7.9680 2.9459 6.5335 -#> -1.5787 -12.5808 -0.2462 9.8006 0.4333 0.8598 -2.3843 -9.3571 -#> -6.2396 -2.2068 -10.0107 7.9180 -2.8846 -2.9688 1.4483 2.2000 -#> -2.5841 0.5950 -0.6526 -0.3271 -2.4743 -6.3197 9.3940 -4.1160 -#> 2.2653 3.4443 -8.9261 -0.0572 5.1695 -6.9099 -6.3007 -0.9485 -#> 2.9831 2.9335 1.6797 -10.6045 4.4246 -4.5346 -11.1331 -8.0911 -#> -2.4504 7.1525 4.0060 9.7077 1.3683 -5.5369 -0.4538 -3.3585 -#> -0.3564 -4.4546 4.0470 -3.3142 -4.0203 -10.6082 -5.8961 10.2849 -#> 0.5000 -3.4236 -2.3786 -2.6622 8.2442 -9.2194 -2.3547 1.3446 -#> 2.0190 0.3457 -8.0455 11.9630 5.4565 -7.7393 3.8689 6.4768 -#> 1.7497 -0.7774 -1.2803 3.1482 -8.3563 2.5110 0.5142 -6.7214 -#> -7.3846 -3.3771 -8.7545 -6.7862 8.2003 -4.0938 15.2718 3.2306 -#> 8.8394 -4.8474 -1.2207 -3.2168 7.5263 -7.6474 -2.2813 -6.1993 -#> 4.1752 8.8815 5.9743 -9.0465 -5.3511 -6.1333 -7.7893 7.6450 -#> -9.8636 -2.4300 -3.4376 -5.1739 8.7395 -9.5285 -2.1348 -0.2848 -#> -6.7656 0.5918 -0.9239 -10.9065 -5.3489 3.6691 15.7931 -3.7872 -#> 5.8799 -10.8813 -7.1825 1.8036 10.5524 -7.3634 12.1371 2.8828 -#> 5.1392 5.2809 -7.0235 -8.9886 1.4891 -8.4972 -8.1288 17.9264 -#> 1.7187 -11.7695 -8.5988 -4.9949 -1.4106 0.4465 -3.4039 -0.1012 -#> 1.4442 -4.1300 -1.3585 -4.7286 -16.1419 -2.8185 0.3761 9.5014 -#> 5.2136 -3.7293 4.7115 -7.1455 -1.6220 -1.0989 -2.3889 5.3699 -#> 3.4604 -1.1786 -13.8256 4.2584 1.8335 6.6330 -3.3588 1.7650 -#> -#> Columns 41 to 48 -16.4893 5.8363 5.3839 6.3958 -1.4048 4.1891 5.3464 2.6790 -#> -2.8933 2.2947 7.0668 1.9631 0.7939 2.5534 3.7270 0.8783 -#> -3.1012 4.6196 1.3724 -5.0885 2.5820 3.7266 3.9187 -7.3649 -#> -3.5867 4.6952 7.6381 4.0358 -9.3693 -0.2167 -3.8898 2.1728 -#> 3.5989 5.3581 0.7363 -6.6457 -6.0644 -3.5028 -3.2641 4.5286 -#> -14.7376 2.8292 6.0339 -4.5955 0.7311 14.3921 0.4553 -9.5141 -#> 7.2329 11.5357 -6.6458 -10.2309 12.7271 -7.7142 -5.5970 2.3869 -#> -9.5121 -4.3462 0.2946 5.5319 -0.1472 7.0475 4.4480 2.4542 -#> 1.9695 -4.8489 -0.9918 1.9768 -8.7223 0.4888 0.2278 -7.7381 -#> 7.7019 -10.5364 3.4470 1.3466 -1.5905 -14.6580 7.5356 -2.0517 -#> 5.6417 -0.9466 -9.8949 1.3275 3.2663 -1.9140 -2.8904 5.5347 -#> 3.7832 -2.9117 -5.5314 0.2180 14.6717 4.5803 9.6055 13.1461 -#> 7.8353 -18.9302 3.6607 1.4060 3.8057 -9.1981 0.9597 1.2560 -#> -2.9988 -7.1067 -6.3133 7.0839 2.7961 -6.5958 9.6824 -2.1668 -#> 12.1370 -7.3829 -1.9034 -2.0261 7.5014 -1.3085 0.9310 4.8365 -#> 15.2301 -2.5347 1.4293 4.3834 -11.1265 -9.4680 8.2599 0.5567 -#> -6.9354 -0.8273 12.9513 -16.3247 8.7733 -10.5149 -8.3016 -3.5463 -#> -14.8789 6.2359 0.9929 5.7673 -0.0762 0.3267 -2.3356 -5.3080 -#> 4.9092 5.9725 10.4473 -7.8813 -2.5593 11.1572 8.9717 -0.6405 -#> 2.2686 -2.9832 -0.0737 -2.9151 3.4551 8.8344 8.4443 1.2575 -#> -5.6279 -1.6709 0.0603 4.5958 -2.0800 9.7000 7.3730 1.3542 -#> 3.8505 2.0401 -9.5092 18.2622 -3.4618 -5.5624 -1.9886 -0.1771 -#> -1.8987 5.4359 3.5942 -6.1446 0.4830 9.7549 10.8543 2.9409 -#> -3.1502 11.0579 -4.4697 -10.3236 -4.4525 -3.1020 -20.5302 -8.3858 -#> 2.7279 21.5577 -0.4661 5.0657 2.4091 18.8487 3.7039 4.6378 -#> -5.8267 4.8931 -3.0858 2.2141 -10.2913 12.2682 2.7239 7.4378 -#> 1.9541 -1.8613 0.1603 -3.9407 -2.8795 6.0980 3.9917 -1.0544 -#> 3.9225 4.6235 -17.5093 -8.6676 0.0359 -8.2765 -9.6504 -2.3546 -#> -3.0591 -0.6578 -2.2810 14.9146 1.5137 4.6708 18.2630 -1.8310 -#> -2.0140 -2.5775 -2.4864 -8.7478 -2.2091 -5.5142 -10.5906 -5.6048 -#> -5.8611 -1.2948 3.3547 0.3666 -10.2013 -2.2231 5.5278 -1.7056 -#> 8.8016 -10.1636 6.4712 -8.4551 13.4827 -1.8375 6.0630 9.2747 -#> 1.3997 1.9604 -6.4808 8.4185 -0.9404 6.2133 0.5617 11.8576 -#> -#> (8,.,.) = -#> Columns 1 to 8 9.7505 21.5211 -0.7218 3.5807 9.2035 -5.7990 -5.3427 -6.5380 -#> -9.3461 -4.3623 -9.2135 0.1155 -17.1370 11.1844 -8.7337 -8.3448 -#> 4.5790 -3.9913 -6.5917 6.4134 -14.5408 -5.1644 1.6960 -7.1082 -#> -0.1047 -7.5503 -1.7047 1.2399 -2.9983 4.1608 -5.1501 2.1459 -#> -12.8589 -4.4785 -3.2548 0.9505 5.6102 1.1982 10.0071 6.0460 -#> -11.4783 5.1726 -4.2252 4.2747 1.2827 -10.9742 0.3886 2.7719 -#> 4.9565 -1.0287 -9.1887 -7.2761 13.3099 -11.3184 -5.4476 -12.9089 -#> 0.8144 4.3780 -7.6663 -5.0387 8.2941 -7.1678 -3.1985 -3.6510 -#> 2.9263 -6.0486 2.0268 2.1189 -5.3773 0.8080 -6.3592 8.9286 -#> -8.7668 2.5708 -1.3839 7.6679 -9.7390 10.7981 10.0152 3.3428 -#> 1.9171 -0.7832 -3.3217 9.5469 0.1392 -13.4776 6.0295 -2.9709 -#> 0.3317 2.2112 -6.3795 -2.9447 2.0840 -22.5732 -2.1504 6.8618 -#> -6.5304 -0.3599 -4.6970 1.2913 2.6933 7.7431 1.0711 7.2043 -#> -0.4512 -4.5796 7.8038 6.7893 -3.4706 0.2633 -1.9958 -5.2133 -#> 5.8139 -2.7947 0.3844 9.0265 6.0386 0.1709 -2.3162 -5.0494 -#> -9.7443 -8.1242 10.9562 -1.5658 -3.0498 11.7880 6.9681 6.9782 -#> 2.8668 5.6868 7.3995 0.1941 -8.7889 8.4973 -0.6561 0.4459 -#> 4.1562 5.1469 0.3420 3.6547 5.1419 -9.6600 3.7330 3.8443 -#> -2.3604 1.4771 -4.2629 0.4718 3.2103 -9.8736 -0.7177 -12.7919 -#> 12.6961 3.1390 -5.6916 0.6333 -0.3446 1.4370 -2.3489 -14.2977 -#> 0.3057 -4.6486 -2.6362 -7.3607 -1.4229 -4.7620 -1.7483 -6.2187 -#> 6.4337 -9.8663 -2.6658 -0.2098 -3.9033 6.9333 -10.1242 -6.0069 -#> -14.3827 -8.0791 2.1936 -2.1635 7.4595 -9.9999 -4.5255 -15.1139 -#> -6.5837 0.5889 9.7503 1.1785 2.1524 11.7576 8.8130 -2.7063 -#> 12.3878 -0.1523 1.3679 2.5950 -13.6549 -3.5532 -3.3741 -9.7953 -#> -0.7170 -6.3100 -8.0999 9.8903 14.4547 -6.2736 9.8533 -5.8607 -#> 1.1360 1.0335 -0.0059 3.1830 -3.2109 -7.0617 -5.7204 -3.7372 -#> 5.6506 -5.1117 11.7300 -3.5025 -7.5426 7.8535 7.1664 -9.1174 -#> 5.7702 -0.2175 1.7750 6.0243 -21.9186 8.0276 9.3998 -4.4018 -#> -10.6650 12.4759 5.2718 -1.5027 -2.9467 7.5737 15.0786 2.4842 -#> 6.5021 8.8091 -0.6611 4.7909 5.5022 -8.2502 3.1660 7.5191 -#> -8.0627 -1.6115 0.2394 6.6535 2.8433 13.6172 2.0723 19.1200 -#> -6.4064 -6.9318 2.5021 0.6963 -5.9183 5.2332 4.6153 12.9524 -#> -#> Columns 9 to 16 -7.4489 -0.8042 2.7854 8.4652 -6.6809 15.0909 19.8745 7.1479 -#> -9.3199 9.4770 -3.4972 7.5095 -0.6291 -4.8227 2.6740 -6.6423 -#> -2.7731 0.6078 -0.3694 -3.5848 4.8989 4.5288 -0.2155 2.2294 -#> 0.0430 7.7739 0.5964 5.9654 -5.0387 -8.3233 6.6414 -0.9961 -#> 4.0313 -1.3787 6.4081 -6.2994 2.1910 -5.4143 -3.6866 -1.5317 -#> -0.4060 3.4386 -5.3304 -1.7402 -5.4494 8.4392 -2.5724 -2.6365 -#> 2.4761 -6.6946 -2.1128 2.0522 7.0601 7.0882 -7.5598 16.4945 -#> 1.7845 -5.1161 -4.2109 0.0422 2.5480 2.2563 -13.5602 6.9806 -#> -10.9724 2.8955 -0.9919 -4.6993 3.9657 5.9168 2.8627 -3.5043 -#> -2.7526 3.3810 0.4070 4.7812 2.5217 -14.3968 -4.0289 3.0694 -#> 11.0097 -4.5242 -2.8502 -7.9287 15.9853 -11.4852 8.3789 -10.0767 -#> 1.5480 -3.0409 -0.6347 7.7452 6.0101 2.0608 -2.8751 7.2602 -#> 0.0410 -5.5461 7.5252 -11.0345 12.0098 -14.8030 -7.9794 0.9225 -#> 4.2580 -11.4530 3.3565 -3.9571 5.1758 -4.5969 5.6352 9.2885 -#> 12.7585 -1.5618 -3.5641 -13.9890 5.7753 -1.2041 -3.7336 6.4951 -#> 1.9021 3.1302 -0.2939 3.6689 -5.5221 -9.6258 -4.1210 5.6672 -#> -0.9260 -2.8063 -10.6438 5.8411 4.1513 -2.4985 -12.3546 3.7584 -#> -2.3836 2.6476 -0.4543 4.2394 5.1216 6.6579 1.9311 -3.5211 -#> -2.4128 7.1206 -3.8751 -13.5594 4.8275 -8.7876 -0.1497 -2.2992 -#> 0.6666 -1.5999 -1.9034 -4.0682 11.3346 -6.7277 5.9325 15.2344 -#> -6.1739 -7.7141 1.4850 1.0927 4.3074 -3.4131 11.6982 5.0749 -#> -2.6437 2.8348 -0.0386 16.8818 -1.2101 -2.0663 8.1696 7.1242 -#> 6.6301 -1.2115 -2.6788 -3.4775 -9.8312 -4.7657 6.6134 -4.9456 -#> -3.8740 10.2621 12.2994 -6.8315 2.0823 -15.4459 13.4714 -16.5075 -#> -6.1147 7.5286 -2.9784 -3.6033 4.8837 12.5250 1.7987 -0.8655 -#> 9.8514 -3.1028 -6.3037 1.3988 -3.0110 1.9040 -11.5565 9.3783 -#> 5.2401 -1.0755 -3.6053 -5.0613 -11.9937 5.4612 9.3271 -4.1031 -#> 13.2205 -8.3787 -7.4333 1.0424 3.7193 -8.2087 1.5639 6.6348 -#> 5.1053 -8.5397 -4.6884 5.3031 -1.3494 4.1826 0.5436 14.7424 -#> -0.3656 -4.0147 -4.7661 -7.8632 -4.5603 1.3236 -5.4402 -3.0846 -#> 4.5304 0.9833 -2.5083 -9.7851 -14.0094 -0.4676 3.3590 -8.4788 -#> 10.5364 4.5215 -1.5188 5.0515 -7.1089 -6.8000 -7.6796 2.9325 -#> -0.4371 -3.9301 3.3137 3.9294 -1.5344 -0.7612 -7.9348 8.6682 -#> -#> Columns 17 to 24 -0.1389 2.7833 -7.6417 1.0127 4.3739 15.8968 13.7240 -2.0858 -#> 1.2018 -1.3251 11.9279 4.4186 -5.6396 -6.8106 1.4250 -3.8938 -#> 7.1025 7.5194 15.7088 10.0171 -14.3076 -12.7381 3.2395 0.8369 -#> -4.8720 -8.5710 12.2525 3.2695 -5.5304 -5.0498 15.3786 -3.1256 -#> 5.6980 6.7997 -3.1759 0.1066 2.2419 3.0356 -4.8155 -1.3508 -#> -15.3042 -7.0760 4.9612 -14.5196 6.9446 11.3609 1.7151 -9.4168 -#> 2.4581 11.1489 -2.4932 -12.1783 8.0708 -0.7791 8.1304 -3.2390 -#> -11.4518 5.1643 1.6748 -0.9467 -7.1317 -7.2802 3.5551 -1.4782 -#> 8.5132 6.0701 2.0084 2.9306 -7.6543 4.9825 2.7986 -1.4610 -#> 7.6029 -2.1964 -4.7003 4.6741 -2.4956 4.5839 -3.3663 -0.7649 -#> 16.4216 1.3188 -0.2868 -7.9091 -4.4317 11.5826 -4.2421 3.3804 -#> -0.3521 1.5658 -3.3197 -8.8169 -8.6169 -7.3379 0.2026 -4.2922 -#> 4.6503 0.3193 4.8151 1.6662 -5.3378 -8.9674 -5.4164 10.2136 -#> 0.3513 -0.3407 2.1979 -3.5283 -2.5753 8.7386 1.5805 5.4534 -#> 10.4485 13.4950 1.1411 -0.7244 -8.2095 -4.7985 -5.4840 17.3438 -#> 5.4441 -7.1625 3.4126 6.5226 -3.5294 -6.1442 -2.3265 1.3708 -#> -2.3677 4.9284 -11.7406 5.4634 -2.0317 7.2705 9.2657 1.4044 -#> -11.1751 5.8955 -3.9999 -6.3525 7.5790 1.7701 2.9943 -8.7027 -#> 5.8696 2.9949 17.6991 -1.4768 -12.4445 -6.9235 -3.2380 -6.8725 -#> 12.3087 3.4907 -5.1019 8.4455 7.1078 -1.3708 -3.1946 10.9005 -#> -7.0519 -0.9545 2.6750 5.3558 0.6328 -18.4314 -3.3503 -8.6130 -#> 8.1444 1.3283 -1.1925 -3.6192 8.7250 0.5334 0.0338 12.2328 -#> -13.1485 -2.2758 -0.7310 -1.1975 -0.2313 -1.8796 8.2425 -5.9023 -#> -0.4631 -21.9035 -2.7409 1.5576 2.6490 8.8296 -12.3949 -3.2970 -#> 16.1738 -3.6051 5.2913 -6.8463 -0.1715 3.8577 -4.4052 -7.1396 -#> 8.6622 -2.5606 4.2791 0.3756 -2.5184 -2.4997 1.7716 2.0096 -#> -0.6146 6.1604 0.3380 -3.5578 5.9450 -6.0484 8.9132 2.9027 -#> 11.9040 -15.3711 4.8235 -6.3088 -3.0654 5.7914 -16.9265 10.7671 -#> 9.6258 0.8721 2.1063 -1.4997 -7.8480 0.8220 -1.0926 -5.7129 -#> -0.8224 -4.4742 -5.6826 3.2623 -3.7203 13.1767 5.8564 0.3523 -#> -8.5367 4.8810 4.6889 -6.7867 -10.1217 -1.6946 14.1697 10.3410 -#> -3.1274 -7.0905 -12.2435 2.7620 -10.2159 -6.9943 -0.7448 -2.0076 -#> 6.4558 -4.3491 1.4251 -2.4677 2.4405 -4.2120 0.5065 -1.7806 -#> -#> Columns 25 to 32 17.1026 2.5812 -7.0203 9.4465 6.9103 -0.1044 -2.8706 1.0071 -#> -0.1017 -4.5751 -2.9160 -13.9657 -7.6557 -3.4798 -5.2746 0.7955 -#> 2.6565 -3.7401 3.4362 1.4084 -8.9534 3.8798 0.9005 -5.1114 -#> -13.6695 5.2867 12.6991 4.7499 -5.6753 -3.7951 -0.4789 4.1006 -#> -3.4392 -0.5906 -1.6030 4.2723 -7.6491 0.5247 -3.4139 -9.0802 -#> -8.7874 12.8729 -2.4180 -4.9332 -6.5361 0.6753 -5.9675 1.7622 -#> -0.2850 -1.0839 6.2215 9.3789 -1.1318 -3.4875 -1.5527 -1.2908 -#> 3.6416 -1.7346 6.5360 -5.6006 3.7726 3.3410 6.3362 13.5934 -#> -0.0879 -0.4969 1.7138 -9.7765 -9.0325 1.5765 -4.2677 -6.9798 -#> 0.4966 -10.6000 -5.1651 -9.7292 -4.8165 6.4431 -7.8703 -12.7564 -#> -12.0424 -2.4013 8.9028 -3.3145 7.1346 3.8412 1.4704 -9.6413 -#> -3.1423 -5.1933 -0.0150 1.9071 -0.2029 -0.1701 0.1602 1.7525 -#> -1.8765 1.9230 1.4065 0.4553 -0.2087 8.1157 8.0254 -4.5533 -#> -4.3565 10.7568 7.1821 9.0265 2.6125 0.1118 -1.6544 -0.7527 -#> -0.7168 -2.0606 -8.3614 11.2642 3.2440 1.1178 4.9414 -2.3209 -#> -4.8396 -6.3713 5.5836 5.3154 10.2439 3.4682 -1.7568 -1.7856 -#> 1.6700 -9.3760 -19.3531 -6.9326 -2.3024 -1.7312 2.0125 2.4404 -#> 1.9675 -0.2319 -0.9638 -6.1850 0.7932 3.1152 1.3602 -7.4149 -#> 3.1073 -2.1754 13.7664 0.9557 12.6638 4.6034 1.6815 -3.3305 -#> 0.4340 -7.9141 5.9485 2.6441 6.5036 -10.2815 -8.1310 -2.6895 -#> -5.8532 1.4265 1.8267 -6.1927 3.4157 -7.9354 2.2704 10.0210 -#> 1.6743 -1.2345 0.3427 1.3384 1.5342 -8.3515 -8.5344 5.3275 -#> -2.2453 -5.9218 2.3372 2.9031 9.8127 -13.8977 2.0153 9.5521 -#> 12.5302 -2.4257 -7.4401 -5.6927 5.5491 1.6091 -0.7882 -6.3543 -#> 5.6356 -1.7172 3.7151 -2.9179 3.5514 4.6399 -0.7576 -12.3475 -#> -3.5529 -8.4877 11.6536 3.9503 0.1079 -2.8133 9.7080 0.9127 -#> 7.0334 5.4122 2.6707 0.3616 4.5236 -6.2855 5.1213 14.4611 -#> -11.7232 -12.7253 4.7953 3.4767 5.8241 -8.2993 0.8080 -11.5194 -#> 1.3343 -6.4987 7.4096 -5.8047 7.1858 3.4141 -5.2520 -4.4160 -#> -0.1721 -14.0198 -8.1386 7.9760 -0.4833 1.1973 -5.2975 -2.7722 -#> 10.6461 1.8665 -7.1903 5.6824 6.1101 2.6576 6.4654 1.1838 -#> -6.6105 5.0036 2.2007 10.3305 -6.5373 0.0834 -0.2109 2.9936 -#> -8.1512 -1.1948 3.9096 11.5425 -2.3290 4.5866 1.5263 -2.7111 -#> -#> Columns 33 to 40 -13.6757 3.2050 -1.7102 3.0423 3.4864 -6.0581 -7.0705 2.3436 -#> 2.8154 6.7909 11.3422 10.5838 -1.1585 0.3751 -6.7020 3.0085 -#> -2.3170 5.7280 8.5315 5.9173 -2.9746 -7.2888 9.4413 7.2076 -#> -5.7367 7.5299 -1.4259 -1.6888 -14.4085 4.8950 5.3013 8.0799 -#> 0.9883 0.7480 -2.2983 -8.1308 -4.4850 -8.3801 -8.7969 7.5343 -#> -0.8695 -1.1404 -3.4372 -2.3562 -0.8389 6.6296 -5.0157 3.7476 -#> -0.6605 1.1048 -7.0557 -4.1054 4.1530 -0.1704 9.4408 -5.8617 -#> -0.5488 4.6426 -2.6103 6.9008 6.1783 6.9762 2.5179 -14.8938 -#> -4.0633 8.2448 -3.4058 -0.3540 -8.4536 -6.8800 1.3375 -0.1555 -#> 1.3970 -0.2304 0.0156 -5.2144 3.5280 -1.1255 -12.1279 -0.2955 -#> -2.0486 -10.7888 4.8500 2.6335 2.3910 5.6371 -9.2602 -6.2757 -#> -2.1683 11.4737 14.6329 13.6383 3.6652 -0.8922 1.0977 -11.2232 -#> -6.7400 3.4379 -0.9003 4.8029 -10.6919 0.7908 6.7403 -16.2157 -#> -4.8868 -2.2131 0.3401 0.4005 -6.0264 -4.2342 10.5046 -2.7749 -#> 12.2537 -3.7335 -1.7123 -8.3265 -19.5502 -2.4142 1.6112 1.2166 -#> -6.8644 -1.0912 -2.1300 -4.5600 -3.7915 -4.2678 6.2871 -1.8575 -#> -1.6467 -3.3780 -2.6142 -6.3843 8.7063 -4.1567 14.1473 -0.9055 -#> -4.3967 -1.3374 5.1231 2.8412 -0.3606 1.1262 -8.2442 9.5898 -#> -1.0255 1.8714 5.5460 -3.0920 2.2492 -1.4507 3.2481 -4.1082 -#> 15.2278 -1.4644 -1.6724 7.7990 5.4575 -9.2883 1.3260 -0.2767 -#> 2.4734 1.0298 3.4018 19.7773 6.4603 0.6927 -2.3733 10.8856 -#> 7.5390 5.9991 -1.6665 -1.1839 -15.8801 -4.4179 0.7634 -3.5811 -#> 7.5150 -7.2280 4.7583 -7.6827 7.1725 -8.0871 6.3701 6.3065 -#> -4.4429 -10.0434 -13.7058 -4.5672 2.3839 -7.5390 7.9516 3.9969 -#> 8.9826 8.9293 7.4789 6.6279 10.4749 2.4352 -2.6923 0.4486 -#> 0.9305 -0.8680 -7.8173 -8.4552 -0.5972 -2.2555 3.4722 -5.0586 -#> 0.5122 -4.1389 -4.9615 0.4793 3.6580 -3.4449 4.5336 3.1636 -#> 2.0379 -19.8241 2.8024 2.6805 10.5936 2.1072 1.4258 -11.4136 -#> 4.7889 6.2284 10.5768 4.5156 9.1442 -8.2460 -6.0661 -2.1584 -#> -15.9749 -3.6706 0.0012 -7.2619 -0.1787 -9.4787 11.7275 4.4441 -#> -3.1463 4.3559 -0.9214 -5.9368 -7.9699 3.1736 -0.3443 -1.0745 -#> 2.4498 1.2488 6.3804 -3.6066 -0.9166 -0.3392 -0.6077 -6.2136 -#> -11.3278 5.6230 -1.1469 5.0627 -6.2094 -1.0932 -3.9888 -2.4802 -#> -#> Columns 41 to 48 7.0135 6.3294 -8.8584 -14.5510 10.0676 -0.6149 -4.1354 4.4232 -#> -10.7895 -2.7615 2.1639 20.1588 2.0257 0.0967 -6.4809 2.2671 -#> -4.5688 -2.0050 4.8668 6.7397 -11.2983 5.5228 -5.6060 -14.5368 -#> -7.8524 -5.3228 12.4785 -5.4817 0.3444 -3.9921 -2.4454 -5.6591 -#> 2.3190 15.2425 -2.7544 8.7666 -13.2045 -6.8948 -1.2019 -8.1382 -#> 7.4866 11.4021 -1.9954 1.7636 0.1764 4.6639 5.1616 11.7051 -#> 5.7654 4.7622 5.9318 5.4125 -3.8339 5.5030 1.5205 -8.6833 -#> -3.0645 -1.9771 6.8651 -6.9690 1.3674 6.4900 2.4330 0.6932 -#> 4.0131 14.1373 0.8940 3.5991 -1.6315 1.8919 -5.1338 -4.8808 -#> 0.9488 10.4619 -3.4536 5.8847 -6.6616 3.8535 3.3347 -8.1186 -#> -1.3349 -1.6230 -8.1500 4.8047 16.3066 0.6186 -6.0828 -4.2537 -#> -17.0976 -8.4809 10.3442 -6.5025 -4.5308 6.4224 -4.3393 -4.1076 -#> 1.9242 0.5845 19.1147 0.7265 -2.8166 2.5570 -3.9082 -3.4749 -#> 3.3098 7.0949 7.2359 12.9875 -7.0863 -0.1894 5.2748 -13.0611 -#> 12.1284 16.8619 8.8710 5.6396 -11.2881 -9.3478 1.6231 -0.1281 -#> 4.4235 0.4590 -10.8071 9.9598 -10.6359 -3.5016 4.7264 0.5766 -#> -1.2458 -2.6800 -3.8881 -0.7222 -1.0022 1.7662 3.4330 0.8911 -#> 0.1136 5.5672 0.2567 -0.0802 -3.1427 5.4188 4.5744 -6.9384 -#> -2.1668 1.9430 18.8833 9.1453 9.9037 11.1195 0.9507 -8.9267 -#> 1.1640 -10.1598 3.5957 -4.8968 -5.7853 0.4013 -3.8952 -8.5320 -#> -14.0711 -19.9621 0.9685 11.0321 -2.2575 3.2575 10.8891 -0.8897 -#> 0.3868 7.2838 3.2818 -0.9068 -1.4344 -2.2705 -17.2004 6.3904 -#> -1.4807 6.5627 12.2064 17.1711 0.4854 8.3901 14.3149 2.6802 -#> -6.3829 -12.7508 -9.0151 0.1801 2.1498 3.4304 5.9517 10.1215 -#> -1.7794 0.6457 -5.0495 2.3017 -2.0233 -6.5212 4.6659 5.2673 -#> 4.9225 10.4069 4.0690 2.3700 1.0188 -5.1772 4.6426 8.9672 -#> 3.3292 1.8687 -3.6283 -8.1369 5.5408 -5.3452 -12.8441 -0.9602 -#> 3.5477 -10.2707 -13.2258 10.0899 -0.9471 0.1878 5.2863 -0.4901 -#> 3.1693 2.1068 -3.6108 3.8335 -0.3474 -9.2534 2.9291 -8.8937 -#> -1.5092 0.1917 3.0646 0.2466 6.9229 11.0598 3.4176 4.7661 -#> -1.5282 1.3181 2.3549 -15.1336 -7.1468 -5.1242 -1.5188 4.6585 -#> -1.7846 4.1737 -5.0727 -4.0856 -6.7048 -6.8882 0.4729 6.3599 -#> -1.1021 -4.5408 -5.4687 5.1239 -2.5769 -4.7390 -4.1566 8.3170 -#> -#> (9,.,.) = -#> Columns 1 to 6 -5.9772e-01 -9.8983e+00 1.0404e+01 -6.1356e+00 3.5001e+00 -8.9590e+00 -#> -6.7052e+00 -2.4473e+00 -5.9757e+00 -6.9124e+00 -7.5695e+00 1.5501e+01 -#> -5.1638e+00 -3.0836e+00 -8.2642e+00 -1.0065e+01 -2.8839e-01 1.8010e+01 -#> -3.9167e-01 -4.5961e+00 2.2247e+00 -1.1997e+01 1.2477e+01 -5.6814e+00 -#> 6.0788e+00 1.2863e+01 3.9910e+00 2.3731e+00 7.4136e-01 4.5087e+00 -#> -3.1761e+00 1.3578e+00 -4.6626e+00 2.6179e+00 -3.8575e+00 9.9712e+00 -#> -1.1396e+01 3.3664e+00 1.0453e+00 6.6824e+00 -3.1272e+00 7.3237e+00 -#> 3.7370e-01 -8.0273e+00 6.5533e+00 -1.0999e+01 -9.4513e+00 -8.1806e-01 -#> -1.0576e+01 -1.6506e+00 1.9676e+00 -8.0581e+00 7.0890e+00 -4.9045e+00 -#> -4.7729e+00 1.8349e+00 -1.5519e+00 8.6583e+00 -7.6534e+00 9.1328e+00 -#> 8.7335e+00 1.4546e+01 -5.9599e+00 -5.1928e+00 2.0621e+00 9.8500e+00 -#> 1.0081e+01 -1.6942e+00 -6.2237e+00 -5.0624e+00 7.8544e+00 1.6970e+01 -#> 1.7356e+00 -9.4270e+00 -5.2761e+00 -6.2843e+00 2.3019e+00 1.8504e+00 -#> -5.1167e+00 1.2433e+00 -1.0857e+01 -5.2793e+00 1.4291e+01 -7.3475e+00 -#> 1.5092e+00 5.9874e+00 -1.4614e+01 -1.3576e+01 -3.3374e+00 1.4458e+00 -#> -5.6186e+00 3.3894e+00 2.7115e+00 8.4038e+00 1.0308e+01 -7.5663e+00 -#> -2.6028e+00 -3.0251e+00 -1.3113e+01 8.9866e+00 2.3850e+00 -2.6730e+00 -#> -8.7767e+00 1.3823e+01 4.7101e+00 6.0249e-02 1.1898e+00 8.5789e+00 -#> -6.3649e+00 -7.8938e-01 -1.2153e+01 -5.6260e+00 -6.6550e+00 1.4229e+01 -#> 1.1580e+01 8.7932e+00 -2.5971e+00 -2.3929e+00 -6.2260e+00 1.0944e+00 -#> -4.3348e-01 -4.3489e+00 -5.5791e+00 -1.3491e+01 8.0694e+00 1.1862e+00 -#> 1.6337e+00 -8.1348e+00 -3.0525e+00 4.3178e+00 1.4512e+01 -7.3191e+00 -#> -4.4990e+00 1.0172e+00 -2.2629e+01 4.2001e+00 -7.2138e+00 1.2539e-01 -#> -1.9345e+00 -2.1191e+00 -4.6567e+00 7.5494e+00 1.1774e+01 -6.5196e+00 -#> -7.8636e+00 1.3880e+01 1.7210e+00 -3.0380e+00 3.4229e+00 -4.0000e-01 -#> 6.5259e+00 -4.9772e+00 1.7033e-01 -1.4080e+01 -6.3298e+00 3.6542e+00 -#> 6.0277e-01 1.8627e+00 -5.3594e+00 -4.0737e+00 -5.3710e+00 -3.8900e+00 -#> 6.8195e+00 1.4984e+01 5.6257e+00 1.4304e+01 7.8092e+00 -5.7403e-01 -#> -4.1558e+00 -5.3392e-01 3.6684e+00 -9.8107e+00 -2.4841e+00 1.7410e+00 -#> 2.3968e+00 -1.2837e+01 7.0652e+00 1.3442e+01 5.5320e+00 -5.8472e+00 -#> 1.0226e+00 -3.8321e+00 7.9918e-01 1.0291e+00 6.0297e+00 -4.5766e+00 -#> 1.9976e+01 -9.2697e+00 -1.4449e+01 4.4617e+00 -1.1223e+01 4.3968e+00 -#> 4.3422e+00 -8.1300e+00 2.7784e+00 -8.8056e+00 9.0905e+00 -3.6160e+00 -#> -#> Columns 7 to 12 -7.9886e+00 -4.1789e-01 3.4889e+00 -6.5670e+00 1.7025e+00 -6.1554e+00 -#> 1.2431e+00 -3.3220e+00 -8.6634e+00 3.4699e+00 9.3183e+00 1.4846e+01 -#> 1.4251e+01 -3.7282e-01 -6.0053e+00 -1.1380e+00 3.1382e+00 7.6234e+00 -#> 2.7875e+00 -1.0526e+01 1.5817e+01 5.0829e+00 -1.1793e+01 3.4515e+00 -#> 3.1888e-01 4.2712e+00 5.5459e+00 1.3774e+00 4.5625e+00 -2.3585e+00 -#> -3.6468e+00 9.7521e+00 -3.9350e+00 -2.4761e+00 2.9528e+00 1.9369e+00 -#> 8.7279e+00 -3.0858e+00 -4.8988e+00 1.0578e+01 -2.2710e+00 -8.5113e-01 -#> 6.3638e+00 -3.3849e+00 -1.4784e+01 -5.1161e+00 -2.4338e-01 5.7786e+00 -#> 1.1709e+01 7.0229e+00 1.0275e+01 2.0638e+00 -8.0311e-01 2.2046e+00 -#> -1.9236e+00 -5.5674e+00 3.4492e+00 4.4238e+00 1.4859e+01 9.4732e-01 -#> 7.5186e+00 -7.2396e+00 -1.1684e+01 -8.1177e+00 1.1721e+01 9.8822e+00 -#> -1.7116e+01 -2.7047e+01 -1.5828e+01 1.8199e+00 3.7760e+00 1.2151e+01 -#> 1.5202e+01 -1.6115e+00 4.3183e+00 -2.2170e-01 -1.3697e+00 6.1547e+00 -#> 1.0838e+01 -2.1337e+00 1.5393e+01 -3.0158e+00 -2.5116e+00 -1.3567e+00 -#> 9.8020e+00 3.9353e+00 8.0539e+00 1.0331e+00 8.9065e+00 4.4400e+00 -#> 1.1014e+01 -5.1721e-01 1.0056e+01 -1.8658e+00 -1.0587e-01 -1.0652e+00 -#> -9.9327e+00 -7.8304e+00 6.8668e+00 5.4561e+00 1.7317e+01 -8.1515e+00 -#> -3.6940e-02 -2.0545e-01 -4.2434e+00 2.7756e+00 -1.0222e+00 3.4477e+00 -#> 7.5637e+00 5.2881e+00 5.0657e+00 8.2493e-01 2.7979e+00 4.6146e+00 -#> 6.9088e+00 -1.3395e+01 -1.2399e+01 3.8654e+00 1.9648e+00 3.5629e+00 -#> 6.7725e+00 -7.7367e+00 4.9227e-01 8.8902e+00 -9.8244e+00 1.1019e+01 -#> -5.6635e+00 -1.9914e+00 7.1919e+00 9.3059e+00 -3.8622e+00 -3.8176e-01 -#> -9.7490e+00 1.1049e+01 1.6366e+01 -2.3207e+00 6.3493e+00 -1.8590e+00 -#> -9.0104e+00 -1.3411e+01 1.2738e+01 -5.6306e+00 -3.5250e+00 -8.7249e+00 -#> 4.4496e-03 -2.9238e+00 -6.2142e+00 -1.1927e+00 -1.8179e+00 5.8272e-01 -#> 8.8736e+00 3.5496e+00 1.7175e+00 9.9175e+00 4.7218e+00 4.1414e+00 -#> -6.9808e+00 5.4581e+00 1.1534e+00 -1.2803e+01 -9.3482e+00 -5.8145e-01 -#> 2.9285e+00 -5.5349e+00 -3.5046e+00 7.2675e+00 5.2552e+00 -3.8660e+00 -#> -1.4056e+00 -7.3416e+00 -1.8322e+00 6.9944e+00 7.7574e+00 8.1254e+00 -#> -1.3827e+01 1.4488e+01 1.4742e+01 9.4897e+00 1.2354e+01 -9.0142e+00 -#> -1.9852e+01 -3.4075e+00 -1.7569e+00 -9.4174e+00 -3.2770e+00 -6.5168e-01 -#> -1.2156e+01 -7.0697e-01 -7.5206e+00 1.0838e+00 9.1425e+00 -4.8583e+00 -#> 8.3659e-01 4.9569e-01 -8.0905e+00 3.2208e+00 2.9091e-01 1.9936e+00 -#> -#> Columns 13 to 18 1.4268e+00 -6.4643e-01 -1.7622e+01 -9.2782e-01 -6.9855e+00 -5.9646e+00 -#> 5.6406e+00 6.4896e+00 3.9732e+00 1.1957e+01 5.9071e+00 -3.4283e+00 -#> 1.4863e+00 -3.2103e+00 6.5280e+00 3.0830e+00 7.4875e+00 3.9739e+00 -#> -1.3436e+01 1.1493e+01 -5.9182e+00 2.1436e+01 -3.7133e+00 -4.1458e-01 -#> 7.0292e+00 4.3810e+00 1.8445e+01 9.7100e-01 -1.0219e+00 9.3279e+00 -#> 1.1690e+01 9.6098e-01 -6.6718e-01 -8.3299e+00 1.1058e+01 -4.3912e+00 -#> -8.2923e-01 -3.1380e+00 5.5529e-01 -4.2088e+00 -5.2010e-01 4.0494e+00 -#> -4.9005e+00 9.1976e-01 -6.6567e+00 4.6711e+00 1.0360e-01 2.0231e+00 -#> 1.0765e+00 6.4593e+00 3.4552e+00 -9.2336e+00 4.4749e+00 -3.8992e+00 -#> 2.2649e+00 -1.8091e-01 1.3098e+01 2.2921e+00 6.5336e+00 6.9644e+00 -#> -5.2512e+00 -9.9104e+00 6.5997e+00 2.8382e+00 -5.9939e+00 5.7500e+00 -#> -7.6590e+00 -4.8979e+00 4.1078e+00 -9.0289e+00 2.2878e+00 6.8816e+00 -#> -1.0736e+01 6.7032e-01 6.6919e+00 6.4399e+00 -2.3449e+00 9.0975e+00 -#> -9.6398e+00 -2.0480e+00 4.3620e+00 -2.9848e+00 -2.7863e+00 3.0141e-02 -#> 7.9273e+00 4.9398e+00 4.2805e+00 1.4641e+01 -5.9008e+00 -8.4110e+00 -#> -9.7235e+00 4.5998e+00 1.4957e-01 1.4007e+01 1.1557e+01 3.9815e+00 -#> 1.1669e+01 -1.4081e+01 7.0342e+00 -3.7801e+00 -3.2983e+00 4.9881e+00 -#> -4.2155e-01 -8.0756e+00 -1.6138e+01 -3.7417e+00 -5.7215e+00 -6.8203e+00 -#> -6.5037e+00 5.9370e+00 8.5020e+00 1.4392e+01 1.2422e+01 6.3810e+00 -#> 3.2395e+00 9.6114e+00 4.6214e+00 -2.9670e+00 6.5430e+00 8.2656e+00 -#> -3.6188e+00 1.2400e+01 -1.9658e+01 1.3046e+00 -2.5884e-01 -4.3679e+00 -#> -8.8569e+00 5.8866e+00 -1.1162e+01 -1.3357e+00 -2.4089e-02 -7.8688e+00 -#> 8.4758e+00 -4.6751e-01 6.0961e+00 3.6116e+00 -9.4077e+00 1.3468e+01 -#> -5.6394e+00 -2.3949e+00 -1.3362e+01 -1.1423e+01 5.0500e+00 -6.3947e+00 -#> 5.6710e+00 9.3222e+00 -4.5345e+00 -1.2849e+01 1.2083e+01 -8.1289e+00 -#> -1.7648e+00 1.4789e+01 3.0152e+00 1.3705e+01 -1.6920e+00 9.6765e+00 -#> 2.4847e+00 6.5077e+00 5.2258e+00 4.6694e+00 -1.9813e+00 4.2211e+00 -#> -4.8027e+00 -8.0172e+00 -6.2700e+00 1.1320e+00 -9.2289e+00 -8.3512e+00 -#> -2.1190e+00 1.2911e+01 1.1840e+01 6.4975e+00 4.7221e+00 -1.3022e+00 -#> -2.8746e+00 -8.6969e+00 9.1544e+00 1.7319e+00 6.2875e+00 -3.9191e-02 -#> -7.6621e+00 -4.1807e+00 9.5632e+00 1.3037e+01 -7.3126e-01 3.5519e+00 -#> 1.0035e+01 -9.1915e+00 2.2972e+01 8.9583e-02 -5.2422e+00 9.7728e+00 -#> -4.1256e+00 9.7167e+00 1.2161e+01 5.9556e+00 9.9613e+00 6.0163e+00 -#> -#> Columns 19 to 24 -1.4788e+00 6.5384e-01 3.4991e+00 -5.0203e+00 1.1833e+01 6.5428e+00 -#> 1.0071e+01 2.6512e+00 -1.8944e+00 -8.1566e+00 3.5798e+00 -1.0335e+01 -#> 3.6254e+00 -6.5613e+00 3.1483e+00 6.8949e+00 -7.4044e+00 -1.5177e+01 -#> 9.3763e+00 8.3278e-01 2.8163e+00 -1.2261e+01 2.4854e+00 -6.6130e+00 -#> -6.1210e-01 -5.5153e+00 -9.4884e+00 -8.2171e+00 -3.7525e+00 -5.8954e+00 -#> 8.1481e+00 5.1251e+00 -2.1194e+01 9.2614e+00 3.1435e+00 -6.1527e+00 -#> -2.6929e+00 4.8587e+00 2.8694e+00 4.9911e-04 -1.0671e+01 1.7866e+01 -#> 9.1479e+00 2.6889e+00 -4.1593e+00 5.9204e+00 2.1084e+00 4.5870e+00 -#> -6.2372e+00 -8.9761e+00 -4.5223e-01 -1.2422e+01 8.3073e+00 -1.0398e+01 -#> -3.1561e+00 -7.1218e+00 -6.7626e+00 -7.2100e+00 -1.9478e+00 -1.4644e+01 -#> 1.2066e+01 -2.1823e+00 5.2041e-01 4.1326e+00 -2.5256e+00 9.1427e+00 -#> 5.0821e+00 5.6678e+00 3.3381e+00 1.1488e+01 -7.2279e+00 6.3522e+00 -#> -7.3032e-01 -2.6469e+00 3.1833e+00 8.2736e+00 -5.3655e+00 -6.5288e+00 -#> 4.6056e+00 -2.7989e+00 -1.0808e+00 4.8777e+00 7.8457e+00 -8.4777e+00 -#> -4.3655e+00 -8.9310e+00 -1.7927e+01 -5.9276e+00 -5.2484e+00 -6.5302e+00 -#> 7.2124e+00 -3.5134e+00 5.8129e+00 -8.7390e+00 1.4915e+01 -8.4247e+00 -#> -2.9340e+00 1.6258e+00 -4.3462e-01 -7.5343e+00 3.9852e+00 4.6746e+00 -#> 6.7741e+00 1.7857e+00 -4.5787e+00 1.1741e+01 5.7908e+00 -5.6829e+00 -#> 1.2928e+01 5.4310e-02 3.4659e+00 1.9901e+01 2.8366e+00 2.5718e+00 -#> -4.6991e+00 -3.8227e+00 3.3682e+00 -3.3209e+00 -1.0747e+01 9.3639e+00 -#> 4.2007e+00 -7.2732e+00 2.2640e+00 1.5743e+00 6.7326e+00 7.5268e+00 -#> -4.4983e+00 -4.3638e+00 1.5736e+01 -1.3776e+01 4.9824e+00 3.0897e+00 -#> 8.9306e+00 3.4701e+00 -2.1963e+00 1.0783e+00 2.4437e+00 1.6603e+01 -#> -1.1078e+01 -1.6464e+00 1.2810e+01 -6.5072e+00 2.1953e+00 -1.2031e+01 -#> 1.7704e+00 2.0420e+00 -2.6357e+00 -3.8983e+00 1.6743e+01 -1.0175e-01 -#> 5.4945e+00 -3.4841e+00 -5.5210e+00 -6.9099e+00 1.0233e+01 1.2634e+01 -#> -5.5126e+00 4.0176e+00 -1.0951e+00 -1.7160e+01 -8.5082e+00 1.4385e+01 -#> 2.0308e+00 -8.7291e+00 5.6261e+00 -3.4511e+00 -9.2142e+00 -3.6996e+00 -#> -5.1241e+00 -9.3991e+00 -7.1547e+00 -3.7527e+00 5.2667e+00 -7.4117e+00 -#> 2.3922e+00 -2.5907e+00 3.1423e+00 5.9142e+00 -2.4298e+00 -5.1382e+00 -#> 8.3085e+00 4.0955e+00 -1.1548e+01 2.3639e+00 -7.7381e+00 -8.7379e+00 -#> -8.2212e+00 -5.8799e+00 -1.5753e+01 8.4185e-01 -1.7796e+01 2.3051e+00 -#> 4.0001e+00 -4.4698e+00 1.2708e+00 -1.2979e+00 1.1418e+01 -7.5451e+00 -#> -#> Columns 25 to 30 7.9131e+00 2.7154e+00 1.4872e+01 -3.7386e+00 1.0172e+01 5.7043e+00 -#> 1.2539e+01 -5.7977e+00 1.4523e+00 -9.3483e+00 -3.8128e+00 8.8916e+00 -#> 5.1914e+00 7.2358e+00 -1.7755e+00 -4.7946e+00 -7.9701e+00 -4.5566e+00 -#> 5.7365e+00 -4.7697e+00 3.2019e+00 -1.5064e+01 -3.9985e+00 9.4707e-01 -#> 1.3723e+00 6.2656e+00 -6.1616e+00 7.3707e+00 7.5894e+00 -2.7101e+00 -#> 3.7877e+00 -1.2307e+00 -1.3621e+00 -4.5134e+00 -1.5887e-01 5.9096e+00 -#> -2.1808e+00 9.1400e+00 -1.8969e+01 1.0006e+01 4.8628e+00 -4.7325e+00 -#> 2.6560e+00 -7.3123e+00 -1.2357e+00 -7.4553e+00 1.0254e+01 -8.7145e+00 -#> 2.8662e+00 3.2610e+00 -6.6772e+00 7.8181e-01 -1.5148e+00 -2.0216e+00 -#> 4.2846e-01 -2.5294e+00 3.9553e+00 -7.1783e+00 4.7985e+00 1.1505e+01 -#> 9.3605e+00 -7.1987e+00 -8.8640e+00 4.7875e+00 -2.3975e+00 -7.0165e-01 -#> -1.1350e+01 3.1453e+00 -1.0100e+00 1.1050e+00 -8.0596e+00 -5.7571e+00 -#> -9.8132e+00 1.3579e+01 -2.7146e+00 9.5315e+00 -1.0039e+01 6.6940e+00 -#> 6.9763e+00 6.9958e+00 8.9224e-01 5.1560e+00 4.1708e+00 -9.1118e+00 -#> 8.2931e+00 2.2381e+00 -8.5325e-01 9.0331e+00 3.3555e+00 -4.0119e-01 -#> -3.5723e+00 4.3296e-01 -9.3968e-01 -9.5574e+00 1.9474e+00 -2.2715e+00 -#> -4.5663e+00 1.2040e+00 -7.5696e+00 6.6384e+00 4.2499e+00 8.5393e+00 -#> 5.1188e+00 5.2276e+00 -4.3429e-01 -7.5187e+00 4.4111e+00 -6.0097e+00 -#> -3.9696e+00 -5.2015e+00 -1.2500e+01 -2.1139e+00 -1.9498e+00 3.8756e+00 -#> 1.5824e+01 1.9293e+00 -8.2049e+00 2.0788e+01 6.3813e+00 -5.7230e+00 -#> 2.1565e+00 -5.5108e+00 -1.5508e+00 1.4097e+00 2.1417e+00 -1.3263e+01 -#> 8.3929e+00 -6.8624e+00 6.7333e+00 2.3216e-01 6.8439e-02 -9.4227e+00 -#> -2.0929e+00 2.5265e-01 -7.1508e+00 4.1465e+00 3.3456e+00 -7.6238e+00 -#> -8.5652e+00 -7.6295e+00 3.7898e+00 7.8058e+00 -1.4628e+01 9.4347e+00 -#> 1.1126e+01 -2.1903e-01 -3.5481e+00 -1.7516e+00 -9.3764e+00 5.1781e+00 -#> 4.5579e-01 -9.3047e+00 1.5870e+00 2.4300e+00 1.7651e+01 -4.7332e+00 -#> -7.6143e+00 1.1278e+01 -7.4274e+00 1.3487e+01 -6.3099e-01 -2.0147e-01 -#> -1.1968e+00 8.2476e-02 5.4258e+00 1.4257e+00 9.6109e+00 -3.0527e+00 -#> 5.3096e+00 8.0046e-02 7.3033e+00 -9.9037e+00 1.3863e+01 1.9194e-02 -#> -1.4189e+00 6.8598e+00 5.9213e+00 -2.9910e+00 4.5579e+00 8.9131e+00 -#> 3.3798e-02 8.6234e+00 -3.4579e+00 -6.6073e+00 2.8995e+00 8.0238e+00 -#> -1.2174e+00 1.7211e-01 -7.2720e-02 5.1705e+00 -7.9263e+00 6.3274e+00 -#> -1.0282e+01 5.6483e-01 5.9698e+00 -1.0672e+00 -4.2042e+00 -1.7796e-02 -#> -#> Columns 31 to 36 1.1844e+00 -7.2629e-01 -1.8941e+00 -7.6083e+00 -4.2147e+00 2.5961e+00 -#> -4.1939e+00 -2.9817e+00 -4.4593e+00 -5.4455e+00 -5.9977e+00 1.0099e+01 -#> -4.0233e+00 6.7645e+00 2.6826e+00 -5.2496e+00 3.4417e+00 2.0870e-01 -#> 4.8918e+00 1.9567e+00 -1.6991e+01 1.1052e+01 -2.3925e+00 1.4149e+01 -#> 3.3314e+00 -6.8083e+00 1.0376e+01 -3.6049e+00 9.1836e+00 -1.4545e+00 -#> 1.6061e-01 -1.3304e+01 9.7826e+00 8.3859e+00 8.1357e+00 9.6278e+00 -#> 1.5257e+00 2.2147e+00 8.2917e+00 -5.8503e+00 8.1073e+00 -6.5636e-02 -#> 4.5712e+00 1.0947e+00 2.4104e+00 -1.5979e+00 -1.6107e+01 1.4548e+00 -#> -1.9434e-01 -2.3166e+00 -2.6052e+00 9.9696e+00 4.3325e+00 1.0414e+00 -#> -1.3384e+00 -2.7895e+00 6.8319e-01 2.3454e+00 -1.4055e+00 2.0878e-01 -#> 5.9838e+00 1.0921e+00 1.9156e+00 -4.6902e+00 7.7425e+00 -5.7468e+00 -#> -7.3102e+00 5.0646e+00 -3.5681e+00 -9.5191e+00 -6.9702e-01 -2.1993e+00 -#> 4.7431e-01 4.3941e+00 6.1900e+00 5.5946e-01 2.3139e+00 1.3793e+00 -#> 9.5830e+00 -2.6180e+00 2.3090e+00 1.0488e+01 3.5078e+00 7.5632e+00 -#> 2.1537e+00 7.1923e+00 7.6483e+00 -3.7928e+00 6.7952e+00 -3.0645e+00 -#> 5.4097e+00 2.5142e+00 1.7182e-01 6.4000e+00 -4.7737e-01 -1.1004e+00 -#> -4.6148e+00 4.4991e-01 -6.9146e+00 -6.9988e+00 -3.4297e+00 -1.2070e+00 -#> 1.4174e+00 -4.9231e+00 6.5810e+00 -1.2322e+00 -3.7342e+00 -1.9426e+00 -#> -2.0832e+00 1.0677e+00 3.1704e+00 -4.3507e+00 1.0039e+01 -2.5501e-02 -#> -3.6884e+00 4.0975e+00 3.6172e+00 -4.0332e+00 -3.9415e+00 4.6806e+00 -#> -6.6195e-01 1.4217e+00 3.0961e+00 2.9925e+00 -7.7697e+00 6.8150e+00 -#> 1.5677e+00 8.5009e-01 -1.0536e+01 5.7060e+00 -4.8438e+00 8.2975e+00 -#> 1.4551e+00 -4.0907e+00 3.4321e+00 -6.6505e+00 1.5629e+01 1.1222e+01 -#> -4.7277e+00 -3.8640e+00 5.8621e+00 -3.9335e+00 1.0030e+01 -2.7991e+00 -#> -5.8399e+00 -2.7366e+00 2.3711e-01 3.0909e+00 3.6587e+00 -8.1478e+00 -#> 1.2677e+01 -1.5665e-01 -1.6311e+00 -4.9779e+00 3.6424e+00 3.0476e+00 -#> 2.8489e-01 -4.8924e-02 7.1833e+00 -2.2264e+00 4.6149e+00 6.1171e+00 -#> -3.6819e+00 5.9067e+00 3.2096e+00 1.0361e+00 7.6217e+00 -3.1803e+00 -#> 7.7033e+00 3.5124e-02 1.5344e-01 6.7063e+00 -1.2995e+01 -2.4705e+00 -#> -7.7243e-01 5.8335e+00 -9.0640e-01 7.5684e-01 1.5670e+01 -1.5860e+00 -#> 2.1432e+00 6.0483e+00 4.0227e-01 -7.1577e+00 -2.8218e+00 -5.0067e+00 -#> 2.5484e-01 1.0097e+01 2.4836e+00 -1.1225e+00 5.1515e+00 -2.9331e+00 -#> 2.1140e+00 1.2718e+00 -6.7375e+00 3.4060e+00 1.5925e+00 6.5458e+00 -#> -#> Columns 37 to 42 -9.0413e+00 4.2641e+00 1.5076e+01 -2.2102e+00 5.7407e-03 -2.3147e+00 -#> -2.5366e+00 9.2487e+00 5.6971e+00 -7.5793e-01 3.1941e+00 6.2136e+00 -#> -1.0855e-01 5.7570e+00 -2.9134e+00 3.9281e+00 7.0567e+00 3.6867e+00 -#> -5.7815e+00 6.1053e+00 2.5409e+00 -4.6347e+00 4.2671e+00 1.3293e+01 -#> 8.7166e+00 -1.9208e+00 -2.0736e+00 1.6139e+00 2.7751e+00 4.2373e+00 -#> -7.0585e+00 8.1723e+00 -9.2192e+00 -5.7954e+00 1.1677e+01 1.4162e-02 -#> 9.3435e+00 1.7496e+00 -6.9971e+00 1.2072e+01 4.4855e-02 1.0169e+01 -#> -5.4095e+00 -5.3696e+00 -1.0430e+01 5.7073e-01 1.6181e+00 3.0055e+00 -#> 3.1037e+00 2.6920e+00 1.0490e+01 9.2666e+00 2.1840e+00 5.4630e+00 -#> 4.2201e+00 -1.5488e+00 9.5045e+00 6.7580e+00 2.3942e+00 5.4924e+00 -#> 1.5608e+01 -1.2334e+01 -2.4745e+00 8.0635e+00 4.5486e+00 3.4762e+00 -#> -5.2987e+00 3.9534e+00 -4.9090e+00 -5.6588e+00 -1.2606e+01 -2.5031e+00 -#> -9.3156e-01 6.0539e-01 -2.3783e+00 2.9253e+00 8.3484e+00 9.2735e-01 -#> 7.2469e+00 -6.1220e+00 -1.6000e+00 5.0525e+00 3.5506e+00 9.3286e+00 -#> 1.0778e+01 -2.7546e+00 -5.9711e+00 -6.2599e+00 1.7342e+01 -1.2956e-01 -#> 8.0654e+00 -7.5368e+00 4.2084e+00 -2.8554e+00 5.2685e+00 5.8940e+00 -#> -4.1574e+00 3.0891e+00 -1.7797e-02 2.6921e+00 -6.5087e+00 3.0199e+00 -#> -1.3272e+01 -3.6118e-01 -1.0552e+01 -3.4381e-01 -5.9032e+00 2.5379e+00 -#> 7.1396e+00 -2.4519e-01 1.4729e+00 2.1580e+00 4.3612e+00 6.5780e+00 -#> 6.7803e+00 -6.1947e+00 5.5043e+00 1.2180e+01 -8.9490e+00 -3.8433e+00 -#> -1.3721e+00 -9.1113e+00 5.5899e+00 3.0196e+00 -9.7791e+00 6.4865e+00 -#> 1.7351e+00 3.5879e+00 1.5976e+01 4.0530e+00 2.1135e+00 -5.7476e+00 -#> 1.5130e+01 -1.0406e+01 -6.5211e+00 -7.1649e+00 -3.4955e+00 1.1013e+00 -#> 3.6414e+00 5.7045e+00 2.1475e+01 -7.1721e+00 -7.4133e+00 8.6888e+00 -#> -1.0062e+01 2.4678e+00 -4.0043e+00 -7.9186e-01 -3.4969e+00 -3.5037e+00 -#> 3.4416e+00 -3.2598e+00 -3.1747e+00 -4.2460e+00 1.4092e+01 4.3662e+00 -#> 1.3994e+00 1.1805e+00 7.6355e-01 8.1165e-01 -7.8432e+00 4.3089e+00 -#> 1.7457e+01 -3.9223e-01 -1.0589e+01 -5.4922e+00 1.0360e+01 -4.8000e+00 -#> -6.0066e+00 -5.0413e-01 -3.5014e+00 7.0190e+00 -6.6348e+00 -4.3041e-01 -#> 5.7813e+00 9.0441e-01 8.9422e-01 -4.0966e+00 9.7021e-01 -6.7914e+00 -#> -8.4177e+00 7.5051e+00 -8.2865e+00 -5.5693e+00 3.7791e+00 4.6787e+00 -#> 9.4031e-01 -5.7692e+00 -9.4047e+00 -2.7730e+00 1.0719e+01 -5.6055e+00 -#> -2.0762e+00 7.6085e+00 4.4843e-01 4.3434e+00 8.3749e+00 -4.6087e+00 -#> -#> Columns 43 to 48 4.3737e+00 -2.5087e+00 6.3889e+00 -8.0037e+00 1.2070e+01 7.6759e+00 -#> -2.0968e+00 -2.8082e+00 -1.3237e+00 1.1395e+01 -8.8094e+00 -2.2518e-01 -#> 4.4428e+00 -1.5217e+00 7.1631e+00 1.0258e+01 7.0296e+00 -6.6016e+00 -#> 9.3830e-01 1.0754e+00 6.3390e+00 6.4996e+00 1.1364e+00 6.5365e+00 -#> -7.3669e+00 1.2879e+00 -3.6561e+00 6.0226e+00 1.0079e+00 -5.1102e+00 -#> -3.1869e+00 6.5918e+00 2.0732e-01 -4.5766e+00 -6.3377e+00 2.8138e+00 -#> 2.0437e+00 -1.0918e+01 1.2007e+01 -9.5038e+00 -3.3561e+00 -5.4644e+00 -#> -2.2200e-02 -2.5758e+00 2.5701e+00 -1.5186e+00 -1.5802e+00 -6.7054e+00 -#> -1.1495e+00 7.3191e+00 -8.1472e-01 6.5960e+00 -4.5626e+00 -6.9297e+00 -#> -3.1921e+00 1.1575e+00 1.1334e+00 1.0130e+01 -3.0875e+00 1.0981e+00 -#> -1.3860e+01 -7.7124e+00 -8.0822e+00 4.3692e+00 -1.8890e+00 -1.1706e+01 -#> -1.0236e+01 -1.4173e+01 6.1403e+00 1.3038e+00 -6.5673e+00 -4.4560e+00 -#> 1.6044e+00 -2.1522e+00 -3.1384e+00 4.5684e+00 -1.2475e-01 8.4231e-01 -#> -9.8657e+00 6.5702e+00 4.0053e+00 8.1363e-01 -3.0906e+00 -8.5054e-01 -#> -6.7798e-01 6.9365e+00 6.7617e+00 7.0552e+00 5.7285e+00 -7.3362e-01 -#> -1.9092e+00 -1.2977e+00 1.3451e+00 2.6043e+00 7.1558e+00 2.2102e+00 -#> 1.3258e+01 -4.5233e+00 4.2634e+00 2.9977e+00 1.4320e+00 6.0799e+00 -#> -9.4925e+00 -2.7318e-01 -5.4690e+00 -6.3278e+00 1.4818e+00 1.2148e+01 -#> -1.5550e+00 -4.9477e+00 -3.7344e+00 6.9157e+00 5.1898e+00 -2.2928e+01 -#> -4.9061e+00 2.7184e+00 2.0085e+00 1.0371e+01 -5.9143e+00 4.4246e-01 -#> -1.1608e+01 6.4426e+00 2.3071e+00 -2.4539e-01 -1.0232e+01 4.0275e+00 -#> -1.8309e+00 8.3980e+00 4.2186e+00 -3.7221e+00 -1.2211e+01 9.1400e+00 -#> -4.2552e+00 2.3704e+00 1.4545e+00 -3.9296e+00 1.6062e+00 -1.3370e+01 -#> -2.1842e+00 1.5637e+00 -5.2733e+00 1.9259e+00 -6.5270e+00 9.1398e-01 -#> -5.7691e+00 -2.3866e+00 -3.4253e+00 3.6446e+00 -7.2987e-01 -9.9818e+00 -#> -5.3362e-01 -4.7567e+00 2.5631e+00 5.8880e+00 3.7545e+00 -9.2315e+00 -#> 8.1852e+00 5.2404e+00 4.6403e+00 -5.1693e+00 5.6024e+00 -1.9305e+00 -#> -1.9630e+00 -1.4028e+01 1.1234e+00 -4.9099e+00 -8.5770e+00 9.8347e+00 -#> -2.3442e+00 8.7382e-01 6.1165e+00 9.1952e+00 3.3971e+00 -4.7489e+00 -#> 1.4446e+01 -5.3570e+00 -9.9253e-01 1.6825e+00 1.0498e+01 -7.8251e+00 -#> -1.2283e+00 8.3363e+00 3.4820e+00 8.8028e+00 1.2035e+01 -5.4122e+00 -#> 3.3773e+00 -5.1518e+00 3.0077e+00 1.2355e+01 5.0393e+00 1.6614e+00 -#> 4.3089e-01 -4.3456e+00 1.1466e+00 5.3134e+00 -2.3118e+00 8.6921e-02 -#> -#> (10,.,.) = -#> Columns 1 to 6 -9.5958e+00 -7.3723e+00 1.2047e+01 6.5237e-01 -4.7717e+00 -1.2016e+01 -#> 4.8334e+00 5.0307e+00 8.7751e+00 -4.1145e+00 -2.9787e+00 -7.0777e+00 -#> 5.3799e+00 2.5190e+00 -1.0327e+00 -3.6891e+00 -3.6897e+00 -2.2001e+00 -#> 3.0633e+00 -7.7809e+00 9.6613e+00 -4.0909e+00 -3.6797e+00 -5.8602e+00 -#> -8.7687e+00 7.7281e+00 2.8332e+00 -9.3733e+00 -4.9154e+00 4.3284e+00 -#> 2.6050e+00 7.4308e+00 2.4147e+00 -1.8745e+00 5.2642e+00 7.2496e+00 -#> 6.1107e-01 3.7037e+00 -3.6763e-01 -3.7137e+00 -6.8335e+00 -2.2041e-02 -#> 6.3727e+00 -4.0470e+00 9.8372e+00 -9.1580e-02 1.2816e+01 -7.3477e+00 -#> 4.6817e+00 1.1897e+00 -4.7628e+00 -3.2549e+00 -5.2942e+00 -4.7634e+00 -#> 1.2118e+00 3.4150e+00 2.0200e+01 4.0394e+00 -6.6602e+00 -4.1004e+00 -#> -1.8507e+01 1.0203e+01 -6.0837e+00 4.8159e+00 -1.6472e+00 2.0550e+00 -#> -1.1630e+00 3.0891e+00 7.1104e+00 -2.4322e+00 -2.3919e+00 2.3690e+00 -#> 2.2192e+00 5.9340e+00 -4.8951e+00 1.4631e+01 3.8242e+00 -3.2868e+00 -#> -3.2127e+00 -3.8830e+00 -6.4114e+00 -5.0048e-01 8.1078e+00 -5.9243e+00 -#> -4.0585e+00 -2.5125e-01 -1.9762e+01 -5.1743e+00 -7.5492e+00 1.3552e+00 -#> 6.4482e+00 -4.5000e+00 -5.4551e+00 1.3725e+01 -3.2925e+00 -9.4615e-01 -#> 1.8685e-01 -7.3666e+00 1.3488e+01 1.1538e+01 2.1585e+00 -3.5440e+00 -#> -8.2571e+00 -7.2357e+00 2.6185e+00 -5.7009e+00 1.0855e+01 -6.0345e+00 -#> -1.0681e+01 7.8015e-01 1.1207e+01 2.2349e-01 -1.9994e+01 -4.4592e+00 -#> -2.9950e+00 7.2179e+00 3.6860e+00 -3.2118e+00 3.0814e+00 -8.9734e+00 -#> 1.2245e+01 4.6379e+00 8.6471e-01 -1.1092e+01 1.4047e+01 -2.6863e+00 -#> 3.6473e+00 9.6788e-01 -1.5797e+01 -7.5575e-01 1.0347e+00 -1.4668e+01 -#> -8.9120e+00 -7.8948e+00 -2.6262e+00 -2.0313e+00 4.8857e+00 5.1242e+00 -#> 5.4599e+00 2.0633e+01 1.3699e+01 -6.1316e+00 -7.5593e+00 6.0918e+00 -#> -2.3579e+00 3.9159e+00 -2.1032e+00 -1.1156e+01 -1.1244e+01 -1.0482e+00 -#> -1.1059e+01 3.7168e+00 1.0351e+01 3.6616e+00 -2.1056e+00 -4.0807e+00 -#> -3.3395e+00 4.6382e+00 -5.7943e+00 -4.8561e-01 -4.6544e+00 2.2636e+00 -#> -4.9313e+00 1.4905e+01 -1.6279e+01 1.7440e+00 1.5006e-01 1.0771e+01 -#> 1.8941e+00 -2.4229e+00 6.7721e+00 -1.3173e+01 -3.8212e+00 -9.3271e+00 -#> -9.6208e+00 -3.8180e+00 9.4949e+00 1.4090e+01 2.8480e-01 8.8882e+00 -#> -1.6255e-01 -3.3643e+00 1.2077e+01 3.0009e+00 -2.8539e-01 -2.1709e+00 -#> 1.0549e+01 4.7026e+00 -8.8984e-01 2.2968e+00 -1.7090e+00 1.1730e+01 -#> 5.7700e+00 5.7668e+00 8.5146e-01 1.1141e+00 -3.9964e-01 -4.2993e+00 -#> -#> Columns 7 to 12 -5.5264e+00 5.2635e+00 -4.5586e+00 -7.7724e+00 -6.7307e+00 -8.4080e+00 -#> 4.2303e+00 -3.7358e-01 7.6817e-01 6.5046e+00 -3.3298e+00 1.6328e+01 -#> 4.7472e+00 -1.0522e+00 1.4437e+01 6.2140e+00 3.2500e+00 7.5858e+00 -#> 1.5293e+01 5.4497e+00 1.0482e-01 8.9316e-01 -2.1978e-01 5.0263e+00 -#> 2.2517e+00 1.9998e+00 -2.8958e+00 8.6876e+00 5.9590e-01 -2.5562e+00 -#> 1.5858e+01 2.7522e+00 -4.7113e+00 6.5628e+00 -3.8360e+00 -6.7326e+00 -#> -2.1941e+00 -6.8718e+00 3.7223e+00 -1.0419e+01 -1.1370e+00 -4.4845e-01 -#> -1.1046e+01 3.7126e-01 -4.4773e+00 -3.0009e+00 4.1116e+00 3.8538e+00 -#> -4.7099e+00 -1.8970e+00 1.4741e+00 7.1659e-01 3.7944e+00 6.2840e+00 -#> -7.3374e+00 7.9661e+00 8.4182e+00 3.5170e+00 -6.3520e+00 -1.7288e-02 -#> -1.7208e+01 -3.3698e+00 4.1292e+00 -2.0220e+00 -1.0347e+01 1.5438e+01 -#> -1.0082e+01 -6.4995e+00 5.5515e-01 5.9078e+00 7.1912e+00 3.6817e+00 -#> -2.3130e+00 8.0063e-01 1.1618e+01 9.1944e+00 -7.0368e-01 1.0089e-01 -#> 1.9452e+00 4.3857e-01 9.5861e+00 -5.9947e+00 3.2025e+00 -4.1489e+00 -#> 2.3898e+00 5.1869e+00 7.7287e+00 3.4755e+00 5.7937e+00 5.4252e-01 -#> -5.9263e-01 9.0569e+00 1.5395e+01 -2.7766e+00 1.0821e+01 -1.7293e+00 -#> 4.5239e-01 -1.0123e+01 -3.0120e+00 -4.2275e+00 -5.5924e+00 -1.9935e+00 -#> 1.8789e+00 -5.4162e+00 -1.0534e+01 3.1018e+00 -6.8032e+00 -4.4391e+00 -#> -1.0391e+00 7.1574e+00 -2.2047e+00 6.4773e+00 2.0316e+01 2.3733e+00 -#> -3.7556e+00 6.4101e+00 4.5364e+00 -4.5714e+00 -1.0283e+01 3.7152e+00 -#> -1.0023e+01 4.5924e+00 -7.0045e+00 -3.7151e+00 7.6043e+00 1.0022e+01 -#> -4.4115e+00 4.4164e-02 3.7332e+00 -1.2023e+00 -6.7839e+00 3.3401e+00 -#> 4.4598e+00 7.0718e+00 2.9898e+00 3.5532e+00 1.2489e+01 -4.6912e+00 -#> 7.4195e+00 -3.9552e+00 -3.8079e+00 -6.0742e+00 -6.6667e+00 -1.4535e+01 -#> 3.6264e+00 -1.3222e+01 -6.8985e+00 -2.4302e+00 1.0476e+01 3.2049e+00 -#> 6.4970e+00 5.5345e+00 2.7960e+00 2.5680e+00 1.0286e+01 5.2805e-01 -#> 2.8223e+00 4.0463e-01 -3.0897e+00 -2.8653e+00 -4.7640e+00 3.1136e+00 -#> 1.0542e+00 -1.2056e+01 2.3570e+00 -1.0653e+01 -2.1960e+00 -5.1746e+00 -#> 2.5563e+00 4.3190e+00 6.0527e+00 -1.5861e+00 1.3050e+01 3.7657e+00 -#> -2.7193e+00 8.2389e+00 4.5454e+00 1.9444e+00 -6.1626e+00 -1.5945e+01 -#> -1.5180e+00 -3.8249e+00 -4.1468e+00 -2.9882e+00 -4.2244e+00 -2.6074e+00 -#> 1.0457e+01 1.1844e+00 1.2966e+01 7.0765e+00 -3.6259e+00 7.7815e+00 -#> 4.6665e+00 5.6338e+00 1.1487e+01 1.3988e+01 6.3386e+00 -8.3386e-01 -#> -#> Columns 13 to 18 2.0886e+00 -7.3745e-01 3.8596e+00 1.1250e+01 7.6722e+00 5.0116e+00 -#> 2.1444e+00 -1.6645e+00 6.8044e-01 -4.4825e+00 -2.3838e+00 -8.9263e+00 -#> 1.7066e+00 8.2733e-01 1.3864e+00 -5.2769e+00 2.1373e+00 2.8794e+00 -#> -9.2881e-01 5.1343e+00 -4.6063e-01 -6.8650e+00 5.7070e+00 -3.9509e+00 -#> 8.9417e+00 -3.2170e+00 -7.5011e+00 -1.3436e+00 2.3125e+00 -1.0677e+01 -#> 2.6758e+00 2.1154e+00 -1.4393e+01 1.9364e+00 -1.8340e+00 -1.4569e+00 -#> 1.2783e+01 -2.6929e+00 3.6496e+00 -6.7124e+00 -3.2855e+00 -7.3697e+00 -#> 3.5376e+00 -1.2442e+00 6.6557e-01 -9.2502e+00 -4.3490e+00 5.2186e+00 -#> -1.0287e+00 1.7489e+00 -6.3890e+00 -3.3085e+00 4.4065e+00 4.9332e+00 -#> -6.0900e+00 -6.4055e+00 -2.4614e+00 -3.4166e+00 3.4514e-01 -1.0389e+01 -#> 1.3470e+01 -1.1791e+01 -2.7705e+00 8.8360e+00 8.9835e+00 4.3432e-02 -#> -2.2199e+00 3.6928e+00 7.5354e+00 1.7304e+00 -6.0398e-02 5.4968e+00 -#> -1.4242e+00 -8.0811e-01 -3.7795e+00 -1.4466e+01 1.3720e+01 3.5974e-01 -#> -1.2734e+00 1.6379e+00 -1.8523e+00 -1.4098e+01 1.9150e+01 4.3712e+00 -#> 3.7641e+00 2.0794e+00 -4.8163e+00 -1.0482e+01 6.0374e+00 -6.2612e+00 -#> -5.7567e+00 -3.5951e-01 3.5209e+00 -9.5553e+00 7.4145e+00 -1.5226e+00 -#> -4.3966e+00 -8.0719e+00 -7.3956e-01 8.1789e-01 -5.3823e+00 -4.8919e+00 -#> 5.3892e+00 -5.2176e+00 -1.4142e+01 7.2664e+00 1.4347e+01 2.4555e-01 -#> 7.7653e+00 -5.8794e+00 1.2585e+01 2.1114e+00 -1.4813e+00 -7.0001e+00 -#> 3.9473e+00 -5.0185e+00 1.1463e+01 7.1674e+00 -1.6456e-01 5.4728e-03 -#> 2.4814e+00 -1.7935e-01 6.9283e+00 -1.1585e+01 1.4784e+00 2.3654e+00 -#> -6.4205e+00 1.1133e+01 2.9250e+00 1.7329e+00 7.0688e-01 5.7559e+00 -#> 1.0456e+01 -6.8576e+00 4.8140e+00 -7.6468e+00 -2.7327e+00 -6.2993e+00 -#> 6.8432e-01 -7.0138e+00 1.2649e+01 -9.6007e+00 -7.8085e+00 -2.0163e+01 -#> 5.6327e-01 -9.2424e-01 7.8005e+00 1.6437e+01 4.0998e+00 1.4246e+00 -#> -3.8699e-01 -3.5711e+00 4.4379e+00 -9.7836e+00 -6.2413e+00 -2.5627e+00 -#> 1.2638e+01 8.7734e-01 -3.8200e+00 -2.4395e-01 -3.4485e+00 1.2097e+00 -#> -5.7193e-01 1.1901e+01 2.9845e+00 -1.4858e+01 -6.7063e-01 2.3071e+00 -#> -9.6732e+00 -5.1042e-01 8.5809e+00 -3.6766e+00 4.3520e+00 6.9453e+00 -#> 1.8797e+00 -2.1659e+00 4.6082e-01 -3.9050e+00 -7.2183e+00 1.1659e+01 -#> 1.8875e-01 3.7510e+00 -4.7080e+00 2.4531e-01 -2.2246e+00 -9.3851e+00 -#> -7.1921e+00 -8.4018e+00 1.4588e+00 2.4293e+00 -7.9774e+00 -1.2957e+00 -#> -7.1650e+00 6.5995e+00 -8.2609e-01 -4.5824e+00 1.8581e+00 1.0594e+01 -#> -#> Columns 19 to 24 -1.6547e+01 -1.7455e-01 -1.3965e+01 1.1901e+01 1.1083e+01 7.0531e-01 -#> -9.7378e+00 4.9298e+00 -3.4363e+00 -8.7591e-01 -2.4670e+00 -5.0297e+00 -#> 4.3643e+00 -1.5493e+00 -5.8622e+00 -7.1102e+00 -1.2048e+01 2.1534e+00 -#> -1.5390e+01 2.9438e+00 3.5965e+00 -4.0425e+00 4.1766e+00 -2.8972e-01 -#> 2.0704e-01 -8.7539e-01 -6.3799e+00 -4.0346e+00 -1.2937e+01 -2.5051e+00 -#> 1.3951e+00 -1.5320e+00 -2.3383e+00 8.2027e+00 -4.7966e+00 2.8239e+00 -#> -8.0676e+00 -6.4718e+00 5.0619e+00 -5.0724e+00 -6.6217e+00 8.5565e+00 -#> 3.2756e+00 7.5328e+00 -5.7972e+00 9.7473e-02 3.8714e+00 -7.3040e-01 -#> -9.6483e+00 -2.0600e+00 -9.7193e+00 -4.9492e+00 -7.4333e-01 -8.6179e+00 -#> -1.0411e+01 -6.1163e+00 -6.2946e+00 -6.3084e+00 -8.5870e+00 -4.3519e+00 -#> 1.3475e+01 -6.2340e+00 9.6245e-02 4.0572e+00 4.9656e+00 6.8442e+00 -#> 1.2770e+01 7.3423e+00 5.9753e+00 -3.9718e+00 -5.8074e+00 1.2654e+01 -#> 6.1425e+00 -1.5625e+00 -5.7367e-01 -8.6138e+00 -5.9765e+00 -2.7418e+00 -#> 2.2703e+00 -2.2491e+00 8.4373e-01 -6.4280e+00 3.2190e+00 3.5527e+00 -#> 1.1549e+01 -7.9122e+00 -1.8938e+01 -1.5693e+01 -4.1604e+00 1.1917e+01 -#> -5.9029e+00 9.0893e+00 7.5842e-01 -5.2862e+00 8.7295e+00 -7.4853e+00 -#> -1.2061e+01 -6.9287e+00 -3.7148e-01 5.6541e+00 1.5193e+00 3.5425e-01 -#> -5.0123e+00 -4.6697e+00 -1.0465e+00 1.5650e+00 -1.0680e+00 2.7245e+00 -#> 1.0073e+01 7.4417e+00 9.5893e+00 4.2450e+00 4.2740e+00 6.7323e-01 -#> 4.4783e+00 -4.2850e+00 5.4657e+00 -3.8559e+00 -6.5410e+00 3.1018e+00 -#> 2.0051e+00 2.6213e+00 3.6959e+00 1.6965e+00 5.2516e+00 -1.1366e+00 -#> -1.3355e+01 -2.0926e+00 1.9470e+00 -9.4491e+00 7.5002e+00 -6.4533e+00 -#> 1.8658e+01 4.7384e+00 1.5558e+00 2.8851e+00 6.7274e+00 -1.1672e+00 -#> -3.9936e+00 -6.7976e-01 3.4615e+00 1.5546e-01 -4.7202e+00 3.0028e+00 -#> -1.1919e+00 -1.3104e+00 1.5569e+00 1.2456e+01 3.1025e+00 2.3721e+00 -#> 1.1173e+00 4.5066e+00 -9.3090e+00 -8.5264e-03 1.7803e+00 -6.3240e+00 -#> 1.9434e+00 1.0001e+01 -4.6523e+00 -7.2178e+00 1.9133e+00 4.2573e+00 -#> 1.7640e+01 2.0178e+00 1.2119e+01 -1.2353e+00 -1.2177e+00 3.3461e+00 -#> -1.1616e+01 -2.9746e+00 -7.5183e+00 -4.7508e-01 4.7900e+00 1.1289e+00 -#> -4.1454e+00 -8.5355e+00 -4.8618e+00 7.4444e+00 -6.7522e-01 1.5182e+00 -#> 9.5614e+00 7.6493e-01 -1.7208e+01 -4.1176e+00 5.2517e+00 3.0220e+00 -#> 7.9180e+00 -8.7570e-01 -7.2966e+00 -8.8530e+00 -1.2356e+00 9.8385e+00 -#> 8.0671e-01 -7.2320e-01 -2.2440e+00 6.0880e+00 2.4059e+00 -2.9827e+00 -#> -#> Columns 25 to 30 -1.7654e+00 6.1573e+00 -4.7365e+00 -8.6320e+00 -1.0574e+01 -2.4142e+00 -#> 9.6550e+00 -1.3046e+01 3.9530e+00 -7.7652e+00 -7.8142e-03 -2.3785e+00 -#> 7.7095e+00 -4.5380e-02 -2.2185e+00 -2.1431e+00 -2.8480e+00 -4.1918e+00 -#> -1.2611e+00 -6.1082e+00 8.4187e+00 -1.1930e+01 -1.8830e+00 9.4992e-01 -#> 2.9813e+00 1.7482e+00 -3.5632e+00 1.0422e+01 7.9552e+00 -9.4522e+00 -#> 2.3804e+00 -3.7486e+00 -7.8931e+00 -8.6517e-02 3.5921e+00 5.1656e+00 -#> -1.0735e+01 2.3283e+00 -1.0351e+01 9.9058e+00 -1.6368e+01 1.7590e+01 -#> -3.3455e+00 6.6997e+00 6.1150e+00 -1.3539e+01 3.1509e+00 9.2606e+00 -#> 9.9220e+00 2.6841e+00 -7.4650e+00 -3.8941e+00 4.9308e+00 -9.6910e+00 -#> 1.2039e+01 -5.5931e+00 3.8058e+00 -3.7076e-02 4.8538e+00 -1.3906e+01 -#> -1.2222e+00 -5.8971e+00 5.7628e+00 -1.3399e+00 8.7426e+00 2.8881e-01 -#> -3.1671e-01 -1.3056e+00 -8.4503e+00 6.6954e+00 4.4994e+00 7.4874e-03 -#> 5.8190e+00 1.4675e+01 -4.8289e+00 5.9821e+00 6.1915e+00 -1.3343e-01 -#> 3.3220e-04 4.6068e+00 -4.6546e+00 5.7364e+00 -2.2543e+00 2.7028e+00 -#> 9.3891e+00 -2.0363e+00 -8.9049e+00 4.3891e+00 -8.8804e+00 -9.8594e+00 -#> -1.0224e+00 5.4304e+00 5.4160e+00 1.0815e+01 -9.0729e+00 3.5370e-01 -#> -1.5242e+00 -5.8958e+00 -9.4318e+00 1.0289e+01 -2.9070e+00 -4.4505e+00 -#> -2.7731e-01 -6.3541e+00 1.7985e+00 4.7676e+00 1.1100e+01 5.3108e+00 -#> -4.6237e+00 5.7527e+00 1.9249e+00 2.4828e+00 -6.9288e+00 4.5745e+00 -#> 1.0163e+01 5.8311e-01 -1.0615e+00 -6.9244e+00 -7.4802e+00 -1.2862e+01 -#> -2.9575e+00 2.7526e+00 3.0471e+00 -1.4789e+01 4.2150e-01 4.5949e+00 -#> 5.3139e+00 -8.4273e-01 -1.1009e+00 -1.0658e+01 2.4117e-01 -5.2637e+00 -#> -1.8128e+00 3.4119e+00 -9.5389e+00 4.7784e+00 1.5970e+00 8.7575e+00 -#> 7.7266e+00 -1.3421e+00 -1.6817e+01 6.9556e+00 8.4550e-01 -3.6458e+00 -#> 2.7317e+00 -5.6457e+00 -4.8476e+00 4.2472e+00 -7.1554e+00 -4.5735e+00 -#> 2.0287e+00 1.2595e+01 5.9875e+00 -6.9651e+00 -3.8292e-01 4.1640e+00 -#> 4.7382e+00 1.5736e+00 -1.6172e+01 8.5885e-01 -4.5621e+00 -4.1614e+00 -#> -1.3447e+01 -8.9498e+00 1.1139e+01 1.4416e+01 -6.6645e+00 1.1075e+01 -#> 1.9097e+00 -3.9173e+00 1.9079e+00 -7.1014e+00 -6.5555e+00 -1.1570e+01 -#> -6.9789e+00 1.3138e+00 2.7922e+00 1.4033e+01 -3.5511e+00 -6.7887e+00 -#> 4.4467e+00 4.0878e-01 -4.3903e+00 -4.1820e+00 -1.0072e+00 -4.2013e+00 -#> 5.4239e+00 -5.3318e+00 1.1106e+01 8.8659e+00 -6.3158e+00 -8.8431e+00 -#> 1.7667e+00 7.0973e+00 1.4381e-01 -1.7409e+00 -1.4521e+00 -8.0895e+00 -#> -#> Columns 31 to 36 5.7877e+00 -4.6230e+00 7.2711e-01 -5.3029e+00 -1.0070e+01 1.5749e+00 -#> -6.4950e+00 -8.0376e+00 -4.5445e+00 -6.8741e-01 7.7429e+00 -1.0083e+01 -#> -1.5847e+01 1.7480e-01 -2.1960e+00 -3.0769e+00 1.8834e+00 -1.6263e+01 -#> -6.5188e+00 -4.4961e+00 -7.4398e+00 4.9623e+00 -5.0504e+00 -1.0719e+01 -#> -6.9759e+00 -2.7550e+00 3.8908e+00 -1.4866e+00 1.4092e+00 8.6068e+00 -#> 1.1555e+00 -7.9262e+00 -1.7627e+00 1.4443e+01 5.2027e+00 1.9195e+01 -#> -1.1875e+01 1.7406e-01 3.8870e+00 -1.6582e+01 -7.6358e-01 -9.4129e+00 -#> -5.6199e+00 2.9915e-01 -4.2304e+00 1.3446e+00 -8.7123e+00 -8.4327e+00 -#> 1.4075e+00 2.2520e+00 -5.4539e-01 1.2540e-01 2.7837e+00 -1.9737e+00 -#> -1.0888e+01 2.6625e+00 -2.2844e-01 -5.8239e+00 9.2506e+00 -4.6154e+00 -#> 3.2156e-01 -4.3800e+00 1.0448e+01 1.1336e+01 -5.0925e-01 1.1347e+01 -#> -8.9026e+00 8.4311e+00 -1.1829e+00 8.5838e+00 4.1165e+00 -2.6017e+00 -#> -1.0618e+01 4.5853e+00 -8.2806e-01 3.4717e-01 -5.1240e+00 -7.8976e+00 -#> -1.1902e+01 1.0810e+01 3.4999e+00 3.2599e+00 9.5764e-01 -8.7301e+00 -#> -1.3804e+01 3.4591e+00 2.7214e-01 3.7915e+00 8.5312e-03 -5.0884e-01 -#> -8.1244e+00 1.0172e+00 1.8569e+00 -2.3522e+00 6.7773e+00 -1.2270e+01 -#> 1.8376e+00 8.6732e-01 1.6401e+01 -7.6989e+00 -2.0114e-01 2.8492e+00 -#> 1.0577e+00 -1.9100e+00 3.3745e+00 1.2003e+01 3.8370e-01 -1.6340e-01 -#> -2.0837e+00 8.0215e-01 4.6182e+00 2.0742e+00 -5.6774e+00 1.3857e+00 -#> -6.0330e+00 1.0794e+01 5.6998e+00 -6.3962e+00 4.2862e+00 -2.6237e+00 -#> -3.0855e+00 7.1994e+00 -2.1118e+00 8.3192e+00 1.5085e+00 -1.3735e+01 -#> 2.6148e-01 1.1909e+01 -1.5958e+00 -8.5097e+00 -1.8810e+00 -1.4911e+01 -#> -8.3884e+00 3.3756e+00 1.4041e+01 9.2340e-01 8.0913e+00 2.0051e+01 -#> 7.7919e+00 -1.8161e+00 -5.1652e+00 -1.1685e+01 6.0734e+00 5.4655e+00 -#> 7.2264e+00 3.7018e+00 -1.2938e+00 -3.1015e+00 7.4691e+00 3.9491e+00 -#> -1.2834e+01 9.6482e-01 2.5271e+00 -7.3225e+00 -1.5531e+00 3.0103e+00 -#> -3.2939e+00 -7.1995e-01 -1.5961e-01 -8.3620e+00 -3.4409e+00 2.4556e+00 -#> 8.2753e+00 -4.5557e+00 9.8521e+00 1.1992e+01 1.5305e+01 -8.5115e-01 -#> -7.4579e+00 8.0515e+00 -3.0819e+00 -1.4713e+00 9.2651e+00 -1.5457e+01 -#> 9.7496e+00 4.9703e+00 1.0001e+01 9.2289e+00 1.9981e+00 8.2831e+00 -#> -1.0757e+01 3.1880e+00 -2.7738e+00 1.1525e+00 -1.5764e+01 1.4619e+00 -#> -5.5567e+00 -7.2724e+00 4.9576e+00 -2.6230e+00 5.0559e+00 9.4046e+00 -#> -7.6573e+00 3.0302e+00 -5.1165e+00 3.8154e-01 4.2957e+00 -2.9837e+00 -#> -#> Columns 37 to 42 1.4781e+01 5.8403e+00 -7.9739e+00 4.3284e-01 4.0315e+00 -1.8781e+00 -#> 1.0714e+01 -3.9545e+00 5.9812e+00 -1.0373e+01 4.7588e+00 8.2855e+00 -#> -2.0618e+00 -2.1084e+00 4.1794e+00 -1.0581e+01 4.8777e+00 8.7927e+00 -#> 1.1532e+01 -1.2932e+00 -6.2592e+00 -2.0058e+00 1.2718e+01 -1.0143e+01 -#> -6.9627e+00 -1.5297e+00 -4.0824e+00 -1.5353e+00 -6.1356e+00 3.2539e+00 -#> 1.0944e+01 -1.2924e+00 -8.0913e+00 8.3946e-01 5.9463e+00 4.7262e+00 -#> -8.8214e-01 -7.6500e+00 -9.0881e+00 1.2230e+01 7.8738e+00 1.2728e+00 -#> -3.6937e-01 -7.4623e-01 2.8593e+00 6.0178e+00 -4.1878e+00 -6.2481e+00 -#> 4.6512e+00 -3.8977e+00 -8.6991e+00 -7.2066e+00 -8.0469e+00 4.5942e+00 -#> -1.1658e-01 -2.2086e+00 4.4043e+00 -8.7130e+00 -8.1418e+00 6.6675e+00 -#> 3.2866e+00 -1.4364e+01 -1.1202e+01 2.3180e+00 9.5690e-01 -2.2525e+00 -#> -6.0650e+00 4.9470e+00 -8.6046e+00 -3.2993e+00 1.0456e+01 -8.4463e+00 -#> -1.1800e+00 4.0888e+00 1.0231e+01 -6.0781e+00 -1.3315e+01 8.7547e+00 -#> 5.2642e+00 -5.8803e+00 2.3019e+00 7.4136e+00 -4.8173e+00 4.0485e+00 -#> -2.2386e+00 -9.5951e+00 -1.3358e+00 -4.3168e+00 -5.1432e+00 1.0044e+01 -#> 4.5064e+00 -1.4719e+01 8.1893e+00 -3.3648e-01 -9.4532e+00 3.5265e+00 -#> -8.1611e+00 4.5290e+00 -4.8454e+00 3.8065e+00 5.1539e-01 -3.5527e+00 -#> 5.1429e+00 -6.1683e+00 -7.7518e+00 2.2368e+00 3.3335e+00 -3.2178e+00 -#> -7.6238e+00 -8.8446e+00 3.7186e+00 -4.0304e+00 -1.2876e+00 3.0657e+00 -#> -9.6459e+00 7.1043e+00 1.1225e+00 -8.9580e-01 3.6940e-01 8.4879e+00 -#> 1.3031e+00 -6.8280e+00 -9.7464e-01 -1.7561e+00 4.3782e+00 -5.3408e+00 -#> 6.9679e+00 -5.8045e+00 1.6076e+00 -1.3174e+00 -2.8242e+00 3.5411e+00 -#> 4.8554e+00 5.4867e-01 4.6937e+00 -8.3519e-01 2.8432e+00 1.4558e+00 -#> -4.0727e+00 5.3502e+00 -6.1120e+00 -1.2640e+01 6.2638e+00 9.2251e+00 -#> -4.0730e+00 -4.3857e+00 4.1525e-03 -5.7744e+00 5.5562e+00 1.8900e+00 -#> -1.4340e+00 -1.0864e+00 6.5575e+00 2.4515e+00 -8.7689e+00 1.5012e-01 -#> 7.8476e+00 3.2083e-01 -1.9992e+00 1.2308e+00 1.4226e+00 4.5515e+00 -#> 1.4021e+00 -6.5290e+00 3.1490e+00 1.2606e+00 1.7082e-01 -2.3939e+00 -#> -6.8526e+00 -6.5598e+00 7.8596e+00 -2.0899e+00 -4.9527e+00 3.3671e+00 -#> -7.9504e+00 1.3332e+01 -5.1713e+00 -4.8172e+00 3.8252e+00 -9.7357e+00 -#> 4.2879e-01 1.0015e-02 -3.9781e+00 -9.1234e+00 1.0227e+00 -1.5022e+00 -#> -9.6010e+00 7.0668e+00 9.2475e-01 3.4143e+00 -3.9469e+00 2.5812e+00 -#> -7.8083e+00 9.0833e-01 7.7153e+00 -7.5587e+00 -5.6300e-01 4.6345e+00 -#> -#> Columns 43 to 48 1.2810e+01 -1.3189e+01 -7.7055e+00 -6.3976e+00 1.5547e+01 8.8330e+00 -#> -1.5065e+01 9.7159e+00 -6.3723e+00 3.3489e-01 2.0888e+00 3.7348e+00 -#> -4.2313e+00 6.3053e+00 1.9464e+00 -8.2544e-01 8.5206e+00 5.7207e+00 -#> 2.0316e-01 1.0027e+01 -5.5466e+00 9.0533e+00 1.8833e+00 5.5861e+00 -#> 3.3048e+00 3.1319e+00 6.2988e+00 3.1838e+00 -2.9775e-01 -9.9813e+00 -#> 1.6776e+00 -1.1691e+00 -5.3201e+00 3.5656e+00 -4.7045e+00 -8.3086e+00 -#> -4.5635e+00 2.0188e+00 9.2125e+00 -3.9032e+00 -3.8079e+00 -6.3385e+00 -#> 5.3327e+00 7.2008e+00 1.8978e+00 -5.8745e+00 -3.4445e+00 5.1775e+00 -#> 5.9848e+00 2.5756e+00 2.4851e+00 -4.3141e+00 -7.1245e+00 -4.7120e+00 -#> -4.2353e+00 4.1360e+00 2.4754e+00 -3.3324e+00 6.6476e+00 -2.6378e+00 -#> -3.8737e+00 -2.7430e+00 -4.2719e+00 6.1796e+00 3.7464e+00 3.1966e+00 -#> -8.9031e+00 5.3667e-02 -2.0811e+00 4.1157e+00 7.7390e+00 4.8121e+00 -#> 2.6389e+00 4.2188e+00 -3.3962e+00 4.2881e+00 -2.4315e+00 9.4363e+00 -#> 8.9556e+00 1.2537e+00 -2.8011e+00 -7.3613e+00 1.4005e+00 -3.8574e+00 -#> 1.2019e+01 1.4726e+01 6.9024e+00 -2.1664e+00 5.1618e+00 -1.1799e+00 -#> -3.3054e+00 3.7320e-01 1.0245e+01 -1.4051e+00 1.6680e+00 -8.1630e-02 -#> 2.8422e-01 -7.4191e+00 2.8573e+00 1.6843e+00 1.4833e+01 -2.8418e+00 -#> -4.4291e+00 -2.8135e+00 -1.5023e+01 -3.1354e+00 2.7697e+00 -1.9877e+00 -#> -1.1016e+00 7.1654e+00 1.2580e+00 7.7710e+00 4.1162e+00 5.1481e+00 -#> -6.9081e+00 5.2128e+00 2.9860e+00 -1.4196e+00 -1.7435e+00 8.4676e+00 -#> -5.3983e+00 1.0983e+01 -3.1357e+00 -1.0623e+01 -4.6322e+00 7.8922e-01 -#> 8.3450e-01 -4.0142e-01 -7.6967e+00 -1.4488e+00 -8.4348e+00 2.2065e+00 -#> 5.7479e+00 3.1151e+00 1.8005e+00 -5.7872e+00 3.0122e+00 -9.6315e+00 -#> -7.8079e+00 -7.6238e+00 -1.7575e+00 1.8205e+00 7.2539e+00 3.8008e+00 -#> -1.0109e+01 -3.5757e+00 8.2105e-01 -4.4458e+00 -5.1365e+00 -1.5818e+01 -#> 4.6419e+00 8.5954e+00 8.1159e+00 -1.8950e+00 1.0888e+00 7.3860e+00 -#> 1.0279e+01 4.0486e+00 3.8668e+00 6.8263e+00 4.4360e+00 1.7308e+00 -#> -1.8266e+01 3.0640e+00 4.1436e+00 8.5667e-01 6.0407e-01 -1.2738e+01 -#> 7.3158e-01 8.1287e+00 8.3764e+00 -5.1014e+00 2.8116e-01 -7.9374e+00 -#> 3.0224e-01 -5.2574e+00 4.2073e+00 6.6237e+00 5.8265e+00 1.7484e+00 -#> 5.1284e+00 5.3158e+00 4.4600e+00 1.2923e+01 1.3637e+01 -3.8000e+00 -#> 2.7022e-01 -4.0573e+00 9.2956e+00 1.5066e+00 -9.9581e+00 -8.9386e+00 -#> 5.2094e+00 1.3030e+00 2.6377e+00 3.6572e+00 -1.2780e+00 1.9778e+00 -#> -#> (11,.,.) = -#> Columns 1 to 8 2.8781 2.2097 -1.0166 8.1775 -0.7718 8.1902 -0.9899 -11.8470 -#> -6.2581 5.5743 7.7125 -12.8765 -3.1623 0.1986 -5.9956 -9.2363 -#> -0.2172 -0.8420 9.4055 -11.2229 -1.8000 -1.2664 -1.7218 -1.0896 -#> 11.4138 1.5981 0.7542 1.7948 -1.1702 -1.7719 -9.2642 -9.8508 -#> -3.8479 8.2731 3.5893 -6.5526 3.9244 -7.8203 -9.8070 3.4631 -#> 9.6756 1.5901 -10.3462 -10.4983 5.3770 -0.4591 -2.7411 3.5073 -#> 5.7282 -6.6532 7.0050 -3.8995 11.4720 -1.5143 -3.0646 7.9134 -#> -10.4324 2.0450 1.2011 5.9723 -2.9955 5.4474 7.2957 -3.6325 -#> 8.0859 1.0551 0.5931 0.0603 -6.0898 -3.1183 5.7426 -6.1302 -#> -12.6554 11.6160 9.1281 -8.6554 -0.7018 3.1528 -6.0132 -5.0604 -#> -14.8811 9.6235 -2.2084 0.9378 5.9259 2.6533 -0.6158 -0.3892 -#> -7.6016 11.6173 -4.0455 -9.1039 7.3522 1.6756 1.2683 7.6569 -#> -4.3699 -5.2974 5.9473 7.1043 -3.2537 5.4743 -1.0449 -5.1495 -#> 5.2138 -2.3339 -1.0099 0.8368 2.8119 2.7774 3.6714 0.0031 -#> 8.2720 -6.8858 7.2203 -5.7084 -10.2222 -5.5913 -9.6192 0.9030 -#> -2.1772 -4.7607 14.7243 3.4797 -0.6596 -1.4458 2.4896 -5.4278 -#> -7.1641 -0.1249 -7.9006 -3.6037 -3.3484 8.6855 -5.7696 2.6918 -#> -2.5526 -4.4526 -2.4355 -3.2067 14.2889 3.3216 1.6071 0.7929 -#> -15.2051 14.2628 12.3325 3.1186 -1.8251 -7.4071 -2.9547 -1.7397 -#> -5.2387 9.3243 -7.0639 -0.8562 -4.1239 3.8398 1.4057 -1.6789 -#> 0.5528 -0.8265 -10.4466 -4.1306 6.3734 1.5282 12.3649 4.0504 -#> 11.1108 -3.0633 -3.6177 5.7682 5.1008 -2.4357 7.9087 -9.6357 -#> -10.3575 15.5950 -6.8540 -12.3639 -0.0412 -8.0590 -2.7639 6.2915 -#> -7.8598 14.0037 -4.7523 2.2997 6.1635 1.7026 -6.2875 -1.1226 -#> 3.5824 -5.8863 4.7592 -3.0903 2.6901 -1.9886 2.6103 5.2841 -#> -1.5312 4.2905 8.7163 1.5517 -6.8520 1.7236 -6.1933 -7.1499 -#> 9.4862 2.0688 -4.7118 -1.9646 -3.7517 -5.6849 -2.6916 -0.4818 -#> -6.3272 -8.3648 1.5437 -12.2026 4.5188 11.4448 -0.7743 21.8454 -#> -4.0406 3.5181 4.3892 -3.6517 -10.6121 1.8866 2.7786 -0.3579 -#> -14.2391 7.8265 -13.1909 0.1867 -0.9296 1.5074 5.8571 -1.2301 -#> -0.2945 6.9921 6.2890 1.7168 -1.7118 -6.4731 -5.1135 -1.5401 -#> 2.0167 -0.0208 2.3058 4.0023 -9.0107 0.2120 -7.0342 6.9787 -#> 7.1531 0.8605 9.0946 -3.1487 0.0899 -3.9209 2.6381 -3.0970 -#> -#> Columns 9 to 16 -6.1915 -8.2626 -9.0006 -4.0418 -5.2003 -5.3085 -4.1699 16.7122 -#> 19.5822 3.5655 -0.5455 2.5924 2.8166 -7.1293 2.1717 0.6939 -#> -0.0666 -1.4415 2.4082 7.5363 0.5220 -1.4166 4.4682 -3.4278 -#> 4.9616 0.3099 -4.0076 11.1014 -5.7296 2.0147 -7.3795 9.0969 -#> -8.2887 -3.4343 9.5883 -2.1146 0.5618 -2.2804 5.8889 -7.3778 -#> 14.1456 5.9190 -2.0328 -2.6687 2.2124 0.8063 6.1982 2.2195 -#> -1.5928 0.4058 8.9747 1.6188 3.1345 -9.7028 -7.3274 6.0963 -#> 10.4677 2.9256 0.9422 11.0137 -2.2644 -11.5415 7.8916 2.9541 -#> -6.0708 4.4333 3.1589 -5.0676 -7.9851 2.3739 -6.0588 -2.1832 -#> 10.8193 4.0739 0.8660 -2.5729 0.8408 -8.6158 4.2908 -6.9327 -#> -6.8986 5.9385 4.4483 -11.7290 -14.5286 0.4827 17.4183 -2.5515 -#> 5.1375 4.0198 8.6159 -4.3389 -13.8087 0.7683 8.3413 2.9647 -#> -6.5967 -1.5645 -1.2306 12.1490 -6.1894 14.5564 8.7421 -4.9975 -#> -11.2655 0.8737 -6.1851 0.2204 -5.8681 4.7180 5.9456 1.9183 -#> -12.2213 -15.1589 -2.7198 2.5953 -6.5069 -10.0845 9.1320 -10.0574 -#> -0.7626 1.8518 -2.9269 1.0017 12.3075 5.7738 -5.0093 9.1991 -#> 3.9567 -2.3733 5.1063 4.6667 -0.3354 -10.5436 -11.7094 8.5977 -#> 2.9944 -6.6322 4.3978 -6.5010 -0.0759 -10.2965 4.9730 2.9660 -#> 8.9919 2.6644 -4.4370 7.2588 4.9745 1.3050 19.2494 10.3855 -#> -1.0392 -2.9545 -5.6787 3.8888 -1.4883 -5.5207 6.1828 -3.4936 -#> 10.7327 4.6214 -0.5641 0.3687 -1.4311 -4.9733 3.9833 0.7176 -#> -8.3585 -5.7510 -4.0912 -2.6170 -1.7727 7.6623 -6.1395 -9.1816 -#> 2.2889 -0.2266 3.1189 -2.6195 4.2082 -5.6330 9.8348 7.9776 -#> 8.7933 12.3731 -3.5023 2.7876 -0.1834 2.7520 -10.9274 -2.5809 -#> 11.7923 6.6071 -4.3929 -12.0979 -4.8559 -3.5806 -1.5844 13.4595 -#> 0.7568 -5.8900 2.0718 14.9415 2.2399 -6.6502 14.8196 8.2244 -#> -3.6494 -1.7169 6.9579 -0.4423 -3.3180 -1.1368 -11.8920 6.4290 -#> 6.7029 -10.1809 -1.9819 -5.6661 -2.7719 -2.5286 -3.1997 -9.4372 -#> 8.7309 -4.0389 -11.5737 -8.1458 -3.5622 -0.5749 8.0254 -1.8079 -#> -10.1502 -2.2120 -3.8260 6.5190 6.1603 0.6438 0.1826 1.3515 -#> -3.4241 -1.1157 6.5079 11.2266 -4.7174 -7.4841 2.2192 -3.6866 -#> -1.7339 -2.9707 -5.3129 -6.4849 -7.4874 8.1912 9.1298 -6.6721 -#> -3.9521 1.4523 0.2940 -1.9947 -3.2829 16.9990 4.8489 6.0814 -#> -#> Columns 17 to 24 5.6664 11.0845 -10.2942 -4.7752 -6.0080 8.1106 -3.5690 0.9122 -#> -7.6126 -19.9690 4.6329 -8.9806 -0.4967 2.6903 7.8598 -4.5414 -#> -11.8706 -5.2885 -0.0619 -1.4086 3.6219 0.9005 1.2591 -2.8981 -#> -5.7637 -11.8687 -0.4377 -7.7378 4.4512 -7.9747 -8.7335 0.4574 -#> 3.1455 -1.0820 2.9134 0.2344 3.9357 -11.2709 0.1974 -3.3359 -#> -12.8174 -2.0394 -9.5841 2.4451 7.2319 -0.3387 0.5652 -0.1930 -#> -13.7959 8.0847 3.8370 -1.3418 -10.4121 5.0823 -8.9951 -1.7491 -#> -6.6635 3.5142 1.4026 -11.0846 -2.7440 9.2802 3.5806 5.7885 -#> -1.1767 -0.9026 -8.0627 -2.0746 12.1456 -3.9612 -5.6939 3.9885 -#> -1.7274 -16.3384 7.3582 -6.4908 -0.4155 -1.4168 10.5900 -8.3264 -#> 22.9371 -2.6684 7.5032 -5.1639 -0.7731 -15.6504 2.5496 -25.6584 -#> -9.9856 13.7973 0.9767 -14.3910 -3.7744 0.1570 -6.9156 -0.4604 -#> -1.7880 3.5345 1.4397 1.9685 8.2998 -7.1436 2.2520 -1.8548 -#> 2.6198 6.9447 1.9977 -4.7944 7.8972 -9.6881 -14.5384 2.0402 -#> 2.4234 3.0974 -5.9777 12.3375 2.4437 -5.6257 0.3055 3.5800 -#> -2.0321 -4.9167 1.8321 -1.6269 -7.0493 -7.4840 -6.6248 8.4155 -#> -6.3536 -5.2497 -0.8554 11.0275 0.3792 2.4790 6.4480 -4.4525 -#> 0.3469 6.9205 4.5552 -4.9644 9.5360 -1.3360 -9.3090 -4.5213 -#> -6.4502 -11.7928 -6.1335 -8.0252 0.8029 -9.4381 5.9685 -4.3368 -#> 8.8216 0.8329 -0.2735 -7.1837 -8.0822 -9.6586 1.2252 0.6287 -#> -1.3171 -6.6742 6.8636 -18.5117 5.8795 5.2577 0.1714 3.6908 -#> 1.8756 8.8235 -7.2492 1.8759 -0.0843 -4.4299 -16.8106 9.7002 -#> 5.3941 -1.8122 -2.9792 -10.6169 3.2304 -1.0800 -0.9455 -3.4328 -#> -7.0644 -8.4130 4.7494 5.3553 7.0956 -8.0271 20.0530 -7.7643 -#> -2.8851 -2.7643 -9.6940 0.6988 -13.5548 -11.2170 -6.3717 6.5294 -#> 1.4785 -1.5019 -13.8826 2.5866 -6.0112 1.4736 5.9116 13.5663 -#> 4.4456 3.7312 -3.7568 -0.6211 3.6518 0.4688 -5.2054 4.7016 -#> 4.1419 7.2961 22.8483 18.7562 -13.6192 10.4419 5.3509 -19.8762 -#> -1.3481 -10.2438 -1.7149 -11.4341 -10.5016 4.5516 -6.6300 10.4442 -#> 4.8445 8.3227 -5.4541 7.5567 0.8922 -0.4789 0.3967 -5.8435 -#> -4.6249 13.5624 -6.0266 -7.0758 0.9136 -2.8116 0.4097 5.0527 -#> 2.1420 -5.8441 1.0169 3.2376 -15.4424 -10.0194 7.6189 0.4871 -#> -6.5184 -1.2838 -10.3528 -3.5135 -7.1717 -4.0199 -10.5834 9.9731 -#> -#> Columns 25 to 32 -10.3515 3.4975 -3.6517 7.7534 0.3283 0.2941 -7.0501 -6.8274 -#> 1.4270 12.2531 9.8292 -0.3401 3.0283 1.5113 2.4921 3.2593 -#> -7.5005 7.8531 8.1607 1.5169 3.4709 -12.8539 -1.9708 12.2384 -#> 2.4944 3.9962 0.7539 3.6741 -9.7667 -4.9758 3.8036 2.6912 -#> 5.5318 2.7070 1.6485 -5.0410 -0.7996 -4.4982 4.1551 15.4612 -#> -10.5261 -5.4848 4.7405 -1.1069 3.9326 5.6820 -5.2473 -8.3052 -#> -1.1329 -1.5255 12.7872 -3.1154 -0.9708 2.8787 1.7427 14.3937 -#> -12.2924 -4.7862 7.1931 0.5332 7.4366 7.9451 -9.8216 -8.7823 -#> -0.7814 4.8600 0.4755 11.8892 -3.6985 -3.3411 5.5341 0.2644 -#> 3.4088 5.4109 8.5450 -2.0580 -0.5300 -3.7219 7.3510 7.8470 -#> 9.0335 9.4278 11.0499 -3.8728 -1.4293 -12.1467 1.2945 -5.4632 -#> 6.8743 11.7608 1.6648 -4.8751 13.1060 -2.2418 4.4712 3.7576 -#> 6.7995 3.0815 1.0554 -3.7866 1.1449 -10.6269 -4.1921 -1.4030 -#> -0.4489 3.0557 1.8424 2.0436 -6.4865 -3.8906 0.9938 -2.0567 -#> -10.4877 -4.4549 1.0167 0.4971 -7.5357 -6.5673 -10.2117 4.3548 -#> -0.8417 2.0043 -0.5281 -1.6514 -12.2684 -1.2485 -2.1550 2.2551 -#> -12.7666 -6.6186 0.8067 5.8773 -3.6131 -2.2668 11.4308 7.8232 -#> -9.4452 -1.5626 6.0157 -1.6627 4.5507 -0.6084 -3.8642 1.6012 -#> 2.9794 0.1325 3.8421 -8.8259 -0.4939 -18.2918 -11.1140 -4.3855 -#> 6.2471 4.9542 9.4580 0.6201 -2.4679 0.5176 9.5204 6.5565 -#> -0.3907 4.6630 12.7648 -0.0060 7.7318 9.3784 -0.8921 5.6945 -#> 12.5322 13.0636 -1.7965 4.8947 -6.6470 2.9905 9.2692 -3.8457 -#> -0.9241 -11.4957 -1.6680 -5.9663 9.7777 -4.1905 -8.1391 -2.7973 -#> 5.2600 -4.3981 -7.8513 -1.1895 4.0581 -2.9813 10.5569 5.8662 -#> -6.3160 9.7658 2.4030 10.7301 -2.1206 0.5316 2.3882 3.0174 -#> -9.0679 -6.4728 0.3893 0.7980 -4.6750 -4.5644 -10.7221 4.0892 -#> 1.4679 -5.2258 -3.4626 -0.5695 2.0237 -1.4349 2.7530 -4.8818 -#> -7.9846 6.8764 4.2227 2.3961 0.2227 10.2062 9.4042 9.6672 -#> 0.3163 12.4046 -0.8354 0.3742 -5.6021 -1.8028 -0.4147 4.0197 -#> -7.1034 -3.1581 -15.2460 3.4164 1.7271 -13.3808 8.1067 5.0651 -#> -5.3282 -7.1169 -14.3244 -2.9758 9.1079 -3.9552 -3.5461 -5.6140 -#> 15.6531 4.8156 1.1635 -6.2082 -6.7749 4.0234 -1.0711 -5.8332 -#> 4.3762 14.6048 -1.9513 1.7074 -6.0273 -8.7757 -5.1166 8.4456 -#> -#> Columns 33 to 40 -10.1023 -3.9219 -9.1799 9.5749 8.4975 -11.1930 9.7151 7.1257 -#> -4.6959 -0.7548 12.8207 10.9396 0.5109 -2.8755 13.5778 -6.5760 -#> -5.4996 -7.8202 4.7448 6.0284 -1.3823 8.4791 13.4582 9.2748 -#> -6.7925 3.9432 4.9907 6.8099 3.3344 2.6087 3.8572 -13.1837 -#> 4.0631 2.9278 -2.1702 7.0277 -5.9275 -6.6336 -14.0380 -0.8810 -#> 13.7508 7.2422 10.8456 3.6631 -9.4903 -0.0949 -9.4799 -13.1683 -#> -6.4126 -4.4764 -3.1920 3.6200 9.2765 -0.6455 -2.4736 -3.5236 -#> 5.1701 -2.2355 -4.0393 -2.0168 9.7074 -5.0182 5.5302 0.5364 -#> -4.7535 2.4163 -7.0061 14.8368 -6.1606 2.4834 -2.1907 0.2419 -#> 1.8371 -6.5680 2.0259 6.1676 1.0617 -9.2078 1.2528 6.3787 -#> 9.4472 -6.5630 1.2068 10.8190 -6.5610 3.5445 -2.8692 2.9642 -#> -7.2891 6.0978 -3.3751 4.1682 2.6300 1.0304 6.1595 -13.8636 -#> 0.6786 -0.7477 -7.2634 -1.8376 3.1016 5.0136 3.9515 1.5174 -#> -12.6435 4.9984 1.0216 3.7301 -11.5680 9.5201 -1.4775 -8.6870 -#> -3.6625 4.2057 5.5981 4.0501 -3.0935 9.0510 -4.4381 -1.4277 -#> -7.8689 12.5444 -3.1417 10.3896 -9.9695 3.2747 2.8322 1.7519 -#> 1.8620 -12.7264 2.2756 -1.6458 1.6316 -13.8687 -4.1662 16.7878 -#> 0.3420 3.7973 -1.1359 -1.4965 -4.0083 -4.1914 1.7148 2.4032 -#> 6.3714 2.4896 7.8242 6.8193 7.0321 3.2046 6.8605 -4.6502 -#> 2.8786 -16.2526 2.4352 -3.8882 2.2542 -2.4454 -1.5951 4.7389 -#> -23.1875 -4.1333 6.3962 6.6887 -6.1362 0.8058 15.6956 7.2013 -#> -8.7329 7.1801 -5.0613 1.1381 -2.0916 10.0014 -3.2677 -12.7174 -#> -4.5880 11.6920 14.5654 1.7693 4.4473 -4.4503 -6.5495 -8.7196 -#> -12.2589 -7.2170 7.9125 3.5010 -9.2617 -7.6637 7.5840 8.4875 -#> -5.3479 -5.0334 5.0921 6.9245 -8.3232 7.1854 4.1576 -1.5226 -#> 8.1612 -11.9883 -3.6214 13.7768 3.6118 -6.4589 -4.7312 -0.0460 -#> -4.4050 2.7748 -5.1623 7.4096 5.4151 -9.0273 -6.8535 -1.7368 -#> -2.0037 -5.8586 4.3548 -7.4482 -17.8355 7.5988 -5.9774 3.9989 -#> -4.5390 -2.9569 6.4785 2.0471 4.1070 -0.4610 10.3860 -6.3458 -#> 2.7225 0.7216 -7.2652 -4.7884 1.4376 -6.6834 -0.9750 8.7055 -#> 6.1952 6.8069 -4.0349 3.0092 -4.8960 1.1997 -1.7488 -7.0332 -#> 3.4292 -9.9456 6.0187 -7.4573 6.3376 -2.4621 -2.0052 0.2439 -#> -2.6957 6.6021 -1.6683 9.6269 -5.0222 3.0561 -0.4602 -3.9711 -#> -#> Columns 41 to 48 -2.3662 -4.1178 6.0542 -17.2736 1.1544 -14.6532 -4.2327 -1.6723 -#> -9.6362 -4.0162 8.9831 0.0999 0.5063 -5.7267 -0.4100 -3.6152 -#> 4.8958 -15.0266 -0.8540 -2.6382 2.8027 3.7457 6.4793 -3.2880 -#> 0.2428 -20.9852 -2.8938 -5.1603 11.2823 -5.0218 3.5444 2.0790 -#> -4.0056 2.6767 -14.2301 -2.8351 -1.5785 9.4275 -3.2266 0.2698 -#> 13.7052 -6.2582 -17.5901 13.6814 2.5738 7.9126 -6.7576 3.7483 -#> -0.4129 -9.1739 -1.6229 1.1630 0.6235 4.9927 0.3573 -0.4206 -#> 9.1233 3.1910 10.6905 9.6390 2.7398 -2.4940 0.5708 -2.8679 -#> -7.8422 -9.4731 -9.4229 -5.5931 0.8138 8.7929 -2.3753 -1.6864 -#> -3.2461 3.6471 0.5257 -10.9632 3.6299 -0.0675 3.1798 -15.2807 -#> -14.9918 -3.9584 -9.7075 14.5392 -5.4990 -1.5539 -12.2078 8.0035 -#> 9.5730 11.4291 -7.0751 0.0573 -15.4524 8.8957 3.7455 2.1895 -#> 7.8082 -3.8102 6.6591 -1.2311 -4.3900 0.9965 9.2195 -10.1490 -#> 3.8526 -15.6402 -5.1694 -3.2650 5.3320 0.6164 3.4690 -5.3112 -#> -1.2557 -12.2737 -7.2549 -3.3846 7.4051 1.0831 -4.2061 -6.6609 -#> 0.8970 -14.5638 8.9470 -8.6792 -1.5913 10.7282 3.4311 -6.1475 -#> 4.0533 3.6346 22.0376 -11.0145 -3.3696 -10.2912 1.8133 -4.4615 -#> 6.9292 1.4592 -10.4186 9.6825 1.6393 7.4733 -6.5915 1.2002 -#> -9.6357 -5.2183 6.0034 6.9522 -8.2266 2.9211 -1.4970 7.7575 -#> -4.3216 -1.2334 -8.8963 -0.6198 2.8602 -9.6112 -12.6712 -1.2095 -#> -0.2654 -4.1480 0.0734 8.8209 2.3408 0.8615 -4.3848 7.7182 -#> -7.8335 -11.9261 -1.9578 -4.8017 -4.1270 -2.7510 -7.9025 3.6308 -#> -5.1774 1.1036 -3.9699 -7.1527 4.0851 8.1275 0.2665 4.3704 -#> -10.5100 8.6654 3.9859 -11.6839 -6.7456 -1.7912 4.1879 6.8301 -#> -8.2875 -7.6335 -5.0641 3.4509 -0.7044 5.7884 -1.5903 5.4270 -#> 14.7860 1.6551 6.0810 -0.1190 -0.6695 -3.8393 -2.5997 -2.9030 -#> 3.0867 -8.2454 -2.4351 3.7962 -2.4292 0.2244 -0.2360 6.7647 -#> 2.3410 2.5302 -3.1083 -6.5420 -13.2832 6.7880 2.6604 2.6548 -#> -0.9989 -4.2706 7.0629 -3.4784 6.5034 -6.2423 9.9963 -14.3233 -#> 4.2896 -4.0390 -1.4066 -14.4308 -2.8039 9.3129 -0.1018 2.7691 -#> -2.0399 6.2666 2.7508 -5.6485 -1.2999 4.8603 2.6266 -1.8459 -#> -3.3496 -4.6115 1.7148 -2.4124 11.2194 -6.3833 11.5255 -9.6916 -#> 3.6975 -7.3336 -0.8093 -4.4650 -9.5633 5.6365 0.4674 -2.7346 -#> -#> (12,.,.) = -#> Columns 1 to 8 -1.6277 1.2656 -1.4825 11.3328 10.6316 3.1802 2.7966 7.3602 -#> 0.7563 11.4658 3.0252 -5.1515 -9.5619 -2.4433 -5.7716 3.6334 -#> -10.5882 12.0208 10.2176 0.2408 -6.5390 -8.0264 -0.8759 -1.1588 -#> -0.7622 4.3897 -1.1896 -1.7668 -8.9001 1.3332 -7.5461 8.9010 -#> -3.4753 -0.1087 8.2465 -6.7310 -5.2670 -7.9490 10.5989 5.9618 -#> -5.2578 -9.5628 3.8548 -2.9971 -7.3184 -3.6002 -3.0816 -13.1817 -#> -1.4256 1.5171 -0.5876 -11.1181 -4.1151 -5.4291 6.7526 8.3762 -#> 11.6134 -3.6160 3.2140 -0.5094 0.0399 -2.3758 -3.6816 5.9869 -#> -3.0449 -2.3651 -3.8286 4.9898 -7.6807 3.3386 0.9428 -0.6329 -#> -8.3678 1.8662 0.6236 -3.0013 -9.7194 -8.1617 -1.3421 4.1308 -#> 15.7022 3.1097 -0.6749 -15.2644 -1.2098 -6.0772 6.4032 -5.7096 -#> 1.1139 12.4873 7.5104 -6.8317 3.5047 0.8986 8.7020 5.2628 -#> 10.1008 0.3333 1.9349 -2.2046 -10.1011 -1.9751 -6.3534 0.1331 -#> -6.7504 4.4257 -8.3930 4.4600 -6.5332 1.4475 0.3728 -2.6905 -#> 2.4878 5.3327 -1.4330 -2.6156 -6.1966 0.1642 9.1931 0.4174 -#> -7.9441 -2.8109 -10.7725 1.8952 -18.0593 0.0408 -9.0493 -2.1951 -#> -15.9260 9.6935 2.5494 -2.1085 -0.7622 -8.1082 2.7542 10.5612 -#> -15.6643 -9.0980 9.7987 -4.7460 -1.0128 -5.6632 4.0524 -1.4456 -#> -0.5765 -0.7434 -8.1518 -23.3519 -10.5594 -6.9221 -8.8655 1.9328 -#> -1.7641 8.7819 11.6229 2.5808 6.2782 -1.7949 8.3206 13.0015 -#> 7.5008 1.6181 3.6726 -4.3403 0.8462 -0.1154 -2.3327 4.6810 -#> 14.0324 2.9959 -11.2916 8.4420 -1.3429 10.1206 6.9614 -1.7276 -#> -9.8757 -3.8125 -9.9773 -9.4471 5.8427 -8.9117 -6.0019 -4.9530 -#> -7.5694 13.4387 -14.0810 -13.3506 -0.1395 -1.3370 4.0942 3.1384 -#> -15.3091 1.5466 -7.9623 -5.0435 0.9694 9.4680 9.3944 -0.9201 -#> 10.9647 -3.0660 -0.2466 -3.3298 -10.6204 -13.0028 -1.8922 10.1039 -#> 1.9402 5.1355 11.9231 5.3982 4.5491 2.5113 4.7216 5.9898 -#> 3.4196 5.3555 -3.5012 5.1005 2.0839 0.7908 10.2228 -5.0219 -#> -12.1527 0.5536 -4.1541 5.5112 -1.1533 6.0899 -1.1417 5.2220 -#> -5.5688 -0.8625 -9.4234 -4.4074 -1.7161 -8.4068 -7.6863 -3.9451 -#> 7.5764 6.6458 -1.9726 -7.0190 4.9921 6.4549 1.7532 6.0018 -#> 7.9313 12.2998 -4.0938 -7.3600 -3.4463 5.2630 -3.4504 -4.2298 -#> 5.3973 -4.2705 -3.6850 1.1945 -8.5218 -1.3317 -2.4017 0.3735 -#> -#> Columns 9 to 16 -9.1700 -5.4425 -9.0628 2.4983 4.2815 11.4832 3.8628 -12.8614 -#> -2.9090 -0.2501 -6.0506 14.9251 0.4494 -0.0867 5.6211 1.6150 -#> -8.0287 -5.9114 -0.7751 4.1525 0.1630 7.7034 5.3568 3.9979 -#> -13.7131 -4.1252 9.3736 11.7485 9.8657 -4.1714 1.9415 -9.1430 -#> -0.1387 3.0135 0.7491 -1.8394 0.1614 2.2556 8.3285 -0.2316 -#> -7.1668 2.9922 2.4090 15.7913 -6.2054 1.9636 -3.4500 7.7883 -#> -4.2918 -4.8643 9.0532 -4.6586 1.6853 11.3118 -0.0763 12.0158 -#> -3.6470 2.7414 1.4341 3.2723 -2.6892 -4.6365 0.6876 2.2663 -#> -1.0103 11.8353 2.4095 3.1762 3.4075 2.2852 10.2877 -2.9286 -#> 0.0213 -3.4105 -5.0831 -0.0772 4.8501 1.4105 6.8952 0.7864 -#> 20.3048 2.1310 -2.1970 0.2460 3.9726 -6.4222 -8.8292 -4.2873 -#> -9.2621 -9.3889 -2.6775 3.2402 -10.3275 6.7707 -0.3343 -5.5113 -#> 10.8026 8.6806 0.4268 -7.1872 -6.6650 8.9344 7.0174 -5.5875 -#> 1.4095 2.6411 5.9594 -5.0065 8.6666 0.3373 11.5285 -3.7100 -#> 8.7947 7.9955 5.4419 -9.5228 12.7298 8.9183 5.0018 4.0518 -#> 0.5228 -2.5511 -0.3390 1.5011 7.9529 -9.4144 -2.0756 -8.6872 -#> -7.0986 -6.2085 -1.4724 -1.9024 -6.0415 5.1373 -8.1891 -2.0590 -#> -8.7808 -0.9564 -12.4611 -8.2841 -4.8299 -0.9901 -2.5113 -4.2294 -#> 5.1060 3.8005 10.3105 18.3401 -9.3370 -6.2471 -4.2201 -1.0089 -#> -4.3429 -12.8005 -3.6652 -3.7718 6.2987 10.2018 4.2139 10.7305 -#> -17.5902 -7.8866 12.9877 4.4011 2.7936 -7.6180 13.9074 1.7445 -#> 4.2564 8.6423 2.3472 -9.2550 8.6073 9.5538 6.6635 -6.1956 -#> -13.6064 -5.4308 6.6853 3.2149 -1.3079 -3.1043 -5.8836 0.8049 -#> -1.6895 4.3386 8.2895 3.9100 -12.1941 5.3036 6.2939 -16.0732 -#> -8.1796 -5.9860 -5.0674 9.5823 -5.6035 5.2585 -8.3461 4.2852 -#> -7.3154 -9.5797 6.5789 5.3402 -3.7686 1.3971 -2.6134 1.4748 -#> 0.2336 9.6401 6.4530 8.9854 9.1470 12.0268 -3.3962 2.6446 -#> 10.4801 -7.9177 8.4949 -1.7847 -3.1570 4.6640 -3.5705 11.5037 -#> -3.3292 -7.2115 -7.2814 5.5860 2.5205 -4.7651 2.1381 11.7788 -#> 1.8813 -1.8615 -7.5800 2.1251 -14.1831 -0.7501 -3.1613 -4.1596 -#> 7.9042 5.9622 5.9364 7.8909 1.2282 4.5489 -10.1794 -10.3223 -#> 1.7342 0.1356 1.8621 8.5985 10.3165 1.0473 -3.2761 5.2590 -#> 2.2492 2.5793 -1.9641 3.2908 -4.4731 -0.2186 0.3898 0.2026 -#> -#> Columns 17 to 24 -4.2233 6.4903 6.4824 -1.4196 4.8213 6.1748 6.0226 2.4244 -#> 3.0449 3.7639 -2.5759 6.9809 -0.7800 1.7511 3.8831 4.2390 -#> 1.0488 -2.6044 -4.1870 0.7029 5.0582 13.9877 5.3120 3.5888 -#> 6.0070 6.5205 -8.5075 13.3583 -0.2409 6.9363 0.4215 1.7057 -#> 4.8480 3.5007 -1.8699 -10.8386 5.1291 -4.9043 -2.1371 -5.0365 -#> 19.0496 -13.6680 -6.3532 9.1346 -4.0195 -3.4128 8.0442 -18.1827 -#> -10.8550 -11.0827 8.8548 -1.0606 -3.7950 6.9387 1.0117 4.5115 -#> -1.6574 -3.8386 1.0533 -3.1069 -7.0465 2.9287 9.3957 2.9272 -#> 4.9568 3.9067 -6.9688 -5.0304 6.6911 -2.0881 1.5644 4.6007 -#> 1.8367 7.9528 0.6834 -2.0801 4.4093 -1.0517 3.4551 12.8767 -#> -2.4516 1.4194 -6.7113 2.9893 11.2839 -8.8115 -12.6606 -2.3365 -#> -5.6027 4.1230 -0.2919 -10.3406 8.2155 1.4383 -3.7078 -15.4252 -#> 6.5895 2.5759 -1.3891 0.8086 -11.1012 9.8928 -10.9215 15.6942 -#> 1.6642 -1.2642 -0.4765 2.7864 -2.2443 6.1590 1.0146 2.5986 -#> 1.0419 1.3659 0.6039 -5.0359 -2.2402 14.3927 9.0557 5.2491 -#> 6.4229 3.5484 -1.2524 -0.4892 -3.4019 3.0809 3.7813 4.4377 -#> -5.1540 0.9143 14.0819 -1.7899 0.6947 1.4108 -3.0455 4.5929 -#> -10.6781 -6.3872 -4.5548 -6.6081 -0.5025 4.2739 5.1464 -5.9072 -#> 8.7503 -5.9570 2.4831 -4.3309 4.5570 6.4887 7.9486 3.6529 -#> -6.3005 4.0479 9.9377 3.0526 -0.2363 -7.0282 -0.0508 4.9989 -#> -6.6149 4.3750 -2.5539 0.0184 -6.1014 -5.4061 6.5405 3.4628 -#> -9.9721 8.5501 -2.9886 9.5830 -8.8987 -0.2068 2.3084 -0.8445 -#> 7.9700 -2.0417 7.5790 -15.0848 2.8634 -5.3935 2.9578 -3.5884 -#> 3.0857 -0.8034 -2.5963 -4.5656 2.6836 -8.8144 0.8256 4.5884 -#> 1.8981 -7.6407 0.2676 2.9430 9.5955 -6.7089 7.3951 -6.9108 -#> 9.6305 4.2658 1.6670 -3.3669 -5.1492 -0.5657 11.6158 5.5527 -#> 1.0008 7.9193 9.3322 -5.0705 4.1512 6.1594 -3.7197 -6.7994 -#> -2.6899 -4.9149 -2.1636 7.0355 -8.7861 -5.2892 -10.5869 -17.6919 -#> 0.6838 0.8199 7.2066 2.8384 4.5133 5.0984 3.4396 3.6857 -#> 4.4714 2.8224 7.5290 -7.9173 3.3588 -8.8742 -11.3356 -7.5563 -#> 8.5606 6.7477 3.0738 -9.4245 6.5681 11.2474 -3.1492 -0.1624 -#> 8.2534 -2.3553 5.9498 1.4656 7.2768 -0.2787 -7.3997 6.9294 -#> 9.2180 6.3995 -3.5352 4.6713 2.0107 1.4465 -1.4998 -13.3744 -#> -#> Columns 25 to 32 1.2006 -21.4737 0.9001 5.9005 6.3590 13.1644 12.8056 -2.2806 -#> 1.8015 1.9923 7.9683 -2.1466 1.5827 1.7011 -0.8395 12.8080 -#> 5.4818 -0.8662 3.4282 3.0912 0.0991 -15.9086 4.2903 9.6336 -#> -4.9352 4.1994 -1.9150 3.4635 -0.2113 -2.8963 2.8749 -2.0883 -#> 9.9119 -2.3160 8.6780 -10.4556 -3.6645 -2.5613 -7.9138 1.2894 -#> 7.8871 -15.3103 -8.5266 -3.0464 4.2798 2.4715 -6.7049 17.0776 -#> 4.4950 -10.8351 3.4407 19.0463 -7.8943 -0.6938 4.3225 -0.0173 -#> 3.2397 -3.7939 -4.6765 8.3715 4.3350 2.6491 5.8642 -4.2448 -#> 3.7390 0.5699 1.5634 1.3752 -8.9437 -1.8978 -5.1261 -3.9542 -#> -4.8704 5.9890 -1.4254 -10.6813 6.4396 0.1326 11.2238 8.7575 -#> -10.8583 -4.5291 11.5939 -4.8853 -2.0942 -8.0907 -3.6970 4.8505 -#> 10.9864 5.7334 -10.6233 7.9893 -1.8921 -14.8004 7.8390 10.5799 -#> -0.9188 11.9645 0.7103 -1.0071 -5.8439 -12.7488 4.8880 -0.4999 -#> -9.1022 1.4576 4.3436 -4.2208 -4.4709 -6.3411 -0.1393 9.1185 -#> -7.6898 -9.3494 9.6089 -16.1926 -1.2733 9.3045 -3.8841 -5.5536 -#> -0.3512 -3.1724 1.7844 -1.9881 -15.5762 2.9981 -0.3080 -6.5510 -#> -7.1989 -0.4827 -6.9958 6.3886 11.6115 4.9651 14.6168 3.8082 -#> 8.4152 -8.2617 4.9626 -1.7486 -6.7048 4.1693 2.4776 20.8345 -#> -9.3380 -1.1969 -0.6511 2.3570 -4.3794 -1.5527 -4.2422 -17.0752 -#> -13.8299 6.4868 -8.9810 0.4807 13.4931 4.3804 10.0231 1.8395 -#> 4.7416 -5.4565 2.1269 8.8037 2.9015 -2.4739 -10.3819 3.0256 -#> 4.5900 1.1081 7.7875 4.9756 -5.1406 9.5396 0.5284 -7.9706 -#> -10.6671 -1.8440 -5.7507 -9.6134 0.4597 2.5786 -10.8169 6.2005 -#> -2.9426 -5.4963 0.2590 6.3128 4.9737 0.8832 -0.7476 -6.4966 -#> 6.2490 -8.2589 2.1780 -4.8646 -2.6697 14.5472 -7.1675 -2.4236 -#> 6.2239 -4.4174 -3.0557 -0.4300 -0.0547 10.7877 2.4003 -14.0559 -#> -6.4656 -0.9594 -4.6296 10.1206 -4.0693 0.3593 -6.3911 -5.4361 -#> -7.3114 -12.1247 3.1014 10.2935 -7.8968 -12.6844 -6.3857 -8.1799 -#> -5.6425 8.9205 -3.6614 -5.8458 3.4007 3.4536 7.0519 -0.3873 -#> 9.2386 -12.7774 -2.1179 -5.5670 1.9680 -9.7900 10.5361 0.4400 -#> -7.3526 -4.2630 -2.5834 -8.1674 3.0012 9.5988 -1.7162 -3.8316 -#> -8.0502 21.1164 -10.2557 -11.3802 5.5937 -13.6895 4.5989 6.8188 -#> 16.1440 -3.9049 5.8081 -1.8903 -4.4917 0.1119 -8.0698 3.1317 -#> -#> Columns 33 to 40 13.8945 5.1376 11.2892 4.7304 5.2678 -3.4176 -3.9634 6.5021 -#> -8.8483 -1.0424 -7.2540 -1.0065 -9.8846 -5.2708 -4.0247 8.4387 -#> -10.8568 7.6129 8.4755 -3.1647 -4.1767 1.8637 -5.9465 6.6877 -#> -4.7889 2.6010 -11.0272 -0.9510 -7.6316 5.0427 -2.6191 1.1624 -#> -8.7421 -19.1770 -4.6337 -12.8940 -2.2656 1.9619 0.7837 -0.8762 -#> 12.0341 -4.1220 -0.8017 8.1249 3.1926 1.6903 -11.3236 9.4815 -#> -9.4582 -4.6722 1.3877 2.0304 5.5673 7.5023 -1.9270 13.0872 -#> -4.0317 0.9335 8.0035 4.8700 6.0325 -2.9948 -8.9064 -1.1722 -#> 0.2323 8.4465 -1.6160 -7.1798 -0.7423 1.5307 1.2431 6.8303 -#> -7.3312 -0.3445 -5.3169 -14.5565 -6.2619 -10.5918 4.3772 5.1601 -#> 2.6516 -13.7986 -4.7847 -6.2661 10.1320 -5.9332 4.6941 -3.3675 -#> -7.1772 -1.6759 7.9337 0.4910 1.9311 -5.4967 -6.4506 -0.9066 -#> -1.4451 8.3609 -1.1478 -4.2416 -2.5835 3.1141 4.8414 -4.9543 -#> 2.4346 2.4627 6.9711 2.8532 -1.3404 18.3892 5.8931 1.3370 -#> -0.6633 -8.7064 0.6492 -5.9467 -6.5899 10.7705 14.2726 -1.0755 -#> -8.1477 -5.0272 -2.3789 -7.4334 -8.4012 4.5336 -5.6346 1.4006 -#> -2.9836 4.9160 -1.7135 2.6437 -10.8257 -3.6766 5.8261 1.5997 -#> 1.9477 1.5791 0.3320 -3.6651 -1.7538 -9.1123 -4.8502 5.0894 -#> -11.1569 -1.6841 -2.3055 -0.9117 -7.9841 -3.5817 14.3205 12.3716 -#> -10.0935 -2.0168 -5.7619 7.2712 13.5324 6.1849 6.3196 -13.0108 -#> -10.8633 2.1813 13.8934 7.0051 9.0097 -9.0596 -5.2719 4.5808 -#> -3.4282 5.9018 -7.4001 -6.6291 -0.2669 13.3171 4.1376 -2.6469 -#> 6.5581 -1.5709 9.2863 6.6821 -1.6363 8.3377 6.7423 -1.2998 -#> 2.4276 3.2596 -1.8186 2.4292 -10.6535 -12.4743 0.6836 12.4658 -#> -2.0732 -0.9243 -3.3457 5.6381 0.9751 2.0973 -2.0401 7.6741 -#> -3.1224 -5.8254 2.7578 5.8531 -4.7348 2.8611 -9.0410 -2.6366 -#> 2.3521 -2.6690 1.4861 8.4215 12.6360 9.4422 4.0272 -4.4723 -#> -4.9759 -4.6801 3.2078 6.0508 -0.4729 12.5741 7.1624 0.3861 -#> -3.6352 -1.5695 -2.0715 1.1457 -3.7931 1.3690 1.7022 -1.2421 -#> 3.2337 3.5467 6.6668 -9.6162 -6.5442 1.8203 8.3872 8.9253 -#> -6.3699 -3.4739 0.2831 -2.6326 -3.4428 -0.5782 3.6256 -2.2742 -#> -2.2679 -5.6235 -3.2640 5.4520 -7.1208 5.1629 -5.4996 -18.7610 -#> -4.0078 -3.6185 1.1123 -10.8744 -4.2643 10.0603 -11.6839 -1.0615 -#> -#> Columns 41 to 48 -5.8828 2.6631 -3.0110 -6.7809 0.0293 -9.6178 -4.4755 -2.6119 -#> 4.1385 -0.2211 -5.7847 -0.0816 4.6601 -1.8591 1.6024 -4.3605 -#> 4.1862 1.2995 -10.7519 -5.6809 1.6123 -1.3902 2.0055 -6.9491 -#> 7.3520 -4.4029 -4.7040 13.0503 -17.7398 -1.9633 4.4114 3.0867 -#> -6.6644 3.7429 8.4155 -15.3608 9.3341 0.3042 6.8965 -2.5737 -#> 3.2898 6.2717 12.4690 8.1115 -9.0811 1.5432 2.7472 -3.1159 -#> -3.8740 -6.8035 9.4345 -3.9589 0.1824 4.4107 5.2822 4.0166 -#> 2.5250 -2.8588 4.2052 -0.8799 -2.6479 14.9133 -5.0021 -3.4389 -#> 3.1106 -1.1804 -7.3940 4.4292 -1.1075 -1.8306 8.6412 3.1824 -#> 5.9995 8.5145 9.8750 -12.1270 4.5127 2.0419 2.5088 5.1208 -#> 2.3775 1.5137 -4.6429 -16.8772 17.8410 8.7111 -9.2237 4.7237 -#> -6.3879 -10.6307 -10.1143 -0.3322 7.1997 4.7498 -13.2150 -12.5384 -#> -1.1561 5.3692 5.9235 14.8841 -11.4622 7.4580 -0.6476 7.9789 -#> -2.6277 0.0278 4.4945 5.5632 -3.9244 -11.6345 13.3383 -2.1119 -#> -13.9300 -0.8732 8.3611 -12.4894 -7.5368 4.1963 4.3556 -8.3775 -#> 2.0822 12.0235 5.5337 -4.5093 -0.8370 -1.8867 12.7920 -2.3058 -#> 5.4194 3.3481 8.3929 -4.1561 -2.4016 -0.4821 -2.4102 5.9310 -#> -2.7429 2.2809 13.0835 -13.3393 -4.6388 -2.4268 -4.5999 -6.9089 -#> 11.8154 -0.0086 -8.7581 -1.8602 6.0035 7.5693 -1.2043 9.0918 -#> 3.5296 -8.8532 -8.3397 -6.5962 -0.2161 4.7971 -1.8156 -0.7327 -#> 3.9167 -5.9942 -4.0317 -1.1674 15.1550 -5.2999 -0.7470 -2.4903 -#> -13.4262 -8.0015 -4.5641 11.9610 -6.9310 -14.0014 5.2533 7.4856 -#> -0.4048 10.0374 12.3274 -7.3601 13.5395 -12.6968 -3.3714 -0.7631 -#> 8.6631 5.0238 5.7300 13.5159 5.2352 -13.0944 8.8396 3.8043 -#> -2.9619 -11.5246 -16.4590 -2.5229 -0.7031 -3.5418 11.5896 -11.8498 -#> 6.3225 4.4412 10.7698 5.8504 -2.5050 5.8819 -1.0052 -3.7116 -#> -9.8836 -0.2882 -1.3196 -10.6948 -0.0785 9.0144 11.0455 5.9665 -#> -0.6816 -3.5955 4.0003 -4.2055 6.3928 3.0317 0.4626 -1.8370 -#> 1.2728 -12.7381 -11.3945 -3.2397 9.7050 -1.7765 6.0116 -12.0875 -#> 9.3059 15.8616 -3.6912 11.0371 6.4374 -8.0325 -1.6756 7.2352 -#> -1.4773 9.8128 -8.6768 -7.0641 -0.5934 10.5564 7.9960 4.2665 -#> 1.8995 6.3863 -1.6942 4.8941 0.6913 12.0428 -9.7984 -1.0175 -#> -2.9466 4.8298 -9.6127 13.0258 4.2701 -3.4983 3.2971 -9.5837 -#> -#> (13,.,.) = -#> Columns 1 to 8 -13.7181 -0.3447 5.8356 1.5973 6.2881 7.5921 -5.4251 7.5284 -#> 6.1287 1.0172 4.8493 -11.8992 0.0052 0.0865 8.0248 -0.1148 -#> -2.7358 6.5331 9.9707 -0.5685 -7.6053 -2.8306 4.6883 -3.0714 -#> 10.5341 0.0862 2.1901 0.7360 5.3057 -1.7246 10.2474 -0.4840 -#> -5.9171 -1.9733 -0.1388 -11.1198 6.1604 1.0356 0.4460 0.5814 -#> -1.5607 -0.5406 7.0331 7.1030 5.0921 4.7854 3.2406 -1.8484 -#> -5.0085 2.8199 4.1907 -1.4205 -1.0750 11.5682 3.4545 10.3755 -#> 3.5391 0.1704 0.2633 0.0874 -16.5464 4.8874 3.8234 0.3897 -#> 2.8643 -0.8036 10.4355 0.0936 3.7378 -3.9538 3.5668 -6.0208 -#> -0.3664 0.5333 2.8271 -6.5794 7.8843 2.2596 12.7841 1.2995 -#> 1.6696 17.1502 -12.6774 -21.5333 -0.3590 -2.8230 0.7653 -5.5555 -#> 0.3097 -3.6061 -5.9365 -14.6621 -9.4706 -1.2509 -8.0828 16.4437 -#> -0.9067 -5.4808 -5.9482 3.4010 -11.3237 -5.6148 0.5647 2.0937 -#> -2.1402 -2.1574 1.6820 1.7839 9.6963 -5.1659 10.5187 -17.2321 -#> -12.0609 8.6689 7.5419 -5.2172 -1.5569 1.8496 9.3615 -19.1509 -#> -7.8590 -8.8998 3.7620 -0.8961 1.9522 -4.9404 13.7316 -8.6320 -#> -1.3495 1.6034 4.7689 7.2803 3.5203 12.2188 -7.4717 19.8181 -#> -5.8713 0.0045 16.6472 -7.4291 2.1585 1.1381 -5.0502 -6.4395 -#> -8.0780 10.4833 -7.7087 -4.3378 -6.3973 7.0898 -0.6432 -5.0435 -#> 1.3963 3.7577 -13.2720 2.1819 -3.5963 3.7020 4.4230 11.6741 -#> 15.3527 -7.6608 6.6919 -3.0026 5.1196 -7.1289 2.5166 -8.8008 -#> 12.4373 -10.7005 -10.4661 -0.0378 5.0841 -9.1134 6.2372 -1.9012 -#> -3.8107 -2.2387 -2.3170 6.6957 7.6508 11.8243 -6.0962 -4.2987 -#> -6.0589 -6.3465 -3.5900 8.8230 10.4383 0.5384 -1.9179 11.7249 -#> -8.0175 8.1418 4.3234 -0.7016 -1.8186 4.3396 1.3985 3.0427 -#> -9.0953 0.0205 -16.0239 7.2141 -6.1833 5.6397 12.4842 -7.2513 -#> 1.8304 -2.2553 3.7247 4.4194 -2.4612 5.6431 -11.8009 13.6524 -#> -1.0657 13.1455 -6.4824 2.7998 -2.0011 2.4593 -0.1380 -18.9450 -#> 2.1227 1.4994 -2.0051 1.0570 -2.4858 9.9079 11.9125 -8.3056 -#> -18.7767 7.6160 2.8001 13.6778 9.9759 11.7203 -7.3760 14.7773 -#> -9.2775 3.5073 5.8065 -3.2242 -0.1886 1.7389 10.1169 5.1351 -#> 2.8881 1.9169 -14.5476 0.0994 -0.6918 1.7538 6.6907 -2.9264 -#> -1.5610 -15.5603 -9.3431 -5.6707 -2.7868 -0.6588 0.4745 7.5594 -#> -#> Columns 9 to 16 -0.4537 13.3681 -18.0402 5.3283 7.8392 -6.5154 2.1867 -0.0730 -#> 0.4234 -2.8830 8.3738 5.2371 -5.4255 -9.4456 7.8477 -3.3967 -#> 0.8610 -4.0427 7.0516 8.8728 -8.9026 -6.1186 0.6182 -0.7321 -#> -12.4426 18.5727 2.2000 -3.9517 1.9837 -4.6114 12.5401 -3.7230 -#> 11.1755 -13.6765 2.2766 7.0844 -5.9924 2.1159 -2.8463 -9.8425 -#> 3.4147 -0.2241 1.2905 2.3795 -0.3784 1.7020 -1.0787 2.1012 -#> -12.1654 3.6320 0.2117 13.0024 -15.6153 0.4192 0.7902 11.0978 -#> -3.3314 11.4002 1.2202 11.2767 -9.8292 1.9364 -3.5906 0.8670 -#> 1.3514 -4.4492 -4.2492 -10.7704 8.9424 -7.2758 0.2141 -8.3028 -#> 3.5126 -18.3866 -2.6702 9.4522 -6.4155 -10.0933 14.7170 -5.0721 -#> 7.3894 -9.3259 19.8691 -1.6937 -5.9989 5.7458 -7.6616 4.0485 -#> -2.3914 -0.6550 -3.2121 10.7993 -6.6451 -0.9181 -8.1194 8.8540 -#> -5.0520 11.2931 4.6047 2.6079 -2.1932 1.5243 0.4934 -4.4654 -#> 3.8567 13.9962 9.6761 -5.5595 0.2366 -1.1271 9.6884 -5.6431 -#> 4.9715 10.0399 18.6660 6.2897 -8.3365 -3.5119 1.8689 -19.4082 -#> 1.4753 -2.3583 1.3196 4.5634 5.9071 -7.1842 11.7466 3.7223 -#> -1.7783 -7.2138 -12.7813 -4.8437 -0.8411 -10.0547 -6.0221 -7.1953 -#> 3.2388 -6.6003 -9.2452 5.9463 -6.5550 6.6169 -1.9871 -0.7962 -#> 0.6546 8.8318 12.1956 20.1071 -6.5240 8.5515 -3.0849 4.9281 -#> 2.2310 -1.9946 14.7048 2.0993 -13.3510 1.7606 4.6692 0.4065 -#> -7.1707 0.6846 3.2662 -1.9376 -3.8787 -3.6412 4.8520 2.4025 -#> 2.3054 7.0808 10.2049 -20.7992 -2.9452 -0.6283 9.2520 1.4946 -#> 9.4116 -2.0544 11.1145 8.0121 -7.4675 15.5080 -6.3952 9.1342 -#> -4.9404 -15.8663 -9.9113 0.3530 3.1372 -6.2037 3.0748 9.5932 -#> 4.7657 -7.6916 -1.1407 2.0595 8.4072 -2.1366 2.2217 1.0098 -#> 4.1171 3.3204 5.5477 16.9107 -11.5887 2.8421 1.1560 -8.0653 -#> 6.5559 9.8319 0.0996 -2.4849 -0.1135 10.7154 -12.6500 -6.1913 -#> -1.2950 -24.7869 11.4024 2.9801 -18.1488 -3.0154 3.3089 2.1303 -#> 1.2271 3.9828 -0.3498 6.1050 -2.0436 -0.7848 4.1063 -10.9277 -#> -10.3081 -13.2193 -5.8505 -0.1730 4.0578 2.0895 -1.7765 10.1179 -#> 14.2637 11.8619 -5.1396 0.1210 -2.3210 0.0329 -7.7430 -10.3766 -#> -6.8249 6.6138 12.0710 -1.9869 5.8455 -0.9538 2.8660 5.0700 -#> 1.6378 4.3483 8.2711 -2.6529 7.7409 -0.4693 -0.2296 3.8611 -#> -#> Columns 17 to 24 -18.2529 -0.7843 11.8839 -4.1371 -7.5558 7.9947 11.7894 2.7651 -#> 12.3867 4.1103 -4.3933 -6.1404 11.4483 -3.2177 -6.0363 -4.0282 -#> 13.4974 2.2192 5.8247 3.9458 6.4274 4.3778 -9.2454 -6.9374 -#> 10.8095 -0.0647 6.7780 -4.2264 10.1764 -9.3652 8.2440 5.3695 -#> 1.5547 1.4251 -10.5475 3.5811 0.9859 4.3994 2.8293 -1.6326 -#> 7.2752 -7.2462 -9.2140 1.8691 -10.8841 9.8740 4.3779 -14.9532 -#> -10.0497 -4.1462 5.6859 -1.9422 -7.2311 -2.2039 -6.7706 -7.7515 -#> -7.2611 0.3434 10.8226 -2.5999 -11.7364 -1.3330 -11.1642 -6.6722 -#> -0.5093 -2.7057 1.1337 5.9100 -0.0395 8.2051 8.4493 2.2405 -#> 3.0575 8.8751 -8.7246 -5.4412 6.1884 3.0971 -1.2062 15.2766 -#> -9.0075 6.7520 -11.1594 -3.4083 11.5826 10.3835 -13.9912 5.7969 -#> 11.1581 3.9730 1.6344 9.1667 -8.0174 -3.3163 1.8599 -14.1742 -#> 8.8165 -10.4774 5.9238 -7.9778 15.0429 -2.0832 -8.3252 -0.3596 -#> 7.0435 -16.1194 0.4444 3.5330 2.8708 7.6799 -3.6777 4.3081 -#> -11.0742 -13.8376 2.3848 -3.8527 10.4867 1.3087 -13.1818 8.7516 -#> 9.0784 2.0644 4.0886 4.4662 0.3837 4.4890 3.2950 7.3878 -#> -3.0825 2.8900 1.5499 -1.8036 -6.2011 -5.9667 3.2099 18.0180 -#> -6.6086 -0.4012 -0.6056 -1.2367 -2.0511 6.0924 -0.1952 -1.4324 -#> -5.3393 5.1967 -0.9222 -0.1756 -2.3408 2.1642 -3.2054 3.4058 -#> -2.7763 -1.9330 5.2968 6.1661 11.7368 -1.3482 -13.2555 10.1649 -#> 7.7419 -1.5774 6.6621 4.8569 -2.8487 -1.1811 -1.2904 -3.5283 -#> -2.1136 -3.8623 10.4048 5.8220 10.9268 -1.0691 -0.8613 6.4316 -#> -5.7798 1.2923 -15.6228 1.4064 -8.7560 -1.9435 0.4758 -2.0679 -#> 9.5343 4.2179 -6.6049 -5.6621 -1.8436 2.4079 3.7554 -6.3271 -#> 4.9440 5.6170 -2.8385 6.9373 -4.0377 1.8346 3.6950 0.9082 -#> -9.6127 7.4395 3.0402 -2.2246 -7.6659 -1.1280 -1.8699 9.9940 -#> -12.7051 4.4045 -3.1659 -2.2974 -1.9191 -4.9103 1.0011 -13.5765 -#> 1.8682 -9.5825 -10.4569 -11.7557 4.8390 6.9839 -4.2444 9.4414 -#> 6.5605 1.6008 -2.1709 3.3722 1.2255 -0.9195 0.8182 14.2683 -#> -5.5613 -12.4914 -7.0133 -0.1660 -9.0405 12.4403 5.1551 7.0832 -#> -7.8657 -4.8879 2.4015 -0.1641 -8.1200 -4.2953 -0.9813 -2.0122 -#> 13.1090 -1.1549 -9.9288 3.4933 10.4903 -6.2657 4.1032 11.1627 -#> 22.9732 5.6470 3.7499 6.1426 6.4469 4.5686 8.4451 -10.3352 -#> -#> Columns 25 to 32 5.7054 -5.3441 -6.0978 6.0447 -10.4055 8.0234 -0.7850 -5.8711 -#> 4.4482 5.9026 8.5244 -6.5094 -4.0751 6.0330 -6.4294 0.0522 -#> 9.7296 3.1358 8.8016 -8.0296 5.5832 -3.2571 5.4091 4.3074 -#> -5.8150 4.7967 -0.4531 0.9397 -2.1079 3.9001 -4.1233 0.6805 -#> 1.8793 6.4777 -0.0286 10.9774 -0.6168 -2.8688 -0.0493 11.3595 -#> 16.6737 1.7602 -10.4666 -16.6184 8.4079 11.1176 -7.8161 12.0327 -#> 13.1589 -15.4014 3.1226 7.8401 11.9626 -20.9714 6.7551 3.3441 -#> 5.5559 -8.3731 -10.7067 2.6777 -6.6518 6.9165 5.1903 -0.0387 -#> 0.6119 9.3752 1.1777 10.1055 -7.7612 2.4682 -2.6647 -3.2515 -#> 1.4933 0.8544 6.1785 1.2085 0.6575 -1.3207 0.0227 5.0657 -#> 3.8068 -3.8701 6.7254 6.9575 -7.4438 5.2901 1.0952 -7.0580 -#> 10.7262 7.8740 0.3326 -21.5471 -7.1646 -4.9007 9.6586 9.2646 -#> 0.9556 -0.0027 11.4575 -1.3609 -1.2580 -5.2391 2.3976 8.6294 -#> -0.6346 4.0469 3.8204 -2.8324 -1.9279 -6.9823 0.8844 9.6346 -#> 10.8041 -2.5132 4.4946 3.0518 -0.3110 0.5100 2.4100 -2.7544 -#> 1.7201 -0.0440 -3.2218 2.4878 0.9819 0.4591 -1.7396 4.6635 -#> 3.1439 -8.0099 -2.2478 2.0788 19.5492 -13.2788 -6.1485 10.1090 -#> 17.1915 1.1694 -0.3155 -3.8923 -4.0340 -0.6389 0.5847 10.7342 -#> -3.1465 -5.3648 4.2524 -2.8767 4.0003 2.2823 3.7417 -0.6386 -#> -7.0934 -3.8575 1.9482 8.5610 -4.5604 -11.2780 8.2424 -1.5578 -#> 1.1857 -1.3874 1.4302 2.4410 -17.7996 -2.9959 -4.0117 -7.0299 -#> -4.5234 -1.2063 1.6614 6.9609 -5.7689 -0.8851 -1.3269 -8.5309 -#> -1.9256 3.0458 -3.4664 -10.7231 5.4695 -2.0249 1.7123 5.4240 -#> -15.2104 4.3967 -0.5276 2.4381 -4.1284 6.0441 3.7916 -6.4473 -#> 7.1233 0.2088 0.9726 -8.5699 -3.5048 -4.0555 -10.4901 -1.2846 -#> 1.7306 0.8744 -4.3449 13.0051 -0.1197 2.0478 -3.5184 5.3571 -#> -3.3896 -4.1441 -3.2758 -1.9248 3.6815 -1.8899 4.8495 0.0962 -#> -0.2889 -3.1917 0.6236 -3.3692 14.2575 -8.5865 -10.0056 -3.6139 -#> -3.2592 8.1670 2.5470 -6.6863 -1.6065 -5.4853 -9.3110 -1.9122 -#> 6.8977 -4.4494 -8.8062 11.3942 14.2317 -5.9056 -6.1580 0.3269 -#> 1.0336 -5.3697 -12.3649 -15.0611 5.9503 13.7932 10.8067 4.7749 -#> -2.3155 12.2920 2.8133 -11.2705 -3.1521 -5.7135 4.6695 -6.1455 -#> 2.0441 -0.5978 2.9946 2.2039 1.6005 0.5476 -10.1008 5.1450 -#> -#> Columns 33 to 40 13.9888 1.6621 -6.2028 -5.8881 -15.0765 -7.4038 -6.6962 -5.2960 -#> -2.1251 -0.9159 0.2313 6.4890 5.8609 1.1657 -1.4320 1.8357 -#> -13.0969 -3.3009 4.5870 0.1656 6.5823 4.0142 0.2058 5.6121 -#> 4.0445 -7.3677 -3.3419 6.4198 -2.8480 5.5827 13.7324 2.4249 -#> -18.3887 -10.2412 13.6661 7.2739 0.7158 3.9746 -4.5782 9.0107 -#> 1.4559 -11.6066 -6.2290 -2.9388 -5.0435 -1.1411 -1.3263 -4.6638 -#> -9.8511 -7.0693 11.5878 9.9078 -6.7654 -3.8763 0.2616 1.9187 -#> 6.3136 -5.5531 -0.5147 2.4884 5.5770 0.8150 -1.4526 -5.0775 -#> -13.1313 3.6136 -6.0809 1.1632 6.8753 4.5192 2.9325 -4.9329 -#> -16.4135 -5.5086 5.1798 0.9344 4.7721 -5.9660 -6.8268 12.8024 -#> -7.5546 8.2615 3.2973 -7.1439 6.9062 -3.2143 3.7799 -3.6713 -#> -10.0234 -4.3302 6.5380 -3.5359 -0.6433 -12.9074 0.1519 6.9613 -#> 1.6368 -3.8118 7.6408 -0.7032 9.1176 7.9364 -6.1997 0.0139 -#> -11.1897 8.9903 6.2937 -8.6550 0.1846 3.1229 7.4796 -9.4778 -#> -13.8819 -10.0532 17.6174 -8.0613 -1.6298 9.8393 -9.3358 -9.0107 -#> -1.8548 1.0385 -0.4659 6.4678 10.0948 -3.8695 14.7695 8.0527 -#> -8.6322 -9.9610 -2.1486 5.3907 -7.8803 -8.2907 -17.0719 9.2418 -#> -5.7645 -4.1250 -0.8757 -5.3394 -1.9818 0.1242 1.4888 1.3666 -#> 4.2515 -3.5361 3.5730 9.5375 8.4103 2.8748 11.2373 2.8970 -#> -7.1270 7.0362 6.7197 0.2017 -9.1090 -3.3480 -11.7893 -5.8566 -#> -0.3841 5.4366 -0.9445 -2.6105 -5.0244 3.3680 13.2543 -1.5195 -#> 1.0747 14.1734 1.1987 -1.7408 4.8632 1.5659 5.5709 -19.8471 -#> 1.6983 -1.2366 4.8798 -2.5299 -9.1657 0.9159 2.1604 -8.2412 -#> -1.0699 -3.8091 -0.6495 0.3911 -17.1536 -1.6623 1.0929 8.2718 -#> -1.9780 0.0814 0.5713 5.0296 -6.1497 2.7823 4.6570 2.8901 -#> 9.9274 -15.5823 11.1468 13.4251 -6.8414 -1.5312 -4.1873 -3.8815 -#> -3.2455 -0.2084 -6.4184 2.6211 -4.3341 -1.4415 -4.0072 -10.8088 -#> -5.4387 -5.7921 0.6411 -5.3342 -2.9096 -17.0201 8.5314 9.1331 -#> -9.3609 2.5416 -0.6532 0.8389 3.4634 -5.3714 1.6504 6.9934 -#> 1.2955 -0.9298 0.3603 -5.5105 -4.1873 -4.4538 2.8055 14.2132 -#> -10.8144 -7.4770 -1.9756 -0.7660 0.2557 5.3072 3.9560 -1.3456 -#> -12.0214 2.5167 8.1731 -1.4205 -1.2927 8.0969 -3.6897 16.6704 -#> 1.7988 0.0107 8.2771 4.0196 2.4219 -0.4908 1.5162 0.4107 -#> -#> Columns 41 to 48 6.8223 -1.1953 -16.5700 -0.2202 -1.8059 -4.1714 2.2586 3.1392 -#> -9.7408 -4.4622 9.2715 9.7497 -9.3702 -6.9846 1.4185 0.2367 -#> -1.3460 -4.0343 6.5043 8.9333 -2.8347 -0.7131 -4.1512 -1.6062 -#> 0.1806 3.0887 -2.6297 -1.5396 3.7892 -3.0346 -1.3348 9.8749 -#> -6.5430 1.0502 4.3606 7.9445 2.2091 -2.4708 -2.1457 -11.0325 -#> -0.3296 -1.0538 19.1806 -0.6681 7.7155 1.0968 14.9470 9.6190 -#> -13.6597 1.3308 4.1055 18.2011 5.4537 1.0127 -9.1060 -0.3762 -#> -0.2162 -1.0438 5.0688 -8.3406 2.6659 -4.0165 -0.4390 -0.7727 -#> 0.0441 -5.9841 -4.3727 12.3835 -6.2386 11.5710 -3.6306 8.3481 -#> -1.1854 2.9303 -2.0192 6.8946 -1.6485 -7.4601 -0.4546 -1.8196 -#> -12.3307 -2.6553 18.9656 -0.5494 0.6465 -8.9811 -3.0752 -17.2511 -#> -5.0318 0.9506 13.3649 -5.5659 -9.9188 -11.2742 -10.3484 -13.8310 -#> -7.5226 8.9456 -1.2620 -12.0812 6.8642 5.7276 -10.8331 1.1360 -#> -10.2075 10.5311 7.0963 -2.4166 -4.3044 9.0821 -1.8509 4.5489 -#> -10.6392 2.3903 7.6245 -5.2061 1.1225 0.5899 0.8800 -0.8110 -#> 14.0755 5.1738 -7.7262 3.4819 -10.6563 11.5738 -15.0048 10.6674 -#> 4.9958 8.7628 -13.1731 -2.1885 5.2119 -3.2639 -12.4037 3.4309 -#> 6.2419 10.6203 11.5762 3.5668 -7.6028 -9.1614 4.8107 -7.8572 -#> -0.7675 -12.4405 2.2323 -6.8869 3.5631 -2.5244 -6.3250 8.6155 -#> -4.1113 2.0419 1.0660 -4.4972 4.0218 -6.5370 -6.7348 -5.9009 -#> -0.9550 8.0446 7.0813 0.4395 -12.6257 -4.2030 3.9091 -0.8361 -#> -0.6885 7.8596 -12.6022 -7.9810 -2.3373 11.8033 1.6770 -1.6105 -#> -6.5064 4.1790 4.0999 1.1366 7.9675 11.6719 3.3407 6.3710 -#> -1.5531 -11.0727 -1.7039 10.3451 7.2884 6.7369 0.9745 10.8481 -#> 17.5924 -8.7264 11.3075 2.8726 -14.5478 -11.4686 -3.0124 10.2257 -#> 7.9230 -6.6112 1.0433 -3.9745 6.6238 -8.8205 -12.9009 0.8202 -#> -4.9997 -3.1634 -10.4045 6.3738 4.9820 12.5160 -2.0337 -2.6327 -#> -5.0487 -8.2076 19.7135 2.4629 -0.8365 2.6996 -0.6732 -1.3441 -#> 7.2947 -0.0056 5.3458 -0.1922 -20.1747 -14.5637 -0.0136 -0.7484 -#> 5.6158 -6.5718 1.9386 -6.6233 14.2731 6.9216 -3.8060 3.3327 -#> 4.9116 -5.7868 -13.6616 -10.8264 3.4249 4.6447 6.1558 2.3811 -#> -0.3448 12.0279 -1.1617 -2.9150 -6.2155 -14.8863 -4.9204 10.1638 -#> 2.2497 -1.4470 0.6458 -3.5691 -0.2670 -2.3919 -8.6552 -3.1209 -#> -#> (14,.,.) = -#> Columns 1 to 8 -2.1444 0.6275 -5.3745 7.5895 16.7731 -13.2129 -10.5422 9.0688 -#> -8.6767 -10.2206 9.7955 6.8703 2.7551 -14.1020 -4.8347 -11.2143 -#> -7.6052 -18.8394 2.9669 5.0451 4.2223 -1.5257 7.6646 -7.3693 -#> -10.0294 -4.8756 15.5625 8.1806 3.2329 -9.9985 2.3995 2.0965 -#> 4.9436 1.4775 -3.2586 -7.1490 -10.9452 7.2870 3.4860 0.2213 -#> 6.0503 -10.1194 16.5172 0.6114 -16.4727 1.2303 4.3059 -0.2589 -#> -1.6701 3.0303 2.6328 1.9484 -4.5294 1.2428 -4.5693 -9.4682 -#> 5.1566 -4.0968 -5.4200 5.1647 -1.7696 -1.5406 -3.8415 -1.7984 -#> 3.6765 3.4669 -5.7077 0.1770 -7.3732 -7.5296 -0.5793 -2.3397 -#> -5.7430 -8.4634 -5.5900 1.6437 6.9694 -11.7347 -6.2177 -4.6205 -#> 0.6710 -4.0882 9.8013 -1.7805 1.2103 15.6890 -3.8652 -8.9470 -#> 12.5851 4.4384 10.4783 1.7717 1.1894 14.1159 -11.6373 0.3138 -#> 0.3266 -3.3944 -12.8845 -4.9403 -1.4425 -2.2774 4.4732 -4.2001 -#> 7.7831 -0.6257 12.6476 -4.7705 -1.3084 3.2592 -4.7172 3.3935 -#> 0.2951 -13.8237 -0.6221 -3.9925 -6.7304 4.5764 -0.5526 -9.1893 -#> -3.1852 -3.4848 -5.6748 -3.6255 12.7578 2.8069 1.2936 9.8560 -#> -8.7286 10.1477 3.0263 -0.5387 2.2513 -3.9209 -9.0792 -0.1861 -#> 8.2871 -9.3489 6.1300 5.8867 0.3383 16.0642 13.6681 5.7864 -#> -2.4832 -11.1671 4.5390 16.8200 1.3044 -0.3483 -5.8973 -11.7801 -#> 1.2391 -1.0048 2.2145 11.8020 -6.3125 -1.3823 -4.2399 -10.7427 -#> 6.6959 -6.8043 7.1455 3.5484 -2.3540 -6.0205 -8.9290 -1.8643 -#> -0.3061 12.4510 10.5427 -7.4929 0.3782 -12.1543 -9.1551 6.2211 -#> 9.7317 4.5159 10.3419 -2.1879 -2.6870 7.7015 -1.9451 4.4211 -#> 1.7871 -0.0642 -10.1845 0.0613 -3.8851 -5.8144 -6.2688 1.7174 -#> 13.4599 -2.8482 8.3512 16.3706 3.3594 5.3914 1.4781 -11.9550 -#> -4.2157 -11.1060 -12.5199 8.8629 -1.2847 -3.2273 -1.1830 -2.4803 -#> 2.6273 15.6500 5.7461 -16.2158 -15.0618 -6.3968 -4.2644 -2.5628 -#> -4.7286 5.6862 14.9851 -0.5636 -7.2220 -2.7243 -2.4637 2.2551 -#> -3.3462 -7.6389 1.9538 5.6908 4.4791 -4.6541 -5.4730 -10.1804 -#> 2.2027 2.9326 -3.4673 -5.2041 11.2478 4.3450 -5.5164 13.3213 -#> 13.4535 6.0531 0.5279 -0.7927 -3.0388 -6.7141 -5.2771 0.3138 -#> -9.7670 6.7562 -5.5766 -8.8379 5.7746 2.1539 0.0484 -15.2464 -#> 0.5020 -6.4378 -6.9533 -6.7794 6.2663 -0.8423 -2.0734 5.1950 -#> -#> Columns 9 to 16 -0.9762 3.0234 1.0104 7.0104 6.8566 -10.5834 16.1784 -4.9472 -#> -3.3504 -8.0560 1.4816 4.3687 -7.1903 3.3486 1.2851 -8.6248 -#> -5.5563 -8.5923 5.3647 3.1766 -4.4003 -2.6062 -1.3784 -10.4659 -#> -10.4741 -5.5723 -0.6460 13.2420 3.4350 -11.2556 0.8239 -15.1732 -#> -4.9091 -10.6420 12.9322 -3.6824 -3.0656 1.6655 -5.3298 4.0569 -#> -13.2547 6.9211 6.5194 -13.3752 -5.8592 6.8385 -10.8662 6.6610 -#> -6.7226 -2.5321 0.3613 3.7425 0.5684 -2.5713 -4.4943 10.9557 -#> -3.2104 1.4335 -3.7294 3.8372 -5.0969 5.9416 8.7966 -0.9288 -#> -7.9040 5.0802 1.7175 9.3299 -16.1795 -0.6950 -4.9105 -7.8795 -#> -1.7059 -23.6254 8.1958 13.6085 -8.8340 5.5690 3.1202 -6.7429 -#> 6.1610 0.7591 -0.4275 -16.4001 -3.7464 14.8188 2.7395 -6.1317 -#> -4.6173 -10.0567 8.0694 -2.3891 -5.2332 2.1577 -2.2042 5.9672 -#> 5.1777 -7.5451 -6.8466 -0.0412 4.9360 5.7510 4.0687 -7.6527 -#> -3.6797 -2.3772 2.3120 -1.6865 -4.3676 8.5093 -5.7215 -7.1319 -#> 0.6331 -0.7750 5.7840 -3.2438 2.5939 -0.9735 1.9388 -7.4345 -#> -3.6778 -6.0983 -16.4988 10.7501 -8.7596 6.7864 -1.5069 -5.2718 -#> 12.5570 -12.5301 3.2381 10.6822 -0.4238 -1.2423 1.9058 0.9420 -#> -8.1062 -3.3461 1.2314 -5.4680 -1.8716 14.2853 2.3487 4.5719 -#> -7.1079 -11.9893 0.3655 4.2615 4.4804 6.5035 -8.9245 -4.1921 -#> 2.1747 -8.1742 7.0437 1.0222 2.6713 -3.7678 -6.9374 9.9402 -#> -1.1591 -3.6203 -0.1846 -5.2856 -8.4578 -5.6804 -3.7338 7.4090 -#> -4.8591 16.9304 -8.2518 6.5114 2.1960 -4.1031 -0.9657 -2.2481 -#> 5.8799 -13.4325 1.9374 -7.1436 -4.0939 -1.5348 -4.6633 2.8750 -#> 11.9135 -5.9931 10.6113 -0.2672 7.9714 -6.8968 5.2002 14.0565 -#> -5.4820 -0.7658 0.9432 -0.8519 -2.5855 -5.5044 -12.3018 1.7075 -#> -6.5375 -9.9194 -10.3241 11.1755 3.7264 0.8428 6.9324 4.6708 -#> 1.6639 13.2267 11.1546 1.4382 -10.2988 -11.9187 -4.2637 -0.9742 -#> 7.6500 3.4899 4.6013 -9.5289 -8.5190 1.7298 -7.5066 1.5496 -#> -4.4808 -9.7392 1.8155 3.2473 -9.2740 2.8275 -5.9945 -12.2909 -#> 4.8999 -8.4155 -6.2310 -7.1038 6.0395 -7.5361 8.3684 -1.2237 -#> -0.3172 2.4322 10.8408 4.7848 -1.3948 -2.0308 -3.4644 -3.6158 -#> 1.2032 -0.9063 -0.4967 -4.0826 1.0183 -3.8041 1.0185 -9.7255 -#> -4.6066 0.2925 -11.5063 -3.3608 3.6180 1.6864 2.4220 -4.2550 -#> -#> Columns 17 to 24 3.7132 2.7026 -1.0514 -6.3857 5.8852 9.2122 -7.7985 -10.9549 -#> -3.5542 -10.4813 -10.9183 5.2912 0.7644 -1.3522 5.8959 4.7606 -#> -1.8724 -4.6788 -9.0386 -0.9991 8.7160 1.1418 3.4454 0.1548 -#> 0.3223 -5.1287 -7.9411 2.5696 13.8285 -13.6017 -11.8921 -1.6590 -#> -7.4142 8.6525 -8.4901 11.6494 -4.1533 0.5475 -0.9908 -3.4346 -#> -4.0823 -2.7602 -2.7770 7.8444 -8.3679 -1.6173 -2.7454 -4.3434 -#> -8.7138 -5.5199 5.0951 -9.3132 10.9098 -0.3270 -5.0873 -10.6834 -#> 1.7729 0.1606 3.5235 -3.2069 -1.4126 5.3862 1.6555 6.0412 -#> -2.3556 -3.7612 -5.9476 -0.6006 8.3621 -6.4094 0.4973 8.1502 -#> 5.8877 -8.2092 -14.1709 4.3547 -1.2038 5.5549 6.8928 1.8750 -#> 2.7522 11.6348 -15.4113 14.9461 -7.2504 3.8405 -1.0440 1.2750 -#> -2.4977 6.1348 -1.9506 -13.9133 4.9634 8.0606 10.5353 -9.5552 -#> 3.4657 0.2648 -3.3996 -1.7110 5.0830 -2.7579 0.3588 4.0522 -#> -2.9026 -0.4903 4.1745 1.7057 12.6265 -10.0762 -9.1472 -2.8776 -#> -24.6963 4.9028 2.2497 12.7402 6.2606 0.9909 5.0337 3.1554 -#> 2.6343 -1.5731 -0.3098 1.5872 8.9305 -9.5032 -3.1197 -4.7093 -#> 11.4809 -10.5834 7.0071 -0.9855 0.1514 11.3191 16.7707 -4.3523 -#> -5.0535 12.5095 -3.0928 -3.5276 3.5058 -5.5731 -6.5917 -3.1749 -#> -4.4402 -4.3286 -2.5488 4.6506 -4.4229 -2.9584 -2.2505 0.4066 -#> -1.5600 -3.5898 2.8236 -0.6024 4.6846 4.3762 5.7524 1.0433 -#> -14.8293 -1.8766 0.7403 -6.9910 16.1613 1.9846 -0.6524 2.4959 -#> -5.4296 0.8858 -2.0244 0.4708 10.3446 -7.2269 -11.1847 6.7621 -#> -6.3072 -7.2304 5.8156 6.9135 -6.5860 -9.2921 -0.1708 -7.5872 -#> -1.2483 -13.9717 -4.7192 -0.4497 -5.7567 0.0720 -3.2322 -5.1351 -#> -3.1657 -4.7625 8.0419 -5.4016 -1.2495 -8.2174 9.3439 -3.0667 -#> -1.3187 1.6499 -6.5667 4.9880 1.5150 0.8097 -3.4620 -2.6438 -#> -2.3831 -2.7993 7.8687 7.6837 5.1708 -8.4030 16.2167 2.6972 -#> -1.5868 2.9036 0.2707 3.7706 8.1882 14.5434 5.2464 -5.5609 -#> 5.3385 -10.0304 7.2175 -3.0437 11.3225 2.2313 12.7802 2.7522 -#> 2.7248 4.7965 -6.9295 1.4670 -5.0119 18.2201 -6.2492 -13.9647 -#> -0.5215 6.2616 6.8941 3.0859 5.0107 0.5953 7.2855 2.0261 -#> 4.9730 -10.6661 2.0325 5.6798 -10.4148 6.9674 -0.3137 -1.7415 -#> 1.3191 1.6653 -0.9755 -6.9042 1.9775 1.5980 -2.9887 -7.3644 -#> -#> Columns 25 to 32 -2.2584 -3.1411 -1.7190 5.6135 -0.7605 -1.8872 8.8467 0.3317 -#> 1.8911 2.5071 4.7714 2.8800 -11.7468 10.1048 -1.3142 -1.2634 -#> -0.3020 -6.2638 0.6670 0.2206 1.6318 -0.1777 3.8507 1.0090 -#> 3.9061 11.3403 -0.1531 2.3443 -0.2155 13.3499 -17.7884 5.8076 -#> 4.6891 4.9715 1.8122 -3.1096 15.1079 -8.8061 5.2626 -1.7620 -#> 11.8195 13.2659 -0.9978 -3.7929 10.2876 -14.6448 0.8412 5.7287 -#> 4.9830 -6.6374 0.5644 -1.2754 -0.3460 -2.1989 -15.5581 7.8374 -#> 3.7161 -4.0108 -5.7117 0.2989 -4.1622 -9.0537 -7.2892 12.5500 -#> -4.2194 12.9871 -8.7733 -1.4598 -6.5197 -3.6219 -2.2843 -3.0821 -#> 5.8795 0.5183 3.4822 1.5533 -7.1084 -0.2438 8.3458 1.0638 -#> -4.5325 -12.4497 -9.7003 13.0726 2.2119 -18.1307 11.2652 -3.5084 -#> -12.6648 -0.2436 6.2022 -5.6211 12.8947 -5.3681 -11.4360 6.7527 -#> -10.3917 -4.2899 -4.2763 3.9326 -9.5481 8.7687 -0.3994 1.4870 -#> -1.9819 -3.9799 0.4570 0.6859 8.2083 -2.0543 -8.9140 3.7974 -#> 7.5153 -4.8186 -5.2606 -6.9110 19.4118 -2.6405 1.9254 -4.9273 -#> -7.9555 12.0409 -8.3323 -0.7393 -3.4030 11.7891 -4.2925 2.8215 -#> 10.9420 6.2364 4.0612 -0.0166 -4.1987 6.9281 -6.5285 -7.9298 -#> 8.7943 1.2502 4.2291 -1.3830 10.3950 -2.8952 -1.2324 7.2852 -#> 5.0857 -6.5046 -11.5604 3.5139 -9.5032 1.5154 -8.9062 1.5487 -#> -4.3588 -12.7515 4.9994 7.2508 -1.5145 3.3324 -0.5210 -0.6055 -#> 3.6695 -6.7156 -2.2916 -3.3440 -8.8127 -3.9514 -8.6936 5.4232 -#> -17.4519 0.3753 -0.1577 0.2455 -3.8726 2.1221 3.0209 -8.5284 -#> 7.7403 3.7682 11.5437 -1.9562 11.3489 2.4882 -14.7405 5.0131 -#> -3.4348 -6.1867 -2.1967 -0.9979 -15.9601 12.7055 7.6482 -5.3109 -#> 7.6323 3.3177 1.1548 -1.6291 -1.5787 -4.0459 -5.3410 -8.6709 -#> 1.7209 5.6033 -4.2626 -4.5748 5.7546 -4.3819 -3.5714 9.4888 -#> -7.2977 4.9754 0.1989 -1.4958 -2.5134 2.0138 -8.3286 -1.0149 -#> -5.3932 -8.4312 -1.7728 -1.3764 -1.8622 -2.0587 1.6540 -13.3436 -#> -0.6438 -4.0675 9.3477 -2.1537 -6.8739 6.6785 -3.6679 2.0648 -#> 3.0280 14.1391 -0.7212 6.4096 9.0701 -3.9991 10.6811 -11.6501 -#> 7.7576 3.7023 2.2892 -3.6257 11.5897 -3.1216 -11.6945 3.9960 -#> 0.0091 1.1377 5.4606 3.3294 2.3344 0.6012 -3.5069 1.8844 -#> -14.2707 -0.6768 -4.0255 -3.9383 3.2496 -0.0379 8.5746 0.7396 -#> -#> Columns 33 to 40 -7.0296 -12.8663 14.3987 3.2322 9.2232 0.7883 -1.6867 7.8755 -#> -1.5344 4.4558 8.8551 0.2860 3.9697 4.3488 3.3198 -2.3698 -#> 1.2647 5.6437 5.3609 1.3164 -0.4757 2.6660 5.7626 0.0191 -#> -6.5931 5.5725 7.9819 -2.8026 -7.9575 -0.1073 0.7064 6.7801 -#> -6.1830 -5.9598 -9.5774 -15.6217 -0.8016 4.2489 1.4874 1.1143 -#> 5.8825 9.6267 -5.7148 1.8366 -3.2282 0.2424 -7.8084 9.1993 -#> -3.0657 -5.0323 7.8977 0.8028 -12.1188 -3.9341 -4.0435 5.0439 -#> 2.6450 6.5642 4.8798 1.0387 -9.5429 0.2942 2.1092 -2.6703 -#> -2.1335 3.0644 -8.9395 -4.4608 3.8032 9.3958 14.5904 2.0776 -#> -4.7665 0.4154 -1.4496 1.7975 9.1528 -1.9465 6.8242 2.5062 -#> -6.3660 -3.0849 -4.3183 -17.0690 5.4184 8.2195 -5.6109 -3.5211 -#> -6.4113 2.3761 4.4897 7.6312 -2.9152 -0.5913 -7.5612 10.6324 -#> 7.5895 10.0746 -10.9153 0.2363 -1.3659 4.2210 4.9896 -9.9209 -#> -5.0598 12.0518 -9.0581 -0.0027 -3.1009 6.3472 -0.5132 -1.0659 -#> 0.3511 -1.0510 -7.4713 -7.5874 8.9896 19.5600 10.1285 4.5457 -#> 7.4178 3.2575 -6.0450 1.1417 -5.1602 -17.7806 -3.1945 -1.6117 -#> -4.3079 -1.4211 0.9433 25.7182 16.7786 -0.5493 -1.7191 3.3322 -#> -8.1885 1.3356 1.4096 -8.2148 -2.4566 -1.6299 -9.5060 -3.4289 -#> 3.3245 5.9569 5.9231 -0.3552 -18.8013 -5.1879 2.9843 -2.1808 -#> -8.7187 -7.0404 -4.1315 13.2902 6.9334 6.2543 1.4562 -8.1287 -#> -6.5858 10.9018 20.6336 10.7662 0.3862 -2.1395 -6.7924 -5.6453 -#> -2.4868 -2.3452 -6.7193 -4.8742 9.7127 -1.3753 4.8112 3.5227 -#> 0.2052 6.9031 5.0824 -2.2491 -0.1196 0.8441 -9.4147 1.7011 -#> -8.9176 -3.0189 9.5077 4.9989 -1.1380 -5.3146 -5.5733 -6.7260 -#> -0.4082 4.1821 5.2904 2.3013 1.2743 -2.9406 -6.0362 -3.0038 -#> -2.0832 -1.8657 4.9447 1.4180 0.1416 -0.1899 4.1653 -3.4298 -#> -4.8597 0.9150 0.4392 -4.8070 7.4141 14.8686 3.7364 10.1229 -#> 8.3424 -6.1335 4.3202 -2.1732 -11.5991 -13.4142 1.2317 -8.0982 -#> -0.2153 6.0834 3.4220 10.8916 4.3969 8.2267 10.9871 -7.5181 -#> 2.3822 -8.7823 4.6057 10.1561 -1.5710 -10.0309 -2.0746 -2.2866 -#> -5.8263 -0.6575 -6.0233 -4.0320 -7.1885 4.3454 9.4840 7.2089 -#> 13.3708 2.2496 -7.7976 8.7236 5.5935 5.6348 4.9756 5.5582 -#> 5.9179 1.3443 -3.3823 -1.2847 8.5173 0.9727 -0.8258 -1.4907 -#> -#> Columns 41 to 48 -4.8874 4.2648 1.4254 -11.1819 -7.5432 -11.3109 -9.2888 0.4967 -#> 9.5153 11.7349 -2.2791 0.8585 -2.8558 0.2460 1.0491 1.4689 -#> 9.3801 15.6711 2.0565 4.8049 3.5439 4.0364 15.1548 -3.6749 -#> 16.3325 -9.3679 2.0192 -3.3858 -9.8849 2.9303 1.8756 4.9476 -#> -0.8684 4.5410 -9.3713 -3.4632 12.9519 2.7012 12.1265 -1.4925 -#> -10.3416 -2.8101 -0.1286 -2.5805 10.9838 4.5101 -2.4895 11.1958 -#> -2.4855 -0.2830 -1.4296 -3.1296 -0.3691 11.4104 -3.1588 -15.5533 -#> -8.7580 -3.4773 10.9539 -2.5102 3.5234 5.4549 -5.1429 0.9529 -#> 8.7106 8.7735 -1.1035 -5.3187 -10.2647 3.4108 -11.0404 -0.5582 -#> 1.5927 12.1160 -0.9894 -0.0483 -0.4213 -11.2137 3.4887 -5.2136 -#> 8.0233 -7.5385 -1.8384 -3.2708 12.0102 -10.5743 9.0551 -0.5432 -#> 2.3194 -5.6273 -8.4390 9.7349 4.6735 9.8609 -3.3499 -5.7117 -#> 8.2240 9.1067 0.2126 0.6903 -3.8826 2.3915 8.0595 -2.0850 -#> 8.5066 5.3333 -5.2188 -13.0931 -3.6299 0.0899 -1.9622 -4.6138 -#> 8.9595 7.7200 -12.6849 -11.6411 11.2263 -0.6814 -1.3068 4.1395 -#> -3.7121 -0.5109 7.3844 4.4809 -0.1424 12.3762 1.8442 3.6132 -#> 3.2045 -0.0386 -0.3754 5.7350 -9.9900 -16.1272 2.7240 -17.6808 -#> -2.4684 3.9191 -5.6213 -6.9191 7.2749 -3.8292 -12.5974 10.8177 -#> 0.0444 1.4745 -0.4502 -0.5448 3.1292 4.7605 12.5336 -0.3326 -#> 15.8767 2.8549 -9.2265 -2.5690 -2.1676 1.7361 7.1797 -3.3801 -#> -4.3841 5.1055 6.1935 1.2127 0.0729 3.1731 -5.4489 2.8111 -#> 14.3846 1.3005 -4.7567 -11.0473 -13.8530 3.5960 -16.5615 -2.5091 -#> -2.9694 -2.3522 -5.3276 -5.7980 4.1376 -3.9642 14.9809 -3.5241 -#> 5.5171 -2.1734 0.9172 4.5474 1.9186 -9.3068 0.5903 -19.9337 -#> -9.6287 -6.7558 -12.1460 -1.5988 -3.5005 0.7460 -12.0347 4.5429 -#> -3.4691 -4.8915 8.4898 1.0439 6.9208 8.3621 3.7009 2.0818 -#> 2.2342 -6.7275 -13.9861 -5.2344 -2.4440 7.9633 3.3043 1.9516 -#> 3.4051 -5.0082 12.2827 14.6407 3.5717 1.9640 6.0396 -9.4632 -#> -9.2561 4.1927 -4.7531 -2.0654 -6.8197 1.7003 -2.1707 -0.6996 -#> -6.5002 9.6357 6.3987 5.9241 -6.2198 -14.6919 6.5156 -6.7869 -#> -4.5410 -3.4889 -8.7651 -1.1678 3.2435 -0.3625 -6.3166 3.1699 -#> -1.0508 -10.6551 -7.6276 12.8458 1.8464 -5.5304 10.2748 -19.5096 -#> -7.3590 3.5982 3.9005 4.6067 -1.3096 10.7647 1.2693 2.7367 -#> -#> (15,.,.) = -#> Columns 1 to 8 7.1115 -4.8512 6.6240 -2.8056 -3.3284 -8.8784 -1.8778 2.6504 -#> 2.0700 2.2446 3.5921 -8.6059 11.0003 4.2419 -2.6831 -13.7168 -#> -3.0170 -4.9289 -6.9572 -6.9360 3.4179 10.0614 -1.7287 -5.8838 -#> 6.8548 -18.6215 4.7617 1.7003 5.2943 -13.6111 7.5037 7.0371 -#> 0.2961 6.8685 -6.2783 5.1014 0.8988 2.8195 3.8814 6.8040 -#> -4.8547 5.2219 4.0477 16.4903 -12.9067 4.1274 18.0589 2.3969 -#> -3.1119 -5.7625 2.6623 1.4139 2.1222 -0.2198 10.5954 7.2307 -#> -7.6110 2.3029 -1.1292 -7.6671 -3.8505 7.4110 3.5311 -16.9414 -#> 1.3999 -9.8199 3.7912 5.3425 5.5118 5.7815 1.5328 8.6705 -#> 3.1219 5.7515 1.3880 -0.1989 5.4088 0.5510 -11.7477 -0.2784 -#> -14.2673 10.1715 -8.1456 1.4596 -2.2529 16.0602 3.6823 -10.3038 -#> 11.0010 -7.4895 -21.9005 7.8930 0.6953 -2.4494 -1.8775 -1.9337 -#> 8.0189 -9.5857 0.1912 -0.3771 13.6362 1.4489 -6.2672 -7.9932 -#> -2.5327 -3.8656 -7.2625 12.7074 0.4264 1.5368 5.6500 -3.9857 -#> 1.8156 1.5734 0.2571 1.3652 5.4486 9.7826 3.4503 -10.3677 -#> -3.8268 -7.5919 8.7224 -7.5668 -4.8322 2.4466 -1.4175 -2.6361 -#> 8.6276 -4.3907 2.3532 -11.3650 0.8983 -8.9388 -21.6246 -0.2398 -#> 5.3831 5.5249 1.9599 0.7754 -11.9672 -3.6293 0.7607 -1.5836 -#> -15.1287 -0.2102 -8.7870 -9.7320 3.5318 3.8834 3.2313 13.0888 -#> 2.2043 1.2443 -6.2095 -0.5036 8.3035 -2.9883 -11.5146 -0.9311 -#> -2.2014 -4.3662 -9.8363 -0.0592 2.2272 7.1386 -2.3986 -9.8353 -#> 7.3829 -15.6095 4.8038 13.5743 8.6284 -4.1394 -8.4229 -2.4527 -#> -13.6528 4.5778 -9.1974 10.2745 5.6171 1.3481 0.0050 2.3714 -#> 5.1346 5.7869 -3.6878 5.2730 12.8479 -8.4027 -0.2686 12.3093 -#> -1.9531 1.3696 -5.5243 -0.3543 -4.0368 0.4145 1.2231 6.5016 -#> -4.4855 3.5932 0.2520 -5.4919 1.7162 -2.1047 3.5553 -10.0349 -#> -0.7338 -12.2822 3.8291 1.8916 -5.6240 4.1292 13.4338 8.6450 -#> 4.1223 8.7543 -3.3275 -10.5468 0.5172 11.4885 8.5203 4.6293 -#> 0.8531 9.3552 -4.1095 -4.7907 0.7956 -1.3426 -3.6576 -5.8040 -#> 3.3943 -0.0591 -5.4711 1.9219 1.3790 -3.3002 -14.7059 9.0316 -#> 0.1388 -3.6049 -10.5187 -4.0452 -4.5910 0.0103 2.7861 -6.4096 -#> -6.2126 -1.2538 5.6032 1.9384 8.2004 3.6508 5.4220 -2.7547 -#> 1.4816 -4.9908 -3.5770 5.7046 5.3249 7.0368 -4.7861 -8.5862 -#> -#> Columns 9 to 16 7.3293 0.7758 11.2714 0.4524 10.0081 -1.8373 -6.1661 -5.1543 -#> -5.8472 -0.0340 6.9379 -9.0681 0.1452 -5.2057 -12.2126 -1.6486 -#> 2.3437 -8.1255 4.6813 4.4023 -1.8926 -3.2216 1.2384 -9.5795 -#> 11.8843 -12.4493 13.3344 -0.9240 -10.9565 4.5401 -3.0791 7.8568 -#> -9.3088 5.4911 -0.1078 0.6599 0.1283 2.3134 8.2952 5.1707 -#> 4.1178 8.3648 -9.3887 -6.1874 10.2946 -2.3948 -1.2944 1.9575 -#> 3.9512 -2.3895 -3.5280 6.1398 4.6451 -8.5465 -1.5480 -6.9995 -#> 2.2374 3.9606 -5.4656 4.2810 4.2215 -8.9381 -2.8852 -8.8617 -#> -3.6895 -4.0458 6.1441 -12.8404 -8.1936 1.2354 -1.3595 1.0117 -#> -0.8024 -6.1211 2.9179 0.7460 3.9652 0.3023 0.6151 5.0391 -#> -11.5725 28.7443 -21.9473 12.8849 -7.2069 -3.0946 -10.9281 -3.5617 -#> -5.4936 -0.1804 -4.5155 5.1270 -0.6444 -8.3817 -5.6771 -16.6725 -#> 2.3760 -7.0744 -3.9384 -0.7086 -7.3069 4.5342 2.1592 2.9307 -#> 18.0141 -6.5316 8.1737 -1.6791 -7.9068 -0.4408 -1.8226 5.0003 -#> 7.7288 10.7306 6.2264 3.0890 7.9790 -2.7280 5.4462 15.1681 -#> 8.5514 -4.4508 5.4930 -0.7188 3.4840 1.9186 1.2016 11.9940 -#> 4.5466 -9.5580 14.4330 -8.1170 8.1214 3.3552 -7.4451 0.8764 -#> -6.6361 -2.7121 0.2718 2.8905 5.6385 1.1932 0.1248 -9.6453 -#> 4.6519 10.0845 -11.9125 7.3490 -12.6394 -5.6982 -3.9589 -5.8524 -#> 7.5585 4.5320 4.8395 8.3544 -6.1310 1.5636 -1.5205 3.5457 -#> 8.8557 -3.6722 -4.3582 11.1995 -13.1770 -5.3377 0.8860 -7.7558 -#> 9.9494 -9.0174 6.8326 -8.1302 -15.9986 -1.7770 -6.3664 14.5632 -#> 12.8819 16.6322 0.9788 0.6587 -9.5508 -0.4219 1.1572 1.0094 -#> -13.2621 -4.8329 -3.3790 0.6607 -3.8674 19.4960 -2.4050 1.7530 -#> 8.2321 3.4733 4.7779 -5.3348 0.2874 1.8593 -7.6614 -6.7333 -#> 9.0961 5.4900 -4.4653 6.5680 0.2827 -4.5207 3.0002 8.9991 -#> -4.3711 8.0910 14.0509 -7.3617 -4.7490 9.0630 -1.7344 -2.7312 -#> -1.7179 1.9318 -9.6681 16.6352 4.7708 -6.8043 -6.1491 -0.2504 -#> 14.4281 -10.5506 18.0719 0.6034 2.2336 0.7469 4.2527 3.9240 -#> 3.4098 3.1782 -1.2625 5.2707 3.1843 3.9704 6.9703 3.3117 -#> 1.1391 6.7281 8.8927 5.2655 5.8992 -1.3787 1.0948 -1.4335 -#> -7.3976 0.4969 -0.9509 -7.0835 14.7301 -5.6787 4.1450 15.2954 -#> 12.4407 -4.6198 -0.9390 -2.1177 -4.9047 -1.7441 7.3410 10.5900 -#> -#> Columns 17 to 24 -7.8632 -2.9569 -7.4812 -13.7157 8.0637 2.3197 -11.0591 6.0891 -#> 5.2080 13.6162 9.5811 9.7852 5.6479 -0.6554 -1.9055 6.7459 -#> 0.0767 2.2985 -3.4298 3.6582 3.5657 1.8876 4.9415 -0.0905 -#> -0.8436 -8.1971 5.6436 -0.8189 -2.7185 -6.8124 1.8173 1.5997 -#> 16.2083 16.5765 -9.1467 1.2284 -12.6130 -4.5548 2.0418 1.2082 -#> -0.3672 -0.1228 -0.0400 -4.1638 0.4942 -6.9269 7.8788 -6.5652 -#> 13.4752 -1.3951 -7.7839 -2.8148 10.6688 3.2956 5.4087 -6.8197 -#> -5.1719 3.6068 8.4387 2.3832 9.2946 7.0327 -3.0611 -2.2567 -#> 1.8095 11.6708 -3.7466 6.6039 0.9131 -5.9405 12.7895 -1.3867 -#> 16.9034 14.6173 -1.4816 12.0900 -9.7003 -8.1873 -10.4125 3.2021 -#> 18.8224 -3.7732 -8.4614 17.2741 -12.3936 11.3341 -9.2802 9.3729 -#> 2.1984 4.4343 -2.0045 17.9349 12.9631 -10.8768 5.0915 -1.7478 -#> -1.1283 10.2250 -0.7795 9.2527 2.0497 -6.3417 6.1346 -4.9914 -#> 3.7214 -17.4149 -2.9213 -3.1648 -9.2139 -1.9090 16.3691 -1.6833 -#> 17.7869 1.2456 -8.1943 -6.7983 -12.6561 1.0241 8.7451 1.9875 -#> 4.7919 -7.9875 5.3562 -4.6082 -12.4467 -9.7171 4.8647 -3.7000 -#> 8.2106 7.4021 -7.2296 14.3541 0.3103 -1.5755 0.0523 -11.7865 -#> 4.0221 -0.2243 -7.8152 2.0820 3.3237 -8.2121 -3.1208 0.4177 -#> 2.1557 6.9841 3.9537 3.1003 -4.4127 13.4479 6.2930 9.3346 -#> 6.3638 -7.4629 -22.5791 1.1678 -7.8419 11.4958 5.5791 -2.9846 -#> -8.2702 -13.1500 3.4012 4.5281 11.8472 9.1611 -0.4623 4.2150 -#> 5.4411 -12.5264 6.7563 -2.7371 5.6250 -2.9614 7.0123 4.2767 -#> 5.8710 -6.3890 1.2708 -12.6806 -11.1545 2.2729 2.5553 14.9886 -#> 3.2095 8.6801 -0.5554 8.1789 -1.8506 0.1934 -27.5572 -1.5930 -#> -6.8670 -1.6240 -12.6488 -5.6393 6.8329 -1.8703 6.1925 -2.0215 -#> 6.8801 3.9142 -2.3834 -8.1555 2.7157 7.8278 2.2930 -6.3260 -#> -2.3847 -1.3235 -3.3893 -0.3491 4.1305 -3.4685 10.7051 2.8873 -#> 8.2645 -10.5847 -0.8847 1.2763 -10.3263 7.4525 -9.3715 3.6793 -#> -2.3518 -0.1390 1.0705 -5.8702 -6.4483 -4.0465 8.3043 5.2560 -#> 3.2468 8.2362 -10.9262 -6.5290 -12.8279 -5.7303 -1.3841 -0.0960 -#> -3.0723 10.6398 12.0713 0.7000 -3.5167 -14.5697 3.6254 -2.7057 -#> 0.0036 -1.4688 3.9714 -0.6494 -15.3354 -3.4704 3.0982 -7.4453 -#> 0.4233 3.8652 1.7919 -11.7475 5.7635 -13.0052 8.0559 -2.3109 -#> -#> Columns 25 to 32 1.6111 9.8913 -5.1667 1.7823 4.4968 11.4306 4.7141 4.1485 -#> 11.6637 -6.4701 7.3143 -4.6603 5.1235 -7.4082 8.3548 -0.5569 -#> 0.6283 -6.8813 2.5591 -1.5133 4.7381 -2.9992 9.0115 -5.5502 -#> -5.2239 -4.3276 5.1755 -0.0235 4.7770 -7.2770 -5.2854 5.8824 -#> -8.7289 -0.1826 4.4126 -2.3563 -3.5984 -9.1043 9.6573 -0.8086 -#> 4.8235 5.1700 1.8015 4.0285 7.1082 -7.7678 5.7203 -16.4164 -#> 4.0143 7.2377 4.8562 9.9579 -4.2431 0.6437 -3.0818 -3.3971 -#> -1.1889 6.8866 4.1312 3.2933 -1.7267 1.8717 -1.0299 -4.4844 -#> 7.9196 5.0489 -2.6998 -6.7225 -5.8232 -7.8611 -8.9995 8.6625 -#> 6.5469 -5.5016 5.5969 -7.3770 1.7542 -13.9674 6.6170 -3.4024 -#> -3.2858 -0.3681 14.5794 -3.3098 12.1049 -8.3324 -0.8725 -12.8950 -#> -4.5755 8.1768 10.8769 -4.6412 -1.5418 6.8211 5.3414 -1.7760 -#> 4.8843 2.1762 -8.7745 -0.1388 2.1083 1.3516 -11.3251 10.4455 -#> 3.3188 0.7462 2.9958 3.4060 2.7944 -4.2444 4.0027 -0.6496 -#> 3.7560 -13.5172 1.9928 10.8493 -1.9686 0.5085 3.2974 7.6224 -#> 0.7598 -7.6283 -2.8274 4.6157 4.2587 -4.9954 -2.3554 0.9759 -#> -3.5939 7.8641 0.4557 9.6153 -11.5511 0.3652 5.8262 1.3749 -#> -1.5936 -5.9849 -0.1979 -1.2771 -2.1348 -12.1289 1.5487 -8.8455 -#> 7.6842 4.1295 8.3468 10.5882 5.1853 -11.4518 6.2370 -5.1755 -#> 1.1376 -0.9603 11.4751 7.1682 0.3050 13.5715 11.1495 2.8284 -#> 8.3730 10.5045 14.0180 -11.2211 -1.3625 2.3138 3.8882 -6.8152 -#> 3.7236 -1.7148 -7.6170 -10.5873 -3.2708 10.6142 -7.5766 8.5804 -#> -7.0491 2.5127 8.0336 9.0789 0.4238 6.1985 12.7871 -13.7677 -#> 2.8779 10.3715 -17.5331 -10.4388 -4.2289 -2.8544 3.5366 -13.0072 -#> 14.9275 8.7207 3.2939 4.4447 3.7926 -9.0021 9.4168 -1.2667 -#> -5.4648 7.6661 13.5957 10.1384 1.0440 -2.1800 3.8088 2.7490 -#> -6.1931 2.9256 6.1095 2.7975 6.8424 10.0426 6.3487 9.9140 -#> 5.5017 -2.1072 6.9378 2.6380 -1.2445 -0.7814 -0.1116 -12.2251 -#> 7.5641 -1.5218 12.6226 3.0393 4.7455 -10.6471 8.8348 8.3849 -#> -10.8081 6.4331 -0.9774 6.6743 2.1463 2.1770 -8.2339 -16.4321 -#> -4.9075 -7.1971 2.3138 7.9496 2.5724 2.2093 3.0592 -2.0602 -#> 2.3171 -3.5195 3.2429 3.8005 -9.6169 5.8675 -6.2395 5.4772 -#> -4.0414 7.8393 -3.1173 -0.2646 2.4630 4.9677 -1.7572 7.2229 -#> -#> Columns 33 to 40 -1.1876 -10.1433 -6.3296 -0.4366 -8.4276 4.5743 10.7330 9.1425 -#> 5.0169 1.3334 11.1390 -3.0555 -5.2267 2.4215 3.0188 -13.6635 -#> -2.9091 7.9281 9.3381 8.1316 -7.7611 -3.3668 7.0043 7.1997 -#> -3.4941 -8.8710 22.0236 2.1432 -11.5798 13.7316 10.7663 -0.7452 -#> 0.7552 17.7075 -3.7739 -8.6597 7.8503 -3.0094 -2.7635 0.9666 -#> -10.9439 -3.6854 1.2291 -11.6378 14.9099 0.2285 -15.1566 -4.2762 -#> -0.5783 15.5054 3.0954 -3.3504 -13.4509 -2.3075 9.3905 1.3299 -#> 2.8292 -1.6403 8.7995 -4.3770 -1.7240 -1.7656 -8.9716 -2.7895 -#> 2.3974 13.9734 1.0183 -8.1300 0.0174 6.9550 8.2570 -8.0587 -#> 3.0301 11.8596 8.8648 -3.7870 -8.1850 -2.5475 -4.2095 -0.0444 -#> 10.4876 10.5542 -4.7367 4.3377 -11.2366 -0.7845 0.3486 -2.2428 -#> -5.8378 2.4098 -0.9600 -4.4779 0.1891 -6.8651 -9.0412 -1.2870 -#> 0.5132 3.5568 7.9932 3.6603 -3.2506 -9.6204 -3.2829 11.5460 -#> 4.3603 -4.4309 2.1633 -4.6632 -2.0197 10.3826 -10.8853 18.2003 -#> 7.5312 9.4417 -14.0978 -10.5704 7.4753 2.4065 -12.0700 8.9292 -#> -5.9442 5.7016 10.2508 5.5452 -4.8535 -2.5900 -5.1088 4.2898 -#> -18.8976 5.1532 -1.7340 8.3101 5.6807 -2.8783 -3.3924 0.9158 -#> -4.6655 -2.7845 2.2621 -5.1463 11.9983 5.4542 5.0857 3.3174 -#> 4.7172 8.5207 8.1565 2.4791 -7.0028 -0.8125 -4.5575 -3.3890 -#> 4.9781 3.8925 -6.7012 -3.3485 -9.6601 -9.7996 0.6632 4.9651 -#> 6.2889 -6.5221 -0.1579 0.8559 -3.5223 -2.9480 -8.2845 -3.6279 -#> 16.2025 -4.6872 0.9619 -2.2647 -0.9014 -1.9281 10.6382 1.3064 -#> -11.7320 -8.8520 -8.2607 -1.3817 9.6871 3.5138 -12.0845 0.8755 -#> -1.4128 -0.8471 -8.2075 6.5583 -9.8319 0.0534 -2.4484 3.2296 -#> 0.1093 5.4801 -5.7720 -4.4883 1.0138 11.8541 -5.7959 -13.5700 -#> -2.7510 3.9824 7.7852 -8.5101 -0.6763 -0.6188 -4.2763 -4.1366 -#> -7.6959 1.4529 -2.4865 -10.2923 0.1622 3.2543 0.6042 -8.5631 -#> -5.8255 3.2380 -5.6855 10.0065 -13.5559 -18.4401 -6.9620 6.1546 -#> 14.2976 -3.6410 2.4764 -14.9836 -9.5727 12.6544 -12.3706 -4.0015 -#> -4.1990 1.5840 -2.1817 14.1879 -4.8348 -12.4974 6.0161 17.1821 -#> -0.7287 3.5166 6.5444 -5.4296 2.1586 -1.0379 -4.0262 1.5960 -#> -3.1356 4.7152 -3.5899 -3.5598 4.9465 -12.6657 -0.7683 -1.2444 -#> 4.7171 0.5994 0.7119 -1.2080 -0.6086 -13.2839 -5.4848 2.1458 -#> -#> Columns 41 to 48 12.1076 4.1011 -2.1738 -12.9176 6.0466 -1.2080 4.1916 -14.2161 -#> -11.0032 -2.0739 -9.6891 9.1633 -6.7289 -0.9261 -11.6838 -9.1522 -#> -2.8997 -6.1992 0.2605 -0.8266 3.4657 6.5743 -7.7402 -0.3860 -#> -9.4210 0.0803 -11.6765 7.1376 2.6870 -8.4538 -5.3343 -1.7722 -#> -6.3655 -12.2643 8.3479 -0.7230 -13.5265 0.0571 -4.1167 -0.2769 -#> 7.3242 -2.8557 6.1877 5.6059 -0.9670 0.8556 8.1311 3.8170 -#> 0.9440 -6.0001 5.4027 3.7200 8.2664 -4.4506 -8.2239 3.3115 -#> 1.1671 1.2033 -0.1148 4.6368 9.2238 -8.6745 9.8473 1.3444 -#> -7.4524 -2.3227 2.5718 0.3380 4.2563 -6.7630 -0.9309 -14.5055 -#> -10.5321 -0.5466 3.3322 8.5984 -15.1215 -3.8004 -5.8031 -4.9785 -#> 0.5278 -2.1349 0.5429 6.7788 -7.7084 -6.8593 3.6495 5.3098 -#> -3.9173 -12.6153 6.4391 -2.6274 5.9788 -2.6989 5.6161 4.0751 -#> -9.5523 9.0388 -3.6559 0.7355 -6.6148 2.9918 -4.4288 10.3985 -#> 0.3431 -0.1633 9.4491 -0.1662 0.1703 -8.1686 3.9250 -1.9232 -#> 1.5288 -2.3083 -5.0019 -2.2136 -13.1283 -6.2529 -12.6464 3.3033 -#> 1.8642 -1.6308 0.4104 -2.1203 6.6278 -7.2271 9.7675 -0.6935 -#> -3.5142 -5.4236 0.4054 4.4837 -1.8545 -1.1056 -16.1740 -11.8274 -#> 7.2128 0.4841 1.1405 1.7895 -2.4622 1.0410 5.6031 -9.5526 -#> -5.1216 -4.1475 0.7678 -7.3741 7.0402 -3.9091 5.0237 1.8940 -#> -2.9024 6.0801 -1.3226 -1.9505 -7.1316 -1.0240 -7.6500 1.4707 -#> -4.6808 -3.3517 -0.6546 -1.4612 6.0778 8.9817 7.7796 -10.4063 -#> -3.9926 9.0640 -7.9229 4.0447 2.5237 -11.6426 -7.8623 -10.9089 -#> 4.1280 -9.8034 9.1217 5.1864 5.1205 -6.8890 -4.8244 -0.4584 -#> -0.4377 6.9769 8.7374 -10.3751 9.5877 14.0208 1.6259 -4.7922 -#> 5.0793 -7.7669 5.9387 -13.6609 4.1338 1.2238 10.1254 -4.0397 -#> 4.3210 -7.1856 -3.9623 2.0145 -3.4725 -12.8630 3.5290 2.1779 -#> 0.4560 -4.6627 1.9266 2.4260 -2.8334 -6.1060 1.7071 4.3015 -#> 5.2938 -0.4437 -0.2218 4.4239 6.5981 10.4136 4.6831 3.9865 -#> 0.0827 -6.5887 1.4364 -9.5022 -10.8417 -7.3839 10.5732 -8.4682 -#> -0.0789 -5.1351 12.8619 -10.3998 11.1001 -0.8602 -1.0153 -5.6380 -#> -0.8525 -8.5984 -4.2362 2.2819 5.7807 3.9225 5.1029 -3.2233 -#> -6.7520 2.5125 -7.0239 0.2492 -17.7612 7.3457 -5.1606 21.6853 -#> -1.2298 -2.5437 6.2544 -6.8056 -5.4504 -6.6582 7.4377 4.6695 -#> -#> (16,.,.) = -#> Columns 1 to 8 -1.3204 0.6526 10.5092 -5.6327 11.6096 5.4670 4.2140 0.0346 -#> 5.5739 -3.2615 -10.9422 15.8088 -5.3255 -9.1013 -4.6959 -0.5321 -#> -1.4791 6.4599 -3.5330 18.5985 -7.7456 -0.7409 4.7767 -1.2939 -#> 2.1681 2.9503 8.4330 -5.2447 -17.1378 7.1880 -10.5660 0.0754 -#> -7.0732 14.9318 3.6820 -3.9117 -10.7969 -8.7032 2.4902 0.1089 -#> -6.4173 8.3155 -8.7507 -5.8865 -10.0633 6.2456 -5.8225 -4.2588 -#> -0.2864 3.1815 8.6395 -0.3138 0.3553 -5.9444 -0.0749 -2.6012 -#> 1.0320 -8.3929 1.9943 1.1173 5.1423 -6.1033 0.8580 4.4847 -#> 4.8267 6.8426 0.9700 -0.1088 -1.3790 4.9978 2.2415 -0.3459 -#> 3.9409 0.6129 -12.8229 13.8631 -6.3605 -12.7444 -0.1254 3.9160 -#> 0.0052 12.2717 2.5303 -3.5619 -2.9978 1.4443 1.1008 -9.0313 -#> 2.6251 -6.9490 14.1019 9.4191 -15.9656 -6.0713 10.5775 -3.8202 -#> -1.0193 -6.3644 1.8182 11.5701 -0.1826 -6.2748 -2.8998 16.5332 -#> -9.2020 19.8385 -5.9341 12.3887 -10.9639 9.4341 -1.0446 8.9571 -#> -14.0495 11.1773 9.4797 2.2405 -11.3045 -14.3312 -0.5920 8.3753 -#> 7.1392 4.5487 -10.9330 -3.0501 2.0338 0.5864 -6.0851 6.9316 -#> 2.6657 0.9035 -5.8575 -3.1847 9.1681 -1.4086 2.6142 13.2898 -#> -2.2047 10.0648 8.4240 1.1256 -2.6297 -0.3316 4.8572 -6.3603 -#> 9.5895 -10.9603 2.9531 4.1686 -4.6578 1.8648 -3.9940 -0.8700 -#> 7.0689 -1.4863 0.9992 7.1206 -0.5830 -4.1616 6.5459 7.8172 -#> 9.3923 -5.3182 -5.8125 1.4640 1.8993 9.1349 3.1091 0.5354 -#> 5.0575 3.5568 4.8846 -3.3064 4.8651 3.0455 -4.5414 6.5744 -#> -12.5866 3.3297 1.1292 -7.9103 -4.2261 -5.4005 4.1291 1.8921 -#> 10.1886 -21.3950 -15.0034 5.4307 -1.9230 2.3486 -17.8280 -3.1337 -#> 10.0871 13.7585 -9.1602 2.4039 -4.3966 6.6193 -0.0315 -5.2115 -#> -10.1880 3.9860 5.6668 -11.3652 2.0414 -4.1076 -1.0125 8.7918 -#> 0.1394 5.1834 9.7742 -11.5945 1.0495 -1.1102 5.8734 -1.9149 -#> -17.5434 -6.5157 1.6953 4.7723 -0.9014 0.5178 6.9369 2.9006 -#> -0.3901 9.4402 -11.9338 12.7419 -8.8317 -5.6769 6.9202 0.9321 -#> -7.3379 -7.1466 -0.9682 0.3887 4.4588 8.6968 2.9510 1.6989 -#> -0.7674 -1.7466 3.9111 2.1979 -10.2515 -4.2773 9.5866 1.0826 -#> -1.5783 7.1853 -6.7278 -9.1641 -15.5977 -10.6462 3.5289 5.9880 -#> -4.7147 7.8592 -9.0302 -5.2358 -3.3409 -1.7656 -4.6556 -2.6884 -#> -#> Columns 9 to 16 1.0254 10.3361 11.6621 5.4113 -5.4113 1.7748 -6.8710 -9.8104 -#> 0.4625 4.9036 5.4948 -4.6719 -3.3553 -0.6379 0.6686 12.4877 -#> -7.4537 -5.7242 -1.2048 -7.6518 -10.1702 -7.5392 1.4355 12.3038 -#> -0.9118 1.9426 -22.7376 -2.0421 -3.2993 6.2670 -8.1239 7.8196 -#> 3.0716 -2.4960 -0.7130 -13.1407 9.6765 10.1313 14.9288 -0.7429 -#> 7.0794 -9.5038 2.5003 -5.2492 -1.7645 -1.3024 -3.8371 8.9790 -#> -5.1030 -6.9457 -0.9513 0.6588 -1.2483 -1.0004 2.7857 -3.1608 -#> -2.9562 -6.1328 3.7558 8.8549 -16.1291 -5.9037 -3.9408 6.5159 -#> -1.6588 3.0108 -12.8467 -1.6978 -15.3076 9.3569 4.3810 -2.0955 -#> -4.3906 0.5790 2.3439 -12.0252 -5.3709 9.9952 10.5764 10.3523 -#> 6.5793 1.0548 11.9372 -2.0547 8.4397 -1.5919 3.8448 2.3324 -#> -1.5664 9.7998 22.0340 8.1030 -11.4524 -15.2741 0.8491 -3.5748 -#> -11.9949 -1.1028 -1.6206 -2.0485 -9.2684 -1.9960 6.5735 15.1946 -#> 0.5942 -1.1728 -5.7841 3.6862 -7.8729 5.5735 -7.0033 -1.6853 -#> -1.7875 -9.1322 -7.6958 -18.2343 4.8327 9.3955 3.9783 -3.5601 -#> -10.6473 -8.1347 -16.5191 3.3761 -4.2651 15.5675 4.2293 0.2734 -#> 7.0049 13.8239 -7.1527 1.1260 -1.0699 -1.6748 -1.0046 -0.9413 -#> 7.5757 2.4887 13.2990 -6.5295 1.1039 4.3652 -0.2265 7.1046 -#> -5.9953 -13.3316 -5.4457 -8.3539 4.9143 -7.1104 -1.9930 8.8147 -#> 8.4529 7.0763 6.0135 4.3569 11.1647 2.8066 -11.1874 -16.3402 -#> 2.9189 -8.3507 4.3038 3.2874 -5.8044 -2.3187 -17.9639 -7.2240 -#> 3.0913 7.9585 -5.1885 3.2803 -2.8590 9.8295 -2.5579 -16.5575 -#> 2.7880 2.8779 0.6772 -9.4118 8.2246 -8.6007 -2.6125 -6.7030 -#> -10.5021 -5.8253 2.1096 -1.5385 2.2725 -4.3075 1.2849 1.6933 -#> 13.3302 -10.1520 -1.0219 -0.6172 9.4727 3.5504 -4.7962 -8.7593 -#> 3.4697 -6.5768 -6.3320 -1.2067 4.5735 2.2156 4.8014 -4.8593 -#> 1.3233 2.2615 -7.9351 -8.0059 -1.7954 -6.8646 -4.6570 -2.4058 -#> 0.3469 0.1460 17.7335 4.3834 9.7596 -7.1045 2.4103 -7.7036 -#> 1.1120 -6.3162 -1.7628 -1.7410 -3.0155 7.6801 0.8479 -1.0478 -#> 4.1956 10.0632 1.7495 -5.7685 3.5873 -0.3796 8.8077 -4.3659 -#> -5.1423 1.6058 2.3845 -8.5698 -10.1795 -4.4278 7.6315 3.5999 -#> -12.7859 -1.8685 -14.3316 3.0497 7.8189 -6.5503 9.9442 5.3623 -#> -4.5302 -7.2908 -7.1151 4.5172 -1.1260 6.3266 7.6171 -7.9990 -#> -#> Columns 17 to 24 2.8025 2.8271 2.6480 3.4959 5.0904 2.8226 -0.0594 13.4359 -#> -14.2048 -9.2178 2.9372 -0.3767 -5.0131 -6.1643 1.8080 -4.0727 -#> 1.7859 -2.5607 -1.9930 8.0479 -0.7414 3.8054 5.1039 -2.8461 -#> 10.4622 -6.9029 -11.8365 10.8772 -2.8240 -2.7649 7.2829 -5.8833 -#> -14.1812 -10.3616 -4.2358 3.8300 1.7081 3.1369 -2.0032 -6.1442 -#> -0.5696 2.5405 -15.5316 -5.1835 -6.0208 2.9822 -0.5974 20.8739 -#> -5.6804 -8.5035 -1.6632 -0.6585 -2.4957 3.7135 14.2337 -4.5331 -#> 1.7501 0.6361 -5.0097 -6.8476 -5.1944 12.4870 -3.7354 0.9425 -#> 5.1651 -11.6754 1.1540 1.5580 7.1286 4.3611 -2.7560 -18.3934 -#> -17.0134 -11.4174 0.8793 -0.6620 4.0115 1.4018 -0.8441 3.0652 -#> -10.4883 -1.5086 8.5144 3.9381 -1.8614 13.6181 -9.9868 7.9517 -#> -10.4059 22.3095 2.7550 -2.2265 1.2176 4.2821 5.2935 -1.3582 -#> 4.4460 -3.1476 -7.2154 -9.6695 3.5336 -1.6278 -9.2159 -10.0800 -#> 8.1050 2.0959 -3.9473 -0.7106 -2.8918 5.4461 -3.6736 -1.2730 -#> -6.1247 -1.4076 -4.4631 1.3634 5.7326 -2.7705 -12.1562 -6.0150 -#> 6.4228 -7.8171 5.9113 3.0675 2.0606 -1.1603 4.6238 -8.2037 -#> -1.6866 -5.6572 0.2234 4.5182 3.1158 -13.9857 6.7237 4.4937 -#> 0.1855 -2.4545 -7.3087 1.1111 -3.9793 6.8628 6.6371 11.8543 -#> -6.6008 0.6008 4.6997 -1.5596 0.2766 -3.9507 -0.4521 3.7588 -#> -6.1623 4.5682 6.6610 0.1241 10.9521 1.7854 2.6624 -2.3684 -#> 8.5402 15.9268 5.0533 -1.7578 0.7582 5.4772 -1.6012 -10.3979 -#> 11.4607 1.5538 -7.0335 1.5337 5.4602 3.1144 -6.8919 -15.1536 -#> -0.9874 11.4116 -1.7802 -16.8985 -2.0688 -12.0846 -7.8504 7.7643 -#> -4.8618 -0.8623 6.5522 -3.0675 0.4466 -6.2224 -1.0398 3.3669 -#> -6.9103 -0.4912 13.6113 8.4300 5.0445 -1.1812 12.4340 5.0129 -#> 2.9676 -3.5193 -6.5441 -1.1419 -0.4146 -2.7309 -3.9625 0.2427 -#> -0.5066 -4.1027 2.8202 1.5772 12.5458 -7.5701 -1.1209 -7.5376 -#> -2.0766 4.6149 10.3450 6.7406 -4.9339 5.7498 17.3834 2.1269 -#> -9.6193 -1.3648 16.9052 6.0183 4.4245 -0.6685 2.6400 -7.4417 -#> 4.9282 9.5929 -7.0839 -1.3978 -6.6698 -8.3408 0.2958 5.9292 -#> -6.4539 0.5636 -5.9307 -1.6424 5.9629 3.1537 -4.6600 5.7245 -#> -4.9213 0.7057 9.0855 3.7485 3.8237 -11.5914 -0.5496 -9.8527 -#> 2.9095 5.2565 -2.3803 9.6923 -1.2148 -3.3360 -1.4157 -13.0961 -#> -#> Columns 25 to 32 17.6035 -1.0098 0.4745 5.2585 -8.8529 8.4093 -2.0189 -14.7016 -#> -4.3281 -14.1630 5.7770 3.3682 -7.6735 3.5629 0.3521 13.0974 -#> -9.4802 -2.8482 -2.6903 -2.4335 15.1989 -3.3284 -11.1240 16.1645 -#> -6.6805 -17.1317 0.4984 7.8714 -7.6200 -5.2047 4.7747 4.5009 -#> -5.8401 -6.7577 -3.1531 -3.6990 10.3882 -6.1229 0.1506 14.0069 -#> -3.9239 -1.7848 15.8552 -18.3749 4.1166 7.0067 -9.0793 7.1111 -#> 3.9034 -3.2623 6.3512 6.5142 14.1725 -5.2678 -7.8942 10.7899 -#> 4.7258 0.0566 4.4063 -9.2343 -4.1122 10.0212 -5.9066 -8.8272 -#> 7.2739 -0.5225 -9.5228 12.9427 8.1354 1.2012 1.9712 12.4760 -#> -7.0641 -7.0924 -7.2254 6.4615 -2.3076 -5.9760 7.1168 12.0361 -#> -15.8013 4.0385 -0.1108 4.2316 10.0294 -14.1306 3.5020 7.7976 -#> -3.4861 0.6688 1.7526 -18.0820 5.2449 -15.6297 -13.8289 3.2798 -#> 5.3501 8.1111 3.2815 4.4101 8.1744 -0.5013 -2.3403 2.6503 -#> 1.1117 9.9882 11.2948 10.9378 7.5708 -11.2358 6.5127 2.0092 -#> -9.1659 -7.0353 6.4879 2.5423 13.5808 1.9107 8.5529 9.1137 -#> 5.4336 -12.5380 -12.8151 16.0256 -12.6789 -4.6559 13.5395 1.8768 -#> 9.7476 -7.3086 -6.5087 12.6011 1.0711 -4.2273 -2.4932 -3.8373 -#> 7.3071 -3.0686 4.7835 -14.8320 1.5951 -10.5570 -17.9316 8.8383 -#> -12.3674 -5.0916 6.1914 3.6960 2.2219 6.4669 6.3904 11.3875 -#> -0.5713 3.2452 -1.6545 4.4855 6.2768 -1.4021 -2.1622 -7.2800 -#> 6.0130 -2.4392 2.8221 5.5003 2.2283 -5.5170 2.9483 -8.5641 -#> 3.1298 7.8611 -2.8450 13.6667 -4.9227 0.3805 7.6739 -5.1870 -#> 2.8829 -0.7680 12.2108 3.1766 -4.0264 7.3800 3.9469 -11.9077 -#> 8.4839 -6.2682 -5.1891 10.8249 -7.2002 -7.9541 3.9664 -1.7241 -#> 0.0130 -6.5531 -3.9633 -11.3358 -2.3152 -5.5856 -5.8848 14.1289 -#> 0.2054 -2.6318 3.5308 4.7872 6.3370 13.6606 -7.1487 -0.2621 -#> 5.9394 4.4685 -0.4925 6.0674 1.9031 6.0924 3.2171 2.2223 -#> -12.7919 0.8670 0.7464 9.2208 5.1413 -3.4920 -0.8628 -1.1500 -#> -10.9959 2.0829 -6.2836 -3.3308 -1.2404 0.3261 3.4622 6.7565 -#> -1.7894 7.0095 -4.7989 5.9668 14.7276 -0.0832 -1.1292 -2.3796 -#> -3.8813 -4.9567 4.5870 -20.2590 -3.6941 11.4605 5.8353 5.5101 -#> -21.2222 -2.7852 -0.2706 -3.5601 -10.8011 -0.5643 7.5233 2.2526 -#> -2.8226 -1.7783 -0.7867 -6.6398 6.8352 1.3618 -7.3804 -0.3211 -#> -#> Columns 33 to 40 4.6767 -5.6769 -8.2998 1.8646 -11.7082 -0.1739 0.7321 0.9858 -#> 9.6309 -4.0555 -4.5445 -6.0392 -1.8424 -4.5782 -2.2394 2.7480 -#> 19.3465 1.4504 -0.5011 0.6825 8.3566 -6.0887 -12.4131 1.4882 -#> 15.4626 -0.9147 -2.8020 10.4818 0.1867 -2.4863 -4.4813 8.9666 -#> -2.2579 -4.4858 -2.6382 -8.7673 -2.4578 8.6333 -0.1472 0.8210 -#> -3.8017 -4.5528 2.1585 0.3108 4.3367 4.4167 -4.1404 -7.1562 -#> 6.1018 -1.3892 2.6067 11.0037 -0.8936 -5.2789 -3.8202 -8.6666 -#> 9.7097 3.3408 0.3116 3.6396 0.1723 -5.4994 -3.0563 -3.6130 -#> 4.9959 1.7683 -1.3992 -1.3118 -4.7137 -3.1537 2.8307 8.6702 -#> 5.5646 -1.9904 -0.2973 -14.9815 3.3672 0.3944 0.3536 3.0087 -#> -18.5556 0.8547 3.2588 -8.9740 -5.4412 -7.7150 -7.0575 5.6699 -#> -12.5947 -4.6393 -2.0987 -10.0344 2.7829 5.2220 -0.2026 -6.7648 -#> 13.9009 10.4672 0.7112 -1.6072 -6.0489 -4.2060 -7.4302 11.4814 -#> 2.8680 2.9533 3.4821 3.1926 2.0164 -6.2120 -8.4158 2.3738 -#> 2.9694 -8.4894 -3.6779 -3.0176 -9.0022 7.1106 1.5780 7.5124 -#> 7.1181 7.5552 -9.9423 5.9438 4.1525 -1.6902 -6.9626 0.7560 -#> 3.2141 -9.8982 -6.5783 -6.5020 5.5751 -0.7571 1.3244 -4.2656 -#> -1.6315 -6.8276 10.5276 2.9332 0.0299 -0.9580 0.6356 -1.0171 -#> 6.1094 11.5435 -2.5057 1.0803 -5.3372 -16.7403 -5.9370 0.2371 -#> -10.7809 -6.6780 -11.6158 -7.0993 1.7148 0.5335 -0.7110 -5.7289 -#> 4.4232 8.1946 -2.5558 8.8174 9.0208 -4.4722 -3.7291 -11.3726 -#> -5.6536 1.3000 -6.5301 3.3230 -7.4231 4.5805 7.0784 11.0849 -#> -1.1154 0.2432 -2.7664 1.8290 12.1905 4.9875 2.9038 -13.9286 -#> -4.1042 6.4505 -2.1113 6.7506 6.6225 9.8238 11.0429 -0.3648 -#> -10.7701 -6.5126 3.9260 0.4233 -5.3073 -2.3215 4.7964 -4.2986 -#> 10.9507 4.4344 -11.7721 3.5976 -10.9204 3.9153 -7.7275 -1.1018 -#> -1.1800 -1.4308 -7.2643 -2.7054 -0.8770 3.8441 -2.1754 -8.6870 -#> -10.8437 -0.3657 -7.6537 7.2054 7.0568 0.1700 -12.9408 -9.0044 -#> -0.5383 -5.7443 -2.7455 -9.1649 -1.6883 -5.2865 -0.0477 2.8188 -#> -3.5584 3.7999 -4.8056 5.4437 8.3543 -2.5686 -14.0578 2.3122 -#> 3.3393 -6.5970 -3.9285 -7.5108 -5.0091 1.1976 3.0261 1.5317 -#> 6.3473 -0.3590 3.6051 -7.7109 6.6993 0.2420 0.8268 9.6148 -#> 2.3679 -4.2571 -7.5652 -2.6319 -0.2594 3.5161 -3.8648 1.3730 -#> -#> Columns 41 to 48 -8.9004 -2.4431 10.1769 -11.5539 0.9727 1.1449 -4.1664 -5.9406 -#> 0.7273 -1.5841 -4.8308 0.8003 4.3019 -3.4016 8.7224 -4.3127 -#> 9.4124 -5.4304 -7.3879 -1.5780 -0.8244 -9.7549 7.1619 -1.2881 -#> 4.4182 -9.6812 2.0931 -7.2892 -9.6957 -6.2069 13.2915 -14.1783 -#> 12.7210 16.2381 1.1936 -1.2641 2.7008 7.9641 -5.9156 2.2741 -#> -0.3840 -4.3539 0.3929 4.1084 13.3946 -1.5061 -16.0275 14.1161 -#> 4.8527 4.2228 -5.5224 -10.0346 0.8754 -11.9943 3.7959 -1.2697 -#> -3.2294 -7.6962 -0.5004 0.1692 -2.6538 -2.7955 4.5124 7.7744 -#> -1.2764 -5.2906 -6.6582 1.0561 1.0314 8.8017 -1.1811 -5.1169 -#> -0.8060 11.0308 -2.5343 4.9971 -3.6082 3.8307 1.2113 -1.5236 -#> 8.1704 4.0161 -3.9638 -0.7323 -7.8175 3.4363 -1.1549 2.2999 -#> 18.6318 -2.9746 -5.0073 -6.5272 -2.8055 -3.2255 -4.9634 6.8455 -#> -2.7224 -6.3045 1.2384 10.8459 -4.7152 2.5874 11.1960 3.3570 -#> -0.6983 -11.5129 -7.0210 0.7556 -6.1628 -4.8726 9.0647 -7.1177 -#> 6.3566 5.4712 -5.9771 5.7913 -4.8866 0.0971 5.9906 -0.9292 -#> 0.4678 -0.3558 2.8748 7.5943 -7.6338 -2.0429 9.8464 -6.7635 -#> -14.0334 6.1741 0.1270 -3.7588 -5.0111 2.7787 -5.4135 5.7406 -#> 12.3765 2.0786 6.4566 3.8771 3.3312 -17.2266 -4.5957 -4.6832 -#> -4.6396 -8.2818 1.9074 -12.3811 -14.7881 0.2181 13.7469 6.0143 -#> -2.1437 8.6999 -7.6948 -5.9722 1.3065 -2.1438 1.2666 -2.7880 -#> 8.8771 -19.2104 -12.9171 -1.5808 9.4828 -5.6920 7.1086 1.3148 -#> -3.7578 -9.0183 0.3922 3.3510 -2.0988 -1.6591 7.8891 -20.0991 -#> -2.7687 -1.7540 1.9076 -5.1849 0.4355 5.3135 -2.5350 -6.0803 -#> 0.0246 7.8145 5.0346 -6.8477 10.7157 -0.9533 -9.1985 -8.1825 -#> -1.9543 -8.1319 -8.0247 -20.4680 13.8195 -11.3091 1.6414 6.3563 -#> -1.4511 11.1988 2.4813 -9.8037 3.3185 6.6449 6.7901 -5.9648 -#> -7.7734 -3.5544 -5.1077 -13.9153 1.2176 7.7291 1.5552 1.4795 -#> 8.3889 9.3231 -4.9893 1.0248 3.7695 -7.8579 10.9412 6.6266 -#> -5.4727 -5.4548 -6.1984 -7.9609 4.9564 -3.3660 19.5644 1.3405 -#> 0.5967 -2.9063 10.0813 2.3446 -2.4747 6.2081 -2.8591 8.8000 -#> -7.9574 -9.9399 4.6892 -10.6437 -9.4975 6.5943 8.4337 4.7842 -#> -0.9742 9.0712 -15.3261 2.3812 -8.8730 17.1299 4.1943 13.8919 -#> 10.7144 -5.8989 3.4063 -3.5016 9.2069 1.1498 4.2816 -0.5729 -#> -#> (17,.,.) = -#> Columns 1 to 8 -5.1619 -3.0181 0.0799 8.0886 -8.0772 -1.7640 -2.0343 -4.7349 -#> -9.5859 -4.2881 -1.5816 -0.3175 5.1352 -4.7297 4.2629 -17.4556 -#> 0.1543 -4.0294 1.6310 -3.1471 -1.8329 -1.6866 5.3869 -2.4516 -#> -0.6062 7.6543 -11.9250 -3.3041 6.7607 -15.7408 10.0127 -9.7765 -#> -8.9783 3.2641 6.1305 -6.3902 -11.9548 6.8638 -3.3556 9.9042 -#> 5.1950 -8.6193 -2.3250 1.6673 -5.1070 4.9004 1.0199 1.3473 -#> -2.8416 -3.7654 0.7706 1.6454 7.8840 0.3698 -6.4068 -1.4886 -#> -5.5793 -6.7922 -8.8654 23.0614 10.3158 -4.6445 0.7068 -2.0719 -#> -10.3018 -3.6898 6.1985 -1.7263 -4.9523 -4.9590 4.9585 -3.1475 -#> -15.3576 -6.5329 6.7014 -3.4137 -5.3419 -1.9853 5.9655 -9.1938 -#> -9.9914 10.6697 9.6767 -1.4626 8.7081 10.7835 -8.2493 2.8484 -#> 4.6417 -4.1499 3.1414 5.5009 6.9503 11.8197 -5.4029 4.0689 -#> 5.8440 -9.3735 5.0352 5.2992 -9.7783 -13.5972 0.1664 2.9280 -#> 11.3548 6.7934 -0.6160 -0.2442 -1.3540 -15.6663 9.3547 -3.9605 -#> -0.2968 -2.4413 7.3948 3.9985 -12.6692 -1.9594 -0.7751 3.0247 -#> 9.6975 0.2138 3.5373 -0.5736 -1.4443 -8.1797 13.9032 -4.1398 -#> 1.3615 -8.6565 4.6917 1.6749 7.3299 4.0300 1.2357 9.4734 -#> -4.4466 5.9717 3.1726 4.6943 -6.6801 8.4973 4.4991 -1.2390 -#> -2.3091 -0.4119 15.5392 3.3148 7.9750 -1.5371 -7.4485 3.0937 -#> 3.5304 10.8551 -6.4733 -10.7545 12.2401 2.2745 -1.5117 -1.7315 -#> -7.3637 10.8645 -15.1257 9.1840 20.0610 -3.7527 0.8773 -10.2257 -#> 1.5459 10.0743 -5.4409 2.1041 -3.2769 -16.7276 4.5645 -10.5682 -#> -2.6268 4.3734 0.6472 1.6766 0.9398 -2.4559 -1.0414 10.8499 -#> -10.7332 -0.2520 -1.4968 -9.6132 3.9767 -2.8039 -5.3973 -5.8692 -#> 14.2206 3.5955 9.6403 -6.4169 9.3426 8.1698 2.8643 -2.2282 -#> -6.4186 -4.2460 -2.9623 9.3977 3.6590 -11.1579 -3.4319 6.0393 -#> 1.2881 -1.7220 -1.5405 -2.2051 -1.8137 3.1895 2.4844 2.4990 -#> 8.5819 -4.9393 6.3451 -0.7898 10.0815 7.1112 -4.4164 7.8334 -#> 4.4946 4.7311 4.1540 1.7233 4.4152 -6.0693 11.5300 -11.6184 -#> 0.9200 -7.2788 8.5793 -9.7418 -3.6820 11.7213 -5.6273 14.2378 -#> -2.9730 -8.6553 5.6509 4.2432 -3.6835 8.6053 6.7605 8.3489 -#> 6.7401 -10.0715 -0.1860 -10.4713 -3.0209 -3.4074 -5.3498 0.4218 -#> 8.3541 3.9618 5.6562 1.1163 -10.3233 -7.6167 2.0936 -3.4023 -#> -#> Columns 9 to 16 2.6554 7.9167 11.0304 -4.0841 8.3659 -15.0617 1.0746 0.0951 -#> 10.2653 -7.1887 -4.6526 -3.0189 -2.7806 3.2218 1.7490 0.8503 -#> -2.5758 -11.4871 -2.7451 2.1423 -5.5929 -9.2981 -1.2714 5.3440 -#> 15.2209 -20.7210 7.8777 -4.8968 -3.0089 -8.5371 6.3820 5.9276 -#> -4.4465 2.5734 -0.8134 2.3880 -4.4097 3.2617 5.6593 -8.9384 -#> -10.4354 -1.8856 14.2443 0.8415 0.0422 6.6552 -0.5176 -6.7742 -#> -10.1508 6.2166 2.2943 -11.7513 1.5491 8.8356 7.0511 5.0354 -#> 2.0353 -10.3984 6.9557 -10.8480 18.4747 -3.5018 3.2486 -3.2049 -#> 1.1831 -2.6879 -5.1247 10.9413 -21.6096 -4.6595 -1.9645 6.3144 -#> 4.4255 -5.3163 -0.3537 -1.4157 -8.4213 2.9359 3.8514 -9.3721 -#> -4.2098 5.0282 -18.7914 -4.1104 8.0676 -1.0900 7.6226 -6.8346 -#> -4.2074 -13.9924 1.3014 -3.5194 8.7787 6.4364 7.0054 -7.3548 -#> -7.7226 -9.0022 -1.0856 5.7499 -1.0572 0.2483 -8.3625 9.5794 -#> -1.4326 -10.7731 3.7636 13.0417 -10.8303 9.9199 -4.1907 -3.1137 -#> -7.6242 1.8568 -9.7423 -1.0967 -1.8745 8.7429 -6.1002 -4.2548 -#> 5.0080 -12.6321 -5.0495 10.8333 -13.4834 1.3995 -9.5204 5.1213 -#> 2.6434 4.7095 0.6623 3.0407 -15.8481 -1.2436 1.1847 -6.4874 -#> 7.3450 6.5187 9.4047 -3.9367 3.4945 -6.0047 -0.9545 -0.7230 -#> -8.0573 -17.1685 -9.0478 -9.2035 -0.3623 -1.2031 5.7464 6.7034 -#> -6.2174 2.1358 -1.1809 -0.1612 0.1096 11.0414 -3.0298 -0.0556 -#> 8.8962 -16.2860 3.3317 1.7542 4.2848 -3.9125 -1.7668 1.5290 -#> -0.6201 5.7843 0.1410 1.3853 -9.2887 3.0838 -6.3960 2.8845 -#> -4.3300 -8.9639 2.3970 -1.8609 5.3062 2.0718 9.1274 -8.2183 -#> -2.6742 9.8989 3.7277 -1.4399 -16.5996 9.0688 12.1121 6.0464 -#> 1.4948 6.4696 -10.6562 12.1046 -9.5973 10.5317 2.4813 -1.4759 -#> -7.1796 -11.7486 -2.1333 -1.0915 6.6922 -7.2241 2.8495 -3.5509 -#> -1.6976 4.0630 -2.1573 -6.1899 10.4746 4.8966 3.6920 1.2625 -#> -5.1499 10.9102 -10.2700 11.9868 2.2540 18.0478 -14.5344 -3.5789 -#> 6.3958 -15.7501 -3.0503 10.2427 2.8136 3.6015 -5.5024 -8.6063 -#> -4.2474 6.5401 6.0854 3.6492 -5.1034 -14.2622 -2.2923 1.7127 -#> 6.0082 0.6665 6.6702 1.6794 2.8281 -5.3877 1.5180 0.3557 -#> -10.4044 -5.7640 -3.0339 5.7415 12.9303 6.6334 -7.6317 -9.7096 -#> -11.3651 -15.4415 -11.4166 10.0479 1.4643 -3.6533 -3.1368 -0.9498 -#> -#> Columns 17 to 24 4.1676 7.5346 -10.3955 -4.6839 0.8027 2.8550 0.9751 -5.7473 -#> -6.4199 -7.4061 3.9227 -1.3790 5.2387 9.0546 3.6188 -12.4515 -#> -3.0704 -2.0439 9.9159 4.2188 5.0221 9.8404 5.9538 -6.1228 -#> -4.2774 -4.6437 -1.9673 0.0261 4.6949 -3.4775 -3.4377 -1.4731 -#> -0.7676 1.8158 -6.7767 1.5923 -8.7248 -6.2934 -4.0206 -8.6869 -#> 5.2254 0.5085 -4.9254 11.4029 3.0626 0.1749 -13.6412 2.6948 -#> -4.2016 2.6745 1.2933 -11.6407 9.3893 -8.2027 -0.5136 -2.2459 -#> -2.9029 -1.7087 6.3701 0.0140 2.1192 9.2754 6.8887 8.9853 -#> -1.8979 -2.3461 1.6134 6.0133 -6.7247 -0.7846 -8.3433 -10.7952 -#> 5.7948 -0.8582 -1.8358 -7.5462 0.4105 4.3216 -1.8319 -11.7112 -#> 0.0190 3.6595 0.9984 2.8579 -10.6178 -6.5399 -16.9250 2.6083 -#> -14.4299 13.9719 3.9606 -7.8635 6.7253 7.4283 -2.4251 9.9554 -#> 4.1462 -0.4103 8.6328 -13.0772 -3.6970 -0.9119 8.4376 -2.4958 -#> 10.0345 1.5690 1.6743 -1.7376 -13.0662 -8.2072 5.0286 -3.3454 -#> -2.9310 1.0582 -0.1027 11.4803 2.2111 -19.6883 -3.5387 -17.9479 -#> 0.9670 0.4862 1.6640 -4.9562 -4.3110 -1.3840 10.0940 -9.0717 -#> -4.9501 9.6821 5.8758 -7.8606 -7.7860 -1.8677 7.3119 3.8837 -#> 2.2149 -6.3069 -6.0500 2.8637 0.0099 2.4581 3.6942 2.2841 -#> -11.5380 -3.9158 -1.4166 -2.4726 11.1947 6.1733 1.3971 -4.6914 -#> -0.1422 1.8758 5.2678 -6.8755 -2.8271 -4.3313 -3.3322 0.3057 -#> 0.0091 -2.7056 11.6045 -1.7608 -1.0983 -0.1272 16.8650 4.9916 -#> 10.2011 2.1264 -2.9585 -1.9620 -9.1845 -8.9957 -7.8044 -9.0668 -#> -6.6551 10.0978 2.3357 -5.9963 3.1873 -2.3427 5.4463 -5.4590 -#> 4.8718 7.0416 -10.5680 -16.6755 -2.4014 2.2601 -2.7843 -4.7637 -#> -14.4118 -6.3285 -14.8899 14.0403 11.6604 6.6104 1.4341 -2.7390 -#> -5.8211 9.2186 -4.2027 -1.8181 0.1697 -5.8698 3.5700 2.3641 -#> -7.4844 6.4635 2.6496 -1.5543 4.3140 -8.8012 -2.4610 1.3795 -#> -0.4812 13.2961 7.8098 4.3972 -3.9960 -9.7672 -4.6588 -7.2766 -#> -6.0338 -7.8509 2.8048 7.2771 2.8969 -1.5515 6.3580 -4.0975 -#> 8.6986 14.3351 -9.7717 -4.0023 -13.9180 -0.9266 -3.7760 5.1942 -#> -6.2422 2.0891 -3.1558 1.5595 2.0403 2.2207 -3.0024 -3.1902 -#> -1.3010 -5.1145 7.8635 -2.7449 -3.6258 -4.4641 -4.6369 -3.9438 -#> 6.8597 5.6082 -5.5376 1.7434 -13.2703 -3.8859 0.5757 -2.0066 -#> -#> Columns 25 to 32 1.0254 7.0910 14.8846 -3.1377 -1.7441 -0.0101 8.2309 13.6490 -#> 7.2203 -9.8544 4.2957 0.8403 -5.4216 4.2901 0.5307 -11.0900 -#> -3.2518 -5.0485 12.4350 -10.1260 3.0470 5.9382 -5.1991 -3.0149 -#> 0.9825 -17.6493 -3.7067 5.6643 -9.3720 9.9860 -2.0499 -10.5845 -#> -5.4938 -0.9989 -7.3844 1.0720 -2.2592 6.6725 -11.4328 2.6314 -#> -3.4160 -1.9221 6.9001 -9.0317 -1.7597 0.1183 -10.0590 -6.1533 -#> -1.4411 2.9178 6.7159 -5.2199 3.7244 6.8215 -3.6982 7.9301 -#> -6.6415 3.1656 13.6420 -11.6915 -3.5711 5.6936 -2.9921 3.3072 -#> -9.9602 2.2012 0.1391 5.7160 4.5033 4.3581 -0.8962 1.0365 -#> -2.7040 -12.5892 -0.7467 6.4007 3.1365 0.2761 5.1091 -4.8358 -#> -6.5507 13.0072 -8.1460 -0.7292 9.5301 -1.2198 5.1274 13.7180 -#> -1.8198 2.6547 17.5326 -10.1833 -5.6534 0.1305 -8.4429 6.1219 -#> -3.2205 8.2305 -6.3872 8.7776 8.8897 2.1674 -2.3012 3.0600 -#> -2.2893 4.2262 4.3550 -0.6973 3.3189 5.1070 -4.3752 0.7677 -#> -1.8420 9.5921 -1.2874 5.4161 8.3827 4.1311 7.7046 -4.6980 -#> -2.2840 -7.7288 -11.9842 0.1884 1.9551 0.8840 0.4875 -0.9882 -#> 5.5980 -6.7492 -0.0901 -2.6437 -0.4772 10.5760 -1.4162 2.2015 -#> 1.7957 -4.1445 0.9496 -10.8582 -6.8151 4.5452 -3.4300 6.9712 -#> -12.0713 -3.2485 -0.1581 2.2096 9.8587 11.0674 13.6746 -0.3345 -#> -0.0934 4.7471 6.2557 10.1419 -4.7220 -6.5351 3.8809 -4.5939 -#> -2.1335 4.1217 11.6893 5.7794 -12.5167 3.2000 3.4059 -2.0594 -#> 4.6066 10.4228 -5.0172 5.2087 2.2536 -7.1337 3.2033 -2.7008 -#> 7.1901 -6.3060 3.5671 -9.6330 -5.9182 10.4501 -0.6683 -0.4104 -#> 3.0606 8.3018 -4.4403 10.3565 -6.3468 -4.1858 9.2453 12.9026 -#> -1.5092 -10.2147 -2.1994 -0.7522 6.9462 -12.3251 4.1127 -4.6304 -#> -3.3659 -2.5790 1.9965 -0.7867 7.8040 11.6107 10.2200 0.8229 -#> 3.3383 7.1378 10.7486 -3.0431 0.0634 2.2515 -10.1307 -7.2413 -#> -2.3418 12.8547 -2.7102 -2.8552 7.1522 -3.7697 3.2059 -6.8201 -#> -0.0820 -11.7380 13.9148 -0.6083 8.5250 -1.8080 2.8137 -12.9253 -#> -5.3931 -4.7689 -5.3929 -7.5490 9.0840 3.3297 3.7127 10.0785 -#> -0.8460 -2.7423 6.4142 -7.6215 -7.6490 -2.2948 -0.1514 5.8941 -#> 3.4158 -9.1364 1.2171 3.4272 -1.3323 -1.6521 -5.7197 -1.3973 -#> 1.8469 0.4327 -5.5370 1.6241 10.8228 0.9583 -11.2766 2.1041 -#> -#> Columns 33 to 40 -14.3575 -6.2215 -2.6464 3.5467 3.0407 -4.6165 3.2398 5.9551 -#> -0.0480 -11.2296 9.0606 -8.4787 3.7471 9.2177 -4.2168 -8.3942 -#> -7.6122 -3.3571 9.6595 5.2166 9.2910 1.9303 0.2418 2.0756 -#> -5.9336 -9.8716 16.4470 -1.7783 -4.9414 9.2061 -4.3183 3.6377 -#> 4.0196 -1.7859 -6.7206 -3.6580 -2.8390 -2.7614 2.3717 -4.0672 -#> 8.6838 -8.0013 -4.4193 -15.6865 4.0136 5.3373 4.8009 -15.2233 -#> -4.8134 -6.2068 -1.7466 5.2689 2.3783 -4.6048 -13.0424 -1.3871 -#> 2.1823 -1.4709 4.6472 -4.9556 3.6358 -1.6127 -4.5299 -0.7508 -#> -7.7999 8.5013 -0.5993 8.4254 -4.4798 -12.0772 13.9128 7.1798 -#> -2.4574 -7.7704 -6.0134 -1.1115 -2.3742 5.8104 -0.0299 -7.7799 -#> 4.7580 9.0302 -0.8664 2.2599 -4.7359 6.7417 -5.0842 -6.4733 -#> 14.2720 0.5971 -11.0018 -0.0784 12.7015 -7.7272 -1.3485 8.8818 -#> 10.4907 0.4184 -0.7159 -1.4922 1.9790 -9.6921 3.3352 -4.8613 -#> -2.7084 3.6704 0.9111 5.4527 -7.8099 -1.5995 4.5562 -1.6489 -#> -2.1861 -3.2265 4.8851 2.3370 -12.4613 3.2311 15.8262 -3.8380 -#> -1.0990 4.2719 3.0757 15.0411 -5.6176 -3.2691 -6.7996 1.1006 -#> -8.8203 -4.1936 -1.6645 -2.6186 10.6776 9.8482 6.9322 -12.3674 -#> 5.5215 -8.9044 -3.4960 -6.0829 -1.6044 2.5236 0.0788 -5.7065 -#> -1.2669 0.4632 13.2928 11.7140 -7.4080 -6.8600 -8.0006 -4.2027 -#> -4.0752 -4.7452 0.7452 6.4075 -1.4182 10.2600 3.5309 -8.4121 -#> -4.2307 1.1806 9.6492 15.4468 5.8637 6.8539 -8.5205 1.0018 -#> -3.8457 -0.7070 6.1170 2.9409 -7.0939 -3.4753 1.9503 6.2271 -#> -5.9679 -1.6525 0.3704 -5.1216 -8.2476 5.7906 -7.2179 1.3314 -#> -11.1109 -3.0333 -14.4224 1.7890 -2.4105 -0.1108 0.3998 -5.0452 -#> -7.0083 4.6308 -0.7722 11.1411 3.5653 -0.4934 6.9186 -8.6089 -#> 2.0942 -7.0346 7.1834 -1.7625 -9.4952 -0.1650 -0.6904 -3.1321 -#> 0.0324 6.7720 4.1951 -2.1648 1.2437 6.1136 1.2496 7.0027 -#> 10.8015 5.0426 0.4105 14.0700 6.3069 12.8383 -11.9664 -13.9583 -#> 1.3122 4.0592 2.7471 6.4240 1.6898 1.8227 0.5049 4.1766 -#> -1.7909 -5.0770 -1.5484 7.6894 5.3256 -14.3788 4.5347 0.7098 -#> -3.2952 -1.6346 2.2955 2.4030 1.0500 -8.9837 6.7502 6.9802 -#> 6.8395 -5.0656 0.1906 -9.0577 9.8598 5.1781 -7.2335 -0.2278 -#> 4.4538 2.7797 -0.9497 -6.1691 5.6912 -10.2034 3.1724 3.2141 -#> -#> Columns 41 to 48 -8.6441 2.4011 5.3406 0.5169 -7.1458 -10.6428 3.4734 6.4883 -#> 3.6561 -1.3602 -4.9829 14.9695 7.3692 1.5609 3.6538 -0.9603 -#> 9.7197 3.6295 -1.4647 4.9346 9.6288 7.8971 3.1743 -8.6251 -#> 1.6472 2.3387 -15.3470 17.4664 14.3885 0.9156 -9.6962 -6.3569 -#> 11.7460 6.7559 5.7597 1.3397 -0.2342 7.9527 4.8621 5.7302 -#> 5.2752 -6.7882 7.0607 4.4035 -7.4108 2.5544 -11.0435 1.9892 -#> 0.3894 5.1207 3.2670 0.8916 -1.3623 0.8533 -0.3910 -2.0448 -#> -14.1813 3.4252 -6.7175 -0.2159 -4.8677 0.9509 -6.7635 -3.2218 -#> -4.9690 13.1662 4.1110 8.9466 6.0124 3.0692 10.9720 -6.5359 -#> 0.5593 3.6655 7.2326 6.2879 7.1621 6.6863 1.0141 16.3214 -#> 12.3352 -7.1740 -4.8923 -5.6806 -6.4280 10.6362 -5.3967 3.5949 -#> -2.2432 -12.8000 -11.8296 -16.0490 -9.8189 12.8758 -2.4351 -7.8443 -#> -4.5688 7.1990 0.5583 -1.7811 14.3203 4.1463 -2.6914 -4.7332 -#> -1.3859 5.0359 -1.3397 1.9056 9.3781 7.6273 -7.1196 -5.7528 -#> 12.7389 11.5307 10.7647 0.5788 12.7882 1.0392 -4.6635 -2.4167 -#> -7.0239 16.5722 -6.2209 3.7139 8.4041 1.7262 11.3945 -4.0328 -#> 2.1784 -2.5491 -0.0794 9.1677 -5.9280 -6.5202 5.9558 12.9000 -#> 0.6541 -2.0004 -10.7711 1.4766 -6.1706 7.5175 4.1388 1.1855 -#> -5.8622 -0.4412 4.2065 22.7852 10.0497 7.5345 -7.5494 -9.1347 -#> 7.6072 8.8231 -5.0044 -11.2194 -0.6387 0.7680 1.4248 6.9167 -#> -12.1577 3.3665 -14.2950 -4.3271 3.3356 6.4653 4.0655 -2.3738 -#> -6.7812 10.3407 3.4721 -3.3608 10.9246 -4.7196 0.0555 2.4327 -#> -5.3465 -8.1440 -9.7443 10.5662 -1.7553 4.5819 -9.2733 0.5123 -#> -5.5077 -4.3240 -2.6952 1.6386 -13.8442 -3.9715 -3.8010 -1.9999 -#> -4.1681 -4.8682 1.0707 4.2970 -5.5541 -2.3680 10.4819 -12.6713 -#> -8.8408 7.5186 1.9883 4.9950 10.6310 3.2479 1.3208 0.8368 -#> 3.6220 9.5142 -0.6823 1.2705 -5.9588 -16.6398 -2.1621 1.5515 -#> 16.8932 7.8655 0.1815 -15.7166 -8.2259 -9.0776 12.2167 -0.3076 -#> -6.6233 3.8283 1.9062 -0.7773 8.5527 3.2746 7.6873 -3.1137 -#> -4.6619 -5.6619 7.5286 -3.1911 -1.0284 10.5853 6.7247 7.2033 -#> 1.2962 -2.9593 6.1153 2.5834 -6.6286 -5.0059 -6.8562 -4.3241 -#> 15.2824 -16.6599 -1.0556 -0.1420 10.4592 3.5020 -5.7064 8.5650 -#> -5.1108 4.7232 -1.9738 -6.1196 2.2868 3.7609 9.3567 -10.4940 -#> -#> (18,.,.) = -#> Columns 1 to 8 -2.1182 -0.7571 7.9467 2.1898 4.7717 25.2638 -0.8232 -7.9312 -#> 1.4757 -8.4381 4.6898 -6.4652 12.7088 6.1968 -6.5510 -3.3435 -#> -1.0880 3.1956 5.9717 -2.7051 2.0740 -1.9199 2.2675 -1.2013 -#> -1.3924 8.2906 -2.5384 11.9476 -3.7197 7.0748 -6.8147 -9.3733 -#> 5.5619 -1.2401 1.4920 -6.0486 3.3838 -1.9039 -6.3562 8.2120 -#> -0.6116 -4.2774 9.4702 1.4873 17.8344 -8.8499 -29.3098 3.4220 -#> -3.7875 -1.9810 -6.1796 10.2906 -1.9900 -2.1061 7.1188 6.1529 -#> -2.5599 -9.5376 -2.6383 2.9431 -3.7980 5.2267 -1.7671 -3.9193 -#> 4.8052 1.8797 8.5406 -8.1130 -2.0360 12.9946 2.4048 -4.7191 -#> 2.9974 -10.4339 -0.2404 -13.4410 7.9839 3.1934 -4.1069 3.5502 -#> -1.6361 -4.6846 -3.8339 -1.8360 20.3230 -7.6295 -4.0841 -7.0594 -#> -9.9150 -3.2720 6.0693 3.1899 3.3531 1.6007 1.5613 1.2052 -#> -8.4328 -4.1565 -8.0653 -2.6708 -9.2769 1.4444 8.3375 8.4450 -#> -3.2125 0.9822 0.4917 12.6375 3.2021 0.8483 -0.6230 4.8014 -#> -0.2609 3.1864 -1.5156 6.5577 12.8700 7.6108 -4.1719 -4.2897 -#> 3.2358 -6.7246 3.5930 -4.1780 -4.8662 -1.1375 -4.2261 -14.1053 -#> 10.4043 1.6688 -7.9842 -8.4965 -2.1641 5.7481 -5.0010 12.2231 -#> -3.2635 -2.9199 6.9172 -5.2742 3.3919 0.9880 -7.8094 6.6050 -#> -2.4746 -0.2135 7.4969 -0.3032 11.5303 -13.9905 -0.9217 -5.6705 -#> -3.7569 2.5001 -6.3367 14.1089 8.5051 -3.3212 10.8588 5.3911 -#> -4.0467 -4.7554 1.1179 9.3319 -3.1277 -0.4392 -0.8629 2.8097 -#> -1.7547 2.4296 3.7441 5.2022 -5.6253 8.2018 16.8028 -5.5757 -#> 0.0685 -0.7017 3.6165 9.9757 13.0693 -0.2408 -5.1801 -11.3338 -#> -5.8028 -5.4429 -7.2817 -11.3863 -0.9092 -0.2677 4.8687 3.4034 -#> 2.2659 4.6321 7.0772 4.8961 16.6779 0.9971 -7.9687 -5.9066 -#> -4.8906 -2.4658 -11.6296 -1.2893 2.6321 0.9346 -0.6113 -13.0913 -#> 8.9434 9.2545 3.0081 7.0109 -0.4382 12.3121 3.2274 -14.7190 -#> -0.4862 1.9033 -5.7876 4.4347 7.4138 -26.2398 9.5332 9.6503 -#> 2.2402 3.9792 3.3721 10.4018 6.3583 -4.3108 -1.3508 -1.7882 -#> 7.4722 2.3650 -1.8423 -17.8048 -1.3112 -4.7984 3.7357 9.3711 -#> -4.0211 14.1959 4.6885 -7.2354 3.9748 7.9475 -8.8620 -6.2914 -#> -3.7000 -6.9855 -3.8212 8.3691 0.8111 -11.8869 -3.7272 0.7643 -#> -4.7139 -6.8645 -0.7060 2.7541 -4.5484 3.5338 -8.6274 -1.2171 -#> -#> Columns 9 to 16 7.2647 -8.6888 11.7926 -1.0136 1.5494 2.4462 -6.5419 11.3079 -#> 4.5663 12.5308 0.7116 -2.8596 5.5737 -9.2472 5.8513 -9.5661 -#> -13.3512 1.3591 -1.0610 0.4476 5.8431 1.2887 -1.1533 -1.8306 -#> -3.8562 -1.3592 10.7865 14.0710 -13.6829 -10.5686 3.1663 -0.1743 -#> -6.0634 8.4946 1.7074 -4.0652 1.0906 -0.4083 -2.4810 -2.0329 -#> 22.3303 8.4309 5.9973 -7.3569 -11.3795 8.3505 2.1217 -1.1199 -#> -7.1720 2.0795 6.0179 1.7678 7.1983 0.3938 -4.3298 5.9715 -#> 4.9156 -5.4124 0.4973 -9.1705 4.4407 4.9347 -1.4694 -2.2564 -#> -4.8952 9.7767 2.9930 -5.5948 7.6400 -5.4677 1.7944 -2.3845 -#> -1.0263 10.0324 -7.4797 2.0402 9.0892 -4.2136 -4.2335 -7.1426 -#> 2.9696 16.1909 -12.5469 -11.5150 -1.9482 11.0889 -3.9540 -3.3895 -#> 2.2270 -4.5721 -18.1313 -9.1965 2.6634 18.9085 7.9679 -2.6307 -#> -20.6692 4.9193 1.0881 10.1452 3.7314 -4.5919 1.2086 -2.2627 -#> -9.9781 7.9977 -5.2585 11.1988 -2.5901 -5.4626 3.3733 5.7326 -#> -2.7484 12.7465 -0.2040 13.1155 -6.3980 -9.1547 -0.0957 2.8694 -#> -0.1539 -3.9398 -0.4655 8.6836 2.9089 -17.5699 -2.7059 2.7102 -#> 4.0578 -1.0165 -17.0126 -5.9745 9.3175 -15.3041 3.0811 7.9012 -#> 3.4738 2.0146 2.5935 -9.4803 -0.1053 0.6432 -0.7223 -6.0844 -#> -6.5118 -1.8916 9.7646 0.6670 -2.9842 -7.9055 -6.2935 10.3625 -#> -6.9629 4.8729 -21.6642 -4.4527 15.1960 -1.6819 5.9706 0.5120 -#> 2.6332 -3.0433 -16.7360 2.7591 11.2852 1.8029 1.4326 5.5599 -#> 3.3250 -9.9069 -0.7334 9.8337 6.9544 -8.0702 4.9554 -4.5893 -#> 11.7242 9.3968 2.5485 0.8957 -2.3584 -5.4113 2.9040 6.0120 -#> -2.5418 9.6976 -6.0312 4.0430 11.2914 -7.4692 2.5382 4.2934 -#> 2.3915 -0.9626 -0.1069 -11.9796 9.2055 -1.7904 0.1402 6.1305 -#> 8.3409 0.2522 13.4007 -0.3983 2.9108 -8.6546 -7.6775 7.6755 -#> -1.1018 1.2193 2.2627 -10.3144 0.4891 5.3719 4.6967 9.7798 -#> 9.2502 -9.7482 -14.2606 5.1587 0.8067 -4.0890 8.0564 4.0071 -#> -4.5599 -3.6730 0.2758 -0.8335 11.5419 -2.6657 -3.4265 7.6750 -#> 3.7316 -15.9019 6.4014 2.8236 5.3996 -3.1120 -14.9505 0.0564 -#> -5.4596 1.8753 0.0063 -7.5509 -16.1388 4.6096 3.8762 -3.2336 -#> -8.9335 8.1773 4.1663 12.9117 -4.6454 2.1488 2.8809 -9.6851 -#> 0.0477 -10.4034 6.2636 -0.4742 5.5335 0.5257 0.8917 2.3452 -#> -#> Columns 17 to 24 11.0573 13.7312 5.8543 4.8489 -2.6569 -3.6729 -2.0829 6.7676 -#> -2.7833 -7.6586 -4.0285 -6.8365 -4.4145 3.2945 -7.1827 -4.5094 -#> 1.2952 1.4334 -2.6366 -1.1614 -13.9862 -0.6042 4.2555 -2.1690 -#> 6.4549 -7.4690 -2.0481 -4.5348 -7.2859 8.3759 -7.9426 15.4676 -#> -18.3143 -2.0021 -5.8181 -0.4990 2.7677 -6.0340 14.8655 -11.5795 -#> 1.4829 5.7384 -3.3054 -11.3290 -0.5048 -14.0581 12.6753 -3.5082 -#> -11.5949 1.0957 -17.6710 4.4140 -6.1736 -2.9811 9.0966 -13.4329 -#> 4.3069 2.3311 -6.4558 0.6288 -10.9957 1.1390 3.1576 1.7888 -#> -0.2856 -6.8539 12.5494 -3.4223 0.8451 7.7194 3.4557 -3.7051 -#> -7.3951 -7.1409 -9.8258 -3.3382 -3.3691 0.7643 7.8610 -1.5240 -#> 10.8178 8.4922 2.1662 -14.1131 4.2186 10.6684 12.8027 -13.3816 -#> -0.2625 5.7901 -7.1812 5.2922 -3.0609 -7.8868 10.9752 4.4107 -#> 1.2552 -1.4243 1.2744 4.8681 -4.7870 8.5247 -2.4831 7.4701 -#> 0.1306 10.3847 0.1616 3.1268 -4.7955 2.5798 -0.0894 -5.6855 -#> 5.3339 25.9790 14.3555 7.6033 0.2488 0.1268 -0.5005 -2.1643 -#> -9.2570 -6.3087 -3.6075 -7.1626 0.3360 6.7071 0.3442 1.5326 -#> 1.8577 -2.1719 -8.1049 -13.1077 -7.9606 -11.6935 -6.9597 5.5981 -#> -1.2713 4.8206 3.2899 -1.6654 -19.0327 -9.0100 4.2865 -5.6547 -#> 4.1511 4.4826 -2.2632 -7.7519 2.3801 7.0907 6.0796 -5.8401 -#> 3.5021 1.0276 -6.6806 1.2568 -2.0366 7.1988 -6.7076 -1.0068 -#> -2.5280 0.8024 -8.9132 10.7897 -2.8374 6.7471 -2.2640 0.6762 -#> 6.0122 -12.5526 0.2823 1.9227 3.5617 13.1899 -14.5711 -1.3615 -#> -5.3664 21.6509 0.7484 3.8145 0.2056 -14.7323 -4.4145 -4.0317 -#> -15.9122 -8.8177 -0.5277 4.1409 20.5291 3.4526 -2.0654 10.7065 -#> -3.5763 -0.3758 5.0681 -7.6710 4.2845 1.7020 3.9231 -2.4412 -#> 2.4172 5.0061 -5.2222 -2.6070 0.8065 -3.1587 -3.6731 5.6538 -#> 2.0505 5.3885 6.5308 6.9079 -0.5731 2.4897 5.5510 -0.2221 -#> -1.2687 -6.4637 -0.7992 1.5713 11.7883 4.8409 7.4817 5.2496 -#> 2.1072 2.8074 -2.4123 6.6889 -1.5585 10.1925 -1.7233 -6.7870 -#> -0.0777 -0.0870 -2.5451 -2.8325 -0.0159 -10.7361 4.9466 -2.9215 -#> 0.8042 6.5573 -3.6933 -4.7547 -6.9004 -1.5150 6.4858 10.4649 -#> 0.4677 4.9717 2.9189 1.6511 17.4041 10.3360 7.9191 9.0941 -#> 1.1544 -7.1980 -5.6384 2.1168 6.5097 8.4443 3.2848 -2.8482 -#> -#> Columns 25 to 32 1.0632 -2.7192 10.7800 -1.4988 5.6075 -1.0201 24.4864 -4.5952 -#> 1.8964 -4.6640 -5.0406 5.0747 -20.3201 6.5519 -6.2392 -14.4074 -#> 1.1198 -9.0152 0.1442 -4.7465 2.0033 3.4777 -3.9870 -4.5185 -#> -2.9254 -8.6776 1.1509 8.1511 -1.6471 1.3036 -9.9595 1.6227 -#> -1.9584 -1.3598 0.2078 3.9571 10.6007 -5.8023 2.1676 6.2004 -#> 8.0944 -9.1235 -7.1985 -4.1770 2.2347 14.1464 -2.0111 -22.4899 -#> -2.8796 -7.7015 -6.2215 -5.4362 11.5978 -6.0972 -7.0790 -2.9885 -#> -3.1749 4.9953 -3.3213 -7.7443 -8.5786 4.4992 3.6853 -9.6041 -#> -5.9079 -3.8342 -12.4933 9.6378 -6.8800 -8.5215 0.6795 3.3179 -#> -2.3786 -2.7458 3.6221 10.2273 -4.5791 1.8903 4.0407 -1.8440 -#> 3.4746 -7.2704 -5.6237 2.9026 -1.7574 -6.0075 -5.9611 3.7171 -#> 5.2485 -5.6597 -6.8140 -4.6195 -1.5528 -3.7034 -3.9570 -0.2235 -#> -0.6517 6.5427 -2.0068 0.1044 -2.7763 1.1070 -7.6801 3.5222 -#> 6.5342 -7.2092 -3.5259 3.8781 2.7967 -2.8619 -6.4781 1.9573 -#> -3.2627 -8.2156 5.7127 -10.2309 8.4198 1.0317 -8.5008 -11.6586 -#> 2.6354 -4.9628 6.0390 5.1588 -0.0314 5.3271 16.1069 2.2121 -#> -6.7892 1.7971 3.7045 10.1105 -11.8865 -2.2256 -2.0193 -3.8336 -#> 2.3820 -6.5229 -9.5870 17.5375 7.5020 4.4041 -4.9949 -2.7408 -#> -6.9702 -5.4410 -1.7742 -8.2750 -13.7040 -1.1796 -7.8330 -20.4477 -#> 2.6058 9.6906 -4.7918 5.4476 -9.4555 6.6318 1.0639 16.5680 -#> 11.1500 -8.0351 -3.4691 -2.8308 -11.5355 2.5864 3.8273 3.3524 -#> 1.0210 -2.1057 -3.7304 2.2107 -3.7075 -5.8099 -8.6483 7.5339 -#> -0.2247 -5.4163 -0.5882 -14.3024 -2.6323 1.0308 -3.6861 -16.4198 -#> 8.8517 -5.0068 4.0431 5.2185 -7.5437 2.1399 9.1219 -7.3401 -#> -1.0232 -2.8021 -7.3895 2.2813 -8.9037 0.7960 10.9585 3.6894 -#> -3.5527 6.3734 11.3317 -9.4079 4.1024 9.1470 5.1007 -10.9093 -#> 1.7934 2.0417 -7.4359 -0.9415 -7.7304 -14.8421 4.6599 15.0996 -#> -3.7730 3.0577 2.7603 -14.7906 6.3743 12.6716 -12.3185 3.3731 -#> -8.9482 7.4187 -3.6600 3.4782 -1.1062 7.5387 8.5087 13.0561 -#> -3.1593 -1.4216 6.9764 -0.7125 14.8323 -3.5689 9.6071 -3.1786 -#> -5.4040 -7.6017 4.8639 -5.5065 -6.7502 5.9897 1.7524 4.7436 -#> -0.7224 6.5160 13.5542 -0.8484 4.8272 9.3635 0.0067 8.9889 -#> 3.8936 8.1327 -1.3547 -5.1174 7.6414 0.9399 4.8738 6.6594 -#> -#> Columns 33 to 40 -9.2635 -7.2035 -6.8341 -3.8920 11.1846 0.3289 8.8149 1.3694 -#> -11.8951 3.4905 3.6577 6.1760 2.5567 -3.8852 5.0694 3.1206 -#> 5.2271 1.2251 9.4451 7.1253 -0.0516 -0.6160 2.3369 -2.2727 -#> 2.7091 -4.3054 17.7565 -1.2457 13.8621 -3.6399 11.4166 -8.5968 -#> 5.7349 1.3999 3.5504 7.1171 -14.1684 -3.7598 -9.0061 4.2168 -#> 0.1764 20.1954 2.7542 12.2646 6.3112 -0.7967 3.3466 -0.7696 -#> 8.9047 -5.0562 0.5008 5.8380 -5.7228 6.8445 -3.6734 18.9400 -#> 2.0629 -8.6991 -0.5225 -10.7714 9.7581 -8.4159 7.7689 3.5440 -#> -17.0136 1.7361 10.8883 5.8647 6.5579 5.2743 5.7465 -1.6654 -#> -1.0095 -2.9798 5.6213 9.2175 -6.1612 -3.8507 -2.1239 -0.5416 -#> 5.0362 1.0972 -7.7023 -1.9197 -4.8732 -11.5382 -0.7454 -2.0414 -#> 5.5874 -1.5368 -4.8733 -3.8002 -6.0718 0.0737 0.5264 8.3143 -#> 1.9344 -3.4319 5.4247 -5.5361 -2.4694 9.2598 -3.9390 -12.0095 -#> 7.2665 -5.3043 20.2393 -5.8789 -3.3490 12.6675 3.9846 1.7936 -#> 12.2226 4.7088 -0.0720 3.2021 -5.8620 5.8119 -6.5830 16.4504 -#> 4.5032 5.2409 10.1898 -5.6131 0.3540 1.0364 -11.1512 -9.0271 -#> -6.4820 -11.0132 -6.5388 4.7742 -18.1064 6.5336 -3.4887 -0.7135 -#> -3.6589 -0.3688 -0.8579 -2.5890 -5.6719 -7.9088 3.0846 -10.2442 -#> -4.3303 0.2712 -4.2583 10.9800 3.5294 -0.0587 -5.5945 -1.6424 -#> 7.3768 0.5957 0.5841 -7.9975 -16.0498 1.6262 4.4650 13.6902 -#> -5.2461 -8.1827 12.8812 -1.8316 -0.6669 0.6355 20.4224 12.9001 -#> -1.3292 1.1440 11.3888 -18.0718 8.5401 7.8767 15.9205 -3.3331 -#> -6.4445 -0.6811 2.3454 7.0941 -0.0060 10.7454 -2.9552 3.8102 -#> -8.8245 6.8739 3.8587 8.6120 1.8066 5.9996 -5.2777 -3.7399 -#> -3.8900 12.8585 -10.1478 14.4859 -4.3676 -2.4779 9.6047 13.7051 -#> -0.3521 -13.9371 -10.2086 0.6534 5.3738 -10.6879 -4.5834 9.1824 -#> -3.5589 12.1856 0.6645 2.0483 2.5583 8.6065 4.0014 2.7410 -#> 23.3597 6.5069 -0.3860 5.0167 -13.4162 -3.9814 -3.4062 14.9261 -#> 3.4224 -7.6012 2.4267 2.0239 -5.9643 -2.4389 8.4784 12.2254 -#> 8.1131 -10.8963 -11.4393 7.0195 -8.6953 -4.0921 -9.2943 -10.3610 -#> 9.7696 4.3104 -9.8152 -5.1547 7.7941 -1.7377 -12.3977 -1.6889 -#> 14.6476 7.0514 -2.3186 2.1118 -2.5128 16.7693 -11.8469 6.5283 -#> 7.4444 -1.3278 5.5839 2.1411 3.1325 -7.2029 6.9434 -0.3647 -#> -#> Columns 41 to 48 6.3361 -8.3823 14.6838 -2.5564 2.3135 -11.0018 -3.4430 -6.6691 -#> 9.5879 9.2590 -5.3786 3.0516 -6.5846 10.0990 -11.7321 3.3944 -#> -3.6460 13.8559 1.0598 -0.7469 1.6902 6.6729 -1.9580 2.0151 -#> -0.0767 11.7552 7.3769 -8.4430 3.5126 3.5257 5.5583 -0.5369 -#> -3.4907 -0.4182 -8.7510 -5.0566 -3.7087 -1.6293 -1.2193 -4.2151 -#> 0.7292 12.5892 -7.2307 -1.5323 7.5259 -0.2826 -6.2068 1.0094 -#> 0.1214 -0.8100 -0.6030 6.5839 -7.0462 -0.7055 13.5199 -9.9241 -#> 7.8897 -1.4335 0.9386 3.6702 4.7301 -1.1972 6.3694 -6.8673 -#> 0.1027 7.4085 0.0746 -4.1141 1.1504 7.1094 -7.2309 -3.6300 -#> 11.9246 4.9357 -16.8775 4.4258 1.9653 3.3235 -9.4068 -1.7021 -#> -2.9280 1.6684 -8.8813 -3.6751 1.3775 6.1987 -7.1506 7.4461 -#> -0.2259 1.0554 -2.3421 -6.5382 4.4263 8.2247 3.2295 2.3804 -#> -10.8960 12.0267 2.7160 8.1598 -2.4184 9.6094 -2.0357 -3.3505 -#> -15.7383 9.7148 12.3839 4.5777 2.4778 1.9414 -2.6358 -8.7548 -#> -5.0241 5.4350 5.5382 3.1705 5.4128 -0.5800 -2.6863 5.3659 -#> -10.4657 2.7522 -7.5623 -1.2090 1.4477 6.0935 -0.7693 -1.6742 -#> 22.0229 -5.2352 -11.4991 9.3870 -3.7281 -6.6134 -0.3707 9.4902 -#> -7.5351 7.1026 -4.9276 -8.8025 -3.7069 4.6289 -4.7223 -12.3302 -#> 7.2135 3.2702 -11.6549 18.1010 4.2276 4.9779 1.6759 7.6809 -#> 8.9515 -8.4539 -1.6544 10.5667 -11.8874 -8.4563 -1.8262 2.5703 -#> -13.5672 -11.6889 9.8639 6.4763 -3.5790 4.2325 10.7076 -8.6775 -#> -10.4942 1.1181 11.4040 1.1981 -9.4173 -2.4131 -4.2072 -2.0181 -#> -1.2752 -1.4358 6.2455 8.8270 -0.5674 4.2308 0.0401 5.4706 -#> 1.2251 -9.2584 2.5148 13.4763 -3.8339 3.0532 3.8232 8.1582 -#> 11.2414 0.5207 -14.2519 -8.0120 0.9716 -5.9536 -3.9727 6.0368 -#> 0.1865 -8.3975 -2.1859 1.7352 6.8353 -3.5377 6.7373 3.0838 -#> 10.4572 11.4622 8.1965 -0.7065 -2.8599 2.4068 -5.4784 3.3010 -#> -17.6197 -19.1179 -5.1196 8.2346 -3.9124 -1.4653 7.1807 3.3478 -#> 13.8698 -7.8992 -7.9530 1.0119 4.6210 -1.1669 -1.1689 -2.1323 -#> 0.2055 -7.5565 -5.8767 6.8536 6.6724 -9.7350 0.5113 5.2973 -#> 13.9984 11.7311 4.0220 -6.5534 6.5149 -0.9068 -13.3340 4.0862 -#> 6.8044 -8.1622 -1.4375 4.8625 5.6870 6.0109 0.3636 6.5547 -#> -11.3849 1.3162 3.0693 -3.2302 6.4743 -1.3361 8.0931 2.7210 -#> -#> (19,.,.) = -#> Columns 1 to 8 7.9069 8.2314 -15.8607 -17.8247 1.8460 3.3960 1.7360 0.4683 -#> -8.9073 3.4705 -10.9638 4.2166 2.0623 8.7358 4.3075 7.7731 -#> -3.2392 -4.2938 -1.1854 5.3059 -9.1970 -3.2163 -0.8529 -5.6473 -#> -16.0983 -5.4826 -5.9025 7.2389 -1.9904 -0.2595 -5.9837 -2.8110 -#> -0.7603 -5.9232 5.6491 1.1754 -5.2810 -9.1353 -5.6206 1.7050 -#> -3.8353 -2.9147 -0.8285 3.0347 7.9952 5.0474 2.4767 2.0987 -#> -4.2395 -7.5736 6.2816 -0.5787 -3.1490 -2.5334 3.8162 -0.3144 -#> -1.0432 10.8327 -2.2433 3.8450 8.5869 8.0106 6.9709 5.5028 -#> -3.6809 8.2100 1.3975 4.3335 -8.6595 -15.4878 2.6603 -6.5403 -#> -13.4476 0.9709 6.4793 4.2022 -5.8665 1.9948 3.1041 11.2352 -#> 17.0529 -18.9924 -5.9974 1.5673 10.0528 -9.8677 -11.7180 4.0176 -#> 2.5034 -11.2738 -11.7232 3.2905 3.9547 0.6555 -2.0560 11.3394 -#> 2.0134 5.7511 4.8171 21.8050 -7.7353 -1.7456 1.4701 -0.3785 -#> -3.1590 -2.1877 2.9348 11.7882 -17.0002 -8.5149 6.3678 -8.5830 -#> 7.2730 -5.6195 0.4421 3.1140 -16.6905 3.8076 -8.8719 -10.0481 -#> -5.8159 3.5791 3.6580 2.3512 -11.1311 -0.7581 6.1737 -15.1651 -#> -10.3767 2.9377 1.5156 11.9794 -1.1671 7.3783 12.5935 -1.0580 -#> 7.6018 3.8385 -9.4392 -16.1210 -4.3064 -3.2163 -9.3067 0.9529 -#> -0.3496 -7.4393 -6.1523 4.5940 5.0168 5.7267 -5.7149 2.5463 -#> -10.4903 -5.9530 -0.8680 1.7640 -11.1686 1.3398 8.3867 4.7253 -#> -2.5409 5.8450 1.7522 5.4105 1.0961 1.1265 8.4920 2.9826 -#> -5.9085 -3.9603 4.3299 -6.5190 -5.3264 -9.2896 3.0530 0.7985 -#> 6.2176 -12.0171 -0.4960 3.7811 2.7566 -2.6141 -2.2421 -2.5439 -#> 5.8788 3.4545 4.1160 12.4822 4.4258 11.6593 2.6726 0.7957 -#> -9.7333 -7.4100 -12.2648 -10.8202 -10.6378 -1.1734 1.2867 -4.5883 -#> -3.5399 -5.8196 2.7657 8.1652 3.0322 1.3477 3.9744 1.1902 -#> -0.0897 5.3256 5.4750 1.2325 7.7582 -2.1776 11.7394 0.1351 -#> -8.1216 -10.0971 15.2709 10.7041 -0.3764 12.1821 -8.2312 -6.5013 -#> -19.4967 7.9488 -6.2680 -1.6368 -13.4774 -4.1064 9.2371 1.7931 -#> -0.0632 3.0925 6.8879 8.9557 4.6627 -4.3163 -8.4271 -0.9522 -#> 10.2018 -0.9176 -4.9775 7.8032 15.2119 6.8883 -1.4054 0.6085 -#> -9.2351 -1.6457 5.4440 11.2551 -2.2972 1.8527 4.7612 0.0586 -#> -2.7470 -3.5868 2.2028 5.0616 -1.9473 -6.4087 3.4935 -2.2491 -#> -#> Columns 9 to 16 -5.4244 -2.9245 -1.2107 -9.0027 13.3219 1.9440 4.8561 -2.7183 -#> 10.7535 4.1678 1.8800 5.5829 -10.7058 8.6258 -1.2581 -6.0093 -#> 5.9274 -2.4308 4.2193 7.6270 5.6584 -2.0767 -6.9968 -5.9731 -#> 0.4131 5.1239 8.8736 -4.7305 -11.9331 9.0935 -3.7310 -17.8027 -#> -5.1119 -4.9878 -10.6180 0.6381 8.9182 -6.2042 -9.7135 -3.2330 -#> 3.2885 -1.8013 2.8075 -17.3621 -5.3055 0.9743 -14.3689 10.6096 -#> 8.6763 -2.0296 1.8713 -12.6399 5.9778 -13.2539 -0.1304 -9.0192 -#> 6.8218 3.4581 4.1998 2.8683 5.3528 0.3076 4.8818 -2.1856 -#> -1.0621 -3.8601 -16.4815 6.7831 0.5187 -4.3644 -10.2156 -4.1790 -#> 10.7836 -1.4334 -6.2758 8.9640 0.5866 5.1194 -1.1981 -10.0573 -#> -11.2556 -3.9902 1.0401 15.9763 -3.9429 6.0554 8.2533 -3.9805 -#> 4.6950 -4.2295 14.3786 -0.8173 17.1867 5.5266 -0.8495 -2.7889 -#> 6.8932 5.7003 -3.2936 13.3559 3.7617 1.0504 7.2782 -8.0423 -#> -0.6424 -2.4865 3.1472 -4.1264 -5.5375 4.5062 -11.4587 -8.3921 -#> -10.7727 -7.5424 -0.4159 15.8691 2.7726 -8.9574 -10.0827 -4.1641 -#> -3.5679 5.6040 -0.5242 4.5327 2.4081 1.7839 -4.5119 -8.2861 -#> 14.1972 5.9486 5.8421 -3.0795 0.4700 9.4044 6.9189 -8.0553 -#> -2.5634 -8.9776 -10.4028 -6.9258 9.4904 10.9099 4.0087 10.6379 -#> 5.2233 -6.9021 14.9642 14.7190 4.9868 -5.5645 1.4895 -11.4390 -#> 2.5536 -1.9752 2.8385 14.3668 -6.3358 -2.8437 0.8566 -7.5364 -#> 3.3009 6.6402 2.2603 -5.8293 -1.8706 2.2362 -2.2903 -6.8235 -#> -16.8731 8.3490 -2.8018 1.8419 -7.3747 2.7683 -6.5963 -2.6283 -#> -2.8859 -5.0357 11.7609 -12.2117 -0.3431 -4.5218 -3.4076 -6.0098 -#> 8.7292 0.1320 3.4142 -3.4457 -2.2028 -1.9678 0.8707 -6.1005 -#> 7.0865 -11.2925 -4.8071 -3.5456 -3.9779 -6.9031 -7.8760 9.7066 -#> -2.3910 13.3094 8.4412 7.7155 5.9992 3.4252 4.0100 -3.7850 -#> -5.6154 2.0339 3.5498 -7.0280 4.2935 -12.5404 -11.6149 -14.0983 -#> -10.1337 -2.7636 -8.9362 -10.0790 -15.9228 4.6759 -3.2626 -1.6180 -#> 4.8460 -2.3104 7.6842 5.6354 -3.9253 -1.7831 -8.9399 -4.0914 -#> -2.5983 -0.2068 0.7000 -9.6218 5.8294 -10.0757 8.0538 4.3348 -#> 1.8360 -1.5328 3.6088 3.5472 9.7461 -3.1073 -18.6002 -10.2768 -#> 1.2851 0.6742 9.5674 7.6433 -6.4800 -3.8342 -3.2553 -7.6469 -#> -1.3759 15.5534 13.5354 4.8163 4.8285 -2.8745 -5.3420 -1.2828 -#> -#> Columns 17 to 24 -0.5167 -3.2736 3.6042 9.2083 9.7675 -3.9386 1.3428 3.4470 -#> 2.4704 2.8545 6.8275 3.5003 -0.2367 5.6338 1.1046 4.6771 -#> -3.0332 2.1101 8.6318 -4.8976 -14.9192 -1.6236 2.2431 2.0142 -#> 0.4408 1.3938 3.2056 -8.0020 -2.1119 6.5324 -2.4020 9.4199 -#> -9.3392 9.3710 -3.2274 -4.2743 -0.2528 -5.7441 19.9280 -2.5542 -#> 1.9263 1.6250 2.8807 0.3688 -14.1765 -6.7254 10.7015 9.2226 -#> 1.9163 -0.4107 8.0362 -10.4422 -0.5098 3.4652 5.8927 2.2033 -#> 2.4038 -8.7245 2.6648 2.7030 1.3872 -6.1252 -9.6656 0.5002 -#> 0.1946 -2.0269 1.5145 1.2279 -0.1315 1.4630 0.6094 1.6623 -#> -6.3521 0.4316 -4.7299 0.3104 -1.4829 -1.6261 0.6357 7.8922 -#> -11.5962 10.6036 1.4772 -5.9238 0.6079 -0.2997 15.3069 3.6901 -#> 2.1367 -1.4953 12.1796 -5.4230 -6.6698 -5.3625 8.1637 -3.4637 -#> -4.0125 3.2110 5.4136 0.7173 -13.9764 6.4144 -11.7281 4.7523 -#> -0.8757 6.4271 6.8656 5.0033 -9.3574 4.0220 1.5025 8.2151 -#> -14.3414 4.9516 -3.8332 1.1615 3.7050 3.6838 0.3889 7.1748 -#> 3.4352 -8.0321 -0.5548 -7.1979 -2.1331 -0.9266 0.7498 3.3833 -#> -3.8955 1.0812 -7.4346 9.9988 8.9725 -0.6261 -14.2812 -16.3892 -#> 0.9259 -3.9578 9.6653 -1.8063 -2.1143 -7.3721 9.1487 4.5222 -#> -7.4901 0.1527 14.3195 1.1760 7.2353 -5.5672 2.5676 13.1659 -#> -0.1484 12.3372 -1.2780 -1.0691 1.3121 10.2539 -5.5109 0.9131 -#> 5.1531 -5.7138 0.8301 -4.5160 7.7156 -4.6745 -5.6056 -10.4448 -#> 10.0189 6.8799 3.0023 0.4315 0.7961 14.9472 -0.0927 -6.6039 -#> 9.3146 7.4606 6.3168 2.5325 15.7218 -14.6869 6.3143 -8.6685 -#> -3.7615 -2.7482 -14.5030 -11.5257 2.6656 0.5920 4.0818 -3.0660 -#> 1.9609 0.6213 2.8665 0.1718 8.8866 1.9372 0.4757 7.3429 -#> -4.1544 4.6766 0.7745 1.2428 9.3632 -0.3896 -4.7325 2.0222 -#> 1.3315 -3.0702 1.4970 -9.3075 5.4004 -2.4335 1.7001 -3.5945 -#> -12.0965 -2.4795 -3.4041 -5.4235 -13.7871 -3.7242 2.2135 0.9609 -#> -1.4595 -7.6355 2.5596 6.0541 -0.2605 6.7192 -2.9285 14.5957 -#> -13.5363 -0.7604 -2.6655 3.2770 0.5550 -3.3883 -0.0947 -17.2695 -#> -12.8532 -10.6036 -5.2803 -5.4334 -0.8143 0.9354 -2.8281 -0.3836 -#> 1.2841 8.5728 -15.6670 -2.3541 -9.3281 11.0663 9.8001 8.9577 -#> 1.2819 0.9044 5.6131 2.0612 -6.8050 1.4621 12.6808 -3.0845 -#> -#> Columns 25 to 32 18.7151 -3.8094 -10.6858 -7.2112 10.5903 2.8308 -5.1495 -6.9245 -#> -8.1932 -10.3093 -4.9610 6.5884 3.5473 -1.5878 1.4735 11.9831 -#> 1.6399 -2.0138 3.1374 2.5061 -0.7592 -12.6079 5.2005 9.6991 -#> -0.2601 2.4913 -0.1172 3.2673 -1.0057 -5.0404 -15.6786 29.6677 -#> 6.3120 -2.2729 8.2883 8.2263 4.6611 -11.1320 7.2619 0.2219 -#> -0.0609 7.8129 3.8104 -6.3285 4.6025 -4.4485 -0.0333 20.5367 -#> 21.4471 1.3245 -10.1189 6.9064 -6.3160 -3.4137 5.9507 10.0966 -#> 2.1005 3.0113 -7.5420 1.7446 -10.8668 0.2345 2.9597 7.5663 -#> 6.8733 1.2057 -1.3649 -2.9656 0.2376 6.2730 -2.6192 3.3051 -#> 2.5055 -4.9166 1.1617 10.2103 5.4102 -3.6294 8.0282 -3.7121 -#> 6.1556 -18.8554 -6.8870 16.7942 0.8996 -4.3907 15.7691 -6.0708 -#> -13.7109 -5.4970 2.0404 12.2095 -1.1657 -5.2565 -15.3310 13.6764 -#> -2.0914 5.5632 5.5576 6.7898 -2.8911 6.3307 -3.9102 -2.4087 -#> 5.1732 2.5589 14.9252 -4.7789 -0.9729 -1.8489 -9.2545 10.3432 -#> 0.5507 -0.1272 14.3721 -2.8788 7.3230 -8.7260 4.2822 -8.2377 -#> 7.8071 6.3932 6.5513 3.2569 0.9689 -0.3189 -4.6282 9.9274 -#> -7.9111 1.6218 -14.3454 7.2757 9.5468 -7.2799 4.2477 -2.9991 -#> 1.4842 -7.5389 -11.1014 -1.6944 7.2728 -9.5720 -10.4276 4.1355 -#> -3.4725 -0.5684 0.1559 2.7386 -5.8742 4.7850 5.0468 1.2748 -#> 0.1762 6.7808 6.3146 7.9698 -2.0042 -0.3079 6.2638 -6.0213 -#> 7.8444 -1.9231 9.2642 1.0918 -10.7200 6.6738 -5.5230 9.9495 -#> -1.0943 7.7873 4.2141 -8.8941 0.5661 8.1359 -8.9883 -2.9023 -#> -2.6989 9.5537 13.1507 -1.4590 -5.3198 -5.8421 3.6497 2.1718 -#> 8.8567 -5.6070 5.4076 -1.1994 1.1786 6.1395 -2.2800 -11.5192 -#> 3.2517 -4.9864 5.4578 -13.7910 0.8607 0.3237 2.9753 -1.2993 -#> 3.8434 5.3917 4.0140 5.5966 4.2340 -6.8201 11.1240 -2.5896 -#> 3.2052 10.5745 -3.6056 2.5925 -1.4456 -0.6922 -3.8502 16.5866 -#> -2.4905 0.8548 5.1917 8.9457 7.4349 -11.4280 17.5558 -10.8432 -#> -8.6278 -1.5267 10.5918 -1.0952 0.6434 4.8316 -0.5702 -4.1505 -#> 2.0603 15.5785 -1.0938 0.4554 14.3984 0.0487 1.9924 -8.3948 -#> -4.8434 -0.7336 7.9365 -3.0920 -0.1015 -6.8206 -2.6112 8.2260 -#> -10.5381 6.8931 5.0467 10.2215 -5.0572 -10.9092 15.1842 -1.2059 -#> 3.0102 6.5824 11.8250 0.1481 5.1619 6.7905 -6.3298 6.1166 -#> -#> Columns 33 to 40 -13.0929 10.7086 -10.6413 -3.2434 -4.7143 18.9670 11.5604 0.6759 -#> 3.8253 5.3724 -3.8026 1.2284 3.1021 3.1633 -10.6655 4.8320 -#> 9.6050 15.6168 -0.1603 5.9876 5.5583 3.9613 -3.5428 2.9187 -#> 0.0542 11.3364 -16.0973 3.8528 18.8930 0.8423 -19.0941 3.0001 -#> 4.6167 -7.5432 1.4097 11.1482 -7.2509 2.3051 -1.6934 -2.9962 -#> -1.2676 3.3272 4.4583 2.2233 0.6304 -1.1169 -3.7036 -12.3604 -#> -7.3089 2.9711 -4.3308 18.0142 -7.9470 -0.1779 -2.5158 -10.6243 -#> -8.7892 -0.0394 -2.9864 0.9498 -9.3213 -11.2037 1.7052 3.1814 -#> -8.1533 6.6281 4.9492 13.8490 -3.8301 7.7220 1.4083 -1.9021 -#> 9.1308 -7.0064 -1.9722 -2.4951 -0.6262 -2.2968 -8.2641 4.3387 -#> 3.6544 -28.7199 7.4428 -0.3025 8.9910 8.9597 -18.8920 -2.7463 -#> -4.9109 2.1997 -5.8295 -5.6553 -10.4926 -5.4169 -0.9827 5.2563 -#> 4.6452 3.1934 3.9736 3.3958 4.4744 -5.4590 7.4215 2.6005 -#> -0.9471 5.3609 0.7467 4.1787 10.4314 0.9719 -8.7019 11.9533 -#> 12.1445 3.5598 5.1703 1.6544 14.4675 9.4715 3.7597 -2.1770 -#> -8.2620 12.5158 -12.3281 0.5927 -1.2875 3.3224 -15.3013 -1.1989 -#> 2.0916 -0.5344 -13.9363 -4.2687 1.7251 2.1584 9.0830 -2.3336 -#> -5.1937 -0.4773 -5.7731 -0.3001 -10.2828 9.0828 1.6291 -10.7334 -#> -1.9560 -4.0323 3.8732 9.6128 12.4645 5.0971 -12.0427 -6.5134 -#> 7.2082 -10.4481 10.9988 -6.3425 -1.5460 -7.8643 8.3994 15.8663 -#> -15.5418 7.9106 0.1194 -4.9896 -12.1432 -4.8835 -13.2222 11.1480 -#> -6.0650 12.4503 1.2084 -0.6934 4.0231 5.1878 7.6225 16.0133 -#> 10.0894 3.7950 2.7662 6.9198 12.7698 9.4798 -1.6231 2.8290 -#> 3.9802 3.8951 -5.1209 -12.1517 -6.8346 11.1322 -12.7089 -8.3542 -#> -14.0842 -6.4819 -3.2150 -0.6622 -8.4714 -3.2800 -11.8791 -14.5002 -#> -3.6597 0.2235 1.5656 1.3861 8.3664 -1.1531 3.4840 4.8625 -#> -0.0208 4.5306 -4.4620 5.6068 -3.5328 0.9448 7.0014 -8.7854 -#> 8.1730 -16.0610 -4.7102 -6.8084 6.8921 -13.9539 -2.5970 0.8457 -#> -7.5805 -7.3242 0.9772 -3.8022 -2.8765 -21.1915 -8.8806 8.6112 -#> 2.7900 -1.2628 -10.5153 0.7526 11.9589 11.3937 0.9338 -0.7113 -#> 3.3273 -4.8510 -16.1544 -11.6446 4.8889 1.0366 -9.9487 -8.3986 -#> 7.2784 -17.8624 2.1096 -7.7101 3.0077 -21.8409 -7.6522 -5.3485 -#> -9.4605 12.9928 -5.7377 8.1991 -3.6538 -4.7890 -3.8185 1.3486 -#> -#> Columns 41 to 48 -1.2806 4.4719 3.2787 -6.8226 -2.5020 -0.3241 16.2354 4.4872 -#> 4.2604 11.2756 1.4287 16.5132 1.0703 -2.5217 -3.6417 -3.5623 -#> -5.9802 -4.1072 5.3458 8.4859 5.6440 -5.0054 -5.6247 -2.7213 -#> -13.6875 12.1878 8.7390 5.3186 16.4883 -17.4650 15.0589 -7.1149 -#> 8.6370 6.1348 6.9977 5.9094 -3.5747 -0.2621 -14.0265 -8.1669 -#> 5.1393 4.4540 -1.6370 -10.1522 3.2873 4.1298 7.4150 9.1745 -#> -3.5731 -10.3298 9.7454 5.4470 7.8061 -1.7168 3.2278 8.5204 -#> -21.1075 -2.1749 -7.7596 -2.9712 1.7288 3.6917 16.6576 3.8277 -#> 2.7863 12.8813 21.6354 5.3553 -1.5177 2.0300 -9.4604 -10.3778 -#> -14.4875 11.1262 -0.4382 11.3462 -7.3018 2.3005 -12.4743 -5.6966 -#> 12.2622 7.4871 -5.5479 1.3534 6.5592 7.8683 6.0947 -3.2516 -#> 5.1640 -17.4172 4.4021 -9.6653 10.3575 1.2316 -6.2373 9.5555 -#> -16.6553 -1.8077 2.1062 -4.1136 0.4310 0.2189 -1.6960 -16.2303 -#> -4.1715 1.8463 9.8158 2.6802 1.2722 -8.7310 10.8009 -9.0684 -#> 7.0178 12.7044 13.5289 3.1725 -2.0315 -5.1303 0.0483 -5.9967 -#> -7.4459 -7.6461 1.2485 0.4100 4.6413 -3.3643 -1.9663 -8.7889 -#> -1.4376 0.2320 -14.3036 7.3219 -10.1662 13.2323 -4.9297 6.0043 -#> -2.9853 6.5275 -3.6477 -2.9087 -4.8125 1.1970 5.2914 -0.7746 -#> -1.9150 0.9732 1.9533 8.5727 21.2805 1.1917 0.2164 2.1555 -#> 1.4902 8.4288 -2.4849 -2.1220 -5.5417 -1.3303 -0.5162 7.3754 -#> -8.6690 -13.9623 0.6408 -1.8519 2.7357 -11.0654 12.4976 -2.1276 -#> 2.2020 12.4450 13.9324 1.6783 -4.6593 -5.5748 5.2634 -8.7318 -#> 6.9535 -3.0555 -0.3675 11.4615 -7.1063 8.8430 2.9909 8.8720 -#> -12.3394 -23.7992 -11.7108 2.3299 7.7491 0.7197 2.0416 0.8095 -#> 15.6655 1.4036 12.8402 -3.1910 9.5950 -5.7898 -0.3393 4.2886 -#> -11.1935 -0.6632 -4.5321 -4.1002 7.3329 -10.4798 8.2632 -4.2149 -#> 6.5294 6.4735 2.2356 -5.7527 -3.6129 8.0644 5.7421 3.7550 -#> 5.3824 -15.5725 -6.2125 6.5763 5.5347 -8.4960 2.9947 3.0953 -#> 0.0087 13.1358 1.9827 7.6309 1.6621 -10.9873 -4.9114 -9.1532 -#> -5.0495 -20.4267 3.4558 -1.2676 6.2794 -2.6602 -7.8177 8.3995 -#> -5.3475 -8.1220 -0.6322 -4.6946 7.1616 7.0391 7.9409 -1.3812 -#> 9.0524 1.8260 -11.0054 8.7754 -8.6430 5.8534 -23.3776 1.1368 -#> 8.2543 -9.6404 8.8720 -3.6102 9.5666 -5.0479 -3.4277 -8.2915 -#> -#> (20,.,.) = -#> Columns 1 to 6 2.3410e+00 9.7388e+00 1.6557e+01 1.1382e+01 3.7641e+00 5.1080e+00 -#> 9.7553e-01 -8.4447e+00 1.3123e+00 -1.5725e+01 -4.9083e+00 4.1044e+00 -#> -3.1703e+00 -2.2135e+00 4.4341e+00 -1.2445e+01 -3.2447e+00 3.6457e+00 -#> 1.2177e+01 1.5420e+00 5.5418e+00 -2.3071e+01 -1.8939e+00 1.7252e+01 -#> -1.0726e+01 -4.2155e+00 6.5425e+00 -2.0108e+00 -4.7632e+00 -1.3778e+00 -#> 1.2218e+01 -3.6186e+00 -4.9115e+00 5.6926e+00 3.1619e+00 -1.5542e+01 -#> 1.1675e+00 1.8411e+00 1.7625e+01 -1.9243e+00 -1.8360e+00 5.9005e+00 -#> -2.1542e+00 3.3940e-01 -4.9044e-01 7.3563e+00 9.6633e+00 -3.6952e+00 -#> 8.6159e-02 -9.9189e+00 -3.8149e+00 -8.9140e+00 2.6082e+00 -6.3848e+00 -#> -1.0125e+01 1.6594e-01 -2.5587e+00 -6.3884e+00 -1.0598e+01 -5.6895e+00 -#> -1.2456e+01 1.3919e+01 8.3685e-01 1.1546e+00 -3.0186e+00 -3.8498e+00 -#> -2.6311e+00 -2.4535e+00 6.6286e+00 -1.7185e+00 -5.9649e+00 -2.6087e+00 -#> -1.0975e+01 -2.2859e+00 -4.9682e+00 1.6251e+00 -8.6998e-01 9.8512e-01 -#> 2.8754e+00 2.6769e+00 2.8849e+00 9.1190e-02 4.8219e+00 5.3024e+00 -#> -1.0107e+01 8.5539e+00 -2.2039e+00 1.1878e+01 3.7640e+00 1.7298e+00 -#> 5.3624e+00 -4.1503e+00 1.0721e+00 -9.7069e+00 -2.6360e+00 6.1107e+00 -#> -4.1990e+00 5.3183e+00 9.7740e+00 -1.4839e-02 -2.9959e+00 -9.8873e+00 -#> 7.1682e-01 -6.7365e+00 1.7742e+01 -2.0493e+00 -4.0481e+00 -2.4705e+00 -#> 5.6811e+00 2.1429e+00 -1.9895e+00 -6.0990e+00 7.1933e+00 1.0245e+01 -#> -1.0327e+01 1.1902e+01 8.1764e+00 2.9050e+00 3.5568e+00 4.8856e+00 -#> 9.8634e+00 -7.3801e+00 -1.8072e+00 -1.8462e+01 -9.1422e+00 8.2301e+00 -#> 7.4528e+00 -3.2333e+00 -2.7164e+00 -2.6745e+00 4.9729e+00 8.2682e+00 -#> 9.8821e+00 6.4739e+00 -2.9487e-01 -9.3617e-01 1.5004e+01 1.2282e+00 -#> -4.8038e-01 7.8481e+00 3.1612e+00 -1.7786e+01 -7.0473e+00 -4.7113e+00 -#> 1.3829e+01 -1.1918e+00 4.7191e+00 -9.9064e+00 3.7553e+00 -5.6204e-01 -#> -2.0430e+00 1.0027e+01 7.2484e+00 7.6063e-01 6.9578e+00 4.1638e+00 -#> -1.2486e+00 -3.1506e+00 7.0924e+00 6.9274e+00 1.1315e+01 -6.7493e-01 -#> 4.5251e+00 -1.1089e+00 -4.6790e+00 -4.9297e+00 -2.0166e+01 -3.0425e+00 -#> 2.0341e+00 -5.0193e+00 -1.5881e+00 1.4271e+00 -5.1175e-01 -1.9088e-01 -#> 4.3895e+00 -3.2604e-01 2.8351e+00 6.5263e+00 -6.4667e+00 -3.6202e+00 -#> -4.6403e-01 1.6272e+00 3.1020e+00 6.5796e+00 1.4924e+01 4.7444e+00 -#> -8.6713e+00 7.4556e+00 -1.9416e+01 -6.8462e+00 -1.1393e+01 -6.3260e+00 -#> 8.3200e+00 -1.1023e+01 3.5368e+00 -1.8314e+00 -7.4983e+00 -1.0943e-02 -#> -#> Columns 7 to 12 -2.4804e+00 -1.8602e-01 7.1954e-01 2.9089e+00 1.7618e+00 -1.3436e+01 -#> 1.7067e+00 8.4794e+00 -2.6234e+00 7.7493e+00 -6.4802e+00 2.0458e+00 -#> 5.1771e+00 3.1818e-01 -1.7405e+00 -6.4634e-01 -7.8719e+00 -2.0841e+00 -#> -8.7515e+00 8.5336e-01 -1.5769e+01 -5.3437e+00 -3.2970e+00 -2.0343e+00 -#> 2.2304e+00 -5.4520e+00 1.9013e+00 2.4374e-01 -2.1490e-01 -1.4346e+01 -#> -2.6801e+00 -1.8525e+01 2.5054e-01 1.1545e+00 1.2923e+00 -2.2221e+00 -#> 5.4859e+00 3.2670e+00 5.4010e+00 1.0159e+00 2.6045e+00 -3.3450e+00 -#> -5.5536e-01 1.9618e+00 3.5680e+00 8.0874e+00 9.1611e+00 -2.3273e+00 -#> -8.0280e+00 1.5038e+00 -2.8943e-01 6.2901e+00 -5.8491e+00 -1.6066e+00 -#> 7.5733e-01 -8.2033e+00 -9.2451e-01 7.4625e+00 -6.7360e+00 -8.9020e+00 -#> 1.2189e+01 -1.8027e+00 1.6689e+01 3.4474e+00 2.9138e+00 1.7912e+00 -#> 1.3682e+01 -1.6062e+00 9.7473e+00 4.5117e+00 5.6799e+00 -5.4646e+00 -#> 6.8369e+00 1.3800e+01 -6.7010e+00 -2.2776e+00 6.9862e+00 7.4298e+00 -#> 5.5939e+00 7.5994e+00 -9.1281e+00 -1.0513e+01 3.1338e+00 2.2780e+00 -#> 4.0438e+00 9.6674e+00 -8.9905e+00 -6.4321e+00 -2.2459e+00 -2.7442e+00 -#> 1.7242e+00 3.3175e+00 -1.9010e+01 -5.4166e+00 2.1368e+00 1.3751e+00 -#> 9.9083e-01 -4.8365e+00 4.8378e-01 1.6902e+00 2.2087e+00 -3.4764e-01 -#> 5.4890e-02 -7.2534e+00 -2.5185e+00 1.2493e+01 -2.4334e+00 -6.3627e+00 -#> 9.5054e+00 -4.4612e+00 1.8223e+01 -3.7394e-01 3.6688e+00 7.5635e+00 -#> 2.2095e+00 4.6699e+00 9.9971e+00 -6.1401e+00 -1.0550e+01 -1.5797e+00 -#> -9.8198e+00 9.8286e+00 5.4587e+00 1.0334e+00 -3.0479e+00 1.7580e+00 -#> -1.2700e+00 2.6403e+01 -4.4089e+00 -8.6787e+00 -8.4800e+00 4.4394e+00 -#> 2.8741e+00 -1.9863e+00 -3.2514e+00 -8.6687e+00 9.8180e-01 -1.7195e+00 -#> -5.3990e+00 2.8465e+00 1.2402e+01 -8.9504e+00 2.4825e+00 -1.1775e+00 -#> -4.4550e+00 -8.1371e+00 6.7530e+00 3.7530e+00 -1.0986e+01 -2.4960e+00 -#> -2.8496e+00 2.0082e+00 -4.6388e-01 -9.5946e-01 1.0177e+01 -3.2097e+00 -#> -9.3333e-01 1.1898e+00 -4.7260e+00 -5.8988e+00 1.5007e+00 3.4544e+00 -#> 3.4987e+00 3.1301e+00 1.5726e-01 -1.7080e+00 4.4588e+00 4.7642e+00 -#> -2.8878e+00 -6.6251e-01 -3.1073e+00 -3.9279e+00 -6.6434e+00 -1.0017e+00 -#> 7.0556e+00 -1.6597e+01 2.5636e+00 -1.2606e+01 7.0497e+00 -1.9386e+00 -#> -1.7508e+00 -1.2447e+01 -1.0717e+01 5.4835e+00 5.0638e+00 -3.2764e+00 -#> 4.4112e+00 -5.0044e+00 -1.2282e+01 -1.1170e+01 -6.7855e+00 -6.1712e-01 -#> 4.2148e+00 1.2460e+01 -8.7559e+00 -2.6166e+00 -1.9169e-02 1.4165e-02 -#> -#> Columns 13 to 18 6.2091e+00 -8.8143e+00 7.2104e-01 7.2597e+00 -1.5449e+00 -3.9369e+00 -#> -9.3598e+00 5.4552e+00 -2.3879e+00 -1.3020e-01 -1.2810e+00 -6.2295e+00 -#> 1.6856e+00 5.1225e+00 -6.9954e+00 1.0107e+00 1.1691e+00 -1.7933e+00 -#> -3.2094e+00 4.2271e+00 -1.9460e-01 6.9871e-01 -1.8737e+00 -6.9162e+00 -#> -5.5509e-01 1.1511e+01 9.7265e-01 -4.1372e+00 6.0545e+00 4.0498e+00 -#> -6.5004e+00 3.4623e+00 3.2891e+00 -1.6722e+01 -3.2627e+00 1.3829e+01 -#> -2.0242e+00 1.3205e+01 -8.8209e+00 9.6122e-01 -4.1757e+00 -2.7641e+00 -#> 1.6212e+00 -1.6687e+00 -4.6750e+00 2.5037e+00 2.8769e+00 -8.8224e-01 -#> 6.9457e-02 -9.3542e+00 1.1674e+00 6.2896e-01 -1.2544e+01 -5.5968e+00 -#> -6.5634e+00 9.7293e+00 6.9997e-01 -4.0996e+00 7.8806e+00 1.4738e-01 -#> 8.3325e+00 -7.4368e+00 -1.0828e+00 4.0310e+00 1.0186e+01 1.6531e+01 -#> -9.2470e+00 1.6434e+00 -1.0851e+01 -2.7858e+00 -4.7217e+00 1.2983e+00 -#> 3.9226e+00 -3.9145e+00 2.3867e+00 1.5888e+01 6.1320e+00 5.3633e+00 -#> 9.3941e-01 -3.2628e+00 -1.4717e+00 -9.6640e-01 9.1844e-01 5.7049e+00 -#> 1.4595e+00 1.0113e+00 6.7419e+00 -4.7996e+00 4.4700e+00 1.5168e+01 -#> -4.1207e-01 7.1577e+00 7.2850e+00 3.0012e+00 6.6942e+00 3.8092e+00 -#> -5.2720e+00 1.0192e+01 2.8500e-01 -8.5123e+00 1.5029e+00 -1.8070e+00 -#> -8.1098e+00 1.7250e+00 -1.1236e+01 -7.7844e+00 -5.8833e+00 3.2155e+00 -#> 1.0499e+01 1.0083e+01 6.7967e+00 4.1068e+00 1.0419e+01 -5.3592e+00 -#> 2.2096e+00 2.1852e+00 -1.7720e+00 6.6781e+00 9.3576e+00 2.2509e+00 -#> 5.5971e+00 3.2116e+00 -1.7596e+01 6.4026e+00 -3.3209e+00 -8.8648e+00 -#> -1.5210e+00 -1.3915e+01 -2.6886e+00 1.4786e+01 -4.6967e+00 -7.7192e+00 -#> -7.6820e-01 8.3450e+00 -1.9640e+00 -6.6878e+00 -2.4184e+00 -7.9350e-01 -#> 7.4614e+00 5.3085e-01 5.5515e+00 6.6437e+00 5.0550e+00 -1.3595e+01 -#> -7.7221e+00 -4.6417e+00 3.9403e-01 -1.3851e+01 -1.0311e+01 -1.3360e+00 -#> 6.6917e+00 1.2243e+01 1.4173e+01 2.8141e+00 1.1076e+01 5.8287e+00 -#> 1.0787e+00 2.0636e+00 -1.0247e+00 3.1193e+00 -9.4799e+00 8.2093e+00 -#> -1.5041e+00 7.0780e+00 -7.8316e+00 -1.5371e+01 7.1263e+00 5.9010e+00 -#> -8.2715e+00 9.9196e-01 2.1497e+00 -2.1559e+00 -1.2710e+00 -1.9854e+00 -#> 1.1778e+01 1.7334e+00 3.4908e+00 -2.5709e+00 1.1166e+01 -7.3452e+00 -#> -5.5082e-01 -4.1049e+00 2.4903e+00 8.0472e+00 -3.3471e+00 3.5109e+00 -#> -5.2418e+00 6.6022e-01 3.3127e+00 -5.4575e+00 1.7177e+01 6.8944e+00 -#> 1.4118e+00 3.3244e+00 4.7817e+00 1.2690e+01 1.1262e+01 5.2541e+00 -#> -#> Columns 19 to 24 5.7987e+00 9.9046e-01 1.3476e+01 2.2373e+00 4.8450e+00 -3.3785e-01 -#> -6.4077e+00 -5.5996e+00 7.7242e+00 -4.9139e+00 -1.0795e+01 -2.7210e+00 -#> -7.8080e+00 -9.8749e+00 -8.0328e-01 -5.6685e+00 -6.5051e+00 -7.3282e+00 -#> 4.4262e+00 -4.0880e+00 -3.1434e+00 -1.5922e+00 -3.5972e+00 -4.8698e+00 -#> 8.9376e+00 -1.6125e+00 -3.0707e+00 2.6647e+00 -8.6386e+00 1.0014e+01 -#> 1.0788e+01 -8.3395e+00 9.1440e+00 -2.9792e-01 -5.8211e+00 5.8759e+00 -#> -6.4088e+00 -1.2216e+01 -6.1322e+00 -6.9714e+00 -1.8267e+00 3.8377e-01 -#> 6.6123e+00 -1.4050e+01 4.3107e+00 5.4709e+00 2.8144e+00 -4.5840e+00 -#> 1.3259e+00 -9.2734e+00 -6.1174e+00 -1.4116e+00 8.0506e+00 -1.7683e+00 -#> -1.3442e+01 -1.9701e+00 7.1781e+00 4.8789e+00 -1.0749e+01 4.3147e+00 -#> -1.0874e+01 -2.7071e+00 5.0782e+00 3.2553e+00 -3.3053e+00 5.0959e+00 -#> 4.7742e+00 -9.7450e-01 4.0312e+00 4.8259e+00 2.0546e+00 1.6256e+01 -#> -6.2039e+00 -7.7300e+00 2.7282e+00 9.7221e-01 1.7280e+00 -1.1206e+01 -#> -3.4114e+00 -5.4780e+00 1.9617e+00 1.9247e+00 -1.0711e+00 -6.1604e-01 -#> -4.0607e+00 6.2097e+00 -6.0131e-01 1.2949e+01 -9.1161e-01 -5.7228e+00 -#> -4.4931e+00 -6.3089e+00 -1.1048e+00 -3.4241e+00 -5.9472e+00 -1.1120e+01 -#> 1.4240e+00 -6.8421e+00 5.2643e+00 1.2383e+00 3.9429e+00 -1.4067e+00 -#> -5.4825e-01 -1.4219e+01 -7.1825e-01 -3.0608e+00 -4.8196e+00 1.2558e+01 -#> -9.2407e+00 -1.0295e+01 -4.5680e+00 -6.3542e-01 -5.6528e+00 -1.1106e+01 -#> 2.5570e+00 1.3100e+01 3.2021e+00 3.3889e+00 7.0477e+00 6.1366e+00 -#> -3.4840e+00 6.5269e-01 -1.1508e+01 3.1331e-01 -2.6091e+00 8.6547e+00 -#> -3.7476e+00 -1.5001e+00 4.7892e+00 -7.2544e+00 6.8576e+00 -2.3800e+00 -#> 1.2855e+01 4.0347e+00 -4.9090e+00 1.6522e+00 -3.1490e+00 7.2887e-01 -#> -1.1071e+00 -1.1343e+00 7.0469e+00 -4.3051e+00 -6.4920e+00 -2.1248e+00 -#> -6.6440e+00 -2.3582e+00 -5.1569e+00 1.7230e-03 4.1819e+00 2.6481e+00 -#> 8.3807e+00 -1.0780e+01 -4.4174e+00 6.4726e+00 -1.4760e+00 -1.2222e+01 -#> 1.2455e+01 1.3503e+01 6.7132e+00 3.2466e+00 9.0439e+00 -1.0962e+00 -#> -7.0192e+00 1.2580e+01 7.1967e+00 -9.6692e-01 -2.7230e+00 7.7308e+00 -#> -7.6719e+00 7.7843e+00 5.2237e+00 4.2453e+00 6.7228e-01 -9.5117e-01 -#> 3.6038e+00 -6.0937e+00 -1.4692e+00 -8.3313e+00 1.5697e+00 4.7399e+00 -#> -1.2687e+00 1.0278e+01 8.8936e+00 2.8074e+00 2.1382e+00 3.5530e+00 -#> -1.9756e-01 9.7066e+00 3.1387e+00 7.1569e+00 2.4309e+00 -8.4276e+00 -#> 7.7145e+00 -3.3162e+00 9.2129e+00 1.5138e+00 -6.6110e+00 -5.4324e+00 -#> -#> Columns 25 to 30 3.3448e+00 9.3022e+00 9.5999e+00 6.9354e+00 -5.0616e+00 -6.9058e+00 -#> 5.9573e+00 3.5726e-01 -9.9542e+00 -3.3779e+00 6.1937e-01 6.9114e+00 -#> 2.3182e+00 3.1634e+00 -5.6326e+00 -9.8146e+00 1.1031e+00 4.6291e+00 -#> 3.7577e+00 2.9056e+00 -1.2893e+01 -7.0990e+00 -5.8789e+00 5.4299e+00 -#> -2.0569e+00 -1.2289e+01 -1.2072e+01 -8.9648e+00 6.1291e+00 -4.8387e+00 -#> 2.4939e+00 3.9368e+00 -3.3553e+00 -3.7930e+00 2.2403e+00 1.5174e+00 -#> 4.7722e+00 -2.3783e+00 -3.4526e+00 -7.4857e-01 4.7284e+00 -5.9305e-01 -#> -4.4239e+00 2.2117e+00 1.6915e+00 1.6951e+00 6.1919e-01 7.1786e+00 -#> -8.2375e+00 -1.1487e+01 -3.2686e+00 1.9129e+00 3.4600e+00 6.1822e+00 -#> 9.6635e+00 -9.8398e+00 -1.4344e+01 1.1570e+00 3.5877e+00 -3.4732e+00 -#> 6.8537e+00 -1.6598e+00 1.4938e+00 -5.8247e+00 1.0250e+01 -5.8323e+00 -#> 7.7056e+00 4.1740e+00 -1.0906e+01 -3.1704e+00 2.1178e+00 7.9223e+00 -#> -5.4461e+00 -4.5399e-01 -2.1419e+00 3.8774e+00 -1.9193e+00 5.1422e+00 -#> -3.3196e+00 -2.4690e-01 2.8738e+00 -2.3391e+00 8.6590e+00 -3.8078e+00 -#> -1.1259e+01 -8.6266e+00 -2.9897e+00 -6.1473e+00 4.7037e+00 4.2867e-03 -#> 1.7899e-01 2.0520e+00 3.4490e+00 -6.9371e+00 2.1701e+00 -6.4096e+00 -#> 1.5743e+01 1.5727e+00 -8.0126e+00 -1.6293e+00 -6.9487e-01 9.7779e-01 -#> 3.3199e+00 4.9184e+00 9.6237e-01 -1.3034e+00 -6.9815e-01 1.5008e+00 -#> 1.7309e+00 1.7355e+00 3.3040e+00 -1.1595e+01 6.4257e+00 -2.0536e+00 -#> 9.0737e-01 -3.9525e+00 4.7663e-01 6.2257e+00 -3.6348e+00 7.5429e-01 -#> -1.6843e+01 -2.9076e+00 5.7143e+00 5.1020e+00 5.1055e+00 6.6208e+00 -#> -1.3249e+01 -3.3027e+00 1.0028e+00 1.5995e+01 2.1968e+00 4.1618e-01 -#> 1.8869e-01 4.9186e+00 6.6267e+00 -1.1144e+01 1.2518e+01 -9.4801e+00 -#> 7.2734e+00 -4.7865e+00 7.6977e+00 -2.5835e+00 6.9857e+00 -1.1586e+01 -#> 1.9629e+00 -7.9237e+00 8.7230e-01 3.6833e+00 1.0750e+01 7.8505e-01 -#> 2.2178e+00 2.6605e+00 -3.7676e+00 -8.0763e+00 2.7502e+00 -1.2980e+00 -#> -3.3262e+00 -2.9508e+00 -6.5470e+00 1.2192e+00 -5.2483e+00 1.0321e+00 -#> 1.7810e+01 -1.1750e-01 4.5557e-01 -8.7464e+00 1.0301e+01 1.7402e+00 -#> -1.9575e+00 -7.2531e+00 -5.6767e+00 4.7833e+00 1.0424e+00 -8.0447e-01 -#> 9.4049e+00 4.8694e+00 -3.4308e+00 -4.0935e+00 7.7406e-01 -8.3420e+00 -#> -1.0877e+00 5.9013e-01 -8.3452e+00 -6.0349e+00 -2.7546e+00 -1.5708e+00 -#> -4.6523e+00 -1.1413e+01 -7.7647e+00 -1.9390e-01 2.4253e+00 9.0860e+00 -#> -5.4974e+00 2.3994e+00 -4.8689e+00 2.3564e+00 1.8606e+00 -4.4984e+00 -#> -#> Columns 31 to 36 -5.3996e+00 -4.0268e+00 1.0155e+01 -9.1129e+00 -1.8529e+00 -5.9859e+00 -#> -1.1870e+00 9.0568e+00 -5.8302e+00 2.2678e+00 1.4472e+01 -7.0498e-01 -#> -3.1906e+00 -3.1934e+00 -5.5015e+00 1.1824e+00 1.1202e+01 5.9822e-01 -#> -4.0763e+00 5.6502e+00 -1.1138e+01 -5.5295e+00 -6.0794e+00 -9.0080e+00 -#> 1.4124e+01 -8.0207e+00 -1.2152e+00 -2.9232e+00 -1.2306e+01 -6.1385e-01 -#> -1.5200e-01 1.1691e+00 5.9120e+00 9.2071e+00 -1.2299e+01 1.2687e+01 -#> -4.5410e+00 -7.0710e+00 -6.6179e+00 -9.8775e-01 9.3494e-02 9.7834e-01 -#> -8.4071e+00 -4.0261e-01 3.7053e+00 3.0223e+00 1.0222e+01 5.3209e+00 -#> 3.2476e+00 -7.2387e-01 -8.1169e-02 5.4877e+00 -4.6037e+00 -3.2524e+00 -#> 7.5073e+00 7.5331e+00 3.5078e-01 -1.7766e+01 6.9871e-01 2.0369e-01 -#> 2.2511e-01 -2.8367e+00 2.4152e+00 -2.4106e+00 -9.4229e+00 5.5880e+00 -#> 4.5797e+00 -3.7804e+00 4.6730e+00 1.4458e+01 -1.3785e-01 5.0291e+00 -#> -4.1167e+00 7.9227e+00 -4.6733e+00 -7.1373e+00 1.6804e+01 4.3820e+00 -#> 8.5466e-01 -1.0724e+00 -9.3670e+00 1.3986e+00 -2.3463e+00 6.8835e+00 -#> 1.4297e+00 -4.2350e+00 9.0299e-01 -2.1366e+00 -5.3894e+00 -2.7163e+00 -#> -5.1330e+00 -1.9521e+00 -1.0124e+01 -9.9508e+00 -5.3707e-01 -1.4966e+00 -#> 4.0181e+00 1.2901e+01 1.0945e+01 -1.3669e+01 -8.6388e+00 -4.9692e+00 -#> 2.7508e+00 4.1519e+00 -2.2471e-01 6.2458e+00 -1.2785e+01 -8.8307e+00 -#> -7.6881e+00 -5.7679e+00 -7.7874e+00 -5.1019e+00 1.2219e+01 1.0732e+01 -#> 1.0853e-01 -5.1944e+00 -5.5256e+00 -4.7699e+00 6.8243e+00 6.7839e+00 -#> 6.1342e+00 -7.3736e+00 -4.8876e+00 6.9786e+00 1.0532e+01 1.9532e+01 -#> -7.2484e+00 4.8691e+00 -6.1163e+00 -2.4217e+00 9.1861e-01 -7.0110e+00 -#> 9.6960e+00 -1.0111e+01 4.1335e+00 8.7717e+00 -4.5262e+00 -1.9480e-01 -#> 1.0519e+01 -2.2790e+00 -5.3841e+00 -1.5754e+01 -4.0010e-01 5.5570e+00 -#> -1.7870e+00 -4.3120e+00 -8.3646e+00 5.1878e+00 -3.8105e+00 5.4791e+00 -#> -6.1213e+00 2.6515e+00 3.8603e+00 -7.3960e+00 -2.4629e+00 -3.2340e-01 -#> 2.4277e+00 -6.0967e+00 -6.1727e-01 9.6043e+00 8.1445e-02 -1.4710e-01 -#> -1.2415e+00 1.0929e+01 -8.9700e+00 -8.4613e-01 1.9625e+01 3.9038e+00 -#> -2.6456e+00 4.6997e+00 -1.1893e+01 -3.1487e-01 1.3500e+01 -5.4387e+00 -#> 3.8680e+00 1.5947e-01 1.4209e+01 -1.6989e+01 -9.0062e+00 3.9879e+00 -#> 9.3004e-02 -1.7697e+00 -4.5250e+00 7.9326e+00 -4.7444e+00 -9.6158e+00 -#> 4.5809e+00 -5.6403e+00 -5.0796e-02 -5.9721e+00 7.1729e+00 1.8613e+00 -#> -5.4809e+00 1.7845e+00 -8.3083e+00 -5.4888e+00 -2.0179e+00 4.4420e+00 -#> -#> Columns 37 to 42 -4.7855e+00 -8.5175e+00 -2.1857e-01 8.4637e-01 4.3660e-01 -4.9466e+00 -#> 6.6450e-01 4.6346e+00 2.6782e+00 1.2447e+00 3.8391e+00 -8.0498e-01 -#> -1.1130e+01 4.2234e+00 7.1485e-01 -1.3026e+00 -3.9174e+00 4.1765e-01 -#> 8.3580e-01 1.3614e+01 3.9566e+00 -1.0713e+01 3.2567e+00 -8.4020e+00 -#> 7.6823e+00 3.8936e+00 3.1150e+00 1.7484e-01 4.1188e+00 1.7145e+01 -#> 2.6063e+00 -2.1592e+00 3.8965e+00 2.8466e+00 -1.9440e+00 -3.9970e+00 -#> -4.6261e+00 1.2012e+01 1.5563e+00 -3.5953e-01 -1.2297e+01 2.0953e+00 -#> -5.7136e+00 -1.6435e+00 -3.1510e+00 3.9118e+00 -6.4690e+00 -2.4583e+00 -#> 1.0818e+01 -1.7416e+00 -9.2704e-03 -7.6917e+00 7.7324e+00 -2.0817e+00 -#> 7.8892e-01 1.1853e+01 1.3597e+00 1.0491e-01 -9.5310e-01 5.4994e+00 -#> 2.7781e+00 8.3081e-01 1.2500e+00 -2.1802e+00 -1.1053e+01 1.8365e+01 -#> -5.6311e+00 -9.8486e+00 2.1665e+00 -2.4590e+00 -2.2154e+00 6.3714e+00 -#> -4.4185e+00 9.0754e+00 -4.9723e+00 4.0641e+00 -2.4477e-01 1.1559e+00 -#> 3.8127e+00 4.3389e+00 1.8134e-01 -1.1438e+01 1.4193e+00 9.3104e+00 -#> -2.5857e+00 1.2633e+00 5.8720e+00 -2.4309e+00 -1.2344e-01 7.6392e+00 -#> 1.4477e+00 1.0082e+01 2.5753e+00 -3.5404e+00 1.1207e+01 -2.6013e+00 -#> 2.7662e+00 1.3309e+01 -1.3517e+00 8.3357e+00 -5.1607e+00 1.3805e+00 -#> -5.8706e+00 -1.7318e+00 2.8528e+00 1.9490e+00 2.3670e+00 -3.3641e+00 -#> 2.8802e+00 1.3370e+01 1.8935e+00 1.2284e+01 -1.6036e+01 5.7118e+00 -#> 4.4686e+00 -3.7408e+00 -6.7829e+00 -8.1280e-01 -6.6447e-01 9.5033e+00 -#> 7.0788e+00 -7.5171e+00 1.4984e+00 -8.3525e+00 1.0497e+01 -4.3993e+00 -#> -2.2460e+00 -9.2195e-01 -4.3723e+00 -1.5712e+01 1.6383e+01 -6.0502e+00 -#> 1.1910e+01 7.7961e+00 9.7424e-01 1.0935e+01 -9.6052e+00 1.5065e+01 -#> -2.9370e+00 -1.0523e+01 -5.9286e+00 5.4506e+00 -9.7247e+00 -1.1499e+01 -#> 1.0424e+01 -1.3085e+01 6.8869e+00 -6.7083e-01 6.7912e+00 -3.1413e+00 -#> 9.4696e+00 1.3121e+01 8.3503e+00 5.9973e+00 1.9038e-01 8.1521e+00 -#> 1.2455e+01 -3.8683e+00 -1.1434e+01 -6.7846e+00 5.1093e-01 1.0225e+01 -#> -6.8801e+00 1.1190e+01 5.6877e+00 -1.1347e+01 -8.6186e+00 -8.9230e-01 -#> 6.7188e+00 -1.9456e+00 2.7723e+00 -2.1238e-01 5.3955e+00 1.3889e+01 -#> 2.5153e+00 1.3421e+01 1.0657e+01 1.0813e+01 -4.0389e+00 4.3639e+00 -#> 2.3169e+00 -6.5107e+00 1.1071e+00 5.0577e+00 -1.9199e+00 2.6549e+00 -#> 3.7111e-01 4.1470e+00 -1.4876e+00 6.1349e+00 -3.8993e+00 1.3496e+01 -#> 3.9903e+00 -2.5372e+00 2.3113e+00 -1.3299e+01 1.5658e+01 -2.1184e+00 -#> -#> Columns 43 to 48 -5.3974e+00 1.1470e+01 8.0168e+00 -3.1737e+00 1.8088e+01 6.7016e+00 -#> 8.4993e+00 7.5901e+00 -3.8522e+00 -1.5282e+01 2.7711e+00 -3.9009e+00 -#> 5.4798e+00 8.2084e+00 -4.3640e+00 -5.6298e+00 2.8553e+00 6.0013e-01 -#> 1.5117e+01 -3.8010e+00 -6.0661e-01 -8.6124e+00 7.9563e+00 -8.5322e+00 -#> 1.0926e+00 -5.7196e+00 -7.8125e+00 2.9962e+00 -2.4641e+00 -3.9728e+00 -#> -6.9750e+00 3.9074e+00 -9.7547e+00 1.8155e+00 -9.4942e-01 1.4033e+00 -#> 7.8986e+00 -2.0966e+00 -4.5563e+00 -9.9288e-01 -3.9173e+00 9.6752e-01 -#> -2.1302e+00 -3.0563e+00 5.9163e+00 -7.8072e+00 -5.2031e+00 4.8729e+00 -#> -3.2703e-01 -5.2523e+00 -1.7050e+00 6.8670e-01 6.2048e+00 2.3407e-01 -#> 3.8850e-02 9.0948e+00 -3.6616e+00 -6.1142e+00 7.1880e+00 -1.5549e-01 -#> -6.8444e+00 4.9850e+00 2.1235e+00 4.4228e+00 -3.7574e+00 -8.3262e+00 -#> -3.4195e+00 7.0761e-01 -6.9093e+00 2.0876e+00 -1.3823e+00 1.0538e+01 -#> 7.4552e+00 -2.3935e+00 1.1926e+00 -3.8090e+00 -8.4963e+00 6.3465e-01 -#> -2.4364e+00 -1.1607e+00 -6.0250e+00 5.9558e+00 -3.0977e+00 1.4288e+00 -#> 1.1530e+01 -5.9603e+00 -4.1689e+00 1.2215e+01 -5.4808e+00 1.5768e+00 -#> 3.7910e+00 -1.1363e+00 2.6201e+00 -3.1267e+00 -7.8219e+00 -8.4765e-01 -#> 2.4809e+00 -2.6889e+00 9.0631e+00 1.3237e+00 6.6355e+00 4.8937e+00 -#> 2.8647e+00 1.6486e-01 -3.0638e+00 3.1515e+00 1.1612e+01 2.6685e+00 -#> 2.0890e+00 8.1913e+00 -5.3012e+00 -7.3151e+00 -5.1472e+00 -5.9437e+00 -#> 3.8042e-01 9.8934e-01 -1.1415e-01 4.0065e+00 -2.8091e-02 4.7139e+00 -#> -1.7802e+00 4.7301e+00 1.3032e-02 -3.6905e+00 -6.6128e+00 5.0625e+00 -#> 3.5504e+00 -8.2332e+00 3.7096e-01 9.8524e-02 3.4324e+00 2.8376e+00 -#> -9.2314e+00 -6.9470e+00 7.7655e-01 -5.2664e-01 -8.1657e+00 3.3885e+00 -#> -1.4360e+01 1.4785e+01 -3.7140e+00 -6.3802e+00 6.6014e+00 -1.1859e+01 -#> -7.1300e+00 1.4353e+01 -9.8361e+00 9.5068e+00 4.5462e+00 -4.0918e+00 -#> 2.4090e+00 2.6027e+00 8.3217e-01 -2.4805e+00 -4.2917e+00 -5.1048e+00 -#> -3.8890e+00 -9.2622e+00 -2.4179e+00 9.1678e+00 -1.0741e+00 1.4275e+00 -#> 1.0725e+01 3.6622e+00 -1.0390e+01 3.2040e+00 -8.1849e+00 -1.4154e-04 -#> 2.5473e-01 1.4962e+01 -6.1097e+00 7.3571e+00 3.6925e+00 -1.6461e+00 -#> -4.1509e+00 6.1366e+00 3.2962e+00 -5.4747e-01 3.5650e+00 2.8045e+00 -#> -4.0917e+00 -2.1213e+00 -6.7569e+00 2.4749e+00 4.6886e+00 1.8253e+00 -#> 4.5376e+00 -1.0110e+01 1.1122e+01 -1.1604e+00 -8.3908e+00 -3.9016e+00 -#> -4.6760e-01 1.4584e+00 5.2119e+00 -3.8599e+00 -8.4865e+00 2.6378e+00 -#> [ CPUFloatType{20,33,48} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_conv2d.html b/docs/reference/torch_conv2d.html deleted file mode 100644 index cc10c7461..000000000 --- a/docs/reference/torch_conv2d.html +++ /dev/null @@ -1,301 +0,0 @@ - - - - - - - - -Conv2d — torch_conv2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Conv2d

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    NA input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iH , iW)\)

    weight

    NA filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kH , kW)\)

    bias

    NA optional bias tensor of shape \((\mbox{out\_channels})\). Default: None

    stride

    NA the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1

    padding

    NA implicit paddings on both sides of the input. Can be a single number or a tuple (padH, padW). Default: 0

    dilation

    NA the spacing between kernel elements. Can be a single number or a tuple (dH, dW). Default: 1

    groups

    NA split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1

    - -

    conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor

    - - - - -

    Applies a 2D convolution over an input image composed of several input -planes.

    -

    See ~torch.nn.Conv2d for details and output shape.

    -

    .. include:: cudnn_deterministic.rst

    - -

    Examples

    -
    # \dontrun{ - -# With square kernels and equal stride -filters = torch_randn(c(8,4,3,3)) -inputs = torch_randn(c(1,4,5,5)) -nnf_conv2d(inputs, filters, padding=1)
    #> torch_tensor -#> (1,1,.,.) = -#> -1.2050 3.5601 -7.8325 -0.6184 -5.9300 -#> 6.9992 0.3900 1.3901 -2.5574 6.5135 -#> -2.3490 3.9786 4.1985 -9.6240 8.3693 -#> 0.1293 0.5186 -2.7322 9.4996 -1.1448 -#> -5.2164 -12.5999 8.9623 -8.9888 7.3018 -#> -#> (1,2,.,.) = -#> -0.8450 -8.2603 -2.9019 -5.5598 -4.9509 -#> -5.6410 1.2666 -5.8790 2.1525 -1.3928 -#> -0.2024 2.1010 6.3255 -0.5656 -2.5797 -#> -0.3285 6.7826 5.8021 -1.7078 7.7191 -#> -0.0922 -8.5321 -5.4983 0.7221 -3.5291 -#> -#> (1,3,.,.) = -#> 2.5094 9.2626 5.0731 -3.6366 3.3318 -#> -0.2142 2.5216 -0.6932 8.3285 -0.4724 -#> -2.7548 -2.3855 1.6016 -9.5280 -0.9662 -#> 1.6404 -7.5112 0.5470 -3.7868 0.9206 -#> 0.0776 -1.8698 3.2148 -2.8353 -1.9503 -#> -#> (1,4,.,.) = -#> -1.0442 10.8465 5.7719 2.8028 0.3426 -#> -1.9633 3.7087 -3.1929 -2.0919 -8.2913 -#> -0.9261 -3.8192 9.3410 -9.4944 8.6766 -#> -5.9383 -2.2824 -4.0878 -10.5887 -2.2831 -#> 6.7283 2.9823 0.6066 0.9479 -1.2099 -#> -#> (1,5,.,.) = -#> -3.4877 -1.5824 -6.4475 -1.1290 -2.3183 -#> -2.2229 -5.1762 9.2085 -3.5268 -3.8315 -#> -6.3696 2.3858 -12.1739 -2.6510 -3.0961 -#> 4.4813 3.8243 -0.4043 2.4245 -0.3913 -#> 0.6648 -2.4358 0.4671 -3.7840 -3.5538 -#> -#> (1,6,.,.) = -#> 0.8825 0.3176 -6.6245 -6.0051 2.4430 -#> -2.0265 -0.9768 6.7438 -7.4899 2.0777 -#> -6.8935 -2.2333 -3.3011 2.0151 2.5786 -#> 0.2469 -4.8563 2.3537 0.5968 3.6600 -#> -1.4781 0.2248 -3.1730 -6.7766 -3.0347 -#> -#> (1,7,.,.) = -#> 1.5889 -4.5167 0.0906 7.6198 1.8365 -#> 5.0933 -2.3551 -2.6166 -7.5808 -2.0514 -#> 4.0381 6.9844 -2.3409 2.5503 6.2012 -#> 6.1860 8.5588 0.8248 1.6048 -4.7339 -#> -2.7566 3.9998 8.0454 -1.6114 -0.9366 -#> -#> (1,8,.,.) = -#> 4.3153 -3.2445 0.4090 1.5033 6.4462 -#> 6.4586 2.8058 -3.3607 5.9048 -2.4407 -#> -3.9344 4.6081 5.3624 -0.2189 -0.3718 -#> -4.3796 5.2653 -0.4628 8.5329 -6.1232 -#> 0.7405 5.8740 5.0339 -0.6710 0.8794 -#> [ CPUFloatType{1,8,5,5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_conv3d.html b/docs/reference/torch_conv3d.html deleted file mode 100644 index 1eb895a10..000000000 --- a/docs/reference/torch_conv3d.html +++ /dev/null @@ -1,245 +0,0 @@ - - - - - - - - -Conv3d — torch_conv3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Conv3d

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    NA input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iT , iH , iW)\)

    weight

    NA filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kT , kH , kW)\)

    bias

    NA optional bias tensor of shape \((\mbox{out\_channels})\). Default: None

    stride

    NA the stride of the convolving kernel. Can be a single number or a tuple (sT, sH, sW). Default: 1

    padding

    NA implicit paddings on both sides of the input. Can be a single number or a tuple (padT, padH, padW). Default: 0

    dilation

    NA the spacing between kernel elements. Can be a single number or a tuple (dT, dH, dW). Default: 1

    groups

    NA split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1

    - -

    conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor

    - - - - -

    Applies a 3D convolution over an input image composed of several input -planes.

    -

    See ~torch.nn.Conv3d for details and output shape.

    -

    .. include:: cudnn_deterministic.rst

    - -

    Examples

    -
    # \dontrun{ - -# filters = torch_randn(c(33, 16, 3, 3, 3)) -# inputs = torch_randn(c(20, 16, 50, 10, 20)) -# nnf_conv3d(inputs, filters) -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_conv_tbc.html b/docs/reference/torch_conv_tbc.html deleted file mode 100644 index 8d56e06ee..000000000 --- a/docs/reference/torch_conv_tbc.html +++ /dev/null @@ -1,223 +0,0 @@ - - - - - - - - -Conv_tbc — torch_conv_tbc • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Conv_tbc

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    NA input tensor of shape \((\mbox{sequence length} \times batch \times \mbox{in\_channels})\)

    weight

    NA filter of shape (\(\mbox{kernel width} \times \mbox{in\_channels} \times \mbox{out\_channels}\))

    bias

    NA bias of shape (\(\mbox{out\_channels}\))

    pad

    NA number of timesteps to pad. Default: 0

    - -

    TEST

    - - - - -

    Applies a 1-dimensional sequence convolution over an input sequence. -Input and output dimensions are (Time, Batch, Channels) - hence TBC.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_conv_transpose1d.html b/docs/reference/torch_conv_transpose1d.html deleted file mode 100644 index 954bcc923..000000000 --- a/docs/reference/torch_conv_transpose1d.html +++ /dev/null @@ -1,5300 +0,0 @@ - - - - - - - - -Conv_transpose1d — torch_conv_transpose1d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Conv_transpose1d

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    NA input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)

    weight

    NA filters of shape \((\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kW)\)

    bias

    NA optional bias of shape \((\mbox{out\_channels})\). Default: None

    stride

    NA the stride of the convolving kernel. Can be a single number or a tuple (sW,). Default: 1

    padding

    NA dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple (padW,). Default: 0

    output_padding

    NA additional size added to one side of each dimension in the output shape. Can be a single number or a tuple (out_padW). Default: 0

    groups

    NA split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1

    dilation

    NA the spacing between kernel elements. Can be a single number or a tuple (dW,). Default: 1

    - -

    conv_transpose1d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

    - - - - -

    Applies a 1D transposed convolution operator over an input signal -composed of several input planes, sometimes also called "deconvolution".

    -

    See ~torch.nn.ConvTranspose1d for details and output shape.

    -

    .. include:: cudnn_deterministic.rst

    - -

    Examples

    -
    # \dontrun{ - -inputs = torch_randn(c(20, 16, 50)) -weights = torch_randn(c(16, 33, 5)) -nnf_conv_transpose1d(inputs, weights)
    #> torch_tensor -#> (1,.,.) = -#> Columns 1 to 8 1.6673 -7.0390 6.6254 -13.9097 -9.2569 16.1860 3.0554 -10.1673 -#> 0.5097 0.4955 5.0436 -2.2605 3.2619 1.0813 8.2840 0.2337 -#> -2.5402 -1.4119 -6.6792 0.1580 -12.0189 -2.8290 5.7440 10.1772 -#> -6.6198 3.2866 -5.4540 2.0456 3.6355 7.4837 -10.9005 -5.6650 -#> -4.6747 5.7736 -5.4007 1.2693 11.4762 -4.7003 -11.3653 10.1400 -#> -7.4153 3.9516 -1.1868 -8.5232 6.7928 -4.0613 -12.1954 -0.3727 -#> 3.3955 1.0648 -4.0864 -17.0257 -3.4968 -4.9347 -25.7271 21.9273 -#> 4.0335 -6.6207 -3.6258 2.1134 2.8998 -6.8774 10.1487 -13.0325 -#> -0.7558 -1.2329 0.9330 12.2378 -7.8136 -0.6589 7.9927 1.7098 -#> -7.7476 11.0338 -19.6308 -11.0443 -1.9108 -9.0969 -28.1443 -17.9797 -#> 2.7401 3.4970 -6.8374 -8.1578 1.5898 9.3208 4.2085 2.1895 -#> 3.1280 -2.2744 3.1126 3.8573 -5.6051 2.0268 2.0747 -4.4871 -#> 3.2771 4.8169 5.4240 -9.3082 -13.5079 -0.9002 -4.1523 5.5984 -#> -3.5472 5.3228 -0.3093 4.4044 0.9189 -6.4752 -6.5480 7.4419 -#> 4.2013 -5.9650 -2.9532 -1.8045 4.5317 0.8231 5.2075 -0.9755 -#> 1.6888 6.3345 8.0313 -4.3153 -1.1394 6.0972 -11.7238 -4.2819 -#> -0.4871 7.4014 -7.3978 -2.9028 -5.0449 -7.1657 -3.8541 12.1393 -#> 0.8300 -2.1989 18.5210 -6.7047 1.8052 -12.0026 -3.6008 12.7004 -#> -5.7435 -4.3290 -5.1741 -4.9028 10.4417 -1.7813 22.8982 4.6736 -#> -1.8184 1.6866 2.4972 -10.6010 -1.6615 4.2066 1.2256 1.8704 -#> -0.1898 7.4767 21.4571 -1.9761 8.4871 -4.1088 -4.3248 3.2695 -#> 2.8483 -11.0110 7.3260 0.7999 3.4976 5.7566 12.8856 4.1038 -#> 6.9826 9.8364 -0.9694 -7.2072 2.1751 -9.7158 -20.3140 -4.7768 -#> 0.2967 -5.7820 1.4100 -1.7626 -0.5567 -2.8442 11.3496 0.9707 -#> 2.5259 7.6391 2.8814 8.4676 -8.6886 -16.8321 4.9696 -23.1633 -#> -3.6094 -7.7429 -3.9817 -10.3633 -14.8211 -17.5294 -7.3543 1.4741 -#> -3.6305 1.5408 -2.2006 8.1134 1.1769 -3.0465 5.4047 -7.1063 -#> -0.2056 -3.0883 2.6383 1.4320 -0.4309 12.6957 20.8133 -1.0188 -#> 0.7445 -2.1118 1.9698 -2.5180 0.3591 -17.7520 -5.9807 -7.7320 -#> 3.2831 -7.6201 -3.1870 -8.1050 -8.9224 -8.1959 -4.7006 -10.0807 -#> -1.7069 -4.7109 5.5420 0.4770 3.4143 15.3951 -8.6150 -10.6463 -#> 4.9333 8.1781 2.6415 5.0800 -18.8387 -13.3438 0.6360 16.3387 -#> 2.4939 8.4147 -4.0838 -7.4578 -5.3779 -6.8781 3.7359 9.3849 -#> -#> Columns 9 to 16 4.5019 6.9288 -21.3335 0.1317 -3.8836 8.3590 -0.8443 -14.3927 -#> -16.2857 -11.4820 -1.4024 -4.5153 1.9758 0.6438 -2.7761 10.1361 -#> 6.2420 -0.6045 -9.7481 9.3241 -3.6135 -18.6855 6.7881 -13.9915 -#> -5.0487 -20.3735 28.4884 3.9854 20.9909 -0.9224 7.0288 0.5621 -#> -3.5373 -15.3569 -16.2579 16.5925 -7.9983 -9.0862 -6.5943 0.2070 -#> 13.7029 5.4600 -7.5984 -6.4349 7.3174 15.5161 2.0219 -1.0355 -#> 3.6252 -20.4715 -3.8647 -20.7537 7.9750 0.7964 -23.7706 9.1045 -#> -8.7950 4.0828 -4.5432 -6.1630 -5.2080 -14.8888 9.1260 -5.9252 -#> 2.9966 4.8565 6.0109 -8.5393 19.8787 3.5916 4.0040 -11.9161 -#> -11.2591 -1.4102 8.5272 -8.9441 10.3345 -13.4799 -0.9897 15.2467 -#> -0.6632 8.7770 -15.7039 -13.8364 1.2821 -0.6675 0.4520 -0.1015 -#> 17.6055 15.4246 -8.5307 13.7545 6.1392 2.1994 5.0420 -3.2646 -#> 5.2685 -6.2487 3.4035 -6.7103 4.0975 7.0198 -4.6465 -7.1480 -#> 7.5268 -3.9966 9.9433 -3.9344 -6.8677 6.9691 -16.2891 22.7894 -#> 5.2153 16.0680 16.4236 18.3746 -5.5733 -1.2358 -6.8528 1.5499 -#> 4.9569 -3.0487 -1.9484 0.2809 6.0391 0.1817 2.8151 -11.2639 -#> 29.2747 7.6625 -8.7079 2.9776 -6.0190 -6.8860 -3.6460 2.3650 -#> 8.1998 -6.1037 -6.8587 -6.0042 4.2655 10.6292 -6.2967 0.6930 -#> -14.4762 16.4459 -5.9406 2.0809 1.8835 -3.1317 -8.9321 7.7105 -#> -10.7999 18.7483 17.0834 -10.3893 -8.3545 -21.9094 4.0324 2.8529 -#> -6.2272 -3.0918 1.9956 -4.4372 -6.3339 5.5328 -6.0873 -10.6416 -#> -5.9817 -6.9611 12.4265 -5.7492 3.2616 -6.5960 6.5149 9.2240 -#> 8.0986 13.9525 21.4184 -4.3470 9.5946 -18.5461 -4.5604 -15.4378 -#> 3.7024 -0.7089 2.5686 -0.7054 6.0643 12.1628 1.9096 6.4987 -#> 10.7530 8.5200 -5.6235 2.7819 6.0993 -11.6488 18.3623 -5.3475 -#> -0.5536 -8.5774 0.8194 7.4602 -11.3240 5.9768 -0.3840 19.7081 -#> 0.0850 0.9243 2.3494 12.6000 -6.7075 8.3957 -7.9544 15.4305 -#> 1.4948 1.6475 -10.0262 -0.6992 -20.6828 5.6993 3.6267 -8.4266 -#> -3.9348 2.5818 4.7236 2.2962 -8.2360 3.9196 1.1975 14.9994 -#> 7.2291 -14.4824 -7.3407 26.6378 4.6584 -1.7192 -4.7126 -6.6773 -#> 3.6147 -1.7117 3.2719 -0.1214 3.2613 -12.0086 0.1217 -11.8695 -#> 2.6794 -8.8757 20.7463 13.6375 -16.4280 14.3362 -13.4708 9.1810 -#> 11.7337 6.5971 4.8227 -7.0015 -12.9038 22.7038 -19.3795 -5.8170 -#> -#> Columns 17 to 24 1.2900 -12.9553 -5.3724 15.7169 -10.8972 -11.2200 15.5498 -5.0368 -#> 2.0881 8.0263 -3.9599 9.3983 -10.2026 2.6811 -5.9319 -7.8959 -#> 14.9066 7.4782 -0.0191 -0.6530 -7.1498 9.4691 -11.9981 15.5602 -#> 14.5616 5.2064 2.5051 8.9144 17.6842 -13.5671 -3.9489 7.7915 -#> -9.7128 6.7477 -3.1993 1.6146 4.5125 5.5407 -8.2644 13.3508 -#> -1.6102 11.9611 3.4677 -4.9038 -10.2262 -14.4330 -1.2227 -12.5192 -#> 12.0007 -14.9848 0.9463 3.5031 17.4539 9.3853 -1.6176 -9.6670 -#> -18.4721 3.3622 8.1907 -2.8999 -0.2637 -4.8769 1.5459 16.6135 -#> 2.1102 5.4149 -1.7087 -8.4103 12.7386 -9.9078 -9.3740 12.7742 -#> 5.3657 5.1944 12.6113 8.4549 15.0561 -10.8250 11.2875 -8.3614 -#> 4.6304 9.5156 -12.6676 -0.9019 -10.6211 9.9370 3.3044 3.2810 -#> -4.6163 17.0280 1.7505 6.2276 -11.3447 -6.5945 1.7422 0.4499 -#> -3.0405 -5.3669 -1.8315 -2.1907 -6.5904 -0.9806 -0.6572 17.8599 -#> 4.4193 18.8522 10.2451 2.9497 21.5558 0.1101 -5.1855 -9.5943 -#> 10.4257 13.2620 2.2022 -19.5122 2.7581 -3.0927 1.9384 7.3883 -#> 10.6498 -4.7587 2.6286 -6.5227 -4.8643 -16.4109 11.9423 -26.0725 -#> 3.3000 9.5719 11.0230 9.4557 -4.9966 -4.4449 4.4763 -18.4214 -#> -15.8333 -7.3848 4.0740 6.5697 -5.7416 -4.4711 8.0335 -3.5673 -#> 11.2547 11.7943 -27.4378 -5.9246 8.8010 20.3112 -3.0324 16.8786 -#> -2.6789 4.0453 0.9162 12.4067 5.2146 -2.5160 -9.9002 16.7632 -#> -19.3769 -4.4897 5.8856 5.8640 -14.5450 11.0825 1.5232 -3.6449 -#> 6.0268 12.5299 13.8870 -16.7846 -9.3446 0.2853 0.7077 -11.7750 -#> -12.7468 10.7160 31.0325 34.9867 -5.8856 -11.4765 -10.4610 -2.5913 -#> 9.3896 -6.9599 -7.6279 -5.4562 0.0194 -6.9496 -2.8263 -5.2451 -#> 4.0190 -7.9305 -7.1466 13.0450 -5.5047 -4.4661 0.9274 -4.7775 -#> -13.4600 -0.2809 -0.7337 9.6314 1.7702 3.1068 9.6836 -3.6410 -#> -0.2111 0.3837 -10.4137 -3.0894 8.8677 -2.2090 7.1865 -3.8667 -#> 13.4651 7.1765 -1.6467 -4.9560 -9.6018 8.1471 -7.0450 17.0260 -#> -17.4430 -1.8719 -8.0025 -15.9723 11.6767 -7.6636 -7.0144 3.6021 -#> 18.1120 -0.0250 -18.4019 9.8127 -2.1751 -2.7134 8.3464 -1.5143 -#> -3.8167 10.2692 6.5966 7.9059 1.1906 10.1638 1.1750 -2.4618 -#> 0.1265 -15.9027 2.7108 -6.4089 4.9851 1.2107 -11.7264 -1.2454 -#> 0.4524 0.2076 8.5678 -6.2080 0.6733 -7.2406 0.8338 3.5937 -#> -#> Columns 25 to 32 -0.0293 14.3552 3.6278 7.7933 -5.4766 12.6476 1.8703 -2.8825 -#> -3.2107 -9.0870 7.0099 5.4586 2.7359 2.2581 -3.8164 8.9624 -#> 13.3699 -4.2088 -4.7406 -8.7636 -5.9517 2.2329 1.8833 21.2654 -#> 12.8826 -7.6350 -5.2774 2.4938 9.3194 -13.5257 5.9729 20.7365 -#> 10.1223 4.4283 -13.0912 -9.2791 -1.8947 0.4621 3.4288 8.0413 -#> -9.1683 7.7603 3.0516 -5.1836 2.5889 8.7409 5.4927 4.1831 -#> -1.1417 10.9090 -7.1233 -3.5366 -1.2165 -3.2714 3.8553 1.1704 -#> 6.5912 4.1697 7.7293 7.9883 -9.9514 -5.4976 12.7131 -0.1949 -#> -4.4844 -5.7362 -3.9648 10.1807 -6.2640 5.3054 -4.7080 4.0852 -#> 12.6666 12.5517 -4.1955 7.5249 -0.7672 3.2016 6.5978 20.8497 -#> -7.9074 7.2881 -4.8798 -1.4548 -8.7517 3.9573 9.5329 -4.8086 -#> 0.3169 -3.8601 1.0305 0.5803 1.2628 4.3491 -12.1400 -2.7427 -#> -0.3467 13.3886 -6.3979 2.0452 2.3282 -2.0779 -2.4584 -16.2387 -#> -5.7151 9.2725 -0.0182 1.8764 6.9025 -7.1871 -10.9513 -6.7978 -#> 2.4439 -1.6886 -7.7059 0.1886 17.1840 -6.1218 -5.3057 5.4783 -#> -16.9525 6.0691 16.1657 -11.4185 3.4004 10.6037 4.7744 2.5440 -#> 9.5940 2.7641 7.8744 19.0521 -3.7261 14.7517 3.5746 -0.4117 -#> 0.4406 -12.6979 -6.8351 3.1805 -11.3419 -1.0762 9.5960 -4.1767 -#> -11.9938 -6.4985 9.3770 6.9766 13.3734 12.1043 14.3930 -7.0519 -#> -2.6697 -2.4679 1.1577 3.0986 6.3140 -21.5625 -0.3885 0.4263 -#> 0.3668 -3.9383 20.8603 6.6954 -2.7366 -0.2231 -0.5172 -13.0651 -#> 19.9507 1.6934 7.1942 -15.3310 3.2378 8.5819 -14.4676 0.2683 -#> -2.5942 1.2458 9.2131 9.8679 8.3943 -12.4564 4.6223 3.0705 -#> 2.0545 -1.3666 -0.5177 -9.2698 -7.6781 -1.9081 -3.4399 -3.9338 -#> 8.1274 -0.1854 5.2153 -11.7028 8.3669 4.8400 -13.4963 11.7893 -#> -0.1239 6.0862 -7.2274 0.1266 2.1916 -9.3351 -11.9587 -7.4673 -#> -20.4607 4.0279 7.3662 -0.7345 5.7650 3.7344 -0.5221 -2.1129 -#> 11.4275 -12.4868 13.0824 10.5353 4.0451 1.8503 18.2519 -0.7406 -#> 13.0047 -15.2421 9.2275 1.4917 -11.4757 -5.3868 3.8877 4.4101 -#> -10.2052 18.6921 -13.4181 -20.0699 12.8999 -12.0904 0.3806 -5.5696 -#> -2.4651 -10.7724 8.9007 1.9734 -6.8980 -11.9957 6.5855 -4.4643 -#> -1.0077 -4.1095 -2.1013 -0.5406 5.8052 9.8388 -20.2044 -2.6470 -#> -13.4139 -2.1838 -1.5024 -6.3311 -6.9503 3.3761 7.3990 7.9767 -#> -#> Columns 33 to 40 1.8592 0.9761 -2.6963 -3.8153 -1.8090 29.3572 -11.8402 11.8519 -#> 13.3483 5.1859 4.9052 -0.4473 12.8364 2.1392 11.2240 1.1636 -#> 2.9127 -0.4139 -9.8866 2.1386 -0.3520 -3.4992 15.7872 -1.9768 -#> -8.7932 10.8440 -0.3113 9.1708 9.1623 -17.6051 14.4912 -2.6571 -#> -5.4569 14.1891 1.8065 17.6668 2.9545 -3.7614 26.8721 6.9820 -#> 5.6159 -18.5910 -0.6680 -9.2854 2.9860 3.0446 -10.3332 -9.6543 -#> 6.3406 1.3053 -2.6143 0.2845 7.4428 8.5844 1.7969 -1.5125 -#> 10.9239 9.0027 22.6637 18.8975 -4.2188 12.3108 26.5707 8.6210 -#> 1.2633 -9.0421 0.9745 2.6553 -11.1772 -12.4188 1.3170 -5.5598 -#> -12.8508 6.2380 -4.0621 14.0566 16.2944 -9.8447 8.1251 11.8212 -#> 10.8548 17.6606 -0.6996 -0.6495 1.4041 2.4018 7.0875 3.6098 -#> -3.0109 -0.2962 6.1093 6.9493 -6.2817 4.9856 9.9639 0.5589 -#> 0.5565 -0.0766 1.2112 1.3211 -15.6654 0.7365 -1.7787 -11.4870 -#> 1.2893 -10.7174 -7.8088 -3.3270 -0.2953 -10.0667 10.5948 -3.7164 -#> -7.5186 -7.9848 -14.5698 2.6338 6.9504 -1.8349 14.9450 9.0353 -#> -3.8914 2.3522 -3.9384 -14.0598 11.8851 3.7743 -4.7451 -18.7160 -#> -7.9114 4.4290 1.2984 -6.1245 10.8040 9.1649 9.3862 3.8943 -#> 13.5192 -0.3540 11.7615 -10.4322 -10.5759 5.1959 -10.5739 -2.5550 -#> 4.1348 -11.0223 -7.5457 -1.8305 10.4051 9.8118 5.1208 5.6186 -#> -4.8263 -6.7968 5.5902 12.7691 7.9257 1.9996 6.5328 8.3577 -#> 0.7681 7.4137 12.9171 -3.9795 -2.3992 5.0543 -2.1804 6.8998 -#> 7.7960 -0.6246 -0.4729 2.6995 5.4509 -0.4801 2.1876 4.9933 -#> -6.3639 0.3813 12.9830 -2.4914 -6.7726 1.7444 4.6179 18.1880 -#> 6.7140 2.4883 8.6126 18.9305 -10.5894 3.3141 -21.9243 6.1176 -#> 0.2413 -8.9027 3.3162 -13.0962 -12.3184 -3.8753 -23.0307 9.0538 -#> 0.0690 -15.0865 1.8602 -8.6315 0.5089 -0.7437 -5.9029 3.0767 -#> 7.1451 -8.2692 -11.5116 -8.8415 -2.0170 -7.0324 -3.6529 -10.3245 -#> 6.1436 -0.5680 4.2794 -0.3316 -7.4252 -10.7011 7.0821 7.7291 -#> -1.3997 6.5191 -0.3735 -6.5781 -10.0386 -6.9226 -2.5003 -9.5659 -#> -0.0958 -0.5062 2.8923 -3.4108 13.0374 -2.9370 -10.4329 -3.1501 -#> -8.9609 2.8826 0.2373 5.7849 -1.4304 -5.0798 12.6846 12.8611 -#> -0.7236 -1.0731 -3.0510 -9.1343 -18.2925 1.9743 -0.5286 -7.9524 -#> 10.3919 13.0850 0.9242 -0.9788 -6.7773 0.8554 -4.7509 -5.3867 -#> -#> Columns 41 to 48 2.9985 -15.5869 14.0373 10.4037 -11.1567 6.1454 3.8270 7.7380 -#> -1.6961 -13.4523 2.7170 -5.3499 -5.4221 10.5192 9.8349 -12.1479 -#> 6.2730 22.6802 -7.0960 -14.5570 -13.0734 24.1451 3.9818 4.1208 -#> -1.6407 8.4934 -6.2687 -4.5555 -9.5029 15.1876 8.3357 -3.0061 -#> -12.4818 22.4958 -6.0299 -8.6670 -10.3577 2.4604 10.0247 -10.8954 -#> -6.8458 -6.1891 1.1851 2.8739 2.8533 -10.4645 1.1883 -5.4889 -#> -18.7008 15.1108 8.5953 -5.3394 -2.5032 6.4586 3.9125 3.6250 -#> 2.3395 4.7180 -12.1364 -2.4026 6.8779 8.2134 -22.8381 -3.5587 -#> 15.7945 -2.3467 5.5252 4.7041 -6.9610 -8.8453 -2.2314 11.2754 -#> -4.7374 -10.4254 10.9580 -13.0100 -6.7119 0.3756 16.1945 8.9202 -#> -6.7409 4.5078 4.3692 -4.6630 -5.9395 -3.9312 -5.5752 1.4460 -#> 1.1583 8.8820 2.3125 -8.9832 1.3572 5.7707 4.3816 -12.6141 -#> 1.1008 6.2556 -5.6111 -7.0873 0.3703 3.5847 0.6188 -5.6186 -#> -5.2835 -8.3637 -0.4618 5.6316 -1.7833 -8.5794 27.2491 -10.4892 -#> 20.8741 8.0639 -15.5463 -7.4028 3.6106 -1.1026 0.9431 -4.4649 -#> -11.5054 -5.7812 19.4337 8.4593 7.6994 -14.5653 3.4009 -3.5659 -#> -13.8089 -11.7804 10.2397 -9.4642 -1.2912 -14.0060 -6.6083 -11.9624 -#> -8.1229 -1.9699 11.3045 4.4870 -1.1037 9.2278 -1.8346 -6.5917 -#> 8.1041 -13.1606 -10.0848 2.4079 -2.9753 -14.2536 -8.2830 25.1459 -#> -0.6315 11.0338 -11.0389 4.5759 -1.7932 18.5247 -1.9834 -1.4612 -#> -11.3549 -0.3709 18.6718 14.9252 -3.7786 -3.9237 -4.9956 18.7164 -#> 9.1790 5.0087 -4.8780 -10.6788 -4.4748 -7.9521 2.3956 11.5146 -#> -14.9233 15.5074 13.5288 6.9501 -3.6375 6.9654 -4.0685 -8.8993 -#> -1.0245 4.7855 -17.6042 4.1208 1.0548 -8.5788 -1.7149 1.0637 -#> -5.1705 13.9681 1.5986 15.8308 -3.9914 8.3166 1.1126 -11.7575 -#> 2.7832 -21.6206 0.3791 -5.4350 18.9783 0.2022 6.9384 -23.6424 -#> -1.1030 -4.5934 -1.3159 2.3002 2.8800 -6.3804 19.1025 -11.9186 -#> 1.8217 2.0252 -7.3752 7.9834 -7.1141 -2.5236 -6.1048 14.2583 -#> -7.0049 7.8784 -14.4774 -6.2137 10.1269 -15.6804 -6.8904 -4.6614 -#> 10.0098 8.4671 2.8254 9.2529 -16.7819 -3.6309 18.5456 -10.9203 -#> -0.6490 -6.3074 0.1846 4.3354 9.1514 -12.6226 -3.6332 2.4962 -#> 11.7775 -1.8143 1.0238 -24.0774 13.3624 0.3635 1.7397 -2.5824 -#> -13.1913 2.5277 -12.8994 11.0974 -3.0293 2.3099 -0.8103 -0.4676 -#> -#> Columns 49 to 54 -8.7345 -14.2799 19.6350 13.5499 1.2315 -0.6506 -#> 1.8484 -3.2535 -1.7324 -4.3937 4.1733 -0.5664 -#> 4.5108 13.2596 -4.4172 1.1377 3.8892 10.2091 -#> 7.5502 1.0322 -9.1656 -15.8731 5.8408 -5.2419 -#> -2.2194 8.1269 11.4847 -5.2739 -5.0256 0.6433 -#> -4.1628 -0.1577 1.1322 9.3402 4.0405 -2.5579 -#> -2.4551 21.4342 -0.1518 0.2222 -0.9053 -2.7780 -#> 10.6593 -5.1491 0.3012 6.6177 -8.4856 -11.1581 -#> -11.0929 5.7385 -7.6207 -0.4959 -1.9499 2.3844 -#> -4.4337 -0.3689 -3.9270 -5.0881 3.1659 -2.1273 -#> 1.6437 0.2100 -3.8414 -0.0949 -6.4092 -2.9916 -#> -10.3230 11.3656 -11.9414 11.8128 -5.7713 2.6200 -#> -4.4394 -3.3487 2.7528 3.8788 -1.4185 -3.0869 -#> 15.5630 -6.5025 -3.7371 -6.6396 15.1147 -0.3786 -#> -3.5993 -1.2830 -12.9225 -9.8014 6.9267 7.7926 -#> 1.7097 5.5124 -1.5683 -0.6643 -3.9920 5.6530 -#> -6.5705 5.0899 10.4892 -1.9026 2.3790 -1.7570 -#> -9.6865 -3.1503 5.3201 -1.7256 1.1293 -11.1168 -#> -4.3125 4.4370 -12.0474 -2.7226 -2.3004 -5.8733 -#> 6.1387 -0.5534 -3.6291 9.1612 7.0297 1.6557 -#> -7.3084 9.0659 4.9779 -3.0977 -8.6063 0.9893 -#> 20.1320 -8.8056 -12.3684 6.0840 -1.6641 4.9350 -#> -3.0457 9.5258 -15.0322 7.7813 1.9794 -3.8203 -#> 0.5432 11.5130 -26.2873 3.9583 8.1876 1.2593 -#> -5.0762 12.8825 -2.9607 6.7716 2.5277 -4.8843 -#> -3.7113 7.3289 -1.8610 6.7798 4.0303 -2.3700 -#> 1.6202 -2.6948 -2.9366 -5.8387 7.3190 3.1959 -#> 1.5668 -3.8051 15.0303 -7.3860 -2.8871 -3.9352 -#> -2.9899 -11.8343 -5.7724 -2.9391 -0.1798 -5.7964 -#> -2.9931 4.5864 7.4006 -21.0496 -10.1332 5.1122 -#> 20.1991 -6.5378 -11.0948 0.1378 7.5001 -2.8968 -#> -2.7824 -17.3546 -6.3185 -4.0368 12.6433 7.2955 -#> 0.4172 -4.4497 9.9093 -2.1454 8.5557 -5.9379 -#> -#> (2,.,.) = -#> Columns 1 to 8 4.7596 -2.3708 1.3418 10.7392 -17.9585 1.6765 9.6306 3.8409 -#> 2.5987 -11.9234 5.6093 -15.4016 8.0875 -11.7553 -11.3902 8.7209 -#> -11.8239 2.1317 -9.5167 8.5529 -5.5999 -8.7316 -8.2675 12.9377 -#> -10.1575 1.3394 -2.0061 6.9250 0.4979 -6.0003 2.4058 8.1599 -#> -12.7172 -1.2893 -14.0448 -3.4130 1.7811 -20.7635 -1.9964 -6.3883 -#> -1.9728 17.3032 8.5093 4.1580 -6.2205 18.0032 -1.7450 2.6589 -#> 3.5242 -16.6260 7.9907 -1.1886 -14.1955 -7.1470 7.9479 7.5243 -#> 0.5199 -7.8098 -5.8438 -1.0146 -5.0564 12.4495 -1.4228 -13.6972 -#> 0.1183 2.4802 12.7326 -6.0799 -1.6831 -6.8250 9.4823 10.3730 -#> -12.6137 -9.4658 -8.8782 -6.6302 -1.4513 2.4207 23.0161 -8.5375 -#> -1.3446 -0.7345 -8.8468 5.0346 0.8501 -2.3404 -1.5003 -9.4550 -#> 0.1520 -2.6062 4.4482 -8.2256 -5.3967 -2.2162 -3.8969 -12.9057 -#> 7.7093 -0.7853 7.2272 3.5096 1.8355 16.3071 -9.8703 -3.0199 -#> 1.7039 -7.8727 4.3188 -6.3996 9.3464 -11.0304 -13.0502 8.8442 -#> -5.0000 -0.4485 -5.8625 0.0639 0.5489 -8.9442 3.0572 -10.4764 -#> 2.1024 1.1575 -7.3141 -3.1504 16.4440 1.9490 4.5007 1.5405 -#> 2.2730 3.5882 10.6477 -8.7302 5.1281 -5.5718 1.3978 -8.2277 -#> 13.8522 -0.6762 10.2911 -0.2770 -7.3265 -7.6784 1.6779 2.8196 -#> -3.8064 -8.9778 -0.1520 1.8026 -7.8690 -4.4951 12.5004 1.7195 -#> -14.5756 4.0345 -6.2921 5.8808 -14.3969 9.0118 -9.3838 -3.6941 -#> 4.7236 -4.2033 -8.3519 -4.8034 -9.7167 9.4050 -4.0289 -11.0073 -#> 5.3240 -7.0412 1.8191 -11.3021 12.7159 9.0398 8.1060 2.1124 -#> -6.4629 -2.5036 -7.5835 3.1017 -11.9905 -8.9950 11.2799 -2.9150 -#> 4.2767 4.3477 1.0800 -2.5998 2.8277 10.7435 9.3785 -9.6822 -#> -4.4303 20.7324 -13.0990 6.1930 -6.2529 0.7377 -7.4001 1.3349 -#> 4.4720 2.8303 13.6389 -7.9152 8.4899 -3.1532 8.3466 0.4572 -#> -8.3623 15.7370 -10.7719 4.4032 9.9055 3.7759 -2.8595 -1.7905 -#> -4.8775 1.8915 -0.8530 10.2657 -15.9343 10.3426 -17.7020 2.0729 -#> 0.5613 7.1272 19.9651 10.9519 14.0965 2.4315 13.4485 -1.4175 -#> 4.8714 8.1319 -10.5989 0.3411 -9.3492 7.6087 9.2715 9.6984 -#> -1.3565 -7.4533 -4.8182 -17.3904 -0.5276 10.7067 -8.2810 -3.0651 -#> 5.9905 1.0488 8.9671 16.8183 11.3654 -6.4070 3.9435 19.8416 -#> 3.5665 -2.9801 -1.3262 8.9776 9.5841 2.2091 -2.9954 -3.0973 -#> -#> Columns 9 to 16 -8.8073 -4.6426 -13.9884 -8.2320 -8.5217 -0.4775 -7.4151 -0.6725 -#> 10.0546 4.3717 -1.5863 1.3989 7.1575 32.8837 3.4143 -0.7769 -#> -8.8521 -9.9139 -19.5135 -24.9521 0.7116 -11.7181 -5.9171 -5.1497 -#> -3.9503 -13.6314 -5.8326 17.8691 6.6317 -7.6286 4.8017 10.8725 -#> -12.6786 -19.4017 -9.4109 2.1331 6.1469 11.5832 4.8107 5.5907 -#> 23.6291 -7.2367 7.5458 1.4301 9.4437 -3.4435 9.0182 6.6427 -#> 2.9611 0.3858 -5.4467 4.0315 -21.9230 -10.6043 3.1202 1.5852 -#> 3.9447 3.1710 -12.9762 8.3977 9.4892 -0.5182 2.5873 17.2142 -#> -1.3194 -13.1223 6.6894 7.0331 6.4437 -12.6453 -14.5226 -3.8072 -#> -10.4038 -7.1690 14.0111 -8.5985 -3.2720 0.6783 8.7759 8.8802 -#> 2.2255 7.0874 -0.6579 -2.0451 -3.7498 0.6559 5.8038 3.7002 -#> 14.7065 -16.0033 -5.9809 5.9349 7.9587 -9.9855 -17.9542 -3.7742 -#> -1.4432 1.0548 -14.3342 13.1105 2.1546 -9.1868 11.2042 -0.9932 -#> 12.1984 -12.8600 -2.5919 -0.8897 11.8771 10.0617 -8.9914 -11.5302 -#> 7.5468 -12.1222 -26.0768 -6.2028 -0.7591 -1.2010 -6.0798 -11.1108 -#> 8.7007 20.9135 -2.9024 1.6970 -11.4094 8.3639 10.0946 6.3963 -#> 12.4040 4.4726 24.0844 -5.9889 9.6856 1.4792 -1.8792 2.4935 -#> 2.5080 18.3730 -7.6850 9.7258 -11.3493 13.4590 -1.7244 9.6702 -#> -5.4163 -14.2738 -4.3608 10.3636 3.8761 -12.1021 -6.0958 1.4944 -#> -5.7651 -10.1263 -17.2028 5.7702 -3.2691 -9.1889 -2.5732 -3.3792 -#> -10.0545 4.1091 14.0733 -10.4982 -5.7342 2.3171 -6.4773 3.3353 -#> 2.6782 -2.8125 2.7590 -1.9897 -9.1181 11.7984 -9.0359 1.9233 -#> -5.2344 10.2287 -2.8782 1.6119 -0.4775 -8.1459 1.1576 -9.2421 -#> 21.9949 -8.0431 1.7145 4.7288 -22.4366 4.0880 -12.0808 1.6562 -#> 7.5187 9.7269 0.6820 -2.6167 -1.1286 -1.0346 -18.5821 -5.9096 -#> 9.3526 -5.6035 5.2310 9.7429 -3.3496 -10.7880 -7.9118 -15.5445 -#> 13.6427 -0.6605 11.3279 -13.0369 9.5204 -4.8265 1.9385 -12.8543 -#> -1.0619 -13.6995 -2.8276 4.1690 18.6644 -5.6350 -5.1124 1.0305 -#> 17.6611 11.3794 4.5687 20.1350 3.8588 -1.0378 1.2913 5.7805 -#> -9.2243 5.0020 3.6845 5.8329 -21.8466 -0.6807 0.5413 -0.8968 -#> -0.6459 -3.9581 -4.2478 -0.6667 -8.4845 -8.5001 2.8692 8.0881 -#> -4.8527 8.2332 -5.3847 -15.9781 14.2163 -13.9345 -3.4176 -7.2562 -#> -1.8429 9.3069 -3.8057 -1.8225 -20.4709 2.7353 2.2712 -5.1033 -#> -#> Columns 17 to 24 11.0662 -14.5526 0.0697 -19.0220 4.6790 3.9423 -2.6753 -2.9578 -#> 22.7239 6.9675 0.6424 3.7429 16.1882 -1.5087 -16.0539 0.1969 -#> -2.5550 -3.6210 -3.0403 3.2895 -9.0184 -1.8333 -1.3289 3.3007 -#> -0.8008 -13.9414 -3.3939 -18.7868 -4.2458 9.7082 1.1865 -18.0323 -#> -5.0873 11.8188 7.8642 11.5776 -16.0727 9.4908 8.4264 -15.9399 -#> 9.5338 0.5156 0.8218 24.7352 21.4326 -1.3723 -3.8085 4.0040 -#> -3.6941 13.9830 3.1614 -2.4057 -5.2300 12.6373 0.7486 -10.2209 -#> 9.6279 5.2914 -2.1667 -2.6882 -8.5979 -17.3494 14.1774 4.5505 -#> -4.9814 -17.5009 -15.7751 2.3943 -14.3330 15.0807 -10.8200 -6.3016 -#> 1.0375 7.5819 1.8242 -2.1025 3.4078 -3.6889 -3.6870 13.7473 -#> -10.5505 8.0478 7.4250 -13.4552 -14.5107 3.5241 -1.5158 4.6435 -#> -17.6329 -8.9843 -0.5239 11.9668 -16.0605 -6.9913 -9.6883 2.4846 -#> 3.9703 10.5117 2.4437 -9.5863 -8.5419 4.4804 15.5980 -8.0862 -#> -3.8186 2.0125 2.0543 10.0792 -7.5268 -4.8376 5.2885 7.0757 -#> -12.5689 -8.2614 -13.2759 12.4033 -19.5609 3.0369 -12.8527 -5.7830 -#> -4.6646 0.1257 6.0242 4.2538 14.7014 -8.8032 -5.5753 -10.4496 -#> -10.2244 -0.1577 13.0210 10.7659 -2.0343 -4.4945 -2.3216 -4.1657 -#> 0.5649 -8.4057 26.7812 -6.8665 1.8525 5.4294 -5.2585 4.8750 -#> -3.3987 2.3718 -11.2156 -6.4853 -24.5315 2.5088 -9.4710 4.6227 -#> -7.9132 1.8410 11.1107 -11.2720 -4.2379 -2.7606 -5.2530 5.4750 -#> -1.3218 10.2854 1.9285 -11.3502 -11.5231 -10.5135 -5.7751 1.5308 -#> -4.0835 -6.0362 1.4618 -5.1609 6.1913 -23.7162 6.2317 14.7307 -#> -17.7677 -17.0161 -13.5697 2.4813 8.5010 -6.2259 -17.0806 -15.3741 -#> 11.8556 -4.8654 -11.5342 -4.0967 11.5691 1.4684 7.8547 9.3808 -#> 1.8603 -12.9068 8.3558 -8.8895 23.3471 -17.4276 1.8093 7.6683 -#> 9.5079 3.8055 7.7854 20.9576 -6.5707 15.5529 2.2398 21.4755 -#> -5.8233 -11.2661 -21.2273 1.8201 1.9201 0.9845 -15.9731 7.6355 -#> 4.1302 -6.0695 -8.4113 -10.1005 -17.6905 -16.4190 6.3698 -12.3462 -#> -17.9427 15.6452 -5.7567 -10.7185 12.8775 12.0741 21.4769 6.2621 -#> 17.3807 3.2854 2.0233 0.4028 7.7633 4.6181 7.1242 -18.0502 -#> -2.6197 -14.2332 0.0485 9.7610 3.9811 -18.7429 12.5354 -6.3579 -#> -9.0786 0.7897 3.0636 -13.3762 1.8459 8.2314 11.0418 3.6651 -#> -2.2425 2.0437 -5.5021 -3.8781 9.9642 2.8891 -2.2660 -11.2317 -#> -#> Columns 25 to 32 -32.6698 -8.6093 -5.0129 -11.3094 24.4550 -0.5704 4.8933 -5.5201 -#> 1.2721 0.6487 -10.9427 11.6122 12.3350 0.6388 1.1434 3.0152 -#> 8.1651 -14.7024 -10.9904 2.9376 5.4284 11.7591 15.3603 5.0108 -#> 21.2289 -14.6108 3.7578 23.7265 0.1149 3.1634 -7.0561 -25.7672 -#> -6.4865 1.1524 13.9062 17.8211 4.4666 6.4054 4.1235 7.4927 -#> -24.0737 -10.2488 -0.7837 -19.7711 -3.5405 -14.7599 -11.0616 -5.3042 -#> 0.7789 -17.5263 -15.1668 8.9913 -2.4021 9.1531 9.4817 7.4751 -#> -6.0258 -2.9461 13.5621 15.0060 -5.9288 -7.2522 13.6002 -4.5906 -#> -5.3995 -12.3453 -2.9668 -10.6944 0.0278 3.2880 -3.7492 5.9309 -#> 7.2386 11.6521 6.7375 4.7726 10.0783 -2.9344 -19.2203 -3.8975 -#> -3.8018 5.9055 -9.5356 -17.2161 1.6056 -3.9030 -2.1836 6.9117 -#> -22.5193 1.6938 -3.8648 6.0373 6.0638 -18.1423 2.2888 1.0071 -#> -0.0912 4.5126 12.5903 5.7911 -4.7895 -15.4148 -1.4881 -7.6777 -#> 8.1668 -1.7108 -10.8280 16.8029 8.0118 0.1464 0.8490 -14.1483 -#> 9.1446 1.4189 0.1367 -3.3847 9.2224 -2.9130 2.0731 -13.4869 -#> -1.2765 21.6822 5.4889 -5.0004 -3.4493 -2.9209 -9.9478 7.0307 -#> -4.0638 6.2533 -9.5217 -2.7831 -0.7303 -1.4290 7.1134 8.5808 -#> -5.4981 -17.6882 -6.5339 9.6844 6.3867 3.6524 4.6800 2.2742 -#> -1.4602 1.0576 5.5146 -13.2516 -14.4008 13.8107 -18.6747 5.9339 -#> 4.9861 -4.7771 20.6300 15.5541 -6.0074 5.1128 -0.4189 -2.9462 -#> -1.4486 16.5589 19.4602 1.9526 3.5924 -7.0477 -4.7282 1.1304 -#> -0.3443 9.8070 -16.0824 -8.1581 3.0776 -12.2659 11.0605 -22.4701 -#> 8.4359 13.0354 13.1142 -1.8719 -10.8537 3.0869 11.9608 4.5571 -#> -11.3341 -7.3854 -0.7040 -8.9241 13.4767 -0.2498 1.4465 7.7940 -#> -9.5916 2.3081 9.4823 -5.6463 -4.7764 -17.7450 14.1080 17.3467 -#> -0.5413 2.8060 10.5147 1.7546 -3.5436 -6.1599 -14.4421 12.4286 -#> 1.0812 -9.0801 -1.7089 -18.4518 2.6798 -9.2463 -9.5171 6.6413 -#> 4.7788 -0.4133 2.3009 0.4398 -5.0574 -4.7202 -5.6557 -13.3648 -#> 12.6261 -3.5589 -2.4662 1.1209 -23.9096 -2.2812 6.0163 -7.3213 -#> 1.1171 20.2254 -3.8290 -15.7041 5.4705 -1.6709 -2.7804 10.5089 -#> 9.1564 5.4900 -7.7571 14.2231 5.9711 -1.7668 -1.0377 -10.1896 -#> 4.7588 -0.2267 -7.0410 -8.5436 -12.5272 -17.1023 18.5268 -5.4560 -#> 8.0987 -4.0980 -0.5273 -11.0374 -7.9019 10.1087 0.3397 -2.1266 -#> -#> Columns 33 to 40 -0.6891 5.1512 -5.9616 8.3684 -6.5541 6.7590 -1.5969 -3.3233 -#> -7.1381 -5.8954 2.3722 1.1176 -1.5182 -0.4858 4.1055 0.5757 -#> -12.1200 1.3603 4.2367 6.1071 7.8496 0.7433 7.9517 7.7278 -#> -6.7656 -8.5868 2.2282 -0.5914 -4.4096 6.2110 -1.2708 26.3763 -#> 1.6977 -3.0817 0.9547 11.4690 8.4347 -0.5228 9.5944 -1.6138 -#> 4.3577 -4.5182 -3.2134 -9.1625 -9.4456 -3.9361 -7.6599 -1.6247 -#> 2.2651 6.7368 9.1694 7.3736 11.9476 -25.9909 7.7422 7.7991 -#> 6.8059 -2.5797 -14.0586 -0.4316 4.3446 1.4599 14.3628 -19.3045 -#> -2.8454 -5.5364 -2.1157 -6.6131 -0.8127 -10.4145 -5.6694 10.0690 -#> 12.9586 1.9260 -3.7913 6.1513 1.6149 0.6863 -12.8163 14.7614 -#> -17.7495 0.5206 3.7497 1.8556 7.8428 -7.2770 0.9337 -3.4212 -#> -13.5710 6.9932 -2.0936 -2.0107 -1.9852 -1.7724 17.9422 7.7792 -#> -3.7335 -7.4195 -2.4935 -3.5388 2.8353 -8.7390 6.6221 -8.8004 -#> -9.6807 -15.3747 4.5706 -4.4656 -1.0659 -1.2077 -4.3275 0.8064 -#> -1.5919 8.4855 4.3687 2.5481 3.1221 1.6635 7.3577 -9.0880 -#> 0.5298 7.4672 4.1995 9.2957 0.1546 5.4831 -13.1099 -8.7616 -#> -9.7556 -26.8600 -9.2641 -11.0434 -10.5407 -10.8140 -0.6515 -5.8294 -#> -0.2582 5.4815 3.4851 -1.8528 9.1895 5.7904 2.5789 15.6803 -#> 6.5863 3.9697 9.1019 -7.4410 -7.5782 -16.5352 -7.4639 -8.7216 -#> 3.1715 6.5688 -5.2957 -4.3494 -4.3843 17.6800 6.5693 -15.0530 -#> 8.9078 -1.9871 4.1219 7.5827 17.6163 14.7036 -0.9792 -9.6755 -#> -16.9230 -0.4241 -8.5176 -0.6277 -15.3566 -11.9403 -10.3961 3.3311 -#> 1.5606 -8.6993 -6.6938 -7.1477 12.3101 -12.5791 -3.6695 -11.3222 -#> -7.9792 4.5259 9.5120 1.5035 1.6864 1.8410 -7.3137 -4.2054 -#> -5.8180 10.1696 4.6879 5.7464 -1.5702 28.5283 -13.1240 6.4315 -#> 2.2603 3.7824 10.2709 -9.1696 6.4035 7.2668 7.3593 -2.1308 -#> -0.7404 -3.1743 9.5376 -12.0170 -5.0920 3.1090 5.7006 -8.4534 -#> -6.4615 -25.2439 -10.9172 -2.2400 4.7356 -2.1891 2.6827 -10.5127 -#> 9.5131 7.4656 -6.5773 4.6907 4.1973 -3.3962 7.0490 -7.4300 -#> 16.4267 3.5051 10.1579 7.0891 9.1914 6.3337 -2.7389 14.1222 -#> 1.3694 0.3559 1.9932 -3.0715 0.0079 -0.8437 -4.3533 3.1633 -#> 2.0113 -3.4719 11.3453 -3.5211 -6.7155 -10.9955 -4.1942 2.4041 -#> 11.0641 -13.8099 4.6128 2.8432 11.7525 3.2607 1.2708 -2.1138 -#> -#> Columns 41 to 48 -0.1047 7.1639 -12.7312 -14.9411 -1.7243 -12.6823 -5.2909 -1.5054 -#> -0.6198 -5.0780 3.3587 -3.7096 9.7318 -11.5688 -6.0776 -5.0235 -#> 3.5723 -9.2005 2.5989 -21.5485 -12.2536 17.0624 1.4070 -7.9798 -#> -12.1266 2.2245 -1.4824 -2.2374 6.7505 22.1302 -10.3626 16.0516 -#> 12.9833 -10.8692 8.1235 6.8576 1.9169 5.8651 10.7781 1.8127 -#> 13.4862 14.4447 7.6561 0.8456 -6.2709 -10.2808 -14.2315 -5.1059 -#> -11.6531 3.8384 -13.5760 -15.2587 -0.4386 -11.6019 -3.1254 1.9812 -#> -14.4318 -8.3302 -5.7316 1.3431 3.1469 -0.5234 2.0978 5.0587 -#> 11.3827 12.2602 13.5625 8.1668 -13.3577 -5.9555 -10.2404 -0.4668 -#> -20.0554 6.6514 -5.7848 -3.7281 2.9242 -1.2270 -3.3500 2.0820 -#> 13.5036 4.9700 14.1329 -3.3614 -2.4387 4.3636 5.2511 -26.7314 -#> 12.3755 -6.0302 13.0706 7.0045 -4.3136 -20.3503 6.1174 -7.6721 -#> -11.2236 2.2306 0.2531 6.8231 -1.9899 3.6850 2.7379 -7.5945 -#> 7.6483 -7.3374 9.9872 4.2223 12.5574 4.1922 11.5467 -1.8445 -#> 6.6880 1.3918 6.2407 -23.0986 3.5472 15.1577 6.0838 -9.5015 -#> -25.3432 21.5193 0.5058 -5.4625 -14.2084 -2.0676 14.9385 2.1116 -#> 5.4331 0.7524 -4.1156 10.5738 -15.1925 -10.3904 11.5019 8.5438 -#> -0.5497 -12.5371 5.6004 -4.6952 15.8923 -8.7153 -3.9162 -8.2549 -#> -0.2119 -0.2621 3.6054 -26.5559 -0.8848 -10.6993 3.7716 -17.5107 -#> -19.2452 -4.8849 2.6568 -10.7631 -3.6147 18.3777 10.0724 -3.3694 -#> -8.3158 -15.7886 12.6284 4.6058 -7.6070 -6.1975 23.2880 18.2722 -#> -0.4041 10.9108 -5.3681 8.0119 -4.9525 14.1613 12.6936 -3.8161 -#> -14.9089 6.0440 14.4983 -9.9542 -14.4793 -4.1608 2.9876 28.2071 -#> -7.5434 14.3462 -13.1011 -0.0543 -0.1406 1.4744 -9.4161 -4.9771 -#> -14.9983 13.5030 10.9352 -10.9594 -6.3634 6.1297 -18.0191 1.8998 -#> 3.8310 -10.9236 -3.8793 6.5608 5.8434 -7.0148 -15.9521 -13.2939 -#> 17.6064 -5.7444 -0.3266 -0.0692 -11.4574 5.3437 -12.4108 -8.0583 -#> 10.7164 -5.7833 1.8178 15.0389 3.0004 -2.2704 -3.4458 4.3220 -#> 4.8007 3.8398 -4.0033 10.0028 4.0875 9.7484 -17.8828 -12.7776 -#> 10.3227 -1.1501 -2.4754 -20.4586 13.4596 -9.2950 1.5691 2.9662 -#> -6.1917 -0.8440 -3.0441 14.1943 -4.7117 2.9086 9.5871 7.8146 -#> -20.5611 12.6771 -7.1091 2.4571 -3.8733 -0.2544 7.2356 -6.9050 -#> 3.2720 2.4587 0.8837 -15.8807 4.8638 -8.7061 -8.4504 -8.2424 -#> -#> Columns 49 to 54 21.8557 4.4202 10.8168 7.5174 -3.7758 2.1122 -#> -2.8456 -15.9854 2.0339 7.9619 0.4806 -0.4653 -#> -9.5906 5.3457 2.7396 8.0575 -3.6745 1.8922 -#> 9.1292 8.5034 -25.1697 -2.3926 3.7174 -3.3314 -#> 5.9401 -1.1539 3.8906 7.1575 0.5660 2.4047 -#> -5.3541 -2.6976 4.3906 2.5245 0.3295 2.7928 -#> -10.4245 7.0469 -6.8186 -4.2369 2.9327 2.8947 -#> 3.0145 0.9534 5.5193 7.3609 0.7635 1.8795 -#> 1.0380 8.5256 -16.1735 -1.1572 -3.3035 -0.8527 -#> -5.8692 -11.7066 -13.6596 4.0496 10.6453 1.8254 -#> -5.8070 -8.3313 21.3003 0.7767 -2.3350 3.4440 -#> -12.4272 -14.2899 1.9738 2.6648 -7.6391 2.7511 -#> -16.9396 -9.4806 4.9570 0.1588 3.8355 3.2884 -#> 5.2529 -7.1969 -4.2218 -6.2748 2.3049 -1.3600 -#> -13.7700 15.0260 -11.5880 -3.3049 -0.6822 -3.0384 -#> -10.5514 -9.3660 5.5534 1.1381 -2.6856 -1.1547 -#> -2.5532 -0.4677 5.0003 5.1773 0.7936 -0.4262 -#> 6.8253 -5.2287 -6.6104 1.5442 -2.8864 -0.4845 -#> 11.6100 14.6819 -9.3433 -6.4061 -13.6912 -0.5850 -#> 0.3866 -5.1808 4.5291 7.7504 1.9457 -1.1015 -#> 0.5982 -8.9206 4.5865 0.8641 1.1949 1.2615 -#> -5.3683 -4.6591 0.5351 -8.2208 -2.7109 3.5416 -#> -13.6418 -10.2297 -9.1510 5.2640 2.1182 -4.0404 -#> 4.0355 -8.2871 -9.8668 -5.2217 -8.3299 0.6824 -#> -3.4248 -5.1316 9.4518 0.5314 0.5506 -2.2042 -#> 1.9089 -0.8906 -2.7357 3.9258 4.9725 -0.2202 -#> 7.4031 -6.5030 -0.5144 0.6044 1.5107 -1.8649 -#> -2.6418 0.4153 3.0424 8.7083 1.7534 -0.0252 -#> 4.0239 3.5966 -7.6770 0.8856 5.5774 -2.7345 -#> 2.3516 -11.4263 0.2037 -6.9024 2.5088 3.9246 -#> 11.4006 -1.0101 -2.1060 -2.4315 0.8993 1.6014 -#> -14.6229 -1.0623 11.6151 -9.1313 6.1282 1.5521 -#> -2.1762 -12.8544 -2.2436 5.0173 2.8554 -0.1953 -#> -#> (3,.,.) = -#> Columns 1 to 8 5.0065 -7.5648 4.3697 5.4119 1.1572 17.5422 -0.4933 3.3253 -#> 4.5796 7.3903 -1.7693 -2.0851 2.1409 3.3564 1.4481 -4.8963 -#> 1.6970 -2.0240 0.1673 -13.3189 10.1225 4.5772 12.1823 -12.9104 -#> 4.4423 0.3706 1.9800 -14.1760 1.7023 -7.2400 0.9277 -10.3556 -#> -4.9464 5.5538 3.4204 -2.9786 -1.0806 -6.1542 -0.2451 -9.0744 -#> 11.9943 -1.9920 5.2217 -4.9694 -3.6795 7.3552 11.9307 8.9454 -#> -6.8636 5.1646 3.3317 -2.5187 -3.2920 2.8625 8.4681 -1.5043 -#> -3.4725 -0.3777 0.8911 -0.7854 -1.9812 -1.6493 -27.8762 2.8427 -#> 4.7066 -3.2704 -0.3828 -6.5696 7.0008 -5.8864 13.5979 -16.6016 -#> 5.4407 3.1746 19.6670 0.1120 -2.7427 -11.9844 1.0637 5.8977 -#> -7.6526 -4.7646 7.5172 2.7917 -15.0073 1.5688 -6.8070 5.4306 -#> 2.9191 1.0430 0.1736 -4.6040 -3.2349 18.2567 -0.5415 -12.4009 -#> -2.2711 4.5532 4.4744 -0.5926 2.2176 14.9981 -11.5919 14.1614 -#> -5.8899 2.6850 0.1409 -2.7625 -0.4703 14.8921 -3.4326 -3.3055 -#> 0.4423 -8.7097 -10.6624 8.3148 6.7439 -2.4797 12.4699 -20.2065 -#> 8.0021 0.3554 0.3091 -3.3935 12.4163 -1.2953 4.3594 -4.7604 -#> -2.1517 -1.1949 6.7236 -9.2434 -11.6224 6.0957 10.3943 -1.4627 -#> 0.7060 -1.5135 -20.7254 -6.8302 -3.2998 15.6868 -5.5653 -9.2229 -#> -5.0176 -0.9663 -1.7610 15.8706 -1.0764 -10.6421 -5.5809 -3.3236 -#> 1.9067 -10.7770 -3.6526 10.3817 9.1903 6.5684 -17.1229 -7.5234 -#> 1.2750 -3.1628 -1.8613 8.5306 1.5362 0.4427 -4.1968 -0.8201 -#> -2.1752 -1.8308 6.5429 7.1769 10.1203 -15.6256 -3.5803 4.7920 -#> -3.9520 1.5366 -1.0068 -8.6163 -5.8413 5.2089 -2.8411 -5.1499 -#> 4.3731 3.5496 -1.5140 6.9102 -1.4003 8.9362 -6.4642 -4.5631 -#> 4.2081 -9.6222 -3.5010 0.5712 -2.3747 6.0067 -4.5879 8.2174 -#> 6.5613 5.2677 -1.1577 15.0782 11.2545 -8.9979 2.4309 3.5133 -#> 4.0774 -0.2183 -7.1818 -3.6122 4.8120 5.3588 7.6044 0.1746 -#> -8.7328 -10.5805 1.2447 3.5645 6.8815 -6.6055 1.7821 -3.7090 -#> -6.2692 -0.6318 -4.2597 -8.9461 -2.7332 -6.6875 -7.8548 4.0098 -#> -0.3510 3.9007 -14.3480 -0.3358 -9.3153 -3.4372 -6.5250 6.8921 -#> -1.2713 2.7064 5.8096 -5.4592 1.9853 5.8544 -6.8093 2.7735 -#> -2.0104 -1.4024 -2.1828 -2.0720 10.3598 8.6430 -0.3503 3.7573 -#> -4.4944 2.3952 -2.2312 -6.9977 -4.7600 2.7363 -0.5609 6.7697 -#> -#> Columns 9 to 16 -6.9998 10.6761 8.6290 1.0619 4.6502 -8.7584 -8.5783 5.7564 -#> 1.2974 -3.5524 6.9653 -19.2955 -4.2965 3.1079 13.4470 -4.0555 -#> -5.2354 4.2810 -0.9473 18.6950 -8.9680 9.0909 -22.2445 -16.3682 -#> -1.2449 6.2986 -12.2026 19.6986 -8.0719 4.8052 -13.2800 -24.9230 -#> 3.1749 5.6027 -5.8446 4.7225 -1.5331 9.1026 6.1800 6.6361 -#> 10.8301 14.3328 -7.5849 17.7657 6.8040 2.6532 -6.7402 2.3008 -#> -2.4575 -5.3909 3.3260 12.3631 10.6478 1.0650 -6.7919 6.5352 -#> -6.5352 -1.1951 -2.9045 -4.2426 1.1777 -9.2049 1.3871 22.7300 -#> -6.4794 8.2347 -10.4154 4.7242 -8.1403 7.2454 -13.2459 0.8178 -#> -1.7903 -5.8577 0.6970 9.9278 5.4227 9.8878 -14.7169 -0.7110 -#> 6.4007 -7.5623 -10.7833 4.0560 5.7243 6.1790 6.8927 -6.2734 -#> 2.0545 -3.5389 2.0349 -10.0992 -3.0352 -4.9398 2.8822 0.6213 -#> 9.8403 9.5956 -10.4498 -1.1934 5.3889 -9.9235 -3.0167 -12.1756 -#> -1.9861 -9.2124 6.4746 -6.2048 12.4562 -2.5963 7.2102 -7.0540 -#> 6.5246 4.7411 -12.6090 2.8226 -13.1843 7.1695 -9.3513 -5.5817 -#> 12.1244 6.2580 -2.8042 -7.4370 5.9493 12.8463 5.8486 -8.9301 -#> 2.3902 -0.9217 6.3379 3.5433 7.7250 -5.8269 6.4756 0.2072 -#> 4.1890 0.4687 13.0917 -8.7310 -4.4070 -12.8233 -3.4196 5.6194 -#> 7.1521 -6.5397 0.6541 -6.3224 10.2388 4.7956 -12.6320 4.4017 -#> -1.5785 10.3988 -10.7020 4.6607 -7.1149 -2.0043 -1.2336 -6.8194 -#> -2.8968 2.4503 -5.4942 -14.4237 6.6551 11.6778 8.5156 11.1045 -#> -1.1568 -2.7098 1.0471 -3.7183 4.8246 -1.9663 -4.6640 -1.1049 -#> -8.5518 7.5451 -15.9437 -1.2995 0.7863 6.2623 1.3795 1.0162 -#> -1.5262 8.2184 1.0894 1.9374 -4.0241 -0.2278 -15.7278 -12.5403 -#> -3.6396 -0.5381 -9.3408 4.3941 -12.5852 11.0130 7.4217 -5.1584 -#> 3.5167 -0.9388 8.3914 -6.8105 -2.8391 -21.0392 0.0891 6.5242 -#> 6.7332 -3.6219 -10.7829 7.0740 7.6049 5.0294 -0.9974 -3.7430 -#> 8.4995 11.3926 -10.2824 -2.8517 -9.0784 11.1800 2.0026 -2.0633 -#> 4.7858 -14.6920 7.6764 14.7249 7.3598 -4.3916 -7.6974 -6.0448 -#> 4.9977 -2.4565 6.1780 -5.7729 -1.9491 7.0341 9.1896 2.2460 -#> -3.9617 0.7266 -8.6600 0.5977 9.7916 8.5833 11.3199 -4.5682 -#> 3.0461 7.4758 2.2648 3.1652 15.9415 -9.5217 -7.9929 -14.9009 -#> 0.0593 8.0995 5.7684 11.2536 -1.8930 0.8747 -0.8771 -17.4723 -#> -#> Columns 17 to 24 2.9991 -7.0031 -4.3098 3.9696 -3.8698 3.7981 -3.4638 -5.8145 -#> 9.8929 -0.6985 1.5678 -7.6750 -1.0575 3.5687 10.1861 -2.8345 -#> -3.5003 11.2459 -9.4071 7.3753 -0.4676 -7.4027 -6.5143 4.4750 -#> 2.7744 3.1267 -5.5507 -3.7926 4.7195 -4.2368 -16.2356 11.4313 -#> 14.7289 3.2852 -5.1273 -26.9714 -5.7715 -11.4138 -6.7957 3.3423 -#> -0.2818 5.4439 -0.5775 -0.4554 -2.5376 18.6859 12.4762 -13.8969 -#> 4.9449 1.3183 -0.1317 -5.1529 3.8452 9.2586 1.8964 13.9726 -#> -1.6536 0.3676 -13.3478 -4.2053 0.0647 -6.0252 9.3051 -6.1649 -#> -5.5615 14.3067 -1.6848 12.2309 14.4537 -8.1157 -0.8579 1.5930 -#> -0.9635 -1.4980 4.2655 -21.3527 -7.6679 -7.1719 -0.3917 1.2707 -#> 3.1651 2.3176 4.5623 -2.1620 2.1102 1.5631 6.1667 -12.4041 -#> -3.5800 15.3647 -13.4311 -7.2799 0.5813 -0.9263 17.0942 -18.8560 -#> -1.9807 1.5200 -10.6795 -0.0452 -4.0646 16.5639 -0.9831 -21.0682 -#> -0.0563 2.6941 -12.5726 -15.9221 -5.0472 11.8357 9.6567 2.6775 -#> -0.7082 15.5344 -10.7737 -14.3932 -12.7231 -17.7728 -9.7606 3.9705 -#> -11.7585 -0.7036 6.9729 2.0480 -1.0557 13.8488 -3.0825 1.0844 -#> -5.2574 2.7561 -4.0692 -7.9613 -7.0095 11.1284 14.2156 -2.0798 -#> 12.7254 -12.6184 -4.4636 10.5271 8.7149 -3.2069 5.7323 4.0469 -#> -14.2750 1.7038 10.0903 -2.5975 15.6578 -16.2574 15.1585 -11.0779 -#> 12.1564 -2.2589 -12.5739 -10.4091 -6.1980 -5.2244 4.4709 -3.7656 -#> -18.4174 -15.6443 -1.5797 -5.4252 6.9559 2.8517 16.7162 -15.9417 -#> -9.5823 11.4253 6.4563 -7.3173 11.0476 4.3020 4.4361 -3.1137 -#> 2.2054 7.7500 4.4457 -11.8929 -18.6036 10.0097 11.4196 5.3231 -#> -1.3877 -14.1901 10.9835 5.7080 2.7517 -2.3153 2.5598 3.1702 -#> 11.1839 -7.5466 6.8821 12.2485 3.6899 10.8344 -6.7247 2.7138 -#> 6.8281 -12.7237 -12.4240 0.8836 -10.6440 2.3363 0.7084 4.0937 -#> -3.7046 3.6566 3.7686 17.9101 2.9497 3.7957 -10.0212 7.2813 -#> -15.1208 3.2913 10.3041 11.0956 2.9664 5.2545 3.8653 5.1548 -#> 0.9173 -13.3204 5.8748 4.8021 4.3568 -2.2284 -1.8059 4.8992 -#> -1.8480 -7.9347 0.0099 11.5403 -5.5167 -14.6196 -13.5348 -3.0772 -#> 6.2677 3.2872 -3.0857 -13.0179 -17.1925 -3.1941 4.9096 -10.0129 -#> -4.5396 7.1775 -5.0795 -2.1652 -4.6862 9.7565 4.7690 -8.4607 -#> -6.4992 -17.9611 -0.7486 8.4730 0.2359 14.2265 -4.9010 13.5942 -#> -#> Columns 25 to 32 -0.4502 -2.3367 5.3966 -1.9736 14.0377 3.0119 -8.4109 -13.9355 -#> 3.9575 -4.0850 -0.7513 -8.3361 -0.8708 9.1271 0.5462 -14.4554 -#> -6.7282 1.3936 7.7278 15.0878 3.4429 -3.3617 -7.3842 -6.6403 -#> -6.4748 -13.2080 3.8655 10.9370 -5.1134 -14.1147 8.0535 -11.6929 -#> -12.5487 -1.3291 3.7207 -1.6684 -11.1489 -1.3516 9.4046 -2.0490 -#> 5.3655 9.5782 -17.2964 -9.7356 0.9319 11.7845 -0.2503 -2.2241 -#> -4.9538 -22.1325 8.2270 17.2945 -4.1733 -6.3520 -0.8176 -5.2402 -#> -4.1229 10.7951 3.8800 -14.9516 -13.4749 -13.0130 -2.2828 -2.7846 -#> 4.6756 -9.9426 -6.9022 4.8072 15.7269 12.2702 -3.2373 -5.9807 -#> 4.7910 -8.1889 3.8486 -5.5455 -18.6664 8.1700 7.6792 -5.5944 -#> 5.4961 -5.3140 -14.3234 2.9961 0.9553 2.8977 -3.2754 10.3027 -#> -0.4717 7.9712 -12.2355 -3.7001 11.2613 4.8899 -19.9430 3.0561 -#> 10.5788 11.4136 -4.8488 -8.5414 1.8690 1.0350 -0.8902 -6.1415 -#> 10.3371 -10.8624 -12.7971 1.8257 -3.5686 -1.8141 -6.7775 -5.4592 -#> 4.4009 -3.1121 4.6466 18.3852 11.2915 -3.8269 -7.2640 2.5717 -#> 13.3067 -0.2645 -2.1777 -3.1643 4.2687 12.0935 10.4656 19.6666 -#> -8.0351 -4.7948 -8.3152 -14.3852 -4.9098 0.2674 -12.8918 -5.0915 -#> -6.9013 -3.8669 6.1630 -0.5587 1.0668 -7.0706 6.9699 8.8962 -#> 4.4448 -4.7124 -12.8896 14.1769 3.3869 -5.7435 -8.1179 -5.2362 -#> 4.2559 16.4625 2.6017 -3.6140 -1.8479 -22.0223 -7.7596 -0.5762 -#> -7.4018 16.2872 -12.9994 -7.2869 -7.2918 13.4027 18.9048 17.6126 -#> 1.9429 6.2656 1.1654 -6.0094 7.2305 -3.4192 -6.5580 -11.7218 -#> -1.4432 -3.2813 -9.4318 -10.5674 -1.7319 17.8822 14.0319 -6.5661 -#> -4.2170 9.2337 2.8840 1.7105 -0.0033 4.7875 7.6331 0.7086 -#> 1.5496 -4.3581 -11.1832 -1.6342 15.4827 0.6272 0.9326 19.2356 -#> -2.5731 -0.6965 15.7973 2.5878 -13.0473 -8.7761 -7.2038 10.3990 -#> 0.1765 -2.1546 -2.9154 17.0378 1.3992 1.8228 -11.6180 11.1169 -#> -19.8042 5.9646 -15.4726 -11.0236 -6.0788 4.6658 -4.0302 -6.4444 -#> -16.1552 12.7106 8.4312 1.0798 -3.3709 -10.7590 18.7330 1.0471 -#> 2.8258 -19.5791 2.6700 24.3105 0.5782 -0.9183 -3.7057 -0.9869 -#> 2.3721 4.8013 -6.0742 -5.4514 -2.3220 0.5604 13.2491 5.0343 -#> 8.4863 3.8528 6.6870 0.3344 12.9178 28.9992 1.1368 -3.5024 -#> 7.6834 -2.3466 -9.0723 -5.1307 -6.5264 14.4130 9.0037 -5.7521 -#> -#> Columns 33 to 40 6.1166 3.4755 3.0107 10.4820 2.2313 21.4302 -0.3769 7.2492 -#> 7.5885 2.9510 -5.9707 -3.1287 -6.9030 0.4736 -9.9255 -11.9223 -#> -7.3547 -2.6745 16.3513 -9.9079 -7.4035 15.0191 6.9734 -0.3176 -#> -3.9057 7.4514 -3.5686 -0.0520 5.5190 -8.5440 16.0547 -6.0800 -#> -3.9551 9.4788 2.8746 -14.6228 -8.6366 -17.5136 -2.6790 -0.4776 -#> -9.5146 -5.2213 11.0260 -14.8032 6.0196 1.7087 6.6660 14.5329 -#> -5.6591 6.8087 -15.9567 -2.8290 -4.5220 -7.0795 4.1778 -3.3880 -#> 2.3287 9.4812 1.4361 2.4778 -4.0854 -14.8061 -15.7904 -13.1929 -#> 12.3652 -12.8175 4.8446 9.9093 2.9067 24.6350 18.0183 2.1561 -#> -12.6300 -1.2267 -5.1545 12.1703 -2.8878 -1.3358 8.3011 -2.3132 -#> -0.8691 -1.6677 17.0963 2.4648 -7.9536 -11.2632 -4.9028 -4.6315 -#> -2.7268 0.6535 15.4282 8.6797 3.8988 5.2600 4.8597 1.6352 -#> -8.4937 -0.0901 5.7381 5.0044 11.3519 -8.4415 13.9622 -1.7646 -#> -16.1659 4.4432 -11.6796 -0.2280 7.2947 0.4916 23.7616 4.4628 -#> -7.2801 7.3802 3.8974 -3.3115 3.7231 2.3252 9.6789 3.7708 -#> -3.8670 -11.5865 1.2037 -4.6438 7.7230 -3.4565 -6.9513 5.7064 -#> -12.7542 -12.4351 2.0368 -1.3465 7.0032 5.8571 1.5565 0.1240 -#> 2.4653 -3.8384 -6.6116 -0.0328 -2.6110 9.6295 -1.0983 -7.9041 -#> 18.4993 -2.1162 -7.7738 0.2191 8.9795 11.0376 7.3325 9.2761 -#> 3.1431 -11.9472 0.6696 7.9047 1.0182 4.9934 -7.1324 -9.2449 -#> 12.1020 1.9057 -1.7627 9.8111 6.0275 -2.3225 -1.9654 -5.9898 -#> -5.4913 -1.6481 21.1171 15.0078 -6.5409 -2.4634 -9.6712 -3.9974 -#> -27.1950 -3.4378 -0.7142 -6.0477 9.2275 -22.3768 -14.0585 7.8989 -#> 0.9481 11.1605 5.6543 -4.2198 5.2720 9.0667 -8.2835 0.0860 -#> -1.8083 -11.5910 3.3375 -21.1419 0.6927 7.6406 -25.4208 12.1868 -#> 2.0968 -8.3505 5.4435 8.9627 10.5742 14.8554 12.7098 -5.0643 -#> -0.4590 -4.4083 -0.0300 -4.9880 8.3520 -3.7739 19.8174 -0.7580 -#> 10.4876 2.0805 1.9403 2.2905 18.1642 -4.9934 -3.4718 -1.4246 -#> -16.6475 11.8381 -9.6935 -20.3861 8.1342 -1.1187 8.6158 10.3533 -#> 5.5304 -1.2605 -15.8330 -13.0794 11.5950 -10.1415 -4.5288 -9.6068 -#> 1.0786 -3.2658 16.3202 0.3046 -4.1398 -7.0007 -3.2427 -0.0090 -#> 2.3637 -7.6107 4.8096 -14.9503 16.2826 -1.3325 3.9388 11.2878 -#> -5.3557 16.9209 0.8013 -1.4738 3.4657 -9.9022 -1.0349 -4.0073 -#> -#> Columns 41 to 48 1.3345 -11.9278 4.8337 -20.2754 3.6607 -7.6054 -10.6370 0.7393 -#> 18.4758 4.1840 5.1066 0.5228 4.7843 25.5798 1.4430 -4.8073 -#> 2.2567 -12.8952 0.7386 -6.6147 -16.7057 21.4841 -9.8661 -0.3491 -#> 0.1938 8.7895 -10.5219 -5.8892 -1.2568 25.8267 -9.5847 -17.0484 -#> 0.5941 13.5316 12.5077 11.4497 -15.2622 7.9676 3.8970 -5.2587 -#> 3.5475 -0.9832 4.7096 10.4700 7.5481 -6.0933 -1.1715 0.8234 -#> -15.7558 10.3998 -3.9478 -2.2627 -3.1319 -13.5418 22.4130 5.0423 -#> -15.0093 0.8777 8.9129 -0.8943 6.5934 -8.7079 -9.1901 1.2953 -#> 0.7930 -18.1611 -9.1900 -1.9323 -4.9864 0.0681 -2.9314 1.2715 -#> 8.6339 5.4117 14.6414 2.9027 18.3501 9.9014 -8.9372 -0.7209 -#> 4.2320 3.9845 7.9440 3.8098 -7.0927 6.7669 -6.9893 17.8406 -#> -7.9320 -18.7648 -7.3420 2.7295 5.3951 3.3670 -8.2192 4.4860 -#> -2.9330 20.8977 5.6355 -2.1919 -12.0907 -3.9535 6.5782 8.8423 -#> -9.3347 -10.6555 -17.5191 -6.0478 -6.2106 1.9033 17.4623 -13.6784 -#> 1.0635 -20.0535 -9.3549 -19.6059 0.9665 5.6258 2.6148 -15.1398 -#> 7.1171 13.7309 10.8487 -5.9154 2.0694 -2.6388 2.8409 7.6188 -#> -9.5625 -5.8672 -2.7635 9.1451 -1.4415 -10.1499 8.3045 -3.1570 -#> -0.8245 -1.6012 8.4346 7.0643 0.2006 -6.0378 -5.0282 7.1434 -#> -20.1260 -14.5046 -4.1219 -16.9426 2.5031 7.4219 -3.9130 -0.1316 -#> -9.7300 -6.6407 -14.1674 -9.5041 4.6654 13.3797 -17.6050 5.9562 -#> -5.4223 -14.4687 7.3019 5.0101 -12.4661 -10.5039 -1.3772 9.8727 -#> -1.9127 -18.7884 8.1959 1.4009 -0.5677 -3.3554 7.6146 -4.5400 -#> -8.3890 -4.7103 -10.4115 -10.5468 -11.2971 6.0386 -0.3137 -4.2605 -#> -0.4814 11.7382 8.6822 6.9266 7.6994 -3.8786 13.3594 5.3836 -#> 6.7302 -2.0560 2.8992 -1.6217 -7.0485 -3.6673 -8.4619 20.2970 -#> 1.4750 1.6396 1.5047 14.3273 12.3591 -3.2715 6.9656 -9.5265 -#> 11.8076 1.5431 -13.8370 -2.2326 -7.8101 -4.1678 6.3293 -11.9680 -#> -4.2533 -2.1013 -11.6261 -1.8696 -1.4513 -3.3382 0.7499 -3.3817 -#> 1.1298 16.2342 -3.1134 0.6689 2.9858 -5.9440 6.0355 -6.6737 -#> -2.8073 11.9571 12.6337 8.9343 4.8625 2.5022 5.9198 4.3786 -#> -1.4268 0.1202 -1.7580 5.3506 5.1749 1.9549 -8.0605 -6.0836 -#> -2.4020 8.9237 7.2497 -13.5399 -2.3874 12.1784 4.0796 16.0535 -#> 0.6426 23.0241 2.1876 -4.6716 -2.3914 4.1827 5.9588 12.7554 -#> -#> Columns 49 to 54 -14.4496 -8.8349 1.4433 2.1690 -3.7491 0.9587 -#> -7.7497 -6.5779 -8.7464 9.5712 -5.7366 -5.5686 -#> 4.6983 5.0069 -3.8794 11.1549 -4.5174 4.5328 -#> 1.5492 -0.2539 -1.7878 -1.7838 2.4953 -0.5657 -#> 3.1202 0.9545 3.0343 -1.6115 -8.4593 5.7329 -#> -4.5750 7.9842 3.8035 -13.5802 -5.4309 -4.1773 -#> -5.8305 6.6706 5.9399 -4.3707 6.1034 -0.6240 -#> 3.9163 -7.3941 -6.3986 -1.3349 -4.0819 -4.4972 -#> 4.2833 1.5292 -2.7047 0.2604 -0.3884 3.3314 -#> 7.3679 18.8472 -7.1299 -6.6655 1.7560 -7.6865 -#> -8.4181 -8.1825 2.7599 5.0031 -9.8373 -0.7030 -#> -1.7533 7.0408 1.4097 4.1171 -2.0185 0.9093 -#> -15.0229 2.6766 -0.4257 -7.9381 -2.5720 4.4902 -#> 0.2040 1.1599 13.5789 -7.6558 10.2325 -6.6165 -#> 4.6438 -3.2434 10.0951 3.6194 -4.4035 -0.0836 -#> -9.2463 2.0903 -0.0023 10.8511 -6.4154 -5.2644 -#> 2.7451 -13.9360 -9.0759 -7.8088 2.8181 -5.4235 -#> 3.7136 -6.3668 -1.2021 2.3239 7.6207 -3.6235 -#> -0.2203 3.0907 -11.3325 -1.1252 -11.7583 -3.8903 -#> 7.2152 0.2197 -1.1622 12.1529 -2.1452 3.1754 -#> -9.8983 2.5051 -0.5053 1.2530 1.9963 -3.8447 -#> -6.6937 8.3050 0.6103 1.0726 -4.1585 -3.8931 -#> -0.9202 5.0524 0.0446 8.4999 8.9261 -1.5784 -#> 4.6479 -1.3398 11.7661 -1.6349 0.1920 -0.1233 -#> 8.7547 -3.9087 3.6918 5.1973 3.0588 2.7503 -#> 16.5450 9.8928 0.2408 0.5691 6.6154 1.0948 -#> 0.1952 -11.5720 13.2281 -6.8009 3.6701 0.9840 -#> 2.0523 -17.0915 -1.5819 -4.7299 -3.5012 -0.7101 -#> 7.6151 -2.8723 3.9770 -5.7623 2.6486 -0.8233 -#> -3.1527 4.0325 8.9116 -5.7383 -0.0428 7.4691 -#> 7.4466 9.5679 -3.7968 6.6464 2.2457 -3.8793 -#> -13.5084 7.2839 -5.4541 -4.2447 0.3259 3.5467 -#> 7.9819 -10.1110 6.5147 -0.2204 2.2264 -2.8546 -#> -#> (4,.,.) = -#> Columns 1 to 8 -2.1050 12.3998 -0.4774 1.2383 5.8022 -6.9281 -5.4728 6.0727 -#> -1.8157 0.5752 1.5176 9.4034 10.4397 -3.4623 -8.0909 8.9566 -#> 2.8523 -1.4397 -2.0096 0.4399 -2.9058 13.6328 1.0217 13.0719 -#> -1.5294 2.2925 -6.5809 -2.0880 -19.8867 14.5897 -13.2773 -11.1911 -#> 6.7109 -7.0110 0.6445 -0.2109 1.6469 9.4859 -5.7427 -10.0133 -#> -4.8364 5.8289 4.6019 3.3430 -1.8501 -10.7135 21.6716 -15.6815 -#> 7.1862 0.7821 12.1798 8.3415 -3.7003 6.7931 -1.0732 -6.0702 -#> 6.0033 -0.7861 -5.6532 8.0808 9.2785 12.5299 14.3445 3.3772 -#> -2.2405 4.2441 2.1795 2.5741 -12.6495 2.4456 6.2146 -5.1256 -#> 3.2793 13.7299 3.0425 -3.4000 3.7587 10.1255 7.9639 -18.8988 -#> 0.8084 -8.2614 1.0017 10.9275 10.0781 5.7191 -3.9948 0.1607 -#> -1.2355 -1.4259 -3.7475 1.8783 0.8166 0.9565 -4.1186 5.8185 -#> 1.4094 -12.0985 -11.9980 7.8775 9.0769 15.9720 -4.7439 2.9385 -#> 1.5571 0.0629 -0.1035 -1.5539 -3.8787 -14.4867 -3.6049 -22.4549 -#> 4.0708 -4.1490 0.1908 -5.8443 -4.5887 -0.4553 -0.2272 -8.7493 -#> -4.0910 10.3983 0.2122 2.4811 -10.1094 2.2425 -10.9766 5.7353 -#> -1.1070 -3.0927 -0.9344 0.5191 3.5854 0.6241 -0.4108 -3.0465 -#> -6.5693 4.7755 -9.9835 3.8776 -1.0840 8.8799 -12.0977 14.3494 -#> 1.4439 5.9479 14.3636 -2.7812 -2.9505 -1.6697 -2.3293 -10.8652 -#> 5.3586 0.2086 -5.2899 -5.4280 9.1076 -3.8572 5.6281 6.1843 -#> 2.3577 3.8243 -3.7754 0.7548 -6.3366 -7.6611 0.5793 1.8813 -#> -1.0511 7.6017 -20.3287 7.5251 -7.2557 5.9654 8.1025 14.8469 -#> 7.8334 0.2638 -5.3560 5.1233 -0.2849 1.2744 -9.1953 -2.2904 -#> -3.4615 2.4915 -1.4092 -8.7137 1.1823 4.8117 8.3513 16.4244 -#> -3.6477 8.8516 -8.0689 0.4341 8.3788 2.0504 -8.3104 11.5212 -#> -5.6302 0.9044 3.8023 -4.9904 18.6028 -11.3102 7.7670 3.6899 -#> -0.8651 1.9924 8.2783 -7.4464 4.8625 -15.3295 0.5469 -9.0181 -#> 0.7463 -6.4614 1.3538 3.3951 2.1724 12.7520 7.3761 -11.6228 -#> 2.6962 -12.6195 -3.5614 6.3831 -0.7390 4.9695 7.9886 9.1374 -#> 0.5365 6.8245 -1.8546 -7.4207 -12.1718 12.5915 -8.2897 5.3908 -#> 0.0312 4.4716 -0.3820 3.3666 -15.6750 -0.7308 -5.7290 -10.0158 -#> 0.0913 -9.0728 -10.2081 0.3705 0.5208 -4.9135 -13.3187 -3.3307 -#> -2.4412 -8.5937 2.6922 0.0637 7.2697 10.2367 -0.7692 7.1194 -#> -#> Columns 9 to 16 1.4035 1.4040 4.8057 -16.6953 -10.7570 15.9873 -3.9211 2.1780 -#> -1.6966 -5.1725 19.3307 -6.3238 6.2951 4.6960 -2.6081 20.1427 -#> -1.5471 -7.7275 3.1516 -0.9020 -10.0211 -7.9036 1.2798 0.7613 -#> -0.2585 -4.4660 -6.3808 -6.9989 7.8038 0.3097 3.0570 -5.2005 -#> 1.4197 1.7325 -17.5488 -3.1597 13.1648 2.9228 -3.4837 -14.5672 -#> 15.8725 23.6275 -5.4269 -23.7333 -21.2530 0.0843 1.8968 14.8612 -#> 13.6775 10.2984 -13.2271 -13.6772 5.7547 2.0044 -3.7326 -19.6737 -#> -16.4962 6.2314 5.0742 -0.6590 0.0642 0.3928 -11.1059 -7.1018 -#> 11.2382 0.8385 -1.0045 -4.1813 -10.6938 4.4621 14.5863 -18.2117 -#> 1.6609 -5.2850 5.2872 0.7011 -0.5309 -15.8560 4.4899 -23.4390 -#> -14.5825 4.0461 11.6341 -17.4078 -7.0555 -5.2670 0.8999 -5.6901 -#> 2.8568 6.2582 10.6664 -14.0320 4.2543 4.6557 -4.4138 2.9445 -#> -5.7549 11.1731 -8.0999 -14.7524 7.7781 -2.1008 -18.4997 2.9257 -#> 2.8536 8.2467 13.3471 0.4846 5.7097 1.9348 -6.6551 -8.1418 -#> -3.3299 -4.0816 13.1217 16.2571 -1.7483 7.3860 14.2170 -11.9363 -#> 11.0684 5.0762 5.3195 0.1432 12.0400 -3.7210 2.7910 -1.7928 -#> 19.4745 -2.3785 8.6529 -4.5426 -2.4921 7.6448 0.1893 -0.8252 -#> -1.9241 -9.2395 5.6588 -7.6330 -0.7623 -0.6414 9.5515 8.5972 -#> 9.1962 -6.1070 6.8629 -12.9698 -1.6276 24.5720 16.0840 -17.1156 -#> -19.7998 6.6669 12.4325 8.5895 4.8028 -7.0879 -12.0306 1.7905 -#> -9.7381 -10.4174 12.7223 17.6191 16.4640 1.4797 -2.2388 4.2665 -#> -3.5749 1.9684 4.4351 0.8422 3.2918 -15.7919 -17.1336 -9.5118 -#> -5.4865 18.5721 13.7783 1.7104 9.1968 8.7916 5.1292 -8.2372 -#> -10.1325 19.9818 2.2621 -2.6759 1.3810 10.1955 1.6041 0.8605 -#> -8.0232 8.5082 -8.4552 -5.3418 2.3370 13.6287 2.0805 8.9783 -#> 11.1102 -8.4891 2.2244 2.1921 -7.0178 -18.9312 -15.8038 1.8319 -#> 6.3255 -1.7980 -12.3073 0.5514 2.2092 2.9887 -5.8563 2.6762 -#> -15.6557 -3.5616 2.8305 -8.2303 -19.6977 11.7540 1.1495 1.8021 -#> -2.1927 17.4035 -0.7762 0.3718 -5.3043 -6.2854 -6.9760 -15.9494 -#> 15.0398 -13.4662 -24.0948 1.7141 14.0322 16.5744 0.9768 -0.3527 -#> -14.3824 5.7630 15.4500 -0.7237 2.4711 6.4872 2.1575 -3.1848 -#> 10.7607 -2.2199 4.4435 4.3157 6.8573 2.1049 -20.8255 23.3302 -#> -2.3852 14.4152 1.5751 -5.2666 -9.6740 -7.5906 0.5588 12.2082 -#> -#> Columns 17 to 24 -0.3194 -14.9899 -11.1432 7.6206 -2.6515 20.3641 6.9513 1.0261 -#> 8.1171 -7.2204 -20.3917 -8.9583 -0.4736 9.6779 12.4881 -6.0153 -#> 7.8626 -5.3077 -1.0013 -4.2854 -3.4871 12.5138 -4.1042 -4.1187 -#> -0.2872 -14.5971 -15.9643 6.7193 11.3281 16.3837 -6.2956 -8.5059 -#> 7.8821 -2.9166 11.2147 -13.4587 -1.7634 8.1924 -8.6742 10.9291 -#> -5.3366 3.4671 7.0700 10.0996 -3.0505 5.1970 -6.2224 -0.0521 -#> 3.1443 13.5610 8.5994 -11.0686 4.1030 1.0456 -10.7196 -4.6311 -#> -5.1903 1.7303 -10.9142 -3.1094 1.8742 -16.7151 -0.4450 14.1182 -#> -5.8055 -7.5304 3.0536 -5.1155 -7.8851 18.8317 -2.9984 -7.9829 -#> -9.4636 0.1752 1.8338 -3.9810 -18.1357 7.3099 3.1274 -19.7982 -#> -1.5617 16.0187 -1.5374 -20.1662 -5.5443 7.1038 -4.8856 3.5684 -#> 4.4075 -20.2555 15.7781 2.6051 16.9903 -1.7933 -4.4984 -6.9582 -#> -0.3479 13.9096 -15.6244 -11.1793 -3.5875 -15.4238 -7.4633 8.6940 -#> -12.2850 -4.8526 8.2597 -7.7774 10.2423 10.6756 15.3577 3.9057 -#> -9.5595 -12.0798 5.7455 13.8555 2.1398 11.5047 2.4477 -7.0594 -#> 6.9720 -3.8493 11.8396 11.0641 -2.8332 -0.1463 -7.4761 -6.3588 -#> 5.5957 1.3788 12.8145 -16.4845 -2.3937 -4.1697 2.6650 9.6846 -#> 16.3475 -1.5722 -3.2263 -1.4248 2.0256 -1.4739 4.0604 -10.2989 -#> -0.6586 3.4046 4.6824 0.4668 -9.5215 -0.6462 -1.9205 0.3976 -#> -16.8921 9.5151 0.8390 14.2056 -3.7218 9.2721 -5.7017 -8.5205 -#> -14.3077 9.3742 3.4875 9.6195 -6.0802 -3.7222 10.8635 5.9279 -#> -2.1217 -0.1907 4.4814 6.3114 4.5167 -3.5535 2.8435 9.9919 -#> -13.9939 15.1288 4.2053 -9.5740 1.5628 3.6481 -1.3641 -3.7322 -#> 8.7557 8.7261 25.1453 0.8178 4.6255 -6.7057 -8.6511 -0.1091 -#> 7.4447 -1.8325 3.1293 7.0337 -2.7863 1.6286 -16.0444 -3.8087 -#> -2.8873 2.8116 0.0587 3.4188 -9.5266 -14.8540 4.2804 -8.2651 -#> -9.8895 -6.4253 -10.2173 5.8122 14.4629 -1.7608 -11.0493 3.2803 -#> -1.0160 -13.9493 -9.9600 -15.3795 -3.2849 5.6923 -7.4746 12.0561 -#> 2.1805 4.5089 -2.3862 -4.1503 10.5217 -16.1267 -6.3030 6.9384 -#> -1.3073 7.8117 7.1677 2.6476 -8.0955 8.7233 2.8246 4.7810 -#> -18.4368 -2.3778 0.1608 13.3684 6.7485 6.4731 6.1167 -1.2516 -#> -0.6043 24.9120 -1.4423 -6.7582 8.9642 -8.6571 -14.0482 16.8610 -#> 17.7286 20.2208 18.4647 -7.7855 1.3575 -9.3874 -0.5325 -11.0693 -#> -#> Columns 25 to 32 5.6326 5.8350 -13.5859 2.6041 -4.8413 -0.6250 -6.9518 -5.0680 -#> -12.4608 -1.0832 -3.9246 -6.0014 -14.6060 9.3799 -5.2067 9.0054 -#> -9.7539 1.2320 -1.4374 -8.5207 -10.2753 -2.1604 -1.0834 -9.2973 -#> -2.7700 -3.0238 -6.5836 22.4792 -6.0836 -3.0262 9.0822 -13.0279 -#> -3.6857 -8.2444 -9.6928 -5.6210 -3.9370 3.0351 7.6838 -11.3569 -#> -0.2301 6.7172 -1.5944 -1.4519 0.7078 -22.6055 -0.0719 -9.2618 -#> 22.1931 -19.8122 -7.2434 -1.8270 -7.0690 -20.1464 -11.8704 2.4956 -#> 8.5558 -13.4251 9.5341 -4.0036 -0.1540 8.6128 7.1111 7.8143 -#> 7.0072 4.0444 -14.5680 -15.6934 16.3534 -8.4037 2.4889 -12.2590 -#> 4.0391 13.6764 -10.0684 6.1171 -5.3206 -15.5514 5.7784 -2.1322 -#> -0.0031 -7.7351 -9.6109 6.7777 10.3609 -5.9732 -5.8301 0.0472 -#> -7.5225 -8.9016 -3.5149 -12.1527 -13.5420 -10.9205 1.6544 -16.7605 -#> 0.7409 -9.4100 4.2403 6.1743 13.0698 4.1074 -2.2450 11.6677 -#> 7.2575 5.4975 1.5036 8.9499 -6.6605 1.1732 10.0563 -2.5328 -#> -13.7980 2.2803 -11.4877 -8.7844 -11.2398 -18.5173 21.1523 -24.5849 -#> -13.6781 4.3191 -1.2661 3.1900 -9.3190 -2.6247 2.3197 -7.3712 -#> 14.6047 -0.4196 6.9357 15.3953 5.5046 -5.5453 0.5608 -0.1292 -#> 7.9832 2.5611 -7.4931 8.8954 -12.2209 9.0451 -13.8076 15.4440 -#> 16.5112 0.9398 2.9589 -0.9302 10.1620 -6.0823 -2.3119 11.8207 -#> -2.4773 11.4658 4.3734 -14.3540 -4.6328 6.7320 10.7169 -2.2529 -#> 5.1290 7.3429 -6.4964 -1.1527 9.2697 11.9739 -7.9363 7.1066 -#> -6.5489 -4.9425 -4.4167 11.7435 -4.6573 3.6331 -4.8614 -0.2404 -#> 4.7502 -13.9168 8.9244 1.8197 -3.4975 2.8928 5.0875 -16.2945 -#> 8.9716 -22.2495 -7.6811 -13.3519 -6.7208 -3.6837 -6.2659 -10.6813 -#> 10.0090 -2.3997 -3.9190 11.7128 -11.4862 2.7779 10.6134 -17.2960 -#> 5.2759 10.7843 6.3188 -9.5183 3.7632 -13.0112 7.6870 -9.9708 -#> -17.1446 0.4763 1.7853 8.8129 0.8247 -12.7194 13.7973 -10.3702 -#> -2.9073 7.9717 -1.6721 4.9187 17.0543 27.8806 -3.1481 3.5462 -#> 0.6223 -5.8077 21.9198 14.0404 1.6793 11.8098 -2.5856 5.5326 -#> -1.5546 8.4663 -19.7711 -3.5745 -9.0930 2.5057 -8.8058 1.5028 -#> 2.9323 2.4301 0.4083 1.3978 2.1401 -3.1432 -9.2657 10.6113 -#> -8.3944 2.1382 3.2571 5.1617 4.1159 11.8319 -2.4654 3.5631 -#> -9.5940 -3.8198 -0.0708 0.2324 -0.3559 5.0562 -9.3026 -0.0156 -#> -#> Columns 33 to 40 5.4751 -4.9685 -1.1140 12.0255 -2.7069 0.1429 -3.9142 -1.8313 -#> -21.6627 7.3637 -1.2541 -10.8029 -6.5101 4.8416 -2.5360 5.8329 -#> 0.8076 18.1017 -4.4381 -0.4216 -1.6496 0.0826 8.9062 -9.5129 -#> 11.0231 -3.6290 -7.2440 1.0281 5.9202 -2.9915 -0.1684 -6.0654 -#> -1.8620 4.0979 3.5261 -2.2876 -3.8825 -4.7818 30.0266 -5.1267 -#> 9.2627 -9.3801 -6.3897 4.1681 3.5414 -1.2313 2.2550 -7.4358 -#> 3.8479 0.4866 21.6011 11.6342 -7.4530 9.2773 4.7980 4.0954 -#> -12.4142 0.9372 -1.0704 -8.8271 -10.6478 7.2930 3.4420 -7.5093 -#> 0.1698 -2.8374 -9.1786 3.2934 9.4190 9.5889 -12.3461 -6.6323 -#> 6.0238 -16.7210 -2.1618 6.7680 9.0894 -11.5117 9.2601 4.0035 -#> 7.0340 -5.0686 -6.7381 6.7828 3.2271 -1.7524 6.9165 -1.2493 -#> -2.5774 -9.4541 5.8497 -10.5635 7.0962 4.1460 -3.2895 -4.5333 -#> -0.0374 -5.8546 0.1963 -1.3632 -10.0908 9.7387 -1.9190 -8.9648 -#> 2.5153 -6.6226 7.6842 -8.7523 -0.5876 -4.2538 0.6357 7.1436 -#> 15.0600 8.3653 -5.3016 -8.9727 1.9099 -4.7034 -14.8080 6.8321 -#> 5.2180 1.6998 9.6705 -1.0297 -0.2300 -18.0583 -5.9676 2.8278 -#> -6.6438 -3.8793 10.7047 1.1690 -10.4911 -4.8902 -8.9453 2.6225 -#> 2.6865 -7.0715 17.3035 -1.0292 8.6419 1.5127 11.3743 4.6567 -#> -0.8823 1.9922 -1.6805 2.6441 7.0532 -3.5863 1.5426 -9.0900 -#> 3.4192 22.3566 -13.5973 -0.9803 -0.6945 -13.5652 -6.6271 -8.6951 -#> -4.7106 -1.8860 4.7969 -3.3994 -0.0136 -1.0474 7.1799 -12.5076 -#> -3.5109 -6.8928 -10.2952 -27.2561 -4.6149 1.7142 -12.5523 -1.0221 -#> -6.7093 10.3142 8.2573 2.4934 -1.7516 -11.4688 -2.4966 -15.7521 -#> 7.1038 -8.7811 1.0369 -5.1111 10.7257 -0.7682 -2.9512 -2.0453 -#> -11.9724 15.1011 -3.2683 5.3593 10.3720 -2.2955 6.3947 4.5287 -#> -6.6439 6.2459 -5.5014 -5.6457 0.1835 12.0601 2.1755 11.0305 -#> 1.2823 -1.0151 0.4840 9.5057 6.6848 -7.5415 3.5770 1.3109 -#> 7.9927 -9.9826 1.0853 -13.3779 -7.0886 3.5114 -5.8115 -1.8867 -#> -1.5721 -1.4694 5.1739 -5.5387 13.7887 3.5508 14.0987 8.0543 -#> 11.2043 6.1202 1.7812 17.8911 9.0120 2.1963 15.4762 12.7197 -#> 8.6884 -13.1554 -4.0781 6.2083 10.8189 -9.2288 -7.2779 3.9982 -#> -8.0184 16.5070 5.8675 -2.3072 -16.1820 18.5364 -5.8738 -16.4123 -#> 3.2305 -0.1945 8.0007 15.5950 6.0886 3.3087 -5.3623 0.7048 -#> -#> Columns 41 to 48 -8.6006 -4.8646 27.5523 -1.5430 -15.4093 7.7829 7.3981 -0.3793 -#> -15.8642 -0.2972 -3.1149 -0.9991 -3.9445 -12.1184 -10.9670 6.3001 -#> -0.7089 -11.8555 2.6656 0.5943 16.2644 -5.9812 -12.9371 -1.6014 -#> -12.7581 -0.4289 6.1141 -8.4463 -2.0868 -6.8926 -2.6126 -9.0016 -#> -8.2506 21.2704 -4.0491 -2.2546 12.1547 0.1667 -8.4576 10.7930 -#> 16.0594 4.1562 10.0196 -7.5173 -0.3256 16.0685 -0.1030 -16.9110 -#> -0.6021 12.6787 2.3527 -8.8386 -7.3754 13.4047 -8.9777 -5.7262 -#> -2.1249 -14.3050 5.0873 6.6320 -6.5322 -16.8134 -7.4323 -3.4885 -#> 12.5125 -10.3117 18.7218 4.0142 2.5446 8.3031 0.4404 3.8229 -#> -0.8576 1.2573 0.1647 -5.6551 25.1561 2.0695 -17.7567 -22.7935 -#> 17.9452 -11.9911 9.8603 7.5845 -2.0050 6.4060 -4.7783 0.6968 -#> 3.0729 -2.5976 17.7593 -0.2200 -14.6376 11.7562 12.4318 -22.8368 -#> -3.3752 -8.7275 22.4086 10.6214 -6.4601 17.0018 1.2447 -9.9543 -#> -17.1848 7.0295 -20.1981 15.9027 -13.7001 14.6122 -12.5801 8.7190 -#> 7.3749 -8.2294 -10.3922 5.2209 10.2326 -1.1034 -2.3768 5.0779 -#> 6.5220 6.8331 -5.5146 -26.3487 10.0968 7.4076 4.2510 -0.1241 -#> -16.3551 23.9117 -12.9491 -6.2878 -8.0376 -8.9809 -11.6969 -16.2643 -#> -3.3320 -7.2563 7.0096 -5.1591 -10.8903 -8.3051 11.5121 -4.8205 -#> 30.1463 -27.2953 -10.3255 1.2407 -3.8466 -11.4208 10.3090 -21.3064 -#> 16.6340 -28.7060 7.5365 -0.2053 -9.2341 -6.5734 -10.7766 -2.7444 -#> 11.6982 -2.6341 -11.3039 -7.5007 5.1457 7.6688 26.6237 -15.1442 -#> -9.7540 -8.5738 -14.3518 -5.7013 13.9404 -3.8985 -0.1138 8.8463 -#> -10.4308 11.0512 -5.5217 -22.5346 1.6473 -5.2179 -9.4511 -7.9082 -#> -2.4912 0.3161 -11.0292 6.5892 0.1307 -1.6834 -1.0987 1.6923 -#> -3.9673 -7.9401 22.3718 -2.3691 11.7177 -11.3505 6.1523 3.1161 -#> 2.6399 13.7468 -0.3763 18.8045 8.5708 4.0262 -8.7736 4.2290 -#> -2.8576 7.1759 -8.0101 10.8422 6.3865 5.0936 1.2168 9.2354 -#> -10.8633 -1.0824 -0.8987 11.4758 -11.9743 -10.4646 13.7240 -1.7358 -#> -14.1178 21.2416 3.7955 24.8035 6.0983 0.3335 3.4862 4.4295 -#> 11.0182 5.3442 -3.7926 -20.3325 23.6837 -3.2902 -8.2127 -9.5710 -#> 1.1583 2.6508 -16.1883 2.1579 -12.3988 16.1296 1.6853 2.6362 -#> -4.6801 -1.2721 3.6902 8.4217 20.9060 -13.4412 18.0424 -1.5549 -#> -8.8554 17.1304 -6.1151 8.3124 -10.3070 -2.1585 -10.7280 1.6565 -#> -#> Columns 49 to 54 -6.7632 9.0205 3.9832 1.1877 3.4006 5.9775 -#> -8.4520 -5.9237 2.4574 0.5103 -1.2747 -0.2187 -#> -6.3469 0.8673 -5.0039 -2.8374 -1.5800 0.5130 -#> -15.8223 -10.4915 -2.9986 -0.9827 -1.1368 -2.5114 -#> -10.8001 7.0442 9.2466 8.6179 2.7842 0.3649 -#> 20.2535 11.2160 3.6390 13.7110 13.4839 8.3034 -#> 4.1736 -9.9043 -5.7932 -7.1145 1.6513 -1.3660 -#> -2.9477 -6.7830 2.2032 4.6185 4.4635 2.1922 -#> -19.0045 9.1668 -3.2519 5.0947 -1.5906 1.6095 -#> -5.0198 -7.6808 -18.1146 5.1944 4.6247 2.0399 -#> 8.0772 10.3144 -3.3351 4.8508 -1.3147 1.5389 -#> 6.1753 -1.1323 7.2598 9.2451 -4.0144 4.3835 -#> 2.9787 0.5584 7.9027 -0.5738 -0.4446 3.5570 -#> -2.4050 -19.9975 -0.9384 -1.0172 1.1957 -3.5614 -#> 16.0283 11.9335 1.4864 13.4882 0.2626 2.1828 -#> 6.7011 1.7985 -3.5908 3.4675 0.3625 1.4105 -#> 14.4403 6.5076 8.2722 12.7859 4.8887 5.4573 -#> -4.6987 -9.9025 -0.4740 -6.8387 -0.7232 -0.5840 -#> -0.4707 3.2551 -7.0753 1.6114 -1.6163 -0.1045 -#> -3.9348 7.0254 -7.9377 -5.2363 0.3976 -1.0753 -#> -5.7204 6.0980 1.9556 -4.8694 0.6084 -1.2481 -#> -8.0397 4.9181 1.6892 -0.0915 0.5730 0.9259 -#> 5.1109 -1.9765 3.3636 4.5646 6.2376 3.4933 -#> 6.6943 -21.3563 -4.1890 -4.2812 -1.6969 -2.0259 -#> 15.2933 -11.0076 -7.0053 -1.5960 -3.4357 -2.7896 -#> -1.0028 -14.8088 -0.0199 -5.7920 -1.0041 -0.3028 -#> 11.7314 -0.1637 -1.2221 -3.7700 -1.0029 -3.3862 -#> -2.0893 6.2374 18.0681 -0.3367 -1.2742 -0.1907 -#> -0.0101 -6.8336 -1.6090 -7.7200 -3.4319 -1.2397 -#> 5.7481 -7.0355 4.3746 0.9063 -8.7526 -4.9835 -#> 7.4789 -5.0154 6.5255 6.2043 1.7799 4.7899 -#> -6.0105 7.1342 -0.0061 -2.5677 -8.1663 1.6100 -#> -0.1814 -12.1102 -1.1473 -2.8114 7.7898 -4.2462 -#> -#> (5,.,.) = -#> Columns 1 to 6 -6.4262e+00 -1.0302e+01 -8.0426e+00 -3.3373e-01 1.1466e+01 -1.5697e+01 -#> -1.1519e+00 2.0001e+00 -4.2894e+00 -7.6826e-01 -1.1227e+01 2.5261e+00 -#> 1.6970e+00 -3.3100e+00 -4.4895e+00 1.3259e+00 1.8962e+01 8.1508e+00 -#> 2.2075e+00 2.1765e+00 1.4384e+00 1.5917e+01 -1.1309e+01 7.0364e+00 -#> 3.8093e+00 -3.8368e+00 -1.6455e+01 1.2298e+00 -1.0367e+01 -1.5784e+01 -#> -9.8932e-01 -5.0788e+00 -1.5136e+01 -9.8048e+00 -6.8520e+00 1.4605e+01 -#> -4.7910e+00 -5.1260e+00 1.6453e+00 -5.3460e+00 8.2288e+00 2.0704e+00 -#> 6.3422e+00 9.8608e+00 5.8286e+00 -5.4466e+00 5.3061e+00 -8.3891e+00 -#> -4.0661e+00 -2.3066e+00 2.0202e+00 -1.3354e+00 8.2298e+00 -7.6327e-01 -#> -1.5477e+00 7.6396e-01 4.5311e+00 3.5211e+00 -1.4649e+01 7.8986e+00 -#> 2.5916e+00 2.3080e+00 6.7754e+00 -1.1042e+01 -1.3366e+01 -3.8321e+00 -#> 2.5285e+00 4.0808e+00 8.8407e+00 -6.2941e+00 1.3328e-02 3.6616e+00 -#> 4.6916e+00 -5.0228e+00 7.1309e+00 -4.2475e+00 1.1867e+01 -8.2675e+00 -#> 8.0642e+00 7.6726e+00 5.1226e-01 4.8608e+00 2.9767e+00 2.1985e+00 -#> -4.2219e+00 6.4403e+00 1.7694e+00 4.1442e+00 7.6349e-01 -1.0233e+01 -#> -9.3862e+00 -3.3176e+00 -1.1481e+01 2.5465e+00 -3.9686e+00 1.6527e+00 -#> 8.8190e-01 -3.4220e+00 1.1836e+00 -2.9330e+00 1.0608e+01 1.6665e+01 -#> -1.4457e+01 -2.0386e+00 -7.8769e+00 9.1628e+00 -1.2645e+01 8.8112e+00 -#> 3.3646e+00 2.8787e-01 -2.8648e+00 9.7906e+00 -4.8234e-01 2.3953e+01 -#> 5.5200e+00 8.0760e+00 8.1474e+00 1.6808e+01 3.8783e+00 -2.1914e+00 -#> -2.4432e+00 -6.1003e+00 -3.4941e+00 9.1001e-01 -1.7641e+01 -9.1526e+00 -#> 7.2679e+00 2.8391e+01 -5.7809e-01 6.8612e+00 1.4567e+01 3.5080e+00 -#> 6.7239e+00 6.1337e+00 1.0413e+01 1.2382e+00 4.5004e+00 2.7951e+00 -#> -2.6557e+00 -6.5517e+00 2.6339e+00 -3.3769e+00 4.9165e+00 1.9107e+00 -#> 4.2102e+00 -3.3543e+00 -1.2687e+01 2.5395e+00 2.5638e+00 1.9196e+01 -#> -3.8726e+00 2.0134e-01 4.1404e+00 -6.0846e+00 3.6685e+00 -6.0531e+00 -#> 2.7909e-01 1.0917e+00 -7.4160e-01 -2.7103e-01 8.1912e-05 -3.0494e+00 -#> 7.3136e+00 6.4701e+00 1.0309e+01 7.2169e+00 2.8521e+00 -2.0348e+00 -#> -2.8647e+00 -3.3199e+00 -1.1787e+01 -2.0081e+00 -4.9858e+00 -7.1792e+00 -#> -9.1410e+00 -1.2388e+01 3.4625e+00 1.7626e+01 -1.7789e+01 2.6632e+00 -#> 5.0764e+00 6.8630e+00 8.2448e+00 -1.5367e+01 -6.3745e+00 -8.8637e+00 -#> 3.8776e+00 -6.5466e+00 -1.8389e+01 -6.6696e+00 5.8418e+00 -6.7904e+00 -#> -3.2302e+00 -8.0956e+00 -5.7334e+00 1.4126e+00 -2.7921e+00 -3.9389e+00 -#> -#> Columns 7 to 12 -4.0465e+00 8.8923e-01 -1.4303e+01 -9.4046e+00 6.4015e+00 1.5997e+01 -#> -2.9243e+00 1.7137e+00 4.3121e+00 -7.3565e+00 -1.0214e+01 -1.2201e+01 -#> 7.1019e+00 5.0987e+00 1.9010e+00 -2.4699e+00 -3.0563e+00 2.9805e+00 -#> -8.1475e-01 8.9229e-01 1.4172e+00 -3.4651e+00 5.2722e+00 1.2982e+00 -#> -5.4192e+00 -9.6536e+00 6.7028e+00 -2.9846e+00 3.8598e+00 -8.2039e+00 -#> 1.7103e+01 4.1835e+00 -1.9952e+00 5.5272e+00 -1.5506e+00 -9.4011e+00 -#> 2.2505e+00 -1.9357e+01 -2.2002e+00 2.4192e+00 1.0321e+01 1.7182e+01 -#> -1.0851e+01 9.3675e+00 -1.4618e+00 -1.9284e+00 -3.1685e+00 9.2756e+00 -#> 1.1996e+01 -8.0681e+00 3.1487e+00 4.6738e+00 7.7214e-01 9.2540e+00 -#> -2.0899e+01 -2.4664e+00 -1.0292e+01 -2.3162e+00 4.3699e-01 3.0183e+00 -#> -7.5234e+00 4.0622e+00 2.8611e+00 -5.0612e-02 -2.7615e+00 1.0727e+01 -#> -6.7269e+00 1.7070e+01 1.3479e+00 2.8591e+00 1.3784e+00 1.5057e+00 -#> -2.5754e+00 1.4918e+00 -1.6116e+00 9.1770e+00 -2.8859e+00 6.1093e+00 -#> 4.5459e+00 -6.6762e+00 1.0926e+01 -8.5546e+00 5.9326e-01 -4.5555e+00 -#> 2.1496e+00 -6.6026e+00 2.0679e+00 -2.2635e-01 1.2354e+01 8.0611e+00 -#> -1.0398e+00 2.4987e+00 -6.6752e+00 1.6018e-02 -5.0908e+00 -7.8365e-01 -#> 2.1959e+00 6.0708e+00 4.3137e+00 2.1468e+00 -6.7604e+00 -2.5864e+00 -#> -7.0599e+00 5.5481e+00 -4.1306e+00 -1.1196e+01 7.3052e-02 2.0858e+00 -#> -1.9106e+01 -4.3791e+00 -1.5648e+01 -3.9139e+00 4.2754e+00 1.4006e+01 -#> -1.2236e-01 1.2929e+01 1.3368e+01 -7.0120e-01 8.7745e+00 -6.1214e+00 -#> -1.8933e+01 -2.1145e-01 -5.3975e+00 -3.9796e+00 -9.0409e+00 -8.7610e+00 -#> 7.7373e+00 -2.1278e+00 3.6165e+00 7.6281e+00 4.9305e+00 7.7253e+00 -#> 8.2651e+00 1.7974e+01 1.0775e+01 -1.3353e+00 8.9461e+00 -3.0251e+00 -#> 4.0353e+00 -5.0770e+00 7.8504e-01 8.8365e+00 -3.8695e+00 1.3443e+01 -#> -7.6197e+00 1.1457e+01 -8.3000e+00 -1.5143e+01 -4.2876e+00 -8.1806e-01 -#> 3.5782e+00 -2.8537e+00 9.9314e+00 2.0893e+00 -3.4795e+00 -1.2507e+01 -#> 6.0520e+00 -1.2071e+01 9.9488e-01 2.2217e+00 5.7808e+00 -1.6132e+01 -#> 1.4790e+01 1.4483e+00 -1.9808e+00 -3.8774e-01 -8.9233e+00 4.7249e+00 -#> 1.2036e+01 2.3744e+00 3.1593e+00 1.5919e+00 5.9775e+00 2.4469e+00 -#> -1.0775e+01 -9.3839e+00 -1.6414e+01 5.2102e+00 1.5185e+01 5.9463e+00 -#> -3.5521e+00 -7.9817e+00 -2.9207e+00 5.7468e+00 -1.1332e+01 8.4551e+00 -#> -1.0195e+01 1.2005e+01 -3.6723e+00 1.1780e+01 -1.6271e+00 7.6696e+00 -#> 2.1713e+01 5.2783e+00 9.3111e+00 8.0497e+00 -1.6087e+00 4.5775e+00 -#> -#> Columns 13 to 18 -1.8652e+00 -1.6296e+01 1.8492e+01 -8.9194e+00 -2.5883e+01 1.1869e+00 -#> -6.7993e+00 5.6378e+00 1.4581e+01 -4.0838e+00 6.1944e+00 -2.9574e+00 -#> 2.2431e+01 -2.6491e+00 -1.2315e+01 -4.1996e+00 -2.0293e+00 9.9904e+00 -#> -1.8455e+00 3.2875e-01 -6.2301e+00 1.0648e+01 -3.1354e+00 4.8623e+00 -#> -2.4562e+00 -4.0854e+00 -1.4479e+01 -4.5397e+00 -1.3717e+01 -3.2325e-01 -#> 1.6040e+01 9.0584e+00 -8.3440e+00 3.6967e+00 9.8770e+00 2.2980e+00 -#> -1.2911e+01 1.2589e+01 6.9104e+00 3.5571e+00 -5.1544e+00 -7.4146e+00 -#> 6.1413e+00 -1.8190e-01 -3.3456e-01 -2.6882e+01 -1.4690e+01 -1.1079e+01 -#> 1.1708e+01 -9.3690e+00 -1.1440e+01 9.3169e+00 7.7772e+00 -1.8925e+01 -#> 1.5197e+01 1.3778e+01 -5.0570e+00 -9.0739e-01 -6.1582e+00 -2.7271e+00 -#> -2.1772e+00 -1.6658e+01 -6.2780e-01 5.7757e+00 -1.0697e+01 2.5060e+00 -#> -1.1280e+01 1.2305e+01 5.9221e+00 -3.2115e+00 -7.5718e+00 8.3008e+00 -#> -1.5762e+01 -2.2615e+00 1.2355e+01 -1.1957e+01 -9.3039e+00 6.8012e+00 -#> -8.7712e+00 8.6509e+00 7.4090e-01 9.2350e+00 1.9766e+00 -1.6338e+01 -#> 1.4290e+01 -3.2918e+00 -1.5809e+01 1.0007e+00 6.8876e+00 -3.0997e+00 -#> 1.4291e+01 1.4412e+01 -8.0414e+00 9.9127e-02 -4.8554e+00 3.1393e+00 -#> -9.8472e+00 9.9958e-01 2.5397e-01 -4.2138e+00 -1.1304e+00 -1.6261e-01 -#> -1.1017e+01 -4.3670e+00 1.7037e+01 8.7364e+00 1.3894e-01 7.6550e+00 -#> 3.4132e+00 -3.2857e+01 2.2227e+00 5.0719e+00 2.8524e+00 -1.2048e+01 -#> 1.4289e+01 4.6767e+00 -1.4386e+01 -8.2073e+00 -1.0569e+01 -1.3552e+01 -#> 3.5160e+00 1.1464e+01 7.5946e+00 -5.3213e+00 -1.9107e+01 -1.2373e+01 -#> 3.4990e+00 -7.3915e+00 -1.1307e+01 -6.4806e+00 -5.4687e+00 -2.5775e+00 -#> -2.8884e+00 2.8935e+01 -6.5814e+00 1.8260e+00 -8.2682e+00 -1.2801e+01 -#> 1.1532e+00 3.3882e+00 -1.7850e+01 2.8981e+00 1.5333e+01 -9.5075e-01 -#> 5.5637e+00 1.7700e+01 7.4352e+00 8.8628e+00 7.4742e+00 2.0415e+01 -#> 2.9779e+00 2.2275e+01 -1.2943e+00 6.2881e+00 2.5515e+01 -1.5408e+01 -#> -1.9378e+00 5.2831e+00 2.9522e+00 1.0344e+01 4.0745e+00 -1.2546e+01 -#> 1.8626e+00 -2.3987e+01 4.6421e-01 -5.2962e+00 -1.8111e+00 4.6379e+00 -#> -8.5860e+00 9.5225e+00 9.0563e+00 -7.0315e+00 4.4661e+00 8.3436e+00 -#> 9.7812e+00 5.3378e+00 1.3720e+01 1.2092e+01 1.2569e+01 6.4263e+00 -#> 6.8753e+00 -2.3651e-01 -7.5481e+00 5.3557e-01 2.3002e+00 -2.2790e+01 -#> 2.4410e-01 -1.2898e+01 1.6192e+01 -1.8877e+00 3.8370e+00 6.8946e+00 -#> -5.2318e-01 -5.6432e+00 -6.6090e+00 4.1998e-01 5.3408e+00 1.3252e+01 -#> -#> Columns 19 to 24 -1.4445e+01 -7.1449e+00 -1.5830e+01 -8.5493e+00 -1.3246e+01 -1.0818e+01 -#> -5.8257e+00 2.5380e+00 4.0747e+00 3.3717e+00 1.2595e+01 -3.3998e+00 -#> -7.3894e+00 -4.2604e+00 -1.2218e+01 -4.3442e+00 9.4085e+00 -2.5070e+00 -#> -4.1200e+00 -3.6416e+00 9.7555e+00 2.0301e+01 4.9697e+00 -1.1485e+01 -#> -3.8639e+00 3.4220e+00 -1.6872e+01 3.9867e+00 2.3141e+01 1.2290e+01 -#> 1.7509e+01 1.1767e+01 -8.2266e-01 -3.9060e+00 -1.0922e+01 -1.0966e+01 -#> 7.7470e+00 -1.4266e+01 3.9405e+00 -6.0676e+00 1.2489e+00 8.5741e+00 -#> -1.4520e+00 -7.8036e+00 -8.0052e+00 4.7120e+00 1.9998e+00 9.7785e+00 -#> 7.1853e+00 -5.4099e+00 -1.1661e+00 -9.6124e-01 -3.5060e+00 2.8660e+00 -#> -4.3456e+00 1.4829e+01 1.3369e+01 -6.0624e+00 -6.6249e+00 -4.8913e+00 -#> 6.3133e+00 -5.3194e-01 -1.5952e+00 -2.1070e+00 2.6445e+00 5.3696e+00 -#> -1.2118e+01 5.5716e+00 4.6971e-01 -4.8059e+00 -5.0967e+00 -9.4180e+00 -#> 1.5625e+01 -2.5577e+00 -1.1879e+01 -4.4374e-01 -8.2021e+00 2.3238e+00 -#> -4.9951e+00 1.4574e+01 1.0015e+01 6.7822e+00 1.8982e+00 -9.4548e+00 -#> -1.3176e+01 -7.8126e+00 -1.8460e+00 -1.2364e+00 8.4664e-01 -1.9703e+01 -#> 1.4479e+00 1.4478e+01 5.8062e+00 9.4571e-01 8.8584e+00 -5.1504e+00 -#> 1.1455e+00 -6.0675e+00 9.1297e+00 -1.1173e+01 -4.6109e+00 5.5358e-01 -#> -3.5382e+00 9.8266e+00 1.4570e+01 7.3645e+00 -3.1711e+00 8.0725e+00 -#> -1.3910e+01 -1.2044e+01 -1.6904e+01 -6.0675e+00 -4.3612e+00 -8.3484e+00 -#> -4.3631e+00 5.4232e+00 3.4341e+00 2.0606e+00 -5.7591e+00 -3.5410e+00 -#> -8.8304e+00 2.7338e+00 5.3586e+00 -4.3458e+00 8.0168e+00 4.1562e+00 -#> 3.4144e+00 1.1629e+01 -4.1753e+00 -2.2655e+00 2.4787e-01 -1.4080e+01 -#> 1.0627e+01 7.8785e+00 1.1896e+01 -7.2031e+00 -4.6135e+00 -2.0067e+00 -#> 1.1385e+01 1.1738e+01 -1.7749e+01 1.7336e+01 8.0784e+00 7.6059e+00 -#> 1.2071e+01 9.1543e+00 -9.2724e+00 -3.8312e+00 7.5362e-03 -8.5426e+00 -#> 1.0760e+01 6.5716e+00 5.0156e+00 -6.8049e+00 -1.5221e+00 -1.8318e+00 -#> 5.8628e+00 -5.8969e+00 -2.5412e+00 -7.0412e+00 -7.1329e+00 -4.1548e+00 -#> -5.9491e+00 -4.2658e+00 -1.1386e+01 4.8017e+00 -4.1747e+00 -1.5459e+00 -#> 6.2477e+00 3.3169e+00 1.0762e+01 8.2661e+00 -4.6610e+00 1.3204e+01 -#> 1.6609e+00 8.2084e-01 -2.4961e+00 -1.3010e+00 5.8499e+00 1.2042e+00 -#> -1.8975e+01 9.0164e+00 6.3102e+00 1.0104e+01 -4.1855e+00 -2.9264e+00 -#> 1.7456e+01 2.2383e+00 -7.5770e+00 1.1101e+01 -7.0678e+00 -7.7324e+00 -#> 1.2254e+01 1.9148e+01 -9.5767e+00 1.3521e+01 5.4999e+00 1.3138e+01 -#> -#> Columns 25 to 30 4.7672e+00 3.9393e+00 5.8296e+00 -3.1557e+00 9.4979e+00 -2.1713e+01 -#> -6.2923e+00 1.0280e+01 -9.7095e+00 2.7831e+00 3.1785e-01 1.5338e+00 -#> -1.8244e+00 2.1574e+00 1.1629e+01 8.0770e+00 4.8884e-01 1.8520e+01 -#> 1.5629e-02 -1.8364e+00 1.8026e+01 1.5302e+01 -2.8889e+00 1.3968e-01 -#> 1.1179e+00 -9.3442e+00 2.7496e+00 -6.8790e+00 -4.7582e+00 -1.4035e+01 -#> -6.6229e-01 6.1338e-01 -6.1479e+00 -9.7994e+00 -1.1166e+01 -3.6618e+01 -#> -1.2571e+01 2.6986e+00 3.4589e+00 1.0057e+01 6.3649e+00 1.6529e+00 -#> 1.3031e+01 4.0839e+00 2.0510e+00 -1.5870e+00 -9.3332e+00 9.5409e+00 -#> 1.5391e+00 -2.6677e+00 9.4479e+00 1.2192e+01 -1.5544e+01 4.3714e-01 -#> -5.6149e+00 1.4890e+01 2.8167e+01 2.1890e+01 3.7060e+00 -2.3475e+00 -#> 3.1602e+00 -6.4318e+00 -5.0051e-01 -7.0032e+00 2.8286e+00 -5.1985e+00 -#> 2.1729e+01 4.4250e+00 5.0968e+00 6.9575e+00 1.7531e+00 -2.5253e+00 -#> -1.0086e+00 -2.7643e-01 4.9174e+00 3.8020e+00 1.1939e+01 -2.0344e+00 -#> -6.7084e+00 -3.3351e+00 7.7175e-01 2.1211e+01 2.6425e+01 6.7001e+00 -#> 8.5745e+00 -6.3598e+00 4.2359e+00 -6.8517e-02 -8.5386e-01 5.5816e+00 -#> -8.9783e+00 4.1437e-01 -8.1550e+00 -8.5186e+00 -3.6995e-01 -4.0838e+00 -#> -9.3662e+00 -9.4380e+00 -1.6104e+01 -1.6740e+01 -1.4065e+01 -1.4101e+01 -#> 4.0266e+00 -6.0926e+00 -2.1354e+00 -1.2275e+01 -3.8985e+00 -4.7642e+00 -#> 7.2370e-01 -8.8531e+00 3.0463e+00 1.1427e+01 -4.3989e-01 3.9344e+00 -#> 1.6464e+01 1.1835e+01 9.4309e+00 1.2652e+01 4.9765e+00 2.0312e+01 -#> -5.0763e+00 -5.5975e+00 -5.2981e-01 -9.1223e+00 7.8726e+00 -1.1486e+01 -#> -5.5547e+00 4.3114e+00 1.8073e+00 1.1570e+01 9.9499e+00 6.8600e+00 -#> -6.6898e-01 -3.5121e+00 1.2643e+00 3.2227e+00 -3.4610e+00 1.8418e+01 -#> 4.0002e+00 1.0894e+00 8.4338e+00 -5.1922e+00 3.8902e+00 -6.6107e+00 -#> 3.9277e+00 -6.1210e+00 -1.3713e+01 -1.8275e+00 -3.6425e+00 1.0173e+01 -#> -3.0410e+00 1.9244e+01 1.1407e+01 2.2155e+01 3.5196e+00 1.0021e+01 -#> -1.0214e+01 -3.6439e+00 5.5281e+00 -1.3027e+01 1.2913e+01 -8.8776e-01 -#> -1.2979e+00 -2.1701e+01 -3.9833e+00 -1.3435e+01 1.7802e+01 5.0667e+00 -#> -8.7162e+00 -4.8520e+00 4.9603e+00 -6.5037e+00 -7.7042e+00 -2.6138e+00 -#> 2.7359e+00 -1.6787e+00 1.8766e+01 -6.5021e+00 -6.3636e+00 -1.6554e+01 -#> -2.1235e+00 3.6546e+00 2.7977e+00 2.9845e+00 4.1591e-01 1.8891e+00 -#> -1.6986e+01 5.1112e-01 -5.8523e+00 -8.3724e+00 1.6497e+01 1.3320e+00 -#> 3.8910e+00 1.3113e+00 -4.9165e+00 -1.6934e+01 1.6983e+00 -9.6708e+00 -#> -#> Columns 31 to 36 -2.1679e+01 -2.4109e+01 8.4593e+00 7.2496e+00 -7.6315e+00 -2.8294e+00 -#> 9.3554e+00 -1.6916e+01 -9.3243e+00 -4.0114e+00 -7.3527e+00 4.0655e-01 -#> 1.4200e+01 1.5864e+01 -5.9292e+00 1.3862e+01 2.3485e+00 2.4782e+00 -#> -1.8995e+00 2.3539e+01 -2.6220e-02 1.8460e+01 -1.2601e+00 1.1129e+01 -#> -1.4494e+01 -9.6573e-01 -5.0733e+00 -1.0772e+01 -2.2918e+01 -3.4051e+00 -#> -2.4427e+01 5.6512e-02 -2.4875e+00 -1.4292e+01 -5.5592e+00 -1.3762e+01 -#> -1.4701e+00 8.7661e+00 3.7526e+00 3.6377e+00 -1.2703e+01 -9.5928e+00 -#> -1.0701e+01 -1.4778e+01 -3.5459e+00 -1.4791e+01 -1.0391e+01 1.0136e+00 -#> -9.1675e+00 -1.6266e-01 1.1090e+01 1.5069e+01 1.9667e+01 -7.0169e+00 -#> 2.6015e+01 -2.2708e+00 -1.2905e+01 1.6435e+00 -2.3520e+00 -6.1251e+00 -#> -1.7792e+00 -2.3453e+01 -1.9723e+00 -4.5929e+00 -1.6097e+01 -4.4947e+00 -#> -5.4744e+00 -6.4192e-01 1.6510e+01 -2.6668e+00 2.4133e+00 -2.6066e+00 -#> -1.9293e+00 1.5536e+01 1.1604e+01 -1.0907e+01 -1.0784e+01 1.3530e+01 -#> 1.2010e+01 -9.5282e+00 -7.4836e+00 8.5354e+00 1.5636e+01 6.4028e-01 -#> -8.9697e-01 1.3402e+01 -8.8782e+00 -7.5711e+00 1.0922e+01 -1.6372e+00 -#> -8.5683e+00 7.1512e+00 -3.3600e-01 -8.1503e+00 -1.5620e+01 2.9184e-01 -#> -7.3744e+00 -9.9613e+00 3.9222e+00 -3.9316e+00 -4.0211e+00 -1.2877e+01 -#> 3.4622e+00 -2.0458e+00 1.0160e+01 1.9177e+01 -1.0452e+01 -7.6392e+00 -#> -1.7070e+00 -1.3017e+01 -3.2206e+00 4.0881e+00 -4.6195e+00 1.0797e+00 -#> 1.7468e+01 9.2982e+00 -1.2351e+01 2.2376e+00 -3.9956e+00 1.3261e+01 -#> -4.4173e+00 -1.4719e+01 -9.7518e+00 -1.7765e+01 1.4858e+00 -3.2349e+00 -#> 3.7165e+00 5.9601e-01 1.4029e+01 -1.0961e+01 8.7351e+00 7.7419e+00 -#> -6.1524e+00 1.3197e+01 3.9808e+00 4.3193e+00 -1.2020e+00 -1.2825e+01 -#> -5.0571e-01 -1.0672e+01 1.8364e+01 8.0442e+00 1.3081e+01 8.4952e+00 -#> 4.4564e+00 5.5969e+00 5.6686e+00 -1.1134e+00 -7.3456e+00 7.7669e+00 -#> 1.3500e+01 4.4614e+00 4.9841e+00 8.9211e+00 2.0098e+01 3.8844e+00 -#> 3.6128e+00 1.1122e+01 -4.4044e-01 -3.6093e+00 1.3210e+01 8.5443e+00 -#> -1.8090e-01 -1.0985e+01 -4.1344e+00 -5.0467e+00 -1.5144e+01 -1.9789e+00 -#> -1.3420e+01 -7.0009e+00 8.1848e-01 -5.0013e+00 1.8268e+01 8.2374e+00 -#> 6.3996e+00 1.8506e+01 -1.1341e+01 7.0303e+00 -1.0490e+01 -4.4531e+00 -#> 5.5464e+00 -1.7529e+01 -7.0866e+00 -8.8303e-01 -5.3377e+00 -7.3746e+00 -#> -8.8998e+00 1.7904e+00 4.3107e+00 -1.4987e+01 -1.3366e+00 5.2522e+00 -#> 8.7654e+00 -7.8483e-01 -7.9464e+00 1.0005e+01 -1.1502e+01 -2.4911e+00 -#> -#> Columns 37 to 42 -1.2982e+01 -4.2126e+00 -3.8256e+00 3.6204e+00 3.1385e+00 -3.8542e+00 -#> -7.1096e-01 -1.1357e+01 1.9772e+01 3.5039e+00 4.9852e+00 1.4891e+01 -#> 1.5609e+00 -2.5245e+00 -8.8441e+00 4.7378e+00 3.7088e+00 8.7780e+00 -#> 7.1751e+00 -5.4980e+00 -1.6342e+01 8.2999e+00 2.4324e+00 -7.6220e+00 -#> 1.0249e+01 1.2807e+01 -6.5801e+00 -5.8649e+00 -4.9927e+00 2.6560e+00 -#> -2.1048e+01 6.4206e+00 1.0280e+01 5.0778e+00 1.0445e+01 4.2637e+00 -#> 1.2026e+01 -6.7137e+00 -8.5624e+00 2.7173e+00 3.2165e+00 -3.5499e+00 -#> -2.1791e+00 -2.1789e+00 4.3917e+00 -1.3265e+01 5.4625e+00 1.8335e+01 -#> 7.3245e+00 -5.1060e+00 7.6107e-01 6.8573e+00 1.4891e+01 -4.1370e+00 -#> 1.1617e+00 9.7119e+00 -6.5697e+00 3.8368e-01 -1.1239e+00 -7.7994e+00 -#> 4.0031e+00 -3.4288e+00 -1.2127e+00 -7.2412e+00 2.3004e-01 8.5065e-01 -#> 5.2983e+00 5.3690e+00 5.7870e+00 -2.9230e+00 4.3193e+00 4.7594e+00 -#> 1.4966e+01 -4.6703e+00 -2.1251e-01 -1.6869e+01 -6.9216e+00 9.3986e+00 -#> 1.6732e+00 -2.7369e+00 5.2217e+00 -2.9938e+00 5.3384e-01 -3.6932e+00 -#> 6.5449e+00 4.4988e-02 -8.0596e+00 -1.0725e+01 9.6437e+00 -1.2317e+01 -#> 1.0285e+00 8.7999e+00 1.4183e+01 1.0116e+01 9.0127e-01 -5.8294e+00 -#> 4.4251e-01 1.2525e-01 -8.3928e-01 8.1308e+00 1.8535e+00 -1.1609e+01 -#> -1.7475e+01 -2.8897e-01 6.4601e+00 9.6699e+00 2.5221e-01 -1.0648e+01 -#> 3.5728e+00 -6.6077e+00 -1.7886e+01 4.0742e+00 1.7618e+00 -3.7558e+00 -#> -2.0264e+00 -2.7089e-01 4.3377e+00 -5.0581e+00 2.4265e-01 8.6139e+00 -#> -9.2931e-01 6.4229e+00 8.4352e+00 6.6326e-01 1.1871e+00 1.4929e+00 -#> 6.7805e+00 -1.0345e+00 1.5609e+01 -1.3094e+01 -1.1205e+01 5.9305e+00 -#> 3.6864e+00 1.0229e+01 1.1679e+01 4.0239e+00 -4.9793e+00 -2.2810e+01 -#> 1.8718e+00 -2.4655e+00 -4.8008e+00 9.0004e+00 -3.6858e+00 6.8290e+00 -#> -5.7660e+00 2.6562e+01 -6.6253e+00 5.0441e+00 -3.5265e+00 -3.7034e+00 -#> -1.9097e-01 -7.5070e+00 -2.1687e+00 -1.3804e+01 -1.7359e+00 1.9275e+00 -#> -7.2095e+00 -9.9872e+00 3.7455e+00 4.0918e+00 -9.8750e+00 3.0196e-01 -#> 5.1022e+00 1.0027e+01 -1.4910e+00 1.2692e+01 -6.9118e+00 7.6790e+00 -#> 1.3758e+00 -7.4730e+00 -1.0146e+01 1.7413e+00 -2.0952e+00 -3.0648e+00 -#> 3.3219e+00 4.3010e-02 -1.1769e+01 -5.4523e+00 -8.0371e+00 -1.5348e+01 -#> -4.3930e-01 -1.0443e+01 8.5679e+00 1.2639e+00 -1.0131e+01 -7.0613e+00 -#> 1.1237e+01 -1.5008e+01 -1.1160e+01 -1.6202e+00 -1.6306e+01 -3.6980e+00 -#> -4.0589e+00 -8.3484e-06 2.1629e+00 1.3816e+01 -3.1079e+00 4.6911e+00 -#> -#> Columns 43 to 48 9.5938e+00 9.8600e+00 9.7126e+00 1.8094e+01 -1.2962e+01 4.5320e+00 -#> 8.8597e+00 -3.8651e+00 3.1434e+00 -1.8626e-01 -5.8093e+00 1.1049e+01 -#> -2.7338e+00 -1.1493e+01 7.7413e+00 -7.4347e+00 -2.8650e+00 -4.0432e+00 -#> -5.0291e+00 -3.8119e+00 7.6550e+00 4.3292e+00 -3.0579e-01 -3.6069e+00 -#> -5.2778e-01 -7.3304e+00 5.8848e+00 -1.2196e+01 7.4105e+00 -1.9333e+00 -#> 2.8526e+00 1.9088e+01 4.3373e+00 1.6240e+01 -1.1476e+01 -6.8856e+00 -#> 1.4744e+00 1.0112e+01 8.1093e+00 -3.6238e+00 1.1439e+00 -7.5707e+00 -#> -5.3667e+00 -7.7414e+00 -1.0272e+01 6.6667e-01 1.0756e+01 7.8223e+00 -#> -1.2314e+00 1.2076e+01 -2.8305e+00 7.6454e+00 -1.7534e+01 7.1417e-01 -#> 7.0782e-01 2.2438e+00 1.0972e+01 -2.3305e+00 3.3615e+00 8.5989e+00 -#> -2.4608e+00 1.9173e+00 4.5344e+00 -9.2493e+00 9.1561e+00 3.1954e+00 -#> 5.0468e+00 7.4412e+00 9.2711e+00 -8.5012e+00 -9.2720e+00 4.4542e-01 -#> -6.5111e+00 6.7097e+00 -4.1257e+00 2.3944e+00 2.2047e+01 7.6683e+00 -#> 6.7561e+00 7.3840e+00 7.0542e+00 -1.7891e+00 -1.0972e-01 -1.3271e+01 -#> -7.1963e-01 1.1568e+01 -4.8449e+00 2.3278e+00 -1.7470e+01 -4.0480e+00 -#> 4.8309e-01 -5.2807e+00 1.1232e+01 6.8060e+00 -2.8304e+00 -1.1613e+00 -#> 3.3958e+00 5.9262e+00 1.4133e+01 1.1143e+01 3.2042e+00 -6.2356e+00 -#> 7.5310e+00 -2.0502e+00 -2.2026e+00 -8.8068e+00 -4.4770e+00 2.5733e+00 -#> 6.1012e+00 4.0045e+00 3.6754e+00 3.0534e+00 -8.3425e+00 1.6813e-01 -#> -1.0076e+01 1.3927e+00 -2.6783e+00 -9.6086e+00 3.5074e+00 1.0511e+01 -#> 1.0308e+00 -4.1848e+00 -5.3140e-01 4.9027e-01 -1.4362e+00 1.7054e+00 -#> 9.5634e+00 2.1233e+00 -2.3149e+00 -2.8003e+00 -1.4120e+01 1.0925e+01 -#> -8.9510e+00 -2.0107e+00 1.3626e+01 7.5999e+00 -1.0009e+01 -8.6540e+00 -#> 5.8128e+00 4.3800e+00 5.1025e+00 -3.1124e-01 -9.5418e+00 -8.0206e-01 -#> 4.5954e-01 -1.9820e+01 -1.0856e+01 -2.4205e+00 3.2851e+00 3.5446e+00 -#> 7.4073e+00 1.0443e+01 -9.5225e+00 9.4974e+00 -3.1614e+00 8.7247e+00 -#> 6.9447e+00 -3.9645e-01 -7.9139e+00 6.0300e+00 8.5722e+00 -1.7283e+00 -#> -1.0806e+01 -1.5662e+01 2.5612e+00 4.0088e+00 5.8340e+00 7.7349e+00 -#> -4.5984e+00 -2.4696e+00 -5.8806e+00 3.0326e+00 1.4204e+01 -2.3575e+00 -#> 2.8538e+00 -1.9296e+00 3.6106e+00 -2.7019e+01 -9.1201e+00 1.2406e+01 -#> -1.4059e+01 6.0087e+00 7.9251e+00 -2.9546e+00 -1.3986e+00 1.0299e+00 -#> -6.0447e+00 -2.5707e+00 3.1745e+00 9.1589e+00 4.0167e+00 9.2205e-01 -#> -3.8542e+00 -1.4597e+01 1.0325e+01 -2.1651e+00 9.4333e+00 -1.0715e+01 -#> -#> Columns 49 to 54 -2.8126e+00 6.2290e-01 1.2094e+01 5.7506e+00 6.0703e+00 1.8163e-01 -#> -6.2051e+00 1.0590e+01 -1.1221e+01 4.7619e+00 -6.3597e-02 5.8108e+00 -#> 7.0618e+00 -3.9845e+00 1.2555e+00 5.8426e+00 9.2383e+00 8.9532e-01 -#> -1.9856e+01 -6.1150e+00 -5.9260e+00 2.8530e+00 9.8016e-01 -2.5336e+00 -#> 1.4864e+01 -6.8976e-01 1.2750e+00 2.0616e+00 3.1718e+00 -6.2053e-01 -#> 4.0523e+00 1.1325e+01 1.2280e+01 3.6007e+00 3.4541e+00 -3.6653e+00 -#> 8.3939e+00 1.1663e+01 1.1109e+01 8.8074e-01 5.1258e+00 -6.6330e+00 -#> -2.4700e-01 -5.0268e+00 -2.8844e+00 -7.5633e+00 -1.9285e+00 -1.2111e+00 -#> -3.1770e+00 -1.8981e+00 3.9011e-01 7.7184e-01 5.0163e+00 -5.7405e+00 -#> 6.6273e+00 -1.8221e-01 1.1584e+00 -2.7757e+00 -2.0168e+00 2.6052e+00 -#> -5.7066e+00 -5.4887e+00 2.3780e+00 -6.5638e-01 7.6786e-01 -7.7979e-01 -#> -5.6415e+00 6.8836e+00 2.1560e-01 7.0334e+00 1.0236e+00 -6.6481e+00 -#> -1.0836e+01 4.5798e-01 9.5420e+00 7.7963e+00 -3.3061e-01 -1.6403e+00 -#> 4.2271e+00 -1.2098e+01 -1.3656e+01 2.4545e+00 1.2756e+00 2.7649e+00 -#> -2.0405e-01 4.1072e+00 -4.2119e+00 9.9203e+00 2.4864e+00 -4.2951e+00 -#> 7.1166e-02 1.0848e+01 3.1254e+00 7.9914e+00 -3.9279e+00 3.5528e+00 -#> -5.9704e+00 1.2113e+00 -1.4374e+01 -3.6522e+00 -7.1488e-01 -3.2987e+00 -#> -9.3306e+00 -2.4419e+00 -2.1639e+00 -3.6770e+00 -6.2138e-01 5.5423e-01 -#> 4.0496e+00 -1.0450e+01 3.8506e+00 -3.9680e+00 -7.0082e+00 -1.1381e+01 -#> 5.7722e-01 -1.5393e+01 1.1042e+01 -1.5000e+00 -3.2943e+00 -7.7883e+00 -#> -1.3542e+01 7.2040e-01 -1.4342e+01 -1.2992e-02 -1.2799e+00 5.8970e+00 -#> -1.1502e+01 1.9461e+01 -8.2887e+00 5.0860e+00 -2.7199e+00 5.8708e+00 -#> -5.4900e+00 -1.0352e+01 -9.3241e+00 5.3902e+00 -1.1108e+01 -4.9735e+00 -#> 1.1056e-01 5.0094e+00 -1.0799e+00 4.5442e+00 -6.3421e-01 -1.9181e+00 -#> -5.7869e+00 -1.0112e+01 8.2043e-01 4.2532e+00 4.8572e-01 -3.0658e+00 -#> 1.2075e+01 5.5917e+00 6.5248e+00 -3.1185e+00 -3.3772e-01 3.6188e+00 -#> 9.3177e+00 -2.4290e+00 6.1698e+00 3.9114e+00 -8.6027e-01 6.6250e+00 -#> -1.5134e+01 -1.6484e+01 -1.0285e+01 9.0815e-01 6.7053e+00 -6.5309e-01 -#> -8.6335e+00 3.7887e+00 -6.0815e-01 7.2834e+00 -4.3596e+00 1.6165e+00 -#> 7.0482e+00 1.2581e+00 -2.9573e+00 -1.2959e+00 -5.8671e+00 1.1073e+00 -#> -1.2857e+01 1.1212e+01 -6.9868e+00 1.1672e-01 -4.6736e+00 7.4065e-01 -#> 1.4155e+00 -7.0236e+00 -6.6755e+00 1.3262e+01 -4.7395e+00 4.9263e-01 -#> 1.0220e+01 -1.6622e+01 5.0489e+00 -5.7797e+00 -5.4130e+00 2.3046e+00 -#> -#> (6,.,.) = -#> Columns 1 to 8 -1.2906 13.5946 10.1609 1.2739 2.2736 2.0222 -0.3510 3.4442 -#> -5.7275 -1.5648 -8.0162 0.4344 3.3434 -8.8662 5.8548 -2.1173 -#> -2.5602 -3.4971 7.1341 12.4275 -2.3825 -1.8784 -1.5559 -8.6028 -#> -5.2301 -2.8007 0.5347 11.6950 -20.4631 -3.5238 -4.4829 6.4217 -#> 6.0463 -12.9998 3.9110 5.6952 9.0395 5.3502 -2.5195 1.1746 -#> -6.3904 2.9205 7.7085 5.1703 9.8267 7.5979 9.2738 5.0525 -#> 5.5847 -6.8299 11.9292 -0.2180 1.3347 11.5043 -1.4268 -6.0069 -#> 0.2869 10.9916 -0.4642 1.6550 10.1435 9.0110 -5.8498 -6.5407 -#> -5.0244 -0.8937 5.7387 -3.5939 -20.8283 -1.1995 2.6885 0.3491 -#> 1.9330 0.2644 4.1328 18.1709 -11.5749 5.7500 23.1029 3.4215 -#> 6.1167 -2.6856 -1.9285 -4.0633 15.5307 0.2766 -2.4825 -7.5930 -#> -1.4727 -6.1985 1.0367 -9.4084 5.9970 -5.9196 8.1893 2.3675 -#> -0.8975 -0.4740 2.3347 2.8178 11.5984 -0.6683 -8.1911 2.5873 -#> 6.2782 -5.5500 4.2726 -1.2471 3.3512 -4.0309 -6.6749 0.4875 -#> 6.7282 6.7253 4.8038 6.0504 -10.3696 4.3334 -2.6760 -1.5284 -#> -5.7392 -2.9991 -1.2506 5.1530 -5.3925 8.0087 -2.9595 2.1494 -#> 3.1805 -3.1789 3.7345 -1.2337 14.6059 11.3571 10.6334 -5.8997 -#> -7.5094 -1.0523 -0.3500 -2.5702 0.7187 -4.1282 4.0303 -7.1820 -#> 8.0910 11.2153 16.4467 -2.5688 -4.1481 -5.9578 -9.3378 5.4305 -#> -2.5413 9.1377 -0.1849 0.8289 -4.1381 -8.1889 -7.9123 7.7997 -#> 6.4039 9.6086 6.6445 6.9689 9.6904 -8.8979 9.8943 -1.0717 -#> -2.0200 10.0184 -16.7365 -9.6430 -1.2828 -0.5102 -8.9521 -8.7141 -#> 1.0829 -0.9323 -1.9788 -11.2347 1.2045 3.7669 10.7768 6.0730 -#> -6.5144 -1.7845 -3.0716 -19.3201 -3.5435 1.3338 -0.8777 -3.1286 -#> -6.1790 8.0965 -6.8826 2.2282 4.6184 12.5645 3.0924 -3.1263 -#> -4.5024 -0.9420 1.5130 -8.1597 12.1098 2.0007 5.8567 -2.0337 -#> -0.1062 -1.1714 -0.1613 -14.2301 2.1413 -3.3113 0.8350 2.4379 -#> 8.3067 7.4910 11.0588 2.2626 5.9629 -6.2164 -7.1244 -0.4086 -#> 3.5105 1.5456 -4.8592 7.5274 3.0848 3.7589 -1.5261 6.4598 -#> 7.7199 1.7536 2.7952 3.6789 -5.1802 6.6892 14.5219 10.6791 -#> 0.7732 -0.6465 -3.0562 6.5930 -9.0988 1.7741 1.0375 -0.2780 -#> -3.2239 -0.4057 0.9958 -8.9499 0.6236 0.7190 -18.1055 4.8374 -#> 0.3086 -7.5484 5.2433 -0.9087 9.3846 2.9502 5.1732 -3.6332 -#> -#> Columns 9 to 16 14.4922 -9.0520 1.7655 4.2005 -0.9748 1.0361 -3.8319 -3.0438 -#> 0.3332 6.1866 -1.8103 2.5202 -4.6763 7.3212 11.9548 13.8410 -#> 2.7913 -6.1743 9.6053 -13.5915 9.1463 15.6517 1.2033 -8.0341 -#> 6.7896 -3.6931 -1.0360 -15.0298 2.2860 7.6720 0.8738 -1.3508 -#> 0.9471 3.8266 20.7929 -9.0604 18.7446 7.6388 0.2071 -9.4922 -#> 6.1561 8.5326 -1.2114 5.5687 -5.6578 1.3177 13.0493 -9.0726 -#> 1.6027 9.1719 5.6655 11.2977 -10.5055 -12.8792 2.7278 1.8168 -#> -15.2426 1.5844 -3.5033 7.4899 3.4438 18.5491 8.6613 -1.9612 -#> 7.7457 -3.5828 -14.3712 6.5652 -15.7928 10.0078 8.9950 -14.0851 -#> 6.0489 2.3172 -9.3602 2.7904 -3.2131 13.4063 19.7302 6.5122 -#> -7.6034 1.8109 8.9422 7.0092 16.0588 -1.2942 2.1396 7.1782 -#> -0.0329 -13.2314 5.2734 -9.0207 -6.3200 15.1783 5.7580 -5.6126 -#> -13.0665 -0.2777 -12.8806 -10.6230 9.8472 0.1550 -2.8208 -4.6425 -#> 8.4266 7.6153 -4.0710 -7.4449 -12.7797 -12.6976 11.2124 -1.8019 -#> 2.2260 -0.8911 -8.0302 -6.1254 -6.7894 3.7435 -2.2531 -15.0217 -#> 4.3711 7.2751 3.4861 -9.9310 -9.6459 5.1806 -3.0555 -1.2542 -#> 7.7591 -1.4780 10.0699 6.3439 -10.2799 -1.5439 -16.2412 -3.7900 -#> -6.9606 2.6252 -1.3341 3.2982 0.2523 4.2664 3.4766 -0.9335 -#> 17.7835 2.1302 -7.5523 3.5047 -18.0717 -6.1698 -13.9270 -5.4293 -#> -11.9347 -2.7808 -11.9411 -15.3471 18.3825 10.5389 -3.8798 0.3755 -#> 3.5219 5.9095 0.5010 -5.5723 -11.3272 -13.9500 0.7060 7.0516 -#> 2.6564 -11.4641 -5.9555 -2.0962 -14.1869 13.4808 7.7111 -4.0473 -#> -11.7709 -7.2278 3.2929 -4.9161 -5.4113 6.6190 9.6433 6.6927 -#> -1.6251 -0.1537 -0.8085 -4.9274 -2.5047 -7.8605 14.4556 12.5811 -#> 10.3315 -6.0728 8.8520 6.2369 16.2882 6.1643 -18.3501 -9.8453 -#> 1.9906 3.0279 -15.3214 9.9443 -2.8701 1.5651 1.0282 9.6610 -#> 3.4091 0.9268 2.7886 -4.3620 4.8404 -10.7781 -2.5085 7.5129 -#> 0.1259 -11.2227 14.8560 -6.3446 18.5227 -0.2072 -1.8997 -10.7735 -#> -2.5384 0.8208 1.6124 2.8615 11.5942 -3.2394 -12.9641 12.4291 -#> -2.6944 2.3566 -2.2074 -2.1300 4.6018 -9.9700 1.1242 18.0932 -#> -2.4919 4.8262 3.4302 -6.9013 -7.1076 -2.1004 8.5142 1.9163 -#> 5.3395 -0.6464 -13.5380 -5.0712 0.9941 10.4185 -17.7384 -5.8762 -#> -12.3580 -1.6421 9.2891 3.8499 21.0648 -9.4984 11.6074 4.4902 -#> -#> Columns 17 to 24 5.7558 -5.1015 3.7358 3.3919 10.1574 4.8178 -21.1594 -12.2321 -#> -3.0562 0.7140 10.4205 -6.7750 -5.5420 2.6335 11.1883 -11.4260 -#> 3.0956 -0.0853 5.8817 8.6862 -4.5400 7.8507 6.7873 -6.8118 -#> 13.3198 -0.1248 10.6121 -0.0760 -18.0245 11.9826 0.3320 14.2314 -#> -4.0194 2.2549 2.3223 -6.7249 4.2722 -14.4571 9.4587 11.3563 -#> -17.4306 4.3258 -21.1685 8.0124 7.3428 -5.9854 -11.9992 -12.7875 -#> 15.3551 11.2782 11.0832 -2.1655 -4.6535 -4.5613 -4.1144 8.5404 -#> 7.6964 16.3118 2.3128 -8.6316 0.7952 4.3366 -0.4963 -19.6819 -#> 8.0289 -7.0709 -13.0450 5.5670 -1.3630 -7.3526 -19.8146 -2.7441 -#> 8.7356 7.6161 20.4846 4.1788 1.2975 10.3680 22.0978 6.2228 -#> 5.9167 -9.3964 -5.7256 -9.7319 -4.4493 -12.1559 1.1821 -4.4289 -#> 9.2950 0.7511 -0.2363 -12.1582 11.4554 -10.0148 5.8216 -10.9486 -#> 9.9000 16.4000 -0.7640 1.1786 4.3074 10.8577 0.4916 -6.8029 -#> 10.3147 5.5437 -7.1659 12.2463 2.2565 0.3769 20.3979 8.4227 -#> -0.3663 2.1757 5.1778 -5.3807 -1.6984 2.3133 2.5216 -2.2583 -#> -0.9128 -14.7464 15.0432 -9.6708 0.6328 -7.2687 6.0182 12.2746 -#> -3.4113 5.8405 -1.8712 9.3081 5.1289 -6.4269 -10.4528 8.3959 -#> 8.7077 -19.5687 9.4994 -7.7430 -1.2161 -5.4623 -9.8941 1.4983 -#> 13.8759 4.1344 9.4766 11.2207 2.2961 -8.7867 5.9747 -7.1402 -#> 12.1295 12.9967 0.6639 -1.5193 0.4410 10.6945 13.6656 -3.1914 -#> 5.4100 3.8496 1.6437 -3.5398 7.0846 -9.9937 15.4963 5.8231 -#> 7.5987 3.5565 4.1458 -7.8678 0.6812 -4.4799 24.1990 -5.0146 -#> -10.0771 -3.8329 4.9017 7.5790 -6.6872 -0.7476 9.1992 7.2369 -#> -5.0835 5.0043 3.1980 -5.0508 3.8299 -4.9766 -9.6292 -1.7594 -#> -15.1777 -5.5674 -3.6914 11.2230 -6.3116 13.1206 -4.2019 3.9232 -#> 4.7549 14.9044 -9.8537 17.3155 9.6950 7.1425 4.4975 -5.3993 -#> -16.9693 2.4203 -20.4703 8.3267 -2.2390 -6.7381 -2.9412 12.7916 -#> -11.6139 10.8966 -3.9312 -0.5212 -6.7344 3.3800 -12.3245 10.8742 -#> -5.0495 -12.9478 -1.5114 -13.5049 9.3209 -2.9167 -2.9070 -9.1915 -#> -0.3623 -6.9541 8.1159 12.0325 -9.8860 -8.7181 -2.5255 5.7182 -#> 1.4827 2.1857 -3.2521 2.9576 -7.1097 4.2946 8.4858 -0.9879 -#> -0.2729 2.7021 -13.6980 -0.0209 6.9267 -1.2844 7.1979 -2.7620 -#> -6.2110 -11.8811 5.1298 3.0679 -5.8170 -4.0543 -4.4873 -10.4857 -#> -#> Columns 25 to 32 2.5510 -0.2038 14.5818 -4.6291 -0.7677 -1.7932 12.4390 -4.2010 -#> 15.1813 0.3858 5.0331 -2.6030 -12.5818 8.9777 6.5527 -18.1512 -#> 6.1780 5.2303 5.6359 -4.6120 15.2766 -8.3173 -5.6248 -1.8824 -#> 8.1504 -1.0806 12.6728 -0.5206 -17.4869 -0.0462 8.9059 6.3680 -#> -12.1255 4.2941 12.3835 -4.6695 2.1640 9.4901 -1.9697 -12.8155 -#> -2.8595 -11.3560 -23.4308 -12.8827 -3.2424 -22.6272 4.2050 7.6287 -#> -11.3116 4.9729 6.0999 3.8416 -6.1895 -9.4986 3.3053 -7.4039 -#> 3.3873 -0.7899 4.5732 21.9898 6.3325 6.0113 2.0164 15.7458 -#> 10.9122 2.3831 -5.2849 -9.6523 7.8680 -2.9722 -0.3612 14.7341 -#> -0.2008 11.2113 -2.5775 -2.3837 -0.5849 0.4306 -6.9612 1.6097 -#> -14.1493 -8.8999 -1.6389 11.8062 4.1949 -5.4295 -10.4731 11.8199 -#> 8.0969 -8.5132 -24.8994 4.6152 -3.4242 -2.6175 -4.3879 -4.9619 -#> -9.4342 -15.1767 -5.6920 21.9019 5.1764 -10.5333 -5.2888 16.3868 -#> 15.5493 11.3486 -0.2930 4.1731 -7.7393 -3.6599 -7.6600 -5.2174 -#> -3.5141 -4.6415 0.3840 -5.3498 -2.1020 -3.9604 0.0056 3.5127 -#> -4.7510 -12.2849 -4.9326 -5.1865 -12.1735 -7.7928 4.1647 -2.0988 -#> -1.1027 -9.5895 4.5745 -5.6741 4.7831 2.0540 10.7514 -14.1080 -#> -2.9644 5.5836 -8.3494 5.9076 -1.2470 -1.0219 11.5192 -13.4809 -#> 13.2887 6.7956 -0.6082 23.5026 -13.5884 -6.3495 15.0499 18.1156 -#> 3.5274 6.5587 2.6680 5.6992 0.6544 7.6869 -19.7288 5.1232 -#> -0.5296 11.7520 -6.7091 -1.0494 13.8793 6.6161 -9.0327 -8.9474 -#> -3.4582 1.6826 -11.8708 2.1495 11.1554 2.5380 1.2823 -2.7771 -#> -0.4756 8.0583 0.6827 -11.9828 -2.3517 11.3830 -0.6355 -2.7412 -#> -11.4423 -5.4743 -15.1870 12.4140 -9.7539 -17.8683 -0.7848 7.7927 -#> -0.5499 -6.9762 -12.1503 10.2159 -0.7098 -0.9954 -0.4118 -11.7689 -#> -4.6858 -6.1957 0.0519 -7.1924 -2.5395 2.1236 1.3794 -15.5540 -#> -9.3657 -0.6970 5.4592 -16.0231 8.2241 -4.5828 1.4532 4.9496 -#> 12.8412 -3.9305 7.5273 -3.0112 15.4585 -6.6945 15.4474 1.7287 -#> -22.4385 -0.7342 -11.1161 4.6486 -2.7083 -9.0396 14.7538 -1.0047 -#> 4.5947 -21.1098 -16.8718 -6.1116 -9.9848 6.5708 -4.7937 -2.0188 -#> 24.0556 -8.9986 -12.3429 17.4882 -4.6548 -13.4062 6.2575 10.7854 -#> -31.1434 1.9465 0.7855 -15.7536 10.1426 -1.6422 -8.7910 -0.0079 -#> -10.3111 0.0067 -2.4724 -6.9653 -3.8297 -21.0870 -3.7484 -4.1639 -#> -#> Columns 33 to 40 -13.3018 11.4347 4.3881 -15.3451 -14.7796 -10.7482 -9.8222 -7.6255 -#> 5.7348 -2.8622 10.3386 -4.3851 -3.2253 2.3243 10.5710 -9.1831 -#> 10.8954 -7.3811 7.6372 11.4209 -8.9989 -3.6543 -15.2089 -7.5075 -#> -4.4141 -10.8794 11.8271 -1.5246 -4.1511 -3.5885 0.3060 1.0262 -#> 1.4067 -11.2596 -3.3783 -10.3016 -5.7747 -2.5181 -14.6493 -8.2378 -#> -10.3898 -6.8135 -0.2176 13.7231 -7.8071 -5.1213 -9.7749 -10.0052 -#> -14.7091 9.5471 3.8610 -1.7426 -9.3497 -2.6168 -0.9749 1.7457 -#> -22.4270 -0.7327 3.1410 -10.7137 -3.9862 -6.6951 -16.3995 -10.5144 -#> -3.1132 3.0083 12.4543 13.9422 -2.3628 2.5201 11.7110 -3.1082 -#> -16.7121 -8.7479 7.5455 19.0781 1.5504 -4.3607 -11.3715 -11.4387 -#> 1.3740 2.8587 1.4961 -0.6484 -5.6926 -0.5601 -9.7146 -4.9405 -#> 3.9314 3.1979 5.8303 0.5067 5.4296 12.0537 -3.3515 -11.3496 -#> -24.2184 7.8634 14.0017 4.3131 -0.1126 -7.2120 -9.5349 0.8077 -#> -4.7040 -15.6956 7.7416 8.2861 8.7321 22.4792 2.6020 -9.6495 -#> 9.5377 -11.9823 -6.4117 8.4295 0.3117 -2.6650 7.8302 -3.7887 -#> 5.5278 -2.7329 -2.2512 -7.1119 1.3326 8.0848 2.5164 0.9978 -#> -1.0899 14.8330 -14.3933 -7.3525 -7.7192 -7.0869 -3.4828 -12.8309 -#> 8.4395 4.9174 -4.2364 -3.0753 21.9154 3.6303 6.2544 0.7341 -#> 2.3007 -6.2655 5.5432 -5.3002 -9.3214 -8.0130 7.6070 1.5934 -#> 4.3254 -11.5373 -4.2664 2.0801 -0.6847 3.1335 -5.3338 1.9036 -#> 12.3775 -7.0790 -28.5314 -0.3746 18.1311 2.2420 0.0830 -12.6389 -#> -3.0356 -13.9939 14.8970 4.8902 7.3808 -2.6823 -6.3736 -12.9497 -#> -16.7200 -2.1116 -2.9996 6.8710 2.5699 5.4890 8.0162 -2.9067 -#> -13.6207 -4.2545 11.4654 14.8817 -2.2713 0.8434 7.1582 1.3200 -#> 5.0770 -2.2040 12.7372 11.4328 -1.7731 5.3843 -4.7258 5.3155 -#> 9.3367 7.5425 -4.8037 6.9640 18.1435 8.1916 6.8829 -1.8885 -#> 13.0478 2.9280 -0.1942 1.3672 -6.5255 2.8133 1.1775 7.4638 -#> 11.6807 -0.5185 -1.4964 -4.7613 -6.2701 -10.8524 3.5170 -3.0822 -#> 3.3242 -5.4642 4.7088 5.5320 8.1024 -5.8204 -3.0596 10.6272 -#> -1.0657 3.4552 2.3027 -7.0692 10.1231 0.8105 -8.5921 13.5097 -#> -15.2484 -10.5065 -3.6962 -1.5426 0.5034 8.4190 1.9529 -18.8593 -#> -11.2276 11.5599 1.5902 2.1219 -1.6046 3.9939 -3.8218 6.1057 -#> -2.9041 -0.2319 20.5079 10.3067 -19.0063 -7.7289 0.2409 9.4719 -#> -#> Columns 41 to 48 -14.8274 11.1019 -2.0624 -16.6093 14.9514 -5.6329 -3.2294 -11.8248 -#> -25.6942 -11.7620 15.1268 -16.4583 -2.4520 -1.4868 -7.3511 -11.5673 -#> 10.0451 9.0156 -5.6282 1.9462 -13.0216 -7.2568 5.5590 13.4736 -#> 4.9235 -5.8640 5.4821 17.9450 -0.4013 -9.8630 3.4781 6.9655 -#> 15.0701 -16.0830 -11.3884 5.5517 -4.9922 -9.6732 -1.6430 6.1311 -#> 3.8547 13.6872 1.2339 1.6836 8.5749 -8.7089 -14.2435 11.3817 -#> 12.4370 6.2683 -8.8350 5.0442 2.9360 -2.7908 -10.8230 12.0263 -#> -3.1593 -1.5564 3.6364 21.1648 -2.1498 -4.9529 5.2285 9.4477 -#> 15.8922 8.4917 1.9509 1.4087 7.6780 7.7388 -8.4368 -12.4227 -#> -16.1673 13.1916 -15.0930 1.8549 9.6663 -17.2185 -1.4829 7.0265 -#> 16.0285 15.2274 3.2461 -3.6231 14.0717 -8.7764 -1.0086 3.2117 -#> 9.4831 -2.8242 3.4838 5.2793 -4.4744 -3.2964 -3.9987 -9.1133 -#> 7.7553 -12.7563 10.4662 5.3940 4.2116 -5.8236 -9.4847 -3.2442 -#> 1.3194 -12.7428 4.0818 -1.5940 1.5243 5.1842 -7.2948 -5.7164 -#> 4.8879 -2.9317 -6.2709 -9.3459 -11.3165 5.0118 -0.1904 22.1940 -#> -21.0022 6.7985 4.4091 -10.0046 -6.7588 3.2733 2.6421 -4.7261 -#> 3.9414 9.6563 -5.8217 10.3224 2.6729 -11.2405 -0.9543 5.5213 -#> -1.2199 -1.8814 4.7612 1.8873 8.5311 -6.8704 -0.2994 -12.2560 -#> 17.0057 1.9599 -10.4429 -0.1507 -9.0125 11.3883 15.8209 -4.7667 -#> -3.3215 -1.4828 -8.9326 -14.8883 10.0406 -0.3560 2.7622 10.9950 -#> -19.2001 -0.0726 -1.9566 5.3143 7.0787 -2.4969 -4.9595 -22.0236 -#> 1.4301 6.5826 6.1883 3.8234 -0.1367 5.4273 4.0576 -11.0166 -#> -7.8817 0.6544 6.0732 11.9236 7.7939 0.3150 -18.9965 1.4273 -#> 2.6034 -10.2298 -4.7003 -5.3183 -3.9666 9.8251 -2.7840 2.1820 -#> 8.2280 11.6911 -6.6334 7.4555 8.5682 -8.2273 -3.4682 0.9171 -#> -14.0598 -11.5994 1.5577 -7.6353 -0.4864 5.9775 -6.4676 8.4718 -#> 9.0035 1.8517 12.9204 1.1901 -7.3776 9.1212 -8.3669 13.1364 -#> 17.7747 10.1759 8.1650 16.2932 -3.2379 10.2901 -3.4087 0.9077 -#> 26.6333 -1.2646 5.5650 27.8534 -8.3948 2.2099 15.4857 8.4266 -#> 5.2051 -7.7246 10.6129 -5.9848 1.8629 1.8079 -2.9143 2.8773 -#> -4.5634 -6.9991 -0.1841 -1.9090 -3.3952 -11.1046 1.2958 -5.0358 -#> -1.5619 -4.0569 0.3958 -2.8646 -3.9297 5.8160 6.0127 -14.5869 -#> -2.1185 6.3288 14.7029 5.6887 -7.8463 9.2926 -5.1830 11.8611 -#> -#> Columns 49 to 54 7.1016 -15.8208 -2.0877 8.7288 -3.1307 -0.8803 -#> -0.4871 0.7266 4.5678 4.0105 1.2923 5.1693 -#> 20.2181 11.8863 -7.4998 -6.5552 -5.5006 2.7607 -#> 8.0890 -2.5741 1.3882 7.7029 -3.1784 0.5210 -#> 2.2496 -4.2309 5.2862 -3.9217 4.9795 -0.7292 -#> -8.6583 6.5319 0.0370 2.8436 10.4838 -0.7236 -#> -1.1649 -4.4350 -6.3319 5.5223 -1.6165 1.1725 -#> 4.8659 3.2011 -8.5719 -1.7483 -1.6685 -1.5847 -#> -2.2247 13.8979 4.1977 18.8982 10.7389 0.0871 -#> 3.9782 -7.1217 0.0354 -1.4489 -5.5193 1.8505 -#> 18.8135 -5.2025 0.9429 -3.0978 1.4687 -2.5012 -#> 11.6686 16.0039 19.1609 9.8649 14.1246 6.5454 -#> 13.3683 -8.2871 -6.7784 -8.3795 -0.2653 -3.5511 -#> -21.7449 8.3611 -4.8974 7.8489 11.9476 5.2951 -#> 11.3051 4.7276 -3.7736 9.6208 4.5921 6.3180 -#> 15.5787 -15.6322 -1.9335 2.3981 0.3116 -0.4815 -#> -12.1117 9.1798 -4.6968 0.7476 -1.0237 3.7553 -#> -7.8043 -0.7208 8.2035 3.4730 -4.0109 1.5793 -#> 3.9935 -16.5139 -31.5667 0.2528 -0.0504 -9.1094 -#> 11.5752 -5.3425 3.3273 -0.7484 2.1920 2.7529 -#> 0.3867 1.0408 2.0689 -6.1926 0.9572 1.3587 -#> 14.7566 4.6171 8.8172 -5.3254 3.3079 -2.3980 -#> 8.7173 8.6772 12.3852 11.0251 11.5906 0.0299 -#> 4.6733 -7.0466 14.9059 -4.1834 21.6208 -1.9280 -#> 3.1884 6.7935 18.1165 -7.7078 -2.9576 -5.1778 -#> -18.3818 6.2766 7.1564 2.9596 0.0514 5.4900 -#> -11.5391 3.1277 -0.8124 -2.9626 -9.9937 -3.3890 -#> 2.6400 7.5140 -11.0859 -9.9491 -5.3755 -7.1824 -#> -5.2797 -3.5233 2.8756 -5.8039 -2.0460 -5.4051 -#> 4.4817 5.8428 14.4519 2.6131 -9.7038 -6.9624 -#> 1.5933 -4.5518 0.6980 -4.8872 14.2196 -2.3431 -#> 13.2308 -9.6762 -9.5056 -3.2635 -4.0156 -6.7775 -#> 12.9216 5.4440 0.0763 -1.1853 -3.6075 -3.9249 -#> -#> (7,.,.) = -#> Columns 1 to 8 2.9533 1.0860 -8.1119 -0.0494 -5.6527 -3.9036 1.4153 14.9349 -#> -0.0426 -5.0686 0.9671 9.3674 -1.9175 -4.4150 -20.3450 -11.1734 -#> -5.7712 0.4861 -5.7229 2.3722 -0.5183 4.7114 -5.0389 9.6950 -#> -4.9070 -3.9710 -4.8358 -5.3924 -1.4841 -23.6475 3.8715 10.7274 -#> -2.5420 -0.1729 3.0972 2.3531 -9.6480 -8.7437 19.5345 -5.5293 -#> 4.4810 5.3877 7.0822 7.6412 12.4621 -10.4872 4.7130 3.0768 -#> 0.2558 8.5553 -1.4754 6.0410 3.9560 -4.5169 11.5759 20.3742 -#> 8.0860 -2.6291 -2.9121 7.6992 3.2772 -6.0553 4.4048 6.1588 -#> -4.3041 -3.4693 -10.2610 -6.9206 8.7375 2.1002 2.5182 1.9419 -#> -4.9646 -0.1113 -1.3192 -9.4292 4.6407 -18.0276 -4.2440 6.6633 -#> -5.8289 5.9275 2.1018 -1.3827 -2.2998 1.0696 4.6979 -9.5232 -#> -2.5592 -10.3871 -4.0104 -1.7658 -10.1056 -11.3087 15.4066 -7.7634 -#> 6.3138 -1.6091 -5.9848 -13.2303 -23.1200 -7.9112 10.0865 -1.6915 -#> -0.5376 -1.2372 -2.6146 1.1744 3.0030 2.3626 0.6140 -4.1495 -#> -1.0276 4.0819 1.0181 -17.9625 -1.2514 -7.6360 -2.6066 4.1145 -#> -11.0159 6.8261 14.0863 4.3507 -5.7617 -3.7358 2.9299 -8.3246 -#> 2.3352 -3.0110 12.2271 18.0495 -4.5932 -7.1297 5.2973 -8.6118 -#> -0.5394 -6.9015 5.5024 -7.8668 12.8111 1.7763 9.8438 -1.7404 -#> 3.3877 -4.2540 -2.2542 -6.0180 18.3600 -5.4755 3.0592 -11.9726 -#> -10.2080 7.4090 4.1472 -2.6033 -4.1521 3.2111 8.6643 11.6759 -#> 1.0144 -5.1425 0.0963 -7.1641 -0.3397 19.8292 -0.3321 -16.5396 -#> 4.8501 8.3368 3.3213 1.6215 -0.6207 0.4590 -15.0183 -14.6612 -#> -2.5804 3.4855 16.8857 9.2382 3.0253 -6.7524 0.1960 18.0831 -#> 1.7473 0.6880 -11.5274 -8.9468 3.7359 -17.2174 1.2827 8.5942 -#> -2.4625 13.4675 13.3387 -0.6154 4.2879 -11.0969 -5.7258 21.5706 -#> -4.4280 -14.9012 -8.8041 -14.0777 4.9153 13.6668 5.2954 3.0269 -#> -1.2733 -3.2601 -1.8351 -5.1108 -3.5288 1.6957 -8.3590 -5.3381 -#> 4.1251 0.9375 -3.7061 23.1854 -1.0771 -12.4512 -2.0129 -4.0775 -#> 4.0202 0.9914 -3.9503 -4.0601 7.2828 -3.2260 9.1126 8.2552 -#> 4.5288 13.4074 1.2214 -2.5435 6.7230 2.8578 9.0410 -2.8760 -#> -3.6678 -2.4159 -3.7118 9.2260 8.0656 -4.5218 7.3985 -8.2251 -#> 5.0364 -9.3228 12.9259 -8.1170 -17.5855 3.5425 -3.0200 -10.1435 -#> -6.1906 -4.4283 -0.9003 -0.7803 9.6682 3.5322 -0.8297 8.7635 -#> -#> Columns 9 to 16 1.5017 -8.6068 -6.9181 0.8914 -5.0705 15.9220 5.7279 0.2399 -#> 7.3119 1.3518 -5.9874 -0.2507 7.6702 -9.8376 -3.9085 7.4234 -#> 8.6301 2.0793 -11.9055 -3.7911 2.2005 -7.8006 -5.2940 21.5218 -#> 3.0038 -1.6677 1.7950 -4.5508 2.2488 5.3606 -9.1701 11.3947 -#> -5.7708 0.4336 14.7154 -3.9453 7.6350 4.7351 -8.6861 15.0580 -#> -1.3754 -17.9018 -1.1444 12.8072 -1.4358 -3.2275 -3.6352 7.4320 -#> -5.0755 -5.4128 1.8288 -5.4710 -3.5631 14.3366 15.0004 -6.0529 -#> -10.4102 -6.2087 0.9492 6.0118 7.5276 -6.7697 10.3562 -11.1823 -#> -11.1926 -13.0750 9.3369 -2.0888 -19.6530 -11.2297 0.6006 -12.6120 -#> 3.0238 -16.1934 -2.7229 1.8922 13.2706 7.3099 -13.3667 1.7925 -#> 12.4466 -0.6007 5.8977 -3.2004 -0.3359 -1.2151 0.8104 -3.3276 -#> -1.6860 -14.1189 11.2619 -6.9821 4.1982 -13.8986 -2.2289 16.0245 -#> 7.7072 3.2524 2.7273 -0.8512 1.0577 2.9917 7.9595 -3.3827 -#> 7.0726 -7.8132 0.4509 -2.2803 6.6153 -4.2307 3.3257 12.5965 -#> -7.9716 -23.9474 -3.5218 1.5840 9.3275 1.9662 13.4866 -2.4736 -#> 2.7921 -3.6859 -3.9322 -4.6172 9.0890 2.9150 -0.3922 4.2977 -#> -5.9871 9.6314 9.5661 -4.8246 -8.7754 -3.9940 -18.3416 4.9380 -#> -0.0987 -0.1037 10.6268 -0.9204 -13.3450 -1.6316 10.4843 2.5481 -#> -14.0458 -11.3099 3.7968 -0.4273 -0.2426 5.3267 2.5750 -17.5287 -#> -2.2571 -2.0932 -14.2280 11.7172 17.4334 3.4308 0.5894 6.1905 -#> 0.2811 15.8760 2.4301 -2.2227 7.1458 11.6980 -1.3617 1.6834 -#> -1.4061 -1.7128 -5.3377 -13.2902 -0.3802 -10.0704 11.9042 -0.1962 -#> -7.3468 -1.7626 11.2446 4.4840 10.7810 -18.4213 -13.0671 14.1763 -#> 2.9852 -13.0677 -2.5682 -2.7484 -0.3983 0.4290 6.8680 -12.5134 -#> 13.3903 -0.9157 -2.4934 3.4122 -3.4299 2.6442 -15.6976 18.5193 -#> -6.8927 -4.6039 -1.2142 -5.0980 -6.1670 -5.9587 2.6590 0.4891 -#> 9.6014 11.4081 -11.5250 -7.0517 -0.4210 3.0345 -4.5130 0.2101 -#> -0.8494 15.2047 9.5280 1.9386 -13.3232 -3.7443 -10.3539 -14.5014 -#> 12.9063 7.2197 -0.1236 -8.5376 -2.7291 -1.1630 -10.6046 -17.5495 -#> -0.0908 10.3624 11.3390 0.9138 -0.4849 13.4013 11.7459 -8.2455 -#> 1.9956 -6.9150 2.7161 1.0772 2.4628 0.0884 9.3908 5.6051 -#> 5.1412 20.5724 7.5165 1.3354 9.4225 1.5700 0.4186 19.6713 -#> 13.9985 7.4152 2.8320 13.5761 6.1628 -12.5014 2.0404 -2.9885 -#> -#> Columns 17 to 24 9.7553 -13.1200 7.1868 4.8436 2.1946 -6.9015 1.4137 9.7216 -#> 10.7145 -15.9968 -7.6058 3.1467 9.2966 14.3546 -0.1738 9.8027 -#> -9.2212 -0.5251 3.5527 5.3623 -11.8983 4.0554 4.5675 -6.3613 -#> -2.6589 8.1325 7.2018 2.1848 -4.5962 2.5252 1.0252 -14.3119 -#> -7.3349 2.4963 6.5116 -10.1706 -3.1291 -7.2340 12.6099 -0.4696 -#> -0.1394 -7.5460 -22.2137 -2.3903 2.1341 -22.2161 17.2772 28.6837 -#> -2.1571 5.4578 -1.2019 -22.6302 -2.6689 9.1606 -3.8338 2.8104 -#> 4.4399 -4.1536 -0.9956 9.4338 -4.5337 -8.7534 -5.4436 5.9705 -#> -11.4283 -1.5159 -6.5968 10.1358 -15.0663 -4.5839 -3.3741 7.3909 -#> 5.8492 11.3488 -2.2672 12.7561 -7.0420 -2.7220 15.0504 8.2648 -#> -18.0644 3.9038 1.3762 -20.8657 -11.8200 4.8428 3.3412 -21.4536 -#> -5.5596 -23.4892 -6.5741 11.1924 -15.3357 -2.2479 6.0471 -0.6416 -#> -5.0136 0.5910 -2.1618 6.7253 -1.5704 6.2009 1.3919 9.3597 -#> 10.9548 -13.9191 12.5985 -1.2022 10.8440 -5.5861 4.4983 3.3493 -#> -1.2791 3.0089 9.8931 -13.5114 -4.6666 -1.9426 4.4158 -10.9277 -#> -12.9990 0.6456 8.3221 -4.9207 -0.7035 17.5786 7.1658 5.9181 -#> 17.2244 -19.4162 2.3888 -0.8057 -11.6695 4.9724 13.7872 1.6801 -#> 5.4351 -6.6086 -7.4150 -2.8655 4.8108 5.5622 6.3642 -10.0064 -#> -11.7144 11.1556 1.1453 21.3122 -11.9525 -6.5990 9.2495 -5.2196 -#> -15.3457 6.0296 4.1158 -0.5219 1.6137 -11.4727 8.4630 -2.4792 -#> 2.8535 0.0787 1.0286 15.6627 13.0209 -6.1135 14.4283 9.9701 -#> 2.5635 -3.7947 -1.3162 6.7904 0.7413 -17.1797 -21.7695 8.1626 -#> -3.6684 -4.9924 -2.0509 -4.8486 -2.1283 -4.5470 -1.8739 9.6315 -#> -14.5102 9.8342 -1.4152 -10.0871 9.7394 12.9369 -12.2200 -8.0341 -#> -10.4517 -4.9812 2.9651 7.1184 -1.4927 6.9153 16.0767 -8.4478 -#> 4.6687 3.0401 -1.0172 2.2060 1.4107 2.0808 -11.0041 -0.6075 -#> -4.7864 -0.0843 2.4379 -12.3772 9.2019 -3.9495 -1.5036 -11.3102 -#> 0.9289 -7.3573 -4.8422 5.4141 8.8234 -12.1827 6.7583 -5.4115 -#> 4.5193 7.5225 -6.1402 -12.0619 3.5380 2.5877 -13.4143 -13.8412 -#> 4.8879 11.3728 8.5100 -22.6038 -11.1467 9.6744 10.0143 -21.5391 -#> 10.9835 -5.5687 1.3013 2.8671 -5.4365 -4.9046 -20.4971 2.6865 -#> -18.5385 4.6653 -6.3887 -0.4565 3.7783 1.8561 -6.8878 2.6661 -#> -20.1066 1.6469 2.6033 -19.8456 8.6572 3.5506 8.2641 -13.4063 -#> -#> Columns 25 to 32 -1.2997 2.5660 11.4786 21.9807 10.5563 12.5488 -16.1947 8.9865 -#> 30.3387 4.3806 -2.5467 6.4973 8.2565 11.6147 1.4779 1.1958 -#> -8.6803 -5.0393 -4.5055 2.4810 -7.9344 7.4099 -4.2127 -3.3463 -#> -4.6563 23.6231 -14.3282 -0.1461 2.4661 14.0052 -8.7004 -1.3035 -#> 5.4801 16.1340 1.9629 14.6541 3.6288 10.3801 -2.2284 3.0719 -#> 9.1457 4.7753 26.7420 1.9238 16.1791 -2.2101 -5.3664 11.4996 -#> -2.6553 23.0783 -3.7477 -4.2019 11.1723 -4.5220 4.4127 -4.7281 -#> -2.5818 4.4406 10.7327 2.0380 2.0969 9.6335 3.9120 8.2685 -#> -33.8974 -12.8143 -6.0901 -9.0709 -7.8182 8.9614 -2.5334 -12.7631 -#> 3.2786 -1.6036 7.5980 -3.9095 1.2602 2.3739 3.2521 -4.8686 -#> -7.3327 10.4040 5.5009 4.0083 16.3784 -8.6116 5.7804 10.3379 -#> -14.2673 -6.2080 -4.0674 0.1512 8.3497 -9.4116 -4.0423 -14.0406 -#> -20.3385 3.9015 2.0622 6.2539 6.8554 -7.8619 -3.0550 -4.7275 -#> 2.5882 -12.9390 -22.0963 -3.0532 1.9954 -0.9987 3.1953 -8.4127 -#> -5.0772 16.6097 -9.3671 -0.4289 -0.8395 -4.9621 -8.1858 -7.3859 -#> 7.6867 20.9398 -0.7564 -10.0955 4.2113 3.5465 -1.3963 8.6430 -#> 1.0266 7.9831 -4.8256 2.7832 20.5387 -2.9075 1.2404 7.3119 -#> 4.3127 -3.5009 1.9082 1.2073 -3.6349 0.1758 7.0910 2.4704 -#> 5.2905 -13.3534 18.8257 -26.3553 2.9182 -13.3157 3.7616 -7.0972 -#> -9.0565 -9.4113 -7.3716 -6.4189 -1.4251 -0.6970 -11.1698 6.4259 -#> 9.8357 -20.6985 6.5946 -6.4993 1.4075 -10.1752 -2.8046 -0.5371 -#> -7.0588 -15.2924 -4.0809 17.3121 -5.1022 14.4247 -6.8520 13.0136 -#> -5.4876 -12.7528 -31.4428 -4.2435 5.3583 0.4308 -8.7641 -7.9566 -#> 2.7864 3.8519 -3.5083 -1.5176 -2.9368 9.7348 -5.4117 -6.1777 -#> -1.2136 -10.0024 -8.1429 -4.3171 -6.6987 -1.9511 -9.4266 -5.6240 -#> -7.5783 -7.4562 6.2961 -6.0867 1.4181 -16.5222 -2.1903 -8.6514 -#> 9.0910 -3.3295 1.5234 -4.1993 1.2210 -0.2420 2.8981 -2.0521 -#> -5.5707 -18.4647 -0.6560 -2.7191 1.2130 17.2127 -7.8321 4.2030 -#> 4.6750 -2.4481 -14.0304 6.0465 -5.7216 2.8683 3.5524 -2.6627 -#> -4.3774 4.2675 11.3429 -9.4706 -2.9024 -6.9048 -0.8443 -2.9756 -#> -6.5006 5.7395 -0.4179 -7.7384 -0.1501 9.6269 -4.5812 12.0688 -#> 13.9179 -15.6514 -3.5161 5.1031 19.9115 -3.0878 4.0127 -15.4881 -#> 6.5677 1.2792 -3.8230 2.6097 -13.5379 10.4018 0.3715 7.4503 -#> -#> Columns 33 to 40 5.3052 -7.0661 4.7852 8.9610 -15.2011 -3.8709 17.9290 1.6281 -#> -5.1879 5.2382 -1.0851 8.2228 4.6034 -5.9043 -1.7003 -11.1631 -#> -6.9663 6.2021 3.7609 -16.0715 0.8179 4.0172 2.3748 2.4703 -#> -18.8565 15.3300 -2.0820 -7.5073 -6.7966 15.5286 -13.4748 6.2408 -#> 0.8957 3.5834 12.3402 -17.6054 6.3492 7.4437 3.7392 -8.5734 -#> -2.9738 -7.2329 -2.5599 1.7708 2.4251 -5.8812 -5.8491 -5.3014 -#> 6.4677 0.8822 1.9027 -8.3738 -8.0058 12.0594 -8.5700 -5.1170 -#> 18.9312 17.7423 -3.8196 10.4943 -0.9489 -7.5846 -2.0368 1.1635 -#> -2.4501 4.5884 -6.6799 -4.8542 5.8958 1.9316 7.5522 4.8995 -#> -9.1462 -12.1461 8.4455 14.3685 -16.3043 -9.3552 -8.0756 -6.7934 -#> 10.4133 -12.1937 15.6228 -9.6192 2.0900 -1.8004 -6.6100 -7.5872 -#> 8.8462 0.4353 11.5399 -4.4965 -6.6862 -1.5440 7.6812 -2.9164 -#> 5.2504 -0.7551 9.2843 -1.7086 -3.6233 0.1112 12.3992 -0.2854 -#> -9.8543 -2.7453 2.0754 1.1477 6.3524 -7.0851 0.0442 10.8561 -#> -9.9474 9.1364 -0.2938 2.6699 1.5531 15.9298 -7.0656 -4.3737 -#> -2.8141 -23.9811 2.7360 10.6291 -3.0334 10.8106 0.6688 -9.3946 -#> 4.9860 0.2085 -0.2466 1.6133 -3.4966 14.4860 -2.2270 -23.5474 -#> -2.5455 -2.8775 -15.3958 -7.0275 3.9818 12.7210 -13.5770 16.3814 -#> 11.6903 -1.1662 -3.7867 17.0957 10.7837 -6.2491 7.7903 -1.4236 -#> 6.9868 3.5043 10.6076 -3.3494 9.3721 -1.1851 -16.0425 7.7467 -#> 6.9866 -8.2193 -5.6146 15.1631 4.8171 10.9608 0.2572 11.4145 -#> -4.2670 7.7636 13.9072 14.0630 -3.8046 -5.2689 -9.9894 1.9107 -#> 9.0186 -1.3330 2.4330 20.1800 -10.8788 -3.1260 -5.8801 -9.1647 -#> 5.5179 -1.6877 -19.2072 -14.4144 -5.0496 -7.9839 6.6813 12.4073 -#> -12.5223 2.0891 -12.9087 -7.6491 -1.4437 -8.5859 1.9822 11.2169 -#> 9.9112 -18.6615 -7.3252 -5.5876 -1.6898 -3.7585 0.5299 -15.4517 -#> 5.1917 -6.7378 0.6070 -1.0705 0.7240 -6.5471 -4.8843 -0.6816 -#> -7.0180 16.8131 -3.6724 3.8947 11.0605 -0.7513 -1.2543 -1.7039 -#> 8.3646 10.8441 -21.4233 -16.3048 6.7304 -8.0358 -16.3618 14.3174 -#> 3.0343 -7.0327 -5.2200 8.3443 -11.4185 -15.7410 5.5705 -2.6389 -#> -1.9251 -4.4846 10.0314 4.7699 2.6357 2.8893 -2.4603 -1.3923 -#> 1.6812 -1.4077 -6.8064 0.4776 -2.6904 10.8166 4.8353 -27.0714 -#> -7.4296 -3.7325 -5.3549 -8.5688 -9.1646 -6.8415 -2.5583 6.1067 -#> -#> Columns 41 to 48 3.1174 16.3425 7.7411 4.7303 6.4072 -0.6967 -15.2469 4.0689 -#> -19.8591 20.3703 -22.3870 -0.0186 -3.8217 -4.0515 -10.3993 8.4956 -#> 6.2955 -6.7682 1.2646 1.5836 -2.6305 5.3780 -4.7371 -6.3778 -#> -3.3552 3.5098 -1.0505 8.3239 -8.7252 8.8065 6.4772 8.2973 -#> -3.9051 -7.4153 -2.2978 4.8423 -6.7482 2.8870 -4.6284 12.2837 -#> -3.4785 -24.9972 3.0788 1.1094 2.2645 -26.4156 3.6031 -6.0978 -#> -5.8234 3.4496 -2.9199 -8.7993 -10.5120 -4.7851 -11.1427 -23.1279 -#> -11.7796 -0.4631 -13.1887 -11.4661 2.6153 7.1247 -10.4822 -15.9656 -#> 13.4413 -11.6371 -0.9134 13.4668 -4.4373 -6.4646 -1.3270 2.8753 -#> -2.1881 -6.9783 -10.5101 -10.4630 -3.0733 -2.1742 8.1180 -6.3409 -#> -1.8502 -9.7822 2.1889 -0.1678 -5.9537 15.3674 -0.7551 -4.7234 -#> -8.0885 8.0203 -4.0589 -8.8241 -8.3500 -2.8535 9.3532 10.9975 -#> -18.7868 0.3839 21.5336 9.5365 -2.7460 8.3454 6.3590 -6.5452 -#> 1.0877 11.8411 -7.7273 -3.8096 -1.4145 -16.3855 13.4120 -4.7363 -#> 15.1865 5.0968 -3.6312 1.6900 9.4821 2.4396 3.0815 5.8806 -#> -10.7069 8.0684 -4.1255 13.1902 -7.9577 -1.6689 -4.5992 7.6382 -#> 2.7812 -9.5274 8.5902 -4.6735 -2.9463 1.7383 -6.5527 -14.1294 -#> -17.0843 14.5295 7.6360 -1.0162 0.3424 23.1627 -11.0931 6.9220 -#> -9.3723 6.4530 -1.4624 -0.4699 -5.1367 4.7219 -9.0282 4.5032 -#> 12.0693 1.0159 -23.7530 -1.8362 -2.2409 -5.2844 -4.3661 -0.5389 -#> -0.3056 3.2738 3.7991 -2.3939 8.0024 -1.8377 5.1208 10.9426 -#> -9.6241 14.9390 -16.1278 -9.0459 -16.5176 -9.3462 0.4452 4.7589 -#> -10.3488 -1.6794 -5.0653 -8.7524 -7.6349 -16.4446 -11.3896 -7.0746 -#> 1.4225 -17.2559 4.2896 8.8625 10.0452 -8.2771 -0.2759 7.0084 -#> -8.0495 -7.6525 2.5955 -0.5583 15.6281 -17.6703 0.5897 11.1602 -#> 27.0729 5.4696 -1.3197 -9.3038 13.9750 -2.9348 4.7927 -2.7989 -#> 29.5099 -20.9963 24.6360 -6.2216 15.2439 -11.4710 16.2514 6.2927 -#> -3.5272 -19.5338 3.2136 7.2999 0.0861 -2.9485 -9.8887 0.4744 -#> -1.2962 -1.0744 14.8624 -2.6720 19.5613 23.0580 -6.7557 7.1725 -#> -17.8225 -0.3951 -7.6426 10.5787 -2.1145 -5.5434 20.5069 3.5584 -#> -2.0788 2.3581 -3.1871 7.5324 -25.1909 4.3661 7.6013 -0.0651 -#> 12.2884 8.4565 20.5663 9.6368 18.6797 -2.5369 13.3668 1.8755 -#> -10.1990 -10.4719 -0.4565 10.4234 4.8150 1.9160 2.6964 -5.6770 -#> -#> Columns 49 to 54 4.7604 -17.0443 4.2362 -0.1506 5.7847 4.8275 -#> 12.6656 2.2082 -15.0857 -9.7875 -1.2137 7.7689 -#> -7.9383 3.0470 -2.7657 -15.1841 7.5981 3.2548 -#> 13.3431 -7.0009 -9.5811 3.9706 8.5158 0.8813 -#> -2.0129 13.4008 -1.1993 -6.5928 6.5611 -4.5572 -#> -13.2717 12.4965 -5.4569 -0.3310 10.9039 5.8270 -#> 8.9575 -5.0186 -2.2719 0.3510 -4.7358 -3.2742 -#> 6.5051 0.5433 -8.9381 -0.5561 -6.3295 -1.4019 -#> 3.8464 -4.6707 -13.7753 -0.9268 5.7068 -1.6860 -#> 3.8926 -6.4982 -3.0241 1.7773 -3.8354 2.0144 -#> -6.7829 7.4228 -0.6287 -1.7426 -6.6208 -2.8569 -#> -12.3822 14.1381 -11.0661 9.7871 2.0780 -1.8625 -#> 8.6162 4.5793 -2.0453 10.8411 -8.9352 -2.9064 -#> 8.2304 9.6105 -18.9576 -9.7135 8.1245 6.5796 -#> 4.2747 15.7482 0.5116 0.3624 10.7449 3.9772 -#> -4.2663 -3.5648 -1.8642 7.4056 0.9312 5.9999 -#> -2.1748 -9.0366 11.5350 -4.8309 -3.1486 9.7313 -#> -3.5441 -3.7128 3.9071 1.9930 -5.4614 -4.3329 -#> -3.4657 11.1438 -16.1882 8.2909 5.3822 -11.1595 -#> -6.5959 -4.9608 1.6281 5.4256 1.1819 -7.4167 -#> -12.6978 0.9185 9.9471 -9.0970 -8.7337 -0.1304 -#> -14.7662 1.3690 5.9851 -0.7951 3.1230 6.4365 -#> 7.6856 0.4292 -14.4094 -0.8849 0.1469 3.4671 -#> 5.4269 22.9641 -11.5888 -0.5557 12.3558 -2.9540 -#> -17.0178 1.4444 -3.5835 1.6870 7.0000 -9.2378 -#> -3.3226 -4.0039 4.7945 6.7741 -10.1068 4.7550 -#> -3.1680 -10.0941 1.2355 -4.2952 3.2572 4.4980 -#> -1.9808 -11.6065 -7.0829 -7.6412 7.5375 -9.0860 -#> -5.1760 -1.4036 -5.5432 -5.4713 3.0101 -2.3162 -#> 10.2289 1.8357 -9.1445 22.0267 -3.5414 -11.8593 -#> 4.8033 6.7724 -6.2342 3.3569 0.4787 4.3952 -#> 10.7536 3.2190 -5.0490 10.7763 0.7685 2.7364 -#> 3.8563 5.1250 -8.5096 -8.6343 6.7572 -4.6396 -#> -#> (8,.,.) = -#> Columns 1 to 8 7.1508 6.7372 5.9819 -0.0601 2.6715 -5.1312 -4.7280 -6.3784 -#> 7.6682 -5.1930 -3.7598 6.8804 11.7423 -9.1464 10.0633 6.0598 -#> -5.6035 -1.0263 1.6200 0.2141 4.6984 -2.8773 -12.6556 2.3026 -#> -2.9972 0.1561 7.8324 2.6244 11.8952 4.3623 3.7364 -25.3673 -#> -9.6151 1.6634 -0.2185 -7.4899 4.8237 -4.0181 4.5082 -0.4462 -#> 4.0094 -2.8231 0.4799 3.3922 -11.7035 -13.0875 -10.3550 5.3582 -#> 3.9708 2.3987 2.3578 -3.6164 -9.5522 6.8756 -12.5137 -12.8285 -#> 0.9439 0.7691 1.1446 3.5504 -5.8556 2.2269 1.1489 3.9464 -#> 1.8752 -4.9550 3.1504 -6.5187 -8.1246 12.7283 -14.8513 -1.5619 -#> 0.9727 -0.8928 15.7404 4.6312 8.3961 12.8783 7.6629 6.6705 -#> -6.8592 -0.9109 -4.1087 -2.7627 -13.6369 -0.1231 2.1088 -2.5499 -#> -3.5121 -2.3167 -5.9088 3.2831 -0.5246 -4.8987 2.8872 16.5708 -#> 1.6531 6.3598 -0.8847 22.2141 -2.2368 -8.2070 1.2624 -2.6903 -#> -1.7068 -4.0863 -5.5869 3.6179 9.6339 -3.1257 29.5030 -1.4866 -#> -2.4773 -5.0205 4.1964 -6.4092 -4.1407 -5.0958 -4.7861 14.8317 -#> 6.5156 4.4029 6.6035 1.2587 1.1257 -16.5518 -3.6082 16.4726 -#> -1.0780 3.4886 6.4448 -3.6593 0.8148 -5.3412 -0.4133 4.7233 -#> 9.4846 7.6809 6.4711 2.0481 -1.3859 -1.0715 4.2044 -20.6968 -#> -4.3761 1.6670 2.4490 -8.4354 -2.7067 9.7746 2.3280 3.9501 -#> -3.8817 -6.5747 -2.0872 2.3250 -12.6315 -5.6352 1.2802 15.7961 -#> 4.2989 1.5583 4.6880 5.4209 1.1403 -0.6907 -0.5091 16.0139 -#> 1.2061 -14.1669 -8.0375 -17.3101 5.6985 -0.8953 12.6394 -9.9687 -#> -5.8559 -8.4070 -11.6112 -4.7989 -24.5551 -16.0300 -10.0286 9.7208 -#> 8.2044 6.9436 -3.6526 23.1866 8.5349 11.6573 -0.4488 2.0429 -#> -3.9382 -3.7899 -5.7767 5.4737 2.7066 -1.5215 -7.6963 -3.5784 -#> 9.5496 8.5969 10.5426 15.4591 5.8838 14.7248 8.8217 16.1680 -#> -1.1191 -2.1120 -6.3763 1.0351 11.4906 -7.1137 -11.8626 -0.3931 -#> -10.9741 -4.9215 -13.0459 -15.8233 -3.4078 -12.5638 2.9955 -5.9202 -#> -0.1297 8.3024 12.6717 10.2556 13.5064 13.4313 0.2281 -1.7045 -#> 1.6663 3.6732 -3.0221 3.8763 16.6424 -5.3196 4.7441 -17.1505 -#> -6.5405 -3.9878 -7.3507 1.7192 -9.0308 -9.1152 14.1827 -6.6667 -#> 0.8203 4.1849 3.5764 1.3127 3.9395 -12.8159 -17.8305 2.2912 -#> 3.0475 8.3816 -2.4021 6.5701 4.2364 -9.9423 0.9770 -9.7009 -#> -#> Columns 9 to 16 -10.0151 -9.5474 16.3357 8.2495 -1.5964 0.5695 -4.5643 9.8078 -#> 30.0856 0.3242 -7.8498 8.6488 2.6957 -5.3110 -8.6937 -1.7189 -#> 1.6592 -7.2534 -2.4388 12.4133 5.6499 15.6555 9.9671 1.4648 -#> 11.3157 -6.9102 -4.3567 -1.6289 -1.9218 3.2060 9.5204 -16.0418 -#> 7.6599 13.5402 0.1472 3.2803 -7.8039 5.7619 12.2552 -0.9779 -#> -15.4246 20.6626 18.6428 11.2379 3.3039 9.3777 -0.9136 1.9426 -#> -14.6024 3.6175 9.5540 -3.6661 10.4562 15.3631 18.0100 -3.4185 -#> 1.6321 -2.9346 -6.9568 -8.9791 -3.5516 2.2035 -0.5501 -7.4288 -#> -4.0139 -5.5305 -11.6019 8.2809 -23.6624 -2.0877 3.3591 -1.3592 -#> 3.6416 8.6007 -10.4185 7.1283 4.3517 13.6260 5.8551 -3.1176 -#> -11.1471 -15.0331 -2.3048 -1.3674 -2.6871 3.3351 -2.7968 -7.0620 -#> -6.1378 14.2888 -1.8011 -2.4272 -3.7110 -0.9645 -4.7425 9.3068 -#> 16.9800 25.1799 9.1233 -7.2462 4.7891 -5.0251 0.7113 -9.1539 -#> 9.0895 3.0683 -24.9544 6.3863 5.4586 -9.7773 -0.5664 -7.1917 -#> -10.7116 17.3930 -13.5514 11.1032 -0.2145 12.2160 -5.1363 2.3689 -#> 0.3445 -2.2634 0.8781 3.2789 4.5291 12.1612 6.0505 2.4993 -#> 5.3868 3.0195 -0.2482 -5.4812 8.4448 9.9567 -0.4724 -6.5618 -#> 10.9629 -12.1021 13.6602 -3.9014 -15.5234 -8.2013 -9.3046 12.3432 -#> -14.5482 -5.0352 -10.1014 -4.7969 -0.9369 10.4475 -10.6851 -0.4472 -#> 12.1259 -6.1691 -3.0353 4.5765 10.1662 -0.7835 2.3517 -10.8543 -#> -8.3979 -4.6937 -15.2274 -22.2141 -8.5639 -6.7124 -0.9374 7.7074 -#> -17.2386 -7.9246 -6.5068 3.9143 11.5533 3.2035 -11.3446 -2.0618 -#> 9.9309 -13.9416 -10.4132 -16.5851 3.7950 10.6597 2.1974 -4.4408 -#> -0.4629 -0.9287 22.9732 1.8167 9.5406 -3.2515 1.6038 1.8185 -#> 11.0190 -21.9261 22.7242 -17.9158 -7.3786 -7.2195 -0.3001 18.1530 -#> 5.9330 19.3633 -2.7365 9.7048 -4.1241 10.0479 -3.0356 8.2367 -#> -10.5649 2.1628 -13.9123 9.5574 -5.5361 3.2461 1.5565 3.8338 -#> -3.5414 -14.0745 -3.8302 -14.1880 -6.9356 -9.2233 -1.5608 -11.7840 -#> -5.1279 1.8206 -1.8614 5.3786 8.2715 2.3127 -1.2312 3.2170 -#> -1.4440 1.4858 9.7767 -1.3624 -2.6655 5.8860 5.7552 9.4817 -#> 1.4178 -16.0870 -17.0147 -6.7973 3.1098 -0.3210 7.8234 1.2850 -#> -10.4717 1.5837 -1.9258 -2.0323 13.3036 7.7405 7.7084 -5.0524 -#> 9.6043 -7.5064 0.8189 0.4072 9.6478 1.5139 20.2461 -1.0598 -#> -#> Columns 17 to 24 8.1001 -1.0351 -6.7461 -11.0419 -8.1504 -15.6931 -19.7889 -2.3716 -#> -10.0340 -5.0651 14.4485 -11.9413 6.1078 -14.9792 2.4590 -15.2920 -#> -3.9651 6.6120 10.5014 7.5160 -9.6985 4.0468 -7.4204 -11.1921 -#> -13.8032 4.4341 -0.3191 14.4921 -10.4447 -1.8446 12.3376 -0.8948 -#> -8.0753 -1.2589 -8.4688 3.2476 -26.8242 -4.4277 -13.5342 2.0415 -#> -4.3877 -0.1280 -20.6544 -12.8968 10.8765 -10.9568 -11.3636 17.6642 -#> 9.3794 -1.1094 -9.6291 3.5754 -2.1581 -8.7307 -2.9342 4.1637 -#> -6.2747 -11.1756 -8.4495 -13.4040 -13.1809 -13.8689 -7.2018 -13.4809 -#> 12.8036 16.1512 5.4492 15.9207 -0.3596 0.6861 13.7002 -4.8839 -#> -10.9333 2.2218 -14.8068 13.8960 -5.6335 -0.0825 5.0305 -6.7653 -#> 14.1881 0.2138 -1.2540 2.3505 -2.9398 3.0173 -16.3710 2.6998 -#> 3.5745 14.2715 15.6316 2.2813 -7.2114 -1.7036 -5.6726 6.8289 -#> -1.3762 -16.8109 1.8873 5.7485 11.4382 -7.3215 -15.7174 4.9650 -#> 0.9686 5.8856 -8.1113 7.1000 5.8756 -9.7769 10.2416 7.2427 -#> -10.5910 22.1120 -8.2317 -3.1513 -9.2054 -6.5088 1.6777 -1.6041 -#> -9.1672 1.9800 -16.2627 -9.7974 3.4530 13.2416 -4.8867 -3.5655 -#> -12.8684 -11.0718 -13.4428 -13.2373 -10.2448 -2.0117 7.0435 3.1549 -#> -1.6896 6.6603 15.4529 7.5885 4.8641 7.3906 -2.2209 -6.2453 -#> -2.5293 -9.9172 -13.6721 -0.2927 -6.7671 8.2823 19.9966 7.8450 -#> 2.8503 4.1798 1.5580 -14.8536 -6.3334 2.6650 -4.5798 -8.2165 -#> -4.0300 -14.2928 -2.4017 -20.5895 4.7263 14.9711 -2.4875 14.4660 -#> 5.1115 -13.9482 -3.6005 4.3206 9.7899 -5.5324 8.6255 -7.1614 -#> 5.7668 2.7724 7.4530 -12.2066 3.6582 -2.3568 -3.9457 3.7212 -#> 13.5755 5.8316 0.1492 9.8553 16.3314 15.4315 -7.3261 3.8208 -#> 5.3305 12.3318 1.8238 2.7613 11.6012 8.4931 -3.4332 5.4188 -#> 8.1775 12.1450 15.1162 2.3753 2.2250 -3.6509 12.8902 -2.8555 -#> 7.8905 10.0615 -0.4912 6.3662 -0.6782 9.5253 -15.2438 2.5168 -#> -11.2149 -10.0954 3.3422 -2.7070 -7.0759 2.4042 -3.7015 1.2223 -#> 2.3879 6.8082 0.2533 11.3374 -1.4567 14.0965 2.2258 -1.8460 -#> 3.4320 9.3158 -0.6690 17.7832 9.3512 13.3587 9.3576 5.0262 -#> 9.3727 1.7643 2.7273 -7.8212 -7.6490 -2.7739 7.7751 -6.1483 -#> 0.2295 0.1979 2.4044 6.5403 8.0871 1.0703 -1.9011 7.0253 -#> 4.3509 5.3380 -7.0635 10.6731 10.6836 0.4986 -7.3226 1.9557 -#> -#> Columns 25 to 32 6.7455 1.7868 -8.8835 -8.2019 4.5433 -1.0239 -3.1092 1.6769 -#> 8.4804 5.0411 11.5685 -0.9770 2.6991 12.6585 -1.4397 -14.9938 -#> -10.9128 -5.3340 -9.6483 -6.0048 9.7009 3.1092 5.1960 1.1162 -#> 11.1955 -2.2595 9.9399 -9.6134 -1.3063 9.5693 3.4519 1.7172 -#> 3.1671 1.4267 -2.8816 14.6492 7.2395 1.8898 5.8684 13.9336 -#> 4.4651 8.7700 -5.7401 6.6528 -5.2405 17.1295 8.9922 8.9185 -#> -3.7940 -18.7592 -11.9993 -18.3577 10.6142 -13.1228 3.9631 11.6180 -#> -1.4272 -1.2968 -1.0754 3.7228 16.9619 -9.0493 -7.8127 6.2468 -#> -7.6175 2.0480 -11.3912 -27.6616 -2.1672 1.8430 2.4369 0.5673 -#> -3.9454 5.5963 8.3102 2.1835 -15.3158 24.8253 -5.0833 10.2927 -#> -8.1090 8.9425 -9.0912 7.1353 5.2831 -4.3799 -4.0059 25.5929 -#> -4.5726 -0.3739 -18.7746 9.9125 -14.6715 15.2602 -3.1135 14.5251 -#> 6.0025 3.2679 10.2790 5.0409 1.6172 -0.0848 -5.3120 4.0880 -#> 10.8606 -4.5095 20.0533 -6.8515 -18.1393 7.5030 -8.9183 -7.8453 -#> -3.4917 -7.7637 -9.8252 16.4568 -2.8053 8.6339 13.7757 -0.1181 -#> 14.0185 9.1554 5.6943 0.7750 -10.0743 2.1277 -2.2721 13.1413 -#> 10.1655 -4.2152 1.7572 4.1830 2.1623 -8.7048 -3.9587 1.0580 -#> -6.0097 10.9930 5.1062 8.3181 0.8457 -0.1577 -18.2184 -2.3131 -#> -5.5882 -2.2534 -22.0129 4.8418 -15.4079 5.5410 -4.4979 -0.6346 -#> -14.6428 7.7315 6.3648 -5.0603 5.9393 -1.0989 11.1776 6.7368 -#> 9.9365 24.6246 -1.8262 14.6768 -21.6443 -14.6404 -12.6476 -2.4409 -#> 1.4070 -16.3869 -19.9686 -6.7619 4.0466 3.5202 4.3108 2.6778 -#> 9.7351 1.3257 -9.6109 -21.4991 -2.8457 -9.2122 -3.7684 12.5494 -#> -1.6200 -0.4281 -3.1035 -1.5048 1.5300 16.4868 -5.0592 -1.0714 -#> 8.1314 15.9266 -7.8683 -6.8566 -8.5155 -0.3033 -16.4273 -7.1421 -#> -13.8999 -5.4036 8.2061 1.4796 -2.7902 4.8665 -6.9505 0.0025 -#> -7.4138 -4.6629 -4.7055 -3.7802 -9.6058 6.1842 -2.8387 -6.5854 -#> 10.8963 14.8133 0.6713 -1.0068 0.1435 -19.0033 6.1731 -15.9684 -#> 3.5799 -7.0449 -4.7986 4.5287 -7.1192 -8.4011 5.7986 1.1786 -#> -13.1699 -20.9364 -9.5993 5.8298 -7.7431 23.6490 4.8607 -11.3314 -#> 6.8217 -2.7287 11.7833 -12.5530 -7.4013 7.5500 -6.6971 10.5138 -#> 10.9274 13.0032 -9.6783 15.5270 -2.9641 2.4258 -6.9870 2.7114 -#> 12.2095 10.0677 12.3627 -0.1106 3.4960 3.6681 2.2930 -6.1216 -#> -#> Columns 33 to 40 -3.3622 -10.3849 10.2555 11.8728 5.8306 -10.4878 0.4853 8.9719 -#> 18.4105 -7.9307 11.4194 -0.1296 -5.5568 3.6137 9.7678 -2.1159 -#> -3.3697 0.7608 -12.6738 -10.1236 4.4349 10.4471 -4.0326 -0.8935 -#> -0.3232 -0.7280 -0.2048 5.9241 0.5660 -11.9498 -1.1860 21.1517 -#> -2.7066 3.8992 -7.7092 2.9674 -2.1234 -1.3887 0.8307 -2.0074 -#> -0.5790 16.3288 -1.7148 -13.5067 -1.4230 -3.2069 -0.7859 12.1890 -#> -4.6540 -1.9929 -0.4003 0.7257 -10.6383 -10.1322 6.7866 7.2317 -#> 3.8970 -3.4188 -11.7834 -4.6428 4.0508 2.1324 4.1699 -4.1890 -#> 7.3724 16.4938 10.6386 22.3735 -2.0468 7.5446 -19.1999 2.6527 -#> -13.2517 -5.3879 -10.5804 5.9759 -2.5601 -3.3287 12.2843 6.9087 -#> -0.9873 0.0392 -3.8649 9.3947 2.5094 -8.7465 -14.7925 5.2627 -#> 12.9071 17.7511 6.9966 -1.4220 -10.6707 4.9446 -6.7811 -4.1808 -#> 3.2866 2.8973 -1.3446 14.3974 7.3142 4.2670 1.8701 1.2805 -#> 9.1203 -7.5222 -4.2375 3.9771 1.2064 2.9481 -2.7665 -11.2163 -#> -11.7766 -6.0367 -11.9295 -6.2336 21.8730 1.4385 -13.9398 0.4111 -#> -4.0622 4.9269 -9.6263 -9.0863 15.4455 10.2114 -8.1764 5.1174 -#> 7.1776 -7.6390 4.4247 -12.3476 -15.5966 7.9522 2.4543 -2.4679 -#> 2.6628 -2.8408 15.8058 2.4088 -8.0436 -3.6906 9.7034 -3.1776 -#> -18.7927 -17.2439 -23.2489 19.8174 22.7149 -10.6282 -5.0924 -4.8641 -#> -8.5925 1.8419 -9.6410 -8.1455 9.6088 -5.6521 3.3799 -1.7245 -#> -3.4918 -10.8292 -2.7675 -10.0738 3.9026 9.0146 3.3701 -11.1880 -#> 17.8822 4.8984 0.0398 2.5109 6.7534 4.2931 -5.9973 10.8163 -#> 1.7897 5.7650 2.3038 -28.0216 -12.0954 -4.8501 -7.7992 4.6672 -#> -0.3011 3.7991 -4.8132 16.1519 13.6011 4.7395 -7.8466 -8.0761 -#> -6.7641 -1.3968 -2.4330 -26.8625 -14.1981 -3.8306 5.0209 4.4976 -#> 6.8127 7.9355 5.9901 -5.3127 -5.0978 8.3256 0.7121 -8.4116 -#> -1.6115 12.8354 10.4227 0.5847 -5.0641 2.4588 -4.8166 -3.2331 -#> 4.9475 -2.3680 -10.0948 10.5419 2.5680 -7.0339 -1.7302 -0.8638 -#> -13.0108 -5.0026 6.1649 5.7417 -4.4212 -12.3816 11.8004 4.8924 -#> -11.2446 -16.1600 -13.2574 -0.8420 -4.7720 -2.6097 13.6350 -3.3475 -#> 17.9535 1.4541 -8.9213 -3.8055 1.3003 2.3363 -12.3381 -5.6345 -#> -9.3921 -4.6415 -0.2370 -11.6773 13.2384 -5.2224 -6.8675 5.8824 -#> 5.9682 6.0117 -12.0649 -5.3713 2.1772 -21.1429 3.9779 -3.2444 -#> -#> Columns 41 to 48 -7.4203 -4.3417 -8.7223 9.8122 3.8623 -7.4629 13.9484 -23.2190 -#> 3.4445 -1.3355 7.6531 10.1566 -4.0611 -8.9193 12.1846 13.4072 -#> -9.1451 -2.1885 2.3641 -12.4758 -16.5542 0.9120 -3.5647 12.2927 -#> 4.6303 -5.2585 1.0651 -4.5631 -7.7577 -0.9423 -7.0766 11.9225 -#> -3.1262 -4.0675 2.1898 -8.6319 -2.6677 4.4339 -0.6671 5.0801 -#> 6.2554 2.5598 -0.1234 13.0930 -1.8810 28.3096 -6.6054 -0.4741 -#> -11.8179 -12.9049 4.6068 2.6987 2.6213 -11.2886 3.4658 -5.2631 -#> -2.5020 5.5396 -3.7473 0.5592 -12.7861 -18.4386 20.1443 -9.0295 -#> -6.0943 -6.2892 -15.0037 -2.9393 -1.0958 15.7839 -17.5685 -4.1025 -#> -14.5351 -11.2419 -10.0126 8.4245 -3.8231 13.4642 -2.1626 19.3573 -#> -2.6913 1.2570 0.0191 -5.7630 -1.7038 -12.0102 -2.8262 -1.9102 -#> -9.3014 -2.7707 -5.6902 3.2790 -12.9711 6.5359 6.9999 -10.7766 -#> 2.9156 8.3690 -0.5395 -6.0872 11.8689 -4.0404 2.1184 -9.6522 -#> 12.3743 -1.0288 12.3481 1.4885 -0.7266 4.8815 0.7529 -0.9136 -#> -19.4519 -7.9898 7.5399 2.6351 -5.8580 6.3750 0.1136 -2.1771 -#> 1.6941 -6.4103 0.5496 11.4846 7.6194 3.6779 1.9675 5.1756 -#> 3.4512 6.0714 4.5734 27.0274 3.3834 8.3279 -5.7394 -1.7655 -#> -2.3163 7.9076 -5.1612 -5.3446 9.2760 -25.0731 13.2667 8.3713 -#> 6.8684 -9.4366 -14.1991 8.6951 10.7399 -2.8100 -2.2233 -10.4838 -#> -14.9936 -2.4823 18.8716 -10.5186 -11.2061 2.7645 9.7941 -20.5271 -#> 2.9695 10.8395 -10.4739 5.1254 -4.9681 -5.0584 -18.1055 2.5028 -#> 2.7110 0.8587 -4.6111 0.3774 -11.9666 3.8982 -5.3369 6.5355 -#> -12.3133 -15.5227 -2.7682 4.9590 1.8040 0.7331 -1.1232 -6.3707 -#> -0.3749 5.4597 -11.5046 2.4737 4.4048 14.9951 5.7543 -16.8669 -#> -2.6534 -2.9687 0.4743 -3.9876 -11.8613 8.7067 11.5766 -13.5679 -#> 0.9820 -10.8301 6.7273 -1.5765 -8.2368 14.5064 6.3943 7.6894 -#> 3.5332 -6.1911 6.6732 4.3271 -9.1047 14.4457 -19.7375 12.9010 -#> 15.6519 13.4092 -7.4260 -5.9673 -16.3715 -12.2971 -15.9744 -9.7981 -#> 8.2944 9.8776 -10.1648 -10.2498 -0.8161 -5.1461 8.3299 0.3224 -#> -5.7386 -5.1824 0.2582 -9.6135 15.1354 -0.5289 -12.7296 -13.0442 -#> 13.5382 -0.9888 -13.6341 -5.3329 14.3248 0.2444 -4.2781 4.5478 -#> 9.2803 -0.4922 5.8904 9.9608 -0.0805 11.7786 -7.9851 1.9345 -#> 2.3301 -4.4072 2.7353 0.9836 3.9349 -6.1501 1.5588 -10.2998 -#> -#> Columns 49 to 54 -20.8314 16.5843 -13.9129 -2.0479 6.8089 -3.7914 -#> 6.2111 6.6074 -5.1333 2.0526 0.3237 -2.0470 -#> -14.5700 7.4540 -0.3076 7.1954 -6.8094 -4.0095 -#> -15.0809 0.6740 -0.7762 0.2321 -12.1556 2.6609 -#> 14.3694 -1.3963 6.5437 10.2236 -8.9210 2.5166 -#> -12.3399 -26.4408 2.1555 -2.6613 3.1474 -2.0783 -#> -1.7603 -6.9358 7.6874 1.6465 -10.0625 -5.6285 -#> -2.7790 3.9554 -1.3829 -9.3238 -5.7191 -2.2334 -#> -11.1100 -4.3702 14.1653 4.4415 3.3352 -1.5379 -#> -14.6190 -1.4964 -1.2528 -9.3638 -8.0048 -4.8460 -#> 8.4043 -8.5918 -5.1574 0.0703 1.7428 -1.1935 -#> -0.7531 1.1208 -4.4809 4.9666 14.7488 -3.2977 -#> 4.3365 3.2914 4.2250 -2.9052 -11.3092 -4.1889 -#> 3.3596 -16.7166 3.0995 1.4962 1.6846 -3.7894 -#> -9.7414 8.1937 13.6883 -2.5184 10.6000 3.3366 -#> 2.6495 2.5624 -7.4683 2.6998 0.0631 2.7538 -#> -8.5029 -4.9118 -18.4429 -3.2778 8.0432 -8.2741 -#> -1.9020 6.6837 -5.4427 6.1116 7.2660 0.4438 -#> -7.0378 -4.7777 15.0084 -2.7419 -2.9724 3.1454 -#> 4.6097 4.8506 3.8411 -4.8637 -13.3390 3.0000 -#> 9.8125 -6.7690 6.7033 5.7351 3.2553 -1.0613 -#> -0.3601 -13.9705 -1.0009 4.9286 -7.7348 -2.9671 -#> -2.5662 -6.6644 -7.4420 -13.8237 5.5117 3.2655 -#> 14.5174 -5.0537 21.5743 10.0272 -5.0012 3.7732 -#> -15.3295 16.5149 0.0156 -2.6484 1.1358 2.8868 -#> 13.3596 -12.8918 -0.3230 -11.0566 6.0814 -0.1005 -#> -2.1543 -12.3791 9.6814 -9.1736 1.9768 0.4381 -#> -2.3409 -1.2850 -13.5981 0.2571 -8.0662 -3.2677 -#> 7.2799 -3.7789 -4.2514 2.2253 -5.6518 1.1974 -#> 2.7535 11.8568 1.0693 -0.8272 2.2264 -0.9253 -#> 14.5961 -14.8933 -9.8182 11.7285 0.6507 0.6431 -#> -2.7609 6.4170 -0.6261 1.7213 -7.1515 -4.1353 -#> 11.0345 -4.5719 -3.2490 0.7722 -13.8753 4.9701 -#> -#> (9,.,.) = -#> Columns 1 to 6 -3.0844e+00 3.9575e+00 -8.8483e+00 7.1485e+00 1.4732e+01 3.7237e+00 -#> 1.3299e+00 -3.2750e+00 -3.2767e+00 -6.6849e+00 3.0363e+00 -1.1108e+01 -#> -5.3153e+00 -1.0945e+00 -2.6950e+00 6.9211e+00 4.3921e+00 4.0269e+00 -#> -6.4988e-01 2.1014e+00 9.9262e+00 -3.4379e+00 1.2616e+01 2.0861e+00 -#> 1.9079e+00 1.3251e+00 -2.1251e+00 -5.3450e+00 3.2996e+00 -4.3239e+00 -#> -6.0243e+00 -9.6375e+00 -1.1247e+01 6.9145e+00 -4.1306e+00 2.5840e+00 -#> 6.0369e+00 6.4653e-01 -2.5032e+00 -1.9317e+00 1.9454e+01 5.1159e+00 -#> 6.6771e+00 -9.7476e-01 4.0785e-01 -4.2783e+00 2.9150e+00 1.3538e+01 -#> -9.8473e+00 1.0038e+00 7.7229e+00 3.0641e+00 5.7014e+00 -1.2515e+01 -#> -4.6366e+00 1.6778e+00 -6.7110e+00 -2.1135e+01 -1.1663e+01 9.1680e+00 -#> 2.4572e+00 1.0856e+01 -8.8700e+00 -6.6691e+00 -9.6360e-01 1.3725e+01 -#> 1.5261e+00 2.6883e-01 -3.6022e-01 6.8276e+00 -1.1354e+00 -5.7788e+00 -#> 6.0398e+00 -3.6515e+00 1.9147e+00 -9.9658e+00 1.8608e+00 1.6815e+01 -#> 1.0912e+01 -1.1609e+00 4.9686e+00 -8.8477e+00 -5.8313e+00 -2.2854e+00 -#> 4.3442e-01 6.8882e+00 7.6787e+00 -8.1718e+00 -5.9922e+00 -2.9733e+00 -#> -2.9825e+00 2.4150e+00 -1.2465e+00 -7.3483e-01 -1.5889e+01 -1.0715e+01 -#> 2.2427e+00 3.7664e+00 -2.2868e+00 4.5995e+00 1.0914e+01 -1.2551e+00 -#> -9.6294e-01 5.3982e-01 1.4011e+01 6.6027e+00 3.2266e+00 -1.1214e+01 -#> -1.2467e+00 5.1257e+00 2.9094e+00 -4.5639e+00 3.2488e+00 4.4284e+00 -#> 2.6206e+00 8.2820e+00 3.8331e+00 -4.8418e+00 -1.3598e+01 9.1072e+00 -#> 6.8628e-01 1.1245e+01 1.8393e-02 -2.6590e+00 -2.7642e+01 -3.6005e+00 -#> 2.3190e+00 -2.0259e+00 -1.0040e+01 -6.6561e-01 -1.7592e+01 3.9268e+00 -#> 7.6194e+00 5.9051e+00 1.9740e+00 -8.0803e+00 -1.1348e+01 5.4960e-01 -#> -8.1681e+00 2.1004e+00 -3.6650e+00 1.0278e+01 5.2578e+00 2.8381e+00 -#> -4.0629e+00 3.3020e+00 -6.8705e+00 6.6090e+00 -5.2204e+00 8.8572e+00 -#> -2.8817e+00 -7.1743e+00 -5.8274e+00 -1.4024e+00 -1.6453e+00 -1.2242e+01 -#> -1.8511e+00 5.2588e+00 -3.8408e+00 1.7996e+01 -2.0355e+00 4.0652e+00 -#> 2.0675e+00 8.8085e+00 1.3759e+00 7.3567e-01 -9.5449e+00 3.0625e+00 -#> 1.1249e+00 -2.9889e+00 1.9286e+00 -3.4670e+00 1.6181e+01 1.6632e+01 -#> -9.4529e+00 2.5716e+00 7.1519e+00 3.4283e+00 -7.8391e+00 4.5298e+00 -#> 6.1931e-01 1.0553e+00 6.9422e+00 -1.0306e+01 -1.4759e+01 -7.0191e+00 -#> 9.1682e+00 -4.0056e-01 -9.7737e+00 9.0546e+00 -5.7929e+00 -5.6782e+00 -#> 2.3222e+00 -4.0269e+00 3.3736e+00 3.6830e+00 1.0166e+01 6.4749e+00 -#> -#> Columns 7 to 12 -5.3888e+00 -2.9333e+00 1.5363e+00 5.4292e+00 -9.1061e-01 1.2076e+01 -#> 1.2150e+00 1.0525e+01 6.0796e+00 2.6328e+00 -1.1000e+01 2.9484e+00 -#> 3.1673e+00 -8.9752e+00 -7.2490e-01 1.5361e+01 2.7796e+00 -7.5944e+00 -#> -1.4430e+01 9.7151e+00 -9.1587e-01 3.2778e+00 5.2619e+00 -3.7392e-01 -#> 3.7892e+00 -5.1312e+00 -9.0128e+00 5.1808e-01 -3.1414e+00 2.7353e+00 -#> -6.7068e+00 -9.0294e+00 1.1638e+01 1.0029e+00 1.1856e+01 -2.6498e+00 -#> -1.1853e+01 -9.1865e+00 -9.7623e+00 7.9592e+00 1.4931e+01 -5.3246e+00 -#> 1.1537e+01 -4.9769e+00 5.7990e+00 -1.7946e+01 -2.5516e+00 -6.2747e+00 -#> -1.0631e-01 -1.8550e+00 -6.2494e+00 1.0040e+01 1.2557e+01 1.6425e+01 -#> 1.5632e+00 8.7546e-01 -1.0170e+01 -1.5403e+00 8.9363e-01 -3.8374e+00 -#> 1.6753e+01 -1.7494e+01 -1.5118e+01 6.6152e+00 -3.2020e+00 9.7728e+00 -#> 1.8719e+01 7.2675e+00 1.6485e+01 2.5752e+00 -2.4923e+00 1.7008e+01 -#> 6.3191e+00 -6.5026e+00 -2.9797e+00 -1.0865e+01 -5.6393e+00 2.7777e+00 -#> 2.7979e+00 8.5942e+00 -2.8034e+00 -1.0326e+01 1.2389e+01 1.6556e+01 -#> 1.3892e+01 6.8219e+00 7.3136e+00 1.1366e+01 8.1391e-01 4.3374e+00 -#> 4.8084e-01 4.3842e+00 -4.2161e+00 1.8518e+00 -3.7542e+00 9.6281e+00 -#> -2.2650e+00 7.0146e+00 1.1047e+01 6.1887e+00 1.8057e+01 1.4751e+00 -#> -2.4461e+01 9.5519e+00 -8.2912e-01 -1.0050e+01 -8.2641e+00 4.6827e+00 -#> 7.4679e+00 -3.5030e+00 -1.4055e+00 1.9115e+01 2.4359e+01 8.1015e+00 -#> 2.4131e+01 2.4365e+00 -6.8482e+00 2.9907e+00 -4.4200e+00 2.4605e+00 -#> -2.3553e+00 6.7272e+00 -1.4875e+01 -1.3162e+01 9.2889e+00 6.4767e+00 -#> 2.3963e+01 1.2350e+01 8.0211e+00 1.3432e+01 -1.4131e-01 6.6445e+00 -#> 1.3471e+01 7.7444e+00 7.6033e+00 -2.4399e+00 2.5683e+01 -6.2176e+00 -#> 8.8612e+00 -4.4346e+00 1.4746e+01 -2.9410e+00 -6.8655e+00 6.2316e+00 -#> -3.5537e+00 -7.2698e+00 -4.7409e+00 -7.2148e+00 -5.8450e+00 -5.2691e+00 -#> 1.3115e+00 1.6191e+00 4.7505e-01 -1.5181e+01 -1.1890e+00 -1.3413e+01 -#> 2.0220e+00 4.9279e+00 2.4231e+00 -5.2500e+00 4.8225e+00 -1.3004e+01 -#> 1.6325e+00 -8.4463e-01 -5.2737e+00 -4.4634e+00 9.0230e-01 1.5081e+01 -#> -9.6546e+00 -1.6568e+01 -2.3547e+00 -9.3497e+00 -9.6521e+00 -4.5624e+00 -#> -1.1359e+01 4.4158e+00 7.5889e+00 5.7622e-01 -7.3438e+00 -1.0305e+01 -#> 3.7111e+00 -3.7338e-01 1.4702e+01 -6.3014e+00 -6.5463e+00 2.1742e+01 -#> 9.0815e+00 2.7954e+00 -1.5308e+01 1.0759e+01 3.7131e+00 -1.3179e+01 -#> 3.3553e+00 -8.0263e+00 -4.2763e+00 8.2564e-01 -3.5557e+00 -6.8022e-01 -#> -#> Columns 13 to 18 -7.4942e+00 -1.4010e+01 -5.3054e+00 -8.4081e+00 -3.8957e-01 7.1862e+00 -#> -7.1702e+00 -7.3959e+00 2.7816e-01 9.9267e+00 -2.1226e+01 2.2359e+01 -#> 3.7178e+00 8.9062e+00 -1.9239e+00 3.9103e+00 -3.0656e+00 -2.7693e+00 -#> -6.8793e+00 6.7350e+00 7.0029e+00 -1.1243e+00 9.9269e+00 -6.0519e+00 -#> -1.9346e+01 9.3772e+00 -1.6757e+01 8.7048e+00 2.2695e+00 -9.9442e+00 -#> -2.1270e+01 -1.9596e+01 -1.2583e+01 -2.6858e+01 -2.5704e-01 -2.3715e+01 -#> -1.5152e+01 -1.1151e+01 -1.4880e+00 -1.2560e+01 1.4956e+01 1.3154e+00 -#> 1.4843e+01 1.0410e+01 6.9810e+00 -2.2508e+01 5.1875e+00 9.2162e+00 -#> 8.8139e+00 8.1885e+00 1.5398e+01 -6.9044e+00 1.1073e+01 -4.3035e+00 -#> -5.6897e+00 1.0101e+01 -2.1102e-01 -8.2544e+00 -7.0694e+00 1.1567e-01 -#> -5.6823e+00 4.4739e+00 -1.0758e+01 -1.8899e+00 3.8160e+00 -8.9889e+00 -#> -6.3853e+00 3.2104e+00 5.0729e+00 -2.8138e+00 2.5488e+00 3.5416e+00 -#> -1.3139e+01 -1.6489e+01 1.7487e+01 5.5499e+00 9.9309e+00 -5.3077e-01 -#> 3.8411e+00 6.1458e+00 6.2721e-02 8.6752e-01 1.6274e+00 1.2679e+01 -#> 3.6154e+00 -6.3606e+00 -7.1458e+00 -9.3122e+00 5.1054e+00 3.1354e+00 -#> -8.9520e+00 -7.4094e+00 -1.3353e+01 1.1036e+01 3.9082e+00 -9.9292e+00 -#> -8.0426e+00 -2.7335e+00 -1.6823e+01 -1.5870e+01 -2.4214e+00 -1.9141e+00 -#> 3.9491e+00 5.3443e+00 1.4690e+01 -2.9426e+00 4.3608e+00 7.3118e+00 -#> 4.9603e+00 -4.8410e+00 -8.5335e+00 -2.0889e+00 2.1733e+00 -6.1265e-01 -#> 7.4755e-01 1.5469e+01 6.2350e+00 -9.7556e+00 1.9131e+01 4.6571e+00 -#> 1.3613e+01 -8.7656e-01 5.4168e-01 9.9604e+00 1.6535e-01 9.2111e+00 -#> 4.1108e+00 1.3246e+00 -3.6717e+00 -3.7175e+00 -1.5989e+01 -3.8839e+00 -#> 1.0627e+01 1.4176e+01 -5.0590e+00 -2.0990e+01 1.3081e+01 -3.2022e+00 -#> 2.4884e+00 -8.7539e+00 -1.5358e+00 9.2289e+00 6.3881e+00 -6.5302e-01 -#> 8.6044e+00 5.5272e+00 -3.5769e+00 -4.3029e+00 8.1571e+00 -1.5234e+01 -#> 1.0456e+00 1.2951e+01 1.2300e+01 -7.5131e+00 -8.2078e-01 -5.4459e+00 -#> 1.1622e+00 -3.2786e+00 -2.4809e+00 9.2949e+00 4.5887e-01 -5.6015e+00 -#> 1.0684e+01 -8.1112e-01 -7.1593e+00 6.1027e+00 -6.0294e+00 -4.8785e+00 -#> -3.0858e+00 1.3670e+01 -2.5882e+00 7.5500e+00 7.6051e+00 -9.8345e+00 -#> -1.4309e+01 -2.4152e+01 -4.3382e+00 2.0233e+01 -6.3286e+00 -1.8082e+01 -#> 1.5897e-02 3.6208e+00 2.3562e+00 -1.3223e+01 -9.8380e+00 -4.8735e+00 -#> 2.0443e+00 -1.5113e+01 -3.1743e+00 -4.9740e-01 -1.1086e+01 3.2641e+00 -#> 1.5150e+01 -5.8453e+00 -1.1136e+01 6.0637e+00 -6.3859e+00 -2.8524e+00 -#> -#> Columns 19 to 24 -5.6893e+00 -1.9453e+01 -3.5957e+00 1.5872e+01 -1.3028e+01 5.1139e+00 -#> 6.9340e+00 1.2190e+00 1.2480e+01 1.2942e+00 -1.6315e+00 1.4260e+01 -#> 1.2432e+01 -4.2904e+00 2.6480e+00 -1.8259e+00 -1.5810e+00 3.2235e+00 -#> 1.4535e+01 -7.8076e+00 1.7186e+00 -7.7738e+00 -7.1399e+00 -8.9696e-01 -#> 8.6471e-01 5.4114e+00 1.1150e+01 5.3790e+00 7.0586e+00 1.9771e+00 -#> -9.0428e+00 -6.1166e+00 -1.1130e+01 1.3702e+01 -7.3280e+00 1.9078e+00 -#> -1.2262e+01 4.3546e+00 6.0670e+00 -3.4008e+00 8.6816e+00 7.8010e-02 -#> -2.0900e+01 4.2239e+00 -9.2654e-01 7.3594e+00 8.6544e+00 2.1153e+00 -#> -1.1320e+01 1.2950e+01 -8.8325e+00 5.0883e+00 1.2992e+01 -1.0941e+01 -#> -5.0212e+00 2.9902e+00 -3.3185e+00 5.6894e+00 -1.4010e+01 -1.0241e+01 -#> -1.1013e+01 -3.3661e-01 2.2183e+00 1.8726e+00 -1.7061e+00 5.6472e+00 -#> -8.8008e-01 4.3267e+00 -4.8622e+00 7.6512e+00 -5.9359e+00 2.2392e+01 -#> -3.8189e+00 -8.8454e+00 -2.0480e+00 -1.0577e+01 -4.6067e+00 -1.5634e-01 -#> 1.4468e+00 -4.0155e+00 -7.7699e+00 -6.3497e+00 -1.2672e+01 6.8436e+00 -#> 2.3073e+00 1.2243e+01 -9.7741e+00 1.7353e+01 -8.2820e-01 1.3717e+00 -#> 1.4566e+01 -1.2031e+01 -2.8944e+00 1.1853e+01 5.4134e+00 -1.2361e+00 -#> -8.3577e+00 2.4359e+00 -1.3276e+01 -4.0730e+00 -1.0948e+01 1.3474e+01 -#> 3.8182e-01 -6.4262e+00 3.8115e+00 -2.2974e+00 -5.7632e-01 9.6762e+00 -#> -5.3428e+00 8.6593e+00 -6.0399e+00 1.8404e+01 2.2284e+00 -9.9725e+00 -#> 4.7909e+00 -2.2855e+00 -4.3346e+00 -5.4306e+00 2.7422e-01 -2.0013e+00 -#> -8.8541e+00 -6.9699e+00 -1.3400e+01 8.0493e+00 6.8156e+00 -9.7870e-01 -#> -7.3828e+00 2.8325e+00 7.9561e+00 8.8198e+00 1.1244e+00 -1.6940e+00 -#> 4.4528e+00 -1.8023e+00 -6.6527e+00 -3.9291e+00 -5.5194e+00 1.8781e+00 -#> 6.1969e+00 -1.2150e+01 1.4234e+01 1.0549e+01 1.6503e+01 5.4961e+00 -#> 1.9726e+01 -1.9853e+01 1.1585e+01 -2.1674e+00 -1.4682e+01 5.4222e+00 -#> -7.7661e+00 -2.6476e+00 -8.8573e+00 -3.4332e+00 -9.9211e+00 8.6490e-02 -#> 1.4378e+01 4.0144e+00 -9.0094e+00 2.5586e+00 -7.2253e+00 -7.1700e+00 -#> -1.1073e+00 -2.0247e+01 1.6292e+00 -1.5077e+01 -1.4288e+00 -1.5738e+00 -#> -1.2809e+01 -8.0958e-01 -3.1857e+00 -1.3108e+01 4.3087e+00 -1.0828e+01 -#> 1.0087e+01 -8.5014e+00 8.2723e+00 5.4861e+00 -1.5241e+01 5.1375e+00 -#> 4.1856e+00 -6.3674e+00 -6.0491e-01 -3.4339e+00 3.0145e+00 7.3578e+00 -#> -2.0565e+00 7.9100e+00 -1.1618e+01 -1.0194e+01 -1.0763e+01 -1.8640e+01 -#> 6.7430e+00 -1.1374e+01 2.1704e+00 -7.5976e+00 -8.7040e+00 -7.4410e-03 -#> -#> Columns 25 to 30 1.3558e+01 3.3122e+00 2.0959e+00 1.5647e+01 1.0997e+01 -1.9436e+01 -#> 2.6344e-02 7.2531e+00 1.2503e+01 -9.3091e+00 3.1167e+00 -1.1548e+01 -#> -2.7886e-01 7.5301e+00 4.8612e+00 2.8948e+00 -2.8620e+00 6.4170e+00 -#> -6.6708e+00 1.7084e+00 -1.2577e+01 -4.7185e+00 -4.7590e+00 1.1023e+01 -#> -5.3235e+00 1.5145e+00 8.6505e-01 8.3207e+00 -2.0379e+01 4.0297e+00 -#> 1.5575e+01 -2.6839e+00 7.3206e+00 1.3451e+01 -5.3136e+00 -4.7260e+00 -#> 6.1753e+00 1.2691e+00 -7.8798e-02 1.5560e+01 -1.3044e+00 -2.4853e+00 -#> -5.1093e+00 2.5675e+00 4.8341e-01 2.7719e+00 5.3591e+00 -2.0743e-01 -#> 8.9852e+00 9.6871e+00 -6.3932e+00 3.0404e+00 7.4364e+00 -1.0637e+01 -#> 4.8914e+00 -6.7086e+00 3.4064e+00 8.1951e+00 6.9123e+00 -8.8660e+00 -#> -7.4082e-01 -3.7787e+00 7.6736e-02 1.8565e+00 -6.1790e+00 1.2534e+01 -#> 9.1540e+00 -4.7321e+00 5.9293e+00 1.2966e+00 -1.2415e+01 1.3284e+01 -#> -1.3991e+01 9.3310e-01 -2.2098e+00 6.6424e+00 4.0365e+00 1.3118e+01 -#> -1.1929e+01 -4.9660e+00 8.5513e+00 -3.3803e+00 -1.0103e+01 -2.6659e+00 -#> 3.5112e+00 -6.5770e+00 5.2533e+00 6.0158e+00 -4.1765e-01 9.3664e+00 -#> 3.5893e+00 -5.5666e+00 -8.5346e-01 1.0235e+01 -2.8308e-01 -5.9867e+00 -#> 1.2652e+01 -2.2574e+00 5.1448e+00 1.3336e+00 -1.3777e+01 -2.0938e+01 -#> -9.7569e-01 7.9474e+00 -7.8825e+00 -3.6059e+00 4.1351e+00 1.9781e+00 -#> 4.8112e+00 -4.8876e+00 -1.4709e+00 4.2883e+00 2.9530e+00 1.8854e+00 -#> -1.3174e-01 -6.2074e+00 4.1328e+00 6.5042e+00 -9.7857e+00 6.5055e-01 -#> -3.8156e+00 -1.3507e+01 1.6801e+00 2.0514e+00 5.6115e+00 3.8388e+00 -#> -6.6274e+00 -7.6941e+00 1.3906e+00 -8.0568e+00 2.6097e+00 -1.2881e+00 -#> 6.0680e-01 -3.7622e+00 1.9647e+00 1.7416e+01 -1.8234e+01 -1.8430e+00 -#> -4.6856e+00 -4.4744e+00 3.9488e+00 9.2486e+00 5.6437e+00 1.2768e+01 -#> 5.5231e+00 -5.7111e+00 9.3682e-01 5.9836e+00 -9.2493e+00 3.0670e+00 -#> 9.8058e+00 -2.6402e+00 1.1336e+01 6.2685e+00 -2.6886e+00 7.6441e+00 -#> 5.9363e+00 -6.5192e+00 7.8321e-01 -4.0427e-01 -1.3133e+00 3.0544e+00 -#> -6.3091e+00 1.0040e+01 -1.2751e+01 -1.1534e+01 -5.8298e+00 2.7647e+00 -#> -7.4592e+00 9.4103e+00 1.4476e-01 5.4149e+00 6.6634e+00 1.8745e+01 -#> 2.3166e+00 -2.2831e+00 2.4495e+00 -1.4437e+01 -4.8693e+00 4.2169e+00 -#> -2.0170e+01 -3.3310e+00 -8.3002e+00 -5.6621e+00 2.9494e+00 1.0479e+01 -#> -1.6103e+01 2.7127e+00 1.2102e+01 1.2768e+01 1.7274e+01 -4.4694e+00 -#> -8.0425e+00 1.6162e+01 -6.0518e-02 1.0420e+01 4.4894e+00 6.6914e+00 -#> -#> Columns 31 to 36 3.6761e+00 1.0637e+01 1.4562e+01 5.9846e+00 4.0722e+00 9.0006e+00 -#> -5.1966e+00 1.5071e+01 -3.9094e+00 -8.8287e+00 1.9831e+01 1.1739e+01 -#> -1.7767e+00 5.8233e+00 -7.6486e+00 4.5091e+00 7.6294e+00 -5.1123e+00 -#> -6.5812e-01 5.4449e+00 9.8120e+00 3.2020e+00 -5.4120e+00 8.7914e+00 -#> -1.8320e+00 2.6157e+00 2.6970e+00 -2.7039e+00 -6.0996e+00 -3.1244e+00 -#> -3.5625e+00 -4.4053e+00 -2.8956e+00 1.3660e+01 -5.8036e-01 1.0343e+00 -#> -8.0378e+00 -1.0343e+01 1.2668e+01 3.7481e+00 -5.9861e+00 1.0574e+01 -#> -5.5252e+00 6.8272e+00 -8.0569e-01 4.2449e+00 7.8909e+00 1.2782e+01 -#> -5.3252e+00 7.3852e+00 -6.1989e+00 8.6960e+00 2.6933e+00 -1.5599e+01 -#> 1.6819e+01 -2.1453e-01 1.8835e+01 4.1777e+00 5.2485e+00 1.8756e+01 -#> 1.0849e+01 -3.0162e+00 -1.2584e+01 -1.1527e+00 1.0408e+01 -3.3177e+00 -#> 6.6933e-01 6.6165e+00 -7.3807e-01 7.7241e-01 7.5175e+00 8.1878e+00 -#> -2.0470e+00 1.7072e+01 1.0649e+01 -1.3827e+01 -7.3002e+00 7.4366e+00 -#> -1.2941e+01 -1.1538e+01 7.9025e+00 -1.5590e+00 4.0351e+00 4.5150e+00 -#> 1.2127e+01 9.3004e-01 -7.7179e+00 8.3346e+00 -8.8323e-01 3.2883e+00 -#> 1.3323e+01 4.5492e+00 4.5777e+00 3.5815e+00 -6.6529e-01 -8.3083e-01 -#> 6.3809e+00 -1.5644e+01 1.8017e+00 -5.0205e+00 4.5602e+00 1.4026e+01 -#> -1.9529e+00 7.3174e+00 -2.8223e+00 8.9153e-01 -5.3674e+00 3.2901e+00 -#> -1.2805e+01 2.5653e+00 -2.9729e-01 8.0468e+00 -4.1089e+00 1.0789e+01 -#> -8.7715e-01 1.3078e+00 -1.4629e+01 8.8644e+00 1.8758e+01 -1.1461e+01 -#> 8.1886e+00 7.9778e+00 1.5112e+01 -6.0972e+00 -7.2719e+00 5.6152e+00 -#> -1.0019e+01 -2.1547e+00 6.7985e+00 -1.1222e+00 3.7693e+00 -3.7409e+00 -#> -1.3928e+01 1.2986e+00 -1.6339e+00 2.8692e+00 -1.0651e+01 1.3526e+01 -#> -6.4898e+00 6.9418e+00 1.5826e+01 1.5640e+01 -1.0684e+01 -6.8203e+00 -#> 1.0347e+01 -1.3085e+01 -1.5079e+01 2.2178e+01 -1.2524e+01 -2.0429e+01 -#> 1.3768e+01 6.9692e+00 -7.8130e+00 3.4595e+00 6.7786e+00 1.5439e-01 -#> 1.0279e+01 -7.5763e+00 -6.7798e+00 -5.3758e-01 3.0871e+00 -5.8363e+00 -#> -6.6974e+00 9.5524e+00 -5.5794e+00 4.1938e-01 1.8463e+00 4.4021e+00 -#> 3.0242e+00 -1.3227e+01 6.3768e+00 -3.2215e+00 2.1403e+00 1.8556e+00 -#> 1.7823e+01 5.1552e+00 3.1660e+00 1.7945e+00 -2.3683e+01 9.8308e-01 -#> -1.4320e+01 -3.1440e-01 -9.9361e-01 -8.1371e+00 8.5137e+00 -2.5419e+00 -#> 1.5456e+01 -1.1247e+01 9.6495e+00 -1.7449e+01 1.5162e+00 3.9664e+00 -#> -4.0748e+00 1.2323e+01 1.0367e+01 1.8966e+00 -6.5433e-01 9.7306e-01 -#> -#> Columns 37 to 42 6.3193e+00 4.1580e-01 -5.5026e+00 -5.2077e+00 3.8273e+00 -1.7859e+01 -#> 6.0152e+00 4.8147e+00 -3.1357e+00 -1.1225e+01 4.4666e-02 -2.4823e+00 -#> 1.6241e+01 -1.2788e+01 -7.8586e+00 4.2744e+00 8.6902e-01 1.9180e+00 -#> 4.2309e+00 -1.2683e+00 1.1844e+00 5.9364e-01 1.2986e+00 7.0099e+00 -#> 1.8031e+01 -1.3735e+01 3.0254e+00 -6.7109e+00 -8.0463e+00 4.5866e+00 -#> 1.2389e+01 -1.3599e+00 -1.3221e+01 -1.2302e+01 -1.9856e+01 4.3722e+00 -#> -2.8307e+00 1.1498e+01 3.3417e+00 -2.7400e+00 -1.3726e+01 8.2211e+00 -#> 1.5877e-01 1.0815e+01 2.8379e+00 4.1172e+00 1.7293e+00 -2.6715e+01 -#> 5.9303e+00 1.5277e+01 -1.0294e+01 1.1066e+01 2.9799e+00 4.0886e+00 -#> 9.0479e+00 9.2719e+00 1.0262e+01 -6.9908e+00 7.9677e+00 -3.2507e+00 -#> 5.7520e+00 8.5322e+00 8.9157e+00 4.7481e+00 -7.1603e+00 -1.1803e+01 -#> -2.4535e+00 2.2372e+00 4.7389e-01 -2.4764e-01 6.1815e+00 -6.0736e-01 -#> 2.7749e+00 9.9736e+00 8.4133e-01 -1.1915e+00 1.6670e+01 5.8009e+00 -#> -1.0435e+01 1.1925e+01 6.6147e+00 -1.0507e+01 -2.8868e+00 5.8958e+00 -#> 4.8700e+00 -1.6851e+01 1.1281e+01 3.3564e+00 9.3250e+00 -8.3811e+00 -#> 4.7449e+00 -6.5033e+00 -9.0380e+00 -7.3736e+00 -1.5892e+00 5.9191e-02 -#> -1.1771e+00 7.8254e-01 -4.0813e-01 -2.0650e+00 -2.8252e+01 2.5435e+00 -#> -8.5939e+00 1.0028e+00 5.0527e+00 -2.2370e+00 7.3478e+00 -1.6387e-01 -#> -3.6050e+00 1.1006e+01 2.0796e+01 -8.6269e+00 9.8430e+00 1.6179e+00 -#> -2.2736e+00 -2.3937e+00 -1.7850e+00 1.6858e+00 3.9957e+00 -1.4926e+01 -#> -6.3791e-01 8.6191e-01 1.3340e+01 -8.5667e+00 -2.6413e+00 -1.2077e+00 -#> -1.3345e+00 9.3251e+00 -1.2439e+01 2.0178e+00 3.7639e+00 -8.5700e+00 -#> 4.7723e+00 -2.5637e-02 -4.7521e+00 -6.5413e+00 -1.6969e+01 7.9883e+00 -#> -1.3204e+01 4.1165e+00 -1.6554e+01 8.3988e+00 -7.9562e+00 -3.6346e+00 -#> 4.0281e+00 -1.1415e+01 -1.5121e+01 1.3674e+01 9.2672e-01 7.8058e+00 -#> -6.4940e+00 3.4464e+00 4.2818e+00 1.0922e+01 1.1316e+00 -3.7089e+00 -#> 5.0213e+00 9.4807e-01 -2.1677e+00 5.5849e+00 1.1946e+01 1.0366e+01 -#> 1.1274e+00 5.3332e+00 1.5231e+00 1.3328e+01 -1.3047e+01 8.8516e+00 -#> -3.4887e+00 -7.2093e+00 1.3508e+01 3.4285e+00 -2.4273e+00 -2.3980e+00 -#> 1.1403e+01 -1.4971e+01 2.1474e+00 2.2323e+00 5.8092e+00 5.7479e+00 -#> -3.5859e+00 1.2391e+01 -3.6762e+00 5.5437e+00 -1.0012e+01 -1.2154e+01 -#> 6.0459e+00 -9.5193e+00 1.4791e+01 -2.6113e+01 7.2202e+00 6.5619e+00 -#> -3.8888e-01 8.4880e-01 -5.9651e+00 -1.3199e+01 1.5273e-01 -1.0037e+01 -#> -#> Columns 43 to 48 1.2266e+01 -2.8834e+01 -8.0280e+00 -2.0428e+00 -4.9001e+00 9.2407e-01 -#> 9.0277e+00 1.7013e+00 5.1573e+00 -5.6153e+00 2.1339e+00 -2.9950e+00 -#> 7.0761e+00 1.5237e-02 -1.3783e+01 -5.3301e-01 3.7376e+00 1.3496e+01 -#> -1.1369e+01 -1.5329e+01 -7.7484e+00 5.5542e+00 1.0380e+01 5.9031e+00 -#> 1.7468e+00 -3.4204e-01 7.3675e+00 4.2309e+00 6.3147e+00 4.0213e+00 -#> 1.1571e+01 1.5676e+01 -6.5670e+00 6.0116e+00 -9.0544e+00 -1.0544e+01 -#> -8.3220e+00 -1.5512e-01 1.5130e+01 -5.3928e+00 -4.0473e+00 1.3477e+00 -#> -1.3731e+01 -9.9624e+00 1.8703e+00 -3.4599e+00 -1.0661e+01 6.7202e+00 -#> 9.7868e+00 -5.0907e+00 -1.8674e+01 2.8963e+00 2.7677e+00 1.6540e+01 -#> -2.8286e+00 2.6729e+00 -7.6072e+00 9.1315e+00 -3.8775e+00 -7.6609e+00 -#> 1.5656e+00 -6.6805e+00 9.2606e+00 1.1768e+01 -1.4334e+01 2.7171e+00 -#> -7.4580e-01 -3.4155e+00 -4.1006e+00 8.6670e+00 9.1879e-01 -1.4253e+00 -#> -4.0258e+00 -1.1773e+01 4.4728e+00 8.1287e+00 -1.2450e+01 6.1224e+00 -#> -4.0809e+00 1.3555e+01 -3.5414e+00 8.0674e+00 -5.2967e-03 6.7733e-01 -#> -8.5613e-01 8.3502e+00 4.0190e-01 6.8232e+00 1.3272e+01 -1.0222e+01 -#> 6.6294e+00 3.8793e+00 6.6421e+00 -3.5255e+00 1.1354e+00 -1.6485e+01 -#> -1.1456e+01 -6.4231e+00 -6.0706e+00 -1.6325e+00 -9.0896e+00 -3.1131e+00 -#> 6.9775e+00 -1.0652e+01 6.8487e+00 -4.7825e+00 9.5261e+00 5.9431e+00 -#> -5.6337e+00 2.5851e+00 -1.9914e+01 -2.2390e+00 -8.6217e+00 -3.2185e+00 -#> -3.1673e+00 -7.3470e+00 -8.4587e-01 1.4544e+01 4.8756e+00 -1.0150e+01 -#> -1.8867e+01 1.3802e-01 2.3707e+00 -4.2196e+00 5.3611e+00 -7.3660e+00 -#> -1.3701e+00 4.8789e-01 8.8058e+00 -1.4194e+01 5.8139e+00 -2.0546e+00 -#> -1.4534e+01 3.2997e-04 8.3650e+00 4.9874e+00 -1.5715e+00 -2.5045e+00 -#> 7.4516e+00 -1.2611e+01 3.1515e-01 -3.5712e+00 -2.8321e+00 -1.1929e+01 -#> 1.7093e+01 -5.9745e+00 2.7888e+00 1.9365e+00 1.1775e+01 -1.8040e+01 -#> 2.6475e+00 1.1220e+01 -6.5698e+00 4.0266e+00 -2.2043e+00 3.9965e-01 -#> -8.9387e+00 1.1510e+01 -1.3995e+01 6.5618e+00 -8.3189e+00 2.2141e+00 -#> -4.2109e+00 -1.1936e+01 -7.9612e+00 5.2782e+00 5.8308e+00 1.4404e+01 -#> -3.3679e+00 -5.2825e+00 9.1787e+00 -1.5533e+01 2.4056e+00 -6.0696e+00 -#> 1.0202e+01 -1.0092e+01 1.2604e+00 6.0711e+00 -6.1118e+00 -7.1285e+00 -#> 6.6391e+00 -1.0309e+01 9.7536e+00 9.0842e+00 -5.4748e+00 6.3011e+00 -#> -1.3415e+01 3.2043e+00 -8.2222e+00 -7.4362e+00 7.4519e-01 1.9304e+00 -#> -3.7220e+00 -4.5726e+00 -2.2351e+00 -1.9753e+00 -1.2845e+00 -7.2767e+00 -#> -#> Columns 49 to 54 -7.8283e+00 7.6700e+00 -6.4372e+00 6.7907e-01 7.5293e+00 -2.7664e+00 -#> 6.8952e+00 -1.7029e+00 -1.9042e-01 3.6731e+00 2.5942e-01 4.6866e+00 -#> -1.9880e+00 5.6396e+00 -7.6415e+00 -3.5026e+00 -3.4724e-01 4.2378e+00 -#> -2.9653e+00 3.0887e+00 4.5493e+00 -7.4611e+00 -1.0166e+01 9.6342e+00 -#> 6.3533e+00 -2.0191e+00 -3.0445e-01 6.5535e-01 6.8669e+00 2.7846e+00 -#> -3.0310e+00 1.6618e+01 -1.5621e+01 -2.1432e+00 7.1358e+00 5.5269e+00 -#> 5.7609e+00 -4.8679e+00 7.3759e+00 -9.2898e-01 2.1645e+00 8.0198e-01 -#> -1.5698e+00 9.1562e-01 4.2051e+00 -5.0667e+00 -6.5677e-02 -1.8864e+00 -#> -1.6002e+01 4.7873e+00 -2.8521e+00 -6.0687e+00 -2.3322e+00 8.8416e-01 -#> 1.2803e+01 2.7640e+00 4.7702e+00 -3.9992e+00 -2.7644e+00 5.7228e+00 -#> 1.3082e+00 4.6939e+00 -4.8850e+00 1.8737e+00 7.4326e+00 -8.6145e+00 -#> 1.6210e+00 -7.7442e+00 7.6699e-01 3.9052e+00 -7.2906e-01 8.8425e+00 -#> -3.1784e+00 1.6128e+01 7.4539e+00 -7.2732e+00 -2.3566e+00 -4.6841e-01 -#> 1.8711e+01 -2.0399e+01 -1.7557e+00 -6.4544e+00 7.8731e-01 -3.3787e+00 -#> -3.0505e-01 1.3782e+00 -2.6054e-01 2.7923e+00 -9.2549e-01 1.0817e+01 -#> 1.4942e+00 7.8411e+00 1.3749e+00 -8.3084e+00 -1.3907e-01 7.3425e+00 -#> 3.9848e+00 -4.5565e+00 -1.3949e+01 4.5808e-01 4.6363e+00 -5.0544e-02 -#> 4.7378e-01 2.4725e+00 8.0652e-01 8.6825e+00 3.1991e-01 -3.7330e+00 -#> 2.5099e+00 -7.2661e+00 4.7621e+00 3.0879e+00 -5.1366e+00 -1.6244e+00 -#> -1.0469e+01 7.9192e+00 2.0401e+00 -1.2957e+01 3.4234e+00 -2.3505e+00 -#> 6.6999e+00 7.5522e+00 -2.8123e+00 -3.0786e+00 -1.0235e+01 -2.7743e+00 -#> -1.6822e+01 -1.2617e+01 9.4496e-01 2.7541e+00 1.7316e+00 6.2106e+00 -#> 1.0395e+01 -2.0956e+00 -1.2255e+01 -4.5416e-01 -3.9487e+00 4.3195e+00 -#> 4.6914e+00 3.1649e+00 4.1611e+00 6.1286e+00 5.0255e+00 7.1065e+00 -#> 7.5021e+00 6.8406e+00 -9.6136e+00 1.7223e+01 -1.3089e+01 -3.5942e+00 -#> -5.5354e+00 -5.7653e+00 4.2610e+00 2.9217e+00 7.4059e+00 1.9449e+00 -#> -3.5394e+00 8.6149e+00 -2.3641e+00 -5.7500e+00 1.5863e+00 -2.8873e+00 -#> -1.4569e+01 4.0575e+00 -9.7085e+00 -3.8323e+00 -1.4526e+01 -3.2623e+00 -#> 4.0992e+00 -5.9664e+00 -5.2388e+00 7.7750e-01 -5.2460e+00 1.2358e+00 -#> 6.7283e+00 -1.1768e+01 4.6034e+00 1.5952e+01 1.1168e+00 -9.1776e-01 -#> -3.8493e+00 -2.4761e+00 5.4825e-01 -8.8532e+00 1.0645e+00 9.2228e+00 -#> 1.3682e+00 -4.5516e+00 8.4050e-01 9.9312e-01 -2.7629e+00 3.6249e+00 -#> 1.8553e+01 3.0052e-01 3.0743e+00 -8.5578e+00 2.4675e+00 -3.0139e+00 -#> -#> (10,.,.) = -#> Columns 1 to 8 4.1819 -2.7002 -18.1760 -1.1440 -2.9460 6.0683 -1.4644 -8.8791 -#> -5.2517 -2.8884 -7.8021 1.1429 1.3565 18.4330 21.5672 -6.8964 -#> 7.6318 -6.9620 8.9294 -8.1504 -0.3623 0.9137 4.5002 -3.5007 -#> -5.7043 -0.1398 -5.9344 14.1726 4.8862 3.5814 5.0882 -6.4967 -#> -0.8601 -6.4114 11.4836 -7.3367 -7.5688 7.5060 -5.5756 -1.5425 -#> -8.2925 -6.0803 6.6156 -13.9416 1.9437 3.9939 1.1387 7.1872 -#> 2.5452 2.3789 -6.3848 1.8546 1.7084 -12.1336 -3.9954 13.7758 -#> -1.8303 3.3219 5.7164 -3.2491 -1.4877 9.1777 8.8536 5.8444 -#> 8.2554 5.8091 -6.1897 -8.2495 1.8647 -10.6258 -0.8845 -2.1385 -#> 1.7795 7.0254 -9.9362 6.2154 -3.4837 -0.7500 20.6577 2.2969 -#> 2.0167 -1.8900 0.5460 -1.2813 -1.4822 -3.7381 -4.6472 6.2117 -#> -2.2446 -0.4886 -4.3657 6.1555 -10.2198 4.8470 -7.4376 -2.0771 -#> -5.2713 -1.6133 -1.1467 -4.1871 5.4227 9.1644 -3.4754 -5.3385 -#> 0.3023 11.8181 1.3283 -12.7279 -7.5569 10.1936 6.1990 11.6441 -#> -3.3104 3.9960 -2.4172 2.2504 -7.6548 -12.2355 10.1682 7.0920 -#> -6.2455 -2.9252 1.0112 10.4484 1.2471 -0.9377 -12.7561 -5.3247 -#> -3.9030 -9.2627 1.0247 1.9701 -8.9632 0.5715 2.5766 1.9814 -#> -2.1366 5.8496 -6.1677 8.8440 -5.9129 0.9059 -8.7046 -2.5762 -#> 5.2249 5.9455 -8.3770 -7.0487 1.7812 -7.4599 0.4756 18.2719 -#> 2.1648 -0.6042 5.4310 -3.9076 1.8279 3.3609 8.3237 4.8889 -#> -3.8500 8.1186 3.1748 0.4045 -3.5455 1.0117 -5.7007 -7.4015 -#> 2.6253 10.7632 -3.3398 4.9756 -20.4394 3.7262 11.1934 17.5135 -#> -0.7312 4.0369 6.8090 3.6341 -0.8025 1.7529 -4.8715 10.0601 -#> -1.1232 -2.8163 -2.6153 0.1292 -13.4160 3.9119 -7.7021 10.4302 -#> 2.2927 -2.3197 3.5505 8.4843 7.7590 6.3685 -6.6163 -17.7623 -#> 2.3017 5.6381 0.4991 -10.5783 -4.1324 -13.1374 5.4518 6.6804 -#> -2.0478 -7.5091 11.3796 -7.9909 10.7743 -3.7296 -2.3580 -15.9901 -#> 4.0426 -9.7816 8.3604 2.4883 8.6378 9.9463 -3.2728 -0.6286 -#> 1.2885 -0.2170 12.5709 1.1797 -8.4373 -3.5454 -11.9339 -8.7778 -#> 5.4442 1.5278 -9.7229 1.7396 11.1748 -4.8533 -4.4837 -3.0608 -#> 3.1077 -2.4470 7.1603 5.6823 -21.7576 0.4642 -6.7589 10.2302 -#> -4.3704 2.2297 0.9107 -17.3731 2.7938 -0.4466 -1.6011 1.0906 -#> -1.2622 -2.4540 -1.1643 -8.5674 9.3976 2.6191 -14.8639 1.3717 -#> -#> Columns 9 to 16 1.8556 0.0946 0.1899 11.7107 -5.4183 11.5789 9.7279 -2.8268 -#> -3.3962 4.7751 -14.7356 11.8734 2.1015 2.1329 2.1923 3.2486 -#> 1.4306 0.3409 -9.0292 -0.4911 -3.6641 -0.5287 18.8181 -1.0346 -#> -9.8678 -5.0219 15.4837 -13.4747 -5.8500 17.1277 -0.1490 2.6720 -#> -6.8133 -7.6474 5.9233 -0.4694 -1.0901 -7.4239 10.4323 3.4986 -#> -5.5519 -0.0618 11.3379 8.0623 -3.5955 1.7862 7.5723 2.4541 -#> 1.3072 0.6549 6.0913 -18.9477 1.6956 7.7507 1.1176 -0.0589 -#> 6.1180 3.5580 2.0954 3.3366 4.7224 -3.3512 9.1941 -3.5992 -#> -8.3560 -4.7540 1.6382 -13.4815 3.3727 -1.9814 -0.0188 -3.9449 -#> 4.9662 -12.4013 19.1299 -15.2008 8.3711 3.6924 4.5674 -2.7297 -#> 0.6927 -5.4917 -5.8683 -2.1278 -9.2548 -8.4762 9.8112 -6.1467 -#> 0.5953 -0.1684 -3.7758 -3.3063 3.1845 -12.9019 -5.7863 -2.8776 -#> -9.7528 18.2416 19.8239 8.8325 -16.4710 -13.3338 4.2949 7.3125 -#> -3.6096 -7.3529 4.0815 -0.1361 4.7710 -6.8037 -22.0151 11.4496 -#> 13.0295 -16.0956 20.0523 0.4107 -3.8567 6.1604 -10.1262 -17.2949 -#> 3.1475 -0.2741 12.1048 17.4119 4.1416 -7.9165 10.1866 7.0605 -#> 7.9490 6.5653 -0.1566 6.7108 8.9105 4.9730 -11.4455 1.9475 -#> -7.0497 -1.4302 -0.2031 -0.7717 10.2553 -5.8846 -12.2485 5.1642 -#> -1.4445 -1.0975 4.7951 -10.3304 3.8726 -11.5951 18.1794 -1.8722 -#> -3.5374 1.9384 7.5930 -1.7373 -1.3728 0.1740 9.8508 -17.4885 -#> 5.2514 1.7544 7.5342 21.3597 2.5470 -13.2217 -2.4640 15.8839 -#> 15.8121 1.9745 -12.0076 9.3390 -10.4766 -11.5816 5.4715 15.8169 -#> 2.7863 4.0846 3.5614 11.5852 13.7292 -3.9139 -1.5637 -4.1002 -#> -8.6593 5.3422 -7.6377 -6.7198 2.7386 -2.0494 -7.7664 1.0160 -#> -7.9545 11.3175 5.0165 2.6514 -4.5948 4.2351 -5.6257 -0.6661 -#> 2.0352 8.5044 -11.0207 3.9361 -3.1783 -5.0761 -10.5843 -6.2035 -#> -9.2982 3.4657 -8.0456 1.1406 -5.7957 -0.0046 -2.1324 8.1229 -#> -16.6553 10.8810 -0.9489 13.3421 -8.0725 9.1832 -4.2330 7.3050 -#> -8.2410 7.6877 4.3861 -15.3545 -0.3129 0.7203 1.5005 6.7024 -#> -6.5903 -1.3819 -6.9875 -4.7477 4.7515 0.0780 -13.0780 -12.4752 -#> 0.5467 0.2573 -11.7447 11.3582 0.7454 -11.0607 -4.9295 6.2202 -#> 0.9685 0.8027 11.2603 1.4244 -10.0601 -9.5701 14.1312 11.6304 -#> -11.8415 2.6648 0.9239 -9.2368 -4.5917 12.4541 8.8730 4.3792 -#> -#> Columns 17 to 24 17.7241 16.4431 -4.4976 4.1706 -12.8776 -15.2067 -10.9706 4.8594 -#> -2.4854 4.0536 0.9395 0.8457 -2.1911 -0.2284 2.7090 -5.2006 -#> -1.5690 2.2409 15.2344 2.3106 -15.5675 4.6727 -18.2378 -8.5262 -#> -19.8752 9.8127 -10.5200 8.9852 -14.8782 -3.1370 4.1668 -10.8551 -#> -3.6712 -12.0466 7.5911 7.8817 -14.2461 -1.8762 6.1248 -4.2913 -#> 7.4452 -0.9572 -3.7197 1.3354 6.7883 -13.2608 -13.4355 14.7262 -#> 10.5368 -0.6395 15.0316 7.2175 -6.9461 -20.6147 1.1905 13.3449 -#> 9.9587 17.1341 -11.5921 -1.7717 -12.4661 6.2366 -9.3802 -1.1792 -#> 0.3752 8.5826 -13.2740 -0.0306 13.3570 17.4113 -12.8242 9.3084 -#> -11.8180 9.5951 6.7905 12.8367 -8.0408 -15.6782 6.5608 -18.7112 -#> 22.3179 -7.4422 1.5256 11.6816 5.9146 -10.3219 -3.7901 7.5836 -#> 3.8820 -7.6058 8.6871 -4.0585 8.9200 -4.1044 -1.5731 -3.6648 -#> -1.7718 -1.6068 -6.4439 11.8292 -2.6022 -16.4736 -11.8727 11.3917 -#> -17.9264 -4.7390 6.3397 -8.9043 8.8302 -16.6837 2.7382 -14.5637 -#> -1.9014 7.9378 1.7300 0.9099 -7.4772 -0.5940 -6.2970 -17.5786 -#> 1.4715 -0.3907 -9.3192 10.1859 11.9984 -14.9277 12.3849 17.7064 -#> 2.3705 -17.2180 4.6233 4.2500 -4.6967 -11.6569 -5.3638 -11.5411 -#> -1.3751 12.4701 -7.0619 4.3700 -0.2691 -0.2517 6.5075 2.4046 -#> 9.9320 -0.5399 3.7089 -8.3076 4.6503 -6.4728 -24.8052 24.1327 -#> 1.9584 7.0046 1.5319 -5.6831 -14.7582 1.4350 -3.2149 16.2855 -#> 12.0401 -0.7776 3.8262 -6.7161 0.6593 2.0989 -4.3371 12.7094 -#> -19.7485 3.2476 -10.9042 14.1623 8.4786 7.8983 0.4614 -12.9178 -#> -7.0698 1.4244 -11.8563 1.1273 15.1136 10.7658 2.1623 -7.2914 -#> 4.7051 3.1767 -8.4571 -4.8364 14.5448 8.8465 -1.5965 9.6834 -#> -4.4673 -7.8511 0.8354 5.9707 3.3181 12.2863 11.1134 -10.8450 -#> -7.2237 0.3425 17.3627 -14.8729 2.3539 -13.4249 3.3829 4.3209 -#> 1.4075 -4.3673 1.7913 -1.9425 10.2997 -7.9903 1.3192 5.3896 -#> 19.7331 -9.6629 -7.2495 -9.8141 5.0245 8.9532 -18.5641 8.1088 -#> -7.1797 -1.4011 -7.3396 2.2222 -7.3143 7.9236 2.3504 -12.2137 -#> 6.8541 2.4263 0.0412 8.6535 -3.8287 4.7261 8.2146 -1.9722 -#> 0.9613 2.0930 -8.1847 8.7364 11.5909 4.4428 -15.8480 2.7165 -#> -14.3310 3.1957 13.1065 11.7513 -4.6397 4.3785 -23.1525 2.6458 -#> 8.8166 9.1156 0.1519 -5.9758 6.7014 -3.0737 -10.1020 1.6576 -#> -#> Columns 25 to 32 10.5292 -3.9645 12.8190 2.1494 10.7930 11.1448 9.9790 12.4497 -#> 11.4912 12.2822 -0.5843 -8.5035 -10.4811 7.8215 5.3842 1.7837 -#> 9.6353 14.6377 3.8013 14.2778 -5.8059 19.4480 -11.1792 9.9659 -#> 1.2615 -12.5058 -1.1939 -1.1402 -15.7723 5.3684 1.1663 -5.7907 -#> 2.3630 -5.0501 13.3084 18.5605 1.1618 8.6902 -2.5698 -1.1850 -#> -13.9340 4.3304 5.8433 -7.3367 4.6003 -6.4036 4.8493 5.0689 -#> -1.3893 14.5972 16.2413 14.9188 -0.5374 -7.7302 -0.7117 -2.1723 -#> 1.4423 2.1201 1.2344 -0.5692 14.9963 3.6928 -3.9090 0.6049 -#> 0.7095 -7.0357 -2.1930 -3.7832 -5.9221 -8.0483 -6.4077 2.4676 -#> -1.5388 0.4704 12.8991 -6.0182 14.1894 -0.9701 9.0996 -16.5178 -#> -10.3212 -10.7765 4.8461 4.5388 4.3799 -10.6147 0.8329 -6.4080 -#> 7.8106 2.1017 -9.8434 -0.4331 5.9101 -3.3945 -2.3179 -2.2783 -#> -13.8799 0.6262 -4.3279 3.8890 -3.8753 -8.0789 -0.7328 -4.0891 -#> 14.3206 7.7849 3.6460 -4.0085 -7.5287 -11.1466 4.8729 -11.5882 -#> -0.0881 -2.9461 2.1459 11.0899 3.5483 -0.2515 2.0340 1.7700 -#> 9.2189 -13.4063 -2.4231 3.0836 5.5822 2.4684 2.2476 1.8075 -#> -2.4374 2.6486 -5.4516 1.9154 5.0113 -13.6252 9.9636 -11.3138 -#> 2.4418 -4.0569 -8.3882 -19.7733 -2.0071 4.8646 2.7268 6.5430 -#> -5.4768 -4.4051 17.2406 1.0203 7.2529 -12.8022 1.9017 4.4126 -#> 5.6344 7.9751 3.8124 -4.3246 6.1148 15.3043 -18.8127 10.1895 -#> 1.9013 4.9514 4.0854 -3.0271 19.8358 -0.8026 14.0764 -0.8553 -#> -2.2414 -11.0523 18.3026 -1.5447 0.4390 -9.4300 0.1453 -6.5077 -#> -12.4334 6.4966 -14.2762 13.4793 6.2123 0.7264 -8.5034 -7.8488 -#> 3.6735 -10.9852 12.3695 -3.4940 3.7098 -15.8378 -2.1686 -8.8639 -#> -6.1870 6.3384 -17.9945 4.0391 5.4411 3.9668 -13.1839 6.2893 -#> -12.5335 10.5731 -9.3001 -6.2328 -10.8204 4.7457 3.1881 6.8758 -#> -9.5590 4.8932 -1.7767 -4.7540 -8.1867 0.3086 12.7548 -12.7002 -#> 3.6840 -12.3161 -6.0951 -1.2251 4.7612 -1.1004 -1.5123 -2.2366 -#> -3.0114 -9.8084 -9.4691 0.2194 -9.6904 -13.4815 -1.6036 -6.8736 -#> -13.0158 -10.7943 -6.4755 4.5214 0.5924 -7.7346 8.6752 10.1047 -#> 7.4194 -13.7749 5.0595 5.8050 5.8419 -0.0406 9.7345 -1.6591 -#> -12.7815 0.2335 2.2811 -2.3682 -7.0829 -12.3729 -3.2147 1.8516 -#> 8.9504 -2.9962 8.6639 -3.1886 -5.3588 5.4321 -9.9454 -5.3727 -#> -#> Columns 33 to 40 -2.6904 -3.1793 -3.9982 2.2110 -15.0660 -7.8316 -4.5374 -3.6815 -#> 6.3429 -0.5526 -12.4770 10.9454 10.4932 2.0863 7.1767 -15.6242 -#> 9.9699 -2.9062 -7.5707 -4.7522 -8.1896 -2.9347 -0.8152 -4.8127 -#> -12.2653 11.1087 0.8183 -3.0673 5.4707 -7.3395 8.2259 0.0790 -#> 10.7333 11.7357 -0.5174 -2.7349 -11.8983 4.5970 4.7187 7.6155 -#> 0.8824 -0.0948 2.7482 -16.1985 -3.4809 -13.0749 -5.6538 1.3078 -#> -4.6005 10.9233 -8.3767 -23.2996 -9.9544 4.9645 6.6196 -1.6382 -#> -4.8016 1.2827 2.5463 -9.7602 -11.3491 -6.9045 8.6490 -3.3517 -#> 10.8844 -4.3575 4.9099 25.9703 -7.6978 -8.9655 -17.4221 1.0042 -#> -4.2847 2.7185 -2.9281 -5.9636 7.4574 0.7742 -1.9685 3.4123 -#> 9.2045 5.2980 15.7517 -5.8331 -15.0311 7.7835 -9.3464 -1.9853 -#> 6.4127 -4.6117 19.0878 -3.0422 -1.5535 -2.1965 -1.4020 1.2183 -#> -11.4244 7.5634 8.4587 -1.8272 3.1815 11.3702 1.6303 8.1204 -#> 1.2992 -2.9209 -2.0812 11.5782 22.2623 7.6336 -5.1908 5.6859 -#> -2.1399 3.7254 -9.4623 -7.0854 -2.7738 12.2496 1.6377 2.5113 -#> -12.5850 -4.9262 3.3072 -5.5994 4.4245 -1.8885 -0.8919 -10.0518 -#> 13.9544 -2.2759 4.0960 -12.4514 -14.1780 -0.7708 -2.8591 2.4331 -#> -0.4444 -4.2921 7.0387 6.5836 9.4148 -14.9592 4.8886 7.0435 -#> -19.0743 -3.3144 -13.8473 -2.4842 -1.5997 -0.7481 15.9668 0.6583 -#> -10.1261 -2.2332 -7.1975 -2.3450 9.0592 10.7116 -0.8987 -8.9685 -#> -11.9545 -8.5190 4.8090 13.1186 10.6559 -4.5238 -2.1798 -8.8657 -#> -1.9783 8.6018 3.2554 -16.5278 -14.0102 -3.3953 9.9409 3.1031 -#> -13.6221 -1.6317 17.8017 -13.5058 -0.0398 -20.7438 -2.9618 4.1430 -#> 0.8359 -2.0096 -1.9416 4.9894 4.1868 -2.3571 5.3722 7.2971 -#> 2.0086 -12.1338 17.6228 -10.7163 5.5852 -7.9251 1.4832 -14.7635 -#> 5.7109 5.6109 -7.2849 1.9554 5.1607 2.8878 1.7395 1.9746 -#> 1.1878 -8.7317 -0.0576 13.3530 1.2356 4.8184 -11.7238 -1.7304 -#> -5.7051 -4.8007 10.1910 18.0028 -12.7282 -13.6544 2.4402 -9.5052 -#> -2.6643 14.4130 10.9647 -9.3912 3.2169 -7.6773 -12.9542 0.5395 -#> -7.9634 -6.3668 -8.8339 3.0626 3.5328 -5.4092 6.0550 -2.6830 -#> -5.5458 1.8084 3.9153 6.7767 5.4337 -10.1347 -0.7966 9.2530 -#> 5.2944 -15.6789 16.6287 0.8781 -8.6488 12.3779 -11.0757 -2.0095 -#> -1.9817 1.1022 3.5618 -4.4506 0.1626 -8.8249 -2.2472 -2.0069 -#> -#> Columns 41 to 48 17.5704 3.3890 -14.7766 8.8433 -8.1115 18.5641 5.5488 -15.7888 -#> 1.3682 -0.3895 -13.8270 -15.9155 -4.3090 -8.9518 10.9437 -12.4455 -#> 17.5254 1.6004 1.1251 -3.3617 6.1294 14.9661 -12.5143 14.6155 -#> 2.5869 11.4185 -0.2229 -15.8317 16.1505 20.4406 -10.4021 4.9527 -#> -4.8332 2.2539 2.9690 -19.8020 -0.6848 10.3750 -3.9140 -7.7243 -#> 9.0005 -4.9784 -14.8227 -5.6539 -22.5182 3.3849 -6.7069 -9.1133 -#> -13.7044 8.7026 15.7930 -21.8754 14.5765 -6.7201 -2.8081 2.8092 -#> -8.3891 -2.3845 8.5504 12.8548 1.4612 -3.3912 -12.1353 5.9169 -#> -0.5118 0.2147 5.5487 -9.9571 7.8578 31.2956 -7.6141 6.0582 -#> -4.1179 17.5565 -1.9947 7.3969 1.8679 -1.0288 -10.8080 -6.1185 -#> -12.9663 -2.5697 12.2865 13.0955 -2.8212 -13.4418 -3.3537 11.4065 -#> 0.6306 -6.9157 -22.3353 7.5794 5.3888 -1.9895 6.8287 -15.9672 -#> -3.7175 -7.1140 -7.8213 0.2052 7.8420 23.6224 -1.2615 5.3317 -#> -2.8885 7.7248 5.9880 -12.1741 -8.5161 3.1150 20.8556 -8.3987 -#> 2.4623 2.5093 8.3615 -4.6639 6.6286 -13.4688 -6.7489 9.2497 -#> -9.4874 0.9945 5.8155 -4.5071 -3.0293 -14.6485 0.9375 -9.3388 -#> 5.6274 -2.6494 2.2440 6.4652 -6.9652 -8.7051 -4.4503 -11.7992 -#> -7.1215 -11.7251 -0.0189 -7.7000 20.6908 -9.6292 17.5161 0.8517 -#> -1.1748 16.3685 17.1124 -0.1526 9.9417 -15.2438 -2.5329 -3.7418 -#> 9.6564 9.9983 -10.8354 6.3171 5.9041 -1.7046 -10.1057 1.9377 -#> -8.3920 -5.5874 -3.4125 9.7132 11.8479 8.2080 4.9230 -10.1816 -#> 9.3801 3.2812 4.9593 2.1379 -10.3081 -8.9848 -15.6181 -5.7878 -#> 1.7352 14.5038 -3.1819 -9.0198 9.3146 9.1462 -12.0767 -4.1429 -#> -7.9687 1.5227 -10.3528 -6.1670 -12.7228 -8.4186 9.4608 -7.8613 -#> -0.3986 -0.5350 -20.1001 7.9296 2.2427 14.5613 16.7416 -7.5759 -#> -4.4657 1.9143 -2.0119 9.2431 15.5990 -9.8887 -2.0631 -5.6964 -#> -4.3807 2.3498 2.3197 2.3938 -1.6953 5.2110 4.9993 2.3942 -#> 8.3853 -10.0567 17.5188 -0.2648 6.5264 23.4170 0.1300 4.5117 -#> -16.0887 2.2805 16.1597 -5.0918 14.6784 0.1509 17.1091 10.7455 -#> -5.0488 -1.5862 3.4866 -7.5867 12.9261 1.0782 -9.2606 -10.5018 -#> 4.2590 -8.3886 12.6921 14.9392 -12.0440 -5.4093 -14.8714 9.9903 -#> 10.3134 7.1416 -2.7204 -8.9261 -3.6273 29.5756 -9.7316 12.0568 -#> -4.3794 -11.0773 10.8934 -7.9329 5.4392 -4.8761 4.0482 7.3628 -#> -#> Columns 49 to 54 -14.5902 -0.2382 4.3159 -2.6877 5.0703 2.4193 -#> -7.1263 -7.5356 -5.7498 7.8019 -0.7866 -2.3049 -#> -12.3100 -1.9089 0.3939 9.3053 -5.7823 1.2514 -#> -10.8058 5.7169 6.6433 11.4855 -1.1410 -4.5655 -#> 8.8070 5.1104 8.8327 12.1930 5.0258 5.7235 -#> -25.6938 -3.5064 -2.6577 -15.0395 -2.9256 -3.4516 -#> -6.6522 -0.1651 -11.4028 -6.1774 2.9720 -3.9651 -#> -11.4142 -13.1631 14.7867 5.8335 5.6973 0.3327 -#> -24.5765 5.7319 12.5413 -2.6588 1.5041 -1.9145 -#> 6.3423 -8.7484 -4.6776 1.1261 -4.7972 0.9373 -#> 13.7444 -5.1163 -2.2804 -7.3522 3.7646 6.7636 -#> -6.6618 -3.2632 10.3643 0.2059 -1.5956 2.7000 -#> -20.9447 4.3667 -0.4386 -11.0839 1.1866 3.1471 -#> 10.5578 -6.5905 -5.1642 6.4413 0.7218 -5.2311 -#> 1.3020 9.0326 7.8362 0.2074 -1.2691 -3.3912 -#> 0.0193 11.9974 -4.4291 -10.2958 -13.7476 -0.6264 -#> -7.6380 2.1646 -13.6631 -4.7001 5.4647 -4.1669 -#> 5.9041 4.0855 -2.6119 2.6817 6.5380 -0.4950 -#> 6.0665 3.0488 7.5467 -16.5522 1.2797 -2.5643 -#> 2.4455 -9.6235 7.8516 -1.5448 2.5017 3.9083 -#> 10.5918 10.5633 4.1331 3.3853 -0.5743 0.0424 -#> 6.7426 -6.8340 -1.2416 -1.1304 -13.0831 -2.6119 -#> -9.2593 -1.9201 -3.0986 14.1559 -0.0596 -11.1140 -#> -11.5428 2.5954 10.6733 -4.6600 -3.8252 -3.4938 -#> 1.3032 -0.2393 -5.7651 3.2347 1.5240 -3.7687 -#> 4.9202 -6.3740 -17.5235 4.7132 2.0002 -0.2020 -#> 11.3402 5.2820 -17.9162 -0.2594 -7.4186 -2.8355 -#> -19.4105 5.8406 7.7503 -7.5794 1.5874 -2.1943 -#> 1.6365 -4.2029 -6.0806 1.8311 -1.0763 0.0894 -#> 17.7446 21.0740 -0.0280 -10.0488 5.2612 4.8506 -#> -4.6811 9.2956 18.5009 -6.1713 -1.4305 0.4427 -#> -10.9019 7.2243 -14.8779 -8.3666 -7.9722 0.3536 -#> -8.8841 2.5430 -2.5944 1.4092 -9.3180 -2.0870 -#> -#> (11,.,.) = -#> Columns 1 to 6 -3.7849e+00 -5.0196e+00 2.1432e+00 1.7021e+00 2.1228e+00 -4.3782e+00 -#> 4.1938e+00 -3.9595e+00 4.0635e+00 -5.5167e+00 5.6394e+00 4.2589e+00 -#> -2.8545e+00 1.2807e+00 -6.3746e+00 -3.4508e+00 1.5402e+01 5.1446e+00 -#> 2.8870e+00 3.8449e+00 9.1714e+00 6.2121e+00 8.3932e+00 8.3983e+00 -#> -2.2077e+00 8.2990e+00 -1.5067e+00 -5.9537e+00 -1.3866e+01 -6.3206e+00 -#> -3.9909e-01 4.0141e+00 -1.2573e+01 8.3191e+00 2.9710e+00 -2.4224e+00 -#> -1.8828e+00 -2.7120e+00 4.2654e+00 -1.2382e+00 -1.4503e+00 5.6398e+00 -#> 3.4461e+00 -6.0116e+00 2.6112e+00 -4.3507e+00 -6.3859e+00 -4.9195e+00 -#> -1.6851e+00 -9.8991e+00 5.0588e+00 -2.4422e+00 6.6687e+00 1.7778e+00 -#> 4.5697e-01 -7.3823e-02 4.4258e+00 -4.7368e-01 1.0315e+00 3.9583e+00 -#> 1.1417e+00 -1.6804e+00 -2.8100e+00 -2.1802e+00 -3.9562e+00 -1.0400e+01 -#> -5.8564e-01 1.0935e+01 2.6781e+00 4.0670e+00 8.1068e-01 -3.8475e+00 -#> 4.1610e+00 -5.0571e-01 2.9245e+00 -7.9322e+00 -1.6292e+01 -3.1278e+00 -#> -1.4342e+00 -2.3585e+00 4.6606e+00 1.9605e+01 2.9582e+00 1.8324e+01 -#> -5.5404e-01 7.1800e-01 -1.4267e+01 4.0446e+00 5.6713e+00 -1.4284e+01 -#> 4.1463e+00 7.7104e+00 -1.1590e+01 -4.9941e+00 6.1806e+00 -1.0090e+01 -#> -2.4521e-01 8.6493e+00 3.0875e+00 1.5020e+00 7.0473e+00 -7.6942e-01 -#> -1.9347e+00 -1.0450e+01 3.0863e+00 2.8111e+00 1.0976e+00 1.5948e+01 -#> -2.6669e+00 -1.8782e+00 2.9217e+00 1.3300e+01 -1.6403e+00 -8.4687e+00 -#> 1.7010e+00 6.6925e-01 -2.5950e+00 1.3026e+00 8.2395e+00 4.8721e+00 -#> 2.0192e+00 2.7153e+00 2.1160e+00 -7.7253e+00 -8.3825e+00 -3.1612e+00 -#> 3.9173e+00 -6.8199e+00 1.5681e+01 8.2122e+00 2.8327e-01 -9.1162e+00 -#> 1.6034e+00 3.3712e+00 1.5284e+00 1.3668e+00 5.2616e+00 4.2150e+00 -#> 9.3535e+00 5.1441e-01 -5.8771e+00 6.4237e+00 -7.5995e+00 -1.9427e+01 -#> 1.0015e-02 5.9925e+00 -4.5338e+00 -4.7200e+00 5.7863e+00 3.5718e+00 -#> -3.8353e-01 1.7491e+00 -1.1367e+01 1.3499e+00 -7.0512e+00 1.4846e+00 -#> -6.6765e-01 6.4164e+00 -7.2331e+00 8.6983e+00 -4.7788e+00 9.2212e+00 -#> -3.8685e+00 3.6740e+00 4.8216e+00 1.3614e+01 2.4227e-01 1.1748e+00 -#> -1.2426e+00 -6.0361e+00 -5.0742e+00 -1.0331e+01 -1.2833e+01 7.2044e+00 -#> 8.5433e-01 3.0204e+00 6.8311e-01 -1.3152e+00 -1.2573e+00 1.1791e+00 -#> 1.0658e+00 -1.8278e+00 2.1841e+00 1.3825e+00 5.6781e+00 -1.4014e+01 -#> -3.4659e+00 -2.0254e-02 -6.6509e+00 -2.2007e+00 -1.0925e+01 -3.6717e+00 -#> 3.3764e+00 2.2750e+00 -8.4900e+00 7.7153e+00 -4.4704e+00 -1.6245e+00 -#> -#> Columns 7 to 12 6.0973e-01 -1.4816e+01 -1.6339e+01 -3.2286e+00 4.9790e+00 3.0585e+00 -#> 6.8249e+00 3.8479e+00 1.2093e+00 -4.8146e+00 -1.4413e+01 -2.8921e+00 -#> -1.7814e+00 6.0191e+00 -1.1324e+01 5.8392e+00 -5.0403e+00 3.6101e+00 -#> 4.6124e+00 2.8248e+00 9.4244e-01 2.1540e+00 5.7656e+00 1.0509e+01 -#> 1.6468e+00 8.3349e+00 1.0383e+01 1.0796e+01 -1.1249e+01 4.1644e+00 -#> -1.0202e+01 -1.2100e+00 -1.3321e+01 -1.6383e+01 -1.6935e+01 -4.5484e+00 -#> 8.5930e-01 -5.8933e+00 7.5169e+00 5.9695e+00 1.0066e+00 -6.7549e+00 -#> 2.3309e+00 -4.0142e+00 -2.3207e+00 -2.2595e-01 3.0484e+00 -2.7808e+00 -#> 2.0428e+00 -6.2656e+00 -7.2521e+00 -5.2489e+00 9.3829e+00 1.3080e+00 -#> -6.5883e-01 -4.0317e-01 -1.2260e+00 -1.4979e+01 2.1824e+00 2.7155e+00 -#> 7.3020e+00 9.7149e-01 -1.2680e+01 9.1245e+00 1.1231e-01 -1.4746e+01 -#> -8.0618e+00 -2.8863e+00 -1.4427e+01 -2.7446e+00 3.0282e+00 -7.5802e+00 -#> 7.9672e+00 -3.7802e+00 -5.4363e+00 7.7521e+00 -1.0090e+01 -7.8178e+00 -#> 1.2089e+01 5.3239e+00 4.9814e+00 -5.6864e+00 -3.6484e+00 -4.6010e+00 -#> -2.8823e+00 -1.1789e+01 -1.1138e+01 -1.0029e+01 1.0326e+01 -1.0063e+01 -#> -5.3812e+00 3.2276e+00 -3.6145e+00 -3.5016e+00 -4.2648e+00 -4.8598e+00 -#> -8.2244e+00 2.2045e+00 -5.3808e+00 -9.6569e+00 1.8693e+00 -3.7419e+00 -#> 4.7899e+00 4.2961e+00 -9.5148e-01 1.1050e+01 2.0492e+00 -6.1241e+00 -#> -9.6661e+00 -1.4662e+00 -1.4761e+01 4.7909e+00 9.8864e+00 5.9882e+00 -#> 1.0315e+01 -3.5138e+00 -1.0110e+01 8.8079e+00 6.5133e+00 -5.1630e+00 -#> -1.4707e+01 -1.8352e+00 8.1046e+00 3.2276e+00 5.4078e+00 1.4720e+00 -#> 4.0316e+00 -4.7272e+00 2.2854e+00 -1.0523e+01 -9.7445e-01 -2.0957e+00 -#> -8.9254e-01 4.7154e-01 -3.2894e+00 -4.5754e+00 -3.8137e+00 -7.3894e+00 -#> -2.3613e+00 -1.3534e+00 1.3022e+01 4.2130e+00 3.0146e+00 1.2287e+00 -#> 6.0422e+00 -2.9257e+00 -8.1346e+00 -5.4069e+00 -6.5148e+00 1.1687e+01 -#> -4.2277e+00 6.4720e+00 -2.5719e+00 -5.1238e+00 -6.9550e+00 -1.9845e-01 -#> -4.8493e+00 -3.1173e+00 -3.0814e+00 4.2641e-01 -2.9877e+00 4.9414e+00 -#> -6.0841e+00 -4.0842e+00 -1.1773e+01 4.2059e-01 -8.0204e+00 2.0235e-01 -#> 3.8129e+00 -5.0090e+00 8.0143e+00 7.2605e+00 -8.3539e+00 1.9997e-01 -#> -5.2110e+00 -2.1361e+00 5.1565e+00 5.2963e+00 7.4855e+00 8.4635e+00 -#> -6.7656e+00 1.0277e+01 3.9130e-01 1.8962e+00 5.5895e+00 -7.6272e+00 -#> 4.1073e+00 4.8892e+00 1.0822e+00 -4.1000e+00 -1.1186e+01 1.5630e+00 -#> 2.1621e+00 -1.8975e+00 -1.0544e+00 7.2115e+00 -5.1892e+00 1.8350e+00 -#> -#> Columns 13 to 18 1.2055e+01 -1.5823e+00 -4.0961e+00 4.4132e+00 1.6397e+01 -7.4848e+00 -#> -8.9138e+00 -1.2013e+00 8.9636e-01 -2.3079e+00 -9.8273e+00 -3.5474e+00 -#> -4.1584e+00 9.4283e+00 3.3601e+00 1.1121e+01 -2.0212e+00 -7.8219e+00 -#> -5.1769e+00 3.6503e+00 -1.1306e+01 4.6026e+00 -6.1186e+00 4.3157e+00 -#> 7.2794e-02 -3.5959e+00 -6.4562e+00 -4.8976e+00 -8.0606e+00 -6.6448e+00 -#> -2.9705e+00 -1.6580e+00 9.4389e+00 -1.0084e+00 -1.6057e+00 5.3935e+00 -#> 1.2491e+01 -4.7120e+00 -5.2667e+00 1.6226e+01 3.9891e+00 -1.4046e+01 -#> 1.3069e+01 -3.1612e+00 -9.8630e+00 -2.3612e+00 1.6367e+00 2.9848e+00 -#> 2.8621e+00 1.2066e+01 -8.5787e+00 1.0951e+01 -5.8907e+00 8.6545e+00 -#> -3.6769e+00 8.8309e+00 -4.3361e+00 -2.2998e+00 -5.8985e+00 1.7773e+00 -#> 5.7171e-01 4.1866e+00 -3.4568e+00 2.9769e-01 1.8227e+01 2.3260e+00 -#> -4.9518e+00 -4.5572e+00 -1.9396e+00 -3.8327e+00 -4.9439e+00 1.4059e+01 -#> -1.8056e+00 -1.0121e+01 -1.8802e+01 -3.8292e+00 1.4599e+01 7.9980e+00 -#> -5.1516e+00 -6.4763e-01 -1.7462e+00 -1.9015e+01 5.6483e+00 -3.0024e-01 -#> -1.0154e+01 -8.1130e+00 3.3937e+00 6.0944e-01 -1.4344e+01 9.7953e+00 -#> -4.8702e+00 2.4856e+00 7.8282e+00 3.4010e-01 -1.4870e+01 1.3035e+00 -#> -1.1545e+00 -3.1283e+00 5.7233e+00 2.2559e+00 -1.8827e+00 -2.2008e+00 -#> 2.7410e+00 -2.7028e+00 4.8085e+00 -5.9716e+00 -6.9213e+00 -6.9172e-01 -#> 1.5735e+01 4.2947e+00 -3.2594e+00 7.8355e-01 -4.0335e-01 -2.7748e-01 -#> -1.2516e+01 9.3661e-01 8.7588e+00 -1.0998e+01 -1.0668e+01 3.7740e+00 -#> 2.1174e+00 -1.1302e+01 2.5620e+00 -1.2488e+01 -3.4072e-02 1.3111e+01 -#> 1.3338e+01 -2.0520e+00 -1.5102e+01 -2.9870e+00 5.0300e+00 6.6853e+00 -#> 9.5776e-02 -1.1173e+01 -7.8260e+00 -7.9570e-01 -4.0905e+00 3.1859e+00 -#> 9.8249e+00 -8.4933e+00 6.2898e+00 1.8266e+00 4.9972e-01 1.1476e+00 -#> -3.1772e+00 5.4599e+00 9.6864e+00 -9.3830e-01 1.3744e+01 4.6697e+00 -#> -7.9928e-01 9.6497e+00 1.1326e+01 5.6546e-01 -4.4016e+00 1.2161e+01 -#> -4.6892e+00 -2.7207e+00 1.5347e+01 -1.3501e+00 1.0858e+01 -1.9357e-01 -#> 3.9911e+00 -2.1637e+00 3.5168e+00 -5.6583e+00 4.2209e+00 4.6337e+00 -#> 9.9214e+00 -7.2976e-01 1.0678e+01 1.8799e+01 1.7413e+01 -8.4330e-01 -#> 2.3533e+00 -5.9228e+00 1.3134e+01 -1.4971e+00 3.8762e+00 1.5080e+00 -#> -7.7518e-01 1.4636e+00 -7.8376e+00 -1.2756e+01 -3.8406e+00 3.6612e+00 -#> 2.5242e+00 8.6385e-01 -6.2545e+00 4.3963e+00 9.6608e+00 1.5203e+01 -#> -4.8494e+00 -6.9702e+00 4.1564e+00 4.8794e+00 1.7624e+01 -7.4009e+00 -#> -#> Columns 19 to 24 -1.1275e+01 -8.8870e+00 -1.1503e+00 -1.3656e+00 -1.4318e+00 -4.2171e+00 -#> 1.2225e+00 6.3358e+00 1.4911e+00 -9.2090e+00 2.2159e+00 -3.0175e+00 -#> -6.2561e+00 -6.9127e+00 -1.5702e+00 -1.1056e+01 3.5933e+00 -2.8720e+00 -#> -8.9248e+00 -5.0138e+00 1.0471e+01 -5.2612e+00 5.8908e+00 1.0312e+01 -#> 9.3393e+00 -1.1216e+00 -9.9527e+00 -5.3251e+00 3.2107e-01 -2.6164e+00 -#> -1.4038e+00 -2.8797e+00 3.0678e+00 1.7291e+01 -1.7825e+01 1.5292e+00 -#> -1.1628e+00 -1.6507e+00 4.8153e+00 -1.1936e+01 -1.5914e+00 -1.2476e+01 -#> 5.0162e-01 -2.5429e+00 -3.8954e+00 -1.0717e+00 -7.4392e-01 -8.1214e+00 -#> -2.0364e+00 -3.6251e+00 -1.8497e+00 4.7399e+00 1.0754e+01 -1.1310e+01 -#> -4.8160e+00 1.7677e+01 -2.3417e+00 1.8043e+00 -1.5608e+01 -3.7794e+00 -#> 1.0231e+00 9.7939e-01 -4.3045e+00 -5.1458e+00 3.6919e+00 4.1636e+00 -#> 3.0280e+00 6.1041e+00 9.0048e-01 4.3932e+00 -1.2203e+01 2.1182e+01 -#> -2.6326e+00 -5.6641e+00 6.3962e+00 8.7000e-01 1.0775e-01 1.2407e+01 -#> 9.1635e+00 2.8067e+00 2.2553e+00 2.4540e+00 5.8933e-01 1.7804e+01 -#> 3.9390e-01 1.5576e+00 2.1263e+00 3.5894e+00 7.0876e+00 1.6979e+01 -#> 2.2544e-01 4.1435e+00 1.8176e+00 3.9213e+00 -1.5278e+01 2.8989e+00 -#> -4.3914e-01 1.2226e+01 -4.4174e+00 2.6144e-01 -5.7790e+00 1.1095e+01 -#> -1.0954e+00 3.1233e+00 -4.9339e+00 -5.5239e+00 1.2868e+01 -1.3096e+00 -#> -1.7473e+01 -3.2913e+00 -9.9370e+00 1.6746e+01 -1.0182e+00 -1.9162e+01 -#> 6.0977e+00 -7.1840e+00 9.8135e+00 -1.5442e+01 4.1905e+00 4.2416e+00 -#> 8.6695e+00 -1.1826e+00 -1.3659e+01 1.9926e+00 3.4558e+00 -8.9040e+00 -#> -7.1326e+00 3.0948e+00 5.0819e+00 8.8750e-01 8.3385e+00 -1.4594e+00 -#> 1.3645e+01 5.1997e+00 3.6020e+00 -8.2307e+00 2.1137e+00 1.2046e+01 -#> -4.8727e-01 -7.2430e+00 -2.7028e+00 1.1680e+01 -7.5035e+00 -5.5648e+00 -#> 7.9166e+00 -2.5712e+00 1.0126e+01 -5.6492e-01 -1.6257e+01 8.2240e+00 -#> 1.1700e+01 1.9525e+00 -1.7176e+00 7.5046e+00 -9.1546e+00 6.5096e+00 -#> 5.9320e-01 -5.0605e+00 -1.0223e+00 1.9240e+01 -1.0675e+01 2.9595e+00 -#> 1.3353e+01 -1.2302e+01 -2.9855e+00 -1.1250e+00 5.4672e+00 -7.9218e+00 -#> -2.6932e+00 6.7082e+00 -1.1248e+01 5.8509e+00 1.2224e+01 -1.1559e+01 -#> 6.9015e+00 -6.2887e+00 1.2609e+00 3.2606e+00 -1.2129e+01 2.1034e+00 -#> 5.9783e+00 2.8002e+00 -1.0461e+00 2.0890e+00 -1.5872e+00 4.5608e+00 -#> 2.3425e+00 9.2480e+00 -1.0278e+01 8.0220e+00 -4.5289e+00 1.0035e+01 -#> 1.3217e+00 -2.8492e+00 4.2375e+00 -8.9814e+00 -8.6686e+00 -8.7894e+00 -#> -#> Columns 25 to 30 8.3360e+00 -3.7383e+00 -1.0755e+01 -4.4215e+00 -5.5599e+00 4.4972e+00 -#> 9.7614e+00 3.3047e+00 8.1004e+00 -1.7579e-01 -2.6047e+00 6.5980e+00 -#> -4.3140e+00 -9.9903e+00 3.5220e+00 -1.1364e+01 -2.4828e+00 -1.2487e+01 -#> 7.3264e-01 1.2492e+01 1.8758e-03 -1.5940e+01 -1.7799e+01 7.2498e-01 -#> -6.0802e+00 -2.9302e+00 5.6184e+00 -7.8101e+00 -3.4038e+00 3.7225e-01 -#> -3.1649e+00 -8.9998e+00 2.3312e+00 7.6182e+00 8.3816e+00 9.3550e+00 -#> -1.1552e+01 2.3792e-01 1.4321e+00 3.3447e+00 -1.7611e+01 8.7142e+00 -#> -8.7107e-01 8.1181e+00 -1.4570e+01 6.2605e+00 7.8271e+00 -4.8895e+00 -#> -2.9786e+00 -2.9680e+00 -2.1442e+00 -1.3693e+01 2.4202e+00 -1.5083e+00 -#> -3.8475e+00 -6.6983e-01 1.0256e+00 -1.1677e+01 -4.5688e+00 1.2044e+01 -#> -1.4389e+01 -1.1644e+01 -2.4801e+00 2.1499e+00 -5.2939e-01 3.5510e-01 -#> -2.3637e+00 -3.1054e+01 -6.8584e+00 9.6814e-02 1.5122e+00 9.6570e+00 -#> 4.2619e+00 5.8534e+00 -1.5839e+01 1.4565e+00 -1.7065e+00 -9.5515e+00 -#> -8.0406e+00 5.8786e+00 7.9152e+00 -6.5251e+00 -1.3515e+01 1.7494e+01 -#> -5.5358e+00 -1.6714e+01 -1.0522e+00 5.3414e+00 -1.4394e+01 7.4968e+00 -#> 5.9624e+00 7.6743e-01 4.9624e+00 9.7006e+00 -5.8005e-01 -2.2949e+00 -#> 3.7649e-01 -1.2126e+01 1.4155e+01 8.3035e+00 1.8507e+00 4.5304e+00 -#> 2.6175e+00 1.0547e+01 -5.2089e+00 -1.7335e+00 -1.1900e+01 -3.6790e-01 -#> -2.6824e+00 -1.0599e+01 1.6807e+01 1.3984e+01 1.0876e+01 1.8125e+01 -#> -6.5827e+00 -2.4784e+00 2.5894e-01 -8.1518e+00 -5.2204e+00 7.2081e+00 -#> 9.8621e+00 4.5915e-02 2.3873e-01 1.2638e+01 1.6099e+00 3.0094e+00 -#> 3.0689e+00 5.8365e+00 -1.1364e+01 3.0868e+00 1.1472e+01 -3.2644e-01 -#> 4.4706e-01 6.1634e+00 -8.9733e+00 -1.2721e+01 6.9967e-01 1.8322e+01 -#> -5.6052e+00 6.5106e+00 8.6718e+00 4.4310e+00 -9.5444e-01 -6.2647e-01 -#> 4.7944e+00 -5.0659e+00 5.1348e+00 -5.5745e+00 2.4925e+00 -1.3703e+00 -#> -1.4523e+01 -1.3315e+01 7.2122e-04 -1.1568e+01 -4.8835e+00 4.6232e+00 -#> -3.9652e+00 6.9381e+00 -4.8351e+00 -1.2155e+01 8.0029e+00 -8.4143e+00 -#> 6.9426e+00 3.5703e+00 -9.3369e+00 3.6161e+00 2.8410e+00 4.1312e+00 -#> -6.9064e+00 9.6734e+00 -1.0496e+01 -3.5655e+00 -8.3905e+00 -1.7785e+01 -#> 3.1462e-03 1.9450e+00 -5.5292e+00 2.8397e+00 -6.2833e+00 3.3583e+00 -#> -5.6672e+00 3.4510e+00 -1.5409e+00 8.8068e+00 -5.1308e+00 2.6718e+00 -#> -3.3111e+00 1.4582e+01 5.8425e+00 -1.7964e+01 6.5661e+00 -2.8826e+01 -#> -6.9143e+00 1.0431e+01 -5.4161e+00 -2.9465e+00 3.6363e+00 3.3457e+00 -#> -#> Columns 31 to 36 1.2633e-01 2.0837e+00 -1.7995e+01 -7.4558e+00 -3.4899e+00 -2.1166e+00 -#> 5.1230e+00 9.6372e+00 4.8431e+00 -4.0710e-02 -1.1583e+01 2.3542e+01 -#> 3.2173e+00 6.4572e+00 8.2509e+00 8.3110e+00 -1.1414e+01 -1.0241e+01 -#> 1.9424e+00 -8.8026e+00 1.1571e+01 6.9345e+00 2.2727e+00 1.0056e+00 -#> -7.7589e+00 -1.0472e+01 -3.7097e+00 -1.0164e+01 -3.7912e-01 -2.1021e+01 -#> 1.9517e+01 4.7494e+00 4.4957e+00 -1.0816e+00 5.4489e+00 -6.5487e+00 -#> -8.7826e+00 7.8509e-02 9.0676e+00 6.6272e+00 2.6549e+00 -1.5556e+01 -#> 9.7232e-01 1.4177e+01 7.6577e+00 1.4539e+00 -1.0341e+01 -4.9364e+00 -#> 5.9784e+00 5.7458e+00 -1.4109e+01 -5.6991e+00 9.1061e+00 1.4150e+01 -#> 1.6477e+01 -3.1146e+00 2.9849e+01 -1.8320e-01 -2.9251e+00 4.5001e-01 -#> -5.6236e-03 1.4766e+00 -6.0240e+00 9.4568e+00 -1.5395e+00 -1.5155e+01 -#> 4.9929e+00 6.7127e+00 -8.6386e+00 -4.3836e+00 -5.1465e+00 -2.8905e+00 -#> -3.2138e+00 6.1757e+00 1.0868e+01 2.0150e+01 2.3389e+00 -1.8949e+01 -#> -3.8071e+00 9.3911e+00 1.2564e+01 -9.0786e+00 4.9773e+00 9.1801e+00 -#> 6.5899e+00 -1.0259e+01 2.5031e+00 -6.8856e+00 2.3481e+00 -2.8523e-01 -#> 7.7059e+00 -3.3388e+00 -1.0783e+01 3.0331e+00 1.0327e+01 1.5650e+01 -#> 5.5370e+00 -2.3466e+00 7.0102e+00 3.5636e+00 5.4982e+00 2.2237e-01 -#> -4.8712e+00 -8.5445e-02 -6.6527e+00 1.0074e+01 -9.5377e+00 5.8579e+00 -#> 7.7541e+00 -5.7797e+00 -1.3062e+00 -1.3028e+01 1.2405e+01 7.4622e+00 -#> 7.9735e+00 1.0001e+01 -2.2889e+00 2.2752e+00 -8.3279e+00 -1.2083e+01 -#> -6.8952e+00 -8.5599e+00 -8.3242e+00 5.5835e+00 2.0972e+00 5.6569e+00 -#> 1.2612e+00 1.4267e+01 1.1097e+00 1.6704e+01 -3.4209e+00 7.5645e+00 -#> 2.4637e+00 4.9550e+00 -2.2320e+00 -6.2892e-01 5.8074e+00 2.5013e+00 -#> -1.9164e+01 -3.9155e+00 -9.6766e+00 -1.0788e+01 1.0344e+00 -4.6280e+00 -#> -5.2133e-01 -5.1429e+00 4.8088e-01 2.4318e+00 4.7498e+00 1.5048e+01 -#> 9.6296e+00 7.1187e+00 7.5106e+00 -1.4648e+01 -6.7761e+00 -9.6407e+00 -#> -6.2040e+00 -5.7022e+00 3.5299e+00 -7.0126e+00 2.2069e+01 -1.1930e+01 -#> 1.0790e+01 1.6324e+01 -2.4648e+00 8.3412e+00 1.5067e+01 2.6021e+00 -#> -5.1471e+00 -6.1570e+00 1.7403e+01 9.0279e+00 -1.1493e+01 -2.4385e-01 -#> -6.8378e+00 -2.1936e+01 -8.3022e+00 -7.4845e+00 9.9043e+00 3.4503e+00 -#> 3.5370e+00 -4.7399e+00 -9.0786e+00 -8.4300e+00 -1.1417e+01 -2.3562e-01 -#> 1.6061e+00 -6.5874e+00 6.4658e+00 -7.2971e+00 1.1293e+01 -1.7372e+01 -#> -6.1479e+00 4.7600e+00 2.8297e+00 -4.8681e+00 -5.9525e+00 -2.5531e+00 -#> -#> Columns 37 to 42 -4.1066e+00 2.3703e+00 -5.9486e-01 -4.4666e-01 1.8248e-01 -8.1558e+00 -#> 8.1020e-01 1.9982e+00 1.4639e+01 4.4896e+00 7.8410e+00 9.7412e+00 -#> -1.4223e+01 -1.3682e+01 -1.7861e+00 -6.5508e+00 8.4454e+00 7.9100e+00 -#> -1.8200e+01 1.3744e+01 -1.3529e+01 1.0235e+01 5.1733e+00 -1.4189e+01 -#> -6.4968e+00 1.8096e+01 -2.5983e+00 3.8399e+00 5.0918e+00 3.8648e+00 -#> 1.0602e+01 1.2529e+01 1.3578e+01 3.7652e+00 -2.2580e+00 -5.7485e+00 -#> -7.6017e+00 -2.7962e+00 7.1716e+00 -1.3455e-01 -1.4039e+00 -4.6689e+00 -#> 3.3376e+00 -8.9963e+00 1.1831e+01 -7.4716e+00 -5.3106e+00 4.3870e+00 -#> 7.4744e+00 -2.4187e+00 -2.0261e+00 -6.3718e+00 -6.1785e+00 -9.6643e+00 -#> -1.2513e+01 1.6945e+01 -3.6329e+00 6.4687e+00 -5.0772e+00 8.4799e+00 -#> 7.7864e+00 -1.5982e+01 9.4983e-01 4.9537e+00 3.2252e+00 7.0543e+00 -#> 1.2666e+00 -4.2042e+00 -1.7502e+00 -2.3269e+00 -1.6726e+00 -9.4753e+00 -#> 6.5305e+00 -8.1240e+00 9.4768e+00 4.4920e+00 -6.1574e+00 -5.3549e-01 -#> 2.2090e+00 4.4112e+00 -7.0229e+00 1.0717e+01 -6.2096e+00 3.4585e+00 -#> -1.1082e+01 6.0274e+00 -2.1499e+01 -3.2891e+00 2.8027e+00 -1.1171e+01 -#> -1.3268e+01 3.0344e+01 6.3035e-01 -4.0915e-01 -1.5139e-01 -1.0354e+01 -#> 6.5644e+00 7.3598e+00 -6.2678e+00 -1.0709e+00 -4.2123e+00 2.6543e+00 -#> 1.8287e+01 -1.2104e+01 3.0959e+00 6.8876e+00 -9.4723e-01 1.1671e+00 -#> -4.3596e-01 -9.0169e+00 1.3417e+01 -4.2153e+00 3.0050e+00 1.0411e-01 -#> -3.4339e+00 -1.8052e+01 -1.4217e+00 -3.8098e+00 7.3061e-01 -1.7107e+01 -#> 1.3988e+01 9.8941e+00 7.7778e+00 -1.4597e-01 -3.0472e+00 -5.8861e+00 -#> -1.7668e+01 2.0067e+00 -1.7894e+01 -7.7294e+00 -7.6481e+00 1.0407e+01 -#> 2.3894e+00 -8.2646e+00 9.7261e-01 -2.3514e+01 -1.4048e+01 -1.6880e+01 -#> -2.4144e+00 2.2946e+00 4.3116e+00 -5.1044e+00 -1.0307e+01 5.4957e+00 -#> -1.0266e+01 -6.9912e+00 2.0645e+01 -1.2542e+01 2.4918e+00 -9.1484e+00 -#> 3.8444e+00 3.6482e+00 6.9221e+00 -6.6864e+00 7.9277e-01 -6.1825e+00 -#> -7.1886e-01 -1.9885e+00 -8.9606e+00 1.2146e+01 -6.4248e-01 -6.7472e+00 -#> -5.4758e+00 -1.1466e+01 -2.0698e+00 1.4037e+01 9.3900e+00 4.5658e+00 -#> 5.3529e+00 -4.9850e+00 4.7814e+00 1.0499e+01 -1.3354e+01 1.0404e+01 -#> -1.2554e+01 -6.0901e-01 -4.0208e+00 -2.2119e+01 5.2214e+00 -1.0635e-01 -#> -4.0157e+00 5.0545e-04 -4.0805e-01 -6.4190e+00 -9.8647e+00 7.2780e+00 -#> -3.5262e+00 1.7072e-01 -1.3999e+01 4.5315e-01 -1.7660e+00 -1.6332e+00 -#> -5.1083e+00 -4.2060e+00 -2.6048e+00 2.4064e+00 3.4505e+00 1.4462e+01 -#> -#> Columns 43 to 48 7.4749e+00 3.2896e+00 -6.5771e-01 -2.0536e+00 -1.5341e+00 -2.1485e+00 -#> -1.4133e+01 -5.2030e+00 1.2760e+01 -1.2155e+01 1.1957e+01 -8.8063e+00 -#> 5.0999e+00 -6.1652e+00 3.1785e+00 -6.0359e+00 -4.3141e+00 2.7696e+00 -#> 4.1555e+00 -1.0005e+01 7.6561e-01 1.1265e+00 -5.4895e+00 7.6430e+00 -#> 4.9313e+00 -1.8493e+00 5.9208e+00 -9.9984e+00 -4.2710e+00 -1.3521e+00 -#> 5.3910e+00 -4.5412e-01 -9.8172e+00 2.3860e+01 -1.8580e+01 1.1603e+01 -#> 5.4036e+00 3.2782e+00 3.6406e+00 -7.9052e+00 -3.6935e+00 -5.4650e+00 -#> 4.7777e-01 1.8790e+01 -7.1115e+00 -1.1741e+01 5.1975e+00 -9.0889e-01 -#> -4.3182e+00 9.0281e+00 -8.1416e+00 7.9910e+00 -9.8128e+00 -1.0565e+01 -#> 5.0018e-01 -4.6825e+00 5.4171e+00 -1.3931e+01 1.5320e+00 -8.1043e+00 -#> 1.3373e+01 -5.6451e+00 -6.6508e+00 1.5060e+00 -8.8349e-01 1.1201e+00 -#> -5.6232e+00 3.6242e+00 -1.0497e+00 2.5834e+00 -2.0360e+00 -7.3847e+00 -#> 6.6888e+00 2.3927e+00 -3.8077e+00 -2.1639e-02 -5.8558e+00 6.8943e+00 -#> -7.8989e+00 -2.6013e+00 5.0901e+00 2.8595e+00 -5.5578e+00 -2.1903e+00 -#> 9.7989e+00 5.4863e+00 -1.1755e+01 1.3804e+01 6.5772e+00 -2.0106e+00 -#> 4.7886e+00 4.1859e-01 1.0380e+00 1.2049e+01 3.2355e+00 -6.1523e+00 -#> -1.0745e+00 4.7642e+00 2.3202e+00 -7.0219e+00 -1.0187e+00 -7.0501e+00 -#> -5.4901e+00 -3.2077e+00 2.0884e+01 2.2532e+00 3.0159e+00 7.5106e+00 -#> -1.1099e+01 1.3630e+01 -7.1980e+00 -1.1558e+01 1.6250e-01 7.4032e+00 -#> 1.2947e+01 5.4460e+00 -1.5756e+01 9.4801e+00 -1.2139e+00 6.2564e+00 -#> 1.1998e-01 5.7220e+00 1.1314e+01 -3.5625e+00 3.5268e+00 1.1134e+01 -#> 1.3069e+01 1.1677e+00 -8.4681e+00 -1.1823e+01 -1.4532e+01 -5.3117e+00 -#> 3.4807e+00 1.9474e+01 8.1345e-01 -4.3280e+00 3.3045e+00 8.0262e+00 -#> -4.1458e-01 2.9176e+00 3.3451e+00 -2.6143e+00 8.6070e-01 2.2524e-01 -#> 4.1285e+00 9.9700e-01 9.8412e+00 3.2570e+00 -8.5901e-01 4.1803e+00 -#> -1.1954e+01 5.9839e+00 -1.7945e+01 1.3585e+01 -3.0892e+00 6.8838e-01 -#> 2.6369e+00 -5.5210e+00 -1.5965e+01 1.8688e+01 -1.1416e+01 9.1712e+00 -#> 1.5720e+00 -3.2047e+00 3.7386e+00 -1.0319e+01 -6.0105e+00 6.2452e-02 -#> -1.0030e+00 -3.8978e+00 8.4415e+00 -6.1983e+00 9.5013e+00 7.3072e+00 -#> 1.0870e+00 -1.7976e+00 1.0758e+01 6.4537e+00 -3.5953e-01 8.7095e+00 -#> -1.2589e+01 1.6091e+00 4.8148e+00 3.5849e+00 -3.8170e+00 -3.7377e+00 -#> -1.0399e+00 1.7239e+01 3.7850e+00 8.8687e+00 1.6787e+00 1.8082e+01 -#> 9.9256e+00 -5.7379e+00 6.7655e+00 -4.6335e+00 1.2040e+01 4.8663e-01 -#> -#> Columns 49 to 54 2.0588e+00 -1.1653e+01 1.0608e+01 2.7881e+00 5.6513e+00 -5.9351e-01 -#> -1.5856e+01 -1.0242e+01 -7.9768e-01 2.1046e+00 -4.7630e+00 -2.5084e+00 -#> 5.8313e+00 -1.4300e+01 4.8191e+00 -3.9928e+00 3.9323e+00 -1.7959e+00 -#> 7.1854e+00 7.4052e+00 -3.5649e+00 3.0255e+00 -6.5195e+00 4.0929e-02 -#> 7.3524e+00 -4.1666e+00 1.4574e+01 -8.3825e+00 1.2557e+00 2.2931e+00 -#> -1.6590e+01 -4.2074e+00 6.5455e+00 -2.3427e+00 -5.9171e+00 -2.4614e+00 -#> 8.4701e+00 -4.9499e+00 2.8532e+00 1.2714e+00 -1.0051e+01 -2.1670e+00 -#> -4.7380e+00 -4.1595e+00 7.7442e-01 4.5593e+00 -3.1357e+00 1.0338e+00 -#> 1.7061e+01 -1.1289e+01 8.1655e+00 5.5929e+00 5.5192e+00 6.9233e-01 -#> -1.1707e+01 -4.1463e+00 -4.4399e+00 -5.5704e-01 -5.4864e+00 -4.6775e+00 -#> -1.9277e+00 4.0682e+00 1.0254e+01 -2.4243e-01 -1.0002e+00 -1.2724e+00 -#> 6.7865e+00 -1.4280e+00 1.7221e+00 -4.3760e+00 5.2218e+00 -1.1768e-01 -#> -3.3110e+00 -9.4838e-01 -1.9602e+01 9.0612e+00 -1.4708e+00 4.8763e+00 -#> -3.5278e+00 4.1600e+00 -1.1134e+00 7.8087e-01 -2.6953e+00 -1.4792e+00 -#> 6.3919e+00 -8.5068e+00 1.0860e+01 -2.0888e+00 4.6862e+00 -2.6934e+00 -#> -1.3631e+01 3.2825e+00 3.6291e+00 2.1424e-01 -6.6992e+00 -2.3271e+00 -#> -8.4119e+00 -8.5404e+00 4.4918e+00 2.3728e+00 -2.8177e+00 2.3407e+00 -#> -5.7681e+00 4.3214e+00 -1.0287e+01 3.5729e+00 -4.2341e+00 1.4796e+00 -#> -8.7989e+00 5.0641e+00 -4.5184e-01 -7.1411e+00 4.0992e+00 -2.9186e+00 -#> -5.6270e+00 -6.4904e+00 3.5192e+00 -4.1002e+00 5.7519e+00 -9.8820e-01 -#> -4.6634e+00 -5.7731e-01 -5.6198e+00 -2.6096e+00 5.3468e+00 -2.4138e+00 -#> 1.9903e+01 -1.9132e-01 3.7509e+00 -2.5854e+00 8.5715e-01 -1.6367e+00 -#> -1.8672e+01 -6.1275e+00 6.0109e+00 6.0365e+00 -3.1170e+00 2.3840e-01 -#> -3.7971e-01 -6.9648e+00 2.7984e+00 -2.4435e+00 -4.0945e+00 3.8353e-01 -#> -1.4058e+01 5.9574e+00 -1.9671e+00 -5.1292e+00 1.5424e+00 -5.5177e-01 -#> -8.7823e+00 1.3229e+00 -7.1644e+00 1.2158e+00 -3.8932e+00 3.1650e+00 -#> -5.6919e+00 1.2080e+01 1.2179e+00 4.1779e+00 -5.4655e-02 2.0174e-01 -#> -8.4263e+00 3.1701e+00 2.4079e-01 5.1354e+00 2.8352e+00 -2.6872e-01 -#> 4.9421e+00 -5.0250e+00 2.6910e+00 2.7623e+00 -6.1163e+00 1.4400e+00 -#> -1.1406e+01 2.4924e+01 -9.8252e+00 -1.6379e+00 -2.1415e+00 -1.5942e+00 -#> 5.9189e+00 6.6855e+00 5.4495e+00 8.0702e+00 -6.0936e+00 1.2601e+00 -#> -7.1622e+00 7.4579e+00 -1.6247e+01 -1.7368e+00 3.5875e+00 8.7810e-01 -#> -5.6202e+00 -4.4285e+00 1.1572e+00 -4.1747e+00 -1.2560e+00 -6.9329e+00 -#> -#> (12,.,.) = -#> Columns 1 to 6 2.2343e+00 2.4861e-01 1.3061e+01 -1.3344e+01 1.2442e+00 1.6980e+01 -#> 5.8112e-01 -1.1779e+01 -2.8015e+00 -1.2982e+01 -3.2822e+00 7.1146e-02 -#> -4.3058e+00 1.0108e+01 2.0428e+00 4.8671e+00 -7.7594e+00 -1.3086e+01 -#> -1.4351e+00 -5.7256e+00 -4.4247e+00 1.3467e+00 1.5534e+00 -1.1222e+01 -#> 1.7914e+00 6.6421e+00 -2.5117e+00 2.6416e+00 4.7904e+00 -3.9372e-01 -#> -8.3136e+00 -1.5627e+00 -4.9528e+00 6.6515e+00 5.2495e+00 -1.7103e+00 -#> 5.3299e+00 6.1510e+00 -7.8576e-01 -3.3475e+00 -1.0934e+01 -3.2163e+00 -#> -2.7892e+00 7.9525e+00 1.3028e+01 -3.7640e+00 -2.0863e+01 -2.6415e+00 -#> -4.3488e+00 -8.0201e+00 -5.8985e+00 -3.7523e-01 1.3658e+01 -5.0732e+00 -#> -7.9534e-01 -8.1160e+00 -4.3030e+00 -8.5787e-02 -1.4162e+01 -1.9195e+01 -#> 1.7526e+00 -1.3950e+00 -3.5435e+00 -3.9843e+00 -5.4550e-01 1.4017e+00 -#> -5.9295e+00 -1.8240e+00 2.3624e+00 2.2988e+00 8.0792e+00 5.5243e+00 -#> 3.5374e+00 1.2951e+00 1.0387e+01 -7.4211e+00 -1.6104e+01 -9.4376e+00 -#> 4.2853e+00 -5.5056e+00 -4.3562e-01 1.1677e+00 6.9683e+00 3.3208e+00 -#> 7.1005e-02 8.5128e+00 3.6922e+00 7.9138e+00 5.0410e+00 3.8249e+00 -#> -7.2560e-01 -9.5460e-01 -4.3871e+00 -4.4477e+00 5.1031e+00 5.3250e+00 -#> 9.0075e-01 9.4957e+00 5.7318e+00 -5.9370e-01 7.3959e+00 8.1217e+00 -#> -6.2461e-02 -8.1013e+00 -2.5499e+00 -1.3845e+00 3.1540e+00 1.0728e+01 -#> 5.4301e+00 2.6902e+00 -5.4021e+00 1.0105e+01 -1.1946e+01 -8.0718e+00 -#> 1.5006e-02 5.5758e+00 4.5327e+00 3.3208e+00 3.3094e-01 -2.0927e+01 -#> 7.4586e+00 4.6525e+00 5.8436e-01 1.0973e+01 -2.3610e+00 4.2508e+00 -#> -1.2983e+00 -1.1301e+01 1.2430e+01 4.0250e+00 4.1832e-01 -1.6513e+01 -#> -7.8391e+00 2.4531e+00 -1.8300e+00 1.0450e+01 1.5860e+00 -2.5208e+00 -#> 5.6105e+00 5.5700e+00 -4.3786e+00 -9.1806e+00 -5.7021e+00 -7.4651e+00 -#> -9.2395e+00 6.9638e+00 6.7176e+00 4.8742e+00 1.5557e+00 -4.7856e+00 -#> 1.3244e+00 -1.5630e+00 -6.8633e+00 -2.1048e+00 -4.5452e+00 -1.2455e+01 -#> -3.4415e+00 -3.6602e+00 -8.8038e+00 1.2900e+01 -1.6583e+00 3.5402e-01 -#> -5.4946e-01 4.2501e+00 -3.8394e+00 -1.1170e+00 -8.1395e-01 -3.9050e+00 -#> 2.5022e+00 8.3729e+00 -2.6832e+00 2.7693e-01 3.8717e+00 -6.5552e+00 -#> 7.8093e+00 1.3572e+00 -1.4310e+01 5.0189e+00 3.0458e+00 8.0139e+00 -#> 1.3326e+00 -6.4450e+00 1.0170e+00 5.7269e-01 1.9765e+01 -6.6270e+00 -#> 1.9113e+00 5.7325e+00 7.8303e+00 -8.4500e-01 -7.9439e+00 -6.7554e+00 -#> 2.8425e+00 8.1149e+00 6.1998e-01 -6.4198e+00 -1.3863e+01 2.7923e+00 -#> -#> Columns 7 to 12 1.0106e+01 -8.0998e+00 -1.6541e+00 -1.0441e+01 -6.2678e+00 1.5084e+01 -#> 4.2660e+00 5.1183e+00 -4.0667e+00 -2.3064e+01 -4.2162e+00 -1.1576e+00 -#> 1.3151e+00 -4.1282e+00 1.2276e+01 2.8656e+00 1.3460e+01 -8.0012e+00 -#> -4.6559e+00 -1.3864e+01 -4.5554e+00 -3.6413e+00 -5.4804e+00 -1.7346e+01 -#> 9.5870e+00 7.6032e+00 8.3130e+00 1.2399e+00 2.7644e+00 3.0823e+00 -#> 7.4200e+00 -1.7400e+01 -1.1742e+01 7.4787e+00 -2.5101e+01 5.8978e+00 -#> -1.8558e+00 2.3167e+00 -5.5227e+00 -3.7291e+00 4.4580e+00 1.3574e+00 -#> 4.9338e+00 1.0376e+01 -5.2100e+00 6.7813e+00 -3.7380e+00 -1.6642e+01 -#> 1.8014e+01 -2.5866e+00 -5.0389e+00 -3.0290e+00 1.5388e+00 -1.0736e+00 -#> -2.3015e+01 -4.0512e+00 -2.0893e+00 -4.2346e+00 -2.2044e+01 1.4695e+00 -#> 4.4195e+00 -1.5963e+00 2.3283e+00 -7.8490e-01 -1.9061e+00 9.3110e-01 -#> -1.0458e+01 2.6943e+00 -1.1518e+01 3.4626e+00 9.9623e-01 1.5833e+01 -#> 5.4454e-01 -1.8906e-01 -4.6633e-01 8.7036e+00 -1.3710e+00 -1.1635e+01 -#> -3.0853e+00 1.0756e+01 -2.1256e+01 -1.3527e+01 2.0147e-01 8.2447e+00 -#> -2.6700e+00 -2.6537e+00 3.8012e-02 -4.0746e-01 4.2514e+00 1.3912e+01 -#> 4.6423e+00 -1.3562e+01 3.3131e-01 -4.1649e+00 -7.3361e+00 4.3607e+00 -#> -1.1995e+01 7.7007e+00 -1.9198e+00 -1.5712e+01 -1.6685e+01 9.2774e+00 -#> -5.1702e+00 1.3754e+01 1.1154e+00 -2.0734e+00 1.8528e-02 -3.4237e-01 -#> -7.5284e+00 -9.7365e+00 -3.6080e+00 6.4859e+00 -8.1583e+00 6.2707e+00 -#> 1.2302e+01 4.8155e+00 6.7645e-01 -9.2286e-01 7.5249e+00 -1.2391e+00 -#> -3.8789e+00 -7.4176e-01 -3.9320e+00 -6.7518e+00 2.9841e+00 2.0185e+01 -#> 3.6928e+00 -1.8126e+01 -9.5705e+00 2.5406e+00 7.8560e+00 -1.4716e+01 -#> 1.0955e+01 3.9481e+00 -1.9212e+01 -2.1933e+01 -1.2778e+01 1.1302e+01 -#> 7.4397e+00 -7.9327e-01 -9.3109e-01 1.9953e+01 -1.2216e+00 1.0269e+01 -#> 1.7136e+00 -1.5817e+00 -5.9169e+00 -6.5075e+00 4.2173e+00 1.1803e+01 -#> 6.3738e-01 4.2163e+00 -1.4027e+00 9.7656e+00 -2.3720e+00 1.1708e+01 -#> 4.1512e+00 -6.7453e+00 -7.7274e+00 3.5501e+00 8.7879e-01 4.4375e+00 -#> -3.6729e+00 -1.0202e+01 -6.3316e-01 -1.5827e+01 -5.6612e+00 -1.3232e+01 -#> 3.4021e+00 1.2152e+01 4.2543e+00 1.6077e+01 7.1638e+00 -9.5322e+00 -#> -1.6027e+01 -1.2267e+01 9.8984e+00 5.8649e+00 1.5113e+01 2.3995e+01 -#> 6.6292e+00 -6.8196e+00 4.2903e+00 7.1128e+00 -1.0787e+01 -1.3526e+00 -#> -7.1549e+00 1.3952e+01 -9.2232e+00 -6.3592e+00 6.6941e-01 -9.2557e+00 -#> -3.7317e+00 9.6946e+00 -6.1778e+00 9.9506e+00 -5.2459e+00 -5.7252e+00 -#> -#> Columns 13 to 18 7.9775e+00 -3.3716e+00 -1.6398e+01 1.0290e+00 1.4219e+01 -7.9817e-02 -#> -2.8099e+00 9.6442e+00 5.9975e+00 -8.3840e+00 -1.2924e+01 1.7883e+01 -#> -2.9478e+00 -4.1491e+00 6.5517e+00 -3.4311e+00 -2.5219e-01 -4.7551e+00 -#> -1.7489e+00 4.8127e+00 1.7067e-01 -1.0031e+01 4.8095e-01 1.7671e+01 -#> 3.3080e+00 -5.0196e-01 1.6195e+01 2.1735e-01 -1.1563e+01 -1.8092e+01 -#> 5.8877e+00 8.8385e+00 4.5792e+00 -1.3592e+01 3.6850e+00 3.2994e+00 -#> -3.6112e+00 6.8737e+00 3.0362e+00 3.9409e+00 1.3417e+01 -7.3520e+00 -#> -1.2533e+01 -5.9631e+00 -6.3714e+00 2.5638e+00 1.9757e+01 -1.3020e+00 -#> 1.8081e+01 -3.9881e+00 -2.4899e+01 -1.1685e+01 -5.0189e+00 2.7581e-01 -#> -1.0677e+01 -1.7292e+00 6.1302e+00 9.3948e+00 -5.9134e+00 1.0920e+01 -#> -1.5548e+01 -9.7880e+00 1.5163e+01 3.2234e+00 -1.4654e+01 -2.7111e+00 -#> 2.6025e+00 1.6772e+01 -9.5342e+00 -1.7929e+01 6.9729e+00 1.7990e+00 -#> -4.6987e+00 1.8096e+00 -4.8640e-01 1.7515e+00 1.6400e+00 8.6115e+00 -#> 5.8794e+00 2.3319e+01 -1.2410e+01 -1.4471e+01 -2.5027e+00 1.3834e+01 -#> 3.6492e+00 1.0097e+01 6.0911e+00 -1.6952e+01 3.7765e+00 1.2470e+00 -#> 9.0154e+00 -7.9646e+00 1.0940e+01 -2.5419e+00 -1.2839e+01 -3.2985e-01 -#> -1.0842e+01 1.9563e+00 2.8683e+00 6.0006e+00 -4.8396e+00 -3.4927e+00 -#> 5.7079e-01 -9.4869e+00 -7.2187e+00 -2.3264e+00 1.1500e+00 1.3042e+01 -#> 9.3394e-02 -1.3834e+01 -1.0763e+01 -9.9645e+00 1.9327e+01 -3.2349e+00 -#> 1.6126e+01 -7.6733e+00 7.4829e+00 -1.7533e+00 -4.0451e+00 6.5047e+00 -#> -7.6359e+00 -1.2013e+01 -7.0419e+00 7.2818e+00 -9.0434e+00 6.7979e+00 -#> -7.6891e+00 -3.2007e+00 -1.9260e+01 1.1613e+01 1.1378e+01 1.1982e+01 -#> 1.8505e+01 1.5860e+01 1.0207e+01 -1.2126e+01 -3.8591e+00 -5.2286e+00 -#> -1.0642e+01 9.9338e+00 -4.5486e+00 -2.5227e+00 -4.0303e-02 -1.1448e+00 -#> -2.2505e+00 2.7698e+00 1.3077e+01 -9.0763e+00 7.3168e+00 -5.4729e-01 -#> -1.9906e+00 -1.5236e+00 -5.2221e+00 -6.9238e-01 9.1291e+00 2.5066e+00 -#> -3.4526e+00 1.7163e+00 -1.1267e+00 4.2589e+00 -4.5121e-01 1.1336e+00 -#> -8.9524e+00 -9.5551e+00 -4.5162e+00 -2.4994e+00 1.2130e+00 -2.3913e+01 -#> -4.9009e+00 -8.7625e+00 3.8590e+00 -2.1340e+00 -7.0136e+00 -7.2723e+00 -#> -4.2614e+00 -1.5789e+01 1.1984e+01 1.4028e+01 2.2274e+00 -9.6963e+00 -#> 1.0833e+01 1.0684e+01 3.9278e+00 -2.4064e+00 -7.7770e+00 8.4217e+00 -#> 5.8047e+00 1.9016e+01 -1.1636e+01 5.5353e+00 -4.7503e+00 1.2186e+01 -#> -5.2927e+00 1.4010e+00 1.2860e+00 6.6502e+00 -5.9610e+00 -1.4549e+01 -#> -#> Columns 19 to 24 -7.8774e+00 9.3987e+00 -3.1508e+00 3.2035e+00 -1.7237e+00 -2.2337e+00 -#> 9.8753e+00 -5.1873e+00 -1.5979e-01 7.0176e+00 1.4790e+00 -2.2652e+00 -#> 2.4684e+00 -1.5629e+01 -1.0845e+00 2.5782e+00 5.0271e+00 -1.5199e+01 -#> 1.1172e+01 1.2462e+00 1.2406e+01 7.3422e+00 -1.3610e+00 -7.2763e+00 -#> 1.1630e+01 -6.2654e+00 1.3605e+00 3.8456e+00 9.3753e+00 -9.7017e+00 -#> 2.6302e+00 -4.7561e+00 -1.1254e+01 -2.3001e+01 4.0595e-01 6.5323e+00 -#> -1.6812e+01 -1.8110e+01 -3.6096e+00 -3.5465e-02 -1.4968e+01 9.3158e+00 -#> -2.4737e+01 8.3503e+00 -1.7397e+00 2.9828e+00 -8.2400e+00 4.5024e+00 -#> -3.7867e+00 8.1052e+00 -8.3192e-01 8.8176e+00 4.7793e+00 -1.0590e+00 -#> -3.2457e+00 2.4234e+00 -5.5022e+00 -5.7761e-01 5.2855e+00 -7.4730e+00 -#> -1.1944e+01 -6.8048e-01 -8.7536e+00 -1.1724e+00 3.2814e+00 -1.1310e+01 -#> 2.9503e+00 1.9739e+00 -8.4449e+00 -1.2881e+01 -7.4179e+00 -2.1671e+00 -#> -7.6667e+00 9.0520e+00 -4.4530e+00 3.8394e+00 -4.5973e+00 1.5565e+01 -#> 1.2824e+01 -3.3694e+00 1.1752e+01 -2.3582e+00 5.0714e+00 4.2392e+00 -#> 8.0841e+00 -2.5142e+00 -1.0000e+01 1.6647e+00 -8.9167e+00 -1.6243e+01 -#> 1.3602e+01 2.1327e+00 -1.9909e+01 2.4326e+00 1.2900e+01 -3.7971e+00 -#> 1.8914e+01 6.4058e+00 2.3033e-01 -8.2163e+00 3.4782e+00 -1.0740e+00 -#> 6.3810e+00 -4.0515e+00 1.0759e+01 -8.3499e-01 7.3965e-01 -9.1388e+00 -#> -5.8142e+00 4.5707e-02 1.1224e+00 -4.1406e+00 6.5294e+00 -6.1837e+00 -#> -9.5804e+00 -7.5517e+00 -4.6984e+00 1.7209e+00 -6.8727e+00 1.3254e-01 -#> 8.7612e+00 -5.2527e+00 -6.8012e+00 -9.3108e-01 6.9843e+00 1.3341e+01 -#> -1.4546e+01 9.7236e+00 -6.3226e-01 -4.3340e+00 -5.9874e+00 -3.2339e+00 -#> 3.9066e+00 2.2284e-01 -1.4156e+01 -3.8453e+00 -8.6821e+00 -1.9315e+00 -#> -1.5990e+00 7.5505e-01 -1.8868e+00 1.4217e+01 1.5455e+00 -2.3546e+00 -#> -1.0250e+01 -7.7651e+00 -7.1299e+00 -3.6324e+00 3.5405e+00 -4.7819e+00 -#> 1.4602e+01 1.3240e+00 9.4274e+00 -8.6895e+00 -5.1178e+00 2.1310e+00 -#> 8.2942e+00 -2.1216e+01 9.4975e+00 -7.5825e+00 1.0006e+01 -2.7521e+00 -#> 1.1945e+01 -1.4659e+01 6.7279e+00 -6.1521e+00 4.0640e+00 -6.7216e+00 -#> -6.6725e+00 2.7873e+00 8.7322e+00 9.3220e+00 5.0820e+00 5.8792e+00 -#> 3.6809e+00 -1.6383e+01 -1.5499e+01 1.1922e+01 3.0115e+00 -2.6662e+01 -#> -3.1499e-01 7.1257e+00 -1.5790e+01 1.0345e+00 2.9703e+00 4.5194e-01 -#> -1.3069e+00 -1.4656e+00 -2.5011e+00 8.5862e+00 -3.4828e-01 1.6991e+01 -#> 2.6757e+00 -2.0333e+01 1.2204e+00 -5.4096e+00 6.6630e+00 -6.8385e+00 -#> -#> Columns 25 to 30 -1.5597e+00 -4.3700e+00 -8.6704e+00 -4.0963e+00 -1.6321e+01 -4.3423e+00 -#> 2.9396e+00 -5.9848e+00 2.3327e+00 9.8268e+00 1.4889e+00 1.8608e+01 -#> -3.4125e+00 9.3013e+00 1.5506e+00 1.0031e+01 -5.2014e+00 -6.4869e+00 -#> -3.6186e+00 -5.2734e+00 -8.8278e+00 1.1643e+01 -1.0888e+01 -7.8657e+00 -#> 8.9388e-01 -3.4935e+00 -1.1399e+01 8.2926e+00 1.1714e+01 1.8860e+01 -#> -2.4677e+01 -1.4618e+01 1.2835e+01 2.7846e+00 3.1225e+00 -7.5194e+00 -#> -3.2098e+00 -1.2272e+01 -7.2635e+00 2.9061e+00 -1.4480e+00 -7.6684e+00 -#> 6.1910e+00 1.7474e+00 -1.5868e+00 -1.4324e+01 -3.1537e+00 2.5270e+00 -#> -1.4938e+01 -2.9654e-01 -5.9241e+00 4.5311e+00 5.1367e-01 -4.2442e+00 -#> -1.3926e+01 1.4841e+01 1.2362e+01 3.4737e+00 -3.6818e+00 6.5808e+00 -#> 5.6785e+00 4.2856e+00 -4.1781e+00 -4.9512e+00 1.3393e+01 -4.2968e-01 -#> -5.5229e+00 -1.6487e+01 6.4846e-01 7.7945e-01 1.2717e+01 1.9683e+00 -#> 4.8212e-01 -1.0946e+01 5.6029e+00 1.0808e+01 1.0435e+00 -4.6982e+00 -#> -8.2592e+00 -5.3752e+00 -5.2363e+00 -5.4708e-01 -7.7221e+00 1.0334e+01 -#> -5.4707e+00 2.1817e+01 6.3952e-01 2.8722e+00 -7.4404e+00 -9.4587e+00 -#> -9.4711e+00 3.9907e+00 2.3350e+00 6.3608e+00 1.4797e+01 8.6591e+00 -#> -1.5397e+01 -1.2832e+01 -1.2764e+01 -9.1527e+00 -1.3297e+00 3.4214e+00 -#> 2.7281e+01 -1.0290e+01 -8.7485e-02 -3.3851e+00 6.6595e+00 -2.6885e+00 -#> 7.5860e+00 4.2211e+00 1.8520e+01 -1.6380e+01 -5.6852e+00 -1.8309e+01 -#> -4.2865e+00 1.0817e+01 6.2852e+00 -7.2758e+00 -4.1168e+00 3.6913e+00 -#> 2.4672e+00 -1.1057e+01 2.4086e+00 -4.3137e+00 9.9728e+00 1.6034e+01 -#> -6.7063e+00 -6.8820e+00 4.8363e-01 1.1105e+01 -1.0333e+01 -1.6367e+00 -#> -2.1280e+01 -4.1415e+00 6.0902e-01 -1.1766e+01 9.4662e+00 1.6602e+01 -#> -1.0490e+00 -9.4947e+00 8.6725e+00 3.2525e-01 4.2604e+00 -2.7379e+00 -#> 5.9630e+00 -5.8807e+00 1.1127e+01 -7.1153e+00 1.0029e+01 -1.1379e+01 -#> -2.1555e+00 6.7623e+00 2.2071e+00 -1.9433e+00 1.1161e+01 -7.5301e+00 -#> -1.9755e+00 7.1774e+00 -2.1621e+00 -4.2744e+00 -1.2805e+01 -1.0321e+01 -#> 1.6206e+01 -9.0574e+00 -1.3386e+01 1.4836e+00 -3.6717e+00 1.9019e+00 -#> 1.8684e+01 -1.0844e+01 -3.7766e+00 -1.4817e-01 -6.8664e+00 -1.0706e+01 -#> 4.5852e+00 1.4066e+01 9.4515e+00 7.7569e-01 -4.8496e+00 -1.4866e+01 -#> -2.0469e+00 -4.9087e-01 7.5441e-01 -2.6077e+00 -3.6706e-02 1.2476e+01 -#> 1.8071e-01 -7.4970e+00 -3.3489e-01 6.6271e+00 -2.0375e+00 -1.4445e+01 -#> -1.8088e+00 4.1301e+00 -2.2527e+00 2.1262e+00 -3.4904e-01 6.9723e+00 -#> -#> Columns 31 to 36 -6.5040e+00 5.8752e+00 3.1383e+00 1.1837e+01 6.4853e+00 1.0323e+01 -#> 4.4193e+00 2.0463e+00 5.9618e-01 7.4200e+00 -1.3114e+01 -1.4656e+00 -#> -1.0508e+01 3.8826e+00 5.1851e+00 -9.6904e+00 1.1859e+01 4.9136e+00 -#> -4.1396e+00 -7.9817e+00 -5.4383e+00 -1.7414e+01 7.0854e+00 -9.6429e+00 -#> 2.2758e+00 6.2357e+00 9.3515e+00 -6.7403e+00 1.8872e+01 -5.0694e+00 -#> 5.8505e+00 4.4309e+00 1.3236e+01 1.0722e+01 8.9095e+00 -2.9298e+00 -#> 6.5115e+00 3.5489e+00 -9.1628e-01 2.5802e+00 7.0845e+00 1.8733e+01 -#> -3.0491e+00 3.2534e+00 1.1997e+00 8.8833e-01 -2.1584e+00 2.3641e+00 -#> 1.6468e+00 4.4843e+00 3.3471e+00 -1.8669e+00 5.9386e-01 8.3609e+00 -#> -2.0089e+00 -1.9370e+01 -2.9176e+00 -5.4528e+00 5.9043e+00 8.6076e+00 -#> -9.3280e+00 6.0964e+00 3.1025e+00 1.0701e+00 1.0776e+01 9.5514e+00 -#> 6.1485e+00 -3.3274e+00 8.4756e+00 -4.8317e+00 -2.7427e+00 1.5232e+00 -#> 4.6530e+00 9.2008e-01 -6.9505e+00 -6.6205e+00 7.9752e+00 -1.4570e-01 -#> -2.1591e+00 -1.0310e+01 -1.2721e+01 -2.1465e+01 -1.4941e+01 5.3263e+00 -#> 8.0429e-01 9.5050e+00 5.3638e+00 -5.6013e+00 2.7263e+00 -3.2744e+00 -#> 2.6271e+00 -7.3372e+00 6.6152e+00 2.8711e+00 1.1847e+01 -3.4755e-01 -#> -3.4368e+00 -9.0752e+00 -1.5055e+00 -3.1626e+00 -9.8245e+00 -4.7415e-01 -#> 2.9191e+00 2.4938e-01 1.8888e-01 9.8061e+00 -1.7531e+01 -6.0103e+00 -#> -4.7865e+00 1.6937e-01 -5.0390e+00 4.5317e+00 2.9974e+00 1.9773e+01 -#> 2.9439e+00 4.0795e+00 -3.9380e+00 -6.3246e+00 1.0128e+00 -4.5317e+00 -#> 2.6851e+00 -5.0098e+00 -6.2676e+00 6.7208e+00 -1.0663e+01 5.7691e+00 -#> -1.2311e+01 -6.5510e-01 7.9312e+00 -1.9693e+00 -6.8400e+00 1.4329e+01 -#> 9.2061e+00 -5.5078e+00 -5.9201e+00 -1.1016e+01 -1.0204e+01 -9.2475e+00 -#> 1.3350e+01 1.9800e+00 -9.1722e+00 -3.6948e+00 8.2696e+00 8.0762e+00 -#> 4.6315e+00 -7.5339e+00 1.5947e+00 -1.1322e+01 -8.3186e+00 -6.6386e+00 -#> -5.7139e+00 -1.3925e+01 -2.3077e+00 1.1494e+00 -7.2648e+00 2.1355e+00 -#> -4.2203e+00 2.6027e+00 1.7255e+00 -5.4968e+00 3.3107e+00 -7.9746e+00 -#> -3.7495e+00 1.9044e+00 -5.6979e+00 1.2216e+00 2.1435e+00 4.0822e+00 -#> -4.3472e+00 -1.2315e+01 -5.7846e+00 -9.3757e+00 6.5540e+00 -5.8813e+00 -#> -4.1403e+00 -3.7812e+00 -4.1460e+00 3.9681e+00 1.9608e-01 3.2650e-01 -#> 1.4559e+00 -1.7231e+00 1.6940e+00 -5.9361e+00 9.1474e+00 -6.8446e-01 -#> -5.8992e+00 -3.6607e-02 -4.8166e-01 4.3366e-01 -1.3624e+00 8.6887e+00 -#> 5.1203e+00 4.1813e+00 -9.7441e+00 -2.3176e+00 6.0868e+00 8.1336e+00 -#> -#> Columns 37 to 42 1.1062e+01 -2.0296e+00 8.4705e+00 -3.9911e+00 8.3573e-01 1.9506e+00 -#> -1.1974e+01 5.3647e+00 -1.1954e+01 -5.3444e+00 -1.2646e+01 -1.6711e+01 -#> 2.1595e+01 -4.4778e+00 1.0384e+01 -5.3072e-01 -9.7432e+00 -1.0414e+01 -#> -1.0581e+01 -4.4263e-01 4.7731e+00 -2.6030e+00 6.7749e+00 -1.6233e+00 -#> -9.3047e+00 -1.5634e+01 -1.5564e+01 -1.4220e+01 -1.4309e+01 -6.0601e-01 -#> 5.9982e-01 -4.9061e+00 3.9769e+00 -6.1671e+00 -1.0324e+01 4.0731e+00 -#> -4.3588e+00 -5.6208e+00 6.1008e+00 -9.9672e+00 1.3759e+00 4.8355e+00 -#> 7.6434e+00 -1.1719e+01 -4.9626e+00 -5.4398e-02 -9.2290e+00 5.2844e+00 -#> 1.2625e+01 -1.1581e+01 1.8633e+01 5.7880e+00 -1.1121e+01 2.0442e+01 -#> -3.0447e+00 5.1596e-01 -1.4120e+01 -2.8625e+00 5.8997e+00 4.8108e+00 -#> -1.3048e+00 1.6969e+00 -6.9976e+00 -2.0704e+00 -1.4876e+01 1.3682e+01 -#> -1.0865e+00 3.1554e+00 1.2313e+00 8.0548e-01 -2.0513e+01 7.1541e+00 -#> -1.4557e+00 2.9544e+00 2.4083e+00 1.6820e+00 7.4094e+00 2.2584e+01 -#> -2.5237e+00 1.0195e+01 -2.6441e+00 -3.7556e+00 -3.9881e+00 2.7679e+00 -#> 1.6696e+01 -7.1908e+00 2.1827e+00 -2.7923e+00 -1.9770e+01 5.8063e+00 -#> -1.1795e+01 1.0671e+01 2.6017e+00 -8.2290e+00 -1.6968e+00 7.3746e+00 -#> -1.9721e+01 3.6066e-01 -2.9877e+00 -8.9195e-01 -2.4205e+00 -1.4037e+01 -#> -1.7180e+00 2.5656e+01 1.3118e+01 2.6885e+00 2.4311e+00 -1.9627e+01 -#> -1.2209e+00 -1.7275e+01 -1.0422e+01 -1.7955e+00 -3.1315e+00 2.8352e+01 -#> 5.5952e+00 -1.3472e-01 -1.9804e+00 -2.7732e+00 -3.5788e+00 1.0023e+01 -#> 4.8103e-03 1.3171e+01 -7.5450e-01 8.6808e+00 7.5673e+00 1.6787e+00 -#> 7.9544e+00 8.2651e+00 -1.1695e+01 -1.4135e+01 -3.2763e+00 6.9574e+00 -#> -4.4499e+00 4.4580e+00 1.5868e+01 -4.1087e+00 -8.7055e+00 -4.7099e+00 -#> -9.6114e-01 9.5251e-01 1.4457e+01 2.6207e+00 -2.6928e+00 1.6989e+01 -#> 1.2193e+01 7.8603e+00 5.9201e+00 -2.7639e-01 9.1031e+00 -1.2982e+01 -#> 5.6224e+00 6.9850e+00 1.0509e+01 1.2624e+01 1.2922e+01 -1.3763e-01 -#> 1.1296e+00 5.3891e+00 2.9965e+00 -7.8478e+00 1.1889e+01 -2.1520e+00 -#> 1.0341e+01 -1.0417e+01 7.8661e+00 -8.1170e+00 -4.0068e+00 -7.5216e+00 -#> 4.2167e-01 9.3623e+00 6.6411e+00 2.1331e+01 1.4457e+01 8.5066e+00 -#> -5.5189e+00 5.7353e+00 8.0404e+00 -3.5269e+00 1.4370e+01 8.0252e-01 -#> -5.0023e+00 8.6836e+00 -1.6432e+00 -3.7779e+00 -1.8732e+01 7.3776e+00 -#> -2.2673e+00 1.3026e+01 1.6185e+01 5.9499e+00 8.0218e+00 1.3399e+01 -#> 4.0683e+00 4.2663e+00 1.6034e+01 2.7645e-01 7.4202e+00 -2.4128e+00 -#> -#> Columns 43 to 48 -1.2115e+01 1.1046e+00 -1.2515e+01 2.2028e+00 -7.2036e+00 -4.0879e+00 -#> 3.2179e+00 1.7676e+00 -1.1806e+00 1.7817e+01 -4.8552e+00 4.6124e+00 -#> -4.8195e+00 9.0433e+00 -4.6589e+00 7.1531e+00 -1.0476e-01 -2.9681e+00 -#> -9.5588e+00 -2.9691e+00 -3.7199e+00 8.4445e+00 5.2903e+00 -3.8193e+00 -#> -5.4232e-01 -3.8415e+00 -7.7434e+00 2.5880e+00 1.6367e+00 -1.3412e+01 -#> -8.0844e+00 3.3727e-01 5.1215e+00 -1.5609e+01 -5.1258e+00 8.3984e+00 -#> -2.3635e+00 -3.6531e+00 -5.6427e+00 -8.5791e+00 5.5740e-01 -1.5238e+01 -#> -4.3731e+00 1.1792e+00 1.4618e+01 -2.5758e+01 -1.0487e+01 -2.2543e+00 -#> -1.5963e+01 -1.3927e+01 2.1588e-01 -3.2920e+00 9.5727e+00 -5.3125e+00 -#> 2.9978e+00 8.8854e+00 6.2099e+00 -4.2905e+00 -9.6987e+00 1.4991e+00 -#> -2.1656e+00 -7.8803e+00 -4.0464e+00 -1.5159e+01 -1.1318e+01 -4.2191e+00 -#> -6.2049e+00 5.2066e+00 1.2489e+01 -7.5448e-01 7.2532e+00 -5.8020e+00 -#> -5.8869e+00 1.3076e+00 1.9979e+01 -9.7389e+00 -1.3736e+01 -1.6782e+01 -#> 5.1603e+00 -6.6834e+00 5.8808e+00 9.0616e+00 1.1712e+01 -6.1902e+00 -#> -6.4048e+00 7.1058e+00 -1.6456e+00 2.8912e+00 3.1004e+01 -1.2531e+01 -#> 6.8006e+00 1.9610e+01 -9.1857e+00 4.4045e+00 2.9447e+00 1.6091e+01 -#> 1.6478e+01 4.0959e-01 -2.3223e-02 -7.2793e+00 -2.9199e+00 -1.1647e+01 -#> -9.9995e+00 -8.1696e+00 1.4737e+00 6.5148e+00 -1.0667e+01 -3.2807e+00 -#> 2.2444e+00 -2.0464e+01 3.0094e+00 -2.6361e+00 -3.3323e+00 1.1333e+01 -#> -1.0368e+01 7.5013e+00 1.0117e+01 1.3035e+01 -7.9614e+00 8.9583e+00 -#> 5.1484e+00 -3.3187e+00 4.4564e+00 4.0747e+00 -1.4273e+01 -4.7209e+00 -#> -6.8290e-01 5.9370e+00 1.9618e-01 2.6352e+00 8.7978e+00 1.3552e+01 -#> -3.7305e+00 2.9977e+00 1.2201e+01 8.4139e+00 1.1424e+01 -4.4993e+00 -#> 1.6751e+01 -8.0573e+00 1.2008e+00 -3.8915e+00 1.2050e+01 1.0548e+01 -#> 6.2575e+00 1.6294e+01 3.5308e+00 -1.2285e+00 4.1870e+00 8.4701e+00 -#> 3.4958e+00 1.4690e+01 8.2981e+00 -1.0359e+01 -1.0257e+01 -7.3372e+00 -#> -6.5664e+00 9.0567e-01 1.2777e+01 -3.5199e+00 2.0997e+00 4.1423e+00 -#> 8.9526e+00 -1.3091e+01 -1.2533e+00 6.2042e+00 -7.8835e+00 -1.1464e+01 -#> 9.2127e+00 -3.9388e-01 7.7766e+00 -1.4394e+01 -1.3689e+01 -1.4557e+01 -#> -3.7454e+00 3.2210e+00 -1.3385e+01 4.2240e-01 8.1938e+00 -5.3303e+00 -#> 2.7591e+00 -4.6040e+00 2.7475e+00 -5.0884e+00 -1.3997e+00 4.3406e+00 -#> 4.6150e+00 -9.1322e+00 2.9752e+00 1.5551e+01 -1.3454e-01 -1.5530e+01 -#> 1.6372e+01 1.1288e+00 -3.9405e-01 -3.8099e+00 -6.5638e+00 -7.1677e+00 -#> -#> Columns 49 to 54 2.5190e+00 1.1175e+01 1.1601e+01 -7.7790e+00 -5.6342e+00 3.8789e-01 -#> 7.7460e+00 1.1136e+01 1.7623e+00 6.0582e+00 -1.1285e+00 2.3664e+00 -#> 3.6941e+00 5.5731e+00 1.9186e+00 4.5717e+00 -1.0011e+01 -3.9924e-01 -#> 1.0815e+01 2.3231e+01 -4.9671e+00 -4.7148e+00 7.6496e-01 2.7236e+00 -#> -8.7334e+00 7.1061e-01 2.8245e+00 7.4412e-01 1.5410e-01 5.2671e+00 -#> 9.0524e+00 -4.5650e+00 6.4491e+00 1.6855e+00 7.0050e+00 -9.4149e-02 -#> 8.5457e+00 1.3220e+01 7.7125e+00 -6.8548e-01 3.0141e+00 -5.4146e+00 -#> 4.9509e+00 -2.3485e+00 1.4033e+01 9.0368e+00 3.3652e+00 5.8068e-01 -#> -2.0652e+00 -5.7014e+00 -3.8886e+00 -5.5111e+00 -5.6780e+00 -3.0847e+00 -#> -2.7895e+00 3.7967e+00 -1.0079e+00 1.4597e+01 4.4697e+00 3.1462e+00 -#> -5.1495e+00 2.1150e+00 5.2226e+00 -1.7447e+00 -4.7373e+00 2.6336e+00 -#> 1.9226e+00 -1.4160e+00 -4.5898e+00 -6.5440e+00 -2.6794e+00 3.3858e+00 -#> -9.6982e-01 4.6653e+00 9.2560e+00 -5.5485e-01 -1.1931e+00 1.4302e+00 -#> 3.4949e+00 -6.4405e+00 9.6045e+00 -2.4561e+00 5.1457e+00 -4.2440e+00 -#> 4.8166e+00 -3.9878e+00 -3.9815e+00 -1.3134e+01 -1.0717e-04 3.4807e+00 -#> -6.2559e+00 -4.7228e-01 -6.3469e+00 6.4103e-01 -3.5107e+00 3.2496e+00 -#> 2.0834e+00 1.0204e+01 1.1521e+01 1.6283e+01 6.7450e+00 4.0019e-01 -#> 5.8669e+00 8.3477e+00 -2.4140e-01 -5.7797e+00 -2.8879e-01 -3.9505e+00 -#> -5.4113e+00 -2.5000e+00 6.8480e+00 2.3189e+00 -2.7195e+00 3.8497e+00 -#> 3.4269e+00 -3.1728e+00 -1.1029e-01 -9.0684e-01 1.3045e+00 1.5835e+00 -#> -8.3938e+00 4.9229e-02 -2.7664e+00 3.1438e+00 -3.9460e+00 -2.1360e+00 -#> -4.3670e+00 -3.5643e+00 2.9556e+00 8.9076e+00 -6.1031e+00 1.0562e+00 -#> 4.2641e+00 -9.5336e-01 -3.9316e+00 -3.7728e-02 7.7775e+00 -5.3253e+00 -#> 2.4582e+00 -7.1300e+00 -3.4889e-01 -3.3291e+00 2.4103e+00 -5.9407e-01 -#> -2.3643e+01 -9.1169e+00 2.0369e-01 1.8650e+00 -5.5027e-01 -2.4543e+00 -#> -2.8845e+00 -4.8286e+00 8.2757e+00 -1.1491e+00 7.9805e+00 -1.8078e+00 -#> 6.6483e+00 -1.0365e+01 -8.0959e+00 -8.7907e+00 1.4690e+00 -7.9068e-01 -#> -8.7006e-01 1.8929e+00 4.0245e+00 1.9152e+00 -2.2162e+00 -2.2415e+00 -#> 3.6591e-01 -5.5330e+00 -8.4923e+00 1.8120e+00 5.9263e+00 3.9024e+00 -#> -6.2291e+00 8.7485e+00 -1.9414e+00 -7.9282e+00 4.7886e-01 4.3102e+00 -#> 5.4525e+00 -1.2424e+01 -7.3165e+00 2.8767e-01 -1.4393e-01 4.6123e+00 -#> -1.2733e+01 4.2735e+00 -2.6760e+00 1.1882e+01 -5.1786e+00 5.2276e+00 -#> 6.1855e+00 -8.2518e+00 8.2563e+00 8.2125e-01 1.9322e+00 -2.0311e-01 -#> -#> (13,.,.) = -#> Columns 1 to 8 3.3697 -1.6417 -2.5881 1.4601 4.3656 -6.9630 -4.3418 0.4763 -#> 1.1765 -1.5559 2.3349 -1.8196 -0.6485 10.1627 -6.8879 -7.2488 -#> 0.8502 1.8956 -11.6411 -5.9180 -5.4087 14.6186 -24.2376 0.7743 -#> -1.4274 3.4590 -9.0911 8.5080 -2.2069 9.8465 12.1775 6.1672 -#> 2.4107 3.6783 0.7586 -9.3225 4.0492 3.9703 -6.0808 0.2643 -#> -2.4323 1.7145 6.8121 -6.2586 8.6515 -8.2777 9.1493 -2.4481 -#> 4.9859 -0.4675 -15.7742 6.5457 -1.6402 0.0901 -6.2409 -7.5844 -#> -4.2467 2.7866 -5.5029 6.2417 -0.0762 -4.2140 -9.9406 8.5973 -#> -1.1883 7.0216 -1.1023 -6.5494 -6.9241 4.7190 -8.5682 6.3939 -#> -0.1639 5.8292 -8.6185 -16.1194 3.0383 6.4299 13.7305 -25.3119 -#> -3.3431 1.2020 -3.0795 -5.2280 8.8131 -1.5852 -3.8657 6.2194 -#> -0.8473 0.6341 -5.4182 -2.6758 -2.1707 -6.6575 -0.5795 0.3148 -#> -0.2078 -1.1004 -7.5125 7.7188 4.9043 -11.1906 -0.4454 6.0457 -#> 2.4375 2.4327 -6.1229 -7.1326 7.1260 -7.1742 4.7441 -3.1286 -#> 0.3591 -2.6065 1.6676 -8.6926 7.5336 5.8167 -6.4093 -9.9438 -#> 0.9972 8.1101 -0.7143 -10.3995 -6.7773 10.8206 11.4318 -4.4148 -#> -1.1437 -0.7181 -3.4500 -4.8707 -1.9937 5.6570 16.0217 5.5252 -#> 2.4227 8.3839 -2.4364 3.3629 -5.9968 -12.7720 7.5399 -6.6289 -#> -1.8409 -6.0536 1.2139 -12.4322 8.8837 -0.7812 8.3287 -2.8039 -#> 1.9115 -4.3994 -9.7979 -8.3191 7.2758 4.4275 -16.5625 -4.0027 -#> 3.4311 2.6624 2.9892 -10.4464 -2.2261 1.0225 0.3791 -8.0550 -#> -4.4709 -0.7903 0.7995 3.1568 -1.2654 11.3205 -1.4539 17.6271 -#> -1.7305 9.0243 -13.2431 -1.9026 -16.2815 0.5502 5.2861 7.0291 -#> -4.2350 -1.8609 0.3718 4.0760 0.5236 -8.7421 -6.9448 7.3357 -#> -1.3744 3.5020 -12.2297 13.4129 1.6466 -11.8234 -8.9527 1.1651 -#> 2.0638 -4.1548 8.5688 -6.7970 5.9547 -7.3101 3.1767 -17.7759 -#> -1.1274 -3.6897 10.8214 -4.8866 15.7748 -7.5586 4.6709 0.7997 -#> -4.9754 -8.4870 -0.9146 -1.8098 -2.3627 9.0146 -2.1974 12.3374 -#> -0.2340 -3.5367 2.8041 15.3531 0.9489 -13.3056 -0.0813 -1.9383 -#> 0.3238 -4.0122 -1.6916 9.1604 8.2029 -4.6214 -4.9758 -12.1864 -#> -3.2851 6.1557 6.3449 -3.0137 -10.8634 5.8261 7.5779 5.0891 -#> 7.6729 -5.9596 2.6869 -4.4836 21.3971 -9.8410 -1.4419 5.5365 -#> -2.3335 1.0808 -6.9140 -9.3190 -13.7158 -4.9634 -1.6641 9.4183 -#> -#> Columns 9 to 16 1.4272 6.9005 -8.1758 11.1291 1.9131 0.3419 -16.7107 2.3946 -#> 2.9979 9.6438 -1.1152 10.2243 10.0655 2.6768 0.7035 -7.3764 -#> 0.7594 -11.4686 -0.8667 -6.9460 -3.0995 -10.4431 9.9436 -4.9980 -#> -12.8362 6.3509 8.7563 1.5577 -6.4292 -1.0006 0.2837 2.4161 -#> -0.8063 -11.6076 5.4064 -1.6572 5.0197 -0.9882 6.2821 -11.3196 -#> -0.4334 -5.9995 8.1809 9.3257 -7.2008 11.0680 9.0294 11.7098 -#> 1.7393 -10.8395 -3.5343 -2.6829 -6.3353 9.3118 -4.4164 -0.7906 -#> 3.3009 10.0124 -0.3810 5.4467 -6.9107 -2.5141 2.8867 -7.0754 -#> 9.0013 2.4283 5.4354 6.2346 -2.8392 3.9953 0.3989 7.1242 -#> -1.1859 9.7886 -9.4103 4.9508 -3.2787 7.1588 0.6914 9.1727 -#> 3.9983 -4.8992 -4.3854 5.9145 8.3597 1.4387 5.1238 -11.0169 -#> 6.1850 -18.2773 16.1798 -0.8564 4.5464 -12.6405 16.6850 -5.5169 -#> -14.1683 -3.7150 8.3266 3.9403 -10.1845 3.7448 14.6025 -10.5982 -#> -2.1483 -1.9087 -4.0616 4.0809 -7.5876 -1.6227 6.5654 -12.7282 -#> -12.4211 -2.9235 4.4465 13.7550 -3.7480 -11.1861 -4.5634 0.1438 -#> -4.0812 -0.1487 1.5998 -2.6823 -1.8722 3.0849 0.9512 -3.3778 -#> 20.1330 -4.9240 0.1899 -1.7735 -2.1026 5.9774 1.7584 11.2253 -#> 2.7877 9.6033 2.8122 -10.5991 -4.5545 7.3662 3.2882 1.9574 -#> -1.0704 -11.4845 17.3092 0.6163 7.4801 -0.4920 -11.8827 3.2849 -#> -13.0745 8.8030 -2.1587 -2.8709 -12.8417 -10.1367 -7.5423 -9.6992 -#> -3.0761 7.7702 -2.4629 -3.4838 -3.1326 -6.3012 -0.3314 0.4033 -#> -0.9980 0.8173 -13.4021 5.3338 4.5769 0.6703 7.1546 -5.3624 -#> 6.4712 -7.9052 -8.2864 -10.3298 -5.9160 -9.6548 -6.2402 -3.2102 -#> 8.4025 -13.5483 4.8272 -1.4405 -7.0647 -2.4812 10.6723 -6.7507 -#> 10.1343 -10.1757 -5.0400 -3.4735 -3.4416 -8.9320 -2.7094 17.5644 -#> 9.3466 -0.2112 6.1917 -14.8537 7.7931 7.1170 8.1069 0.8100 -#> -0.9844 10.4327 9.0464 -0.4420 0.5409 -7.9996 4.3075 0.8815 -#> 4.1023 -5.1221 1.8569 2.7524 1.9987 -3.7410 1.0878 3.2000 -#> 4.1913 2.2717 14.7937 -8.9496 -7.7735 1.2565 10.5878 8.3647 -#> -19.0380 2.2726 -6.1166 9.6046 5.4028 -8.7725 10.7857 -15.7318 -#> -6.8082 -8.1418 2.6750 3.2514 -13.1861 3.7538 14.1491 -20.7132 -#> 2.5634 -7.6944 -1.8655 -0.1787 -5.3450 5.7111 1.7207 -2.0251 -#> 2.7810 -2.1352 -14.3000 -14.9511 -4.4896 2.1630 4.6799 -10.1312 -#> -#> Columns 17 to 24 4.1233 -17.0780 -3.9538 -2.8758 -3.5483 -7.9644 13.6918 7.0413 -#> -4.7687 0.5470 1.2882 -1.0949 -0.6276 1.5143 -9.6125 -1.6341 -#> -15.2562 -1.1686 -16.4718 8.9318 7.9628 9.2988 -2.5182 -9.5424 -#> -0.6619 5.0462 -12.8017 1.7106 -15.0936 14.4036 -13.6283 -22.3025 -#> -8.0790 -0.9867 3.7640 7.9434 1.0856 11.9036 15.1968 -13.2958 -#> -4.3092 -4.7185 -0.5972 7.3328 5.9813 0.2981 7.5770 5.4590 -#> 9.5222 -13.4433 -6.4562 -3.4667 3.6051 19.5683 -0.8224 11.0804 -#> -7.5286 -8.2387 -3.8117 9.0431 -1.1148 -11.5416 2.0163 2.2055 -#> -2.1770 6.3546 -7.6080 -5.0374 -6.2474 -7.7696 18.1866 6.6824 -#> -7.2299 -4.4548 -7.4621 2.6389 -14.8909 -8.9010 -13.5682 -8.0851 -#> 10.6522 -5.2483 4.8124 -14.9675 13.2051 7.2541 20.9926 -3.5390 -#> -17.9549 14.9953 -11.2778 -11.2486 -0.9213 1.1407 15.7856 1.4826 -#> 13.3178 -6.0633 -3.3993 -16.2574 -7.6736 4.8620 11.2303 -21.1926 -#> 15.5492 3.6144 6.5018 -6.6918 -13.9382 -14.1719 -3.3112 -1.1664 -#> -12.5781 6.3902 -10.8792 6.3373 8.9104 -0.7249 0.7847 -9.6297 -#> 5.4024 6.1987 0.7445 6.3244 -7.0532 13.4351 -0.4791 -7.8003 -#> -8.9566 4.4521 3.5503 0.7959 -2.4220 -4.2371 -16.6129 -3.5669 -#> -5.0858 -3.2332 4.4177 -2.7194 -5.7067 0.9085 -0.5359 23.8047 -#> 6.6007 1.4694 -14.1240 5.0184 2.4091 -14.1085 -10.9890 -13.9345 -#> -4.3680 -6.0325 5.6439 -3.9697 12.0833 -1.6750 -1.3681 -2.9893 -#> 3.2750 1.4166 7.3507 -13.6353 -13.9985 -15.8404 9.4659 5.0599 -#> 7.0789 1.9307 -7.8050 5.8272 -6.3961 -15.0296 10.2564 8.1358 -#> 2.6946 -0.3610 -6.2785 15.8479 1.6669 -1.4408 10.4534 14.8757 -#> 7.3278 3.8470 -8.3954 -5.5899 -7.4549 -2.1057 4.4085 16.0832 -#> -4.0996 19.4165 -3.9743 0.4099 4.5863 8.4134 -2.0642 4.1411 -#> -7.2185 -5.7259 -2.9592 -1.7083 -2.6126 -13.4320 -22.0603 7.3150 -#> 11.2710 -4.9157 6.0592 -2.3185 2.4728 6.5344 0.5997 -0.1768 -#> 1.0739 4.0677 12.0173 -1.5614 -6.8807 1.5222 8.9047 -7.8059 -#> 1.2063 7.1509 -8.9546 8.0253 -1.3432 -5.8292 -8.4954 -1.0355 -#> 7.4239 -4.5134 1.7243 -5.2007 -10.9802 16.0628 11.1323 -8.3712 -#> 4.0806 -0.9152 -2.2090 5.6934 -4.1941 -4.5412 9.3974 -0.6221 -#> 15.5935 0.7072 -10.0603 5.7345 1.6642 8.9193 5.1053 -2.7519 -#> 7.1138 -12.1894 0.6080 7.8461 -8.7989 22.0221 6.3918 9.6505 -#> -#> Columns 25 to 32 -2.6800 -5.7408 5.5992 2.6666 5.3303 -4.8828 -11.9063 3.5820 -#> 6.6322 -2.1588 -2.1263 1.4245 18.6545 -7.0352 -17.6687 -3.6482 -#> 12.9900 1.3050 -11.1928 -9.5810 -5.0537 8.9391 2.4537 -3.9121 -#> 11.7591 9.5109 -13.7638 -6.9739 6.2391 7.8595 -18.5428 -13.9119 -#> -7.2973 4.5046 -8.6841 0.8250 -1.5067 9.7065 7.1418 17.4973 -#> -5.0957 4.2618 6.5113 10.0076 2.1287 1.5233 13.4246 1.1008 -#> 13.6883 12.8369 2.2686 1.3899 -3.6863 -4.7827 -18.9132 0.2136 -#> 0.2509 10.7896 15.7100 -2.1480 2.9210 -11.5030 -2.3106 1.9727 -#> 1.2314 -13.5424 -16.2364 -15.6695 -8.0330 -4.8299 -2.7412 -10.9407 -#> -7.7083 9.8008 -1.3087 -8.5017 -15.5218 -5.4738 -14.0310 -5.9766 -#> 3.9822 -3.2992 4.6238 -6.0679 -6.0140 -5.3986 -3.0122 7.2745 -#> 0.5601 2.7388 -11.0853 -0.6145 -2.6784 -3.7761 5.2345 -10.7856 -#> -4.9741 3.9108 19.4934 -4.8232 9.6452 1.3108 0.9940 -2.7460 -#> 1.2843 -7.5330 -7.7228 12.3964 -4.2323 1.3258 -1.2630 -16.1458 -#> -1.2016 12.5133 -14.4585 5.6997 18.9993 10.7756 5.3936 7.2677 -#> -1.4915 2.3885 3.8869 -7.1487 7.6098 -3.9885 -3.6000 1.5721 -#> -9.4018 6.0380 -8.7007 15.1696 11.1714 3.3346 8.8122 -1.4180 -#> 8.4743 -7.6606 2.2928 6.4204 -2.3149 1.3092 0.0668 -23.7015 -#> -19.6935 7.9098 4.7952 -0.2914 -5.0775 5.1258 -13.0558 -19.8275 -#> 14.4639 -7.6469 1.4158 -1.6512 10.6585 7.2336 -15.5307 4.4070 -#> -20.4726 -3.5960 16.8774 12.4712 -10.9533 -14.0708 0.3716 -0.7920 -#> -6.4765 1.7232 11.5085 -4.0904 -4.2319 -14.4870 3.9247 12.0280 -#> 8.0161 -5.6225 -4.3256 -0.7993 5.5562 -0.6457 -10.7856 -8.2703 -#> 5.5643 -2.1936 -12.2500 1.4277 -7.6654 -3.2104 -5.2612 9.9382 -#> 5.8360 -5.2719 -11.2102 3.7008 -4.7814 4.4835 -3.3795 -11.0323 -#> -5.5010 -5.6203 -4.4000 7.3807 -1.5143 0.2017 1.5784 -7.5409 -#> 2.7717 3.4020 -14.4807 5.5100 -13.9762 -4.2596 -3.8514 7.4326 -#> -16.6801 -2.2176 -3.4166 -3.9260 -0.4806 1.3265 -18.2089 -8.6009 -#> -0.0372 9.5898 -11.3903 -1.9474 -2.1608 0.1678 10.6816 0.2370 -#> 7.6345 9.2515 17.8873 3.6420 -7.1994 5.8380 -6.9410 6.9322 -#> 7.5231 -5.2615 4.9636 -4.4058 -2.2565 -5.9325 5.9708 1.2859 -#> 4.2971 -4.3269 -0.0417 0.7345 21.4405 3.9511 12.8331 0.6572 -#> 6.0391 -3.2032 -9.0262 -4.9702 -5.1867 6.1670 -3.9718 0.8178 -#> -#> Columns 33 to 40 10.8348 14.7557 3.3659 -0.1846 -11.8096 4.6553 4.4372 3.0805 -#> -1.4661 -23.1553 9.9883 2.0956 4.4233 -18.6846 -8.7162 -8.2316 -#> -7.0449 2.0095 3.8353 -5.8263 19.1000 -13.2257 3.6385 7.9960 -#> 17.4574 -10.0265 -0.9992 -17.1924 -1.2527 -11.1004 3.5991 4.4013 -#> 0.8899 2.4346 -4.6935 -5.2829 3.8203 -5.5734 3.9520 16.4752 -#> 4.7666 15.8362 -2.0676 -1.8818 1.2573 20.5019 -14.3063 17.9730 -#> 17.2786 -12.8405 -3.7920 5.0189 1.6979 0.9932 12.1372 0.0466 -#> 3.7036 6.8519 -9.6157 6.8130 -9.7540 -3.0379 8.6012 -5.9710 -#> -5.5511 15.5132 -6.4415 -14.1951 3.1228 -9.8643 -1.0604 10.2775 -#> 14.2856 -10.0348 -12.9017 -7.8481 0.7524 -14.6779 -16.8381 8.3535 -#> -10.8446 4.1617 -6.2735 5.5409 2.7467 -14.3498 7.3312 9.8202 -#> -3.1855 6.0698 9.7219 -3.7233 -9.9178 -3.9497 1.5279 18.1157 -#> 2.7665 3.5974 -11.1750 -2.1840 -10.3358 -0.4430 14.4890 -2.0752 -#> -7.7241 -2.5540 8.6497 8.3299 2.8415 -20.8746 -24.1512 18.1693 -#> 9.1557 9.8385 -3.6903 7.4441 0.4999 17.7083 -16.9265 3.5991 -#> 23.0757 -8.6160 6.5006 -4.3907 10.3004 0.7045 1.5834 -10.7031 -#> -4.5615 -7.9168 2.6719 -0.5778 5.2735 1.1896 -2.8907 10.4492 -#> -9.2825 -7.2149 -0.4448 14.7885 -2.6618 -8.3046 4.2973 -6.7991 -#> 6.1126 20.5788 -26.1840 -1.7718 -11.1458 -7.2249 2.3674 -9.6824 -#> -1.3163 5.0976 3.1525 6.4770 6.3339 0.9214 -2.7082 5.1429 -#> -3.1457 12.5447 8.5838 2.9981 -7.9624 -12.5725 -10.0365 -9.2533 -#> 0.9133 5.9405 11.3644 -18.7311 4.3938 -7.6613 12.7711 -2.6682 -#> 30.8365 -7.4982 0.9603 21.9556 -6.2884 -11.5021 4.4946 10.3176 -#> 14.4685 0.7428 -16.6316 -8.9628 -4.4752 3.2429 -1.9568 11.5486 -#> 15.3273 -3.5033 -3.1176 4.2342 -2.5407 10.6061 -6.7412 0.8499 -#> -1.9486 -13.6522 1.0336 7.3432 0.7010 12.5901 -9.1793 10.5238 -#> -7.0167 -0.1492 -8.6312 5.7787 2.9533 14.0871 -16.4314 2.4016 -#> -18.2783 16.0457 8.4394 -4.0634 -8.0765 -7.8682 -6.6131 3.6371 -#> 3.8207 -4.2039 -16.9315 3.1379 -6.0499 1.3322 9.1753 -1.0800 -#> 15.7705 -12.9205 -13.6020 8.6659 6.2298 7.5931 -2.9307 1.7454 -#> 3.2957 16.8939 11.6730 -2.9389 8.2990 -14.7993 -2.8298 9.3996 -#> 1.9768 2.8376 3.7889 3.5501 -10.1581 -5.4513 8.9801 -7.9636 -#> 10.2112 -16.3559 -7.1759 -0.9930 9.6437 -1.5389 -1.1243 10.5625 -#> -#> Columns 41 to 48 -3.3578 -1.1139 -2.4762 -11.2209 9.3577 -8.8033 13.6489 4.8650 -#> 6.5548 1.7133 -0.1935 5.5874 -10.3480 -6.8775 3.3956 -6.4977 -#> 13.0252 -6.4013 -1.1414 11.4570 -7.0205 6.2467 -4.4751 -4.3536 -#> 1.8241 28.0728 -12.6101 8.6788 2.0485 6.1478 -12.4244 -16.7476 -#> -8.6532 -8.1284 6.3043 -12.8859 -12.4685 9.6203 -18.7328 -18.8922 -#> -15.2930 -5.9777 -0.0329 -28.5118 -3.1383 2.8168 0.3067 -13.5621 -#> -14.5134 -3.2274 -0.0055 4.0627 2.8727 1.3799 -6.3114 0.0714 -#> -0.6586 5.8188 -6.9768 -4.4756 2.2888 2.8688 -13.7075 11.0588 -#> 10.5744 13.1215 -2.0282 11.4851 2.1987 9.1812 3.6154 14.4257 -#> 3.2649 20.1229 -6.1985 -15.9335 -3.7413 -2.8519 -9.2608 -15.2161 -#> -6.5173 -7.6655 -0.2815 -4.8623 2.1578 -1.2280 9.3485 -0.0405 -#> 11.4033 7.2183 -8.9260 1.6441 0.8568 -7.4824 1.2641 3.8432 -#> -6.9809 6.6826 -9.4452 -2.2702 3.1859 -2.7236 -9.9576 1.2124 -#> -5.0526 25.2570 3.2705 -8.0824 0.9330 -8.9063 14.1930 -0.4507 -#> 1.8832 -4.0172 0.1316 -12.6761 -5.1909 9.1281 -10.9429 18.3555 -#> -3.4178 0.2063 1.9687 3.5427 -13.6490 3.5390 -2.1170 -7.5645 -#> -4.9405 -9.4943 -8.6500 -7.4028 -4.2744 -15.9314 10.8900 -7.9999 -#> -5.6152 0.7457 -8.4452 15.5308 -9.3691 -2.9904 10.8867 2.9986 -#> -20.7752 -1.4896 7.0495 -8.1634 6.6833 18.6335 -6.1095 18.3737 -#> 10.9329 1.9044 6.1540 -2.9243 -0.0544 -3.7527 -3.9820 10.0857 -#> -1.5593 -0.9560 16.8549 -3.6897 -10.3189 -0.4447 11.5176 -5.2639 -#> 6.5579 13.6265 -3.9144 10.4601 3.4433 9.1518 6.4529 -4.3566 -#> 11.3136 12.5980 7.1762 -5.4726 -20.0146 10.0288 -6.0000 -3.1094 -#> -6.4761 -7.8402 9.1078 1.4559 -1.1450 2.7579 4.0419 -2.2974 -#> 3.5403 -6.0334 -3.7099 3.2879 6.2914 -9.1560 0.7688 -11.4910 -#> 4.6251 -0.9901 1.4971 -9.3215 -6.6628 -6.7178 8.7838 6.6056 -#> 2.6455 0.9620 13.9202 -10.0320 13.9161 -1.2996 6.1395 2.7685 -#> 0.3381 3.3796 -0.1898 -3.0536 7.6887 1.7112 16.5639 -2.5761 -#> 5.5124 -6.3711 -2.4787 7.4375 -13.7518 3.8744 -4.3973 2.8493 -#> -2.6076 -9.5805 -3.0601 -13.9946 4.2460 -6.1053 -2.4415 -2.1601 -#> -3.5259 8.7255 -4.6512 9.3553 -13.5940 -4.1108 14.2099 -19.3789 -#> -9.5535 7.4221 11.2101 -15.1180 6.3322 -0.1481 -11.3736 12.0167 -#> -4.7469 3.2653 -3.6165 -11.0855 5.2520 -7.3072 -6.8884 -0.6938 -#> -#> Columns 49 to 54 -9.5841 -3.1883 4.8819 0.9323 2.6546 3.5816 -#> -0.0657 -3.6876 6.0528 13.6310 12.1754 0.8895 -#> 6.4921 -1.6472 0.3413 -4.9985 -5.0039 10.1445 -#> 17.9599 -1.9585 2.2322 8.4005 -2.2082 -4.5209 -#> 1.2629 -0.2790 15.5301 7.7452 7.6565 8.6430 -#> -8.3178 18.0239 1.7017 -4.8925 6.3538 1.4147 -#> 1.9469 6.5868 -6.3767 11.1967 -4.1276 -3.9215 -#> -6.0379 11.6491 8.1192 14.2532 2.8171 -3.9183 -#> -7.5273 -5.7284 -2.2543 5.3219 -13.6635 -1.2019 -#> 11.3169 16.1229 5.3380 5.9345 7.8532 -1.9193 -#> -1.1561 0.6397 -5.8041 -5.6023 3.9126 4.1689 -#> -11.1197 9.0098 0.2090 -4.2656 5.6267 2.1441 -#> 0.2229 23.9966 4.7711 -3.8389 -2.0389 0.9057 -#> -0.7366 -1.9622 -0.0843 5.3703 7.7059 -5.1786 -#> 7.1206 -9.2183 -13.2013 2.0726 5.0482 0.8396 -#> 14.2594 7.7721 3.2311 -13.0711 -4.3741 0.9782 -#> 3.7075 11.6253 2.4502 1.5064 0.6112 1.8650 -#> 0.5343 4.5191 -2.2040 -3.6395 3.1832 -3.9657 -#> -10.2922 0.4036 -10.7387 -0.4683 7.3636 -4.6882 -#> 5.1110 2.4479 -8.0885 -0.8889 -1.2094 -0.3844 -#> -4.1646 14.5772 16.0076 -7.5377 -3.2482 -3.9920 -#> 0.1385 -18.6015 0.7036 -10.1109 -3.2682 3.0401 -#> 4.0277 3.9081 -8.8889 2.1189 -7.2020 -7.7930 -#> -5.4221 -2.3047 -2.3612 -5.3930 1.0088 -1.1463 -#> 10.4664 -0.2838 2.3142 -2.4206 -3.5280 -7.2229 -#> -5.9612 11.5086 -9.4708 9.8642 0.9766 -3.3587 -#> -0.9830 -5.6997 0.4194 -5.3989 -7.7813 0.5598 -#> 5.4461 -11.4660 14.4418 -5.9451 -5.2957 -3.8965 -#> 9.3387 3.2802 13.7992 -1.7918 2.2744 -0.3253 -#> -5.5320 6.5413 0.8090 0.4279 1.2553 -0.8095 -#> -6.7395 4.1986 -5.4247 -12.3497 4.4859 -1.4505 -#> -0.5004 -13.5893 -4.6648 -16.0753 -8.4585 -0.8199 -#> 11.9082 0.3645 -0.3096 -5.3894 -1.3357 -2.1738 -#> -#> (14,.,.) = -#> Columns 1 to 8 0.3770 11.4530 12.3254 -8.1717 2.0064 9.2537 -6.0489 -2.5420 -#> 3.3567 0.3686 -2.1060 -8.9118 -3.2569 8.7885 -6.6666 -0.7948 -#> 1.4497 -6.2063 -8.3565 5.7694 0.5264 6.2934 -8.0693 -3.4899 -#> -3.0604 -2.0974 3.9263 -2.7745 -3.1499 14.5660 10.1938 -4.8976 -#> -5.2067 -7.2476 -3.7690 2.6146 -5.7421 -14.2176 -5.4898 9.6478 -#> 2.7384 9.4170 -1.8324 9.9095 6.4603 -9.8938 -1.7702 5.1115 -#> -4.0225 2.1869 4.1249 -6.0901 2.7495 -9.6204 1.9513 6.8786 -#> 6.3655 -0.8163 -3.4434 8.3752 -2.3094 6.4114 -4.9764 0.9664 -#> -0.0141 2.9467 9.7410 -3.6164 -2.9697 3.0740 1.8683 15.1830 -#> 4.5287 7.7451 1.3771 -5.9612 18.3195 3.0365 -13.9349 0.0934 -#> -2.5749 -7.0213 3.1655 8.8867 7.6434 -14.2088 6.4947 0.1312 -#> 0.2012 0.2631 -14.1806 9.5833 2.1844 -8.8791 6.7946 -6.6629 -#> -1.3827 -1.3199 4.2433 13.1405 -5.5283 5.0318 7.1572 -6.3521 -#> -1.7635 -9.2385 1.3914 -0.1005 3.9263 0.8530 2.5017 -0.9691 -#> 6.6711 -7.8012 -4.7570 8.3643 -3.3958 -8.0918 -3.4167 2.7507 -#> -0.3402 0.0913 6.1923 -0.4942 9.8246 -10.3545 -3.3388 -2.1711 -#> -0.1663 2.2720 -4.4339 11.3540 13.9740 -2.5846 2.5917 8.9986 -#> -7.9547 3.4470 2.9946 -0.8519 -3.0121 5.5671 2.6166 -6.7560 -#> -2.8500 14.7417 11.9077 0.6807 -3.3666 -5.2585 -1.2208 5.3802 -#> 1.9767 -10.0252 -11.7052 -0.6985 8.8981 -7.7196 -6.4009 -11.7299 -#> 0.5899 8.1488 -1.2487 3.1090 11.6321 -1.5359 4.3982 -9.4264 -#> 4.3843 3.0785 5.5632 -9.2855 -6.0409 0.6462 0.5483 -0.7019 -#> -1.0347 -1.7948 -18.4069 4.8440 3.1485 -12.7971 2.4637 13.6364 -#> 1.7668 1.3412 -1.5615 5.8986 1.3487 -17.8216 3.9517 0.0958 -#> 0.1322 0.1879 -17.0802 7.1159 13.9271 -5.1603 1.4898 8.4073 -#> 1.5698 9.0832 4.5893 6.2004 6.9843 -1.5408 -6.6988 -3.6267 -#> 3.2580 -1.6388 -6.9130 -4.1207 3.7113 7.9904 10.7252 -1.3340 -#> -2.4975 -2.1435 4.3989 9.1296 7.1549 11.2097 6.9807 4.6930 -#> 0.9505 -3.5208 3.4347 18.2746 4.8642 15.6792 8.6931 6.0316 -#> 2.9614 -2.0693 -0.3657 -4.5516 2.1412 -5.9561 0.8259 7.0303 -#> 0.2068 -7.9595 0.9035 -1.1417 -6.3314 -5.8986 -2.8805 -7.1754 -#> -6.0468 1.5532 7.6197 4.5963 -9.7855 12.0498 4.3925 12.1035 -#> -1.9815 -5.6976 4.5649 0.0077 1.1741 15.6724 -8.5468 13.0375 -#> -#> Columns 9 to 16 14.8517 -7.5338 2.0898 7.6614 9.8378 -4.6831 -10.0600 -2.1377 -#> 0.2623 -4.5503 -9.4165 8.9472 5.1810 1.5789 -4.1377 10.3595 -#> -11.9591 -22.1948 -3.1148 9.7955 11.0973 17.6188 -16.4940 6.3169 -#> -28.6606 -0.8674 -1.7593 -0.1612 7.4730 0.9168 9.7108 4.6269 -#> -14.9942 -7.2785 -5.0295 -3.6556 -1.4412 3.0655 -4.7327 -2.4419 -#> 7.7481 20.4307 6.6899 3.0492 14.3508 6.8140 -18.2257 -9.2996 -#> -6.0070 6.3098 -6.6324 9.5148 -2.5147 7.1132 6.0873 -21.6238 -#> 6.2963 4.4553 4.4620 15.4355 -2.1113 13.9785 5.0768 3.0637 -#> -0.0940 -11.8444 1.7085 7.9298 -21.2709 12.9068 -1.5473 1.5120 -#> 3.5864 -1.8245 -3.1646 3.0038 17.3009 3.9642 4.0612 -17.3035 -#> 6.0550 -2.8465 6.7859 5.7545 -3.3479 7.4782 -0.4281 0.6236 -#> -7.2762 -8.2545 -3.9465 1.5299 2.3039 3.3165 -10.5609 16.3569 -#> 1.4526 8.4141 -3.7688 -0.0326 6.0030 -10.1505 -4.4883 0.2529 -#> -8.2809 -3.0374 -28.4246 -4.4572 15.7466 -10.8104 14.7449 -3.9600 -#> -15.1718 4.2424 9.0816 -0.5463 -4.5732 -3.3233 -6.8652 7.9014 -#> 4.3162 15.7039 20.4732 -12.0980 7.2798 -3.6740 -1.9739 -12.1692 -#> -2.6370 0.7528 -9.7031 1.6575 8.0723 8.4717 -2.0160 3.2745 -#> -4.5273 -0.0800 3.9357 9.6299 -14.8624 -5.6028 -1.8641 6.1496 -#> 8.7650 8.5841 8.5647 4.0912 -27.8494 6.4642 -8.0686 4.8601 -#> -5.1022 -7.4816 0.6639 0.6033 2.0572 4.6621 -1.3301 -3.6485 -#> 12.1442 3.4068 -2.5187 -10.2796 -14.7906 5.9140 0.7293 -5.2769 -#> 8.1061 -4.8040 -2.1649 0.6224 11.7789 16.9427 2.5081 6.6288 -#> 4.9209 -7.8456 -26.9416 -0.1341 0.9170 12.5050 8.5160 16.3678 -#> -3.3597 8.2125 5.1914 -7.7349 7.0574 -6.7789 -8.3004 -8.7751 -#> 5.3466 -3.3574 6.1179 -13.2464 14.9734 -9.8865 -19.7086 19.1938 -#> -11.9796 6.3637 5.0602 7.1964 1.0075 5.9998 6.7007 -9.5336 -#> -4.5889 13.0579 5.0471 -13.9253 1.0684 3.8819 6.7362 5.6673 -#> -5.1198 -4.9673 10.4607 0.9514 -6.6400 6.9641 -0.0188 8.3754 -#> 2.1722 15.0798 6.2502 5.0564 9.8680 10.7211 16.0995 -4.0884 -#> -9.4826 -2.3942 14.4484 -1.4258 4.7605 -15.5945 -9.1665 17.3647 -#> -9.1650 1.6061 -2.9621 -12.2872 -5.8349 -4.7291 15.9064 3.0888 -#> 8.6125 -0.0677 -1.3918 -11.1935 5.1555 -11.0749 7.4689 -3.5442 -#> -2.2461 -0.5258 -7.8684 1.0981 11.2391 -1.9608 1.9035 -7.2017 -#> -#> Columns 17 to 24 -4.9053 -2.2667 -1.0283 9.6957 0.2477 -10.0500 -4.8617 0.0063 -#> -13.0942 1.2088 -5.3956 -1.5164 15.8247 4.6247 3.8747 -0.5828 -#> -10.8099 4.3983 -8.7463 -3.5179 2.2671 5.8489 0.7554 -5.0317 -#> -1.0272 8.7758 -6.7657 4.8201 6.0469 6.8353 -1.8373 -8.9972 -#> -4.4041 5.9650 6.4497 -1.7451 -12.9368 10.2491 8.8281 8.5340 -#> 9.2032 -14.1359 -18.1122 13.0184 6.0143 -9.3855 0.8192 7.0896 -#> 3.8926 -9.6341 4.3712 14.9302 -10.4555 2.5968 7.1624 -5.0525 -#> -6.0445 -0.9045 10.0906 -2.3694 -1.8475 -3.1114 7.8476 -1.0478 -#> 13.0187 10.4528 4.5314 4.6289 -6.1119 -3.1832 -17.6575 -9.1404 -#> 15.6379 -0.9983 -15.1494 14.3846 1.5959 3.0012 -1.9903 -2.3397 -#> 10.5089 11.0922 -10.5190 3.0268 -6.0590 8.4724 -7.9977 6.2165 -#> 2.7381 -5.1110 5.9924 10.3621 -14.0646 -2.0999 -11.6789 -1.5407 -#> 2.9158 -4.4157 1.3596 9.1929 -6.0317 -2.0577 -0.3624 8.0497 -#> 0.9831 -17.8929 11.4422 15.9151 10.2596 0.3767 -3.8407 -6.7646 -#> 8.4754 -5.1325 -5.9244 -4.3481 -2.2820 9.5119 -3.3970 -18.9483 -#> 6.4051 -5.7837 -3.7830 2.3501 -1.5908 -1.0771 -7.2282 1.1143 -#> -4.5312 -6.2030 1.3716 0.0105 -0.7657 11.8283 14.8129 4.3418 -#> -20.4536 6.8824 3.8435 12.0614 7.8767 -3.0026 5.1493 6.4343 -#> 6.8865 8.7946 -7.3705 10.7327 -6.2733 -3.3637 3.3572 -12.2461 -#> 6.0896 1.9243 -4.6876 -1.3111 9.2689 -1.3074 -17.4840 -7.6172 -#> -6.5077 24.6859 1.1896 6.5526 5.2203 -8.3758 -0.7854 2.7145 -#> 0.3053 -0.3795 5.7081 -9.1353 -10.9340 -7.9618 -7.4539 0.8218 -#> 1.8895 0.8432 4.5600 -7.0166 -5.9432 3.2469 -1.9923 -5.0270 -#> 2.7993 -9.1268 -3.3086 0.9909 -9.4538 3.3323 -20.2697 5.6602 -#> -11.5537 -6.1840 -5.3921 17.5635 -2.1432 1.7829 -1.8565 8.2781 -#> 0.6469 -8.2766 10.0507 -10.9065 -8.3207 -8.7234 2.6877 1.4146 -#> 3.9395 -10.7987 -2.3744 -0.4842 9.9037 -6.3236 -16.1055 1.0521 -#> 0.3880 21.7167 8.6837 -1.8329 9.5305 7.4091 -7.5914 -9.3135 -#> -11.2178 -0.9932 4.0680 -18.4544 7.8578 4.7529 -9.2014 3.2285 -#> -5.4010 8.5502 -7.7846 -0.5676 -3.9020 7.2746 13.7788 4.3461 -#> 7.3959 3.2083 -5.1978 -0.5509 8.3545 -5.1124 -16.1492 1.5927 -#> -5.4056 -7.4793 -1.7978 -0.9334 -20.6932 3.2113 8.4319 -12.3685 -#> -1.3231 -0.5456 -8.2329 1.9113 -5.4219 1.5084 1.4032 7.3739 -#> -#> Columns 25 to 32 -4.0028 4.8457 -5.0337 -5.2634 5.4246 -7.4923 -6.1144 10.9337 -#> -5.0902 -2.3824 0.2125 8.0339 1.0811 -8.2466 -3.7509 -5.0870 -#> -9.6053 -12.6881 6.7873 7.1377 11.8440 -9.8080 9.0595 12.2712 -#> 0.4937 4.3730 8.4381 12.5765 -13.4349 -1.9148 0.0590 5.0614 -#> 5.8021 -0.0977 7.5855 16.1178 5.8871 1.0429 -3.0092 12.8243 -#> 2.4016 -4.3190 -6.2966 2.1748 -1.2029 -5.1658 -15.5438 -2.8358 -#> -2.3391 -11.2238 2.7683 0.0513 -6.0206 -8.7212 1.2179 9.4017 -#> -4.2383 -3.6747 -0.1034 -1.2900 2.7896 3.6094 -5.0779 -11.1294 -#> -0.4860 -1.2960 -7.0285 -3.7450 0.6067 -2.7440 -2.7454 2.7484 -#> 5.7242 6.1890 -6.7480 10.1540 -5.7611 12.0798 -8.7057 7.2471 -#> -4.3361 -14.2966 9.0196 -4.6395 7.8449 8.9978 2.8720 -6.5707 -#> -2.1374 -4.8998 -0.3253 -1.8154 -4.7756 0.1213 4.8799 0.6199 -#> 3.0059 -20.9024 2.4299 -4.7674 -3.9045 -1.9628 -6.2359 -4.9126 -#> 4.3799 7.5832 -0.6820 13.5544 -13.8275 6.0846 -12.6547 9.0053 -#> -0.1091 13.7221 -3.1154 7.0069 -11.3168 7.5186 -4.2445 2.5850 -#> 1.4133 1.5797 0.1667 4.9029 -14.3867 0.2739 0.6428 3.6051 -#> 1.4212 -10.1993 -11.1234 5.9852 -9.9299 -4.6147 -6.8913 -3.7936 -#> 1.9547 2.7585 2.8571 -8.3228 -8.9590 4.0832 -1.1072 3.0466 -#> 11.6103 -2.7016 6.9391 -3.3514 -8.2382 7.7049 -13.1237 2.9195 -#> 6.5049 0.7257 -1.6754 -13.8499 6.7940 6.9524 14.0003 -0.5845 -#> 15.9858 10.4259 -1.7270 4.0562 6.4757 -2.5022 -2.3366 -8.7249 -#> -20.8702 7.3881 -10.0172 -4.7277 -2.9041 6.2343 0.9083 -6.3604 -#> 11.2073 -18.9086 -10.6599 -6.8272 10.4249 -2.8861 9.5068 3.4434 -#> -3.0630 -3.0321 12.9202 -5.8672 4.3428 -16.0467 6.4028 16.5198 -#> 2.1288 4.1729 1.9260 -6.8011 27.9381 -14.9567 5.8274 0.3583 -#> -0.3553 -4.5055 6.6590 -16.1631 -3.7251 4.1277 3.0556 10.5262 -#> -1.7344 -8.8326 2.0646 -6.5968 -3.3695 -2.0245 -6.8629 4.3947 -#> -3.8936 -4.9729 -9.2678 7.3137 13.4529 -1.2636 0.7179 -4.3780 -#> 7.6871 2.5940 -2.2730 -2.1216 -6.6604 2.8323 -16.7128 -0.9180 -#> 11.0534 0.7482 -5.2661 6.5815 3.0277 -9.2092 12.3954 17.9892 -#> 1.9958 1.8362 13.7950 4.5558 -13.7289 8.9340 4.6768 2.5235 -#> 15.4579 -0.8263 -0.8164 9.3055 -23.9530 6.0654 5.2620 -3.2954 -#> 7.7474 -13.7643 0.0998 3.7900 0.5168 5.0000 1.4169 17.5255 -#> -#> Columns 33 to 40 3.7398 11.9164 -2.1994 17.3545 7.6919 18.2535 16.2565 3.0534 -#> -22.1746 -2.5972 -10.5328 -5.6384 17.1634 0.1492 2.6765 -8.7797 -#> 15.7078 13.5311 -1.9342 4.0391 -6.3492 0.9819 9.8864 -8.1232 -#> -7.4723 1.2027 5.8385 -15.9131 -16.5342 1.8749 7.4802 -13.5046 -#> -14.5844 -6.6044 6.7171 11.3866 -1.6240 4.8207 14.8608 -5.6832 -#> -5.3270 -8.5717 -11.8968 -5.8006 8.5304 6.1275 5.4905 -1.5662 -#> 20.9067 -3.2596 16.0589 -8.4640 -4.7471 0.1439 -9.1014 1.8498 -#> 6.4862 0.3508 5.7172 -7.2685 16.5987 -5.4466 -11.0539 9.2751 -#> 8.8171 3.6017 4.7839 6.9964 -12.3529 -3.2227 6.5608 18.1055 -#> -1.8451 -7.4598 2.2739 -2.4590 -23.3320 3.6801 -1.7517 -0.7305 -#> -2.1438 -0.6471 -15.6980 9.3079 -3.2956 3.1527 1.0967 6.6124 -#> -9.3272 5.5347 5.8071 -15.6016 23.7244 -3.1802 2.5827 2.6769 -#> -1.8480 3.5504 -9.2644 -16.1763 7.2894 13.7280 -0.3345 -6.5412 -#> -6.9716 -2.2138 7.0869 -13.8287 5.5485 -20.5346 -9.7861 -2.8131 -#> 0.6799 -17.7559 2.9644 -3.0908 8.0651 -5.7967 17.4581 -7.6221 -#> 1.4858 -4.2815 9.1155 3.8075 5.8086 -0.4867 3.1360 -3.1349 -#> -10.7100 -4.7337 -4.7890 -9.3010 11.4710 5.1431 -6.5741 -6.5903 -#> 1.1697 2.8402 0.9476 -12.3607 13.7122 -3.1704 -12.2792 -3.6520 -#> -1.7845 -10.8223 1.3488 -4.9230 -6.2594 -8.1701 8.8945 7.6211 -#> 9.5109 13.8461 -2.3755 12.3814 -1.8163 -7.5476 -0.9768 -0.7303 -#> 13.7919 13.6527 15.5735 10.0841 10.3817 10.6021 9.0033 1.7628 -#> 13.4732 5.4684 -8.3357 -10.4179 -7.9186 -15.1649 -8.5268 13.5443 -#> 7.3305 -0.4604 10.7282 -6.5767 3.2823 -7.0912 -6.9034 -7.9658 -#> 3.3321 13.0385 3.1378 1.2988 -11.9930 11.8531 -7.0118 -3.9382 -#> 2.0293 9.2086 -0.8242 12.7483 -19.4353 0.8570 -3.8385 5.4355 -#> -11.7978 4.2577 -3.3972 3.6214 11.9412 -15.4736 -8.1722 -5.0488 -#> -9.0630 1.7378 -9.9009 3.4573 -3.5296 6.7400 1.7715 -6.7341 -#> -8.6042 -2.0558 0.2023 -2.2278 -11.8652 1.5105 11.7174 2.7020 -#> 7.3962 -5.1905 4.9489 -4.2631 3.5248 0.8108 -4.9632 -8.9748 -#> -14.8573 -14.3859 14.9262 -2.3562 -20.1310 4.1151 13.4385 -11.9751 -#> -5.2578 13.2722 0.9739 -5.3776 3.9516 3.5788 -3.9147 -5.6340 -#> 7.1877 3.0640 -10.6718 -2.7446 -0.6904 8.7616 6.3383 7.2771 -#> 15.3132 2.0735 4.8753 0.2851 4.6359 -0.4220 9.4668 -14.1132 -#> -#> Columns 41 to 48 -2.7489 -8.7637 3.4835 1.0170 -0.7160 -1.7874 4.3668 18.0269 -#> 11.4088 -3.2957 -4.7056 7.7861 -8.8527 -3.9654 9.5578 -0.8020 -#> -2.7851 4.7159 8.3065 -5.3754 2.2233 9.1180 4.2429 3.4977 -#> -3.0859 -0.8083 -13.5866 6.5434 -10.6219 -11.0563 -5.6027 2.0945 -#> 6.7164 0.0129 3.6310 3.6835 -9.5113 12.8007 -0.6328 5.7456 -#> 3.5358 2.2530 1.3245 -20.5415 -1.0149 -3.6555 -11.8244 4.6888 -#> -13.7008 -0.9236 1.7582 16.2404 3.8166 -10.3989 1.1112 -3.0338 -#> 1.4287 -1.9917 -9.1448 -2.0913 10.1029 -1.3184 1.9773 10.6877 -#> -2.1908 5.9729 15.2308 7.5356 -2.5093 7.4100 4.0253 4.1294 -#> 5.3162 4.4217 3.4451 -7.0947 -6.7558 10.9257 -5.3132 -9.3164 -#> 17.2181 6.2738 1.8721 -4.4210 12.1152 8.9523 -14.2943 5.3058 -#> 10.6419 -0.2886 10.8269 -5.1502 0.3061 0.6123 6.4105 13.0537 -#> -6.0470 -2.5747 -5.8937 1.1997 6.6017 -6.8245 -4.9771 8.0405 -#> 8.6029 -4.6612 -0.0321 4.4581 -7.2621 -3.3948 -4.2746 -0.9244 -#> 3.5538 9.7629 -6.2850 -0.0550 0.5231 11.7813 1.8676 -2.0707 -#> -7.6222 12.5437 7.6741 -3.4922 1.6843 -1.0553 5.5238 -7.2334 -#> -2.4571 -6.9917 -8.7695 -11.9418 -12.1425 -9.5730 -2.0288 7.2764 -#> -0.2375 -6.6255 -1.9505 2.1925 2.3345 -6.5458 12.4992 6.5844 -#> 9.2619 -10.2640 2.0741 7.4089 4.0091 7.8756 -13.4588 0.8496 -#> -10.6017 9.2146 6.2082 -4.6360 -7.2165 18.5288 -2.6394 -6.6095 -#> -1.1088 4.6886 14.3204 -1.6789 2.7128 12.7741 12.5627 -7.0749 -#> 3.5440 10.7971 -7.8047 -4.8617 6.3549 1.0599 7.3522 -7.8855 -#> -16.5681 12.9976 14.0391 -18.0699 -2.0621 -1.0039 -7.8445 -5.6196 -#> -3.3615 -7.7826 2.4972 -9.4898 7.0115 2.9747 -2.6037 1.7966 -#> -16.6786 0.8662 10.1673 -12.8165 6.5936 3.3037 -1.5560 -8.5763 -#> 3.9353 -11.2481 4.8464 -17.0819 -7.2871 3.1291 1.1024 -1.7613 -#> 4.4568 -2.9537 16.3754 -1.8688 1.7240 0.7697 -11.0913 -7.0720 -#> 15.3738 2.0966 1.3261 8.6218 5.8933 -2.8206 -0.0873 7.9319 -#> -2.3210 3.2512 -13.6099 -1.0325 -2.7013 -14.6160 -2.2551 -1.8460 -#> -10.7967 1.6568 -6.5915 -11.5341 -9.9567 2.6287 4.8549 -18.6987 -#> 17.4152 9.9368 -4.7196 -2.0201 7.0575 1.9245 -10.3459 5.4035 -#> -9.8628 -1.2139 0.5197 -9.0915 -9.3666 -17.6017 -11.3053 -11.6865 -#> 5.1867 -0.8220 -2.7756 3.3252 5.9480 -6.7896 -3.5799 0.5004 -#> -#> Columns 49 to 54 -0.6389 -7.4733 -14.9716 -11.8120 -1.9556 -5.3680 -#> 10.7929 12.4003 -14.2223 -7.3193 -3.7665 0.6283 -#> 8.6197 2.0170 -6.0246 -6.1153 -0.3049 -7.7032 -#> 11.1266 -22.0888 0.6137 2.3653 1.6914 6.3109 -#> -0.6324 -5.6238 -12.4644 -6.6811 -6.2189 -8.1869 -#> -2.6817 -15.2342 -6.2547 -0.4114 -9.7645 -5.8096 -#> -2.0674 -12.6191 -15.4729 -7.7481 -3.3053 3.9714 -#> 4.4544 -6.5520 -3.6067 -3.6903 -1.3885 -1.8380 -#> 10.1238 23.3828 6.2061 -0.9916 9.4449 1.7633 -#> -1.6249 -16.9761 3.6877 -4.3206 -9.6594 -4.2910 -#> 0.2759 -0.0149 6.6960 -3.9407 -4.2733 -0.9428 -#> 8.0797 -1.3322 3.3517 -1.2963 -1.9725 -2.5632 -#> -3.1325 -3.4439 -1.0952 -1.0389 5.6795 -2.8524 -#> 10.0878 12.1763 -3.0694 -2.4060 -6.0147 8.5415 -#> -1.3119 -6.9195 10.8808 -0.8992 -4.8843 1.3601 -#> -4.5548 -20.3759 1.4613 8.7679 9.1140 -1.0856 -#> 0.3173 3.1479 -8.8415 -2.1779 -12.6805 -1.6526 -#> 6.4048 6.2706 4.1337 3.4527 3.3755 -1.7199 -#> -0.6586 -5.9617 12.3254 5.0271 8.6379 6.4460 -#> 4.2861 -12.6578 9.2266 1.6816 -0.8269 4.5423 -#> 9.5541 -5.7773 2.6169 3.7411 8.2549 1.6539 -#> 5.7854 0.5161 -1.5401 2.0400 -0.6564 -5.9205 -#> 15.7457 -0.5584 -4.0106 2.0536 -0.5748 2.0987 -#> -1.1142 8.8274 -2.3402 0.8552 8.2448 -0.9579 -#> 4.9794 2.9381 -5.4608 0.4388 -2.2405 1.1353 -#> -1.2917 1.1117 -4.4265 3.8347 -12.0188 -2.6317 -#> -6.2574 2.3697 -2.6166 2.7013 3.3212 -0.2425 -#> -3.8129 19.2050 -4.5047 -5.3278 10.3334 -2.1496 -#> -0.3943 11.1524 5.1407 9.3953 3.7767 0.9381 -#> -13.8334 -2.3486 1.6269 -4.3620 4.8251 -1.9973 -#> 0.3519 -7.7991 -6.3443 3.6354 -2.9999 -4.0078 -#> -1.0298 7.8492 -4.6288 1.7104 0.7321 -3.8820 -#> -2.9105 6.6443 -1.8968 -0.9760 -1.5631 4.2653 -#> -#> (15,.,.) = -#> Columns 1 to 8 -10.0990 9.5713 1.5318 -12.0500 10.1011 -0.1370 13.3657 -12.0867 -#> -2.0152 -2.9317 2.3648 0.7224 7.9930 5.1094 10.4382 2.3264 -#> -0.3481 -1.4523 -7.0102 3.4108 -2.3078 -5.3298 -15.2268 9.4144 -#> -2.6055 -9.8104 9.6568 12.2556 -10.5023 -2.5403 -8.1588 11.3824 -#> 4.8885 -1.2973 0.0989 20.7426 3.1836 2.7362 -4.7865 21.5729 -#> 4.6923 1.6641 -1.2218 21.5251 2.9839 -10.0373 15.2247 6.9074 -#> 0.9719 -3.3859 -6.3710 0.5712 -14.3356 8.1015 10.3925 -7.1472 -#> -5.1478 -0.4332 7.1794 -11.7585 11.1017 -0.9514 -0.9117 -7.5852 -#> 0.8523 4.0596 10.2042 8.8919 -6.7690 -3.1127 2.1410 5.3746 -#> -0.7264 -9.5159 13.2099 0.0314 -0.9318 -12.5969 2.5364 13.7676 -#> 3.2831 2.4765 -0.7692 0.4533 3.5371 11.6717 4.3137 10.3082 -#> 1.7459 3.0613 4.4691 3.0374 1.8916 -4.2943 -4.3574 2.6327 -#> -5.2546 0.7602 5.5456 2.5400 -7.4997 3.5122 8.7494 -3.9388 -#> -4.8197 -7.6028 1.1249 9.1811 -12.9616 -2.8928 4.7218 -12.8941 -#> 7.2280 -6.4193 0.2792 0.6822 6.5073 -7.9635 -0.0429 5.5636 -#> 7.6099 -0.7829 -5.8236 3.8139 2.2075 -0.5448 3.2761 4.8688 -#> 3.5679 0.7753 -15.0284 -4.2804 -11.6611 -5.5340 8.6002 5.5089 -#> 3.7578 -1.4981 0.1193 -5.3650 -1.1050 12.6927 -6.2565 -1.5469 -#> -0.8684 -3.1628 2.5079 -10.9548 -12.2026 -11.2409 -5.4725 6.1974 -#> -4.8493 -5.0138 4.2155 -2.2080 -8.8043 -5.2325 -5.2402 -5.7408 -#> 3.4794 1.2526 1.7075 -2.2464 5.5673 -13.7139 -11.0148 -7.4443 -#> -8.2279 0.0555 3.0568 -11.7474 12.0560 3.7196 -3.5746 -5.4535 -#> -1.3951 1.4963 -0.4092 -11.0516 -22.7744 3.8872 -2.3623 -20.0583 -#> -4.2623 -9.1239 -3.2667 3.5099 -9.2813 -14.1512 11.7609 -1.7458 -#> -4.4801 2.6365 7.5302 -6.0688 -19.6205 -5.4619 2.6827 -14.5390 -#> 1.4995 4.9967 -4.6511 2.8508 -1.2898 4.5070 0.4309 7.5099 -#> 1.0764 1.9196 0.5463 3.8593 -3.8163 9.3600 7.4160 -3.2611 -#> -3.6800 4.9303 -10.1005 16.2065 -2.8412 -9.7141 -9.2764 13.5852 -#> 2.1092 -2.0972 6.2155 -2.3583 -1.2559 1.8911 -17.7634 18.2820 -#> -0.5072 -1.4840 -1.8773 -13.4366 -9.4894 -5.1573 19.5537 -5.9230 -#> -3.0255 3.9880 -7.6719 6.5883 9.1100 -8.1304 -5.2865 6.3455 -#> -1.7676 -3.3332 2.5160 -3.1491 -18.3137 -9.7269 15.7431 -19.0633 -#> 3.7121 -0.4173 -9.2082 0.8137 -20.6655 -6.5320 1.3618 -3.3141 -#> -#> Columns 9 to 16 -5.0178 2.8376 -13.4590 -1.7824 -3.2256 6.0948 10.5693 -7.3420 -#> -13.4998 9.7929 7.6963 -5.6667 5.6835 -5.7594 17.1983 -8.0135 -#> -6.6259 1.8900 0.4777 -2.9068 -1.9392 2.3020 12.7189 11.0737 -#> 9.7699 -1.4176 19.3781 -8.8971 1.0619 1.5661 12.3683 6.8381 -#> -8.8433 6.7435 5.3905 -2.1816 7.6027 -13.1408 9.6943 18.9325 -#> -3.7578 -20.4967 -12.1749 13.7635 -8.2955 10.1202 -9.7523 0.7279 -#> -1.5795 -27.3397 6.2327 4.8520 -6.9096 7.8854 11.5034 19.2436 -#> 21.0009 10.6960 0.3235 18.1828 1.3996 1.6413 9.7474 -12.8684 -#> 3.1225 3.5732 4.3682 10.1331 -2.1940 1.4707 6.3428 7.3753 -#> 5.8743 -4.9510 7.6673 3.3482 0.4906 4.1957 21.5036 -0.4971 -#> 4.3325 4.0696 -7.1543 4.7685 9.2816 -8.0765 13.1303 2.2542 -#> 1.3199 8.9509 -14.1791 0.3937 12.9080 2.3078 13.6441 -7.4704 -#> 14.1569 5.6918 -2.8820 5.4940 5.2787 -3.9716 11.0201 -9.0025 -#> -1.4026 0.8986 0.0281 -1.1187 0.9862 -23.6242 12.1266 2.6198 -#> -5.9391 -5.4533 2.9304 -14.2286 8.5711 6.9260 -5.7363 9.8813 -#> -13.7160 -13.2488 6.5590 0.5550 -0.6141 0.2143 -11.7267 -2.9618 -#> 8.3337 -8.7911 -4.3042 0.2995 -3.9446 2.9244 -13.8378 13.2256 -#> 8.2129 -0.0243 -2.5634 4.2056 7.3335 -13.9953 -12.1880 -10.9778 -#> -15.5198 3.0817 4.3212 2.8397 -4.5304 -2.8506 18.1735 0.9459 -#> -0.1223 -5.3029 -0.6803 1.7909 8.2157 9.3911 3.0801 -20.6149 -#> 6.4214 -5.0558 1.5302 -1.3221 6.9508 -19.6272 -11.9980 -1.2132 -#> 10.1410 15.7525 0.6530 -15.2663 -6.4518 -4.8851 16.6364 9.8039 -#> 2.4659 -9.5107 5.0274 3.2727 -20.7507 -2.8210 0.5230 9.5059 -#> -17.5149 7.4447 -0.9244 5.0719 -8.1361 2.1893 7.6107 2.9166 -#> -15.9416 3.8260 -6.9479 2.5022 -14.7595 12.8274 -20.2647 1.7912 -#> 7.4356 -4.8601 -4.9859 13.4862 -3.5921 12.9788 -8.9852 -11.1844 -#> -9.6747 2.3929 -1.8941 -0.1248 1.6079 8.6074 -6.0711 10.0755 -#> 5.3568 16.4666 6.2013 -1.3843 0.6055 2.8061 -12.3449 17.9458 -#> 11.9440 -0.8353 3.4883 10.3915 7.5584 -1.4332 -4.6735 12.5461 -#> -22.4059 -4.5566 7.3376 -4.3847 -1.5582 -7.5045 7.5009 -1.9745 -#> 5.6077 -5.3056 -13.0279 1.4611 -4.6591 -15.2655 4.6496 -10.6508 -#> 0.5694 -4.6875 -1.8906 -10.3570 -15.9350 -3.2111 -2.0236 -6.8917 -#> -11.4327 -4.4946 11.8158 -3.7137 -5.7878 -3.2148 2.5095 5.8133 -#> -#> Columns 17 to 24 23.9548 4.4337 22.5554 10.9288 -2.2020 3.8517 1.3465 15.9809 -#> -2.5955 9.0179 -3.8016 -8.0012 1.7868 -3.1316 -5.1833 -18.7513 -#> -11.2852 13.7604 9.7052 -4.6647 9.1436 1.4140 15.3762 -5.4790 -#> -30.2964 9.0454 3.9029 -30.8797 -6.0035 6.8617 12.3477 -8.1561 -#> -7.8357 -2.4154 0.1894 -17.0568 12.7654 -1.0467 -1.8494 -2.1127 -#> 9.1948 0.0944 3.3596 1.7337 7.1465 -3.6636 -13.6780 2.3150 -#> 1.4789 11.8322 15.1057 13.5677 2.5585 10.9729 1.6040 -10.0423 -#> 18.6681 6.5529 -2.8593 3.3970 6.8450 0.3297 -10.0932 -0.2324 -#> 2.9418 -4.5070 17.7137 -1.9664 2.8364 -10.0479 6.7950 10.6355 -#> -3.8491 14.8961 0.6555 -14.6044 7.5461 19.3217 -9.9193 -8.7238 -#> 13.7032 -13.1803 -1.7174 11.4773 12.4560 -9.4533 6.6293 -14.7780 -#> 10.5144 6.1302 -7.4889 19.8148 5.8770 -0.9864 6.1714 -4.5893 -#> 10.9235 -19.2067 -7.2074 1.9999 -0.9868 0.1538 -3.3172 -12.9561 -#> -8.1066 -9.5891 -5.8863 -4.7349 3.4509 -1.9967 -0.9951 2.1819 -#> -0.1153 -1.2667 7.1105 -10.0341 -10.6734 25.9604 11.4678 6.4583 -#> 15.4342 3.8854 -0.8302 -5.8226 -13.3946 1.0479 6.4934 -15.2569 -#> 7.5051 3.4195 1.0269 7.6924 13.4544 -7.2745 0.9785 -1.0435 -#> -7.2453 10.1602 2.5436 -12.7391 0.8896 -1.8076 -5.2475 -9.5786 -#> 0.9025 10.1723 8.4099 17.3126 -3.8429 0.2009 18.8467 17.4271 -#> 5.6315 15.4214 -6.9537 -16.5940 5.3793 19.0690 -8.0471 -13.2905 -#> 11.9089 3.0548 -5.6932 7.0078 -2.3373 -3.9093 5.7294 4.5638 -#> 11.4385 -25.3665 0.1245 4.7662 6.2247 -4.7778 0.2985 1.8013 -#> 11.1348 11.0020 0.1509 -5.2465 10.6244 8.7351 -2.8962 -4.9217 -#> 4.3799 13.4892 4.0956 -2.8105 -4.9192 -1.0366 1.2922 0.6402 -#> -8.3492 24.5169 -10.7443 -2.3853 8.8224 1.1678 9.0221 0.4602 -#> -0.2645 2.5483 -1.9621 6.9814 6.4197 15.2534 -17.7681 -2.2454 -#> -7.4653 4.4360 10.7323 -7.0816 3.3647 9.4408 9.3030 8.1634 -#> -2.1583 1.4271 -0.0035 -8.9739 5.9935 -9.9652 15.8939 2.9064 -#> -22.6930 3.8092 -0.5091 -9.1934 10.3580 13.3964 -6.4586 -0.6747 -#> -6.0896 5.1857 3.3376 -4.1952 -0.2352 -1.3639 27.2648 -4.6405 -#> 13.2255 -4.4454 -0.9535 -1.1588 5.7364 -5.5923 8.2029 1.3131 -#> 8.5942 -18.0943 -3.8576 14.8559 -0.2151 -0.5652 5.3782 5.7814 -#> -2.4000 7.8375 8.4794 -0.1797 8.0042 -5.4103 -2.8932 -6.7073 -#> -#> Columns 25 to 32 9.5944 -3.9121 -0.6456 -4.2796 4.8669 -3.1430 -16.6505 10.3947 -#> 6.2774 -4.8735 -10.7184 -1.3617 8.1813 -6.5940 9.6497 11.8253 -#> -0.8060 -7.0873 -5.1033 3.6967 -5.9224 -1.5106 -3.2493 -22.3877 -#> -2.1715 16.7673 -14.4711 -6.9998 -2.7722 -5.2056 -5.5870 -3.6650 -#> -10.9918 9.5981 -4.8545 1.3297 1.6327 6.8057 17.8017 -10.4679 -#> -5.9841 5.0507 -1.8719 16.6006 -8.6540 18.5502 6.4155 -0.4553 -#> -1.2806 -4.6073 1.7010 -2.0524 21.2555 1.6784 -14.3942 14.7029 -#> -6.6802 -10.5134 -5.3347 1.4647 6.6026 7.7703 -8.3399 -1.4836 -#> -6.5434 0.1531 0.9292 2.4402 -17.5561 5.7259 9.4887 -2.3714 -#> -0.8271 9.9857 -0.1178 -1.8616 -7.1793 6.0239 -7.9769 7.4283 -#> 7.1402 4.4461 -0.9369 -2.3136 -0.0208 10.2257 -4.8433 -9.9684 -#> 5.9708 1.4622 -4.8579 -8.3934 -7.1991 14.0736 -2.2637 0.5849 -#> 4.8735 8.7754 -5.3562 -14.4586 11.7871 3.8676 -26.7182 6.0868 -#> -1.8051 -0.7627 7.4101 -11.8195 9.1956 3.0181 1.0301 0.4012 -#> 2.3346 5.5885 -6.8960 2.6455 -11.1043 1.1019 -3.3641 1.5160 -#> 0.4052 2.8550 9.9087 -9.2560 4.5426 3.6349 1.1024 1.1567 -#> -3.4402 4.1977 2.2295 3.9754 -5.8424 2.3379 9.0788 1.3631 -#> -0.3071 4.4000 0.4199 6.6844 9.9604 -3.5819 -0.1863 -0.4231 -#> -12.1294 12.6241 4.2895 -2.8436 -20.4353 -1.1826 -21.5068 -3.8060 -#> -1.0920 -4.3573 -8.0907 1.3174 -1.0410 -4.7343 3.5406 -20.6220 -#> 11.1171 5.0765 12.8293 -2.8107 -9.1112 10.5481 -5.7296 -10.1943 -#> 2.2845 -14.3124 -0.5741 -18.6881 7.3470 8.4301 -16.0972 -4.9773 -#> 14.1851 15.5705 -8.0232 -14.2519 -8.7095 5.3573 8.2457 3.0091 -#> -8.0929 0.0361 -15.0765 1.3317 -9.0183 0.3250 -2.7328 4.0589 -#> -0.5257 6.8122 2.5629 23.2483 -1.5479 12.1290 3.9113 -14.1497 -#> -3.3007 -0.4385 0.9678 11.9494 -6.6841 -8.8127 8.3065 2.3145 -#> -2.0953 4.7034 -6.3555 4.3592 -7.7332 2.2606 10.0530 -0.9074 -#> -8.5917 8.7902 11.5992 4.3040 -12.4374 -3.4665 -0.0276 -18.1506 -#> -13.3506 1.1399 -7.6358 3.4748 12.0200 1.2798 1.8368 6.4288 -#> -1.7819 13.8193 9.8684 -1.6199 -5.4542 -4.0736 1.5121 11.8665 -#> 3.2625 10.5987 1.5617 -10.7859 -7.1992 1.7146 5.2890 -3.0862 -#> 6.1506 0.8400 9.1340 -6.4293 -11.4344 13.4539 -25.8874 -12.8097 -#> -0.2576 2.2089 0.5780 -3.6492 9.1683 -5.4479 -13.5015 -8.2683 -#> -#> Columns 33 to 40 8.8396 -4.0908 3.3033 5.9178 -2.1426 4.7535 11.7253 2.1089 -#> -7.8518 -0.6864 5.4062 -0.0704 2.2593 1.2757 -3.3115 -2.8540 -#> 8.0880 8.8613 -0.2046 25.4886 -0.0231 -0.6460 -3.0581 3.7206 -#> 1.3567 2.0511 3.5708 -3.5456 -7.6781 -1.4215 -6.5459 3.4979 -#> 8.6816 6.3005 -2.1095 7.5814 -10.5794 2.5243 2.6340 2.6379 -#> 2.2035 10.3515 -11.2097 -9.3520 7.2193 16.8672 -1.1143 -6.3585 -#> -6.3557 2.2419 4.5310 -5.1427 4.8296 0.9774 17.5645 -2.1679 -#> 0.7955 3.9828 19.1163 7.6492 -5.3007 4.0388 10.3170 -10.0017 -#> -10.3534 6.4167 -19.4180 3.1978 5.7691 -21.6791 -2.2751 3.2430 -#> -1.7144 -2.9233 -4.6692 2.2329 24.4980 3.3718 -0.1364 3.9223 -#> 15.9999 -5.0894 -0.0592 5.6503 -1.0933 -18.6162 13.1086 -2.5467 -#> -8.7221 -2.9894 1.3795 11.1901 -4.6743 -4.0438 6.3607 -14.1750 -#> 6.4703 -12.0389 15.9626 -14.4179 -11.5250 11.3063 18.6204 -6.1838 -#> -9.8206 -8.7003 8.7307 6.8307 5.9919 -0.1534 -13.9388 3.1807 -#> -5.1773 -2.5748 -13.1049 17.7876 2.0671 7.2958 1.2341 24.2162 -#> 2.9031 -0.5510 -8.2014 -11.4646 -0.3466 5.5836 5.9189 -2.3536 -#> -7.3025 9.3635 -6.8624 3.7640 1.4827 4.0607 -1.9772 0.5987 -#> -12.8694 -6.1116 8.6849 -18.8294 -10.3818 -5.0519 -12.2981 6.4965 -#> 22.5084 4.1215 -7.5574 0.8125 7.2067 -9.4430 14.0021 5.2206 -#> 2.0273 4.4054 6.1284 13.6395 14.3388 -8.0690 6.9133 -0.9929 -#> -6.8994 3.5835 4.0496 -10.4464 2.8428 10.3485 3.0069 -3.1604 -#> 2.0785 9.0722 3.1944 16.6751 0.8630 4.7099 2.2799 -12.4083 -#> -14.1698 -11.5007 -2.5575 18.4120 12.5671 0.3347 14.5842 -6.3854 -#> -0.4839 3.4926 -0.2347 -4.1269 -8.5848 -17.0848 5.6182 -10.1792 -#> 6.5714 -2.6046 -5.7125 6.4672 -3.9295 -19.8987 6.2386 18.6289 -#> -18.1906 13.5562 -6.0317 -7.6967 9.0732 5.7860 3.1072 -0.3426 -#> 2.8831 -2.1550 -8.5623 6.4899 -9.2266 7.8874 -10.9110 -7.0155 -#> 0.4335 12.8337 11.4560 11.9060 -20.1756 0.3952 -4.7485 11.1188 -#> -0.0864 -0.7748 5.9271 -9.5802 -24.4697 3.9133 -9.2256 -10.1374 -#> 9.4869 -26.5448 -4.7492 1.5490 -0.8644 4.6959 0.7020 6.8054 -#> -11.8460 -2.2999 8.3583 -4.7632 5.6372 12.6364 4.8529 -11.5818 -#> 7.3621 -14.5742 5.1122 -4.9590 -6.8797 0.0120 15.1780 -1.1519 -#> 9.1480 -8.6119 5.6794 1.8353 -1.2049 -3.6436 -15.5298 6.1394 -#> -#> Columns 41 to 48 -0.9185 1.0292 2.3816 -19.0016 3.2346 5.1427 -9.2602 3.5470 -#> -4.6642 -7.5193 -6.2972 -3.6340 -4.3782 3.5069 12.3738 3.8607 -#> -1.7061 17.2409 0.5289 -6.2155 -9.2250 7.7128 2.6069 -4.1813 -#> -22.3711 15.8590 -12.1630 -1.9723 3.4912 0.7936 -0.4754 -4.8637 -#> -10.7078 8.7035 -17.7855 -6.9211 9.6944 -0.4565 14.0562 7.5147 -#> 15.2351 6.8293 11.9645 9.6385 16.1149 5.4100 13.9070 11.3935 -#> -18.9558 4.3913 -11.3429 -11.7447 10.8551 -1.7770 -10.4569 2.5707 -#> -5.0401 -9.8150 1.7656 -1.7277 -14.3881 -3.8345 2.5442 7.6936 -#> -3.8712 7.5262 5.4346 -3.8012 -4.1631 3.5016 -10.7002 2.8133 -#> -12.1691 9.2626 -20.9391 -0.4648 0.0210 -11.2584 -9.1199 24.2553 -#> -4.7094 -2.3166 -9.8245 9.5187 -3.5064 16.1850 3.9799 2.8132 -#> 6.3814 -3.9819 -1.0964 3.3634 -8.4593 17.8737 5.7258 -2.5306 -#> 13.5904 -5.1623 -4.3888 -9.1726 -5.7060 13.3960 9.3317 11.0526 -#> -15.8183 3.6202 8.2642 -3.5512 7.4538 -7.7091 6.9085 -20.2944 -#> -1.1283 -18.0089 9.1768 -19.2064 13.2384 0.6168 -3.4532 1.7254 -#> 1.0596 4.8809 -7.4798 9.9955 2.8880 -0.7054 -1.5500 3.2815 -#> 3.6454 -0.9967 1.9723 7.5453 10.3257 9.4845 16.9860 -0.8021 -#> -7.3195 14.6915 -0.9854 -4.1521 -0.8937 -13.6568 -3.7865 -23.4725 -#> -14.4901 -3.1384 -17.0815 -4.9651 5.3681 -3.0924 -18.9295 -15.6902 -#> -2.3697 -4.0433 -11.8967 13.1645 5.7599 3.2860 -4.1032 8.4708 -#> 5.5353 -7.1651 5.3395 2.2028 -13.1871 -10.0166 -14.7682 1.3285 -#> 12.3502 2.8922 8.9898 -1.6964 -13.0801 -0.3030 -7.0138 11.3802 -#> -8.0877 3.5271 -2.7746 -7.2920 11.5408 12.2708 5.6332 15.9228 -#> 7.5764 11.6671 -3.1646 -0.9293 -8.9805 -10.0701 3.1878 3.2721 -#> 3.0567 9.6918 0.9289 9.2551 -17.5344 -4.5718 11.4749 -8.6895 -#> 9.8700 -5.0108 11.2222 2.5289 14.6404 -18.5415 -10.1208 -7.4381 -#> -5.1425 -8.1582 5.6891 1.3202 9.9968 -10.1401 9.7812 -5.5545 -#> 6.0983 3.3249 4.1080 3.2006 5.4616 6.3398 14.2389 -3.0887 -#> -5.4333 9.9757 14.0214 0.1371 9.8365 -4.8653 -3.6701 -17.4995 -#> -2.9224 1.7300 -6.4158 -4.8144 3.8159 -14.3869 1.6443 3.7402 -#> 5.6625 -1.9869 -0.9393 2.7615 0.5217 1.2785 0.9142 7.9043 -#> 13.3689 -3.6108 0.6681 -16.7220 -0.2150 9.0452 3.9819 8.0725 -#> -11.0557 21.5327 -4.6524 -2.5301 15.3207 -1.6733 29.7789 0.5129 -#> -#> Columns 49 to 54 1.5166 8.2477 6.7136 6.3118 -4.9695 11.5162 -#> 1.4363 -12.9781 0.1371 0.9093 -3.6536 4.9203 -#> -18.0463 5.2483 -0.5983 5.6387 -2.6682 1.3394 -#> -2.6935 -6.1874 -6.5942 -4.2045 6.6405 -9.5767 -#> 0.8123 0.8789 -17.2362 -1.3923 9.8621 -4.7030 -#> 0.9047 25.0544 4.3639 7.7567 19.5197 8.8219 -#> 18.4562 11.7296 5.6156 4.0337 8.2729 -3.8409 -#> 6.9517 -5.0020 -3.8453 -0.1510 1.8457 4.7716 -#> -7.2966 8.9733 -7.9880 -5.7693 -1.0765 -3.2241 -#> 19.3973 -9.3490 -5.5793 2.3670 4.4611 6.6473 -#> 2.0844 -0.0334 -8.0439 5.7844 1.4116 4.2696 -#> -0.1985 5.3961 6.0418 -0.2969 -0.8843 -2.1523 -#> 2.0317 -4.4195 -3.6542 0.5706 -2.4710 0.7280 -#> 7.4199 -3.0333 -4.4803 -2.6479 6.0699 -2.7246 -#> -11.5188 16.6455 -0.1031 -2.7591 3.5070 -0.1705 -#> -3.0831 -4.5135 12.9683 1.0926 1.7067 2.5385 -#> 5.8785 6.7963 7.6884 5.5664 11.5878 2.8810 -#> 13.8876 -7.7859 1.2779 -7.9931 -4.2584 -0.1300 -#> 14.8720 15.5157 3.7080 11.8443 -3.9134 -2.1870 -#> -5.7535 7.5996 -4.3604 2.5150 -6.0650 -3.4270 -#> 3.9493 1.7726 -3.3017 -2.0998 -8.4011 8.5350 -#> 0.7961 -3.1373 15.8146 -4.7486 -1.0243 4.7894 -#> 8.8234 -8.4761 -7.7498 9.6531 10.3125 0.0289 -#> 11.9533 9.9974 0.7059 -16.6528 1.1749 -7.9864 -#> -10.4745 -5.0384 11.4629 2.7173 4.2650 -1.2628 -#> 11.0660 -5.0848 -0.7776 -6.1537 -0.6618 -0.3784 -#> -9.9422 -1.2817 -1.6077 5.3577 3.3337 0.4067 -#> -12.0042 5.7682 -6.7125 4.8503 6.7699 2.9700 -#> -3.3479 -7.8093 -2.1469 -7.6515 11.3454 -7.3593 -#> 21.3429 2.5380 -10.8956 2.5114 -3.3077 -1.5169 -#> 1.3157 5.7816 2.1688 -8.4880 6.3563 1.6823 -#> 4.5685 -1.2746 8.4463 10.5379 -11.6546 5.8264 -#> 9.5908 -13.6034 2.6211 4.8941 5.8864 2.5896 -#> -#> (16,.,.) = -#> Columns 1 to 8 5.7149 2.6410 0.4331 -1.4741 -3.6267 -1.4720 -1.6433 -14.4904 -#> -4.1965 -2.3145 2.4730 7.7392 -2.5778 -1.9739 5.9185 6.2945 -#> -0.3824 2.3342 5.6595 -3.6659 13.7773 -5.9059 -3.7858 3.5306 -#> -2.4134 -1.4280 -7.1424 2.0948 2.2874 -1.0853 5.7903 10.8578 -#> 3.2607 0.0906 0.4323 -3.3052 13.3146 -0.6935 5.2667 13.1755 -#> 1.6097 -0.1559 1.9115 5.1168 6.6133 13.6786 -12.4811 5.9716 -#> 7.3616 -5.4578 2.2418 8.3101 8.4899 7.1793 4.6639 -8.8759 -#> 1.4888 3.3524 4.0891 7.2668 -7.6339 10.0442 3.4466 1.9793 -#> 2.9624 -0.7599 -4.4550 -16.5763 -7.2150 -9.3511 -14.4847 3.8877 -#> 5.4535 2.1113 0.6556 8.3213 11.4949 4.0772 -0.9157 6.0573 -#> 1.3422 -2.3339 2.4545 2.0971 8.9639 -10.1366 -1.9312 11.8052 -#> -1.4407 -5.1037 -0.8735 -7.5622 -6.1879 -0.0690 -6.2049 6.1181 -#> 1.4357 -3.5222 -1.9755 9.4500 -1.6771 4.4376 0.3270 3.4174 -#> 2.5677 0.9643 -0.4635 -1.1444 -5.9775 -13.5607 9.5219 -1.5825 -#> -3.4731 4.3262 7.8018 -1.1242 -0.3613 -4.4380 -17.4636 11.9620 -#> -4.2367 -0.5903 -4.0691 4.3360 6.9549 5.8410 -7.6657 5.2381 -#> 0.2624 -11.5379 -1.8299 -6.6303 17.5205 6.7721 7.8004 2.3381 -#> -3.8974 1.7662 -4.8138 9.5514 -9.4977 0.3022 -1.0301 -7.1786 -#> 8.0423 3.0451 -5.4620 -1.9462 -11.0921 2.8610 -8.4385 18.6906 -#> -0.7504 8.3239 2.5793 2.7778 -8.9122 6.5091 -6.5768 5.6288 -#> 4.3457 -1.8958 -10.0769 -3.2070 0.9191 15.5076 1.3231 -1.1706 -#> -3.5223 0.8839 0.7376 4.0680 -6.0472 -10.2105 2.2769 2.2336 -#> 3.7377 -5.7436 -0.2260 4.7655 3.2836 9.0940 3.0380 4.9916 -#> -0.6492 -7.3590 -3.8933 -4.5155 3.0945 -17.9669 0.7992 -2.5830 -#> -4.1239 3.6299 0.7977 1.3964 0.1331 -2.0033 18.6986 -2.7015 -#> 0.3150 -1.0361 4.5186 -2.9666 -1.6695 4.2238 -9.6508 -5.4337 -#> -2.3472 -2.5659 5.6535 -6.8268 0.4131 -15.7032 4.3612 -4.8776 -#> 5.7511 1.5074 4.6386 -14.9877 11.4655 -3.4371 6.8665 4.7969 -#> -1.2161 2.2089 -1.8261 3.9251 -1.3776 -0.7568 0.8804 -8.0807 -#> -0.7410 0.6941 2.5636 16.1539 17.1623 4.5810 -12.6779 0.4777 -#> -0.5473 0.5947 -0.6145 -0.4223 4.8203 -2.9468 -8.0156 16.5324 -#> -2.8870 -0.4101 -8.1284 8.2239 -12.4741 9.3738 0.8917 2.3292 -#> -0.0762 -4.8836 -2.4877 -2.8065 11.9033 -6.2954 12.8217 4.6448 -#> -#> Columns 9 to 16 -10.8486 19.0040 15.5205 6.3897 12.7509 18.7076 6.7341 24.7735 -#> -12.0438 12.6606 -0.3553 -4.9212 12.0861 4.6795 6.6952 5.5794 -#> -4.6007 0.9672 8.7212 11.1086 0.4787 8.4304 -7.2332 13.4946 -#> -8.7545 2.6975 -7.5476 -0.5051 -26.9210 7.1168 7.2227 7.0064 -#> 5.0392 10.5801 3.8094 10.7401 4.8611 6.8573 -2.9970 10.8328 -#> 2.7897 2.6428 -3.0699 -1.1935 1.6653 3.4466 -6.4703 15.9608 -#> -4.0934 -13.0422 30.0203 9.2027 -0.0284 -8.5338 17.6166 5.7459 -#> 0.6521 6.9662 3.7325 13.7420 22.0283 3.8541 -6.6730 -10.8181 -#> 8.4981 -0.7829 1.4430 7.1065 -20.1671 -2.2740 4.0409 1.3867 -#> 1.0489 7.8033 -10.2676 6.4569 -12.2644 27.0497 -12.3430 -4.7140 -#> -4.2990 -7.0005 9.4127 10.5111 5.6435 -16.3177 -19.4785 4.6994 -#> 7.1485 0.1711 -2.3173 8.7568 13.6645 15.3494 -2.7278 -6.3752 -#> -22.2274 -13.7903 2.3464 9.1934 12.2973 1.7982 -8.8251 1.1781 -#> -1.8933 -11.6445 -5.1614 2.8326 7.9728 -9.9083 1.7724 6.6256 -#> -0.4213 -2.8628 -9.6671 12.5749 -0.2841 17.4236 -15.0692 12.7773 -#> -2.8915 4.1267 3.7853 -2.7139 6.6256 11.3734 -20.9926 -4.2265 -#> 2.4341 -8.6435 -2.8338 0.5613 7.2049 6.5807 -2.2237 -2.7587 -#> -10.2696 0.0926 -3.1129 -10.9694 7.9198 -8.8719 13.5763 -9.7744 -#> -15.7203 -4.0138 12.2160 -7.0447 -18.8194 -24.3269 12.7430 9.2565 -#> 1.8916 2.4190 4.8938 8.2787 25.5384 11.2692 -9.0044 -2.9264 -#> 4.7253 -1.1566 -7.7629 6.2313 19.2309 12.9958 -1.3933 -23.9209 -#> 4.0398 3.1965 1.0156 1.8936 0.3614 -6.0729 -5.9055 -5.6367 -#> 12.6499 -8.3206 -7.9043 -2.4800 19.1821 5.0694 -7.8344 -22.8667 -#> 1.9533 11.7377 11.7026 -3.2078 4.5977 -9.8745 -2.6903 -0.1726 -#> 0.5964 2.2094 -20.7317 -7.7429 8.8774 -9.4002 -8.3394 -5.2582 -#> -7.7434 2.7373 -0.4027 -2.3704 12.3224 -3.0172 3.5563 -13.3000 -#> -6.1673 2.1377 -9.6263 -7.3032 -8.1092 4.8288 0.9269 6.6680 -#> 7.1307 -11.4082 -1.8733 -3.4725 0.7833 -11.1207 1.6904 -3.3928 -#> -13.8459 -8.0944 -4.5687 -1.3178 -12.7660 -14.1142 2.3761 -1.5851 -#> -4.4088 -4.7370 -13.4434 -11.3929 -10.0721 0.3293 14.4283 -5.7123 -#> 1.6628 -4.8135 4.1967 -3.6642 2.6072 8.6424 -5.3487 -5.5875 -#> -15.1982 -16.2075 -11.1081 2.1837 -15.1037 2.5881 -16.0889 19.7138 -#> -1.3740 -0.5834 11.2036 -2.6599 8.2420 -12.5969 -12.3959 1.4875 -#> -#> Columns 17 to 24 2.0507 2.6598 -8.2677 -0.3819 -9.7047 -13.0155 0.8416 11.0928 -#> 9.5006 -16.9117 -12.5434 -9.1153 0.4889 -1.8486 0.6586 7.6950 -#> 15.1938 3.1147 0.5621 1.7471 -14.8611 -2.8270 -0.4675 11.0833 -#> -21.2756 -17.3433 -3.7241 2.3021 1.9242 17.5036 2.0321 11.3387 -#> 4.0239 -4.6242 1.3642 0.7304 -4.2136 6.3788 -5.1951 1.0344 -#> -0.0384 -2.6888 -6.1012 6.7180 -12.0463 -12.4807 -5.0917 -9.4530 -#> 3.7491 -1.2887 10.0114 0.4980 -19.6182 -11.8975 -6.1498 -9.0285 -#> 3.5560 4.8208 2.8959 -9.5669 -5.5017 1.9822 8.5510 -2.1044 -#> -2.2116 2.3504 2.2195 14.9792 -9.9029 -1.9384 -0.5256 3.0722 -#> -22.9213 21.1300 -9.5968 13.4872 -10.8303 0.4232 -12.2590 -4.7347 -#> 19.0331 2.7374 4.2416 4.2413 -0.5785 -2.3002 -2.3245 -8.5098 -#> 3.4308 -4.5625 2.0586 6.0886 5.3807 -1.9928 -3.4943 0.4703 -#> -1.6577 -15.8600 8.2561 7.0638 1.7736 -16.2779 7.8722 -3.1787 -#> -0.3687 -16.4942 6.5590 -1.1787 3.5540 -14.2099 12.5565 4.2178 -#> 13.0011 0.9513 4.4265 10.9985 -0.1402 4.5048 -13.1231 7.3450 -#> 7.5692 -4.8010 -20.2641 10.6312 6.1431 9.6376 -9.9602 -9.9894 -#> 11.8609 6.2776 -2.6604 -13.9893 -0.5079 -3.7566 -5.1813 4.9594 -#> -5.7975 -2.5242 2.6223 -15.3010 8.8385 15.4189 13.6916 2.9766 -#> 15.4826 14.5025 -1.2235 9.1774 -3.8551 -1.9364 -10.3641 -6.1060 -#> -4.3016 0.8259 -4.8363 0.1938 -5.1897 -5.0624 -3.6538 14.0120 -#> -5.6653 12.6322 -1.3424 7.4415 10.4254 5.4954 5.7740 5.2493 -#> 10.3612 -11.3761 -4.5315 20.6901 -4.6147 -4.6538 -6.1524 -4.4536 -#> 1.1449 -1.2692 4.8713 10.5046 4.0514 1.0056 1.6884 -9.5293 -#> -4.5487 -7.4370 0.9980 0.2414 -9.4703 0.0699 6.6126 1.3606 -#> -7.5593 -4.8113 8.1871 15.3340 16.2282 0.7743 -10.5867 -0.0072 -#> -7.5182 2.6224 -0.3788 -3.3806 -4.6903 -6.0372 5.0801 -11.2094 -#> -0.7491 -4.1805 6.0432 10.6777 0.9205 -10.8444 -2.9452 -1.8480 -#> 10.1078 -2.1582 -1.2274 -9.9255 15.0571 17.5290 -3.8803 3.5488 -#> -7.4319 5.0795 13.8641 -1.4426 1.3595 0.4998 -3.2554 -2.9333 -#> -3.0166 -4.6155 21.9036 -3.6327 0.2526 4.0147 -3.2307 2.0131 -#> 2.7417 -0.6201 4.8743 2.8442 3.4621 6.0141 0.4053 -16.9837 -#> 0.8861 1.6744 -1.4065 14.6046 1.5714 -24.4373 0.3676 -3.4827 -#> 4.0054 0.5725 8.7190 -8.5844 -1.3806 -6.2709 13.3831 -4.2304 -#> -#> Columns 25 to 32 -4.1254 9.3742 -11.9406 19.7302 6.2971 2.7894 13.8389 6.6408 -#> -1.9426 -1.7817 -12.3767 1.1051 3.3208 -1.9366 2.5308 -11.9070 -#> 8.8551 -2.2768 -3.4851 -2.1931 4.0168 3.8313 7.3140 11.3613 -#> 5.8380 1.4407 -14.6187 -6.7719 -12.8975 -12.0475 -1.8910 -8.9767 -#> 1.2515 -0.0015 11.6763 6.6943 3.9679 -4.1267 -11.1167 6.0731 -#> -7.4304 -0.4224 -1.8240 -6.7562 3.3597 3.2047 14.7926 3.0720 -#> 18.2255 -5.5199 12.2591 12.3209 -10.4560 -6.3152 0.1159 -13.3165 -#> 3.0514 -6.1623 1.4615 -2.6432 -3.0623 -16.2089 3.5304 -2.6365 -#> 1.8521 3.1686 1.3424 0.4103 7.6215 -2.8771 5.7098 -15.4748 -#> 7.0573 8.4287 -15.0557 -2.5131 -13.4608 -2.3850 1.0915 -15.5075 -#> -7.8992 0.6289 -4.1602 5.5693 -4.8073 -8.5766 4.1574 -1.1716 -#> -7.6856 4.9891 0.0264 8.6593 12.1591 -10.1124 4.3597 10.4212 -#> -2.5367 -9.9828 -11.1830 3.8636 -6.6999 -9.8037 14.4445 18.1645 -#> 3.0433 8.5416 -6.2895 -0.2634 7.1224 -22.0405 -3.1111 5.2978 -#> 2.5170 -4.6569 -3.9122 -10.7506 13.1106 -1.4986 13.1161 14.7422 -#> 1.7151 5.4397 -4.4998 0.5734 -3.2140 8.3545 -6.4990 -22.1587 -#> 1.0871 -0.3733 6.6648 -1.9736 -3.1345 9.0372 -7.9000 3.6416 -#> -5.7346 -5.5697 -7.7569 -6.2873 4.6999 -4.1704 1.8441 -8.9156 -#> 1.9548 6.3252 3.0557 -9.0061 5.7293 -4.4918 10.9426 -2.5873 -#> 15.6885 -2.0274 -10.3964 4.3669 5.7090 -10.1337 -2.0274 -5.9175 -#> -10.9127 8.2897 1.2689 -2.7881 5.2909 -7.6923 -7.8837 2.5822 -#> -12.6344 11.2309 -6.9455 4.0729 -0.8880 -14.4394 -11.9550 5.4840 -#> 11.6747 -18.4813 -0.9224 14.7047 -13.1532 -16.9584 -14.5604 -3.2588 -#> 7.1224 7.6081 7.8043 6.9435 -4.3951 19.4718 0.1496 -0.0237 -#> 3.6916 -3.1680 -14.2709 12.8420 5.4446 3.6627 -16.5807 15.2178 -#> 5.9516 -3.0243 14.8711 -3.7670 6.9118 9.2722 8.1439 7.4384 -#> -5.9544 -2.2944 6.3805 -9.6320 12.2830 6.9966 -4.4074 0.8192 -#> -18.1687 -16.2847 -10.2525 -7.6339 -7.2074 9.0036 -15.0035 4.3509 -#> 1.0724 -6.5366 11.6397 -5.2278 -2.8765 4.4298 5.9241 6.1974 -#> 3.5181 1.3551 -1.8297 -4.7495 -8.6474 3.3282 16.5622 -4.5502 -#> -8.1147 12.4193 6.6285 7.0230 -7.9623 11.4584 -7.5197 -14.5441 -#> 4.9385 -5.5366 -15.0028 8.5349 0.1998 -13.5030 7.5491 10.4168 -#> 6.9734 -9.1558 2.4214 2.2550 -6.5530 0.7602 9.4171 -5.7679 -#> -#> Columns 33 to 40 -16.2546 -23.7417 -17.0193 -1.3142 2.8238 7.1652 -5.3280 -1.3377 -#> 14.1420 -1.5059 22.5524 -21.2378 13.9141 8.4371 9.6989 5.8117 -#> -7.3609 -3.2967 -12.9083 -11.0725 4.1133 11.0140 9.3464 7.2597 -#> -10.0718 16.3289 -1.2712 -3.5266 5.6203 -5.0587 -0.1206 -14.1769 -#> -5.1636 5.6576 10.7469 20.5651 8.4264 10.4495 -3.8374 5.2713 -#> 15.6951 14.4955 -11.6119 9.4762 -3.1124 -2.3191 2.1196 3.5569 -#> -10.7368 -10.5437 -12.2213 10.9230 -4.4011 -1.6173 0.0974 -0.5739 -#> -14.4136 -15.9359 -10.0872 -3.8252 16.9249 -4.7211 7.9440 1.1553 -#> -3.7608 -0.2942 -17.8180 -3.6190 8.0015 -14.3660 1.6582 -10.8504 -#> 21.1495 16.3938 9.4025 1.9902 -3.1828 10.3133 -0.6980 -12.5243 -#> 3.1599 -1.0148 -10.7063 4.5622 -6.2987 -11.1163 8.4843 1.3144 -#> 3.5440 13.5956 5.0636 -11.6090 9.5306 -3.8764 -3.9018 7.6265 -#> 5.8936 0.2157 -4.4326 12.8327 8.0861 -25.1949 -14.3138 -12.4501 -#> 5.9666 15.9317 3.8190 -4.7217 11.1876 5.2509 -10.9786 -0.5133 -#> 0.6909 18.5410 4.4026 -8.1224 8.0649 18.7591 18.1166 -18.0383 -#> 9.0911 14.8643 11.4708 4.9207 -8.1068 7.9500 4.9009 -6.7330 -#> 9.7842 -4.6255 20.4290 -4.4621 1.0605 -4.9756 0.1691 15.5058 -#> -2.8511 -16.5230 -13.0380 -6.8763 -5.0870 5.3321 -3.4553 10.2239 -#> -4.1570 -19.2809 -12.6503 4.1567 6.9719 5.7000 -1.0137 5.4218 -#> 3.9844 23.7523 -20.5564 2.7967 13.0207 1.8161 4.7416 -9.0043 -#> 0.8970 -10.7307 9.0940 10.2688 1.0261 2.0990 -3.9108 3.1225 -#> 13.4368 -10.2608 8.3270 -0.6738 3.3290 -3.8392 10.7277 0.5851 -#> -2.8274 21.8511 17.5014 7.3997 2.9204 -2.4399 -3.8114 -6.8817 -#> -12.0053 9.8954 -13.6067 10.2075 -0.5364 4.7130 -2.0404 2.1682 -#> 7.2322 1.0930 -6.5927 1.4633 -1.6856 11.1873 -12.6404 -4.7624 -#> 21.7513 1.6566 -7.0826 -9.0371 -14.3815 -19.6564 -6.0599 8.9391 -#> -3.6946 -2.1719 -14.3045 3.9593 -11.4235 -0.6905 -10.8632 -6.2279 -#> -7.9132 4.1077 -7.4057 3.9989 2.7405 10.1765 -11.8403 0.2625 -#> -12.8951 -8.4539 -3.7227 -8.7636 -19.2086 -20.4250 -23.3362 -6.3952 -#> 9.0696 -1.4293 -5.9031 -7.8074 -13.0599 0.1288 -5.4286 -6.5128 -#> 3.3542 21.9397 1.2557 0.1547 18.7915 -2.2035 12.2932 4.3940 -#> 19.6359 -5.6027 3.4627 -4.9635 4.0945 -17.2492 -8.7759 -7.4648 -#> -14.4994 13.8843 -3.1236 9.1751 -7.8411 -6.0328 -1.2764 5.8990 -#> -#> Columns 41 to 48 12.4684 1.5413 -0.9921 -2.4225 15.1364 11.2646 9.6565 18.3759 -#> -2.2483 -9.2219 -9.1508 8.3533 -7.1090 -0.2778 -0.5484 4.5380 -#> 6.2917 -1.6471 -0.3049 -6.6333 -9.6016 11.6996 -4.1160 8.6289 -#> 6.0482 2.3693 -8.5061 6.0234 -1.0929 8.3549 -6.7385 -3.8282 -#> 3.0921 -0.1369 2.3729 -4.0608 -12.5768 6.9210 -2.2395 0.3691 -#> -3.9794 -9.2462 -3.3190 -5.6941 5.3892 -5.3677 0.8627 1.9602 -#> 5.0847 7.7314 -8.0740 -0.1435 12.0844 -1.2089 18.1352 -6.2714 -#> 4.8262 2.1688 6.4618 -0.6966 14.3354 -0.1032 7.7291 7.0555 -#> 3.2609 14.0137 -2.2330 -13.2423 -4.2445 1.9784 -8.1714 -6.3727 -#> -4.8374 -6.5268 12.9251 15.1205 -8.1213 -1.3245 -10.2242 -14.8910 -#> -6.9816 8.6871 -3.6590 -14.3809 -9.3692 2.6268 -1.2327 8.6051 -#> 1.6206 13.5033 -5.4795 -2.0907 -5.7077 -14.7999 -5.7586 4.2999 -#> 8.7203 3.3506 -14.3992 -5.7758 3.1561 -16.5495 5.3469 3.9362 -#> -4.2642 8.1815 4.7881 2.3056 -6.4157 -12.4372 8.1750 -13.3807 -#> 9.0167 12.7056 11.6007 -11.0262 4.2971 -3.2547 1.4945 4.9691 -#> -16.8074 -6.4873 3.3881 13.5651 3.2480 2.2724 -7.9075 -0.5044 -#> 6.9120 5.2717 2.6873 10.3306 -8.6791 4.5743 11.1047 -7.8470 -#> 3.4473 -9.3260 -13.5324 -2.1988 3.6893 9.5879 -2.7626 -3.1742 -#> -1.0179 15.3903 16.5882 -15.5050 10.5391 16.1257 -4.2574 -0.6911 -#> 0.2554 10.1870 11.1322 -0.8859 7.5715 -6.3537 -6.4601 8.0480 -#> 1.9401 -4.3159 13.1100 7.9316 -0.6930 12.7543 -0.0876 2.2636 -#> 1.8901 -1.4288 1.4151 12.0978 -8.4133 1.3448 -13.1126 -4.5250 -#> 14.9244 15.4586 22.7820 14.1672 -0.7533 -3.9422 -0.6175 -6.9593 -#> 2.2502 8.3303 -2.0124 -6.4444 -1.9069 -9.1721 -9.1885 0.4218 -#> -1.2529 4.6876 3.5248 0.3786 6.1484 -2.2346 -12.1829 25.1356 -#> -3.8372 -10.7091 -7.9372 2.7616 -1.8327 -8.7472 3.2606 -12.9457 -#> -0.8361 -8.9647 -5.8202 0.8926 5.8276 0.1345 -3.0728 7.0463 -#> -6.0486 10.4944 -4.7435 -7.4233 -1.6023 2.5923 0.8755 7.7830 -#> 6.3221 -10.5719 -15.1768 -0.5792 -4.6111 5.8933 1.8873 1.3806 -#> 4.9719 2.2166 -5.4620 -3.4779 8.0047 -12.0724 4.7335 -3.8603 -#> -5.3593 -5.7105 7.5636 13.7879 -7.3514 4.2796 -1.3703 -14.9948 -#> 1.2680 6.3434 4.6993 -5.8200 6.6031 -3.4956 5.4723 8.7672 -#> -8.4542 3.9480 -2.9003 -7.2767 -2.1211 -11.5426 -1.4058 -4.2086 -#> -#> Columns 49 to 54 6.9345 6.8547 3.0552 -3.7366 15.4697 0.1524 -#> 6.2922 -0.7933 -6.4809 2.7974 -5.4409 0.0367 -#> -3.3257 -0.0392 2.6232 -1.5331 10.6490 -2.2028 -#> 4.5382 -9.6036 -9.4649 6.2032 -3.8240 1.4407 -#> 13.5199 6.7690 2.6443 -3.3702 5.4460 -3.5104 -#> -16.6280 2.0464 1.1608 -5.5702 -3.6791 -5.3750 -#> 6.2361 -2.5801 -0.8141 5.3224 -2.5808 -0.4248 -#> 6.5722 4.9813 13.0259 3.5532 -0.2108 -0.3481 -#> -8.5610 -4.7566 0.1911 -19.4216 8.7068 1.1852 -#> 16.1358 11.3908 0.7024 -5.9319 -4.2298 -3.7900 -#> 0.7456 -2.5285 2.6793 0.9100 4.2093 -1.8958 -#> -14.6449 -7.2198 2.0372 -3.0012 0.7265 -2.1829 -#> 4.9887 -4.5485 -7.1482 0.7946 -0.2220 1.1991 -#> 7.3561 -6.5854 0.4942 -9.0523 -14.6778 -0.6867 -#> 1.8704 -5.6577 14.4754 0.7415 2.1388 -1.6480 -#> 1.0187 7.2594 -7.2277 2.4263 -2.5897 -0.5953 -#> 5.8552 -3.0989 -4.6741 2.1087 -6.3685 -5.4360 -#> -4.7954 -3.0337 -2.6234 9.1441 4.1686 1.3206 -#> 0.5679 9.4099 5.8011 0.1202 -0.3942 -0.2886 -#> -2.6996 -0.6632 0.7895 -1.5725 -0.1924 0.0885 -#> 14.5838 10.1875 0.2721 3.2883 1.1273 2.9354 -#> -8.6839 4.6683 4.7676 -4.0084 -3.8531 -2.5571 -#> -2.7880 3.9429 3.5918 2.5719 -6.0650 -0.8717 -#> -10.4243 -2.6173 -0.4466 -6.1775 -4.4496 -1.5418 -#> -13.9890 3.4637 -13.8115 7.9119 2.7131 0.7817 -#> -2.7265 -7.1634 4.9050 0.6368 -4.2845 0.3284 -#> 6.9923 -13.7115 2.1192 -0.0309 3.4392 -0.0764 -#> -2.5682 6.7601 -11.6196 -0.8245 5.3279 2.1712 -#> -1.3624 -9.8982 -3.0243 3.6376 -3.2003 -0.3407 -#> -1.5863 12.3002 -15.6227 9.8221 10.8348 1.3270 -#> -0.2349 16.1233 7.4516 5.6809 -5.4817 -1.3903 -#> 5.5133 7.0013 -9.5816 2.0696 2.0649 -0.7826 -#> 4.8998 -2.3120 -3.3847 -3.6179 -0.9100 -0.9852 -#> -#> (17,.,.) = -#> Columns 1 to 8 6.1443 6.9194 -1.0562 -4.3711 4.4654 0.5805 -9.1360 -14.1596 -#> 2.9841 6.6422 -2.7177 -1.1271 0.7274 -5.4302 2.3300 -5.4333 -#> 1.9327 -5.6299 -6.9753 -3.4866 7.1639 4.7113 -8.2368 9.1127 -#> 4.4792 -8.6570 -7.9390 -12.0866 -1.9326 4.4371 -24.3383 4.0757 -#> -0.5831 -6.2944 -0.5927 -0.3604 11.4115 2.1684 -7.3916 3.0542 -#> 4.4370 -0.6599 3.2872 9.1564 2.6958 6.7784 -1.4288 -2.8477 -#> -2.1455 4.1315 -10.8879 1.0214 7.5736 2.6349 -12.0602 -16.0574 -#> 1.5223 4.4186 -2.2786 -1.9884 0.6818 -11.9779 -7.7711 0.4184 -#> -0.6403 9.8892 -0.0395 -1.9764 -3.8331 12.8968 -8.1312 12.7658 -#> 4.0269 4.3379 -2.1609 -17.5246 8.5467 2.9727 -6.4218 -1.9910 -#> -3.8391 2.7261 -0.3629 0.9506 2.2703 8.2623 13.7309 -7.8259 -#> 2.4645 -2.5920 -12.7258 0.0863 -2.0993 -6.0942 0.4621 13.7128 -#> 2.4760 1.2588 -9.4273 8.8638 4.6503 1.9964 4.9189 -3.0370 -#> -0.5484 10.3669 -6.2906 -7.2585 -16.6554 -2.5892 -7.9406 -4.5755 -#> -0.7397 -8.5692 4.6649 -3.7718 0.4087 4.4101 -11.1031 -4.4849 -#> 0.1002 -2.6376 2.6019 12.8042 -1.8125 2.6265 8.1862 2.4251 -#> -1.0834 -3.4857 -4.6050 9.3387 -5.0314 -9.9726 -9.3422 -8.8175 -#> -1.5390 0.1313 9.5713 -3.0821 -2.9337 -3.8771 3.7128 4.3213 -#> -7.7632 6.8190 6.7207 -13.4798 14.6956 3.4435 -2.8333 -21.4868 -#> 3.2687 -4.6805 -4.7812 -3.1980 1.6897 -13.9128 -9.4960 3.1243 -#> -1.6829 3.7035 14.6709 -2.2077 -3.2603 -1.1370 10.1571 1.2648 -#> -1.0883 11.0762 1.3416 -12.7511 -21.1933 2.9799 1.6736 15.2179 -#> 4.4480 2.8421 -5.4820 -4.7026 -5.0694 -11.4562 -23.3585 7.1575 -#> -2.9082 -1.0902 -8.4298 -1.1375 -2.0630 -7.2376 8.0495 15.6140 -#> 7.1673 -10.4637 -7.5146 0.0550 10.0286 -4.0913 -6.3031 20.5785 -#> -5.4081 -0.1117 2.7705 12.1973 -8.7742 -0.2077 8.2314 11.1816 -#> 1.1246 -5.8824 -3.4459 2.8865 3.2704 4.4080 -1.6483 5.7580 -#> -0.6552 3.7956 -3.3537 -1.6918 3.8882 4.0538 3.1555 -8.2176 -#> -2.3748 -6.2723 5.2245 4.1894 10.9072 -3.6395 -0.2955 -1.0144 -#> -3.5075 -5.5204 -6.1432 0.8693 9.1727 -10.3702 6.5089 3.1676 -#> -2.1095 6.3571 -2.2335 10.9228 -13.9975 -2.3345 22.6371 -9.1804 -#> -0.1568 -0.9048 5.5829 -2.9037 13.8580 -8.1319 -1.9552 3.5291 -#> -3.8153 -0.3087 -7.4113 -8.1043 7.0150 4.7633 16.0928 3.2886 -#> -#> Columns 9 to 16 -3.1810 -3.2627 1.0612 4.0951 1.5249 5.4468 -0.3204 7.8181 -#> -4.6727 -5.7859 0.5801 3.7623 0.3317 -1.4330 1.5571 -0.2559 -#> -7.3271 5.7157 -5.1694 16.8466 -2.7004 2.6971 -3.5376 -10.4199 -#> -6.5211 11.6065 -8.2419 5.3917 -1.8777 -7.2023 5.5177 7.2373 -#> 6.9915 -10.4649 -8.8021 -0.0459 -0.1659 -1.2228 -1.3253 8.1643 -#> 3.4482 6.1002 3.7333 -9.9588 11.2046 11.5108 -6.2545 -9.3857 -#> 8.2876 1.7361 -12.5369 2.4079 16.4401 5.7171 2.8861 13.5347 -#> 3.4647 -11.3662 -21.3331 7.0156 6.9562 6.3768 -10.0717 0.1385 -#> 15.1363 16.1886 -0.6350 11.5681 -6.6108 -8.0296 2.9866 -5.0846 -#> 3.5970 18.8378 -11.3572 -4.2139 0.3005 7.6319 18.2322 -4.4625 -#> -0.8092 -5.0381 4.6445 1.8130 -9.0166 8.6400 7.3903 -17.6204 -#> 14.0589 -4.6007 10.7953 -7.4705 -12.3759 9.3497 -3.1502 -5.5020 -#> -6.2404 -2.1810 -2.7716 0.7559 2.4455 11.5034 4.8724 -9.3390 -#> 1.5732 -4.2609 14.5878 -21.0616 2.1890 -5.8857 -4.9004 8.9875 -#> 1.0933 -3.6500 3.7066 5.4885 -13.8248 -0.8643 -16.2240 7.1034 -#> -17.7197 5.6153 12.2955 10.4517 -3.1934 4.9312 5.7033 13.4370 -#> 1.3269 -10.6556 -6.0935 6.4030 2.2019 -2.4704 -3.2745 -7.5166 -#> -6.9070 -1.5901 -3.8122 -5.1475 -3.1792 1.8839 -6.9131 7.7553 -#> 9.1986 -4.2436 -2.6430 4.5851 -18.2240 -13.6614 2.8320 -6.5608 -#> -3.7126 -0.7393 12.5292 5.0482 -8.4647 -1.1843 15.3833 -12.8543 -#> -13.4071 -6.8954 -6.4824 -6.8973 -8.1641 7.5570 20.1569 13.7861 -#> 7.7510 10.6749 -6.2694 0.7353 1.9931 3.6837 -7.3125 1.7338 -#> -0.2942 6.2285 5.4998 -8.2894 14.3482 12.4478 -3.6528 -4.6218 -#> 13.3558 -4.2591 18.4636 -8.0938 5.3546 8.5646 -4.5114 3.6857 -#> -1.7329 -15.8077 12.7673 -10.2201 9.5951 8.8423 -11.7141 -9.4775 -#> 19.4649 -6.8292 9.3490 -7.6591 8.2599 -1.1958 -1.2143 9.2001 -#> -9.5506 -3.6073 14.2369 -3.8460 -1.9205 5.9566 -4.4946 -9.4718 -#> 2.9816 -0.1607 -3.5225 14.3550 -7.2591 -11.0014 -2.8438 3.6171 -#> 3.2333 -0.8371 2.9425 2.9499 2.0615 9.2706 -8.6544 -7.0034 -#> -16.4620 2.1289 0.1354 -8.4689 -1.2499 4.8122 2.5817 13.4833 -#> -0.5567 1.8226 -2.1932 -11.4949 -8.9891 7.0014 11.6330 0.0430 -#> -15.2057 -1.4595 -11.9441 16.5283 16.2629 -5.4902 20.6133 -0.9546 -#> -7.3588 -4.2087 -0.1877 4.6742 10.1569 4.0011 -0.8341 8.5255 -#> -#> Columns 17 to 24 4.7876 17.2720 3.3702 -1.0435 -10.8395 -8.1406 -7.5049 -5.5539 -#> -9.9691 -1.1988 -0.3827 8.6837 -16.2213 -13.0124 -2.5975 -7.0430 -#> 4.5661 17.4118 7.9166 2.5864 -10.3547 -1.7683 9.1435 10.5543 -#> -23.2334 10.3631 -25.5210 -12.3129 -4.8079 9.2390 -4.7016 -1.0820 -#> -2.2913 -9.7322 -9.6260 5.5965 -2.5656 -0.5326 -6.9418 -10.7495 -#> -3.2222 8.0219 5.9834 -14.8087 -6.2356 -2.7075 -13.7779 -38.2064 -#> 1.0871 0.2784 4.6760 -6.9322 15.0898 -14.0151 -7.9154 -12.2438 -#> 20.5265 -13.0739 -4.6356 -14.1243 1.4672 -5.4715 -0.2433 19.5680 -#> -12.5312 -2.4462 12.4738 -14.6028 17.5852 3.3055 0.7279 2.9435 -#> -9.0759 7.4424 -13.4984 -3.4864 10.9933 23.4347 -12.4106 -6.8116 -#> 0.2945 -2.3298 -7.9317 14.3155 -0.0490 -8.9765 -2.0218 7.3739 -#> -13.2542 5.0205 -2.1731 1.3804 1.0738 -4.6849 -13.5458 2.3084 -#> 7.1460 -7.8515 2.2562 -6.2295 11.3502 -1.0303 -5.2992 15.8323 -#> -15.0881 0.1767 6.4603 2.2481 10.8668 -1.9336 -3.0059 -3.9025 -#> -3.4863 0.9929 17.7379 -0.4459 4.1941 -0.3456 7.3584 -9.6679 -#> -7.0207 0.9989 -17.1677 12.6743 -3.4119 5.4517 4.1034 -7.5619 -#> -6.6729 -7.0634 -8.5295 -6.7227 7.5573 -20.6982 -17.9593 -6.2486 -#> -0.9564 16.8376 -17.7000 8.7197 -8.0258 3.5434 3.8272 8.6623 -#> 4.7000 -2.5202 -4.5670 -4.7674 -4.1558 19.1030 0.3822 -3.8329 -#> -4.2104 18.9013 -0.6283 -5.7242 -0.6763 4.5063 4.3415 -4.9077 -#> -6.0676 -5.2026 -9.6267 16.3435 -8.3280 16.4242 10.7939 5.0139 -#> -6.8391 1.9071 -11.6442 21.1259 -11.9573 -2.9056 -0.0309 -0.9524 -#> -15.3838 -14.4158 -5.6303 10.7407 18.0120 -5.8079 3.7584 -4.3958 -#> 12.5217 -0.7652 -7.5056 1.5211 -10.9556 9.6789 1.6204 -0.5635 -#> 8.5732 20.9318 -13.5805 8.2473 -2.1256 13.2180 -0.0080 2.3703 -#> 12.6771 -0.0184 15.6403 1.7141 19.6619 -13.3052 17.5606 -7.7566 -#> 2.2863 0.1965 7.5713 -2.2330 0.8285 -10.7955 3.7508 -3.1906 -#> -12.9624 -5.9707 -4.7057 -9.0526 -14.0223 20.6805 0.6815 6.7069 -#> 11.4943 -6.2175 7.6624 8.1907 3.7794 3.9137 16.4800 9.7840 -#> -6.1348 4.4264 4.3409 11.0234 -1.3618 5.7269 -19.5008 -0.8807 -#> 3.5661 -2.3396 -6.4453 4.2679 7.8474 10.3957 -0.1799 1.4265 -#> 3.1961 -9.3156 25.0814 8.3016 9.0736 -3.5149 -4.4687 4.5316 -#> -2.1196 1.2412 -5.3532 -1.9141 1.0356 2.0371 3.8051 3.0251 -#> -#> Columns 25 to 32 -12.7784 -3.1151 -4.1067 -17.6687 -13.4600 6.3249 -9.3811 -7.3388 -#> -0.7619 -11.6666 12.7568 -7.8023 -13.0570 0.8027 15.5756 -0.4485 -#> 0.7670 -3.6165 1.0185 6.6977 0.9419 0.6155 -6.7409 9.6993 -#> 5.1670 0.1816 -5.8841 10.4241 8.7812 -0.6064 17.1802 5.0143 -#> -4.9780 -2.7439 -14.4820 -3.7913 -4.8708 -2.0714 -3.2589 12.7400 -#> -11.4598 -1.2145 -10.0119 -10.2576 -8.2680 -11.5806 -3.2187 -2.6170 -#> -2.6593 3.2811 -11.8429 6.7609 -2.9523 -20.6242 1.8380 5.0370 -#> -0.6210 -23.1475 -2.7063 -5.0878 3.5943 -1.2283 -3.5178 -7.9973 -#> 3.6137 9.2104 9.5769 -2.2702 11.1843 -0.4034 1.9130 11.4164 -#> 7.6460 -0.3827 -20.7806 -0.2912 -2.5550 2.5483 -0.9074 3.8046 -#> -10.1698 -1.4984 -7.6352 1.1972 3.4435 4.5729 2.1873 2.6382 -#> 2.0410 -4.2316 1.8286 4.2103 -2.9651 6.1363 9.6191 -2.9329 -#> -2.6176 1.7511 -8.1758 -4.8099 -9.2014 3.0600 4.1247 -6.5042 -#> -0.7695 -2.7357 6.5961 0.2550 -8.4879 5.1099 7.8306 -3.8784 -#> 7.1554 -8.0673 -4.7431 4.5292 12.5880 0.7548 17.6900 -0.6163 -#> -9.0725 9.8556 5.5272 -7.2525 -4.6794 -9.3108 12.0713 6.8277 -#> -15.2457 -11.3464 -0.8299 -5.3889 -7.3931 -14.3264 -2.2502 4.6353 -#> 10.7940 4.0557 14.0390 -9.8524 2.6743 -4.7332 5.4225 -1.7788 -#> 5.1810 -9.9234 5.5246 1.2374 7.2331 -0.2130 10.8272 -0.3448 -#> 4.7325 4.7821 -2.9912 4.3711 -2.0756 12.5127 -0.9461 -8.1639 -#> 8.8977 8.8578 -9.6155 -7.2892 -4.1856 4.3503 5.4361 -3.7193 -#> -3.5420 -11.7217 5.6519 -1.5706 1.9119 4.2155 4.5332 -15.1637 -#> 9.5145 6.2907 -9.3909 7.1549 4.9775 3.4711 7.4276 7.5582 -#> -4.8574 7.1038 5.1234 8.3762 -4.2527 -6.3355 6.4191 1.9055 -#> 10.1519 12.8104 4.5860 0.7293 0.0193 -1.5512 -3.6323 -3.6445 -#> 9.6038 3.8469 3.8026 -2.4492 -5.6320 -7.9020 -0.5373 -3.5500 -#> -3.2464 6.0656 -0.9350 3.5552 3.2878 8.9093 4.0319 -3.2805 -#> -0.9716 -4.9932 1.2699 -2.3636 9.6565 2.8870 -2.7157 6.6711 -#> -4.0200 2.8403 11.0463 5.4527 13.8217 -11.7949 -6.8832 -15.9980 -#> 20.2676 10.8881 -7.9728 -13.7948 4.5471 -4.2364 4.6383 12.1830 -#> -13.1566 -7.2088 3.0935 -5.6241 -1.0032 -1.1888 5.7101 9.9611 -#> -16.2755 11.5573 6.1171 -1.1188 -9.2500 7.4123 6.8200 -2.3877 -#> 0.3761 1.2744 1.5478 4.8301 3.0607 -1.7451 -8.4018 5.3828 -#> -#> Columns 33 to 40 -2.6798 10.7408 5.4904 -4.9847 -6.8072 5.9453 -7.2387 9.5456 -#> -1.6163 -9.3078 7.8399 -18.4102 7.3172 -3.7820 -10.7607 6.2403 -#> -10.8727 3.4745 -0.8042 18.6595 2.5602 7.4274 -2.0725 -3.4180 -#> -4.3281 11.4767 6.3640 10.9480 -6.1661 -18.5870 -4.1403 10.0234 -#> -2.4974 1.1080 -6.0992 10.2662 -2.3050 13.6306 16.0703 9.8415 -#> -3.2326 1.2055 -2.1907 -1.9525 -3.4973 8.5366 -14.1278 -2.0794 -#> 1.5418 12.4918 11.6216 2.1373 6.5673 4.2851 -1.3019 15.2588 -#> 6.4475 4.5054 -8.5098 -8.8409 -0.7175 -3.4654 10.5672 2.5838 -#> 5.9579 0.1376 4.9462 1.3211 9.5206 -8.4694 0.2855 -4.4919 -#> 5.8723 8.9215 9.1594 -7.8355 5.6397 2.0405 -0.8956 -3.4817 -#> -0.3586 0.7275 -0.6278 6.3590 13.4949 3.0733 3.7876 0.0623 -#> 12.0649 0.3028 0.3616 -4.0420 10.4038 -0.6742 2.6561 23.8164 -#> -9.3511 -1.2811 1.8103 -9.9004 8.7360 -3.9421 -0.2291 15.3043 -#> -2.3802 -7.0159 11.3137 -13.9367 6.5566 -6.2087 -11.2825 7.4017 -#> 5.6427 -5.7506 -0.9135 1.0892 -2.6045 -13.5775 4.7687 0.4022 -#> -10.2733 -16.6287 -0.3390 -2.6910 0.1103 0.9711 2.0200 -10.0394 -#> 0.4027 -8.1790 -1.2274 -1.8224 6.4739 0.3178 -10.8276 5.8462 -#> 5.6329 0.4834 1.0717 2.2724 -4.3132 -6.7506 1.2790 9.4726 -#> -6.6045 10.1189 6.9280 1.8852 -2.8820 -9.5778 -18.9174 -7.5127 -#> -4.6235 11.4260 -15.3983 4.8237 0.5430 3.1613 17.0547 -7.7714 -#> 0.9165 -15.7357 -2.9726 -16.5025 -4.2553 8.5064 4.5877 6.8933 -#> -1.0045 -1.5503 11.9903 -16.7153 1.7860 -8.8464 -1.3527 -5.7166 -#> 1.9460 4.4425 -13.1039 0.3578 8.0725 8.0274 9.0462 -14.6979 -#> -1.4275 7.5097 6.2892 0.8070 -3.7205 0.7155 -12.4836 7.3437 -#> -3.1733 9.4923 -12.6845 17.5650 -1.7871 8.4914 -5.2970 -6.5126 -#> 5.3399 6.7639 7.6913 -3.0564 8.4512 2.6952 8.8310 -0.6163 -#> -4.9734 1.6869 3.8372 11.4282 -10.7808 -0.1684 8.9313 -4.8800 -#> -8.7450 -6.8279 -6.4785 21.0190 -10.2943 21.6078 -29.3649 4.0950 -#> -2.7746 -2.4019 1.7970 8.5955 -9.3389 -1.3879 13.5859 -5.6466 -#> 11.1821 -5.2228 13.2041 1.8326 -6.4913 5.4415 -16.9786 -5.4153 -#> -2.8319 -4.7344 9.0530 -7.0999 4.7814 -6.2008 -4.4767 28.7513 -#> -19.1089 -8.6855 13.1355 -9.2310 6.0743 -9.0933 11.9112 -10.9186 -#> -9.4442 0.6115 -4.7476 4.9595 2.3222 31.3597 -0.4587 -3.3852 -#> -#> Columns 41 to 48 13.2335 18.4072 3.8452 -6.9916 16.0191 -1.4387 7.3699 14.8535 -#> -4.2993 10.6820 7.0353 1.3130 -8.7711 10.1553 4.1372 -0.5599 -#> 3.2517 12.1267 -15.7250 0.9289 -12.1262 -4.4340 -5.4977 10.2717 -#> 2.3578 -1.1384 -13.6929 1.9523 -9.0392 16.9055 5.2991 -21.7345 -#> 20.1297 9.7540 -4.4430 17.1155 -10.7662 3.5038 7.8592 3.0781 -#> 8.2474 -7.9042 2.5285 4.0943 11.3423 -2.9282 -3.7371 -5.7120 -#> 4.6633 -6.2643 -2.6094 -16.2379 1.1435 4.4389 17.2909 8.6930 -#> -0.7847 -14.8175 14.3593 -0.9707 13.6857 8.9951 -1.7974 5.3307 -#> -2.7323 13.8403 -4.1151 -8.8232 -5.2754 3.0921 -12.9723 -7.8679 -#> 12.0113 -14.4334 -7.5176 -4.4632 3.3497 4.9875 -13.5565 -1.4509 -#> 2.6535 2.2753 3.7532 1.5156 2.9532 -11.4222 15.0870 12.4004 -#> -0.8589 2.4802 -6.1565 -4.2074 -2.5356 -13.0278 -3.9227 -18.4011 -#> 6.0597 -10.3485 1.7872 -6.2897 0.9800 3.4572 17.1559 -0.8167 -#> -3.0977 -4.0392 5.5219 -7.0214 -15.3351 -7.9001 5.0116 -29.1513 -#> 24.2113 14.1920 3.8048 5.9459 -8.5433 -11.8677 -0.5119 5.3183 -#> -1.5524 -1.9231 -10.8412 14.6299 6.4453 -4.2846 -3.5581 6.6648 -#> -17.1757 -4.2006 -2.9053 -7.5145 11.6744 -18.1325 5.4189 14.1761 -#> -13.5461 6.5545 18.4231 9.6028 6.9905 7.2333 -4.9760 -7.3707 -#> 4.2127 -3.3927 8.6950 -22.2378 -4.6125 -7.6642 4.6457 22.9384 -#> 1.9780 -16.4488 -4.6691 -0.0215 3.3830 1.5566 -12.8181 -11.4244 -#> 4.7052 4.0998 3.6235 -2.1365 11.1460 -6.0001 -11.2796 -2.0067 -#> -9.5723 6.5852 -8.2466 3.4642 -19.0371 -1.4680 -10.6882 -6.0754 -#> 1.5706 -2.1467 -8.1451 4.2954 -5.1098 -9.6729 -8.2277 -16.7589 -#> 4.9486 -7.8326 -9.1857 4.9922 -6.8312 2.1194 13.4255 -7.9282 -#> -2.9973 4.8711 -14.2213 12.5082 -8.9272 -13.5373 -10.6331 -1.7991 -#> -20.9875 -15.0079 -0.1355 -4.0733 3.4722 -1.1602 -1.9319 -10.5716 -#> 10.5513 -6.3437 -10.0204 -5.1811 -7.3454 3.2951 13.2194 -10.6875 -#> -9.0411 9.6437 -0.7267 -8.0317 -3.7791 -14.4714 3.3345 0.9388 -#> -12.0010 -11.0004 -18.0084 11.7813 -4.8742 17.4474 13.8801 2.0438 -#> 31.7265 -13.4833 13.5332 -2.5016 -7.9255 4.0851 1.6553 21.2569 -#> -1.0274 -0.3764 3.9221 0.6137 4.0974 -6.4963 -6.7259 -11.1689 -#> 7.8031 0.8675 5.7429 2.3580 -2.4164 2.3665 5.2437 22.7314 -#> -4.2878 -10.5383 -9.9768 1.3139 -9.4152 -6.3573 9.6883 5.9264 -#> -#> Columns 49 to 54 -0.2671 9.7701 6.0322 4.6811 2.9762 2.2722 -#> -14.4196 -1.0555 10.7776 -8.0051 1.9966 -1.7877 -#> 3.2285 -12.2791 6.1325 -8.0227 6.4722 2.3322 -#> -9.7100 -12.2404 12.3004 -3.0280 -5.8205 -3.4416 -#> 1.8904 1.2133 7.7791 2.6255 1.2190 0.2403 -#> 13.7775 11.0335 -12.7964 -3.6531 -5.7224 -0.2613 -#> 2.1140 0.6198 8.4620 2.8346 -13.2978 -4.7245 -#> 6.4016 6.4218 5.0143 -7.5094 -10.5561 -1.5737 -#> 5.6732 -21.9615 9.2310 6.7673 -3.2778 0.9200 -#> 10.3036 -3.3432 -9.5236 6.6128 -3.7361 -1.9285 -#> -3.4186 -3.4549 -3.8103 2.1477 0.9592 -0.1993 -#> -4.8919 10.2478 8.8289 1.0471 5.5893 -2.8752 -#> 1.7449 1.9779 -4.1833 2.3643 -0.7714 -1.5880 -#> -7.5838 -4.1429 -6.4595 16.2080 -8.8949 -4.2480 -#> -7.4641 -0.9506 -3.1015 8.1307 11.6222 0.3097 -#> 13.7682 8.3304 1.3823 -18.3744 4.5722 3.6273 -#> -11.2872 3.8188 0.5564 -11.4159 -6.8905 -0.0975 -#> 11.2198 -1.0655 6.9872 -7.0629 -3.6281 -0.3584 -#> -10.5131 -2.6208 -5.8299 0.5071 9.3178 3.8768 -#> 3.3297 8.2219 -13.3294 -0.0814 1.1981 -1.7593 -#> 7.4771 22.3231 3.6667 -4.9007 1.9783 -1.0990 -#> 11.3080 -15.7802 1.4606 -12.4734 2.3892 1.7499 -#> 0.4649 -9.0525 7.7570 -7.6014 -11.8574 0.6533 -#> 5.2104 1.1293 6.9246 6.9781 -3.4111 0.2557 -#> 6.8321 -5.3332 0.8903 -1.9140 -0.1111 0.7168 -#> 11.2020 13.3858 -6.2562 15.5736 -7.2203 -3.6565 -#> -2.5946 10.7949 -9.5117 13.1883 0.9728 2.0467 -#> -16.0799 -13.1516 0.1700 -12.3154 1.6330 4.2724 -#> 1.1213 8.2665 14.9941 -4.0737 -4.9093 1.5110 -#> 4.0347 -4.5001 -0.1521 7.3414 6.3084 -0.2847 -#> 3.4297 8.9231 13.8903 -1.4625 -3.8002 0.3066 -#> -15.8880 12.6141 4.3672 -4.6317 -0.2330 2.2429 -#> 10.0463 3.7442 -3.5000 0.3014 -3.8686 -2.9811 -#> -#> (18,.,.) = -#> Columns 1 to 8 1.6420 1.2879 5.3164 -7.8571 12.7048 5.8433 11.3036 3.7826 -#> -2.5109 0.0431 -1.9696 4.5404 -18.1270 -4.8284 9.7173 6.8896 -#> 3.3734 -1.0133 -1.5317 13.5069 8.2392 -2.2201 18.2343 8.3940 -#> -0.6494 1.1275 -0.7992 6.7130 6.8398 -0.1860 3.1122 -4.9259 -#> -0.1896 1.4126 -7.5902 8.6638 -6.4634 2.9422 6.8588 -8.1542 -#> -2.5423 1.3982 8.7002 -5.7975 -3.0473 -11.9556 13.9886 8.3534 -#> 0.0925 -1.9056 4.1929 9.6189 3.0107 18.1900 -4.0006 -0.3840 -#> -1.9065 -12.0112 0.1455 -5.1230 -5.6154 -0.0627 -6.9732 7.9400 -#> 3.1135 9.0919 -4.3371 -19.9986 6.5665 -11.0074 -8.8907 -3.8055 -#> 7.1416 3.7126 -1.0907 10.3849 11.9761 -1.6818 9.6157 1.0954 -#> 1.6181 -7.9607 -6.3046 11.3903 -19.3071 0.1217 6.8742 7.1179 -#> 3.1030 0.0477 -3.0999 -4.6140 -9.5560 -5.0644 -0.4219 9.1221 -#> -0.3628 -5.0311 7.3550 5.5133 -4.0872 -4.3923 8.5265 11.5909 -#> -2.2950 5.0372 6.1929 0.2985 -9.3952 2.1639 -2.5889 0.1801 -#> 0.5811 -7.8022 -0.1743 -1.9489 -9.0799 -2.7091 12.2969 -0.8607 -#> 2.0249 1.1647 -2.1831 13.7438 -3.9637 -1.8503 8.7329 -7.0915 -#> -3.8079 -6.8342 -6.9091 -2.8699 -1.6679 -16.3355 2.1067 -1.9638 -#> -8.4592 8.9154 0.8565 0.4704 -4.0822 7.5768 -11.9635 12.3542 -#> 3.6177 3.4600 -10.9865 1.7910 -2.5461 10.9428 -11.2756 -9.3878 -#> 2.6046 -3.8795 -1.0403 8.5378 3.9353 3.5416 -1.2939 14.9872 -#> 2.5174 1.1112 -1.4658 5.9015 6.6519 -5.6944 -8.8193 -4.0332 -#> -1.5362 0.8535 -5.1453 -6.1017 -5.8288 -13.3209 -13.5367 -0.0891 -#> 5.5770 -5.0353 -3.9072 9.3719 -15.7994 -14.6314 3.9531 14.4180 -#> 4.4054 -8.4694 10.0511 8.5610 -10.1093 4.8425 1.0703 -1.3042 -#> 6.2056 -1.5487 -4.2585 6.9884 1.3044 -2.5759 5.4127 9.3555 -#> 2.2354 6.1777 8.6935 0.8330 7.0591 9.0817 4.4968 -2.9316 -#> -0.3657 -2.1088 1.9124 -2.1532 0.5189 -4.1221 10.8716 4.1775 -#> -0.4629 -0.4061 -5.8569 -5.7979 8.3717 -0.3196 -4.8337 -5.8717 -#> -6.2881 -4.1826 0.7540 6.1380 -4.3152 -7.9107 6.6223 2.5199 -#> 8.2005 6.7751 -7.6609 12.9753 -3.5936 10.3625 -2.7662 0.3874 -#> 2.6145 -1.6590 1.1084 6.4919 -10.4815 -7.4845 5.0912 -3.3561 -#> -5.6482 6.7101 0.6589 -2.6008 9.2927 -2.4136 25.8413 4.2583 -#> -1.5522 -0.6731 3.7094 13.6084 -3.4717 14.0455 18.0751 9.0139 -#> -#> Columns 9 to 16 5.3804 -12.1351 -10.3660 0.5842 8.7693 14.6643 1.6818 -4.7866 -#> -6.3455 3.6485 -5.2393 8.7314 -12.4487 4.7045 7.5412 -7.6969 -#> 8.4230 -14.6234 11.1057 -14.9826 4.4700 -5.2711 19.1685 -4.3796 -#> 17.0186 -6.2625 7.5988 -5.7124 6.4860 5.1624 2.9079 -1.0623 -#> 5.3565 -3.7169 29.1445 0.5628 -6.2952 -15.5886 -2.4912 1.7751 -#> 4.5112 -12.6647 -5.2051 -5.0987 -2.6762 -12.0308 -17.8213 2.3569 -#> 9.6305 7.1402 -9.4125 4.1921 5.6178 -4.1310 -7.4195 20.3406 -#> -23.4526 6.1727 4.8096 6.1797 -0.8832 13.5739 10.5601 1.5159 -#> 11.5793 3.3354 -4.7421 -2.3175 7.3162 -5.4094 5.8834 10.9601 -#> 21.4171 3.9900 5.2486 17.4438 4.1869 -10.7578 9.4085 15.2720 -#> 3.6663 10.5914 9.0197 -12.5738 3.7574 -8.8465 -1.0220 3.9162 -#> 8.9307 -4.4353 2.4044 3.1607 -5.1845 -4.3000 -9.6301 -17.7922 -#> 4.1468 -5.9985 -0.0510 -0.9246 8.0400 -0.8469 -19.3457 -0.0925 -#> 2.5744 -1.3962 -4.2692 6.4907 -18.3116 3.7004 -19.8901 2.7946 -#> -0.8892 -3.9821 -2.5982 1.1824 -8.8158 -0.4670 -10.6899 7.9036 -#> -11.7663 -8.2280 10.0735 12.8687 -3.1658 -1.1699 5.9914 4.3675 -#> -2.5636 -13.9672 -10.1241 6.0991 -17.4340 -10.4532 -0.0374 6.1176 -#> -7.6453 9.5692 -7.7252 -12.5117 6.0954 -0.0058 2.8967 -21.3386 -#> -13.3735 5.3355 -13.9365 10.3804 8.2995 -10.9733 33.1979 27.0988 -#> -12.7816 -11.8679 11.4570 -3.9373 5.9092 7.1102 -6.8729 -6.7231 -#> -6.3768 3.6131 2.9764 -1.4754 15.5975 8.9042 16.6951 13.3923 -#> -0.5956 8.4284 9.3541 6.6690 3.1478 15.4808 10.6831 -8.6146 -#> -2.4373 -18.7960 18.9351 15.9599 11.4891 -7.5023 -15.6213 -6.1754 -#> 3.8959 -1.9634 2.8737 4.6599 4.4457 -1.1856 4.8629 -12.7711 -#> 6.0529 -14.6800 2.7329 -1.2511 -7.1787 -5.7072 6.1981 -25.1700 -#> 4.8224 1.9774 8.1258 1.0748 -27.5141 -2.1715 -2.2420 0.7899 -#> 11.7260 -18.2582 6.0380 -6.0932 -3.7677 3.0523 4.9454 -11.8659 -#> -0.3142 -1.3074 -2.0408 -8.9408 15.0563 -0.6220 19.6902 1.4908 -#> -6.0120 9.0143 -10.1494 -11.0386 -5.0090 -5.1131 -9.2287 -8.1093 -#> 14.9981 18.3641 -4.4207 -3.9998 -10.9331 -15.5465 0.6011 -2.4611 -#> 5.7311 2.3118 7.1591 16.2519 -0.1902 6.0938 -4.1115 0.3160 -#> 16.1710 -7.7254 5.3234 -6.6723 0.1106 3.8326 3.5976 -9.7607 -#> -1.7634 -1.1571 2.4107 -5.2687 10.5207 -9.7934 -5.3621 -4.9413 -#> -#> Columns 17 to 24 12.7919 13.8965 7.2914 7.1090 2.6619 -11.1852 20.6129 -0.3397 -#> -6.1425 4.7137 0.3191 12.4660 -12.7929 -10.1171 1.9036 -9.9026 -#> -2.9329 5.4450 8.1227 13.2214 2.8128 -23.6955 13.6789 -10.9361 -#> -21.1594 3.2425 14.4772 -10.3611 21.0172 -5.6483 9.4607 6.3364 -#> -8.1113 2.5801 -8.5287 -0.6597 -14.0022 -0.5884 3.7643 -12.5078 -#> 15.2535 -7.8894 21.2285 -13.4478 -13.0378 -9.4753 6.7139 -6.2283 -#> -18.2535 2.6662 2.6795 -2.7393 4.5147 2.3993 -10.3161 9.5086 -#> 9.5280 -14.5483 4.6656 3.5450 -12.7685 5.6188 -4.8503 11.8668 -#> -8.0276 17.9217 -7.9395 -7.7207 20.0763 -10.4341 0.3116 6.6646 -#> -12.0671 3.4923 3.1873 -8.6960 13.8439 -15.9396 -5.4830 9.7459 -#> 6.6190 -1.9811 -8.0694 9.4840 -16.2822 2.9730 1.0627 3.1966 -#> 20.4468 -0.6983 4.6333 5.5524 -14.3997 -1.8202 -4.0220 -12.3155 -#> 11.8901 -5.3156 4.3961 -4.3514 -17.1259 10.1295 -3.1806 -3.7633 -#> -22.2255 5.1331 19.4986 9.8792 1.8949 14.8938 -12.4817 3.8372 -#> -2.5785 -4.3861 9.4344 -4.7644 2.7722 -10.0445 -4.9544 2.5280 -#> 10.1179 4.8086 -4.7714 6.3682 -4.8846 -8.6565 14.4215 -2.6060 -#> 2.7266 -6.6072 7.6766 8.2032 -2.2043 1.3790 2.5085 -2.5679 -#> -9.4860 13.6252 0.5499 4.3637 -0.8586 3.5431 2.8470 5.7581 -#> 8.7090 8.6967 -25.1840 -12.8700 -0.1018 8.5919 1.0733 10.8271 -#> -6.4616 3.3153 5.3792 7.9816 -1.5986 -3.9117 -6.9535 3.2914 -#> 19.0527 -3.1730 3.6325 3.6042 9.1775 6.4150 2.8763 3.6961 -#> 7.6531 1.3698 -9.0558 13.6710 -0.5876 -10.8151 11.8866 -19.2419 -#> -8.6815 -17.6992 12.5567 12.1497 6.0738 3.7060 -3.1910 -0.9991 -#> 4.7524 -5.6268 2.4945 1.2878 -8.5590 -1.7245 2.4662 -12.2543 -#> 20.1751 1.5843 12.8122 2.2665 -0.8076 -7.3859 17.5358 -16.9012 -#> -4.6932 9.3886 0.5833 -5.7472 -2.2443 -9.8603 -19.1601 3.3404 -#> 0.8012 -0.8414 2.3527 -1.0912 8.3260 2.9054 2.3910 3.4724 -#> 22.5107 3.1786 12.0413 1.5933 7.6991 -9.4353 13.6481 -2.4569 -#> -3.8804 -11.3571 13.3741 1.0029 -6.2457 12.8943 0.5813 3.3167 -#> -0.2584 -1.0563 -17.1628 -12.4293 1.2945 11.4786 -6.6795 6.9568 -#> -6.6891 -13.8328 2.5390 -0.3918 -2.6157 -3.9123 7.7240 -1.6569 -#> -9.8826 -1.3782 1.5560 13.3592 0.2965 17.9120 7.0649 -11.1058 -#> -5.5006 9.0927 8.0763 2.2972 0.9185 5.0729 -2.5752 2.4860 -#> -#> Columns 25 to 32 2.6157 12.1656 -3.4293 11.2619 29.0579 9.0954 -7.2592 2.0037 -#> 0.8193 -0.0767 3.5949 -10.6917 -5.6788 11.6697 -5.4333 -6.3205 -#> -3.6810 1.5525 -5.6771 -0.1137 4.2578 9.2257 -7.5001 1.5330 -#> -0.0569 -4.2848 9.9154 6.3289 -5.2351 7.7988 4.8216 -2.9912 -#> -3.8000 6.5655 -2.0004 1.7156 -17.9381 -4.2242 3.4018 -1.0467 -#> -9.4344 -9.8031 -12.0416 8.2862 13.2678 -0.7302 0.4335 -8.4655 -#> -7.8939 3.8292 9.9277 0.7376 1.4882 4.2665 10.4770 -8.0951 -#> 10.8728 9.1898 1.6196 -2.5027 1.6465 18.7318 -5.1867 4.6003 -#> -11.2066 -9.4481 -5.4285 -4.1906 -7.5989 -2.8678 -16.7686 -2.0709 -#> -17.2278 -10.1598 10.4174 -3.8264 12.3131 -2.5120 18.8831 -7.7288 -#> 0.3052 5.7338 -7.8968 -1.5548 -9.5453 4.5017 -5.5146 12.2713 -#> -9.3960 3.2968 -12.8012 4.0913 -15.1407 -0.3459 -14.7093 -7.6451 -#> -1.7817 4.8734 5.0182 4.4158 -6.2907 18.4289 -16.1908 10.3766 -#> 0.4862 5.4331 -6.9836 3.9721 -4.2630 9.7002 2.3095 -14.5059 -#> -4.1786 -5.7285 2.5321 6.2680 -4.6553 -2.1756 6.8678 2.6513 -#> -8.6665 -6.0416 -0.5409 0.5216 4.5455 -1.9902 0.3366 0.8028 -#> -10.9652 6.0440 -2.8763 -5.2005 15.1445 1.7218 19.8993 -3.4327 -#> 10.6043 -3.2512 -10.1111 4.6157 -4.0006 -2.1343 -1.4302 10.6029 -#> -0.7327 -0.6984 -2.8468 22.2596 8.2914 2.4505 16.9699 -3.4296 -#> 2.0949 2.8143 5.6126 -0.4120 -5.6877 3.9536 -10.9128 0.8354 -#> 16.6468 7.1970 -5.7594 1.3074 7.8698 0.9892 6.8667 -4.1368 -#> -2.2990 3.1578 -5.4826 -1.8124 2.9626 8.2702 -14.0820 -6.5329 -#> -5.5275 -8.0167 -3.2093 -3.3525 -9.3943 13.0748 -7.8546 -4.9310 -#> -1.6238 -7.5335 -0.1831 3.1611 -7.2427 -1.5588 -5.7129 -0.7068 -#> 8.0404 -3.7601 4.9198 -5.5980 -1.6015 -12.4899 -1.4713 10.5558 -#> -7.2427 2.0596 -5.3566 -7.9559 -4.5101 -5.5048 18.3094 4.4071 -#> -1.3398 2.4388 6.1397 1.8313 3.2439 -6.4362 6.1027 1.0680 -#> 9.4973 -1.7636 0.4137 8.9540 -8.8187 0.1385 -0.4692 -5.5934 -#> 14.0594 -1.4364 3.2645 -2.2201 -1.2013 -4.2073 11.8217 9.4594 -#> 7.2463 -7.3954 14.7617 11.0248 -11.8653 -7.9344 -2.0461 17.9101 -#> -4.8893 0.5295 -10.6414 2.5047 -1.8547 8.1770 -11.2773 3.5899 -#> 6.6188 5.2276 17.5914 -12.3284 13.5262 15.2202 2.1484 -6.2322 -#> -3.2337 -6.4030 2.5477 0.6266 -1.7585 4.5958 -3.8904 -2.0269 -#> -#> Columns 33 to 40 0.0029 -3.3509 -12.6342 0.0077 -13.8816 19.4735 6.4888 -4.3073 -#> 1.5395 0.2632 -5.4625 0.9212 -9.7440 5.6657 -5.8855 -1.8879 -#> 5.9266 0.1231 -6.3651 0.3660 -1.8050 -17.6215 -0.0248 -11.7501 -#> -10.3363 -1.2273 6.9968 -4.5623 24.2431 -8.3985 7.2473 -31.0217 -#> 1.2550 9.8227 3.1240 -18.6046 -13.7359 -3.0107 -1.1276 -2.6916 -#> -8.9907 -9.6516 14.6502 8.2522 3.6585 -7.0430 2.7615 4.5177 -#> -26.4023 -3.6227 6.8321 -8.3929 -11.2319 2.2254 -2.6124 -8.0238 -#> 6.9105 7.0635 -1.4849 2.4072 -19.7923 6.6321 3.8779 2.5356 -#> 6.3276 -8.5924 -5.0837 13.8570 12.6960 10.3987 11.6815 2.7757 -#> 2.8557 -1.6411 -8.9849 -14.0671 -11.5407 -7.7375 5.4139 -15.6535 -#> 0.7287 -7.0148 -4.2302 21.0221 -13.1672 11.1729 -5.9700 -4.3374 -#> 10.4731 -10.1309 3.3727 20.1838 10.8264 5.5776 -10.2286 -10.2985 -#> 3.3903 -8.1233 -0.6413 4.7653 -13.4528 3.2653 1.5537 -0.2125 -#> -4.8917 -23.8506 8.8801 -4.8572 4.5650 8.1567 8.8407 10.9621 -#> 2.9578 9.7805 -9.9187 2.7422 9.3902 0.2009 -16.6340 10.2006 -#> -3.8805 -6.7501 7.9872 2.7867 -0.0815 -7.9427 -3.5837 -0.0629 -#> 1.6030 -13.3641 11.1395 -1.3434 18.6885 3.3939 9.9179 -1.1933 -#> -18.0162 -8.5544 -0.6633 11.2242 -0.5546 -10.2144 -3.5952 -0.8228 -#> -0.0304 3.3971 -13.0760 12.1379 -18.7442 6.0984 11.3735 13.1533 -#> -1.3424 7.4699 -16.1672 15.2030 -1.1397 1.4846 -9.6994 0.7061 -#> -17.6452 7.4832 -12.2968 20.7037 -5.9765 6.0838 -3.7101 14.0650 -#> 9.8086 17.2381 14.2677 5.9241 -12.9382 15.8107 0.3432 13.0134 -#> -7.9321 19.8009 6.0164 -11.8849 21.6689 7.9013 -0.1456 -14.9485 -#> 3.3430 3.6445 10.6610 -2.1489 -17.0001 -7.2675 6.2436 -3.5449 -#> 3.4334 -2.1735 13.1118 -14.9150 6.0767 -11.2966 4.3785 -12.3123 -#> -2.0132 -6.5839 11.9638 -18.3315 -3.5849 -8.2416 -3.7682 6.0796 -#> -0.0251 -11.1150 7.8212 1.7854 7.5301 -4.5684 0.8110 4.1804 -#> 8.2421 -1.7128 -1.8108 12.8005 17.7682 4.3181 8.1897 -3.9628 -#> 0.6283 2.0559 12.3124 -3.8224 -3.3201 -12.3931 6.2987 3.5806 -#> -2.0786 6.6837 -3.2043 3.0021 -12.1649 0.8647 -19.2996 -11.3476 -#> 3.8575 -17.6842 13.0417 20.2883 -6.0133 -10.4405 -0.8185 3.9150 -#> 6.9854 10.4905 7.3135 -9.4315 -7.8653 -0.3362 -3.7238 3.9443 -#> 7.3930 -1.5779 0.2267 -8.8062 2.0794 -3.5313 10.0632 -14.0367 -#> -#> Columns 41 to 48 4.0510 -1.2702 -10.7254 -0.1518 6.2255 -16.2182 0.0292 13.3147 -#> -2.1117 7.7726 4.7524 -6.3753 9.8414 -0.9707 -1.7454 8.6750 -#> -0.9473 -6.6488 25.7680 -21.5618 -1.7513 8.2230 -4.7134 -9.3620 -#> 2.9891 -9.4650 26.0017 -24.0466 -3.2031 16.5410 -1.8369 21.9893 -#> -1.7402 8.2179 11.1601 -4.2580 2.8483 13.6395 5.4053 2.7420 -#> 8.2215 6.4315 -10.5551 6.0965 -29.5574 9.0842 4.3430 -8.8682 -#> 4.0511 -4.8678 -7.8091 -7.2168 -3.2019 0.7052 2.3832 -13.7279 -#> 3.7785 7.8156 -3.6508 -6.4915 9.9509 10.5353 0.7613 -1.9243 -#> -3.4082 -3.2314 7.5694 -9.4198 1.2483 -10.8518 -0.4544 5.1223 -#> 2.7928 -4.2954 13.6518 -4.1961 -32.9449 8.2825 10.6235 -6.5547 -#> -2.1706 0.5347 -4.1825 9.5515 -1.3363 -0.9141 -8.9849 -2.0354 -#> 11.3627 -0.6651 -7.9567 1.5583 -23.5124 15.5929 0.6318 0.4863 -#> 9.5106 -0.9316 -1.4384 -7.9514 3.3732 2.6686 -4.9989 -3.0646 -#> 1.5673 -3.4351 3.2348 5.1354 -16.7270 2.7156 -10.4553 -14.2158 -#> -2.6128 9.3098 6.3065 -3.1190 -4.8262 8.8057 -9.8614 -5.6171 -#> 19.3820 -7.3091 -1.5507 -3.3476 1.9809 10.8549 2.1270 -3.7262 -#> 7.5950 5.9518 -14.4187 1.6114 -7.7032 7.1640 17.7226 -8.4070 -#> 0.6154 5.7930 -13.4261 5.2674 9.2733 3.7338 -7.8101 1.1300 -#> -8.1761 12.1908 -21.7284 13.0551 -16.3943 -5.5680 -10.0639 3.2579 -#> 1.8726 4.2444 4.9620 -6.5421 -9.1609 10.7864 -0.0778 -10.7919 -#> 9.7009 -2.5378 -15.6215 8.3960 -7.2251 -3.9734 8.8126 -4.3367 -#> 2.8564 -32.7612 16.8721 0.2182 11.6929 -9.1474 -5.9281 3.8051 -#> 1.7788 1.4127 -1.8833 -6.9912 -12.5033 18.4125 3.6896 -15.0041 -#> -5.9166 -7.0237 -7.5080 -8.2371 7.0100 13.8009 -11.6932 -1.6627 -#> 4.9167 -2.6230 0.3647 -3.4979 -20.9022 16.2120 -6.7058 -14.1063 -#> -1.9939 -0.7363 -17.2596 14.2294 -19.4004 8.7278 -0.1109 -9.6073 -#> -4.8946 -0.0505 -6.9824 15.6053 -5.0343 -2.1242 -2.9937 0.5938 -#> -4.5974 10.0005 5.7879 -12.7138 4.0694 -22.5153 -8.6040 19.5947 -#> -7.7176 9.4326 -0.3602 -1.8544 9.7682 2.2847 -11.9673 -4.2708 -#> -16.3190 -5.7646 -6.2865 -0.0257 2.4428 12.3580 -13.9446 2.4780 -#> 8.4663 -8.2000 9.8663 -13.7863 -1.1844 13.4650 -4.9049 5.9373 -#> 2.4027 0.5915 -21.0702 -1.0956 6.1958 -18.1889 5.0352 -18.4239 -#> -9.9235 -7.0443 -2.4528 -12.1563 3.5734 -3.8522 -9.3329 -9.5187 -#> -#> Columns 49 to 54 2.4848 8.9600 -6.6746 -12.3711 -0.5049 2.8786 -#> 10.6893 -5.4225 9.1650 -13.3324 -13.8708 3.7911 -#> -16.2479 27.7164 0.7434 -11.4350 -8.6765 0.6951 -#> -0.2513 -5.2872 -8.1689 -6.9968 -0.3131 2.7240 -#> -20.2858 15.1985 -7.0279 -9.8774 -2.8880 7.5356 -#> -5.0441 -5.9110 -3.6796 10.4714 -2.4352 -5.0220 -#> -2.9365 3.6362 10.7610 -0.0537 1.7815 -1.1395 -#> 1.9543 -10.6093 -5.5753 -3.9769 -3.0863 1.6045 -#> 3.8588 11.3072 2.7108 -5.5991 4.0178 0.1168 -#> -22.2331 -13.1465 -2.4980 5.7941 -6.1919 -8.3823 -#> -0.9479 7.0255 0.0698 1.3584 0.6481 0.1080 -#> 4.3669 5.3655 -2.4001 3.0138 -11.6708 10.0307 -#> 5.1871 -7.0168 0.4818 -0.0774 -0.6100 2.0541 -#> 17.7132 6.4588 10.1605 -10.7837 -6.7728 -7.9383 -#> -7.6739 6.9783 -1.2624 -0.2311 1.1638 3.9497 -#> -17.5456 -9.7086 2.0341 9.9349 -3.0648 -0.5089 -#> -3.1795 4.3665 17.0024 -8.8965 -1.5841 -8.8056 -#> 2.2149 15.9212 -4.4968 0.0624 -3.1900 2.9269 -#> 11.9618 -2.4289 -17.1797 17.8757 -0.4401 7.4848 -#> 0.8993 9.7873 -2.5482 -0.0111 -6.4800 -1.8389 -#> -12.8026 -5.3223 -10.4207 -7.1540 -3.7932 -0.5174 -#> 3.0748 -8.7669 3.6482 -0.7108 2.5877 2.6914 -#> -1.5469 -5.7033 1.4735 4.2395 1.8257 -3.1212 -#> 20.0404 -0.7424 -2.4644 9.7535 1.2855 5.3932 -#> -4.9952 6.6275 -9.0983 11.9380 -6.4644 -2.4656 -#> 14.4117 -11.4367 6.1705 -2.5055 -4.0090 1.6790 -#> 1.7852 2.5159 5.6664 7.5982 13.7174 -5.9481 -#> -0.8873 -0.4220 -12.1559 -7.4173 -7.3533 -0.6071 -#> 3.2437 1.4743 -7.6123 13.1501 8.1817 -3.4226 -#> 3.7093 -13.1205 -7.3952 9.8814 4.7580 10.3219 -#> 3.5487 -23.3564 5.8674 6.2407 0.5246 4.0238 -#> 8.0665 28.6886 2.2886 -3.1141 11.1435 -2.9868 -#> 4.3882 5.3014 -3.7234 8.4248 -0.0245 -8.0384 -#> -#> (19,.,.) = -#> Columns 1 to 8 2.2563 11.1571 5.1803 2.0074 20.4880 1.9959 -11.7897 -3.3816 -#> 1.6023 4.9350 -9.8570 2.5549 3.4270 -6.4630 12.5979 -3.4586 -#> -3.7042 -7.2734 10.1350 -2.1168 4.5737 4.7926 -6.3151 13.1638 -#> 6.8103 -6.0863 3.9821 23.3459 -23.1046 3.2218 -2.8127 -2.0219 -#> 10.0323 -1.5816 -0.3515 -3.7162 -1.0843 -8.9585 -9.5895 -1.1016 -#> 4.5691 0.3556 6.5799 11.4361 -5.5251 -0.7265 -4.4567 7.4877 -#> 3.7387 -5.0253 6.2016 12.1069 1.3906 -3.1792 5.3994 -8.8015 -#> -6.3128 19.6994 0.8121 -5.3457 2.7312 -7.0969 0.8557 -5.9668 -#> -0.6554 -17.8413 -3.6626 7.7413 -3.0338 1.9055 2.3498 4.4129 -#> 2.2045 -17.2951 14.3557 5.4896 -13.9269 13.9771 0.1688 13.7065 -#> 1.4103 -10.9335 6.4542 -7.1951 0.4260 6.0540 -8.6265 -10.6153 -#> -2.4367 -3.0208 1.7582 -3.9473 11.5795 -9.8707 8.2718 3.9334 -#> 2.6910 13.7177 -12.4472 -0.7891 -4.1189 -4.9260 1.9796 6.3284 -#> -2.2626 0.8278 -16.8472 8.7072 -1.5437 -2.5874 18.4442 -12.6984 -#> 0.2770 -5.7886 -1.6831 -6.2280 0.3892 -10.7264 1.6883 0.5731 -#> 5.9888 2.8220 5.1822 -10.9491 2.9278 -1.2400 6.9684 -3.0588 -#> 2.0853 6.4697 9.1610 14.2869 3.9100 7.3812 -5.6622 -2.6049 -#> -2.8214 -2.8717 3.4763 -4.1231 4.3919 -7.9700 14.0622 -10.4217 -#> 0.0360 -7.2489 7.1088 -5.2261 7.6209 -6.4602 3.4370 -3.3627 -#> 3.0146 -8.4109 7.3443 6.8336 -16.3648 7.2043 7.3347 -7.1156 -#> 11.6654 -2.6083 -1.8932 -11.5787 -7.3925 -12.9529 -8.5728 6.7741 -#> -7.3200 10.8262 -1.1320 -12.8965 17.0946 -4.7953 1.3419 -5.9471 -#> 0.9198 -4.3271 -5.4991 3.7542 -11.3688 7.0314 -0.1410 -5.9312 -#> 5.9632 8.4848 2.1999 4.6207 0.4360 1.6097 17.6682 7.0791 -#> -3.5695 -2.5270 -0.5916 -8.6880 -8.8335 14.8022 4.9419 -2.7857 -#> -5.3153 -5.2006 1.6115 9.8521 -2.7637 13.6420 20.2294 2.9587 -#> 0.1992 -6.7249 2.8040 3.9956 -7.6735 16.6353 0.2961 -0.4600 -#> -0.9324 4.6584 -9.8605 -3.0216 3.8279 -18.3609 -14.6428 2.9325 -#> -2.3640 2.2242 -7.8729 -2.3704 11.0849 -3.0016 12.9536 4.4597 -#> 0.6707 -3.5127 -1.1921 7.2875 5.6279 -5.3606 16.7637 -0.5393 -#> -6.0561 6.4866 -2.1347 2.0663 -9.1948 -4.9570 4.9678 -2.9562 -#> 1.7940 8.1519 -9.7820 -8.1634 8.2479 7.6515 -7.6138 20.4446 -#> 1.0375 8.2653 -6.3321 4.4135 7.8574 2.1843 10.2095 -3.0581 -#> -#> Columns 9 to 16 -6.7446 -19.2839 -5.2996 10.6448 -2.2137 -9.8432 16.7385 1.8806 -#> 2.7721 -9.6319 15.9549 -3.9562 -2.7533 -1.4063 17.1808 -3.8886 -#> 0.8954 3.4040 -4.2748 -7.6926 -1.9848 17.2263 0.3864 -4.7782 -#> 13.6218 3.0880 -9.0650 13.7402 14.2595 14.3139 8.1423 -10.8839 -#> -2.8056 -1.5642 -10.9384 2.4840 -14.6773 15.3640 -11.8735 8.1836 -#> -12.2327 8.0373 -9.9830 -7.0531 -2.4499 -2.4429 -9.1589 7.2055 -#> 6.7662 1.5342 1.1651 4.3661 -5.1278 7.6165 2.6917 -7.9761 -#> -4.9940 -12.7029 -0.5018 4.1232 7.7914 -3.3340 3.7179 -15.3366 -#> -2.8687 11.0463 -19.0638 0.3108 8.7410 -5.9274 -4.5910 10.8263 -#> 2.7317 2.1383 -13.6276 31.3021 5.1940 6.0216 -4.0457 -5.5339 -#> -8.8773 1.3894 6.0943 8.2040 -22.9392 6.0407 -5.8266 9.3254 -#> -5.3709 6.6576 -0.3668 0.5234 -0.9117 8.5379 -2.6543 5.2700 -#> -4.0529 -2.2297 -3.6299 8.0911 7.2778 -1.6554 15.2207 -8.6982 -#> 2.9273 10.0753 1.0093 2.4645 6.0291 2.2682 1.5076 3.4788 -#> -16.8549 8.1650 -5.1286 -7.7697 -3.0778 13.3012 -7.2841 0.8980 -#> -4.7963 -5.0447 11.0234 19.7087 -13.5973 -1.4497 -6.0398 3.9615 -#> -11.6929 -12.9310 3.0861 3.8349 -0.8498 0.3676 7.5970 -15.8111 -#> 10.5982 -8.7752 -4.8810 3.8208 -2.7940 0.2052 2.5400 8.1477 -#> -3.8651 11.3115 -15.3378 -0.9253 7.8896 -0.5798 -9.4853 21.2292 -#> 1.5519 2.7537 7.5006 5.2048 3.9256 3.6954 -14.5668 -1.0811 -#> -6.4954 -15.8022 2.8659 9.0508 11.4639 -2.6907 -8.2854 -1.4667 -#> 7.8183 -1.5043 9.2190 -3.2909 -3.6400 -7.3343 4.0588 3.0736 -#> 1.6113 -7.8219 7.8065 20.6163 -7.6171 -11.7764 8.7982 -8.1107 -#> 4.7483 9.2704 -0.8942 2.4555 7.9658 2.8396 -11.1332 6.9196 -#> 9.2414 3.9240 7.5839 -10.3013 -8.0429 -0.9105 7.5698 5.5207 -#> 9.1179 9.3893 -2.6667 -0.5141 6.6394 2.4894 -3.3466 -12.0105 -#> -7.6842 7.3149 -2.5730 4.5251 -6.0077 4.9602 5.9953 2.1281 -#> -10.2351 -0.4251 2.1078 -6.7500 6.6732 -0.6379 -4.8256 7.8820 -#> 7.6989 5.7581 -0.8032 -1.8760 -1.4233 4.0420 -9.7446 -10.8131 -#> 13.1536 -3.2820 -5.9773 0.4688 -7.2200 -1.9802 6.8597 7.1834 -#> -6.9597 -6.3075 -10.8629 6.5933 5.1967 -2.3144 -13.2033 -6.3124 -#> -15.1643 11.3891 1.7059 -1.9721 6.4254 -8.3010 13.8574 -8.0904 -#> -0.6400 0.8845 9.1436 12.9765 -0.8867 -5.4252 -2.4219 2.5684 -#> -#> Columns 17 to 24 -11.6251 -3.3042 -9.5897 -19.7662 -11.3639 2.9764 -7.6847 5.3094 -#> 5.5535 12.3224 -0.4621 -1.7751 -6.2082 -2.8243 -3.3639 4.4086 -#> 4.9465 -6.1456 13.8044 -2.3682 0.1131 -1.0469 -0.6537 -18.7963 -#> -0.2615 3.3738 12.8766 -0.7729 13.0538 -3.7030 21.3555 -0.0547 -#> -5.4725 -2.8746 3.7941 -7.9571 -14.6536 -3.4342 -0.7045 1.1588 -#> 3.2876 -3.8150 2.2217 -7.6296 -6.1589 9.3530 -2.3499 17.2963 -#> -8.1793 7.5804 12.0472 -14.9795 2.5250 4.4984 18.0541 8.3617 -#> -10.3372 2.5190 -17.6749 -9.9759 -7.6969 -6.4078 13.4594 11.9478 -#> -5.4648 -6.1133 -3.1051 15.8897 -0.9202 8.7116 5.8395 -20.7721 -#> -4.9633 7.0661 1.5125 -9.6190 -6.7895 3.5231 -0.0329 23.3810 -#> -15.8677 12.4208 2.0475 6.4192 -9.7269 -0.6899 -15.3368 17.5331 -#> -7.8009 13.4144 -4.8032 15.5606 -10.1968 9.3907 -12.3619 0.2271 -#> -17.6470 3.5627 12.0824 -4.9767 -6.5277 0.2517 1.5120 17.2585 -#> -7.6810 2.1964 14.6920 -5.9527 10.4770 -6.3552 7.7612 9.4945 -#> 0.4429 -3.4509 -2.8073 0.4457 -8.6056 -3.4702 -23.0327 0.9529 -#> 0.8179 4.0997 2.5110 -15.3957 3.0363 10.0195 -9.8834 -8.2598 -#> 0.9310 -15.8169 -2.7237 -3.8845 -11.1570 3.2370 -4.0259 -0.8774 -#> -5.0513 18.1145 -1.9949 18.7507 16.7231 7.7012 -4.9110 -4.4177 -#> -32.6358 0.2473 -4.0207 2.8901 -18.4278 11.5049 -11.9611 8.3352 -#> 3.0942 8.3002 -8.3140 -5.4769 9.5909 -5.1340 1.8389 9.0214 -#> -16.4604 -16.0312 -13.7154 5.3215 -13.6139 12.0238 -12.3383 -9.2225 -#> -5.7482 1.7096 -0.1163 14.3944 0.9409 -12.6108 -5.2439 -6.4736 -#> -2.8593 -0.6078 5.9682 -8.9257 6.8423 6.6952 1.2522 -8.5496 -#> 0.1467 9.9529 4.9536 4.2114 14.9164 8.9636 -11.2608 -6.2331 -#> 7.4674 -1.1952 -6.9978 -3.2490 11.2160 -6.2838 -1.1349 5.1366 -#> 11.8175 3.2338 2.4789 -7.7572 9.2989 -6.1385 -4.1347 4.6263 -#> 3.8211 -2.9451 12.8165 -13.0431 2.9364 -0.6053 -3.3417 0.7684 -#> -5.6006 -21.6590 0.9646 13.6898 -1.2653 -14.3905 4.7676 -5.7793 -#> 3.3701 -2.2316 -6.6199 -1.5730 0.6153 2.5474 14.7909 14.1248 -#> 1.4418 6.3772 0.3450 6.5393 9.4165 15.8391 -5.4509 -7.6689 -#> 9.1360 -3.4296 4.2381 0.1421 -6.0637 -10.6114 -10.5209 -1.9886 -#> 8.9036 -12.5969 22.4951 -0.5840 -12.5121 15.3569 -18.5965 9.6492 -#> 1.6620 -3.6564 29.1041 -15.0301 24.3040 2.8217 5.5570 -3.0949 -#> -#> Columns 25 to 32 0.6754 -5.4351 -1.7427 -2.1690 -12.6507 -7.9582 -2.0196 -5.9914 -#> 6.2957 24.2517 -0.6646 5.8407 4.2708 0.6678 0.8753 7.4855 -#> 9.4350 -1.2963 -3.6902 -5.5026 2.7794 -3.1165 -1.7660 1.7011 -#> 10.9539 -17.5292 4.3171 -8.1743 -14.3399 9.7072 -7.5103 9.4845 -#> -3.8901 7.8685 11.0553 -7.6921 -0.4697 11.2485 -3.0967 7.2322 -#> 5.9094 3.8987 8.5515 24.0678 -3.1706 2.4028 0.1868 -4.1452 -#> -4.8616 5.1777 23.9718 -11.5407 7.5438 3.0655 -15.7713 -8.2458 -#> -0.8644 5.6632 -3.6068 -3.0043 14.2817 7.5471 5.6906 -4.2427 -#> -7.6225 -10.5315 -8.6553 -2.2209 -15.1343 -2.7813 14.5287 -10.1209 -#> 8.1794 -1.0438 17.5802 1.3836 6.7183 10.8328 -2.5115 2.8458 -#> 2.9136 -10.5741 12.6177 0.9100 2.0254 3.3510 -2.8068 -13.4172 -#> -13.1170 1.6400 -13.0929 -10.3412 5.5702 -11.1293 2.2765 3.6344 -#> 1.1890 -1.9082 -2.3892 -8.1190 2.6411 -3.1444 -6.9475 -6.7670 -#> -14.5015 11.7778 -2.8347 -13.3463 -5.1831 4.0238 0.1387 2.6846 -#> 11.0696 -13.9293 -6.1347 7.4526 -5.8511 -3.2405 -0.3918 13.2905 -#> 17.0813 -5.0977 6.4885 12.9523 8.3253 -10.0022 -6.1836 14.6672 -#> -9.5167 -0.1452 8.0347 9.8185 -4.8826 7.0202 -13.3114 -7.3593 -#> -3.5866 -2.1113 6.1158 -4.5314 0.5352 3.9646 -8.2554 1.0600 -#> -6.3913 -3.4983 -2.0942 2.1771 1.5844 -3.6043 4.8755 -9.8164 -#> 11.0548 -20.8779 -16.4557 5.0648 -3.3323 -10.0792 18.6829 -5.9163 -#> -2.9553 -3.4663 5.8928 -17.9741 7.4210 14.4276 12.8937 3.8324 -#> 6.7334 12.8358 -6.2878 -5.9928 12.9341 1.9918 -0.3133 0.8225 -#> -8.5431 -4.5959 5.7668 -6.6540 6.5829 6.1331 1.0447 -7.4261 -#> -5.5379 0.1180 -2.7121 -5.2564 -3.0441 -9.8881 4.7905 -2.0531 -#> 1.8131 -4.7013 -3.3520 6.5667 3.2757 5.0640 9.5182 2.7596 -#> -7.9812 6.5552 -21.8246 15.2338 -1.6433 -0.1308 4.5212 -3.7304 -#> 1.0232 1.4512 -3.1897 -7.0585 -15.2776 3.4033 -12.1728 -0.5707 -#> 6.9714 -8.0632 -3.9023 -1.7853 -7.5021 9.3818 9.8124 -7.2047 -#> -8.3226 -3.2363 5.5813 -9.9950 -1.7240 17.5094 -6.7417 -5.7870 -#> 9.7854 15.8732 13.8283 -0.1509 -6.0653 9.1286 -3.0200 -1.7873 -#> -1.2083 -4.4204 -5.7270 11.8766 -5.3162 -0.7704 9.3954 -1.7334 -#> -2.2619 11.5894 -10.0027 -5.0707 4.5968 -5.3793 -13.2128 12.2694 -#> -9.4825 -1.5247 -0.3769 3.1203 5.3710 -5.7538 -8.5316 -1.2781 -#> -#> Columns 33 to 40 -9.2212 17.9095 8.4176 -3.7203 -6.5719 -1.9328 -3.5606 4.5551 -#> -1.8634 6.8070 5.5377 7.7612 -0.3723 -8.5310 -11.2221 12.8836 -#> -0.5835 -20.5723 6.2568 -13.6192 6.2027 2.5340 8.3277 -1.0690 -#> 9.4813 -13.0169 -6.5955 -9.6504 3.9302 -10.4059 0.3368 11.0317 -#> 13.2242 -6.7998 -7.4696 -4.5022 7.5813 -2.4320 18.8617 6.3256 -#> 5.4512 5.7200 4.0642 -1.2367 -0.7577 13.4109 1.9488 2.7067 -#> 17.0755 -5.8967 -4.9994 2.3772 -3.3988 7.8152 -7.2953 -7.5021 -#> -8.0343 -4.6180 2.3566 9.2143 5.1217 18.9750 7.0116 0.8720 -#> 8.8868 -12.8316 32.2617 1.5173 -29.2014 -9.1697 1.7793 -11.5384 -#> -8.6272 -4.4338 -21.9003 4.1937 -13.0200 8.8821 0.1906 13.0268 -#> 11.8491 11.2913 -2.7882 -20.0160 22.0333 16.8525 -3.0531 -2.2457 -#> 3.9485 -1.9158 2.2538 -21.1789 -3.8281 0.7445 2.8729 5.1457 -#> 4.8669 -7.2527 -3.9915 -13.5313 13.7822 12.5903 8.1406 -10.5367 -#> -2.3059 2.7685 -3.8104 11.5816 -24.4048 -18.5444 -8.2961 3.2680 -#> -16.0640 -19.7496 -16.1403 -6.2305 15.5044 0.6679 0.0522 19.7908 -#> 11.9814 5.5630 -0.8154 -19.5417 9.2743 8.0217 -15.5096 15.4365 -#> 4.4094 14.3800 3.7023 -2.6637 -6.9884 15.1600 -10.9028 8.2918 -#> 8.1691 17.8184 3.8099 3.3481 -12.3396 -3.6603 -0.4540 -1.5425 -#> -15.0172 -12.5406 2.6438 1.7852 10.4317 16.6561 -11.3111 -20.8243 -#> -12.4438 -10.9364 3.7333 -6.6735 13.5679 -1.7383 -2.9847 6.8149 -#> -1.8302 17.7674 5.9496 1.7236 -20.1008 2.4569 4.4831 -5.7613 -#> -0.7342 -9.7959 -7.8026 -6.3387 -2.7167 13.1393 7.8315 9.4000 -#> 9.4051 9.6574 14.3628 -27.0737 -19.5745 -15.6395 -3.8150 2.3063 -#> -9.8362 7.6502 0.7495 5.7295 -0.4509 -10.2346 3.5372 -6.7736 -#> -10.6270 14.9071 3.1708 -15.4192 2.3833 -13.9320 -9.1408 3.5938 -#> -9.1457 -11.3525 -5.3337 4.7483 -4.7272 -3.0666 0.1602 2.4069 -#> -8.1658 3.7447 -3.9244 9.3006 -1.0673 -7.4670 -3.5135 -1.1845 -#> -3.0652 9.2276 17.3474 -4.8320 0.7358 -4.0601 13.5146 -17.2049 -#> -12.7639 1.8174 -5.2838 10.5123 11.9389 1.5286 5.6593 0.2460 -#> -12.6807 2.0698 -15.8524 -7.2091 -7.4212 0.1610 13.4838 2.1601 -#> 7.2512 -1.3859 0.5661 -15.6594 -3.3170 -2.9406 0.2242 -3.9722 -#> -25.7610 -6.7176 10.3714 12.6513 -11.1680 15.6171 -19.9599 1.9016 -#> -2.6267 20.8037 -2.0124 4.1648 1.2791 6.2882 -3.8924 3.8411 -#> -#> Columns 41 to 48 12.6592 -29.1091 4.9542 6.5500 -6.5881 -9.1306 -3.5637 6.9740 -#> 12.5785 4.9390 -7.1512 9.5374 19.1770 -2.1619 -8.8319 -6.1387 -#> 1.6069 0.0530 -7.3822 0.7928 4.1775 -0.2300 -11.3976 15.9961 -#> -0.9627 5.4817 -15.4045 10.0725 5.5603 -11.5714 12.0004 1.3725 -#> -2.4268 17.9863 10.2603 6.4608 12.7709 1.9074 -2.4812 2.6753 -#> 6.0541 0.7232 12.2480 5.2808 1.4006 10.6693 12.6639 12.8870 -#> -6.6617 -14.0500 -14.0936 -3.0179 -11.9357 5.9934 3.5963 -6.5327 -#> -1.3355 -2.3099 -5.0284 8.5370 3.2054 -19.0103 -6.5679 6.2471 -#> 10.6122 11.9086 -0.1262 6.2764 -3.3073 0.9882 0.3496 13.5524 -#> 1.8818 3.3550 -19.4137 -0.5076 8.5231 5.5520 7.0628 -4.7189 -#> 2.0409 -11.5721 1.2794 4.2566 -1.2600 11.6436 8.4207 9.9688 -#> 7.2530 -0.5176 9.8714 18.3778 1.0340 4.8684 10.6200 8.9634 -#> -1.2232 -8.9204 -2.1755 -1.1896 -3.3770 -2.9910 0.3296 -5.7852 -#> -7.5940 5.8494 -15.8490 -10.0028 6.6867 3.4989 2.2816 -7.2253 -#> 6.5804 -0.6134 -2.1385 15.5190 8.1329 -11.0707 11.2124 -2.0956 -#> 20.2437 -4.8852 -6.5738 2.1046 -1.0111 -4.7278 1.7603 7.4301 -#> 4.8448 1.4679 3.6642 -7.8998 -14.3289 8.8894 7.9565 2.9185 -#> -2.0559 3.1594 5.7790 -13.0144 -14.4777 -5.6680 -10.7241 -4.0730 -#> -2.1987 -0.4621 -29.1733 -3.3608 -10.2317 -5.5618 -2.7433 16.9024 -#> -2.5571 -18.0090 -6.6635 17.0925 7.7247 -9.7994 -3.9254 9.3806 -#> -2.6549 11.5325 1.9270 -18.3873 -4.6849 3.4927 -5.3377 8.0902 -#> -6.9130 0.0039 0.7236 -23.0587 10.3118 17.0714 10.3968 9.7206 -#> 7.9891 -6.5689 -13.5171 4.7222 1.5046 -7.6745 -7.4960 19.0716 -#> 18.9985 2.7868 8.8201 3.8623 4.7100 -1.8755 1.1543 0.4049 -#> -1.9884 -16.9054 6.6718 6.4880 5.4618 -16.1783 -5.3956 5.4232 -#> 2.3665 6.1933 11.9676 5.5544 -6.5978 9.0037 -4.2192 -6.4146 -#> -8.1628 -11.2495 -7.0179 -6.8217 -1.2933 6.0335 -4.5630 -6.4349 -#> -9.8572 -11.5498 -4.4926 -3.8380 0.7976 -1.0803 8.9509 24.5363 -#> -16.4516 13.6568 10.2520 -10.9182 7.4908 -13.2014 -1.2110 -18.3038 -#> -0.4914 4.0439 -2.5239 7.8569 -3.8332 -2.2241 4.7996 -14.7188 -#> 10.2891 6.7213 -2.7195 -8.7093 0.4224 8.2590 14.4842 5.9226 -#> -2.3089 -15.3783 -6.7664 -7.4489 5.3329 -1.4130 -3.1034 -6.9561 -#> 0.3502 -1.1984 -10.8877 -5.4941 5.8245 -7.2559 2.3815 5.3173 -#> -#> Columns 49 to 54 1.2747 5.2395 13.4698 14.2738 12.2964 -1.5817 -#> 1.6910 -12.1397 -12.7877 -10.0018 7.3331 0.6355 -#> 0.7433 -5.8941 -6.2776 4.1104 2.8945 0.8537 -#> -12.5226 -6.5539 -10.7138 7.6140 -1.7271 -7.8163 -#> 3.8362 -6.7615 2.8636 -6.1179 -3.3340 -9.7257 -#> -1.7788 4.3488 22.8753 1.8028 5.4304 -1.8112 -#> -1.4235 3.3501 5.2342 4.2336 -14.7682 -7.2064 -#> 10.1970 3.3946 -1.0360 -1.1210 -4.4042 -4.1440 -#> 11.1277 0.9043 12.8983 13.0145 5.9844 -1.5443 -#> -4.2875 -5.3223 3.4411 -5.3851 -1.3105 0.6720 -#> -6.5519 12.1854 0.0411 -1.8376 0.8744 -3.2010 -#> -0.1420 7.3235 7.9048 7.8784 4.8304 -10.4523 -#> -3.6911 4.2254 5.7063 8.9996 -4.4160 0.4081 -#> 8.5811 -7.6967 -5.5423 -5.7741 13.3399 1.0483 -#> 7.6063 -7.0702 3.5762 -6.5361 15.6316 -0.6609 -#> -9.8814 1.9607 -0.4300 -0.0419 2.0097 9.4041 -#> 13.4482 10.9558 14.7211 0.1087 -0.7896 2.0498 -#> -16.6676 -4.7743 -7.8918 1.7374 -4.2081 -5.8012 -#> -8.2581 -6.0684 8.2776 -10.0404 9.0940 -0.6857 -#> -3.9399 6.9471 -3.0039 -4.1868 0.1530 -1.3818 -#> 5.2030 3.0198 0.3190 4.3111 -2.7122 9.6921 -#> 8.5626 9.0417 -1.1888 6.9106 -3.1359 5.2059 -#> 11.7007 7.5871 -0.9854 -0.6513 0.4028 -3.6121 -#> -9.2621 4.3883 -7.0322 -1.0245 -1.7525 -3.5827 -#> -20.7991 20.7254 -10.1940 0.9200 5.2781 -3.8300 -#> 1.3659 0.4175 12.2263 -13.9632 9.0599 -8.4849 -#> -4.6873 1.5768 7.5582 -0.5245 10.7458 5.4537 -#> 13.1642 -0.6127 -1.5006 20.3494 3.8420 6.7404 -#> -3.1472 -10.0608 7.6488 4.2702 -4.5538 -2.1601 -#> -27.4567 4.2973 -14.8549 -6.8283 -10.6547 -6.2378 -#> 4.6752 -3.8682 5.5952 1.8841 -0.3845 -1.9298 -#> 5.4148 -13.7245 6.6207 5.3980 -1.0152 7.5767 -#> 4.4342 1.4319 0.4299 -7.3339 -1.4901 -0.7209 -#> -#> (20,.,.) = -#> Columns 1 to 8 -0.1621 -1.1462 5.5624 -3.2040 -15.1401 7.7637 2.6860 5.4238 -#> 0.8396 -3.5203 9.1231 15.4953 11.7898 -1.6306 -9.3022 1.3270 -#> -1.3684 -3.0398 -10.3844 3.6498 -5.7445 -19.0700 -0.8349 10.7056 -#> -0.0485 5.6198 3.5489 9.6158 1.7576 -4.0273 -13.8786 -16.4744 -#> -2.5919 -8.6451 -13.4473 -2.8219 6.3921 -3.4349 3.5949 -5.9716 -#> -4.9905 4.9731 10.2412 1.4691 -4.3466 7.6242 16.1750 6.4483 -#> -1.5315 -0.1067 0.8477 -12.7635 2.7935 15.6729 -8.6513 -7.0986 -#> 4.7082 -2.4865 -1.2656 4.2381 1.8470 -8.7176 -0.1376 -1.4295 -#> -4.5697 1.0897 4.0721 -16.2454 0.7888 -14.9746 -1.8295 -3.1963 -#> 0.1823 1.8564 6.2780 3.6687 7.3347 -1.5156 -4.9225 -16.4798 -#> -1.4463 1.9402 -1.1858 -8.6737 -12.8343 -5.3619 6.5962 -7.5694 -#> -2.6235 4.2898 -3.5294 4.9846 -10.0827 -30.8690 -0.3993 -3.9279 -#> 0.2410 -3.7194 5.1257 8.5350 -3.8493 3.5762 -2.3895 -23.1393 -#> 1.4401 2.6178 11.1458 10.0722 10.3905 -0.3786 -1.1106 -14.5141 -#> 1.5678 -0.4691 -5.4716 -15.0261 -3.4612 -16.8536 10.2880 0.9811 -#> -5.6570 0.1170 5.6482 8.2850 -9.1239 2.9178 14.5901 -0.7696 -#> -1.4326 3.0316 5.5369 10.9070 17.6759 0.0452 7.9348 3.0246 -#> -1.1936 2.5122 7.0014 1.9653 0.1634 -1.7728 -1.8913 9.4284 -#> 1.6027 5.4183 -3.9848 -12.1217 10.1409 13.7953 21.0640 2.8829 -#> -1.6356 -3.6014 0.0734 10.9810 -12.7295 -14.2390 -3.9708 6.6003 -#> -2.8815 -3.3364 9.8267 14.1771 5.8635 -0.1086 -6.7500 11.7749 -#> 7.1709 8.3964 1.4076 -13.0953 -0.5085 4.6746 -12.6335 1.4956 -#> -0.1749 3.9424 3.2652 16.9313 -10.2269 -11.3709 -13.7632 -4.8729 -#> 2.5850 -0.2872 -5.2173 -7.3208 -12.8036 9.8185 4.2883 -4.7945 -#> 2.4509 10.4656 -9.4248 8.9418 -7.5186 1.9619 -2.0981 9.3907 -#> -2.6993 -4.5462 -2.2453 -4.4655 -2.1707 -3.4057 -9.1211 7.5554 -#> 2.3860 0.4197 -4.8111 -3.5332 -5.9333 -0.6345 -5.2828 -10.2688 -#> 1.8418 5.4025 3.4547 8.0757 -2.6860 -1.5656 -6.3146 9.1767 -#> 3.1711 -3.4898 -6.5597 0.5113 0.2847 -9.3321 5.6376 -4.6058 -#> 8.5215 6.1679 -2.6810 -5.5771 -6.6683 12.2519 2.2518 -16.5943 -#> -0.2038 -2.1986 2.9182 1.5978 -9.3678 -4.8177 3.7600 -1.1258 -#> -2.5421 -3.1019 -1.8657 3.2041 3.9845 -5.3289 8.3623 -6.0053 -#> -2.2026 -4.4154 1.7093 1.2705 -11.6828 5.0229 7.7633 -4.8920 -#> -#> Columns 9 to 16 -9.6379 -8.8353 -2.0164 -3.9967 -14.9024 -13.2522 5.6158 -8.8205 -#> -1.7650 3.1118 -1.6893 16.0329 11.6731 0.8990 9.0909 -8.5504 -#> -4.1310 -3.4250 2.2022 -3.6775 -2.3736 -1.0813 -7.3223 2.0234 -#> -7.7183 5.4651 -2.1186 -0.2175 2.3976 -5.4979 -1.3650 7.4051 -#> 0.3214 -4.2397 -1.5178 7.8210 -2.7930 -4.5397 -10.7320 11.6219 -#> 3.3722 8.3514 12.6042 -6.2435 9.9449 6.8076 -7.1994 7.9202 -#> -0.7087 -3.7693 -5.8845 2.2852 4.7547 7.6629 -0.9728 -5.5279 -#> 0.5844 -13.7592 -3.8658 -4.3545 1.7405 10.1863 3.6145 7.0898 -#> 1.1853 1.7078 11.3930 -4.2465 -10.0186 -9.8318 6.1848 2.0908 -#> 14.1360 3.3278 8.2308 20.9610 -2.2449 2.7065 -13.6995 12.0065 -#> 8.1762 5.8692 -1.0152 -1.7100 -3.0871 7.8233 -0.6612 -0.3667 -#> 0.7398 2.9508 14.0272 -14.8148 -6.7409 8.5475 -8.1818 7.2170 -#> 3.1297 11.1152 16.2606 -10.3462 4.2060 -4.3647 -0.5266 -2.5029 -#> 6.4961 -8.4803 -3.9518 3.8498 10.7788 -2.2223 -5.9765 1.3549 -#> -5.1063 4.6187 -2.1797 -22.5261 -7.0005 6.2757 -9.0270 25.0982 -#> -0.1420 1.3720 7.4795 9.6153 4.3483 7.4302 -9.9186 -5.4024 -#> 3.4592 -8.3573 -17.2632 -6.2594 4.1314 10.3204 7.1232 6.3911 -#> -5.9489 2.3011 -0.3504 15.1394 0.2342 6.0624 4.9731 -7.1409 -#> -6.4556 -3.4254 -15.0925 -5.4326 -7.9049 5.4858 1.3068 17.6305 -#> -11.9726 -0.1709 -2.0448 -8.8095 -3.7666 -1.9334 -3.4856 8.0408 -#> -5.5254 -2.6180 -5.0557 11.0289 -9.9996 10.3354 -9.6572 -0.4148 -#> -10.8925 -12.7567 0.0669 4.5049 -2.1159 7.2722 -7.0065 -12.0945 -#> 0.5809 -2.2126 -3.6979 -12.0575 -1.5567 -1.7114 6.3236 -0.1161 -#> -9.8552 5.4610 0.4954 8.4186 16.3263 8.1864 10.1633 -7.8072 -#> -5.9334 17.6178 12.9692 3.4399 -1.6990 -7.9805 -3.4114 -7.6213 -#> 19.0645 -4.7203 11.0164 -0.9063 4.8046 -8.6888 11.7567 -3.8675 -#> 11.7528 2.8265 -1.7707 -4.1104 -10.3084 -4.3146 2.8402 -6.7274 -#> -16.2602 11.0432 -2.8828 0.1409 -2.7798 -4.6135 4.9228 -6.8063 -#> 13.7149 12.8582 -4.4341 4.5278 10.9037 6.1661 -4.7417 14.1037 -#> -0.3279 21.5061 -1.1329 3.3908 -11.6120 -4.9290 10.7559 11.6238 -#> 4.9558 -5.5311 -8.7086 -15.1959 8.1782 -3.1170 -10.8156 -11.8758 -#> 9.2265 -7.8700 8.2888 -2.7848 -6.6362 -3.8733 6.7170 -9.3142 -#> 7.6552 11.7999 4.7896 7.7007 8.5952 2.0664 11.5924 -1.0443 -#> -#> Columns 17 to 24 -0.5321 11.0464 0.0856 0.5655 14.5991 12.9319 0.4836 7.6641 -#> -6.7579 -5.3101 19.7148 3.8677 -14.5008 -9.3260 -5.3839 3.1493 -#> -11.6755 -0.6071 2.5071 10.7974 -6.7518 1.3822 3.6109 4.1592 -#> -2.6031 -5.6818 18.6989 -2.4348 -9.8791 6.2369 -15.8756 9.3603 -#> -8.1665 6.7317 12.1462 16.9517 -15.2266 -5.7444 1.5100 6.8900 -#> 14.4074 8.8029 -5.4545 15.4322 6.9543 0.2443 2.1472 21.9676 -#> -1.3419 6.2277 11.9838 -7.4835 2.0090 2.4590 2.9050 11.5184 -#> -4.5372 1.9943 13.6520 -3.9550 -19.4712 0.5986 25.6229 7.6501 -#> -12.0105 14.3773 0.4855 -3.1355 12.9980 17.6869 -7.5678 -20.4467 -#> 5.4924 -7.7566 -11.8491 7.2381 3.8651 -11.9726 -13.3154 30.7087 -#> 4.9715 3.6618 -5.9609 6.0388 10.1822 -0.1636 2.9248 21.1720 -#> 4.4321 13.4352 5.0641 11.5861 -9.4310 -1.9816 -6.3792 13.6577 -#> 5.9904 -4.2367 2.1718 3.8697 -2.1954 -12.3323 0.6447 11.7598 -#> -12.3906 -5.8361 15.9661 -4.0532 -19.7730 -7.9416 -13.6731 -14.6051 -#> -11.5482 -6.3060 0.4562 10.2639 -7.1850 2.3008 8.4813 4.6316 -#> 16.3523 -1.7841 -12.6560 -0.8742 14.8849 -1.3381 -6.6948 20.4880 -#> 15.8185 0.9278 5.1805 13.5886 -8.4595 -12.5742 -5.5707 6.3068 -#> -1.7460 -6.1560 -0.1155 -1.3805 -11.9903 5.2742 -2.6962 1.2403 -#> -20.6755 8.6058 -19.3932 -14.9239 14.5644 24.0100 -0.9756 -3.3321 -#> 2.8825 1.0881 -2.3569 -6.5990 -1.0636 -9.5998 -2.6571 2.1721 -#> -0.2178 -13.1473 -11.7695 -11.7659 11.5251 6.0879 0.9299 4.1882 -#> 9.5220 -7.2763 9.1356 -7.0332 5.8918 -4.9225 -2.3877 -2.8981 -#> -3.8195 -11.3067 17.5316 14.3856 -2.0751 -10.7862 -10.6612 0.7596 -#> 4.8557 -3.7417 2.7421 -3.9924 15.1623 5.9950 -3.4114 -5.8673 -#> 12.6678 -10.7893 5.1291 5.0086 -12.7731 -7.5149 1.4797 4.7836 -#> 6.8793 15.9510 -0.8191 -11.1323 -21.8725 -1.1746 9.8490 -1.9807 -#> -6.6938 11.1216 -5.1915 9.9398 6.9210 0.1600 7.1468 -3.6307 -#> -9.6642 2.1299 -1.9093 4.7243 2.9268 8.8768 -1.7267 -6.9847 -#> 5.6409 0.9974 22.4437 3.0573 -12.4774 7.3325 14.7486 -7.2137 -#> 11.1331 -3.1796 -14.4943 -6.3280 4.9811 12.2918 -0.0304 -3.3065 -#> 12.5455 -14.9207 -2.9549 -0.1376 7.9348 -4.7665 -13.3366 7.2516 -#> -17.0092 3.3592 12.2121 0.9171 9.6731 1.8164 10.6970 -3.2334 -#> -6.6542 7.6337 4.5601 4.0772 9.9508 10.3802 -0.0720 10.9570 -#> -#> Columns 25 to 32 14.7814 2.0855 -11.5443 -8.8636 -3.2921 -8.8975 -2.2202 2.0542 -#> -4.3575 14.1877 21.3428 7.5668 -0.0204 0.6640 -1.0708 -12.3276 -#> -5.2300 6.1240 7.4403 2.9730 2.8976 1.5309 -4.3767 -3.9842 -#> 10.1208 5.2596 -2.1734 -1.7602 5.0769 -13.1904 3.5458 7.7316 -#> 2.8890 4.8204 -0.0606 -1.4020 6.3128 -0.8638 10.7315 4.2823 -#> 12.1047 -4.3720 4.1811 11.6347 9.3276 9.7779 -12.5684 12.7005 -#> 8.1034 -5.7556 1.0095 7.1351 17.4726 3.1717 7.3035 7.1441 -#> -1.0227 13.4178 12.7260 -4.6267 -11.1069 3.4204 -7.7886 0.5724 -#> -1.9399 3.8624 -1.8930 -7.9153 -3.2695 -4.7378 16.7488 10.2630 -#> 17.3373 11.5215 4.4709 2.6323 -5.6626 -22.0692 -10.8594 -5.0825 -#> 8.9432 -0.7131 11.7734 -3.8360 12.8653 9.0661 5.6882 -10.2663 -#> 3.6119 5.3201 -1.0089 7.1640 6.3922 5.7196 4.8207 -6.0330 -#> 16.9539 -9.5322 -8.6009 -10.1206 11.5182 2.3165 -12.3131 -6.9663 -#> -7.6772 5.6404 11.2296 -6.5533 -3.4842 -1.0550 -11.3338 -2.7795 -#> -3.0589 2.6489 0.0237 3.8240 -3.4378 -0.5842 12.3299 5.6363 -#> 1.8475 -3.6678 -7.2582 2.2023 7.2895 -5.9783 -3.0408 -9.8344 -#> -3.9609 -16.0397 -2.3379 9.4380 -2.0241 6.7547 4.8268 -3.5794 -#> -10.1694 -6.8895 -1.8487 10.7999 11.4416 -8.0720 12.5670 -3.0657 -#> -5.8882 -6.5137 -14.9760 -9.7027 -10.1098 -4.3701 2.7771 -3.2866 -#> 4.8151 -0.7031 13.0597 0.4731 2.4569 5.2606 -7.8424 -6.6531 -#> 4.7037 -5.5518 -13.4641 -14.5033 -9.6714 -9.2366 -10.1225 -18.6002 -#> -4.9474 23.4492 7.2622 -3.3553 0.5726 4.0995 11.6019 -6.0000 -#> 7.2762 6.6382 14.5240 2.3849 1.0163 9.1811 4.0564 7.0639 -#> -7.9470 1.7570 -2.2795 -8.6340 -10.8866 4.2379 2.3539 4.4703 -#> -1.2421 11.0018 1.2535 -10.1757 -10.0624 4.5975 -10.5913 -5.5541 -#> -6.7632 -9.0438 3.3362 3.3541 -7.8718 -7.5242 -13.5980 5.6186 -#> -0.8035 -7.1194 3.7788 0.8013 -3.8723 13.9522 -7.8633 2.2792 -#> 13.8338 21.8256 3.2970 -3.9498 -10.6964 2.5834 -0.7092 -9.7314 -#> -6.8580 -4.3072 -12.3198 -4.7211 -11.5913 0.8492 -7.2394 -14.1186 -#> 11.9156 4.7210 -0.4337 -4.2159 6.3054 -5.5326 2.0532 23.0029 -#> 4.6552 -2.2351 4.9680 -2.8215 2.8679 3.2595 -1.1829 7.9291 -#> 3.0608 -3.2694 -4.6975 -0.3494 -3.4043 1.4205 2.0749 -7.1137 -#> 0.9281 0.6515 3.0646 -1.4669 3.3878 3.2400 -1.6345 -0.2212 -#> -#> Columns 33 to 40 9.4695 -4.2720 5.6363 -3.0229 1.0772 4.3404 2.7501 8.8858 -#> -0.6602 -6.7124 0.2431 9.1193 -10.9290 -5.7383 0.3658 -0.0696 -#> 4.7950 -5.0814 -4.8913 -10.7810 17.6417 -3.0259 10.1834 9.6151 -#> -12.9637 1.7315 1.6938 0.9733 4.8371 -3.4247 5.4597 -3.4403 -#> 11.6400 -6.0170 0.6291 4.2209 8.5032 -11.3803 3.6310 -2.7111 -#> 18.9459 -0.5712 -1.3361 -2.9936 -7.7226 4.8759 3.8769 -4.6880 -#> -6.3998 2.6967 1.3923 18.0601 2.7739 5.9172 -8.6638 -17.0653 -#> -0.1278 1.9916 -3.3368 4.4702 -4.1882 -0.3656 0.7066 -15.3845 -#> 7.9409 5.3684 -7.0261 -2.6445 -0.9552 -8.4829 -3.8520 -2.4927 -#> -6.1056 -10.0198 1.6371 9.4007 2.8853 0.1508 -15.6866 -5.7417 -#> 16.0239 3.5886 2.7665 3.9043 -11.8213 -0.2662 -9.6202 2.5200 -#> 22.2557 -10.0216 14.6203 -1.1390 -17.5313 8.1871 0.2831 6.0888 -#> 1.0272 0.8753 7.7316 15.5033 -12.1568 -7.3910 1.0686 -14.9231 -#> -10.8576 -14.7991 0.4624 17.4074 -3.3230 12.4914 -1.6869 -6.4875 -#> 2.1269 -1.6013 -18.9873 -4.1625 1.2891 0.9499 10.2098 -8.4856 -#> 5.0698 -2.1100 4.8530 -5.0091 -0.4301 4.8984 1.7890 1.5331 -#> -0.8267 -1.6853 -1.6022 -2.2362 -6.0568 11.0617 0.2674 8.6695 -#> -0.0252 9.0893 -7.1012 0.4103 -7.2297 3.1142 4.9596 -2.1848 -#> -3.7477 -5.8867 -15.8268 7.3226 8.2175 2.2897 1.7719 -8.0674 -#> -5.4004 -0.0574 4.5258 0.9831 2.4997 3.1957 0.6281 5.7712 -#> -4.2081 5.1848 -1.3553 12.6855 7.1704 -0.9142 -4.2758 -1.6022 -#> 0.9877 -2.9343 -1.7928 -5.7885 14.6740 1.5706 -5.1352 1.3063 -#> 4.1812 1.9999 -0.0702 -3.6045 -12.3558 -4.5112 13.6995 10.0074 -#> 19.6984 -15.9481 -2.8311 15.3651 4.1220 -0.2127 5.8846 -8.1123 -#> 4.0772 -9.8475 13.4586 -2.3518 -0.8136 2.3596 2.0469 3.7419 -#> -9.5606 2.4306 10.7676 -10.6189 -7.2922 4.6915 -7.9171 -0.7868 -#> -3.5749 1.9010 0.1177 1.1493 -5.8188 -1.8577 6.5739 0.6710 -#> -7.3241 4.7530 -3.0966 2.7295 13.0151 -16.4036 2.9880 -4.5060 -#> 12.3952 3.8545 -4.4082 4.3266 -0.9524 -16.2677 -0.3679 -8.6198 -#> -1.7516 -3.5273 2.3961 16.9297 -8.4036 -5.4464 -2.6408 2.6277 -#> 8.5223 -5.4636 8.0825 -4.6614 0.9806 6.6712 1.4723 6.5970 -#> -8.9293 8.8014 4.4584 9.0321 -5.9880 0.2031 1.6938 2.3761 -#> 2.8712 1.0475 -3.0858 9.3976 3.4289 -2.6453 8.2908 -2.6215 -#> -#> Columns 41 to 48 1.0282 13.6111 -7.0692 -6.5561 -6.1215 4.2179 -15.8656 1.0944 -#> -6.8862 -1.9006 -0.4087 1.5739 -1.7935 -7.1098 -11.9831 -3.2336 -#> -8.8803 7.4065 10.8403 -8.0686 -6.7777 1.9696 -6.3820 10.2839 -#> 6.9485 3.3956 3.3277 3.0010 -5.4892 9.3176 2.4230 -8.8501 -#> -1.8685 -6.0866 -7.0440 1.3316 0.4566 -10.7386 -12.7538 2.4884 -#> 1.0826 3.4354 -2.3901 -2.5510 5.8950 -18.2303 -2.8210 -15.3365 -#> 12.4550 -8.2105 -6.3106 9.6198 2.0183 -11.0000 7.1958 -12.3621 -#> -6.6099 -6.4649 5.2101 -5.0436 -0.9363 1.8431 7.5087 17.3076 -#> 11.8163 -9.2981 12.9937 -7.0190 0.4832 7.5841 13.7286 -11.5256 -#> 4.6048 -7.5720 -0.0066 -1.8987 7.8794 12.4534 -2.0041 -15.7481 -#> -6.0992 1.4299 0.5921 7.1506 3.3198 2.5087 -5.8267 5.3067 -#> -7.0652 -5.6709 8.6364 1.6091 8.9214 -6.8446 -8.9418 2.2526 -#> -4.1896 4.0452 -8.5550 5.1426 8.1493 -5.5370 -0.8277 20.2468 -#> 0.6847 -4.9379 5.2159 13.2771 9.5256 -5.6407 5.5542 -9.0216 -#> 1.2668 -10.6842 7.2327 -6.9216 -10.3167 -6.8236 11.4308 -6.7491 -#> -16.9219 8.2406 -14.5830 4.0330 -4.7996 -2.9334 -18.2929 -10.6340 -#> 6.6933 -19.0212 1.3064 5.3452 19.1179 -4.2772 6.7768 6.4978 -#> -2.2510 -1.6161 -3.3499 12.3447 -8.1975 -5.6954 0.0561 4.9685 -#> -2.0489 4.4903 12.4049 -11.0199 -7.8862 3.5034 22.8815 -1.3020 -#> -11.0295 7.3003 9.1650 0.5886 -5.0501 16.9966 3.6578 -1.9543 -#> -12.0994 -8.8277 -8.1078 9.0297 0.4771 -14.6433 -13.8196 8.1879 -#> -8.8032 8.7606 12.5391 3.2308 -3.6012 13.6578 -6.5386 11.2676 -#> 1.1408 -15.7426 -9.8566 11.0532 18.8391 -5.4709 -7.6888 -3.2865 -#> 9.8008 15.5037 -2.0344 -2.3890 6.5953 4.7175 -13.4495 5.5906 -#> -8.6769 9.2517 -4.9664 -12.0861 -10.7764 16.0101 -19.5229 -1.9862 -#> 4.7044 0.4214 14.4001 0.7839 2.9285 -1.7922 27.9028 -4.0251 -#> 4.2268 2.6263 4.2395 -9.2513 -2.2608 -0.8726 6.1136 -7.9764 -#> -8.6987 3.2674 1.5147 1.2253 1.7308 8.3466 3.8393 8.1229 -#> 3.5640 1.9986 -0.7368 -4.6264 -1.0220 6.6309 12.8355 23.6585 -#> 9.5552 13.7640 -17.8714 -0.0075 1.6017 6.0655 -11.4160 -1.1558 -#> -8.3849 9.1110 -1.7346 7.3672 14.7431 -1.6898 -14.6558 5.7885 -#> 5.6095 2.8757 10.7389 9.7179 -6.1931 -11.3480 3.8011 14.7688 -#> 9.2174 6.8806 -3.9769 1.5860 5.7901 7.8094 -5.1846 -2.5478 -#> -#> Columns 49 to 54 2.4065 -13.3140 0.6704 -2.4768 -12.8549 -1.7246 -#> 0.2845 -18.0647 12.4616 16.8168 -3.2826 -5.1261 -#> 3.2000 -17.7489 -12.3529 4.3966 3.3123 -0.0723 -#> 5.7643 6.9179 -1.1015 0.8025 1.3063 -1.2388 -#> -2.1739 -6.4094 -4.2746 -3.4872 1.8942 5.8524 -#> -0.2877 8.1071 -7.1430 -2.0073 -0.5958 -0.6888 -#> -2.2713 1.2798 -17.8757 -5.1527 4.8490 2.7732 -#> -15.9087 -18.2601 -2.4891 -6.5220 -4.8303 1.9908 -#> 6.6733 13.3821 3.4212 -9.9961 -7.5872 -0.9345 -#> 13.2082 -5.6533 -6.0926 4.7916 -0.9141 -4.4621 -#> -5.1544 -13.5698 -5.2283 -10.9659 -3.0882 5.9742 -#> 12.7492 -2.8567 11.5335 -9.9027 -8.9687 -0.3478 -#> 12.4571 13.0040 -9.6064 -15.1820 0.5775 4.7391 -#> 8.7508 7.6705 18.0860 12.4494 -0.2345 -5.2390 -#> 1.8744 -3.1752 -9.6094 7.4359 -3.3472 -4.7954 -#> 10.9020 9.8056 1.9755 -6.1540 1.8149 -2.7576 -#> 9.7128 -10.5345 5.5649 -0.0743 1.4130 -2.4817 -#> -0.7271 -1.5640 11.7662 1.4352 -6.7959 -1.4346 -#> 2.9927 -5.6591 -1.1774 -1.0120 -0.9716 9.8057 -#> -7.2276 4.0850 -0.8801 5.2085 -4.5947 4.2419 -#> 6.9749 18.1678 -2.7030 -12.8955 -7.5763 -2.7017 -#> -1.0681 -17.7503 -5.8964 -6.9143 6.0632 -0.1159 -#> 1.6390 6.9608 -4.7435 4.3092 -2.7255 -7.1128 -#> 3.2927 4.4731 4.8954 -4.1874 1.2480 2.9463 -#> 8.6057 15.0453 2.8538 2.7735 -10.3994 -0.4426 -#> 4.0538 -6.3148 3.5170 7.2334 -4.1120 -6.4150 -#> -0.8619 11.2716 -4.3405 -1.9576 5.3423 -2.5746 -#> -11.5102 4.1975 6.4558 -12.8352 -8.9418 0.9216 -#> -6.5220 5.2047 4.1922 -4.8530 7.3112 -0.0121 -#> 11.3263 9.6909 -11.5103 -4.5442 -2.5944 4.6614 -#> -5.3980 -7.5770 7.9005 -7.3473 -2.6545 -0.8043 -#> -1.5698 1.8889 -9.2245 -2.3570 1.1759 0.8253 -#> 1.0218 1.3002 -6.2019 3.4486 0.1029 2.7112 -#> [ CPUFloatType{20,33,54} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_conv_transpose2d.html b/docs/reference/torch_conv_transpose2d.html deleted file mode 100644 index db2a334e7..000000000 --- a/docs/reference/torch_conv_transpose2d.html +++ /dev/null @@ -1,305 +0,0 @@ - - - - - - - - -Conv_transpose2d — torch_conv_transpose2d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Conv_transpose2d

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    NA input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iH , iW)\)

    weight

    NA filters of shape \((\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kH , kW)\)

    bias

    NA optional bias of shape \((\mbox{out\_channels})\). Default: None

    stride

    NA the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1

    padding

    NA dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple (padH, padW). Default: 0

    output_padding

    NA additional size added to one side of each dimension in the output shape. Can be a single number or a tuple (out_padH, out_padW). Default: 0

    groups

    NA split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1

    dilation

    NA the spacing between kernel elements. Can be a single number or a tuple (dH, dW). Default: 1

    - -

    conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

    - - - - -

    Applies a 2D transposed convolution operator over an input image -composed of several input planes, sometimes also called "deconvolution".

    -

    See ~torch.nn.ConvTranspose2d for details and output shape.

    -

    .. include:: cudnn_deterministic.rst

    - -

    Examples

    -
    # \dontrun{ - -# With square kernels and equal stride -inputs = torch_randn(c(1, 4, 5, 5)) -weights = torch_randn(c(4, 8, 3, 3)) -nnf_conv_transpose2d(inputs, weights, padding=1)
    #> torch_tensor -#> (1,1,.,.) = -#> 3.1282 4.7949 -5.5622 -1.0866 3.7899 -#> 3.4914 4.8807 4.3209 0.8437 7.1147 -#> -5.0276 7.5935 2.4507 6.2129 4.9112 -#> 2.9302 -4.0742 1.0907 0.0252 4.4256 -#> 4.1733 6.6849 -0.1333 0.7716 1.2488 -#> -#> (1,2,.,.) = -#> 4.0475 8.1682 9.4413 -3.4628 -2.3695 -#> -3.0556 -4.0963 5.6845 2.0032 0.2438 -#> 1.7169 -2.3353 -2.5287 -5.3750 -4.0894 -#> 1.7329 17.4464 -1.9850 -1.2224 -1.0126 -#> -8.3888 0.5081 -5.4379 -7.7908 1.4902 -#> -#> (1,3,.,.) = -#> -4.6889 1.3331 -3.8890 -4.2812 -1.6408 -#> -5.7474 6.4888 -0.3864 -0.5556 3.3423 -#> -0.5830 -4.7014 0.4339 -4.4822 -0.9338 -#> -3.2573 -5.3475 -6.7339 -4.1705 5.4993 -#> 1.4175 5.6303 -1.1562 5.8984 3.9368 -#> -#> (1,4,.,.) = -#> 2.7974 -1.8220 1.8960 -2.4363 9.3931 -#> -0.0791 9.0332 2.4753 6.5632 -1.9094 -#> -0.4198 -4.7226 4.5077 -6.0814 0.9503 -#> -0.6672 3.4472 -9.0451 1.0115 -4.7566 -#> 6.7951 6.0656 9.2166 3.3023 1.2087 -#> -#> (1,5,.,.) = -#> 4.9513 -5.1344 0.4485 2.9806 0.6510 -#> 2.6860 -0.6071 5.0654 6.0352 -0.5143 -#> 3.0599 2.8382 -1.2406 -3.1389 -6.3846 -#> -5.3770 3.7280 -12.7695 -4.8459 3.4087 -#> 1.6425 -3.5262 -2.5308 5.2363 0.8194 -#> -#> (1,6,.,.) = -#> 1.6877 11.4338 1.1768 -0.3375 -1.5256 -#> -3.2510 -1.9791 0.4848 -15.0722 2.7618 -#> 0.3499 4.9010 -0.0095 -6.5474 -4.1558 -#> 3.7509 8.8759 8.5394 2.6775 -2.9372 -#> -6.3247 2.4670 -8.6403 -6.7153 -1.6774 -#> -#> (1,7,.,.) = -#> 4.5894 2.9587 3.1108 0.5861 -1.6432 -#> 0.2160 -2.0561 2.0616 0.3782 0.4569 -#> -0.6198 -5.6256 -4.3481 -0.5680 -6.8947 -#> -1.1064 3.6694 3.1163 -0.8316 5.3151 -#> -2.6586 -10.2829 -6.7049 1.4970 0.0378 -#> -#> (1,8,.,.) = -#> -0.6657 -4.0047 -1.7929 -2.8312 -5.8341 -#> 0.8324 4.9875 -2.9101 4.2271 -0.9717 -#> -2.1073 2.4393 0.2561 -7.6416 -2.0861 -#> -0.1300 5.5534 -0.9693 0.1627 -0.2768 -#> 6.7889 -0.3533 3.2501 3.3338 -0.3276 -#> [ CPUFloatType{1,8,5,5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_conv_transpose3d.html b/docs/reference/torch_conv_transpose3d.html deleted file mode 100644 index babac9b8d..000000000 --- a/docs/reference/torch_conv_transpose3d.html +++ /dev/null @@ -1,243 +0,0 @@ - - - - - - - - -Conv_transpose3d — torch_conv_transpose3d • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Conv_transpose3d

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    NA input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iT , iH , iW)\)

    weight

    NA filters of shape \((\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kT , kH , kW)\)

    bias

    NA optional bias of shape \((\mbox{out\_channels})\). Default: None

    stride

    NA the stride of the convolving kernel. Can be a single number or a tuple (sT, sH, sW). Default: 1

    padding

    NA dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple (padT, padH, padW). Default: 0

    output_padding

    NA additional size added to one side of each dimension in the output shape. Can be a single number or a tuple (out_padT, out_padH, out_padW). Default: 0

    groups

    NA split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1

    dilation

    NA the spacing between kernel elements. Can be a single number or a tuple (dT, dH, dW). Default: 1

    - -

    conv_transpose3d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

    - - - - -

    Applies a 3D transposed convolution operator over an input image -composed of several input planes, sometimes also called "deconvolution"

    -

    See ~torch.nn.ConvTranspose3d for details and output shape.

    -

    .. include:: cudnn_deterministic.rst

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cos.html b/docs/reference/torch_cos.html deleted file mode 100644 index f6e3cd818..000000000 --- a/docs/reference/torch_cos.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Cos — torch_cos • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cos

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    cos(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the cosine of the elements of input.

    -

    $$ - \mbox{out}_{i} = \cos(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.6755 -#> -0.8212 -#> -0.0338 -#> 0.3401 -#> [ CPUFloatType{4} ]
    torch_cos(a)
    #> torch_tensor -#> 0.7804 -#> 0.6813 -#> 0.9994 -#> 0.9427 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cosh.html b/docs/reference/torch_cosh.html deleted file mode 100644 index 3f16cf32a..000000000 --- a/docs/reference/torch_cosh.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Cosh — torch_cosh • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cosh

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    cosh(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the hyperbolic cosine of the elements of -input.

    -

    $$ - \mbox{out}_{i} = \cosh(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.5781 -#> -0.2866 -#> -1.7790 -#> -0.1226 -#> [ CPUFloatType{4} ]
    torch_cosh(a)
    #> torch_tensor -#> 1.1718 -#> 1.0414 -#> 3.0465 -#> 1.0075 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cosine_similarity.html b/docs/reference/torch_cosine_similarity.html deleted file mode 100644 index c5be3229f..000000000 --- a/docs/reference/torch_cosine_similarity.html +++ /dev/null @@ -1,334 +0,0 @@ - - - - - - - - -Cosine_similarity — torch_cosine_similarity • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cosine_similarity

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    x1

    (Tensor) First input.

    x2

    (Tensor) Second input (of size matching x1).

    dim

    (int, optional) Dimension of vectors. Default: 1

    eps

    (float, optional) Small value to avoid division by zero. Default: 1e-8

    - -

    cosine_similarity(x1, x2, dim=1, eps=1e-8) -> Tensor

    - - - - -

    Returns cosine similarity between x1 and x2, computed along dim.

    -

    $$ - \mbox{similarity} = \frac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)} -$$

    - -

    Examples

    -
    # \dontrun{ - -input1 = torch_randn(c(100, 128)) -input2 = torch_randn(c(100, 128)) -output = torch_cosine_similarity(input1, input2) -output
    #> torch_tensor -#> 0.0628 -#> 0.0734 -#> 0.0535 -#> -0.0163 -#> -0.0151 -#> -0.0383 -#> -0.0902 -#> 0.0108 -#> -0.0247 -#> 0.0816 -#> 0.0586 -#> 0.0277 -#> -0.0927 -#> 0.0636 -#> 0.0423 -#> 0.0609 -#> 0.1381 -#> -0.0185 -#> 0.0668 -#> -0.0083 -#> -0.0827 -#> -0.0799 -#> 0.0255 -#> -0.0536 -#> 0.0417 -#> 0.1178 -#> -0.0586 -#> -0.0301 -#> -0.2182 -#> -0.0238 -#> 0.0960 -#> -0.1743 -#> 0.0430 -#> -0.0019 -#> -0.0712 -#> 0.1294 -#> -0.0705 -#> -0.0441 -#> -0.0381 -#> -0.0269 -#> 0.0380 -#> 0.2009 -#> 0.0309 -#> -0.0537 -#> 0.0422 -#> -0.0888 -#> -0.0909 -#> -0.0396 -#> -0.0815 -#> 0.0297 -#> -0.0226 -#> 0.0781 -#> -0.1015 -#> -0.0516 -#> 0.1183 -#> 0.1247 -#> -0.0117 -#> 0.0998 -#> 0.0107 -#> -0.1497 -#> -0.0889 -#> 0.0906 -#> -0.0145 -#> -0.1604 -#> -0.0323 -#> 0.0500 -#> -0.1800 -#> 0.0532 -#> 0.0932 -#> 0.0290 -#> 0.0148 -#> -0.0677 -#> 0.0150 -#> 0.1278 -#> 0.0463 -#> -0.0320 -#> 0.0187 -#> -0.0964 -#> 0.0039 -#> -0.0098 -#> -0.0187 -#> -0.1616 -#> -0.0879 -#> -0.0506 -#> 0.0167 -#> -0.0330 -#> -0.0717 -#> 0.1178 -#> -0.0280 -#> 0.0411 -#> -0.1074 -#> -0.0523 -#> -0.1518 -#> -0.0476 -#> -0.0382 -#> 0.0293 -#> 0.0484 -#> -0.0200 -#> -0.1260 -#> 0.0981 -#> [ CPUFloatType{100} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cross.html b/docs/reference/torch_cross.html deleted file mode 100644 index c2c946b9f..000000000 --- a/docs/reference/torch_cross.html +++ /dev/null @@ -1,254 +0,0 @@ - - - - - - - - -Cross — torch_cross • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cross

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    other

    (Tensor) the second input tensor

    dim

    (int, optional) the dimension to take the cross-product in.

    out

    (Tensor, optional) the output tensor.

    - -

    cross(input, other, dim=-1, out=None) -> Tensor

    - - - - -

    Returns the cross product of vectors in dimension dim of input -and other.

    -

    input and other must have the same size, and the size of their -dim dimension should be 3.

    -

    If dim is not given, it defaults to the first dimension found with the -size 3.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4, 3)) -a
    #> torch_tensor -#> -1.1643 -0.5561 0.7230 -#> -0.0220 2.0844 -0.3671 -#> -1.4814 -0.9811 -1.6675 -#> 0.4909 0.6285 -0.6379 -#> [ CPUFloatType{4,3} ]
    b = torch_randn(c(4, 3)) -b
    #> torch_tensor -#> -1.5896 -1.4300 -0.5647 -#> -1.4339 -1.2857 0.3288 -#> -0.9875 0.1254 0.1272 -#> 0.6789 -0.6983 -0.5560 -#> [ CPUFloatType{4,3} ]
    torch_cross(a, b, dim=2)
    #> torch_tensor -#> 1.3479 -1.8068 0.7810 -#> 0.2135 0.5336 3.0171 -#> 0.0842 1.8351 -1.1546 -#> -0.7949 -0.1601 -0.7695 -#> [ CPUFloatType{4,3} ]
    torch_cross(a, b)
    #> torch_tensor -#> 1.3479 -1.8068 0.7810 -#> 0.2135 0.5336 3.0171 -#> 0.0842 1.8351 -1.1546 -#> -0.7949 -0.1601 -0.7695 -#> [ CPUFloatType{4,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cummax.html b/docs/reference/torch_cummax.html deleted file mode 100644 index 890e8b7cb..000000000 --- a/docs/reference/torch_cummax.html +++ /dev/null @@ -1,267 +0,0 @@ - - - - - - - - -Cummax — torch_cummax • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cummax

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the dimension to do the operation over

    out

    (tuple, optional) the result tuple of two output tensors (values, indices)

    - -

    cummax(input, dim, out=None) -> (Tensor, LongTensor)

    - - - - -

    Returns a namedtuple (values, indices) where values is the cumulative maximum of -elements of input in the dimension dim. And indices is the index -location of each maximum value found in the dimension dim.

    -

    $$ - y_i = max(x_1, x_2, x_3, \dots, x_i) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(10)) -a
    #> torch_tensor -#> 0.4011 -#> 0.0282 -#> 1.4709 -#> -0.3322 -#> -1.1082 -#> -0.6219 -#> -1.1143 -#> 0.0945 -#> -0.5687 -#> -0.1941 -#> [ CPUFloatType{10} ]
    torch_cummax(a, dim=1)
    #> [[1]] -#> torch_tensor -#> 0.4011 -#> 0.4011 -#> 1.4709 -#> 1.4709 -#> 1.4709 -#> 1.4709 -#> 1.4709 -#> 1.4709 -#> 1.4709 -#> 1.4709 -#> [ CPUFloatType{10} ] -#> -#> [[2]] -#> torch_tensor -#> 0 -#> 0 -#> 2 -#> 2 -#> 2 -#> 2 -#> 2 -#> 2 -#> 2 -#> 2 -#> [ CPULongType{10} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cummin.html b/docs/reference/torch_cummin.html deleted file mode 100644 index 32e90d79c..000000000 --- a/docs/reference/torch_cummin.html +++ /dev/null @@ -1,267 +0,0 @@ - - - - - - - - -Cummin — torch_cummin • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cummin

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the dimension to do the operation over

    out

    (tuple, optional) the result tuple of two output tensors (values, indices)

    - -

    cummin(input, dim, out=None) -> (Tensor, LongTensor)

    - - - - -

    Returns a namedtuple (values, indices) where values is the cumulative minimum of -elements of input in the dimension dim. And indices is the index -location of each maximum value found in the dimension dim.

    -

    $$ - y_i = min(x_1, x_2, x_3, \dots, x_i) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(10)) -a
    #> torch_tensor -#> -1.1300 -#> -0.0916 -#> 1.2476 -#> 1.1859 -#> -0.8123 -#> -1.0110 -#> 0.5914 -#> 1.0707 -#> 1.3137 -#> -0.0139 -#> [ CPUFloatType{10} ]
    torch_cummin(a, dim=1)
    #> [[1]] -#> torch_tensor -#> -1.1300 -#> -1.1300 -#> -1.1300 -#> -1.1300 -#> -1.1300 -#> -1.1300 -#> -1.1300 -#> -1.1300 -#> -1.1300 -#> -1.1300 -#> [ CPUFloatType{10} ] -#> -#> [[2]] -#> torch_tensor -#> 0 -#> 0 -#> 0 -#> 0 -#> 0 -#> 0 -#> 0 -#> 0 -#> 0 -#> 0 -#> [ CPULongType{10} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cumprod.html b/docs/reference/torch_cumprod.html deleted file mode 100644 index 12275140a..000000000 --- a/docs/reference/torch_cumprod.html +++ /dev/null @@ -1,256 +0,0 @@ - - - - - - - - -Cumprod — torch_cumprod • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cumprod

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the dimension to do the operation over

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.

    out

    (Tensor, optional) the output tensor.

    - -

    cumprod(input, dim, out=None, dtype=None) -> Tensor

    - - - - -

    Returns the cumulative product of elements of input in the dimension -dim.

    -

    For example, if input is a vector of size N, the result will also be -a vector of size N, with elements.

    -

    $$ - y_i = x_1 \times x_2\times x_3\times \dots \times x_i -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(10)) -a
    #> torch_tensor -#> -1.1828 -#> -0.2114 -#> 0.2918 -#> 0.5649 -#> -0.9559 -#> -0.9795 -#> -0.7152 -#> -0.2064 -#> 0.5134 -#> 0.5777 -#> [ CPUFloatType{10} ]
    torch_cumprod(a, dim=1)
    #> torch_tensor -#> -1.1828 -#> 0.2500 -#> 0.0729 -#> 0.0412 -#> -0.0394 -#> 0.0386 -#> -0.0276 -#> 0.0057 -#> 0.0029 -#> 0.0017 -#> [ CPUFloatType{10} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_cumsum.html b/docs/reference/torch_cumsum.html deleted file mode 100644 index 42d0f64bb..000000000 --- a/docs/reference/torch_cumsum.html +++ /dev/null @@ -1,256 +0,0 @@ - - - - - - - - -Cumsum — torch_cumsum • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Cumsum

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the dimension to do the operation over

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.

    out

    (Tensor, optional) the output tensor.

    - -

    cumsum(input, dim, out=None, dtype=None) -> Tensor

    - - - - -

    Returns the cumulative sum of elements of input in the dimension -dim.

    -

    For example, if input is a vector of size N, the result will also be -a vector of size N, with elements.

    -

    $$ - y_i = x_1 + x_2 + x_3 + \dots + x_i -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(10)) -a
    #> torch_tensor -#> 0.2718 -#> 0.1169 -#> 0.3449 -#> -1.6346 -#> -0.0393 -#> -0.0197 -#> 0.0704 -#> 0.5245 -#> -1.4307 -#> -0.8103 -#> [ CPUFloatType{10} ]
    torch_cumsum(a, dim=1)
    #> torch_tensor -#> 0.2718 -#> 0.3887 -#> 0.7335 -#> -0.9010 -#> -0.9403 -#> -0.9600 -#> -0.8896 -#> -0.3651 -#> -1.7958 -#> -2.6060 -#> [ CPUFloatType{10} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_det.html b/docs/reference/torch_det.html deleted file mode 100644 index 7353562c1..000000000 --- a/docs/reference/torch_det.html +++ /dev/null @@ -1,244 +0,0 @@ - - - - - - - - -Det — torch_det • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Det

    -
    - - -

    Arguments

    - - - - - - -
    input

    (Tensor) the input tensor of size (*, n, n) where * is zero or more batch dimensions.

    - -

    Note

    - - -
    Backward through `det` internally uses SVD results when `input` is
    -not invertible. In this case, double backward through `det` will be
    -unstable in when `input` doesn't have distinct singular values. See
    -`~torch.svd` for details.
    -
    - -

    det(input) -> Tensor

    - - - - -

    Calculates determinant of a square matrix or batches of square matrices.

    - -

    Examples

    -
    # \dontrun{ - -A = torch_randn(c(3, 3)) -torch_det(A)
    #> torch_tensor -#> -0.485994 -#> [ CPUFloatType{} ]
    A = torch_randn(c(3, 2, 2)) -A
    #> torch_tensor -#> (1,.,.) = -#> -0.0024 -1.0185 -#> 0.3236 -0.2787 -#> -#> (2,.,.) = -#> 0.4021 -0.3008 -#> -0.8884 0.5782 -#> -#> (3,.,.) = -#> -0.3821 1.3521 -#> -0.3608 0.3485 -#> [ CPUFloatType{3,2,2} ]
    A$det()
    #> torch_tensor -#> 0.3302 -#> -0.0347 -#> 0.3547 -#> [ CPUFloatType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_device.html b/docs/reference/torch_device.html deleted file mode 100644 index c8fb5ab1f..000000000 --- a/docs/reference/torch_device.html +++ /dev/null @@ -1,225 +0,0 @@ - - - - - - - - -Create a Device object — torch_device • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    A torch_device is an object representing the device on which a torch_tensor -is or will be allocated.

    -
    - -
    torch_device(type, index = NULL)
    - -

    Arguments

    - - - - - - - - - - -
    type

    (character) a device type "cuda" or "cpu"

    index

    (integer) optional device ordinal for the device type. If the device ordinal -is not present, this object will always represent the current device for the device -type, even after torch_cuda_set_device() is called; e.g., a torch_tensor constructed -with device 'cuda' is equivalent to 'cuda:X' where X is the result of -torch_cuda_current_device().

    -

    A torch_device can be constructed via a string or via a string and device ordinal

    - - -

    Examples

    -
    # \dontrun{ - -# Via string -torch_device("cuda:1")
    #> torch_device(type='cuda', index=1)
    torch_device("cpu")
    #> torch_device(type='cpu')
    torch_device("cuda") # current cuda device
    #> torch_device(type='cuda')
    -# Via string and device ordinal -torch_device("cuda", 0)
    #> torch_device(type='cuda', index=0)
    torch_device("cpu", 0)
    #> torch_device(type='cpu', index=0)
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_diag.html b/docs/reference/torch_diag.html deleted file mode 100644 index 0b1d849b1..000000000 --- a/docs/reference/torch_diag.html +++ /dev/null @@ -1,229 +0,0 @@ - - - - - - - - -Diag — torch_diag • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Diag

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    diagonal

    (int, optional) the diagonal to consider

    out

    (Tensor, optional) the output tensor.

    - -

    diag(input, diagonal=0, out=None) -> Tensor

    - - - -
      -
    • If input is a vector (1-D tensor), then returns a 2-D square tensor -with the elements of input as the diagonal.

    • -
    • If input is a matrix (2-D tensor), then returns a 1-D tensor with -the diagonal elements of input.

    • -
    - -

    The argument diagonal controls which diagonal to consider:

      -
    • If diagonal = 0, it is the main diagonal.

    • -
    • If diagonal > 0, it is above the main diagonal.

    • -
    • If diagonal < 0, it is below the main diagonal.

    • -
    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_diag_embed.html b/docs/reference/torch_diag_embed.html deleted file mode 100644 index 2b8049af1..000000000 --- a/docs/reference/torch_diag_embed.html +++ /dev/null @@ -1,272 +0,0 @@ - - - - - - - - -Diag_embed — torch_diag_embed • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Diag_embed

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor. Must be at least 1-dimensional.

    offset

    (int, optional) which diagonal to consider. Default: 0 (main diagonal).

    dim1

    (int, optional) first dimension with respect to which to take diagonal. Default: -2.

    dim2

    (int, optional) second dimension with respect to which to take diagonal. Default: -1.

    - -

    diag_embed(input, offset=0, dim1=-2, dim2=-1) -> Tensor

    - - - - -

    Creates a tensor whose diagonals of certain 2D planes (specified by -dim1 and dim2) are filled by input. -To facilitate creating batched diagonal matrices, the 2D planes formed by -the last two dimensions of the returned tensor are chosen by default.

    -

    The argument offset controls which diagonal to consider:

      -
    • If offset = 0, it is the main diagonal.

    • -
    • If offset > 0, it is above the main diagonal.

    • -
    • If offset < 0, it is below the main diagonal.

    • -
    - -

    The size of the new matrix will be calculated to make the specified diagonal -of the size of the last input dimension. -Note that for offset other than \(0\), the order of dim1 -and dim2 matters. Exchanging them is equivalent to changing the -sign of offset.

    -

    Applying torch_diagonal to the output of this function with -the same arguments yields a matrix identical to input. However, -torch_diagonal has different default dimensions, so those -need to be explicitly specified.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(2, 3)) -torch_diag_embed(a)
    #> torch_tensor -#> (1,.,.) = -#> -2.3038 0.0000 0.0000 -#> 0.0000 2.0129 0.0000 -#> 0.0000 0.0000 -1.6884 -#> -#> (2,.,.) = -#> 0.8534 0.0000 0.0000 -#> 0.0000 -0.5520 0.0000 -#> 0.0000 0.0000 2.2299 -#> [ CPUFloatType{2,3,3} ]
    torch_diag_embed(a, offset=1, dim1=1, dim2=3)
    #> torch_tensor -#> (1,.,.) = -#> 0.0000 -2.3038 0.0000 0.0000 -#> 0.0000 0.8534 0.0000 0.0000 -#> -#> (2,.,.) = -#> 0.0000 0.0000 2.0129 0.0000 -#> 0.0000 0.0000 -0.5520 0.0000 -#> -#> (3,.,.) = -#> 0.0000 0.0000 0.0000 -1.6884 -#> 0.0000 0.0000 0.0000 2.2299 -#> -#> (4,.,.) = -#> 0 0 0 0 -#> 0 0 0 0 -#> [ CPUFloatType{4,2,4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_diagflat.html b/docs/reference/torch_diagflat.html deleted file mode 100644 index de29c4bb0..000000000 --- a/docs/reference/torch_diagflat.html +++ /dev/null @@ -1,253 +0,0 @@ - - - - - - - - -Diagflat — torch_diagflat • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Diagflat

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    offset

    (int, optional) the diagonal to consider. Default: 0 (main diagonal).

    - -

    diagflat(input, offset=0) -> Tensor

    - - - -
      -
    • If input is a vector (1-D tensor), then returns a 2-D square tensor -with the elements of input as the diagonal.

    • -
    • If input is a tensor with more than one dimension, then returns a -2-D tensor with diagonal elements equal to a flattened input.

    • -
    - -

    The argument offset controls which diagonal to consider:

      -
    • If offset = 0, it is the main diagonal.

    • -
    • If offset > 0, it is above the main diagonal.

    • -
    • If offset < 0, it is below the main diagonal.

    • -
    - - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(3)) -a
    #> torch_tensor -#> 1.2456 -#> -1.0479 -#> 0.2374 -#> [ CPUFloatType{3} ]
    torch_diagflat(a)
    #> torch_tensor -#> 1.2456 0.0000 0.0000 -#> 0.0000 -1.0479 0.0000 -#> 0.0000 0.0000 0.2374 -#> [ CPUFloatType{3,3} ]
    torch_diagflat(a, 1)
    #> torch_tensor -#> 0.0000 1.2456 0.0000 0.0000 -#> 0.0000 0.0000 -1.0479 0.0000 -#> 0.0000 0.0000 0.0000 0.2374 -#> 0.0000 0.0000 0.0000 0.0000 -#> [ CPUFloatType{4,4} ]
    a = torch_randn(c(2, 2)) -a
    #> torch_tensor -#> 0.5628 -0.2248 -#> 0.2077 -2.6745 -#> [ CPUFloatType{2,2} ]
    torch_diagflat(a)
    #> torch_tensor -#> 0.5628 0.0000 0.0000 0.0000 -#> 0.0000 -0.2248 0.0000 0.0000 -#> 0.0000 0.0000 0.2077 0.0000 -#> 0.0000 0.0000 0.0000 -2.6745 -#> [ CPUFloatType{4,4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_diagonal.html b/docs/reference/torch_diagonal.html deleted file mode 100644 index 5a4719b5e..000000000 --- a/docs/reference/torch_diagonal.html +++ /dev/null @@ -1,268 +0,0 @@ - - - - - - - - -Diagonal — torch_diagonal • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Diagonal

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor. Must be at least 2-dimensional.

    offset

    (int, optional) which diagonal to consider. Default: 0 (main diagonal).

    dim1

    (int, optional) first dimension with respect to which to take diagonal. Default: 0.

    dim2

    (int, optional) second dimension with respect to which to take diagonal. Default: 1.

    - -

    diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor

    - - - - -

    Returns a partial view of input with the its diagonal elements -with respect to dim1 and dim2 appended as a dimension -at the end of the shape.

    -

    The argument offset controls which diagonal to consider:

      -
    • If offset = 0, it is the main diagonal.

    • -
    • If offset > 0, it is above the main diagonal.

    • -
    • If offset < 0, it is below the main diagonal.

    • -
    - -

    Applying torch_diag_embed to the output of this function with -the same arguments yields a diagonal matrix with the diagonal entries -of the input. However, torch_diag_embed has different default -dimensions, so those need to be explicitly specified.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(3, 3)) -a
    #> torch_tensor -#> -0.4461 1.6781 0.7912 -#> -2.0005 -0.9287 -0.1604 -#> 0.6617 -0.6939 1.5567 -#> [ CPUFloatType{3,3} ]
    torch_diagonal(a, offset = 0)
    #> torch_tensor -#> -0.4461 -#> -0.9287 -#> 1.5567 -#> [ CPUFloatType{3} ]
    torch_diagonal(a, offset = 1)
    #> torch_tensor -#> 1.6781 -#> -0.1604 -#> [ CPUFloatType{2} ]
    x = torch_randn(c(2, 5, 4, 2)) -torch_diagonal(x, offset=-1, dim1=1, dim2=2)
    #> torch_tensor -#> (1,.,.) = -#> 0.3670 -#> -1.7063 -#> -#> (2,.,.) = -#> 0.6795 -#> 1.1359 -#> -#> (3,.,.) = -#> -0.5056 -#> -0.1993 -#> -#> (4,.,.) = -#> 0.5929 -#> -0.6632 -#> [ CPUFloatType{4,2,1} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_digamma.html b/docs/reference/torch_digamma.html deleted file mode 100644 index 788c22aa1..000000000 --- a/docs/reference/torch_digamma.html +++ /dev/null @@ -1,222 +0,0 @@ - - - - - - - - -Digamma — torch_digamma • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Digamma

    -
    - - -

    Arguments

    - - - - - - -
    input

    (Tensor) the tensor to compute the digamma function on

    - -

    digamma(input, out=None) -> Tensor

    - - - - -

    Computes the logarithmic derivative of the gamma function on input.

    -

    $$ - \psi(x) = \frac{d}{dx} \ln\left(\Gamma\left(x\right)\right) = \frac{\Gamma'(x)}{\Gamma(x)} -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_tensor(c(1, 0.5)) -torch_digamma(a)
    #> torch_tensor -#> -0.5772 -#> -1.9635 -#> [ CPUFloatType{2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_dist.html b/docs/reference/torch_dist.html deleted file mode 100644 index 0a515c428..000000000 --- a/docs/reference/torch_dist.html +++ /dev/null @@ -1,245 +0,0 @@ - - - - - - - - -Dist — torch_dist • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Dist

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    other

    (Tensor) the Right-hand-side input tensor

    p

    (float, optional) the norm to be computed

    - -

    dist(input, other, p=2) -> Tensor

    - - - - -

    Returns the p-norm of (input - other)

    -

    The shapes of input and other must be -broadcastable .

    - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(4)) -x
    #> torch_tensor -#> 0.3528 -#> -0.2518 -#> -0.8406 -#> -0.3756 -#> [ CPUFloatType{4} ]
    y = torch_randn(c(4)) -y
    #> torch_tensor -#> 0.5376 -#> -1.6162 -#> -0.8764 -#> 0.2081 -#> [ CPUFloatType{4} ]
    torch_dist(x, y, 3.5)
    #> torch_tensor -#> 1.38438 -#> [ CPUFloatType{} ]
    torch_dist(x, y, 3)
    #> torch_tensor -#> 1.40023 -#> [ CPUFloatType{} ]
    torch_dist(x, y, 0)
    #> torch_tensor -#> 4 -#> [ CPUFloatType{} ]
    torch_dist(x, y, 1)
    #> torch_tensor -#> 2.16879 -#> [ CPUFloatType{} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_div.html b/docs/reference/torch_div.html deleted file mode 100644 index b5ef38036..000000000 --- a/docs/reference/torch_div.html +++ /dev/null @@ -1,283 +0,0 @@ - - - - - - - - -Div — torch_div • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Div

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    other

    (Number) the number to be divided to each element of input

    - -

    div(input, other, out=None) -> Tensor

    - - - - -

    Divides each element of the input input with the scalar other and -returns a new resulting tensor.

    - - -

    Each element of the tensor input is divided by each element of the tensor -other. The resulting tensor is returned.

    -

    $$ - \mbox{out}_i = \frac{\mbox{input}_i}{\mbox{other}_i} -$$ -The shapes of input and other must be broadcastable -. If the torch_dtype of input and -other differ, the torch_dtype of the result tensor is determined -following rules described in the type promotion documentation -. If out is specified, the result must be -castable to the torch_dtype of the -specified output tensor. Integral division by zero leads to undefined behavior.

    -

    Warning

    - - - -

    Integer division using div is deprecated, and in a future release div will -perform true division like torch_true_divide. -Use torch_floor_divide (// in Python) to perform integer division, -instead.

    -

    $$ - \mbox{out}_i = \frac{\mbox{input}_i}{\mbox{other}} -$$ -If the torch_dtype of input and other differ, the -torch_dtype of the result tensor is determined following rules -described in the type promotion documentation . If -out is specified, the result must be castable -to the torch_dtype of the specified output tensor. Integral division -by zero leads to undefined behavior.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(5)) -a
    #> torch_tensor -#> -1.2469 -#> -0.8301 -#> 0.6777 -#> 0.4991 -#> 2.3110 -#> [ CPUFloatType{5} ]
    torch_div(a, 0.5)
    #> torch_tensor -#> -2.4938 -#> -1.6601 -#> 1.3554 -#> 0.9983 -#> 4.6219 -#> [ CPUFloatType{5} ]
    - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> -0.1627 0.0346 0.2195 0.4264 -#> -1.3478 -2.4998 -1.5522 0.7143 -#> 0.2875 -1.3762 0.8071 -0.8691 -#> 0.7893 -1.7013 -0.2038 -0.3908 -#> [ CPUFloatType{4,4} ]
    b = torch_randn(c(4)) -b
    #> torch_tensor -#> -0.2924 -#> 1.8341 -#> 0.0283 -#> -0.6063 -#> [ CPUFloatType{4} ]
    torch_div(a, b)
    #> torch_tensor -#> 0.5566 0.0188 7.7430 -0.7033 -#> 4.6100 -1.3630 -54.7623 -1.1781 -#> -0.9833 -0.7503 28.4751 1.4334 -#> -2.6995 -0.9276 -7.1916 0.6445 -#> [ CPUFloatType{4,4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_dot.html b/docs/reference/torch_dot.html deleted file mode 100644 index aa3c0a296..000000000 --- a/docs/reference/torch_dot.html +++ /dev/null @@ -1,212 +0,0 @@ - - - - - - - - -Dot — torch_dot • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Dot

    -
    - - - -

    Note

    - -

    This function does not broadcast .

    -

    dot(input, tensor) -> Tensor

    - - - - -

    Computes the dot product (inner product) of two tensors.

    - -

    Examples

    -
    # \dontrun{ - -torch_dot(torch_tensor(c(2, 3)), torch_tensor(c(2, 1)))
    #> torch_tensor -#> 7 -#> [ CPUFloatType{} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_dtype.html b/docs/reference/torch_dtype.html deleted file mode 100644 index 2c8e5a6c5..000000000 --- a/docs/reference/torch_dtype.html +++ /dev/null @@ -1,231 +0,0 @@ - - - - - - - - -Torch data types — torch_dtype • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Returns the correspondent data type.

    -
    - -
    torch_float32()
    -
    -torch_float()
    -
    -torch_float64()
    -
    -torch_double()
    -
    -torch_float16()
    -
    -torch_half()
    -
    -torch_uint8()
    -
    -torch_int8()
    -
    -torch_int16()
    -
    -torch_short()
    -
    -torch_int32()
    -
    -torch_int()
    -
    -torch_int64()
    -
    -torch_long()
    -
    -torch_bool()
    -
    -torch_quint8()
    -
    -torch_qint8()
    -
    -torch_qint32()
    - - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_eig.html b/docs/reference/torch_eig.html deleted file mode 100644 index f59c50075..000000000 --- a/docs/reference/torch_eig.html +++ /dev/null @@ -1,225 +0,0 @@ - - - - - - - - -Eig — torch_eig • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Eig

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the square matrix of shape \((n \times n)\) for which the eigenvalues and eigenvectors will be computed

    eigenvectors

    (bool) True to compute both eigenvalues and eigenvectors; otherwise, only eigenvalues will be computed

    out

    (tuple, optional) the output tensors

    - -

    Note

    - - -
    Since eigenvalues and eigenvectors might be complex, backward pass is supported only
    -for [`torch_symeig`]
    -
    - -

    eig(input, eigenvectors=False, out=None) -> (Tensor, Tensor)

    - - - - -

    Computes the eigenvalues and eigenvectors of a real square matrix.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_einsum.html b/docs/reference/torch_einsum.html deleted file mode 100644 index e94b78493..000000000 --- a/docs/reference/torch_einsum.html +++ /dev/null @@ -1,260 +0,0 @@ - - - - - - - - -Einsum — torch_einsum • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Einsum

    -
    - - -

    Arguments

    - - - - - - - - - - -
    equation

    (string) The equation is given in terms of lower case letters (indices) to be associated with each dimension of the operands and result. The left hand side lists the operands dimensions, separated by commas. There should be one index letter per tensor dimension. The right hand side follows after -> and gives the indices for the output. If the -> and right hand side are omitted, it implicitly defined as the alphabetically sorted list of all indices appearing exactly once in the left hand side. The indices not apprearing in the output are summed over after multiplying the operands entries. If an index appears several times for the same operand, a diagonal is taken. Ellipses ... represent a fixed number of dimensions. If the right hand side is inferred, the ellipsis dimensions are at the beginning of the output.

    operands

    (Tensor) The operands to compute the Einstein sum of.

    - -

    einsum(equation, *operands) -> Tensor

    - - - - -

    This function provides a way of computing multilinear expressions (i.e. sums of products) using the -Einstein summation convention.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(5)) -y = torch_randn(c(4)) -torch_einsum('i,j->ij', list(x, y)) # outer product
    #> torch_tensor -#> 0.6481 -0.3038 0.7547 0.3279 -#> -0.7964 0.3732 -0.9273 -0.4029 -#> 0.2729 -0.1279 0.3178 0.1381 -#> -0.4882 0.2288 -0.5684 -0.2470 -#> 2.6219 -1.2288 3.0530 1.3266 -#> [ CPUFloatType{5,4} ]
    A = torch_randn(c(3,5,4)) -l = torch_randn(c(2,5)) -r = torch_randn(c(2,4)) -torch_einsum('bn,anm,bm->ba', list(l, A, r)) # compare torch_nn$functional$bilinear
    #> torch_tensor -#> 4.7791 -6.3600 2.0599 -#> 1.2294 0.6515 -3.1033 -#> [ CPUFloatType{2,3} ]
    As = torch_randn(c(3,2,5)) -Bs = torch_randn(c(3,5,4)) -torch_einsum('bij,bjk->bik', list(As, Bs)) # batch matrix multiplication
    #> torch_tensor -#> (1,.,.) = -#> 0.7724 0.1715 0.3778 0.5154 -#> -0.7152 3.1174 0.5206 -3.0151 -#> -#> (2,.,.) = -#> -2.1745 4.5514 0.2279 2.8187 -#> -0.4776 1.4331 -1.1076 0.3273 -#> -#> (3,.,.) = -#> 1.0775 0.4867 -2.7086 -0.8871 -#> -1.4834 -2.0710 -1.2663 0.2878 -#> [ CPUFloatType{3,2,4} ]
    A = torch_randn(c(3, 3)) -torch_einsum('ii->i', list(A)) # diagonal
    #> torch_tensor -#> 0.7209 -#> 0.7370 -#> 0.0642 -#> [ CPUFloatType{3} ]
    A = torch_randn(c(4, 3, 3)) -torch_einsum('...ii->...i', list(A)) # batch diagonal
    #> torch_tensor -#> -1.1323 2.2000 -0.2178 -#> 1.1550 -0.8415 -1.0067 -#> 2.1543 -0.0441 -1.3181 -#> -0.0296 -2.3285 0.7952 -#> [ CPUFloatType{4,3} ]
    A = torch_randn(c(2, 3, 4, 5)) -torch_einsum('...ij->...ji', list(A))$shape # batch permute
    #> [1] 2 3 5 4
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_empty.html b/docs/reference/torch_empty.html deleted file mode 100644 index dfb34f407..000000000 --- a/docs/reference/torch_empty.html +++ /dev/null @@ -1,247 +0,0 @@ - - - - - - - - -Empty — torch_empty • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Empty

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    size

    (int...) a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type).

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    pin_memory

    (bool, optional) If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: False.

    memory_format

    (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_contiguous_format.

    - -

    empty(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor

    - - - - -

    Returns a tensor filled with uninitialized data. The shape of the tensor is -defined by the variable argument size.

    - -

    Examples

    -
    # \dontrun{ - -torch_empty(c(2, 3))
    #> torch_tensor -#> 0.0000e+00 1.0842e-19 -2.0454e-24 -#> 8.5920e+09 8.4078e-45 4.9045e-44 -#> [ CPUFloatType{2,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_empty_like.html b/docs/reference/torch_empty_like.html deleted file mode 100644 index c501031f1..000000000 --- a/docs/reference/torch_empty_like.html +++ /dev/null @@ -1,240 +0,0 @@ - - - - - - - - -Empty_like — torch_empty_like • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Empty_like

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the size of input will determine size of the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned Tensor. Default: if None, defaults to the dtype of input.

    layout

    (torch.layout, optional) the desired layout of returned tensor. Default: if None, defaults to the layout of input.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, defaults to the device of input.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    memory_format

    (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.

    - -

    empty_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor

    - - - - -

    Returns an uninitialized tensor with the same size as input. -torch_empty_like(input) is equivalent to -torch_empty(input.size(), dtype=input.dtype, layout=input.layout, device=input.device).

    - -

    Examples

    -
    # \dontrun{ - -torch_empty(list(2,3), dtype = torch_int64())
    #> torch_tensor -#> 1.4057e+14 1.4057e+14 1.4057e+14 -#> 0.0000e+00 8.5899e+09 1.4057e+14 -#> [ CPULongType{2,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_empty_strided.html b/docs/reference/torch_empty_strided.html deleted file mode 100644 index 784c58a7e..000000000 --- a/docs/reference/torch_empty_strided.html +++ /dev/null @@ -1,254 +0,0 @@ - - - - - - - - -Empty_strided — torch_empty_strided • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Empty_strided

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    size

    (tuple of ints) the shape of the output tensor

    stride

    (tuple of ints) the strides of the output tensor

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type).

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    pin_memory

    (bool, optional) If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: False.

    - -

    empty_strided(size, stride, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) -> Tensor

    - - - - -

    Returns a tensor filled with uninitialized data. The shape and strides of the tensor is -defined by the variable argument size and stride respectively. -torch_empty_strided(size, stride) is equivalent to -torch_empty(size).as_strided(size, stride).

    -

    Warning

    - - - -

    More than one element of the created tensor may refer to a single memory -location. As a result, in-place operations (especially ones that are -vectorized) may result in incorrect behavior. If you need to write to -the tensors, please clone them first.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_empty_strided(list(2, 3), list(1, 2)) -a
    #> torch_tensor -#> 0.0000e+00 -4.2887e-24 2.2101e-10 -#> 1.0842e-19 2.0005e+00 4.5592e+30 -#> [ CPUFloatType{2,3} ]
    a$stride(1)
    #> [1] 1
    a$size(1)
    #> [1] 2
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_eq.html b/docs/reference/torch_eq.html deleted file mode 100644 index bd88820e6..000000000 --- a/docs/reference/torch_eq.html +++ /dev/null @@ -1,230 +0,0 @@ - - - - - - - - -Eq — torch_eq • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Eq

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor to compare

    other

    (Tensor or float) the tensor or value to compare

    out

    (Tensor, optional) the output tensor. Must be a ByteTensor

    - -

    eq(input, other, out=None) -> Tensor

    - - - - -

    Computes element-wise equality

    -

    The second argument can be a number or a tensor whose shape is -broadcastable with the first argument.

    - -

    Examples

    -
    # \dontrun{ - -torch_eq(torch_tensor(c(1,2,3,4)), torch_tensor(c(1, 3, 2, 4)))
    #> torch_tensor -#> 1 -#> 0 -#> 0 -#> 1 -#> [ CPUBoolType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_equal.html b/docs/reference/torch_equal.html deleted file mode 100644 index 4b1c89e47..000000000 --- a/docs/reference/torch_equal.html +++ /dev/null @@ -1,207 +0,0 @@ - - - - - - - - -Equal — torch_equal • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Equal

    -
    - - - -

    equal(input, other) -> bool

    - - - - -

    True if two tensors have the same size and elements, False otherwise.

    - -

    Examples

    -
    # \dontrun{ - -torch_equal(torch_tensor(c(1, 2)), torch_tensor(c(1, 2)))
    #> [1] TRUE
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_erf.html b/docs/reference/torch_erf.html deleted file mode 100644 index 76df3396b..000000000 --- a/docs/reference/torch_erf.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Erf — torch_erf • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Erf

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    erf(input, out=None) -> Tensor

    - - - - -

    Computes the error function of each element. The error function is defined as follows:

    -

    $$ - \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt -$$

    - -

    Examples

    -
    # \dontrun{ - -torch_erf(torch_tensor(c(0, -1., 10.)))
    #> torch_tensor -#> 0.0000 -#> -0.8427 -#> 1.0000 -#> [ CPUFloatType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_erfc.html b/docs/reference/torch_erfc.html deleted file mode 100644 index b3eadedfe..000000000 --- a/docs/reference/torch_erfc.html +++ /dev/null @@ -1,227 +0,0 @@ - - - - - - - - -Erfc — torch_erfc • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Erfc

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    erfc(input, out=None) -> Tensor

    - - - - -

    Computes the complementary error function of each element of input. -The complementary error function is defined as follows:

    -

    $$ - \mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt -$$

    - -

    Examples

    -
    # \dontrun{ - -torch_erfc(torch_tensor(c(0, -1., 10.)))
    #> torch_tensor -#> 1.0000e+00 -#> 1.8427e+00 -#> 2.8026e-45 -#> [ CPUFloatType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_erfinv.html b/docs/reference/torch_erfinv.html deleted file mode 100644 index 9457adab7..000000000 --- a/docs/reference/torch_erfinv.html +++ /dev/null @@ -1,227 +0,0 @@ - - - - - - - - -Erfinv — torch_erfinv • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Erfinv

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    erfinv(input, out=None) -> Tensor

    - - - - -

    Computes the inverse error function of each element of input. -The inverse error function is defined in the range \((-1, 1)\) as:

    -

    $$ - \mathrm{erfinv}(\mathrm{erf}(x)) = x -$$

    - -

    Examples

    -
    # \dontrun{ - -torch_erfinv(torch_tensor(c(0, 0.5, -1.)))
    #> torch_tensor -#> 0.0000 -#> 0.4769 -#> -inf -#> [ CPUFloatType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_exp.html b/docs/reference/torch_exp.html deleted file mode 100644 index 4e5faacc5..000000000 --- a/docs/reference/torch_exp.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Exp — torch_exp • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Exp

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    exp(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the exponential of the elements -of the input tensor input.

    -

    $$ - y_{i} = e^{x_{i}} -$$

    - -

    Examples

    -
    # \dontrun{ - -torch_exp(torch_tensor(c(0, log(2))))
    #> torch_tensor -#> 1 -#> 2 -#> [ CPUFloatType{2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_expm1.html b/docs/reference/torch_expm1.html deleted file mode 100644 index 2534f13a0..000000000 --- a/docs/reference/torch_expm1.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Expm1 — torch_expm1 • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Expm1

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    expm1(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the exponential of the elements minus 1 -of input.

    -

    $$ - y_{i} = e^{x_{i}} - 1 -$$

    - -

    Examples

    -
    # \dontrun{ - -torch_expm1(torch_tensor(c(0, log(2))))
    #> torch_tensor -#> 0 -#> 1 -#> [ CPUFloatType{2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_eye.html b/docs/reference/torch_eye.html deleted file mode 100644 index 581e793e3..000000000 --- a/docs/reference/torch_eye.html +++ /dev/null @@ -1,243 +0,0 @@ - - - - - - - - -Eye — torch_eye • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Eye

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    n

    (int) the number of rows

    m

    (int, optional) the number of columns with default being n

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type).

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    eye(n, m=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Returns a 2-D tensor with ones on the diagonal and zeros elsewhere.

    - -

    Examples

    -
    # \dontrun{ - -torch_eye(3)
    #> torch_tensor -#> 1 0 0 -#> 0 1 0 -#> 0 0 1 -#> [ CPUFloatType{3,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_fft.html b/docs/reference/torch_fft.html deleted file mode 100644 index 2c18f52e6..000000000 --- a/docs/reference/torch_fft.html +++ /dev/null @@ -1,618 +0,0 @@ - - - - - - - - -Fft — torch_fft • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fft

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor of at least signal_ndim + 1 dimensions

    signal_ndim

    (int) the number of dimensions in each signal. signal_ndim can only be 1, 2 or 3

    normalized

    (bool, optional) controls whether to return normalized results. Default: False

    - -

    Note

    - - -
    For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
    -repeatedly running FFT methods on tensors of same geometry with same
    -configuration. See cufft-plan-cache for more details on how to
    -monitor and control the cache.
    -
    - -

    fft(input, signal_ndim, normalized=False) -> Tensor

    - - - - -

    Complex-to-complex Discrete Fourier Transform

    -

    This method computes the complex-to-complex discrete Fourier transform. -Ignoring the batch dimensions, it computes the following expression:

    -

    $$ - X[\omega_1, \dots, \omega_d] = - \sum_{n_1=0}^{N_1-1} \dots \sum_{n_d=0}^{N_d-1} x[n_1, \dots, n_d] - e^{-j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}}, -$$ -where \(d\) = signal_ndim is number of dimensions for the -signal, and \(N_i\) is the size of signal dimension \(i\).

    -

    This method supports 1D, 2D and 3D complex-to-complex transforms, indicated -by signal_ndim. input must be a tensor with last dimension -of size 2, representing the real and imaginary components of complex -numbers, and should have at least signal_ndim + 1 dimensions with optionally -arbitrary number of leading batch dimensions. If normalized is set to -True, this normalizes the result by dividing it with -\(\sqrt{\prod_{i=1}^K N_i}\) so that the operator is unitary.

    -

    Returns the real and the imaginary parts together as one tensor of the same -shape of input.

    -

    The inverse of this function is torch_ifft.

    -

    Warning

    - - - -

    For CPU tensors, this method is currently only available with MKL. Use -torch_backends.mkl.is_available to check if MKL is installed.

    - -

    Examples

    -
    # \dontrun{ - -# unbatched 2D FFT -x = torch_randn(c(4, 3, 2)) -torch_fft(x, 2)
    #> torch_tensor -#> (1,.,.) = -#> 1.6091 1.1177 -#> 1.7387 0.5245 -#> 1.3022 -7.5020 -#> -#> (2,.,.) = -#> -2.2896 1.5947 -#> 2.3894 -3.7256 -#> 2.4421 -6.0534 -#> -#> (3,.,.) = -#> -2.6684 0.2216 -#> 4.6351 2.1387 -#> 1.0104 2.1655 -#> -#> (4,.,.) = -#> 0.6484 1.5756 -#> 3.6644 0.9869 -#> 0.8331 1.2714 -#> [ CPUFloatType{4,3,2} ]
    # batched 1D FFT -torch_fft(x, 1)
    #> torch_tensor -#> (1,.,.) = -#> -0.6751 1.1274 -#> 3.1069 -0.0189 -#> 1.3969 -2.5296 -#> -#> (2,.,.) = -#> 1.0646 -0.5105 -#> 0.4540 -0.7223 -#> 1.9041 -2.0146 -#> -#> (3,.,.) = -#> 0.1455 -0.4577 -#> 0.0800 1.3505 -#> -0.2407 -0.1386 -#> -#> (4,.,.) = -#> 1.0741 0.9585 -#> -1.9022 -0.0848 -#> -1.7582 -2.8191 -#> [ CPUFloatType{4,3,2} ]
    # arbitrary number of batch dimensions, 2D FFT -x = torch_randn(c(3, 3, 5, 5, 2)) -torch_fft(x, 2)
    #> torch_tensor -#> (1,1,1,.,.) = -#> -5.4725 -1.0036 -#> -0.4072 -9.9106 -#> -6.2423 -6.4070 -#> -1.9919 -0.2080 -#> -1.5095 -4.7941 -#> -#> (2,1,1,.,.) = -#> -1.3392 3.2072 -#> -2.8398 7.8139 -#> 0.8047 -3.0656 -#> 10.5509 -0.0158 -#> 0.4441 1.4712 -#> -#> (3,1,1,.,.) = -#> 5.8889 -0.8239 -#> 0.6557 -4.5634 -#> 3.6018 -5.1202 -#> 6.7747 -1.8286 -#> -6.4471 3.7626 -#> -#> (1,2,1,.,.) = -#> -0.2606 1.6037 -#> 1.2933 2.7796 -#> -1.2262 -8.3113 -#> -2.9285 -0.8387 -#> -8.8958 7.9346 -#> -#> (2,2,1,.,.) = -#> -5.8665 -5.8427 -#> 3.5695 -0.4600 -#> 10.6353 -4.9917 -#> -1.8417 -2.2605 -#> 4.0205 3.3620 -#> -#> (3,2,1,.,.) = -#> -5.3450 5.1190 -#> -7.1003 3.1183 -#> 2.1035 -0.7317 -#> -1.7222 6.8806 -#> 1.1505 7.5300 -#> -#> (1,3,1,.,.) = -#> -9.1081 7.4756 -#> 5.1849 -1.2153 -#> -1.6891 -2.1615 -#> -4.9926 0.1991 -#> 5.4721 -2.1878 -#> -#> (2,3,1,.,.) = -#> -4.9459 0.0120 -#> -5.7250 -0.8370 -#> 0.7157 1.3166 -#> -9.2864 4.1198 -#> -2.5485 6.5091 -#> -#> (3,3,1,.,.) = -#> 2.9661 -4.1025 -#> 5.0720 3.2858 -#> -1.6322 -9.3722 -#> -0.3661 -5.5639 -#> 6.5081 -2.4129 -#> -#> (1,1,2,.,.) = -#> -2.3401 1.2643 -#> 5.3967 -7.4990 -#> 0.1779 3.4217 -#> 6.0804 6.1065 -#> 10.1270 -3.5843 -#> -#> (2,1,2,.,.) = -#> -9.0572 -1.9909 -#> 4.2537 -0.0385 -#> 5.9323 -1.1033 -#> -1.4235 11.0225 -#> 0.3750 3.9369 -#> -#> (3,1,2,.,.) = -#> 7.3848 -1.2410 -#> -1.4446 1.3323 -#> -1.4867 6.3887 -#> -1.3989 4.3918 -#> -1.6242 0.4001 -#> -#> (1,2,2,.,.) = -#> 2.2515 -11.7348 -#> -2.9592 -0.4199 -#> 6.0865 -2.5877 -#> -3.9066 0.8276 -#> -6.4707 -0.1932 -#> -#> (2,2,2,.,.) = -#> -3.5320 -15.9640 -#> -3.2020 -4.1973 -#> 3.5907 -1.9048 -#> 4.8187 10.5827 -#> 2.0354 3.6088 -#> -#> (3,2,2,.,.) = -#> -1.5620 2.4318 -#> -4.4488 -3.6563 -#> 1.4412 6.2894 -#> 3.7142 -4.4966 -#> -1.9539 0.9322 -#> -#> (1,3,2,.,.) = -#> -2.5739 11.5350 -#> -5.6638 -1.9311 -#> -7.1538 1.8841 -#> 9.9282 -5.0425 -#> 4.0550 -13.0364 -#> -#> (2,3,2,.,.) = -#> -4.4776 -3.1815 -#> 5.2017 7.8643 -#> -1.9960 -3.8433 -#> 1.8730 -3.0428 -#> 0.4528 1.8324 -#> -#> (3,3,2,.,.) = -#> -1.6393 3.0116 -#> -7.4910 4.6567 -#> 3.9892 -1.2984 -#> 2.3925 1.7542 -#> -0.4821 2.7867 -#> -#> (1,1,3,.,.) = -#> -1.9416 6.9300 -#> -5.9122 4.7269 -#> -6.1427 -3.6378 -#> 4.8333 -7.6424 -#> -0.8626 -7.3429 -#> -#> (2,1,3,.,.) = -#> 0.7169 7.3508 -#> -2.2415 0.6318 -#> 8.5924 -3.5120 -#> -1.8660 -2.9021 -#> 2.5242 6.2449 -#> -#> (3,1,3,.,.) = -#> 3.2523 -9.4747 -#> 6.7858 2.1141 -#> -3.1627 -8.3128 -#> 8.1738 1.7333 -#> -12.5794 7.6793 -#> -#> (1,2,3,.,.) = -#> 2.1388 -0.8053 -#> -7.5468 -4.9134 -#> -1.4956 0.7191 -#> 4.5485 1.3213 -#> 1.9775 3.2742 -#> -#> (2,2,3,.,.) = -#> 2.7705 -3.2113 -#> -7.1385 10.5362 -#> 2.1267 -3.4305 -#> -3.4051 -2.5411 -#> -2.7076 1.7485 -#> -#> (3,2,3,.,.) = -#> 3.3394 10.9207 -#> -0.5970 -0.5034 -#> 8.1799 3.0040 -#> -0.9163 -3.5497 -#> -3.1114 -5.1809 -#> -#> (1,3,3,.,.) = -#> -4.1027 -2.0095 -#> 2.7722 -4.7394 -#> -3.5039 -1.9563 -#> -4.3085 8.7966 -#> 2.7449 -4.6416 -#> -#> (2,3,3,.,.) = -#> -8.7689 -5.5072 -#> 0.0556 -7.0627 -#> 6.2366 2.7693 -#> -0.9913 0.2007 -#> 2.4020 2.7007 -#> -#> (3,3,3,.,.) = -#> 0.1972 -1.1722 -#> 7.4460 3.4332 -#> -4.7450 -11.9086 -#> 12.5079 -12.2708 -#> -2.9972 -0.8924 -#> -#> (1,1,4,.,.) = -#> -2.6641 -4.3296 -#> 3.0735 1.2215 -#> 0.2079 -4.6184 -#> -2.3720 -1.2896 -#> -3.9109 -9.9345 -#> -#> (2,1,4,.,.) = -#> -5.0131 -2.2123 -#> 2.7328 -6.4654 -#> -3.3791 -1.4795 -#> -3.0048 4.2683 -#> 8.6069 3.8774 -#> -#> (3,1,4,.,.) = -#> 0.5565 -3.4152 -#> 3.1825 -1.2100 -#> -5.6883 -4.5265 -#> -2.6019 6.2445 -#> -1.2380 0.0733 -#> -#> (1,2,4,.,.) = -#> -0.0619 -1.4112 -#> 3.0482 -12.0317 -#> 2.3142 -5.9550 -#> 1.6332 -4.9998 -#> 3.3110 3.2442 -#> -#> (2,2,4,.,.) = -#> 5.7054 -4.5310 -#> 4.0814 0.5770 -#> -7.4352 1.0886 -#> -4.4217 -0.5822 -#> -2.2274 -2.5406 -#> -#> (3,2,4,.,.) = -#> -6.0243 1.6214 -#> 0.9687 2.5785 -#> -9.2330 12.6507 -#> 0.1245 -3.6675 -#> 2.2133 -0.1646 -#> -#> (1,3,4,.,.) = -#> -9.8819 5.0379 -#> -15.9787 -0.0044 -#> -3.3972 -4.1292 -#> -0.2631 3.1780 -#> -8.3382 2.3260 -#> -#> (2,3,4,.,.) = -#> 2.6493 5.7085 -#> -0.8552 -6.9286 -#> 8.8915 1.1790 -#> -8.0308 -2.3641 -#> -5.5359 -0.2864 -#> -#> (3,3,4,.,.) = -#> 6.0509 -4.4619 -#> 2.5174 1.0450 -#> 3.2386 -2.9879 -#> -4.2332 -11.7932 -#> 8.3415 -11.6524 -#> -#> (1,1,5,.,.) = -#> -2.6344 8.4594 -#> -9.3032 -0.0826 -#> -0.7539 0.4355 -#> -5.7352 6.4314 -#> 1.3710 5.0478 -#> -#> (2,1,5,.,.) = -#> 5.7266 -5.1236 -#> -3.1017 -0.2088 -#> -6.6610 5.8354 -#> 3.1587 1.7131 -#> 3.4059 0.6908 -#> -#> (3,1,5,.,.) = -#> 12.7228 0.6750 -#> -4.4296 8.4994 -#> 2.5491 1.5131 -#> -1.2545 -5.1292 -#> 8.7953 3.5627 -#> -#> (1,2,5,.,.) = -#> -2.5561 -2.6800 -#> 3.0704 6.9316 -#> -4.2936 0.3370 -#> -3.2507 9.0391 -#> 7.8262 -2.8746 -#> -#> (2,2,5,.,.) = -#> -4.7915 -2.9852 -#> 0.4093 -1.2396 -#> 1.8851 0.8607 -#> -3.2552 -4.0731 -#> 7.0195 -3.8280 -#> -#> (3,2,5,.,.) = -#> -6.9953 -12.4542 -#> 7.8834 1.2176 -#> 9.6941 -9.1636 -#> -15.3205 2.1126 -#> 0.3537 -10.4525 -#> -#> (1,3,5,.,.) = -#> -10.7714 0.7571 -#> -0.7565 -0.4820 -#> 5.6134 -8.9826 -#> -1.1373 -4.2921 -#> 4.1096 -1.6137 -#> -#> (2,3,5,.,.) = -#> 3.5382 6.4175 -#> -2.8167 -1.5735 -#> 8.0241 -4.9140 -#> 1.6143 7.2625 -#> -2.5749 4.8191 -#> -#> (3,3,5,.,.) = -#> 9.8500 -0.4376 -#> -4.1255 -2.8707 -#> -4.6457 -0.7456 -#> -4.6735 2.8975 -#> 2.7895 9.0651 -#> [ CPUFloatType{3,3,5,5,2} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_flatten.html b/docs/reference/torch_flatten.html deleted file mode 100644 index d2fb7847d..000000000 --- a/docs/reference/torch_flatten.html +++ /dev/null @@ -1,229 +0,0 @@ - - - - - - - - -Flatten — torch_flatten • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Flatten

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    start_dim

    (int) the first dim to flatten

    end_dim

    (int) the last dim to flatten

    - -

    flatten(input, start_dim=0, end_dim=-1) -> Tensor

    - - - - -

    Flattens a contiguous range of dims in a tensor.

    - -

    Examples

    -
    # \dontrun{ - -t = torch_tensor(matrix(c(1, 2), ncol = 2)) -torch_flatten(t)
    #> torch_tensor -#> 1 -#> 2 -#> [ CPUFloatType{2} ]
    torch_flatten(t, start_dim=2)
    #> torch_tensor -#> 1 2 -#> [ CPUFloatType{1,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_flip.html b/docs/reference/torch_flip.html deleted file mode 100644 index cbb9aa44d..000000000 --- a/docs/reference/torch_flip.html +++ /dev/null @@ -1,236 +0,0 @@ - - - - - - - - -Flip — torch_flip • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Flip

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dims

    (a list or tuple) axis to flip on

    - -

    flip(input, dims) -> Tensor

    - - - - -

    Reverse the order of a n-D tensor along given axis in dims.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_arange(0, 8)$view(c(2, 2, 2)) -x
    #> torch_tensor -#> (1,.,.) = -#> 0 1 -#> 2 3 -#> -#> (2,.,.) = -#> 4 5 -#> 6 7 -#> [ CPUFloatType{2,2,2} ]
    torch_flip(x, c(1, 2))
    #> torch_tensor -#> (1,.,.) = -#> 6 7 -#> 4 5 -#> -#> (2,.,.) = -#> 2 3 -#> 0 1 -#> [ CPUFloatType{2,2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_floor.html b/docs/reference/torch_floor.html deleted file mode 100644 index 049e2d127..000000000 --- a/docs/reference/torch_floor.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Floor — torch_floor • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Floor

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    floor(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the floor of the elements of input, -the largest integer less than or equal to each element.

    -

    $$ - \mbox{out}_{i} = \left\lfloor \mbox{input}_{i} \right\rfloor -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 0.4440 -#> 0.1195 -#> 2.0850 -#> 0.6923 -#> [ CPUFloatType{4} ]
    torch_floor(a)
    #> torch_tensor -#> 0 -#> 0 -#> 2 -#> 0 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_floor_divide.html b/docs/reference/torch_floor_divide.html deleted file mode 100644 index 5c92aad1e..000000000 --- a/docs/reference/torch_floor_divide.html +++ /dev/null @@ -1,231 +0,0 @@ - - - - - - - - -Floor_divide — torch_floor_divide • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Floor_divide

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the numerator tensor

    other

    (Tensor or Scalar) the denominator

    - -

    floor_divide(input, other, out=None) -> Tensor

    - - - - -

    Return the division of the inputs rounded down to the nearest integer. See torch_div -for type promotion and broadcasting rules.

    -

    $$ - \mbox{{out}}_i = \left\lfloor \frac{{\mbox{{input}}_i}}{{\mbox{{other}}_i}} \right\rfloor -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_tensor(c(4.0, 3.0)) -b = torch_tensor(c(2.0, 2.0)) -torch_floor_divide(a, b)
    #> torch_tensor -#> 2 -#> 1 -#> [ CPUFloatType{2} ]
    torch_floor_divide(a, 1.4)
    #> torch_tensor -#> 2 -#> 2 -#> [ CPUFloatType{2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_fmod.html b/docs/reference/torch_fmod.html deleted file mode 100644 index a08d55660..000000000 --- a/docs/reference/torch_fmod.html +++ /dev/null @@ -1,240 +0,0 @@ - - - - - - - - -Fmod — torch_fmod • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Fmod

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the dividend

    other

    (Tensor or float) the divisor, which may be either a number or a tensor of the same shape as the dividend

    out

    (Tensor, optional) the output tensor.

    - -

    fmod(input, other, out=None) -> Tensor

    - - - - -

    Computes the element-wise remainder of division.

    -

    The dividend and divisor may contain both for integer and floating point -numbers. The remainder has the same sign as the dividend input.

    -

    When other is a tensor, the shapes of input and -other must be broadcastable .

    - -

    Examples

    -
    # \dontrun{ - -torch_fmod(torch_tensor(c(-3., -2, -1, 1, 2, 3)), 2)
    #> torch_tensor -#> -1 -#> -0 -#> -1 -#> 1 -#> 0 -#> 1 -#> [ CPUFloatType{6} ]
    torch_fmod(torch_tensor(c(1., 2, 3, 4, 5)), 1.5)
    #> torch_tensor -#> 1.0000 -#> 0.5000 -#> 0.0000 -#> 1.0000 -#> 0.5000 -#> [ CPUFloatType{5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_frac.html b/docs/reference/torch_frac.html deleted file mode 100644 index 208d4c8a2..000000000 --- a/docs/reference/torch_frac.html +++ /dev/null @@ -1,214 +0,0 @@ - - - - - - - - -Frac — torch_frac • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Frac

    -
    - - - -

    frac(input, out=None) -> Tensor

    - - - - -

    Computes the fractional portion of each element in input.

    -

    $$ - \mbox{out}_{i} = \mbox{input}_{i} - \left\lfloor |\mbox{input}_{i}| \right\rfloor * \mbox{sgn}(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -torch_frac(torch_tensor(c(1, 2.5, -3.2)))
    #> torch_tensor -#> 0.0000 -#> 0.5000 -#> -0.2000 -#> [ CPUFloatType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_full.html b/docs/reference/torch_full.html deleted file mode 100644 index 92b7c788c..000000000 --- a/docs/reference/torch_full.html +++ /dev/null @@ -1,251 +0,0 @@ - - - - - - - - -Full — torch_full • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Full

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    size

    (int...) a list, tuple, or torch_Size of integers defining the shape of the output tensor.

    fill_value

    NA the number to fill the output tensor with.

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type).

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    full(size, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Returns a tensor of size size filled with fill_value.

    -

    Warning

    - - - -

    In PyTorch 1.5 a bool or integral fill_value will produce a warning if -dtype or out are not set. -In a future PyTorch release, when dtype and out are not set -a bool fill_value will return a tensor of torch.bool dtype, -and an integral fill_value will return a tensor of torch.long dtype.

    - -

    Examples

    -
    # \dontrun{ - -torch_full(list(2, 3), 3.141592)
    #> torch_tensor -#> 3.1416 3.1416 3.1416 -#> 3.1416 3.1416 3.1416 -#> [ CPUFloatType{2,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_full_like.html b/docs/reference/torch_full_like.html deleted file mode 100644 index f72302efc..000000000 --- a/docs/reference/torch_full_like.html +++ /dev/null @@ -1,237 +0,0 @@ - - - - - - - - -Full_like — torch_full_like • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Full_like

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the size of input will determine size of the output tensor.

    fill_value

    NA the number to fill the output tensor with.

    dtype

    (torch.dtype, optional) the desired data type of returned Tensor. Default: if None, defaults to the dtype of input.

    layout

    (torch.layout, optional) the desired layout of returned tensor. Default: if None, defaults to the layout of input.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, defaults to the device of input.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    memory_format

    (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.

    - -

    full_like(input, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False,

    - - - - -

    memory_format=torch.preserve_format) -> Tensor

    -

    Returns a tensor with the same size as input filled with fill_value. -torch_full_like(input, fill_value) is equivalent to -torch_full(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device).

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_gather.html b/docs/reference/torch_gather.html deleted file mode 100644 index e558f4991..000000000 --- a/docs/reference/torch_gather.html +++ /dev/null @@ -1,244 +0,0 @@ - - - - - - - - -Gather — torch_gather • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Gather

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the source tensor

    dim

    (int) the axis along which to index

    index

    (LongTensor) the indices of elements to gather

    out

    (Tensor, optional) the destination tensor

    sparse_grad

    (bool,optional) If True, gradient w.r.t. input will be a sparse tensor.

    - -

    gather(input, dim, index, out=None, sparse_grad=False) -> Tensor

    - - - - -

    Gathers values along an axis specified by dim.

    -

    For a 3-D tensor the output is specified by::

    out[i][j][k] = input[index[i][j][k]][j][k]  # if dim == 0
    -out[i][j][k] = input[i][index[i][j][k]][k]  # if dim == 1
    -out[i][j][k] = input[i][j][index[i][j][k]]  # if dim == 2
    - -

    If input is an n-dimensional tensor with size -\((x_0, x_1..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})\) -and dim = i, then index must be an \(n\)-dimensional tensor with -size \((x_0, x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})\) where \(y \geq 1\) -and out will have the same size as index.

    - -

    Examples

    -
    # \dontrun{ - -t = torch_tensor(matrix(c(1,2,3,4), ncol = 2, byrow = TRUE)) -torch_gather(t, 2, torch_tensor(matrix(c(1,1,2,1), ncol = 2, byrow=TRUE), dtype = torch_int64()))
    #> torch_tensor -#> 1 1 -#> 4 3 -#> [ CPUFloatType{2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_ge.html b/docs/reference/torch_ge.html deleted file mode 100644 index d7fe7ed8d..000000000 --- a/docs/reference/torch_ge.html +++ /dev/null @@ -1,229 +0,0 @@ - - - - - - - - -Ge — torch_ge • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Ge

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor to compare

    other

    (Tensor or float) the tensor or value to compare

    out

    (Tensor, optional) the output tensor that must be a BoolTensor

    - -

    ge(input, other, out=None) -> Tensor

    - - - - -

    Computes \(\mbox{input} \geq \mbox{other}\) element-wise.

    -

    The second argument can be a number or a tensor whose shape is -broadcastable with the first argument.

    - -

    Examples

    -
    # \dontrun{ - -torch_ge(torch_tensor(matrix(1:4, ncol = 2, byrow=TRUE)), - torch_tensor(matrix(c(1,1,4,4), ncol = 2, byrow=TRUE)))
    #> torch_tensor -#> 1 1 -#> 0 1 -#> [ CPUBoolType{2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_generator.html b/docs/reference/torch_generator.html deleted file mode 100644 index c1116a45e..000000000 --- a/docs/reference/torch_generator.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Create a Generator object — torch_generator • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    A torch_generator is an object which manages the state of the algorithm -that produces pseudo random numbers. Used as a keyword argument in many -In-place random sampling functions.

    -
    - -
    torch_generator()
    - - - -

    Examples

    -
    # \dontrun{ - -# Via string -generator <- torch_generator() -generator$current_seed()
    #> Loading required package: bit64
    #> Loading required package: bit
    #> Attaching package bit
    #> package:bit (c) 2008-2012 Jens Oehlschlaegel (GPL-2)
    #> creators: bit bitwhich
    #> coercion: as.logical as.integer as.bit as.bitwhich which
    #> operator: ! & | xor != ==
    #> querying: print length any all min max range sum summary
    #> bit access: length<- [ [<- [[ [[<-
    #> for more help type ?bit
    #> -#> Attaching package: ‘bit’
    #> The following object is masked from ‘package:base’: -#> -#> xor
    #> Attaching package bit64
    #> package:bit64 (c) 2011-2012 Jens Oehlschlaegel
    #> creators: integer64 seq :
    #> coercion: as.integer64 as.vector as.logical as.integer as.double as.character as.bin
    #> logical operator: ! & | xor != == < <= >= >
    #> arithmetic operator: + - * / %/% %% ^
    #> math: sign abs sqrt log log2 log10
    #> math: floor ceiling trunc round
    #> querying: is.integer64 is.vector [is.atomic} [length] format print str
    #> values: is.na is.nan is.finite is.infinite
    #> aggregation: any all min max range sum prod
    #> cumulation: diff cummin cummax cumsum cumprod
    #> access: length<- [ [<- [[ [[<-
    #> combine: c rep cbind rbind as.data.frame
    #> WARNING don't use as subscripts
    #> WARNING semantics differ from integer
    #> for more help type ?bit64
    #> -#> Attaching package: ‘bit64’
    #> The following object is masked from ‘package:bit’: -#> -#> still.identical
    #> The following objects are masked from ‘package:base’: -#> -#> :, %in%, is.double, match, order, rank
    #> integer64 -#> [1] 67280421310721
    generator$set_current_seed(1234567L) -generator$current_seed()
    #> integer64 -#> [1] 1234567
    - -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_geqrf.html b/docs/reference/torch_geqrf.html deleted file mode 100644 index fed6e043b..000000000 --- a/docs/reference/torch_geqrf.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Geqrf — torch_geqrf • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Geqrf

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input matrix

    out

    (tuple, optional) the output tuple of (Tensor, Tensor)

    - -

    geqrf(input, out=None) -> (Tensor, Tensor)

    - - - - -

    This is a low-level function for calling LAPACK directly. This function -returns a namedtuple (a, tau) as defined in LAPACK documentation for geqrf_ .

    -

    You'll generally want to use torch_qr instead.

    -

    Computes a QR decomposition of input, but without constructing -\(Q\) and \(R\) as explicit separate matrices.

    -

    Rather, this directly calls the underlying LAPACK function ?geqrf -which produces a sequence of 'elementary reflectors'.

    -

    See LAPACK documentation for geqrf_ for further details.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_ger.html b/docs/reference/torch_ger.html deleted file mode 100644 index c95624c0c..000000000 --- a/docs/reference/torch_ger.html +++ /dev/null @@ -1,235 +0,0 @@ - - - - - - - - -Ger — torch_ger • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Ger

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) 1-D input vector

    vec2

    (Tensor) 1-D input vector

    out

    (Tensor, optional) optional output matrix

    - -

    Note

    - -

    This function does not broadcast .

    -

    ger(input, vec2, out=None) -> Tensor

    - - - - -

    Outer product of input and vec2. -If input is a vector of size \(n\) and vec2 is a vector of -size \(m\), then out must be a matrix of size \((n \times m)\).

    - -

    Examples

    -
    # \dontrun{ - -v1 = torch_arange(1., 5.) -v2 = torch_arange(1., 4.) -torch_ger(v1, v2)
    #> torch_tensor -#> 1 2 3 -#> 2 4 6 -#> 3 6 9 -#> 4 8 12 -#> [ CPUFloatType{4,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_gt.html b/docs/reference/torch_gt.html deleted file mode 100644 index 1a50fd6b3..000000000 --- a/docs/reference/torch_gt.html +++ /dev/null @@ -1,229 +0,0 @@ - - - - - - - - -Gt — torch_gt • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Gt

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor to compare

    other

    (Tensor or float) the tensor or value to compare

    out

    (Tensor, optional) the output tensor that must be a BoolTensor

    - -

    gt(input, other, out=None) -> Tensor

    - - - - -

    Computes \(\mbox{input} > \mbox{other}\) element-wise.

    -

    The second argument can be a number or a tensor whose shape is -broadcastable with the first argument.

    - -

    Examples

    -
    # \dontrun{ - -torch_gt(torch_tensor(matrix(1:4, ncol = 2, byrow=TRUE)), - torch_tensor(matrix(c(1,1,4,4), ncol = 2, byrow=TRUE)))
    #> torch_tensor -#> 0 1 -#> 0 0 -#> [ CPUBoolType{2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_hamming_window.html b/docs/reference/torch_hamming_window.html deleted file mode 100644 index 4c0a0128c..000000000 --- a/docs/reference/torch_hamming_window.html +++ /dev/null @@ -1,259 +0,0 @@ - - - - - - - - -Hamming_window — torch_hamming_window • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Hamming_window

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    window_length

    (int) the size of returned window

    periodic

    (bool, optional) If True, returns a window to be used as periodic function. If False, return a symmetric window.

    alpha

    (float, optional) The coefficient \(\alpha\) in the equation above

    beta

    (float, optional) The coefficient \(\beta\) in the equation above

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type). Only floating point types are supported.

    layout

    (torch.layout, optional) the desired layout of returned window tensor. Only torch_strided (dense layout) is supported.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    Note

    - - -
    If `window_length` \eqn{=1}, the returned window contains a single value 1.
    -
    - -
    This is a generalized version of `torch_hann_window`.
    -
    - -

    hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Hamming window function.

    -

    $$ - w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), -$$ -where \(N\) is the full window size.

    -

    The input window_length is a positive integer controlling the -returned window size. periodic flag determines whether the returned -window trims off the last duplicate value from the symmetric window and is -ready to be used as a periodic window with functions like -torch_stft. Therefore, if periodic is true, the \(N\) in -above formula is in fact \(\mbox{window\_length} + 1\). Also, we always have -torch_hamming_window(L, periodic=True) equal to -torch_hamming_window(L + 1, periodic=False)[:-1]).

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_hann_window.html b/docs/reference/torch_hann_window.html deleted file mode 100644 index bba67df29..000000000 --- a/docs/reference/torch_hann_window.html +++ /dev/null @@ -1,249 +0,0 @@ - - - - - - - - -Hann_window — torch_hann_window • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Hann_window

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    window_length

    (int) the size of returned window

    periodic

    (bool, optional) If True, returns a window to be used as periodic function. If False, return a symmetric window.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type). Only floating point types are supported.

    layout

    (torch.layout, optional) the desired layout of returned window tensor. Only torch_strided (dense layout) is supported.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    Note

    - - -
    If `window_length` \eqn{=1}, the returned window contains a single value 1.
    -
    - -

    hann_window(window_length, periodic=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Hann window function.

    -

    $$ - w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] = - \sin^2 \left( \frac{\pi n}{N - 1} \right), -$$ -where \(N\) is the full window size.

    -

    The input window_length is a positive integer controlling the -returned window size. periodic flag determines whether the returned -window trims off the last duplicate value from the symmetric window and is -ready to be used as a periodic window with functions like -torch_stft. Therefore, if periodic is true, the \(N\) in -above formula is in fact \(\mbox{window\_length} + 1\). Also, we always have -torch_hann_window(L, periodic=True) equal to -torch_hann_window(L + 1, periodic=False)[:-1]).

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_histc.html b/docs/reference/torch_histc.html deleted file mode 100644 index 6478ebf8d..000000000 --- a/docs/reference/torch_histc.html +++ /dev/null @@ -1,239 +0,0 @@ - - - - - - - - -Histc — torch_histc • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Histc

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    bins

    (int) number of histogram bins

    min

    (int) lower end of the range (inclusive)

    max

    (int) upper end of the range (inclusive)

    out

    (Tensor, optional) the output tensor.

    - -

    histc(input, bins=100, min=0, max=0, out=None) -> Tensor

    - - - - -

    Computes the histogram of a tensor.

    -

    The elements are sorted into equal width bins between min and -max. If min and max are both zero, the minimum and -maximum values of the data are used.

    - -

    Examples

    -
    # \dontrun{ - -torch_histc(torch_tensor(c(1., 2, 1)), bins=4, min=0, max=3)
    #> torch_tensor -#> 0 -#> 2 -#> 1 -#> 0 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_ifft.html b/docs/reference/torch_ifft.html deleted file mode 100644 index bd4e5d815..000000000 --- a/docs/reference/torch_ifft.html +++ /dev/null @@ -1,288 +0,0 @@ - - - - - - - - -Ifft — torch_ifft • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Ifft

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor of at least signal_ndim + 1 dimensions

    signal_ndim

    (int) the number of dimensions in each signal. signal_ndim can only be 1, 2 or 3

    normalized

    (bool, optional) controls whether to return normalized results. Default: False

    - -

    Note

    - - -
    For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
    -repeatedly running FFT methods on tensors of same geometry with same
    -configuration. See cufft-plan-cache for more details on how to
    -monitor and control the cache.
    -
    - -

    ifft(input, signal_ndim, normalized=False) -> Tensor

    - - - - -

    Complex-to-complex Inverse Discrete Fourier Transform

    -

    This method computes the complex-to-complex inverse discrete Fourier -transform. Ignoring the batch dimensions, it computes the following -expression:

    -

    $$ - X[\omega_1, \dots, \omega_d] = - \frac{1}{\prod_{i=1}^d N_i} \sum_{n_1=0}^{N_1-1} \dots \sum_{n_d=0}^{N_d-1} x[n_1, \dots, n_d] - e^{\ j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}}, -$$ -where \(d\) = signal_ndim is number of dimensions for the -signal, and \(N_i\) is the size of signal dimension \(i\).

    -

    The argument specifications are almost identical with torch_fft. -However, if normalized is set to True, this instead returns the -results multiplied by \(\sqrt{\prod_{i=1}^d N_i}\), to become a unitary -operator. Therefore, to invert a torch_fft, the normalized -argument should be set identically for torch_fft.

    -

    Returns the real and the imaginary parts together as one tensor of the same -shape of input.

    -

    The inverse of this function is torch_fft.

    -

    Warning

    - - - -

    For CPU tensors, this method is currently only available with MKL. Use -torch_backends.mkl.is_available to check if MKL is installed.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(3, 3, 2)) -x
    #> torch_tensor -#> (1,.,.) = -#> -0.4097 -0.4074 -#> 0.4656 0.3306 -#> -0.5886 -2.1190 -#> -#> (2,.,.) = -#> 0.3168 -1.2703 -#> -0.7706 -0.4545 -#> 0.5461 1.3650 -#> -#> (3,.,.) = -#> -0.0778 -0.2976 -#> -0.1324 0.2705 -#> 1.3860 -0.0941 -#> [ CPUFloatType{3,3,2} ]
    y = torch_fft(x, 2) -torch_ifft(y, 2) # recover x
    #> torch_tensor -#> (1,.,.) = -#> -0.4097 -0.4074 -#> 0.4656 0.3306 -#> -0.5886 -2.1190 -#> -#> (2,.,.) = -#> 0.3168 -1.2703 -#> -0.7706 -0.4545 -#> 0.5461 1.3650 -#> -#> (3,.,.) = -#> -0.0778 -0.2976 -#> -0.1324 0.2705 -#> 1.3860 -0.0941 -#> [ CPUFloatType{3,3,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_imag.html b/docs/reference/torch_imag.html deleted file mode 100644 index 4a96e543a..000000000 --- a/docs/reference/torch_imag.html +++ /dev/null @@ -1,224 +0,0 @@ - - - - - - - - -Imag — torch_imag • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Imag

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    imag(input, out=None) -> Tensor

    - - - - -

    Returns the imaginary part of the input tensor.

    -

    Warning

    - - - -

    Not yet implemented.

    -

    $$ - \mbox{out}_{i} = imag(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_index_select.html b/docs/reference/torch_index_select.html deleted file mode 100644 index 1b2735804..000000000 --- a/docs/reference/torch_index_select.html +++ /dev/null @@ -1,250 +0,0 @@ - - - - - - - - -Index_select — torch_index_select • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Index_select

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the dimension in which we index

    index

    (LongTensor) the 1-D tensor containing the indices to index

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - -

    The returned tensor does not use the same storage as the original -tensor. If out has a different shape than expected, we -silently change it to the correct shape, reallocating the underlying -storage if necessary.

    -

    index_select(input, dim, index, out=None) -> Tensor

    - - - - -

    Returns a new tensor which indexes the input tensor along dimension -dim using the entries in index which is a LongTensor.

    -

    The returned tensor has the same number of dimensions as the original tensor -(input). The dim\ th dimension has the same size as the length -of index; other dimensions have the same size as in the original tensor.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(3, 4)) -x
    #> torch_tensor -#> -0.6090 0.2050 -0.2528 0.6190 -#> 0.3118 1.3114 -1.0626 -1.2048 -#> 0.3125 -0.2527 0.4871 -0.3394 -#> [ CPUFloatType{3,4} ]
    indices = torch_tensor(c(1, 3), dtype = torch_int64()) -torch_index_select(x, 1, indices)
    #> torch_tensor -#> -0.6090 0.2050 -0.2528 0.6190 -#> 0.3125 -0.2527 0.4871 -0.3394 -#> [ CPUFloatType{2,4} ]
    torch_index_select(x, 2, indices)
    #> torch_tensor -#> -0.6090 -0.2528 -#> 0.3118 -1.0626 -#> 0.3125 0.4871 -#> [ CPUFloatType{3,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_inverse.html b/docs/reference/torch_inverse.html deleted file mode 100644 index f1bf73a35..000000000 --- a/docs/reference/torch_inverse.html +++ /dev/null @@ -1,225 +0,0 @@ - - - - - - - - -Inverse — torch_inverse • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Inverse

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor of size \((*, n, n)\) where * is zero or more batch dimensions

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - - -
    Irrespective of the original strides, the returned tensors will be
    -transposed, i.e. with strides like `input.contiguous().transpose(-2, -1).stride()`
    -
    - -

    inverse(input, out=None) -> Tensor

    - - - - -

    Takes the inverse of the square matrix input. input can be batches -of 2D square tensors, in which case this function would return a tensor composed of -individual inverses.

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_irfft.html b/docs/reference/torch_irfft.html deleted file mode 100644 index eed178faf..000000000 --- a/docs/reference/torch_irfft.html +++ /dev/null @@ -1,328 +0,0 @@ - - - - - - - - -Irfft — torch_irfft • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Irfft

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor of at least signal_ndim + 1 dimensions

    signal_ndim

    (int) the number of dimensions in each signal. signal_ndim can only be 1, 2 or 3

    normalized

    (bool, optional) controls whether to return normalized results. Default: False

    onesided

    (bool, optional) controls whether input was halfed to avoid redundancy, e.g., by torch_rfft(). Default: True

    signal_sizes

    (list or torch.Size, optional) the size of the original signal (without batch dimension). Default: None

    - -

    Note

    - - -
    Due to the conjugate symmetry, `input` do not need to contain the full
    -complex frequency values. Roughly half of the values will be sufficient, as
    -is the case when `input` is given by [`~torch.rfft`] with
    -``rfft(signal, onesided=True)``. In such case, set the `onesided`
    -argument of this method to ``True``. Moreover, the original signal shape
    -information can sometimes be lost, optionally set `signal_sizes` to be
    -the size of the original signal (without the batch dimensions if in batched
    -mode) to recover it with correct shape.
    -
    -Therefore, to invert an [torch_rfft()], the `normalized` and
    -`onesided` arguments should be set identically for [torch_irfft()],
    -and preferably a `signal_sizes` is given to avoid size mismatch. See the
    -example below for a case of size mismatch.
    -
    -See [torch_rfft()] for details on conjugate symmetry.
    -
    - -

    The inverse of this function is torch_rfft().

    -
    For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
    -repeatedly running FFT methods on tensors of same geometry with same
    -configuration. See cufft-plan-cache for more details on how to
    -monitor and control the cache.
    -
    - -

    irfft(input, signal_ndim, normalized=False, onesided=True, signal_sizes=None) -> Tensor

    - - - - -

    Complex-to-real Inverse Discrete Fourier Transform

    -

    This method computes the complex-to-real inverse discrete Fourier transform. -It is mathematically equivalent with torch_ifft with differences only in -formats of the input and output.

    -

    The argument specifications are almost identical with torch_ifft. -Similar to torch_ifft, if normalized is set to True, -this normalizes the result by multiplying it with -\(\sqrt{\prod_{i=1}^K N_i}\) so that the operator is unitary, where -\(N_i\) is the size of signal dimension \(i\).

    -

    Warning

    - - - -

    Generally speaking, input to this function should contain values -following conjugate symmetry. Note that even if onesided is -True, often symmetry on some part is still needed. When this -requirement is not satisfied, the behavior of torch_irfft is -undefined. Since torch_autograd.gradcheck estimates numerical -Jacobian with point perturbations, torch_irfft will almost -certainly fail the check.

    - -

    For CPU tensors, this method is currently only available with MKL. Use -torch_backends.mkl.is_available to check if MKL is installed.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(4, 4)) -torch_rfft(x, 2, onesided=TRUE)
    #> torch_tensor -#> (1,.,.) = -#> -2.6442 0.0000 -#> 3.2951 -1.0012 -#> -10.0001 0.0000 -#> -#> (2,.,.) = -#> 1.3956 -4.9153 -#> 3.1204 7.3054 -#> -1.9820 2.2872 -#> -#> (3,.,.) = -#> 3.3926 0.0000 -#> 5.2495 2.0603 -#> -4.0185 0.0000 -#> -#> (4,.,.) = -#> 1.3956 4.9153 -#> 4.1712 1.2315 -#> -1.9820 -2.2872 -#> [ CPUFloatType{4,3,2} ]
    x = torch_randn(c(4, 5)) -torch_rfft(x, 2, onesided=TRUE)
    #> torch_tensor -#> (1,.,.) = -#> 6.1729 0.0000 -#> 2.7828 -0.8086 -#> 0.0001 -0.7514 -#> -#> (2,.,.) = -#> -0.3550 1.3322 -#> -1.3598 3.0191 -#> 1.5158 -3.2844 -#> -#> (3,.,.) = -#> 5.1938 0.0000 -#> -2.5545 1.6405 -#> 7.3076 5.2401 -#> -#> (4,.,.) = -#> -0.3550 -1.3322 -#> 0.9130 -2.5817 -#> -0.4966 -2.0859 -#> [ CPUFloatType{4,3,2} ]
    y = torch_rfft(x, 2, onesided=TRUE) -torch_irfft(y, 2, onesided=TRUE, signal_sizes=c(4,5)) # recover x
    #> torch_tensor -#> 1.3437 -0.2165 0.6494 0.9663 -0.0787 -#> -0.7215 1.0848 -0.3526 -0.1508 -0.2811 -#> 1.3002 -0.5011 1.6580 -0.1709 0.7330 -#> 0.4254 1.6956 -1.7164 -0.2147 0.7211 -#> [ CPUFloatType{4,5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_is_complex.html b/docs/reference/torch_is_complex.html deleted file mode 100644 index da9faf7a4..000000000 --- a/docs/reference/torch_is_complex.html +++ /dev/null @@ -1,211 +0,0 @@ - - - - - - - - -Is_complex — torch_is_complex • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Is_complex

    -
    - - -

    Arguments

    - - - - - - -
    input

    (Tensor) the PyTorch tensor to test

    - -

    is_complex(input) -> (bool)

    - - - - -

    Returns True if the data type of input is a complex data type i.e., -one of torch_complex64, and torch.complex128.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_is_floating_point.html b/docs/reference/torch_is_floating_point.html deleted file mode 100644 index 8aa3704de..000000000 --- a/docs/reference/torch_is_floating_point.html +++ /dev/null @@ -1,211 +0,0 @@ - - - - - - - - -Is_floating_point — torch_is_floating_point • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Is_floating_point

    -
    - - -

    Arguments

    - - - - - - -
    input

    (Tensor) the PyTorch tensor to test

    - -

    is_floating_point(input) -> (bool)

    - - - - -

    Returns True if the data type of input is a floating point data type i.e., -one of torch_float64, torch.float32 and torch.float16.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_isfinite.html b/docs/reference/torch_isfinite.html deleted file mode 100644 index 96e5a1500..000000000 --- a/docs/reference/torch_isfinite.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Isfinite — torch_isfinite • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Isfinite

    -
    - - -

    Arguments

    - - - - - - -
    tensor

    (Tensor) A tensor to check

    - -

    TEST

    - - - - -

    Returns a new tensor with boolean elements representing if each element is Finite or not.

    - -

    Examples

    -
    # \dontrun{ - -torch_isfinite(torch_tensor(c(1, Inf, 2, -Inf, NaN)))
    #> torch_tensor -#> 1 -#> 0 -#> 1 -#> 0 -#> 0 -#> [ CPUBoolType{5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_isinf.html b/docs/reference/torch_isinf.html deleted file mode 100644 index 3d36a65f5..000000000 --- a/docs/reference/torch_isinf.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Isinf — torch_isinf • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Isinf

    -
    - - -

    Arguments

    - - - - - - -
    tensor

    (Tensor) A tensor to check

    - -

    TEST

    - - - - -

    Returns a new tensor with boolean elements representing if each element is +/-INF or not.

    - -

    Examples

    -
    # \dontrun{ - -torch_isinf(torch_tensor(c(1, Inf, 2, -Inf, NaN)))
    #> torch_tensor -#> 0 -#> 1 -#> 0 -#> 1 -#> 0 -#> [ CPUBoolType{5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_isnan.html b/docs/reference/torch_isnan.html deleted file mode 100644 index 776322050..000000000 --- a/docs/reference/torch_isnan.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Isnan — torch_isnan • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Isnan

    -
    - - -

    Arguments

    - - - - - - -
    input

    (Tensor) A tensor to check

    - -

    TEST

    - - - - -

    Returns a new tensor with boolean elements representing if each element is NaN or not.

    - -

    Examples

    -
    # \dontrun{ - -torch_isnan(torch_tensor(c(1, NaN, 2)))
    #> torch_tensor -#> 0 -#> 1 -#> 0 -#> [ CPUBoolType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_kthvalue.html b/docs/reference/torch_kthvalue.html deleted file mode 100644 index 03ee76bed..000000000 --- a/docs/reference/torch_kthvalue.html +++ /dev/null @@ -1,268 +0,0 @@ - - - - - - - - -Kthvalue — torch_kthvalue • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Kthvalue

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    k

    (int) k for the k-th smallest element

    dim

    (int, optional) the dimension to find the kth value along

    keepdim

    (bool) whether the output tensor has dim retained or not.

    out

    (tuple, optional) the output tuple of (Tensor, LongTensor) can be optionally given to be used as output buffers

    - -

    kthvalue(input, k, dim=None, keepdim=False, out=None) -> (Tensor, LongTensor)

    - - - - -

    Returns a namedtuple (values, indices) where values is the k th -smallest element of each row of the input tensor in the given dimension -dim. And indices is the index location of each element found.

    -

    If dim is not given, the last dimension of the input is chosen.

    -

    If keepdim is True, both the values and indices tensors -are the same size as input, except in the dimension dim where -they are of size 1. Otherwise, dim is squeezed -(see torch_squeeze), resulting in both the values and -indices tensors having 1 fewer dimension than the input tensor.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_arange(1., 6.) -x
    #> torch_tensor -#> 1 -#> 2 -#> 3 -#> 4 -#> 5 -#> [ CPUFloatType{5} ]
    torch_kthvalue(x, 4)
    #> [[1]] -#> torch_tensor -#> 4 -#> [ CPUFloatType{} ] -#> -#> [[2]] -#> torch_tensor -#> 3 -#> [ CPULongType{} ] -#>
    x=torch_arange(1.,7.)$resize_(c(2,3)) -x
    #> torch_tensor -#> 1 2 3 -#> 4 5 6 -#> [ CPUFloatType{2,3} ]
    torch_kthvalue(x, 2, 1, TRUE)
    #> [[1]] -#> torch_tensor -#> 4 5 6 -#> [ CPUFloatType{1,3} ] -#> -#> [[2]] -#> torch_tensor -#> 1 1 1 -#> [ CPULongType{1,3} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_layout.html b/docs/reference/torch_layout.html deleted file mode 100644 index 0dc25d420..000000000 --- a/docs/reference/torch_layout.html +++ /dev/null @@ -1,199 +0,0 @@ - - - - - - - - -Creates the corresponding layout — torch_layout • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates the corresponding layout

    -
    - -
    torch_strided()
    -
    -torch_sparse_coo()
    - - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_le.html b/docs/reference/torch_le.html deleted file mode 100644 index ca7881c96..000000000 --- a/docs/reference/torch_le.html +++ /dev/null @@ -1,229 +0,0 @@ - - - - - - - - -Le — torch_le • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Le

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor to compare

    other

    (Tensor or float) the tensor or value to compare

    out

    (Tensor, optional) the output tensor that must be a BoolTensor

    - -

    le(input, other, out=None) -> Tensor

    - - - - -

    Computes \(\mbox{input} \leq \mbox{other}\) element-wise.

    -

    The second argument can be a number or a tensor whose shape is -broadcastable with the first argument.

    - -

    Examples

    -
    # \dontrun{ - -torch_le(torch_tensor(matrix(1:4, ncol = 2, byrow=TRUE)), - torch_tensor(matrix(c(1,1,4,4), ncol = 2, byrow=TRUE)))
    #> torch_tensor -#> 1 0 -#> 1 1 -#> [ CPUBoolType{2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_lerp.html b/docs/reference/torch_lerp.html deleted file mode 100644 index bc8f3af9c..000000000 --- a/docs/reference/torch_lerp.html +++ /dev/null @@ -1,256 +0,0 @@ - - - - - - - - -Lerp — torch_lerp • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Lerp

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor with the starting points

    end

    (Tensor) the tensor with the ending points

    weight

    (float or tensor) the weight for the interpolation formula

    out

    (Tensor, optional) the output tensor.

    - -

    lerp(input, end, weight, out=None)

    - - - - -

    Does a linear interpolation of two tensors start (given by input) and end based -on a scalar or tensor weight and returns the resulting out tensor.

    -

    $$ - \mbox{out}_i = \mbox{start}_i + \mbox{weight}_i \times (\mbox{end}_i - \mbox{start}_i) -$$ -The shapes of start and end must be -broadcastable . If weight is a tensor, then -the shapes of weight, start, and end must be broadcastable .

    - -

    Examples

    -
    # \dontrun{ - -start = torch_arange(1., 5.) -end = torch_empty(4)$fill_(10) -start
    #> torch_tensor -#> 1 -#> 2 -#> 3 -#> 4 -#> [ CPUFloatType{4} ]
    end
    #> torch_tensor -#> 10 -#> 10 -#> 10 -#> 10 -#> [ CPUFloatType{4} ]
    torch_lerp(start, end, 0.5)
    #> torch_tensor -#> 5.5000 -#> 6.0000 -#> 6.5000 -#> 7.0000 -#> [ CPUFloatType{4} ]
    torch_lerp(start, end, torch_full_like(start, 0.5))
    #> torch_tensor -#> 5.5000 -#> 6.0000 -#> 6.5000 -#> 7.0000 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_lgamma.html b/docs/reference/torch_lgamma.html deleted file mode 100644 index 8b3cf96c0..000000000 --- a/docs/reference/torch_lgamma.html +++ /dev/null @@ -1,227 +0,0 @@ - - - - - - - - -Lgamma — torch_lgamma • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Lgamma

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    lgamma(input, out=None) -> Tensor

    - - - - -

    Computes the logarithm of the gamma function on input.

    -

    $$ - \mbox{out}_{i} = \log \Gamma(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_arange(0.5, 2, 0.5) -torch_lgamma(a)
    #> torch_tensor -#> 0.5724 -#> 0.0000 -#> -0.1208 -#> [ CPUFloatType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_linspace.html b/docs/reference/torch_linspace.html deleted file mode 100644 index fe80f7dcf..000000000 --- a/docs/reference/torch_linspace.html +++ /dev/null @@ -1,265 +0,0 @@ - - - - - - - - -Linspace — torch_linspace • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Linspace

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    start

    (float) the starting value for the set of points

    end

    (float) the ending value for the set of points

    steps

    (int) number of points to sample between start and end. Default: 100.

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type).

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    linspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Returns a one-dimensional tensor of steps -equally spaced points between start and end.

    -

    The output tensor is 1-D of size steps.

    - -

    Examples

    -
    # \dontrun{ - -torch_linspace(3, 10, steps=5)
    #> torch_tensor -#> 3.0000 -#> 4.7500 -#> 6.5000 -#> 8.2500 -#> 10.0000 -#> [ CPUFloatType{5} ]
    torch_linspace(-10, 10, steps=5)
    #> torch_tensor -#> -10 -#> -5 -#> 0 -#> 5 -#> 10 -#> [ CPUFloatType{5} ]
    torch_linspace(start=-10, end=10, steps=5)
    #> torch_tensor -#> -10 -#> -5 -#> 0 -#> 5 -#> 10 -#> [ CPUFloatType{5} ]
    torch_linspace(start=-10, end=10, steps=1)
    #> torch_tensor -#> -10 -#> [ CPUFloatType{1} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_load.html b/docs/reference/torch_load.html deleted file mode 100644 index cbb7eee5d..000000000 --- a/docs/reference/torch_load.html +++ /dev/null @@ -1,209 +0,0 @@ - - - - - - - - -Loads a saved object — torch_load • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Loads a saved object

    -
    - -
    torch_load(path)
    - -

    Arguments

    - - - - - - -
    path

    a path to the saved object

    - -

    See also

    - -

    Other torch_save: -torch_save()

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_log.html b/docs/reference/torch_log.html deleted file mode 100644 index 7db29c704..000000000 --- a/docs/reference/torch_log.html +++ /dev/null @@ -1,236 +0,0 @@ - - - - - - - - -Log — torch_log • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Log

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    log(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the natural logarithm of the elements -of input.

    -

    $$ - y_{i} = \log_{e} (x_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(5)) -a
    #> torch_tensor -#> 1.6609 -#> -1.5017 -#> 0.7439 -#> -0.6239 -#> 1.2395 -#> [ CPUFloatType{5} ]
    torch_log(a)
    #> torch_tensor -#> 0.5074 -#> nan -#> -0.2958 -#> nan -#> 0.2147 -#> [ CPUFloatType{5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_log10.html b/docs/reference/torch_log10.html deleted file mode 100644 index 48657c4cf..000000000 --- a/docs/reference/torch_log10.html +++ /dev/null @@ -1,236 +0,0 @@ - - - - - - - - -Log10 — torch_log10 • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Log10

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    log10(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the logarithm to the base 10 of the elements -of input.

    -

    $$ - y_{i} = \log_{10} (x_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_rand(5) -a
    #> torch_tensor -#> 0.6619 -#> 0.0908 -#> 0.8331 -#> 0.1240 -#> 0.1908 -#> [ CPUFloatType{5} ]
    torch_log10(a)
    #> torch_tensor -#> -0.1792 -#> -1.0419 -#> -0.0793 -#> -0.9067 -#> -0.7195 -#> [ CPUFloatType{5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_log1p.html b/docs/reference/torch_log1p.html deleted file mode 100644 index caeac9d76..000000000 --- a/docs/reference/torch_log1p.html +++ /dev/null @@ -1,239 +0,0 @@ - - - - - - - - -Log1p — torch_log1p • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Log1p

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - -

    This function is more accurate than torch_log for small -values of input

    -

    log1p(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the natural logarithm of (1 + input).

    -

    $$ - y_i = \log_{e} (x_i + 1) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(5)) -a
    #> torch_tensor -#> -0.7431 -#> -0.9335 -#> 0.2461 -#> 0.9212 -#> -0.0972 -#> [ CPUFloatType{5} ]
    torch_log1p(a)
    #> torch_tensor -#> -1.3591 -#> -2.7110 -#> 0.2200 -#> 0.6530 -#> -0.1023 -#> [ CPUFloatType{5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_log2.html b/docs/reference/torch_log2.html deleted file mode 100644 index e3f5e274e..000000000 --- a/docs/reference/torch_log2.html +++ /dev/null @@ -1,236 +0,0 @@ - - - - - - - - -Log2 — torch_log2 • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Log2

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    log2(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the logarithm to the base 2 of the elements -of input.

    -

    $$ - y_{i} = \log_{2} (x_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_rand(5) -a
    #> torch_tensor -#> 0.5313 -#> 0.0120 -#> 0.0760 -#> 0.6910 -#> 0.9385 -#> [ CPUFloatType{5} ]
    torch_log2(a)
    #> torch_tensor -#> -0.9125 -#> -6.3856 -#> -3.7179 -#> -0.5332 -#> -0.0915 -#> [ CPUFloatType{5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_logdet.html b/docs/reference/torch_logdet.html deleted file mode 100644 index a462b2f2f..000000000 --- a/docs/reference/torch_logdet.html +++ /dev/null @@ -1,241 +0,0 @@ - - - - - - - - -Logdet — torch_logdet • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Logdet

    -
    - - -

    Arguments

    - - - - - - -
    input

    (Tensor) the input tensor of size (*, n, n) where * is zero or more batch dimensions.

    - -

    Note

    - - -
    Result is ``-inf`` if `input` has zero log determinant, and is ``nan`` if
    -`input` has negative determinant.
    -
    - -
    Backward through `logdet` internally uses SVD results when `input`
    -is not invertible. In this case, double backward through `logdet` will
    -be unstable in when `input` doesn't have distinct singular values. See
    -`~torch.svd` for details.
    -
    - -

    logdet(input) -> Tensor

    - - - - -

    Calculates log determinant of a square matrix or batches of square matrices.

    - -

    Examples

    -
    # \dontrun{ - -A = torch_randn(c(3, 3)) -torch_det(A)
    #> torch_tensor -#> -0.779207 -#> [ CPUFloatType{} ]
    torch_logdet(A)
    #> torch_tensor -#> nan -#> [ CPUFloatType{} ]
    A
    #> torch_tensor -#> -0.1953 -0.9165 -0.4366 -#> 0.0674 0.1296 -1.5398 -#> -0.7582 -1.0511 -0.3637 -#> [ CPUFloatType{3,3} ]
    A$det()
    #> torch_tensor -#> -0.779207 -#> [ CPUFloatType{} ]
    A$det()$log()
    #> torch_tensor -#> nan -#> [ CPUFloatType{} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_logical_and.html b/docs/reference/torch_logical_and.html deleted file mode 100644 index ece3997c1..000000000 --- a/docs/reference/torch_logical_and.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Logical_and — torch_logical_and • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Logical_and

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    other

    (Tensor) the tensor to compute AND with

    out

    (Tensor, optional) the output tensor.

    - -

    logical_and(input, other, out=None) -> Tensor

    - - - - -

    Computes the element-wise logical AND of the given input tensors. Zeros are treated as False and nonzeros are -treated as True.

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_logical_not.html b/docs/reference/torch_logical_not.html deleted file mode 100644 index c218ddb0a..000000000 --- a/docs/reference/torch_logical_not.html +++ /dev/null @@ -1,231 +0,0 @@ - - - - - - - - -Logical_not — torch_logical_not • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Logical_not

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    logical_not(input, out=None) -> Tensor

    - - - - -

    Computes the element-wise logical NOT of the given input tensor. If not specified, the output tensor will have the bool -dtype. If the input tensor is not a bool tensor, zeros are treated as False and non-zeros are treated as True.

    - -

    Examples

    -
    # \dontrun{ - -torch_logical_not(torch_tensor(c(TRUE, FALSE)))
    #> torch_tensor -#> 0 -#> 1 -#> [ CPUBoolType{2} ]
    torch_logical_not(torch_tensor(c(0, 1, -10), dtype=torch_int8()))
    #> torch_tensor -#> 1 -#> 0 -#> 0 -#> [ CPUBoolType{3} ]
    torch_logical_not(torch_tensor(c(0., 1.5, -10.), dtype=torch_double()))
    #> torch_tensor -#> 1 -#> 0 -#> 0 -#> [ CPUBoolType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_logical_or.html b/docs/reference/torch_logical_or.html deleted file mode 100644 index 91c92dace..000000000 --- a/docs/reference/torch_logical_or.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Logical_or — torch_logical_or • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Logical_or

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    other

    (Tensor) the tensor to compute OR with

    out

    (Tensor, optional) the output tensor.

    - -

    logical_or(input, other, out=None) -> Tensor

    - - - - -

    Computes the element-wise logical OR of the given input tensors. Zeros are treated as False and nonzeros are -treated as True.

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_logical_xor.html b/docs/reference/torch_logical_xor.html deleted file mode 100644 index d53d734c8..000000000 --- a/docs/reference/torch_logical_xor.html +++ /dev/null @@ -1,245 +0,0 @@ - - - - - - - - -Logical_xor — torch_logical_xor • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Logical_xor

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    other

    (Tensor) the tensor to compute XOR with

    out

    (Tensor, optional) the output tensor.

    - -

    logical_xor(input, other, out=None) -> Tensor

    - - - - -

    Computes the element-wise logical XOR of the given input tensors. Zeros are treated as False and nonzeros are -treated as True.

    - -

    Examples

    -
    # \dontrun{ - -torch_logical_xor(torch_tensor(c(TRUE, FALSE, TRUE)), torch_tensor(c(TRUE, FALSE, FALSE)))
    #> torch_tensor -#> 0 -#> 0 -#> 1 -#> [ CPUBoolType{3} ]
    a = torch_tensor(c(0, 1, 10, 0), dtype=torch_int8()) -b = torch_tensor(c(4, 0, 1, 0), dtype=torch_int8()) -torch_logical_xor(a, b)
    #> torch_tensor -#> 1 -#> 1 -#> 0 -#> 0 -#> [ CPUBoolType{4} ]
    torch_logical_xor(a$to(dtype=torch_double()), b$to(dtype=torch_double()))
    #> torch_tensor -#> 1 -#> 1 -#> 0 -#> 0 -#> [ CPUBoolType{4} ]
    torch_logical_xor(a$to(dtype=torch_double()), b)
    #> torch_tensor -#> 1 -#> 1 -#> 0 -#> 0 -#> [ CPUBoolType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_logspace.html b/docs/reference/torch_logspace.html deleted file mode 100644 index 7e289e713..000000000 --- a/docs/reference/torch_logspace.html +++ /dev/null @@ -1,266 +0,0 @@ - - - - - - - - -Logspace — torch_logspace • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Logspace

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    start

    (float) the starting value for the set of points

    end

    (float) the ending value for the set of points

    steps

    (int) number of points to sample between start and end. Default: 100.

    base

    (float) base of the logarithm function. Default: 10.0.

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type).

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    logspace(start, end, steps=100, base=10.0, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Returns a one-dimensional tensor of steps points -logarithmically spaced with base base between -\({\mbox{base}}^{\mbox{start}}\) and \({\mbox{base}}^{\mbox{end}}\).

    -

    The output tensor is 1-D of size steps.

    - -

    Examples

    -
    # \dontrun{ - -torch_logspace(start=-10, end=10, steps=5)
    #> torch_tensor -#> 1.0000e-10 -#> 1.0000e-05 -#> 1.0000e+00 -#> 1.0000e+05 -#> 1.0000e+10 -#> [ CPUFloatType{5} ]
    torch_logspace(start=0.1, end=1.0, steps=5)
    #> torch_tensor -#> 1.2589 -#> 2.1135 -#> 3.5481 -#> 5.9566 -#> 10.0000 -#> [ CPUFloatType{5} ]
    torch_logspace(start=0.1, end=1.0, steps=1)
    #> torch_tensor -#> 1.2589 -#> [ CPUFloatType{1} ]
    torch_logspace(start=2, end=2, steps=1, base=2)
    #> torch_tensor -#> 4 -#> [ CPUFloatType{1} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_logsumexp.html b/docs/reference/torch_logsumexp.html deleted file mode 100644 index 956a821f1..000000000 --- a/docs/reference/torch_logsumexp.html +++ /dev/null @@ -1,242 +0,0 @@ - - - - - - - - -Logsumexp — torch_logsumexp • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Logsumexp

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int or tuple of ints) the dimension or dimensions to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not.

    out

    (Tensor, optional) the output tensor.

    - -

    logsumexp(input, dim, keepdim=False, out=None)

    - - - - -

    Returns the log of summed exponentials of each row of the input -tensor in the given dimension dim. The computation is numerically -stabilized.

    -

    For summation index \(j\) given by dim and other indices \(i\), the result is

    -

    $$ - \mbox{logsumexp}(x)_{i} = \log \sum_j \exp(x_{ij}) -$$

    -

    If keepdim is True, the output tensor is of the same size -as input except in the dimension(s) dim where it is of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting in the -output tensor having 1 (or len(dim)) fewer dimension(s).

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(3, 3)) -torch_logsumexp(a, 1)
    #> torch_tensor -#> 1.9705 -#> 0.9976 -#> 1.5809 -#> [ CPUFloatType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_lstsq.html b/docs/reference/torch_lstsq.html deleted file mode 100644 index cab0c34ff..000000000 --- a/docs/reference/torch_lstsq.html +++ /dev/null @@ -1,268 +0,0 @@ - - - - - - - - -Lstsq — torch_lstsq • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Lstsq

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the matrix \(B\)

    A

    (Tensor) the \(m\) by \(n\) matrix \(A\)

    out

    (tuple, optional) the optional destination tensor

    - -

    Note

    - - -
    The case when \eqn{m &lt; n} is not supported on the GPU.
    -
    - -

    lstsq(input, A, out=None) -> Tensor

    - - - - -

    Computes the solution to the least squares and least norm problems for a full -rank matrix \(A\) of size \((m \times n)\) and a matrix \(B\) of -size \((m \times k)\).

    -

    If \(m \geq n\), torch_lstsq() solves the least-squares problem:

    -

    $$ - \begin{array}{ll} - \min_X & \|AX-B\|_2. - \end{array} -$$ -If \(m < n\), torch_lstsq() solves the least-norm problem:

    -

    $$ - \begin{array}{llll} - \min_X & \|X\|_2 & \mbox{subject to} & AX = B. - \end{array} -$$ -Returned tensor \(X\) has shape \((\mbox{max}(m, n) \times k)\). The first \(n\) -rows of \(X\) contains the solution. If \(m \geq n\), the residual sum of squares -for the solution in each column is given by the sum of squares of elements in the -remaining \(m - n\) rows of that column.

    - -

    Examples

    -
    # \dontrun{ - -A = torch_tensor(rbind( - c(1,1,1), - c(2,3,4), - c(3,5,2), - c(4,2,5), - c(5,4,3) -)) -B = torch_tensor(rbind( - c(-10, -3), - c(12, 14), - c(14, 12), - c(16, 16), - c(18, 16) -)) -out = torch_lstsq(B, A) -out[[1]]
    #> torch_tensor -#> 2.0000 1.0000 -#> 1.0000 1.0000 -#> 1.0000 2.0000 -#> 10.9635 4.8501 -#> 8.9332 5.2418 -#> [ CPUFloatType{5,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_lt.html b/docs/reference/torch_lt.html deleted file mode 100644 index 1184e0a50..000000000 --- a/docs/reference/torch_lt.html +++ /dev/null @@ -1,229 +0,0 @@ - - - - - - - - -Lt — torch_lt • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Lt

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor to compare

    other

    (Tensor or float) the tensor or value to compare

    out

    (Tensor, optional) the output tensor that must be a BoolTensor

    - -

    lt(input, other, out=None) -> Tensor

    - - - - -

    Computes \(\mbox{input} < \mbox{other}\) element-wise.

    -

    The second argument can be a number or a tensor whose shape is -broadcastable with the first argument.

    - -

    Examples

    -
    # \dontrun{ - -torch_lt(torch_tensor(matrix(1:4, ncol = 2, byrow=TRUE)), - torch_tensor(matrix(c(1,1,4,4), ncol = 2, byrow=TRUE)))
    #> torch_tensor -#> 0 0 -#> 1 0 -#> [ CPUBoolType{2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_lu.html b/docs/reference/torch_lu.html deleted file mode 100644 index 3965e722d..000000000 --- a/docs/reference/torch_lu.html +++ /dev/null @@ -1,248 +0,0 @@ - - - - - - - - -LU — torch_lu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Computes the LU factorization of a matrix or batches of matrices A. Returns a -tuple containing the LU factorization and pivots of A. Pivoting is done if pivot -is set to True.

    -
    - -
    torch_lu(A, pivot = TRUE, get_infos = FALSE, out = NULL)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    A

    (Tensor) the tensor to factor of size (, m, n)(,m,n)

    pivot

    (bool, optional) – controls whether pivoting is done. Default: TRUE

    get_infos

    (bool, optional) – if set to True, returns an info IntTensor. Default: FALSE

    out

    (tuple, optional) – optional output tuple. If get_infos is True, then the elements -in the tuple are Tensor, IntTensor, and IntTensor. If get_infos is False, then the -elements in the tuple are Tensor, IntTensor. Default: NULL

    - - -

    Examples

    -
    # \dontrun{ - -A = torch_randn(c(2, 3, 3)) -torch_lu(A)
    #> [[1]] -#> torch_tensor -#> (1,.,.) = -#> 1.5274 -0.8578 -1.5278 -#> -0.5446 0.3682 -0.1468 -#> 0.6892 0.4103 1.5956 -#> -#> (2,.,.) = -#> -1.3121 -0.1896 -2.3469 -#> -0.7969 1.0315 -0.9561 -#> 0.7149 -0.0635 1.4525 -#> [ CPUFloatType{2,3,3} ] -#> -#> [[2]] -#> torch_tensor -#> 3 2 3 -#> 3 2 3 -#> [ CPUIntType{2,3} ] -#>
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_lu_solve.html b/docs/reference/torch_lu_solve.html deleted file mode 100644 index e3752572d..000000000 --- a/docs/reference/torch_lu_solve.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Lu_solve — torch_lu_solve • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Lu_solve

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    b

    (Tensor) the RHS tensor of size \((*, m, k)\), where \(*\) is zero or more batch dimensions.

    LU_data

    (Tensor) the pivoted LU factorization of A from torch_lu of size \((*, m, m)\), where \(*\) is zero or more batch dimensions.

    LU_pivots

    (IntTensor) the pivots of the LU factorization from torch_lu of size \((*, m)\), where \(*\) is zero or more batch dimensions. The batch dimensions of LU_pivots must be equal to the batch dimensions of LU_data.

    out

    (Tensor, optional) the output tensor.

    - -

    lu_solve(input, LU_data, LU_pivots, out=None) -> Tensor

    - - - - -

    Returns the LU solve of the linear system \(Ax = b\) using the partially pivoted -LU factorization of A from torch_lu.

    - -

    Examples

    -
    # \dontrun{ -A = torch_randn(c(2, 3, 3)) -b = torch_randn(c(2, 3, 1)) -out = torch_lu(A) -x = torch_lu_solve(b, out[[1]], out[[2]]) -torch_norm(torch_bmm(A, x) - b)
    #> torch_tensor -#> 7.02886e-08 -#> [ CPUFloatType{} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_masked_select.html b/docs/reference/torch_masked_select.html deleted file mode 100644 index 2c614b5df..000000000 --- a/docs/reference/torch_masked_select.html +++ /dev/null @@ -1,245 +0,0 @@ - - - - - - - - -Masked_select — torch_masked_select • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Masked_select

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    mask

    (BoolTensor) the tensor containing the binary mask to index with

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - -

    The returned tensor does not use the same storage -as the original tensor

    -

    masked_select(input, mask, out=None) -> Tensor

    - - - - -

    Returns a new 1-D tensor which indexes the input tensor according to -the boolean mask mask which is a BoolTensor.

    -

    The shapes of the mask tensor and the input tensor don't need -to match, but they must be broadcastable .

    - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(3, 4)) -x
    #> torch_tensor -#> 0.1475 -0.7929 -0.3681 1.0487 -#> -1.1304 1.8525 -0.8021 0.2346 -#> 1.8222 0.7533 0.4753 0.3604 -#> [ CPUFloatType{3,4} ]
    mask = x$ge(0.5) -mask
    #> torch_tensor -#> 0 0 0 1 -#> 0 1 0 0 -#> 1 1 0 0 -#> [ CPUBoolType{3,4} ]
    torch_masked_select(x, mask)
    #> torch_tensor -#> 1.0487 -#> 1.8525 -#> 1.8222 -#> 0.7533 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_matmul.html b/docs/reference/torch_matmul.html deleted file mode 100644 index 3bc18b9ea..000000000 --- a/docs/reference/torch_matmul.html +++ /dev/null @@ -1,380 +0,0 @@ - - - - - - - - -Matmul — torch_matmul • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Matmul

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the first tensor to be multiplied

    other

    (Tensor) the second tensor to be multiplied

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - - -
    The 1-dimensional dot product version of this function does not support an `out` parameter.
    -
    - -

    matmul(input, other, out=None) -> Tensor

    - - - - -

    Matrix product of two tensors.

    -

    The behavior depends on the dimensionality of the tensors as follows:

      -
    • If both tensors are 1-dimensional, the dot product (scalar) is returned.

    • -
    • If both arguments are 2-dimensional, the matrix-matrix product is returned.

    • -
    • If the first argument is 1-dimensional and the second argument is 2-dimensional, -a 1 is prepended to its dimension for the purpose of the matrix multiply. -After the matrix multiply, the prepended dimension is removed.

    • -
    • If the first argument is 2-dimensional and the second argument is 1-dimensional, -the matrix-vector product is returned.

    • -
    • If both arguments are at least 1-dimensional and at least one argument is -N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first -argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the -batched matrix multiply and removed after. If the second argument is 1-dimensional, a -1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. -The non-matrix (i.e. batch) dimensions are broadcasted (and thus -must be broadcastable). For example, if input is a -\((j \times 1 \times n \times m)\) tensor and other is a \((k \times m \times p)\) -tensor, out will be an \((j \times k \times n \times p)\) tensor.

    • -
    - - -

    Examples

    -
    # \dontrun{ - -# vector x vector -tensor1 = torch_randn(c(3)) -tensor2 = torch_randn(c(3)) -torch_matmul(tensor1, tensor2)
    #> torch_tensor -#> -2.01064 -#> [ CPUFloatType{} ]
    # matrix x vector -tensor1 = torch_randn(c(3, 4)) -tensor2 = torch_randn(c(4)) -torch_matmul(tensor1, tensor2)
    #> torch_tensor -#> 0.8498 -#> -0.1725 -#> -0.2413 -#> [ CPUFloatType{3} ]
    # batched matrix x broadcasted vector -tensor1 = torch_randn(c(10, 3, 4)) -tensor2 = torch_randn(c(4)) -torch_matmul(tensor1, tensor2)
    #> torch_tensor -#> -0.3051 0.8335 0.7817 -#> -1.7290 -0.1315 -1.0013 -#> -2.2799 -2.0186 -1.7212 -#> -2.0462 2.6530 2.2152 -#> 1.0726 -1.8564 -0.0805 -#> 2.5083 0.1464 -1.9015 -#> 0.1432 1.3745 0.8548 -#> -0.5524 0.7222 0.1316 -#> -1.5975 0.3861 -2.5685 -#> -3.1016 2.3700 0.1975 -#> [ CPUFloatType{10,3} ]
    # batched matrix x batched matrix -tensor1 = torch_randn(c(10, 3, 4)) -tensor2 = torch_randn(c(10, 4, 5)) -torch_matmul(tensor1, tensor2)
    #> torch_tensor -#> (1,.,.) = -#> 2.7383 3.7776 1.1984 -0.0462 5.9024 -#> 0.1247 -2.9988 0.8401 -1.2394 -2.9948 -#> 3.0933 3.5992 3.5134 -3.3567 6.0899 -#> -#> (2,.,.) = -#> -0.9786 -0.3967 -0.3440 0.3824 -1.2635 -#> 0.4944 0.7149 0.5734 -1.1592 0.6260 -#> 1.3268 0.8352 1.9060 -3.7034 0.1600 -#> -#> (3,.,.) = -#> 0.4321 0.9564 1.6369 -0.1843 -0.3877 -#> -1.4475 -2.3336 -2.1501 -1.6377 3.0016 -#> -1.9856 0.2134 1.8436 1.6812 1.5892 -#> -#> (4,.,.) = -#> 0.7306 -0.1213 0.6505 -2.7818 -0.1171 -#> -1.4915 3.2909 0.5003 2.5146 1.3735 -#> 0.0837 -0.1117 0.8951 3.6226 1.1665 -#> -#> (5,.,.) = -#> -1.9671 0.1609 2.2518 0.7587 2.6455 -#> -0.5965 -1.3687 -2.4585 -1.6623 -3.6542 -#> 0.0899 1.6690 0.2659 -2.6994 2.8543 -#> -#> (6,.,.) = -#> -4.5552 0.7339 -2.3152 -5.9254 -1.6420 -#> -0.8628 0.0829 -0.6564 0.9928 -0.0438 -#> -4.1770 0.7927 -2.3129 -4.7196 -0.5457 -#> -#> (7,.,.) = -#> 1.3550 -0.9541 -1.7768 2.5931 1.6567 -#> 4.4144 1.4763 1.1692 -2.8514 -1.1695 -#> 4.2236 0.0365 -0.3523 1.0364 0.0855 -#> -#> (8,.,.) = -#> -3.3315 1.4609 -1.3792 -2.9510 -0.7443 -#> 1.3569 -2.2547 0.7054 -2.1291 5.2801 -#> -0.0102 1.3483 -0.3866 2.5474 -3.7250 -#> -#> (9,.,.) = -#> 0.8332 2.8945 -1.7215 1.0412 1.7159 -#> -1.0112 -5.9806 1.3106 3.5058 -2.5003 -#> 0.3979 0.5793 -0.9296 -2.5669 -3.1548 -#> -#> (10,.,.) = -#> 1.3155 -0.3605 0.2988 -0.0092 -0.7717 -#> 0.6723 1.2307 -1.8691 0.1663 -1.7657 -#> -1.2338 0.4575 0.0627 1.7217 2.0104 -#> [ CPUFloatType{10,3,5} ]
    # batched matrix x broadcasted matrix -tensor1 = torch_randn(c(10, 3, 4)) -tensor2 = torch_randn(c(4, 5)) -torch_matmul(tensor1, tensor2)
    #> torch_tensor -#> (1,.,.) = -#> -5.1244 2.2971 -1.6275 2.7803 -4.4830 -#> 1.8873 -3.6560 1.6412 0.0507 0.1216 -#> -0.5433 1.9666 -1.4803 -0.5111 0.0638 -#> -#> (2,.,.) = -#> 0.0601 -4.0015 2.7077 1.7992 -1.7779 -#> -1.6433 1.4184 -1.3365 0.5739 -1.9782 -#> -3.4216 6.9532 -3.3050 -0.2836 0.0183 -#> -#> (3,.,.) = -#> -1.8677 -0.3711 0.3040 1.6625 -2.7921 -#> 3.2992 -0.5994 -1.6079 -2.2177 -1.6740 -#> -3.7891 4.2637 2.9312 2.2233 0.8338 -#> -#> (4,.,.) = -#> -2.1277 3.2238 0.0312 0.5080 1.3242 -#> 2.2424 -0.8814 0.2856 -1.2700 1.1283 -#> -1.0811 2.6808 -0.7240 -0.2231 1.0720 -#> -#> (5,.,.) = -#> -3.4333 2.0806 -0.9037 1.4697 -0.1231 -#> 2.3334 -3.4847 1.1505 -0.3664 -0.2367 -#> 1.2297 -2.4053 2.6418 0.6376 -1.1939 -#> -#> (6,.,.) = -#> -2.2066 0.7770 1.6664 1.7391 -0.3200 -#> -2.7109 -1.6160 -1.9334 1.4483 0.3787 -#> -1.2449 -0.9002 -1.0765 0.8913 -1.9713 -#> -#> (7,.,.) = -#> 0.2789 -1.0134 -0.5889 0.0808 -1.8249 -#> 0.6334 -0.8853 2.2413 0.6094 -1.5061 -#> -0.1358 0.5410 0.6620 0.1202 0.3539 -#> -#> (8,.,.) = -#> 0.5331 0.8902 1.7452 -0.4616 3.8193 -#> 0.4330 2.0916 -0.6593 -0.9295 0.1894 -#> 0.8105 -0.3216 0.7608 -0.4534 2.0104 -#> -#> (9,.,.) = -#> 2.2947 1.8882 2.8289 -1.2676 2.0636 -#> -0.6974 -2.0088 -1.8360 0.1831 1.3406 -#> 4.7011 -3.7311 0.0230 -1.9564 -1.7259 -#> -#> (10,.,.) = -#> 2.7739 -3.8386 -1.8082 -1.4422 -0.0495 -#> 1.3869 -3.8928 0.8670 0.1969 0.0855 -#> -3.0783 1.1996 -2.8824 0.9550 -0.9141 -#> [ CPUFloatType{10,3,5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_matrix_power.html b/docs/reference/torch_matrix_power.html deleted file mode 100644 index f137dc80a..000000000 --- a/docs/reference/torch_matrix_power.html +++ /dev/null @@ -1,242 +0,0 @@ - - - - - - - - -Matrix_power — torch_matrix_power • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Matrix_power

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    n

    (int) the power to raise the matrix to

    - -

    matrix_power(input, n) -> Tensor

    - - - - -

    Returns the matrix raised to the power n for square matrices. -For batch of matrices, each individual matrix is raised to the power n.

    -

    If n is negative, then the inverse of the matrix (if invertible) is -raised to the power n. For a batch of matrices, the batched inverse -(if invertible) is raised to the power n. If n is 0, then an identity matrix -is returned.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(2, 2, 2)) -a
    #> torch_tensor -#> (1,.,.) = -#> 0.0871 0.0197 -#> 0.3185 0.4297 -#> -#> (2,.,.) = -#> -0.7818 -0.6402 -#> 0.2400 -0.4367 -#> [ CPUFloatType{2,2,2} ]
    torch_matrix_power(a, 3)
    #> torch_tensor -#> (1,.,.) = -#> 0.01 * -#> 0.4446 0.4644 -#> 7.5134 8.5264 -#> -#> (2,.,.) = -#> -0.1705 -0.6335 -#> 0.2375 0.1711 -#> [ CPUFloatType{2,2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_matrix_rank.html b/docs/reference/torch_matrix_rank.html deleted file mode 100644 index f2f515a4a..000000000 --- a/docs/reference/torch_matrix_rank.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Matrix_rank — torch_matrix_rank • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Matrix_rank

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input 2-D tensor

    tol

    (float, optional) the tolerance value. Default: None

    symmetric

    (bool, optional) indicates whether input is symmetric. Default: False

    - -

    matrix_rank(input, tol=None, symmetric=False) -> Tensor

    - - - - -

    Returns the numerical rank of a 2-D tensor. The method to compute the -matrix rank is done using SVD by default. If symmetric is True, -then input is assumed to be symmetric, and the computation of the -rank is done by obtaining the eigenvalues.

    -

    tol is the threshold below which the singular values (or the eigenvalues -when symmetric is True) are considered to be 0. If tol is not -specified, tol is set to S.max() * max(S.size()) * eps where S is the -singular values (or the eigenvalues when symmetric is True), and eps -is the epsilon value for the datatype of input.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_eye(10) -torch_matrix_rank(a)
    #> torch_tensor -#> 10 -#> [ CPULongType{} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_max.html b/docs/reference/torch_max.html deleted file mode 100644 index 00d5f5b8b..000000000 --- a/docs/reference/torch_max.html +++ /dev/null @@ -1,315 +0,0 @@ - - - - - - - - -Max — torch_max • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Max

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the dimension to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not. Default: False.

    out

    (tuple, optional) the result tuple of two output tensors (max, max_indices)

    other

    (Tensor) the second input tensor

    - -

    Note

    - -

    When the shapes do not match, the shape of the returned output tensor -follows the broadcasting rules .

    -

    max(input) -> Tensor

    - - - - -

    Returns the maximum value of all elements in the input tensor.

    -

    max(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor)

    - - - - -

    Returns a namedtuple (values, indices) where values is the maximum -value of each row of the input tensor in the given dimension -dim. And indices is the index location of each maximum value found -(argmax).

    -

    Warning

    - - - -

    indices does not necessarily contain the first occurrence of each -maximal value found, unless it is unique. -The exact implementation details are device-specific. -Do not expect the same result when run on CPU and GPU in general.

    -

    If keepdim is True, the output tensors are of the same size -as input except in the dimension dim where they are of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting -in the output tensors having 1 fewer dimension than input.

    -

    max(input, other, out=None) -> Tensor

    - - - - -

    Each element of the tensor input is compared with the corresponding -element of the tensor other and an element-wise maximum is taken.

    -

    The shapes of input and other don't need to match, -but they must be broadcastable .

    -

    $$ - \mbox{out}_i = \max(\mbox{tensor}_i, \mbox{other}_i) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(1, 3)) -a
    #> torch_tensor -#> -1.7404 0.4095 0.0815 -#> [ CPUFloatType{1,3} ]
    torch_max(a)
    #> torch_tensor -#> 0.409483 -#> [ CPUFloatType{} ]
    - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> -0.4374 0.4921 0.5690 -0.5727 -#> -0.7344 1.4273 0.3648 1.0731 -#> 0.4967 0.2687 0.5694 -0.4233 -#> 0.2623 0.0037 -1.2246 -0.3742 -#> [ CPUFloatType{4,4} ]
    torch_max(a, dim = 1)
    #> [[1]] -#> torch_tensor -#> 0.4967 -#> 1.4273 -#> 0.5694 -#> 1.0731 -#> [ CPUFloatType{4} ] -#> -#> [[2]] -#> torch_tensor -#> 3 -#> 2 -#> 3 -#> 2 -#> [ CPULongType{4} ] -#>
    - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.0640 -#> -0.2356 -#> -0.5395 -#> 1.8484 -#> [ CPUFloatType{4} ]
    b = torch_randn(c(4)) -b
    #> torch_tensor -#> 0.4095 -#> -0.6778 -#> -0.0908 -#> -0.2021 -#> [ CPUFloatType{4} ]
    torch_max(a, other = b)
    #> torch_tensor -#> 0.4095 -#> -0.2356 -#> -0.0908 -#> 1.8484 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_mean.html b/docs/reference/torch_mean.html deleted file mode 100644 index 02f865f28..000000000 --- a/docs/reference/torch_mean.html +++ /dev/null @@ -1,259 +0,0 @@ - - - - - - - - -Mean — torch_mean • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Mean

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int or tuple of ints) the dimension or dimensions to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not.

    out

    (Tensor, optional) the output tensor.

    - -

    mean(input) -> Tensor

    - - - - -

    Returns the mean value of all elements in the input tensor.

    -

    mean(input, dim, keepdim=False, out=None) -> Tensor

    - - - - -

    Returns the mean value of each row of the input tensor in the given -dimension dim. If dim is a list of dimensions, -reduce over all of them.

    -

    If keepdim is True, the output tensor is of the same size -as input except in the dimension(s) dim where it is of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting in the -output tensor having 1 (or len(dim)) fewer dimension(s).

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(1, 3)) -a
    #> torch_tensor -#> -0.0395 1.7826 1.2161 -#> [ CPUFloatType{1,3} ]
    torch_mean(a)
    #> torch_tensor -#> 0.986383 -#> [ CPUFloatType{} ]
    - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> 0.0216 -1.8383 -0.8037 -1.2803 -#> 1.6988 -1.2344 -0.5559 0.7407 -#> -1.5668 0.8250 -0.0814 0.6922 -#> -0.7400 -0.0428 0.7179 -0.2121 -#> [ CPUFloatType{4,4} ]
    torch_mean(a, 1)
    #> torch_tensor -#> -0.1466 -#> -0.5726 -#> -0.1808 -#> -0.0149 -#> [ CPUFloatType{4} ]
    torch_mean(a, 1, TRUE)
    #> torch_tensor -#> -0.1466 -0.5726 -0.1808 -0.0149 -#> [ CPUFloatType{1,4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_median.html b/docs/reference/torch_median.html deleted file mode 100644 index af58b14de..000000000 --- a/docs/reference/torch_median.html +++ /dev/null @@ -1,270 +0,0 @@ - - - - - - - - -Median — torch_median • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Median

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the dimension to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not.

    out

    (tuple, optional) the result tuple of two output tensors (max, max_indices)

    - -

    median(input) -> Tensor

    - - - - -

    Returns the median value of all elements in the input tensor.

    -

    median(input, dim=-1, keepdim=False, out=None) -> (Tensor, LongTensor)

    - - - - -

    Returns a namedtuple (values, indices) where values is the median -value of each row of the input tensor in the given dimension -dim. And indices is the index location of each median value found.

    -

    By default, dim is the last dimension of the input tensor.

    -

    If keepdim is True, the output tensors are of the same size -as input except in the dimension dim where they are of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting in -the outputs tensor having 1 fewer dimension than input.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(1, 3)) -a
    #> torch_tensor -#> -1.1294 0.8996 0.0937 -#> [ CPUFloatType{1,3} ]
    torch_median(a)
    #> torch_tensor -#> 0.0937234 -#> [ CPUFloatType{} ]
    - -a = torch_randn(c(4, 5)) -a
    #> torch_tensor -#> 0.2865 -0.8226 0.6805 0.3636 -0.6890 -#> 0.8853 0.3427 0.8220 -2.2562 -1.8976 -#> -1.3180 0.3580 1.1346 -0.5496 -0.2493 -#> -1.1359 0.0354 -0.3702 -0.0126 1.0450 -#> [ CPUFloatType{4,5} ]
    torch_median(a, 1)
    #> [[1]] -#> torch_tensor -#> -1.1359 -#> 0.0354 -#> 0.6805 -#> -0.5496 -#> -0.6890 -#> [ CPUFloatType{5} ] -#> -#> [[2]] -#> torch_tensor -#> 3 -#> 3 -#> 0 -#> 2 -#> 0 -#> [ CPULongType{5} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_memory_format.html b/docs/reference/torch_memory_format.html deleted file mode 100644 index fbf7b1e14..000000000 --- a/docs/reference/torch_memory_format.html +++ /dev/null @@ -1,201 +0,0 @@ - - - - - - - - -Memory format — torch_memory_format • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Returns the correspondent memory format.

    -
    - -
    torch_contiguous_format()
    -
    -torch_preserve_format()
    -
    -torch_channels_last_format()
    - - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_meshgrid.html b/docs/reference/torch_meshgrid.html deleted file mode 100644 index 383807ea4..000000000 --- a/docs/reference/torch_meshgrid.html +++ /dev/null @@ -1,237 +0,0 @@ - - - - - - - - -Meshgrid — torch_meshgrid • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Meshgrid

    -
    - - -

    Arguments

    - - - - - - - - - - -
    tensors

    (list of Tensor) list of scalars or 1 dimensional tensors. Scalars will be

    treated

    (1,)

    - -

    TEST

    - - - - -

    Take \(N\) tensors, each of which can be either scalar or 1-dimensional -vector, and create \(N\) N-dimensional grids, where the \(i\) th grid is defined by -expanding the \(i\) th input over dimensions defined by other inputs.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_tensor(c(1, 2, 3)) -y = torch_tensor(c(4, 5, 6)) -out = torch_meshgrid(list(x, y)) -out
    #> [[1]] -#> torch_tensor -#> 1 1 1 -#> 2 2 2 -#> 3 3 3 -#> [ CPUFloatType{3,3} ] -#> -#> [[2]] -#> torch_tensor -#> 4 5 6 -#> 4 5 6 -#> 4 5 6 -#> [ CPUFloatType{3,3} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_min.html b/docs/reference/torch_min.html deleted file mode 100644 index 4de5eea85..000000000 --- a/docs/reference/torch_min.html +++ /dev/null @@ -1,316 +0,0 @@ - - - - - - - - -Min — torch_min • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Min

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the dimension to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not.

    out

    (tuple, optional) the tuple of two output tensors (min, min_indices)

    other

    (Tensor) the second input tensor

    - -

    Note

    - -

    When the shapes do not match, the shape of the returned output tensor -follows the broadcasting rules .

    -

    min(input) -> Tensor

    - - - - -

    Returns the minimum value of all elements in the input tensor.

    -

    min(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor)

    - - - - -

    Returns a namedtuple (values, indices) where values is the minimum -value of each row of the input tensor in the given dimension -dim. And indices is the index location of each minimum value found -(argmin).

    -

    Warning

    - - - -

    indices does not necessarily contain the first occurrence of each -minimal value found, unless it is unique. -The exact implementation details are device-specific. -Do not expect the same result when run on CPU and GPU in general.

    -

    If keepdim is True, the output tensors are of the same size as -input except in the dimension dim where they are of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting in -the output tensors having 1 fewer dimension than input.

    -

    min(input, other, out=None) -> Tensor

    - - - - -

    Each element of the tensor input is compared with the corresponding -element of the tensor other and an element-wise minimum is taken. -The resulting tensor is returned.

    -

    The shapes of input and other don't need to match, -but they must be broadcastable .

    -

    $$ - \mbox{out}_i = \min(\mbox{tensor}_i, \mbox{other}_i) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(1, 3)) -a
    #> torch_tensor -#> -1.0189 1.0439 1.3884 -#> [ CPUFloatType{1,3} ]
    torch_min(a)
    #> torch_tensor -#> -1.01891 -#> [ CPUFloatType{} ]
    - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> 0.9733 2.4571 1.7912 -1.4290 -#> 0.5607 -0.5847 -0.4779 -0.7823 -#> -0.7391 0.6672 -0.9647 0.1703 -#> -0.5473 -0.2047 -0.1148 1.4254 -#> [ CPUFloatType{4,4} ]
    torch_min(a, dim = 1)
    #> [[1]] -#> torch_tensor -#> -0.7391 -#> -0.5847 -#> -0.9647 -#> -1.4290 -#> [ CPUFloatType{4} ] -#> -#> [[2]] -#> torch_tensor -#> 3 -#> 2 -#> 3 -#> 1 -#> [ CPULongType{4} ] -#>
    - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 0.2877 -#> -1.1317 -#> -1.0846 -#> 0.0735 -#> [ CPUFloatType{4} ]
    b = torch_randn(c(4)) -b
    #> torch_tensor -#> -1.2118 -#> -0.7290 -#> -0.8948 -#> 0.5896 -#> [ CPUFloatType{4} ]
    torch_min(a, other = b)
    #> torch_tensor -#> -1.2118 -#> -1.1317 -#> -1.0846 -#> 0.0735 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_mm.html b/docs/reference/torch_mm.html deleted file mode 100644 index d2edb9063..000000000 --- a/docs/reference/torch_mm.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Mm — torch_mm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Mm

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the first matrix to be multiplied

    mat2

    (Tensor) the second matrix to be multiplied

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - -

    This function does not broadcast . -For broadcasting matrix products, see torch_matmul.

    -

    mm(input, mat2, out=None) -> Tensor

    - - - - -

    Performs a matrix multiplication of the matrices input and mat2.

    -

    If input is a \((n \times m)\) tensor, mat2 is a -\((m \times p)\) tensor, out will be a \((n \times p)\) tensor.

    - -

    Examples

    -
    # \dontrun{ - -mat1 = torch_randn(c(2, 3)) -mat2 = torch_randn(c(3, 3)) -torch_mm(mat1, mat2)
    #> torch_tensor -#> -4.2557 -0.6099 -0.8782 -#> -3.0933 0.3112 -0.9391 -#> [ CPUFloatType{2,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_mode.html b/docs/reference/torch_mode.html deleted file mode 100644 index 31d6e15f0..000000000 --- a/docs/reference/torch_mode.html +++ /dev/null @@ -1,254 +0,0 @@ - - - - - - - - -Mode — torch_mode • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Mode

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the dimension to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not.

    out

    (tuple, optional) the result tuple of two output tensors (values, indices)

    - -

    Note

    - -

    This function is not defined for torch_cuda.Tensor yet.

    -

    mode(input, dim=-1, keepdim=False, out=None) -> (Tensor, LongTensor)

    - - - - -

    Returns a namedtuple (values, indices) where values is the mode -value of each row of the input tensor in the given dimension -dim, i.e. a value which appears most often -in that row, and indices is the index location of each mode value found.

    -

    By default, dim is the last dimension of the input tensor.

    -

    If keepdim is True, the output tensors are of the same size as -input except in the dimension dim where they are of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting -in the output tensors having 1 fewer dimension than input.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randint(0, 50, size = list(5)) -a
    #> torch_tensor -#> 18 -#> 0 -#> 7 -#> 4 -#> 19 -#> [ CPUFloatType{5} ]
    torch_mode(a, 1)
    #> [[1]] -#> torch_tensor -#> 0 -#> [ CPUFloatType{} ] -#> -#> [[2]] -#> torch_tensor -#> 1 -#> [ CPULongType{} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_mul.html b/docs/reference/torch_mul.html deleted file mode 100644 index e3ae512a5..000000000 --- a/docs/reference/torch_mul.html +++ /dev/null @@ -1,275 +0,0 @@ - - - - - - - - -Mul — torch_mul • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Mul

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    NA

    value

    (Number) the number to be multiplied to each element of input

    out

    NA

    input

    (Tensor) the first multiplicand tensor

    other

    (Tensor) the second multiplicand tensor

    out

    (Tensor, optional) the output tensor.

    - -

    mul(input, other, out=None)

    - - - - -

    Multiplies each element of the input input with the scalar -other and returns a new resulting tensor.

    -

    $$ - \mbox{out}_i = \mbox{other} \times \mbox{input}_i -$$ -If input is of type FloatTensor or DoubleTensor, other -should be a real number, otherwise it should be an integer

    - - -

    Each element of the tensor input is multiplied by the corresponding -element of the Tensor other. The resulting tensor is returned.

    -

    The shapes of input and other must be -broadcastable .

    -

    $$ - \mbox{out}_i = \mbox{input}_i \times \mbox{other}_i -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(3)) -a
    #> torch_tensor -#> 0.7353 -#> 0.3087 -#> 0.8232 -#> [ CPUFloatType{3} ]
    torch_mul(a, 100)
    #> torch_tensor -#> 73.5282 -#> 30.8688 -#> 82.3200 -#> [ CPUFloatType{3} ]
    - -a = torch_randn(c(4, 1)) -a
    #> torch_tensor -#> 0.1683 -#> 0.6845 -#> 1.4773 -#> 1.1179 -#> [ CPUFloatType{4,1} ]
    b = torch_randn(c(1, 4)) -b
    #> torch_tensor -#> -1.4203 0.6324 -0.8087 -0.5061 -#> [ CPUFloatType{1,4} ]
    torch_mul(a, b)
    #> torch_tensor -#> -0.2390 0.1064 -0.1361 -0.0852 -#> -0.9722 0.4329 -0.5535 -0.3464 -#> -2.0981 0.9343 -1.1946 -0.7476 -#> -1.5877 0.7070 -0.9040 -0.5657 -#> [ CPUFloatType{4,4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_multinomial.html b/docs/reference/torch_multinomial.html deleted file mode 100644 index 8fbaa1192..000000000 --- a/docs/reference/torch_multinomial.html +++ /dev/null @@ -1,263 +0,0 @@ - - - - - - - - -Multinomial — torch_multinomial • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Multinomial

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor containing probabilities

    num_samples

    (int) number of samples to draw

    replacement

    (bool, optional) whether to draw with replacement or not

    generator

    (torch.Generator, optional) a pseudorandom number generator for sampling

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - - -
    The rows of `input` do not need to sum to one (in which case we use
    -the values as weights), but must be non-negative, finite and have
    -a non-zero sum.
    -
    - -

    Indices are ordered from left to right according to when each was sampled -(first samples are placed in first column).

    -

    If input is a vector, out is a vector of size num_samples.

    -

    If input is a matrix with m rows, out is an matrix of shape -\((m \times \mbox{num\_samples})\).

    -

    If replacement is True, samples are drawn with replacement.

    -

    If not, they are drawn without replacement, which means that when a -sample index is drawn for a row, it cannot be drawn again for that row.

    -
    When drawn without replacement, `num_samples` must be lower than
    -number of non-zero elements in `input` (or the min number of non-zero
    -elements in each row of `input` if it is a matrix).
    -
    - -

    multinomial(input, num_samples, replacement=False, *, generator=None, out=None) -> LongTensor

    - - - - -

    Returns a tensor where each row contains num_samples indices sampled -from the multinomial probability distribution located in the corresponding row -of tensor input.

    - -

    Examples

    -
    # \dontrun{ - -weights = torch_tensor(c(0, 10, 3, 0), dtype=torch_float()) # create a tensor of weights -torch_multinomial(weights, 2)
    #> torch_tensor -#> 1 -#> 2 -#> [ CPULongType{2} ]
    torch_multinomial(weights, 4, replacement=TRUE)
    #> torch_tensor -#> 1 -#> 2 -#> 1 -#> 2 -#> [ CPULongType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_mv.html b/docs/reference/torch_mv.html deleted file mode 100644 index bf1d66bbc..000000000 --- a/docs/reference/torch_mv.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Mv — torch_mv • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Mv

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) matrix to be multiplied

    vec

    (Tensor) vector to be multiplied

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - -

    This function does not broadcast .

    -

    mv(input, vec, out=None) -> Tensor

    - - - - -

    Performs a matrix-vector product of the matrix input and the vector -vec.

    -

    If input is a \((n \times m)\) tensor, vec is a 1-D tensor of -size \(m\), out will be 1-D of size \(n\).

    - -

    Examples

    -
    # \dontrun{ - -mat = torch_randn(c(2, 3)) -vec = torch_randn(c(3)) -torch_mv(mat, vec)
    #> torch_tensor -#> -0.9277 -#> 1.8568 -#> [ CPUFloatType{2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_mvlgamma.html b/docs/reference/torch_mvlgamma.html deleted file mode 100644 index b5100cece..000000000 --- a/docs/reference/torch_mvlgamma.html +++ /dev/null @@ -1,232 +0,0 @@ - - - - - - - - -Mvlgamma — torch_mvlgamma • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Mvlgamma

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the tensor to compute the multivariate log-gamma function

    p

    (int) the number of dimensions

    - -

    mvlgamma(input, p) -> Tensor

    - - - - -

    Computes the multivariate log-gamma function <https://en.wikipedia.org/wiki/Multivariate_gamma_function>_) with dimension -\(p\) element-wise, given by

    -

    $$ - \log(\Gamma_{p}(a)) = C + \displaystyle \sum_{i=1}^{p} \log\left(\Gamma\left(a - \frac{i - 1}{2}\right)\right) -$$ -where \(C = \log(\pi) \times \frac{p (p - 1)}{4}\) and \(\Gamma(\cdot)\) is the Gamma function.

    -

    All elements must be greater than \(\frac{p - 1}{2}\), otherwise an error would be thrown.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_empty(c(2, 3))$uniform_(1, 2) -a
    #> torch_tensor -#> 1.2019 1.8425 1.1256 -#> 1.9082 1.8734 1.5464 -#> [ CPUFloatType{2,3} ]
    torch_mvlgamma(a, 2)
    #> torch_tensor -#> 0.7450 0.3997 0.8720 -#> 0.4162 0.4065 0.4292 -#> [ CPUFloatType{2,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_narrow.html b/docs/reference/torch_narrow.html deleted file mode 100644 index f69cc0e95..000000000 --- a/docs/reference/torch_narrow.html +++ /dev/null @@ -1,237 +0,0 @@ - - - - - - - - -Narrow — torch_narrow • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Narrow

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor to narrow

    dim

    (int) the dimension along which to narrow

    start

    (int) the starting dimension

    length

    (int) the distance to the ending dimension

    - -

    narrow(input, dim, start, length) -> Tensor

    - - - - -

    Returns a new tensor that is a narrowed version of input tensor. The -dimension dim is input from start to start + length. The -returned tensor and input tensor share the same underlying storage.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_tensor(matrix(c(1:9), ncol = 3, byrow= TRUE)) -torch_narrow(x, 1, torch_tensor(0L)$sum(dim = 1), 2)
    #> torch_tensor -#> 1 2 3 -#> 4 5 6 -#> [ CPUIntType{2,3} ]
    torch_narrow(x, 2, torch_tensor(1L)$sum(dim = 1), 2)
    #> torch_tensor -#> 2 3 -#> 5 6 -#> 8 9 -#> [ CPUIntType{3,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_ne.html b/docs/reference/torch_ne.html deleted file mode 100644 index cb157d58d..000000000 --- a/docs/reference/torch_ne.html +++ /dev/null @@ -1,229 +0,0 @@ - - - - - - - - -Ne — torch_ne • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Ne

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the tensor to compare

    other

    (Tensor or float) the tensor or value to compare

    out

    (Tensor, optional) the output tensor that must be a BoolTensor

    - -

    ne(input, other, out=None) -> Tensor

    - - - - -

    Computes \(input \neq other\) element-wise.

    -

    The second argument can be a number or a tensor whose shape is -broadcastable with the first argument.

    - -

    Examples

    -
    # \dontrun{ - -torch_ne(torch_tensor(matrix(1:4, ncol = 2, byrow=TRUE)), - torch_tensor(matrix(rep(c(1,4), each = 2), ncol = 2, byrow=TRUE)))
    #> torch_tensor -#> 0 1 -#> 1 0 -#> [ CPUBoolType{2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_neg.html b/docs/reference/torch_neg.html deleted file mode 100644 index 7300b45ce..000000000 --- a/docs/reference/torch_neg.html +++ /dev/null @@ -1,235 +0,0 @@ - - - - - - - - -Neg — torch_neg • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Neg

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    neg(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the negative of the elements of input.

    -

    $$ - \mbox{out} = -1 \times \mbox{input} -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(5)) -a
    #> torch_tensor -#> 0.3160 -#> -0.4731 -#> 0.1641 -#> 0.6355 -#> 0.2480 -#> [ CPUFloatType{5} ]
    torch_neg(a)
    #> torch_tensor -#> -0.3160 -#> 0.4731 -#> -0.1641 -#> -0.6355 -#> -0.2480 -#> [ CPUFloatType{5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_nonzero.html b/docs/reference/torch_nonzero.html deleted file mode 100644 index 6ce09e354..000000000 --- a/docs/reference/torch_nonzero.html +++ /dev/null @@ -1,254 +0,0 @@ - - - - - - - - -Nonzero — torch_nonzero • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Nonzero

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (LongTensor, optional) the output tensor containing indices

    - -

    Note

    - - -
    [`torch_nonzero(..., as_tuple=False) &lt;torch.nonzero&gt;`] (default) returns a
    -2-D tensor where each row is the index for a nonzero value.
    -
    -[`torch_nonzero(..., as_tuple=True) &lt;torch.nonzero&gt;`] returns a tuple of 1-D
    -index tensors, allowing for advanced indexing, so ``x[x.nonzero(as_tuple=True)]``
    -gives all nonzero values of tensor ``x``. Of the returned tuple, each index tensor
    -contains nonzero indices for a certain dimension.
    -
    -See below for more details on the two behaviors.
    -
    - -

    nonzero(input, *, out=None, as_tuple=False) -> LongTensor or tuple of LongTensors

    - - - - -

    When as_tuple is False (default):

    -

    Returns a tensor containing the indices of all non-zero elements of -input. Each row in the result contains the indices of a non-zero -element in input. The result is sorted lexicographically, with -the last index changing the fastest (C-style).

    -

    If input has \(n\) dimensions, then the resulting indices tensor -out is of size \((z \times n)\), where \(z\) is the total number of -non-zero elements in the input tensor.

    -

    When as_tuple is True:

    -

    Returns a tuple of 1-D tensors, one for each dimension in input, -each containing the indices (in that dimension) of all non-zero elements of -input .

    -

    If input has \(n\) dimensions, then the resulting tuple contains \(n\) -tensors of size \(z\), where \(z\) is the total number of -non-zero elements in the input tensor.

    -

    As a special case, when input has zero dimensions and a nonzero scalar -value, it is treated as a one-dimensional tensor with one element.

    - -

    Examples

    -
    # \dontrun{ - -torch_nonzero(torch_tensor(c(1, 1, 1, 0, 1)))
    #> torch_tensor -#> 0 -#> 1 -#> 2 -#> 4 -#> [ CPULongType{4,1} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_norm.html b/docs/reference/torch_norm.html deleted file mode 100644 index 4bce07336..000000000 --- a/docs/reference/torch_norm.html +++ /dev/null @@ -1,246 +0,0 @@ - - - - - - - - -Norm — torch_norm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Norm

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor

    p

    (int, float, inf, -inf, 'fro', 'nuc', optional) the order of norm. Default: 'fro' The following norms can be calculated: ===== ============================ ========================== ord matrix norm vector norm ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- 'nuc' nuclear norm -- Other as vec norm when dim is None sum(abs(x)ord)(1./ord) ===== ============================ ==========================

    dim

    (int, 2-tuple of ints, 2-list of ints, optional) If it is an int, vector norm will be calculated, if it is 2-tuple of ints, matrix norm will be calculated. If the value is None, matrix norm will be calculated when the input tensor only has two dimensions, vector norm will be calculated when the input tensor only has one dimension. If the input tensor has more than two dimensions, the vector norm will be applied to last dimension.

    keepdim

    (bool, optional) whether the output tensors have dim retained or not. Ignored if dim = None and out = None. Default: False

    out

    (Tensor, optional) the output tensor. Ignored if dim = None and out = None.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to 'dtype' while performing the operation. Default: None.

    - -

    TEST

    - - - - -

    Returns the matrix norm or vector norm of a given tensor.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_arange(0, 9, dtype = torch_float()) -b = a$reshape(list(3, 3)) -torch_norm(a)
    #> torch_tensor -#> 14.2829 -#> [ CPUFloatType{} ]
    torch_norm(b)
    #> torch_tensor -#> 14.2829 -#> [ CPUFloatType{} ]
    torch_norm(a, Inf)
    #> torch_tensor -#> 8 -#> [ CPUFloatType{} ]
    torch_norm(b, Inf)
    #> torch_tensor -#> 8 -#> [ CPUFloatType{} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_normal.html b/docs/reference/torch_normal.html deleted file mode 100644 index c99cfa0b7..000000000 --- a/docs/reference/torch_normal.html +++ /dev/null @@ -1,260 +0,0 @@ - - - - - - - - -Normal — torch_normal • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Normal

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    mean

    (Tensor) the tensor of per-element means

    std

    (Tensor) the tensor of per-element standard deviations

    generator

    (torch.Generator, optional) a pseudorandom number generator for sampling

    out

    (Tensor, optional) the output tensor.

    size

    (int...) a sequence of integers defining the shape of the output tensor.

    - -

    Note

    - -

    When the shapes do not match, the shape of mean -is used as the shape for the returned output tensor

    -

    normal(mean, std, *, generator=None, out=None) -> Tensor

    - - - - -

    Returns a tensor of random numbers drawn from separate normal distributions -whose mean and standard deviation are given.

    -

    The mean is a tensor with the mean of -each output element's normal distribution

    -

    The std is a tensor with the standard deviation of -each output element's normal distribution

    -

    The shapes of mean and std don't need to match, but the -total number of elements in each tensor need to be the same.

    -

    normal(mean=0.0, std, out=None) -> Tensor

    - - - - -

    Similar to the function above, but the means are shared among all drawn -elements.

    -

    normal(mean, std=1.0, out=None) -> Tensor

    - - - - -

    Similar to the function above, but the standard-deviations are shared among -all drawn elements.

    -

    normal(mean, std, size, *, out=None) -> Tensor

    - - - - -

    Similar to the function above, but the means and standard deviations are shared -among all drawn elements. The resulting tensor has size given by size.

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_ones.html b/docs/reference/torch_ones.html deleted file mode 100644 index 550be18be..000000000 --- a/docs/reference/torch_ones.html +++ /dev/null @@ -1,245 +0,0 @@ - - - - - - - - -Ones — torch_ones • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Ones

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    size

    (int...) a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type).

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    ones(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Returns a tensor filled with the scalar value 1, with the shape defined -by the variable argument size.

    - -

    Examples

    -
    # \dontrun{ - -torch_ones(c(2, 3))
    #> torch_tensor -#> 1 1 1 -#> 1 1 1 -#> [ CPUFloatType{2,3} ]
    torch_ones(c(5))
    #> torch_tensor -#> 1 -#> 1 -#> 1 -#> 1 -#> 1 -#> [ CPUFloatType{5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_ones_like.html b/docs/reference/torch_ones_like.html deleted file mode 100644 index b469f101e..000000000 --- a/docs/reference/torch_ones_like.html +++ /dev/null @@ -1,248 +0,0 @@ - - - - - - - - -Ones_like — torch_ones_like • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Ones_like

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the size of input will determine size of the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned Tensor. Default: if None, defaults to the dtype of input.

    layout

    (torch.layout, optional) the desired layout of returned tensor. Default: if None, defaults to the layout of input.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, defaults to the device of input.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    memory_format

    (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.

    - -

    ones_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor

    - - - - -

    Returns a tensor filled with the scalar value 1, with the same size as -input. torch_ones_like(input) is equivalent to -torch_ones(input.size(), dtype=input.dtype, layout=input.layout, device=input.device).

    -

    Warning

    - - - -

    As of 0.4, this function does not support an out keyword. As an alternative, -the old torch_ones_like(input, out=output) is equivalent to -torch_ones(input.size(), out=output).

    - -

    Examples

    -
    # \dontrun{ - -input = torch_empty(c(2, 3)) -torch_ones_like(input)
    #> torch_tensor -#> 1 1 1 -#> 1 1 1 -#> [ CPUFloatType{2,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_orgqr.html b/docs/reference/torch_orgqr.html deleted file mode 100644 index d2b07ae4d..000000000 --- a/docs/reference/torch_orgqr.html +++ /dev/null @@ -1,217 +0,0 @@ - - - - - - - - -Orgqr — torch_orgqr • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Orgqr

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the a from torch_geqrf.

    input2

    (Tensor) the tau from torch_geqrf.

    - -

    orgqr(input, input2) -> Tensor

    - - - - -

    Computes the orthogonal matrix Q of a QR factorization, from the (input, input2) -tuple returned by torch_geqrf.

    -

    This directly calls the underlying LAPACK function ?orgqr. -See LAPACK documentation for orgqr_ for further details.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_ormqr.html b/docs/reference/torch_ormqr.html deleted file mode 100644 index f2e374bca..000000000 --- a/docs/reference/torch_ormqr.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Ormqr — torch_ormqr • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Ormqr

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the a from torch_geqrf.

    input2

    (Tensor) the tau from torch_geqrf.

    input3

    (Tensor) the matrix to be multiplied.

    - -

    ormqr(input, input2, input3, left=True, transpose=False) -> Tensor

    - - - - -

    Multiplies mat (given by input3) by the orthogonal Q matrix of the QR factorization -formed by torch_geqrf that is represented by (a, tau) (given by (input, input2)).

    -

    This directly calls the underlying LAPACK function ?ormqr. -See LAPACK documentation for ormqr_ for further details.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_pdist.html b/docs/reference/torch_pdist.html deleted file mode 100644 index 713820670..000000000 --- a/docs/reference/torch_pdist.html +++ /dev/null @@ -1,223 +0,0 @@ - - - - - - - - -Pdist — torch_pdist • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Pdist

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    NA input tensor of shape \(N \times M\).

    p

    NA p value for the p-norm distance to calculate between each vector pair \(\in [0, \infty]\).

    - -

    pdist(input, p=2) -> Tensor

    - - - - -

    Computes the p-norm distance between every pair of row vectors in the input. -This is identical to the upper triangular portion, excluding the diagonal, of -torch_norm(input[:, None] - input, dim=2, p=p). This function will be faster -if the rows are contiguous.

    -

    If input has shape \(N \times M\) then the output will have shape -\(\frac{1}{2} N (N - 1)\).

    -

    This function is equivalent to scipy.spatial.distance.pdist(input, 'minkowski', p=p) if \(p \in (0, \infty)\). When \(p = 0\) it is -equivalent to scipy.spatial.distance.pdist(input, 'hamming') * M. -When \(p = \infty\), the closest scipy function is -scipy.spatial.distance.pdist(xn, lambda x, y: np.abs(x - y).max()).

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_pinverse.html b/docs/reference/torch_pinverse.html deleted file mode 100644 index 6a20d16f0..000000000 --- a/docs/reference/torch_pinverse.html +++ /dev/null @@ -1,257 +0,0 @@ - - - - - - - - -Pinverse — torch_pinverse • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Pinverse

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) The input tensor of size \((*, m, n)\) where \(*\) is zero or more batch dimensions

    rcond

    (float) A floating point value to determine the cutoff for small singular values. Default: 1e-15

    - -

    Note

    - - -
    This method is implemented using the Singular Value Decomposition.
    -
    - -
    The pseudo-inverse is not necessarily a continuous function in the elements of the matrix `[1]`_.
    -Therefore, derivatives are not always existent, and exist for a constant rank only `[2]`_.
    -However, this method is backprop-able due to the implementation by using SVD results, and
    -could be unstable. Double-backward will also be unstable due to the usage of SVD internally.
    -See `~torch.svd` for more details.
    -
    - -

    pinverse(input, rcond=1e-15) -> Tensor

    - - - - -

    Calculates the pseudo-inverse (also known as the Moore-Penrose inverse) of a 2D tensor. -Please look at Moore-Penrose inverse_ for more details

    - -

    Examples

    -
    # \dontrun{ - -input = torch_randn(c(3, 5)) -input
    #> torch_tensor -#> 0.0625 0.0470 -0.6356 1.0166 -0.2998 -#> 0.2736 -0.5027 2.6768 0.3714 0.5533 -#> -0.5951 1.2603 0.2886 0.6099 -1.3339 -#> [ CPUFloatType{3,5} ]
    torch_pinverse(input)
    #> torch_tensor -#> 0.1974 0.0598 -0.1754 -#> -0.2446 -0.0864 0.3409 -#> -0.1949 0.3106 0.1489 -#> 0.8721 0.2108 -0.0062 -#> 0.0375 0.0552 -0.3200 -#> [ CPUFloatType{5,3} ]
    # Batched pinverse example -a = torch_randn(c(2,6,3)) -b = torch_pinverse(a) -torch_matmul(b, a)
    #> torch_tensor -#> (1,.,.) = -#> 1.0000e+00 5.2154e-08 -1.0431e-07 -#> 2.9802e-08 1.0000e+00 3.7253e-08 -#> 2.9802e-08 -6.7055e-08 1.0000e+00 -#> -#> (2,.,.) = -#> 1.0000e+00 2.3283e-08 1.9372e-07 -#> 2.9802e-08 1.0000e+00 -5.9605e-07 -#> 2.9802e-08 1.5087e-07 1.0000e+00 -#> [ CPUFloatType{2,3,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_pixel_shuffle.html b/docs/reference/torch_pixel_shuffle.html deleted file mode 100644 index 86844bb6a..000000000 --- a/docs/reference/torch_pixel_shuffle.html +++ /dev/null @@ -1,221 +0,0 @@ - - - - - - - - -Pixel_shuffle — torch_pixel_shuffle • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Pixel_shuffle

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor

    upscale_factor

    (int) factor to increase spatial resolution by

    - -

    Rearranges elements in a tensor of shape

    - -

    math:(*, C \times r^2, H, W) to a :

    -

    Rearranges elements in a tensor of shape \((*, C \times r^2, H, W)\) to a -tensor of shape \((*, C, H \times r, W \times r)\).

    -

    See ~torch.nn.PixelShuffle for details.

    - -

    Examples

    -
    # \dontrun{ - -input = torch_randn(c(1, 9, 4, 4)) -output = nnf_pixel_shuffle(input, 3) -print(output$size())
    #> [1] 1 1 12 12
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_poisson.html b/docs/reference/torch_poisson.html deleted file mode 100644 index f6be2c4d6..000000000 --- a/docs/reference/torch_poisson.html +++ /dev/null @@ -1,230 +0,0 @@ - - - - - - - - -Poisson — torch_poisson • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Poisson

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor containing the rates of the Poisson distribution

    generator

    (torch.Generator, optional) a pseudorandom number generator for sampling

    - -

    poisson(input *, generator=None) -> Tensor

    - - - - -

    Returns a tensor of the same size as input with each element -sampled from a Poisson distribution with rate parameter given by the corresponding -element in input i.e.,

    -

    $$ - \mbox{out}_i \sim \mbox{Poisson}(\mbox{input}_i) -$$

    - -

    Examples

    -
    # \dontrun{ - -rates = torch_rand(c(4, 4)) * 5 # rate parameter between 0 and 5 -torch_poisson(rates)
    #> torch_tensor -#> 1 4 0 4 -#> 6 0 4 2 -#> 1 0 1 0 -#> 1 3 3 4 -#> [ CPUFloatType{4,4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_polygamma.html b/docs/reference/torch_polygamma.html deleted file mode 100644 index a9bc10380..000000000 --- a/docs/reference/torch_polygamma.html +++ /dev/null @@ -1,230 +0,0 @@ - - - - - - - - -Polygamma — torch_polygamma • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Polygamma

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    n

    (int) the order of the polygamma function

    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - - -
    This function is not implemented for \eqn{n \geq 2}.
    -
    - -

    polygamma(n, input, out=None) -> Tensor

    - - - - -

    Computes the \(n^{th}\) derivative of the digamma function on input. -\(n \geq 0\) is called the order of the polygamma function.

    -

    $$ - \psi^{(n)}(x) = \frac{d^{(n)}}{dx^{(n)}} \psi(x) -$$

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_pow.html b/docs/reference/torch_pow.html deleted file mode 100644 index ea1963ff6..000000000 --- a/docs/reference/torch_pow.html +++ /dev/null @@ -1,288 +0,0 @@ - - - - - - - - -Pow — torch_pow • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Pow

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    exponent

    (float or tensor) the exponent value

    out

    (Tensor, optional) the output tensor.

    self

    (float) the scalar base value for the power operation

    - -

    pow(input, exponent, out=None) -> Tensor

    - - - - -

    Takes the power of each element in input with exponent and -returns a tensor with the result.

    -

    exponent can be either a single float number or a Tensor -with the same number of elements as input.

    -

    When exponent is a scalar value, the operation applied is:

    -

    $$ - \mbox{out}_i = x_i^{\mbox{exponent}} -$$ -When exponent is a tensor, the operation applied is:

    -

    $$ - \mbox{out}_i = x_i^{\mbox{exponent}_i} -$$ -When exponent is a tensor, the shapes of input -and exponent must be broadcastable .

    -

    pow(self, exponent, out=None) -> Tensor

    - - - - -

    self is a scalar float value, and exponent is a tensor. -The returned tensor out is of the same shape as exponent

    -

    The operation applied is:

    -

    $$ - \mbox{out}_i = \mbox{self} ^ {\mbox{exponent}_i} -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.6638 -#> 0.2351 -#> -0.1040 -#> 0.7775 -#> [ CPUFloatType{4} ]
    torch_pow(a, 2)
    #> torch_tensor -#> 0.4406 -#> 0.0553 -#> 0.0108 -#> 0.6045 -#> [ CPUFloatType{4} ]
    exp = torch_arange(1., 5.) -a = torch_arange(1., 5.) -a
    #> torch_tensor -#> 1 -#> 2 -#> 3 -#> 4 -#> [ CPUFloatType{4} ]
    exp
    #> torch_tensor -#> 1 -#> 2 -#> 3 -#> 4 -#> [ CPUFloatType{4} ]
    torch_pow(a, exp)
    #> torch_tensor -#> 1 -#> 4 -#> 27 -#> 256 -#> [ CPUFloatType{4} ]
    - -exp = torch_arange(1., 5.) -base = 2 -torch_pow(base, exp)
    #> torch_tensor -#> 2 -#> 4 -#> 8 -#> 16 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_prod.html b/docs/reference/torch_prod.html deleted file mode 100644 index 725a21e92..000000000 --- a/docs/reference/torch_prod.html +++ /dev/null @@ -1,254 +0,0 @@ - - - - - - - - -Prod — torch_prod • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Prod

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.

    dim

    (int) the dimension to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not.

    - -

    prod(input, dtype=None) -> Tensor

    - - - - -

    Returns the product of all elements in the input tensor.

    -

    prod(input, dim, keepdim=False, dtype=None) -> Tensor

    - - - - -

    Returns the product of each row of the input tensor in the given -dimension dim.

    -

    If keepdim is True, the output tensor is of the same size -as input except in the dimension dim where it is of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting in -the output tensor having 1 fewer dimension than input.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(1, 3)) -a
    #> torch_tensor -#> 0.0090 0.8878 1.0236 -#> [ CPUFloatType{1,3} ]
    torch_prod(a)
    #> torch_tensor -#> 0.00817587 -#> [ CPUFloatType{} ]
    - -a = torch_randn(c(4, 2)) -a
    #> torch_tensor -#> -1.1330 0.8404 -#> 2.0557 0.2876 -#> 2.0148 1.2245 -#> 0.4052 0.2208 -#> [ CPUFloatType{4,2} ]
    torch_prod(a, 1)
    #> torch_tensor -#> -1.9012 -#> 0.0653 -#> [ CPUFloatType{2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_promote_types.html b/docs/reference/torch_promote_types.html deleted file mode 100644 index d368948a8..000000000 --- a/docs/reference/torch_promote_types.html +++ /dev/null @@ -1,222 +0,0 @@ - - - - - - - - -Promote_types — torch_promote_types • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Promote_types

    -
    - - -

    Arguments

    - - - - - - - - - - -
    type1

    (torch.dtype)

    type2

    (torch.dtype)

    - -

    promote_types(type1, type2) -> dtype

    - - - - -

    Returns the torch_dtype with the smallest size and scalar kind that is -not smaller nor of lower kind than either type1 or type2. See type promotion -documentation for more information on the type -promotion logic.

    - -

    Examples

    -
    # \dontrun{ - -torch_promote_types(torch_int32(), torch_float32())
    #> torch_Float
    torch_promote_types(torch_uint8(), torch_long())
    #> torch_Long
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_qr.html b/docs/reference/torch_qr.html deleted file mode 100644 index ed7e5d585..000000000 --- a/docs/reference/torch_qr.html +++ /dev/null @@ -1,247 +0,0 @@ - - - - - - - - -Qr — torch_qr • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Qr

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor of size \((*, m, n)\) where * is zero or more batch dimensions consisting of matrices of dimension \(m \times n\).

    some

    (bool, optional) Set to True for reduced QR decomposition and False for complete QR decomposition.

    out

    (tuple, optional) tuple of Q and R tensors satisfying input = torch.matmul(Q, R). The dimensions of Q and R are \((*, m, k)\) and \((*, k, n)\) respectively, where \(k = \min(m, n)\) if some: is True and \(k = m\) otherwise.

    - -

    Note

    - -

    precision may be lost if the magnitudes of the elements of input -are large

    -

    While it should always give you a valid decomposition, it may not -give you the same one across platforms - it will depend on your -LAPACK implementation.

    -

    qr(input, some=True, out=None) -> (Tensor, Tensor)

    - - - - -

    Computes the QR decomposition of a matrix or a batch of matrices input, -and returns a namedtuple (Q, R) of tensors such that \(\mbox{input} = Q R\) -with \(Q\) being an orthogonal matrix or batch of orthogonal matrices and -\(R\) being an upper triangular matrix or batch of upper triangular matrices.

    -

    If some is True, then this function returns the thin (reduced) QR factorization. -Otherwise, if some is False, this function returns the complete QR factorization.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_tensor(matrix(c(12., -51, 4, 6, 167, -68, -4, 24, -41), ncol = 3, byrow = TRUE)) -out = torch_qr(a) -q = out[[1]] -r = out[[2]] -torch_mm(q, r)$round()
    #> torch_tensor -#> 12 -51 4 -#> 6 167 -68 -#> -4 24 -41 -#> [ CPUFloatType{3,3} ]
    torch_mm(q$t(), q)$round()
    #> torch_tensor -#> 1 0 0 -#> 0 1 -0 -#> 0 -0 1 -#> [ CPUFloatType{3,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_qscheme.html b/docs/reference/torch_qscheme.html deleted file mode 100644 index 31a9de908..000000000 --- a/docs/reference/torch_qscheme.html +++ /dev/null @@ -1,203 +0,0 @@ - - - - - - - - -Creates the corresponding Scheme object — torch_qscheme • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates the corresponding Scheme object

    -
    - -
    torch_per_channel_affine()
    -
    -torch_per_tensor_affine()
    -
    -torch_per_channel_symmetric()
    -
    -torch_per_tensor_symmetric()
    - - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_quantize_per_channel.html b/docs/reference/torch_quantize_per_channel.html deleted file mode 100644 index ee1313b29..000000000 --- a/docs/reference/torch_quantize_per_channel.html +++ /dev/null @@ -1,239 +0,0 @@ - - - - - - - - -Quantize_per_channel — torch_quantize_per_channel • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Quantize_per_channel

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) float tensor to quantize

    scales

    (Tensor) float 1D tensor of scales to use, size should match input.size(axis)

    zero_points

    (int) integer 1D tensor of offset to use, size should match input.size(axis)

    axis

    (int) dimension on which apply per-channel quantization

    dtype

    (torch.dtype) the desired data type of returned tensor. Has to be one of the quantized dtypes: torch_quint8, torch.qint8, torch.qint32

    - -

    quantize_per_channel(input, scales, zero_points, axis, dtype) -> Tensor

    - - - - -

    Converts a float tensor to per-channel quantized tensor with given scales and zero points.

    - -

    Examples

    -
    # \dontrun{ -x = torch_tensor(matrix(c(-1.0, 0.0, 1.0, 2.0), ncol = 2, byrow = TRUE)) -torch_quantize_per_channel(x, torch_tensor(c(0.1, 0.01)), - torch_tensor(c(10L, 0L)), 0, torch_quint8())
    #> torch_tensor -#> -1 0 -#> 1 2 -#> [ CPUFloatType{2,2} ]
    torch_quantize_per_channel(x, torch_tensor(c(0.1, 0.01)), - torch_tensor(c(10L, 0L)), 0, torch_quint8())$int_repr()
    #> torch_tensor -#> 0 10 -#> 100 200 -#> [ CPUByteType{2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_quantize_per_tensor.html b/docs/reference/torch_quantize_per_tensor.html deleted file mode 100644 index b97f07e78..000000000 --- a/docs/reference/torch_quantize_per_tensor.html +++ /dev/null @@ -1,236 +0,0 @@ - - - - - - - - -Quantize_per_tensor — torch_quantize_per_tensor • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Quantize_per_tensor

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) float tensor to quantize

    scale

    (float) scale to apply in quantization formula

    zero_point

    (int) offset in integer value that maps to float zero

    dtype

    (torch.dtype) the desired data type of returned tensor. Has to be one of the quantized dtypes: torch_quint8, torch.qint8, torch.qint32

    - -

    quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor

    - - - - -

    Converts a float tensor to quantized tensor with given scale and zero point.

    - -

    Examples

    -
    # \dontrun{ -torch_quantize_per_tensor(torch_tensor(c(-1.0, 0.0, 1.0, 2.0)), 0.1, 10, torch_quint8())
    #> torch_tensor -#> -1 -#> 0 -#> 1 -#> 2 -#> [ CPUFloatType{4} ]
    torch_quantize_per_tensor(torch_tensor(c(-1.0, 0.0, 1.0, 2.0)), 0.1, 10, torch_quint8())$int_repr()
    #> torch_tensor -#> 0 -#> 10 -#> 20 -#> 30 -#> [ CPUByteType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_rand.html b/docs/reference/torch_rand.html deleted file mode 100644 index ab2f26082..000000000 --- a/docs/reference/torch_rand.html +++ /dev/null @@ -1,245 +0,0 @@ - - - - - - - - -Rand — torch_rand • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Rand

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    size

    (int...) a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type).

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    rand(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Returns a tensor filled with random numbers from a uniform distribution -on the interval \([0, 1)\)

    -

    The shape of the tensor is defined by the variable argument size.

    - -

    Examples

    -
    # \dontrun{ - -torch_rand(4)
    #> torch_tensor -#> 0.8391 -#> 0.5766 -#> 0.5790 -#> 0.0523 -#> [ CPUFloatType{4} ]
    torch_rand(c(2, 3))
    #> torch_tensor -#> 0.9712 0.5669 0.1881 -#> 0.4962 0.3052 0.8577 -#> [ CPUFloatType{2,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_rand_like.html b/docs/reference/torch_rand_like.html deleted file mode 100644 index acfa0a879..000000000 --- a/docs/reference/torch_rand_like.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Rand_like — torch_rand_like • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Rand_like

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the size of input will determine size of the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned Tensor. Default: if None, defaults to the dtype of input.

    layout

    (torch.layout, optional) the desired layout of returned tensor. Default: if None, defaults to the layout of input.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, defaults to the device of input.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    memory_format

    (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.

    - -

    rand_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor

    - - - - -

    Returns a tensor with the same size as input that is filled with -random numbers from a uniform distribution on the interval \([0, 1)\). -torch_rand_like(input) is equivalent to -torch_rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device).

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_randint.html b/docs/reference/torch_randint.html deleted file mode 100644 index 497200d06..000000000 --- a/docs/reference/torch_randint.html +++ /dev/null @@ -1,263 +0,0 @@ - - - - - - - - -Randint — torch_randint • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Randint

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    low

    (int, optional) Lowest integer to be drawn from the distribution. Default: 0.

    high

    (int) One above the highest integer to be drawn from the distribution.

    size

    (tuple) a tuple defining the shape of the output tensor.

    generator

    (torch.Generator, optional) a pseudorandom number generator for sampling

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type).

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    randint(low=0, high, size, *, generator=None, out=None, \

    - - - - -

    dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    -

    Returns a tensor filled with random integers generated uniformly -between low (inclusive) and high (exclusive).

    -

    The shape of the tensor is defined by the variable argument size.

    -

    .. note: -With the global dtype default (torch_float32), this function returns -a tensor with dtype torch_int64.

    - -

    Examples

    -
    # \dontrun{ - -torch_randint(3, 5, list(3))
    #> torch_tensor -#> 4 -#> 3 -#> 3 -#> [ CPUFloatType{3} ]
    torch_randint(0, 10, size = list(2, 2))
    #> torch_tensor -#> 0 7 -#> 8 6 -#> [ CPUFloatType{2,2} ]
    torch_randint(3, 10, list(2, 2))
    #> torch_tensor -#> 8 8 -#> 3 5 -#> [ CPUFloatType{2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_randint_like.html b/docs/reference/torch_randint_like.html deleted file mode 100644 index e4b6cb5b5..000000000 --- a/docs/reference/torch_randint_like.html +++ /dev/null @@ -1,244 +0,0 @@ - - - - - - - - -Randint_like — torch_randint_like • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Randint_like

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the size of input will determine size of the output tensor.

    low

    (int, optional) Lowest integer to be drawn from the distribution. Default: 0.

    high

    (int) One above the highest integer to be drawn from the distribution.

    dtype

    (torch.dtype, optional) the desired data type of returned Tensor. Default: if None, defaults to the dtype of input.

    layout

    (torch.layout, optional) the desired layout of returned tensor. Default: if None, defaults to the layout of input.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, defaults to the device of input.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    memory_format

    (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.

    - -

    randint_like(input, low=0, high, dtype=None, layout=torch.strided, device=None, requires_grad=False,

    - - - - -

    memory_format=torch.preserve_format) -> Tensor

    -

    Returns a tensor with the same shape as Tensor input filled with -random integers generated uniformly between low (inclusive) and -high (exclusive).

    -

    .. note: -With the global dtype default (torch_float32), this function returns -a tensor with dtype torch_int64.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_randn.html b/docs/reference/torch_randn.html deleted file mode 100644 index bd219584d..000000000 --- a/docs/reference/torch_randn.html +++ /dev/null @@ -1,249 +0,0 @@ - - - - - - - - -Randn — torch_randn • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Randn

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    size

    (int...) a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type).

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    randn(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Returns a tensor filled with random numbers from a normal distribution -with mean 0 and variance 1 (also called the standard normal -distribution).

    -

    $$ - \mbox{out}_{i} \sim \mathcal{N}(0, 1) -$$ -The shape of the tensor is defined by the variable argument size.

    - -

    Examples

    -
    # \dontrun{ - -torch_randn(c(4))
    #> torch_tensor -#> -0.5578 -#> -1.6968 -#> -0.0944 -#> -0.7900 -#> [ CPUFloatType{4} ]
    torch_randn(c(2, 3))
    #> torch_tensor -#> -2.1279 1.0919 2.2659 -#> 0.1722 0.1719 -1.1738 -#> [ CPUFloatType{2,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_randn_like.html b/docs/reference/torch_randn_like.html deleted file mode 100644 index e4b94d82a..000000000 --- a/docs/reference/torch_randn_like.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Randn_like — torch_randn_like • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Randn_like

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the size of input will determine size of the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned Tensor. Default: if None, defaults to the dtype of input.

    layout

    (torch.layout, optional) the desired layout of returned tensor. Default: if None, defaults to the layout of input.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, defaults to the device of input.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    memory_format

    (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.

    - -

    randn_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor

    - - - - -

    Returns a tensor with the same size as input that is filled with -random numbers from a normal distribution with mean 0 and variance 1. -torch_randn_like(input) is equivalent to -torch_randn(input.size(), dtype=input.dtype, layout=input.layout, device=input.device).

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_randperm.html b/docs/reference/torch_randperm.html deleted file mode 100644 index d61a9b411..000000000 --- a/docs/reference/torch_randperm.html +++ /dev/null @@ -1,240 +0,0 @@ - - - - - - - - -Randperm — torch_randperm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Randperm

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    n

    (int) the upper bound (exclusive)

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: torch_int64.

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    randperm(n, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False) -> LongTensor

    - - - - -

    Returns a random permutation of integers from 0 to n - 1.

    - -

    Examples

    -
    # \dontrun{ - -torch_randperm(4)
    #> torch_tensor -#> 0 -#> 2 -#> 1 -#> 3 -#> [ CPULongType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_range.html b/docs/reference/torch_range.html deleted file mode 100644 index bff10a710..000000000 --- a/docs/reference/torch_range.html +++ /dev/null @@ -1,264 +0,0 @@ - - - - - - - - -Range — torch_range • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Range

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    start

    (float) the starting value for the set of points. Default: 0.

    end

    (float) the ending value for the set of points

    step

    (float) the gap between each pair of adjacent points. Default: 1.

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or stop are floating-point, the dtype is inferred to be the default dtype, see ~torch.get_default_dtype. Otherwise, the dtype is inferred to be torch.int64.

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    range(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Returns a 1-D tensor of size \(\left\lfloor \frac{\mbox{end} - \mbox{start}}{\mbox{step}} \right\rfloor + 1\) -with values from start to end with step step. Step is -the gap between two values in the tensor.

    -

    $$ - \mbox{out}_{i+1} = \mbox{out}_i + \mbox{step}. -$$

    -

    Warning

    - - - -

    This function is deprecated in favor of torch_arange.

    - -

    Examples

    -
    # \dontrun{ - -torch_range(1, 4)
    #> Warning: This function is deprecated in favor of torch_arange.
    #> torch_tensor -#> 1 -#> 2 -#> 3 -#> [ CPUFloatType{3} ]
    torch_range(1, 4, 0.5)
    #> Warning: This function is deprecated in favor of torch_arange.
    #> torch_tensor -#> 1.0000 -#> 1.5000 -#> 2.0000 -#> 2.5000 -#> 3.0000 -#> 3.5000 -#> [ CPUFloatType{6} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_real.html b/docs/reference/torch_real.html deleted file mode 100644 index 542b16ad2..000000000 --- a/docs/reference/torch_real.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Real — torch_real • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Real

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    real(input, out=None) -> Tensor

    - - - - -

    Returns the real part of the input tensor. If -input is a real (non-complex) tensor, this function just -returns it.

    -

    Warning

    - - - -

    Not yet implemented for complex tensors.

    -

    $$ - \mbox{out}_{i} = real(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_reciprocal.html b/docs/reference/torch_reciprocal.html deleted file mode 100644 index 14716d7dd..000000000 --- a/docs/reference/torch_reciprocal.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Reciprocal — torch_reciprocal • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Reciprocal

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    reciprocal(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the reciprocal of the elements of input

    -

    $$ - \mbox{out}_{i} = \frac{1}{\mbox{input}_{i}} -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.6585 -#> 0.2569 -#> 1.4761 -#> -0.0839 -#> [ CPUFloatType{4} ]
    torch_reciprocal(a)
    #> torch_tensor -#> -1.5185 -#> 3.8925 -#> 0.6775 -#> -11.9170 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_reduction.html b/docs/reference/torch_reduction.html deleted file mode 100644 index 0ee7d2894..000000000 --- a/docs/reference/torch_reduction.html +++ /dev/null @@ -1,201 +0,0 @@ - - - - - - - - -Creates the reduction objet — torch_reduction • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Creates the reduction objet

    -
    - -
    torch_reduction_sum()
    -
    -torch_reduction_mean()
    -
    -torch_reduction_none()
    - - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_relu_.html b/docs/reference/torch_relu_.html deleted file mode 100644 index d284eac5d..000000000 --- a/docs/reference/torch_relu_.html +++ /dev/null @@ -1,202 +0,0 @@ - - - - - - - - -Relu_ — torch_relu_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Relu_

    -
    - - - -

    relu_(input) -> Tensor

    - - - - -

    In-place version of torch_relu.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_remainder.html b/docs/reference/torch_remainder.html deleted file mode 100644 index 9517e58f3..000000000 --- a/docs/reference/torch_remainder.html +++ /dev/null @@ -1,240 +0,0 @@ - - - - - - - - -Remainder — torch_remainder • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Remainder

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the dividend

    other

    (Tensor or float) the divisor that may be either a number or a Tensor of the same shape as the dividend

    out

    (Tensor, optional) the output tensor.

    - -

    remainder(input, other, out=None) -> Tensor

    - - - - -

    Computes the element-wise remainder of division.

    -

    The divisor and dividend may contain both for integer and floating point -numbers. The remainder has the same sign as the divisor.

    -

    When other is a tensor, the shapes of input and -other must be broadcastable .

    - -

    Examples

    -
    # \dontrun{ - -torch_remainder(torch_tensor(c(-3., -2, -1, 1, 2, 3)), 2)
    #> torch_tensor -#> 1 -#> 0 -#> 1 -#> 1 -#> 0 -#> 1 -#> [ CPUFloatType{6} ]
    torch_remainder(torch_tensor(c(1., 2, 3, 4, 5)), 1.5)
    #> torch_tensor -#> 1.0000 -#> 0.5000 -#> 0.0000 -#> 1.0000 -#> 0.5000 -#> [ CPUFloatType{5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_renorm.html b/docs/reference/torch_renorm.html deleted file mode 100644 index ce1b88c07..000000000 --- a/docs/reference/torch_renorm.html +++ /dev/null @@ -1,252 +0,0 @@ - - - - - - - - -Renorm — torch_renorm • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Renorm

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    p

    (float) the power for the norm computation

    dim

    (int) the dimension to slice over to get the sub-tensors

    maxnorm

    (float) the maximum norm to keep each sub-tensor under

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - -

    If the norm of a row is lower than maxnorm, the row is unchanged

    -

    renorm(input, p, dim, maxnorm, out=None) -> Tensor

    - - - - -

    Returns a tensor where each sub-tensor of input along dimension -dim is normalized such that the p-norm of the sub-tensor is lower -than the value maxnorm

    - -

    Examples

    -
    # \dontrun{ -x = torch_ones(c(3, 3)) -x[2,]$fill_(2)
    #> torch_tensor -#> 2 -#> 2 -#> 2 -#> [ CPUFloatType{3} ]
    x[3,]$fill_(3)
    #> torch_tensor -#> 3 -#> 3 -#> 3 -#> [ CPUFloatType{3} ]
    x
    #> torch_tensor -#> 1 1 1 -#> 2 2 2 -#> 3 3 3 -#> [ CPUFloatType{3,3} ]
    torch_renorm(x, 1, 1, 5)
    #> torch_tensor -#> 1.0000 1.0000 1.0000 -#> 1.6667 1.6667 1.6667 -#> 1.6667 1.6667 1.6667 -#> [ CPUFloatType{3,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_repeat_interleave.html b/docs/reference/torch_repeat_interleave.html deleted file mode 100644 index c0b945915..000000000 --- a/docs/reference/torch_repeat_interleave.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Repeat_interleave — torch_repeat_interleave • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Repeat_interleave

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    repeats

    (Tensor or int) The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.

    dim

    (int, optional) The dimension along which to repeat values. By default, use the flattened input array, and return a flat output array.

    - -

    repeat_interleave(input, repeats, dim=None) -> Tensor

    - - - - -

    Repeat elements of a tensor.

    -

    Warning

    - - -
    This is different from `torch_Tensor.repeat` but similar to ``numpy.repeat``.
    -
    - -

    repeat_interleave(repeats) -> Tensor

    - - - - -

    If the repeats is tensor([n1, n2, n3, ...]), then the output will be -tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...]) where 0 appears n1 times, -1 appears n2 times, 2 appears n3 times, etc.

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_reshape.html b/docs/reference/torch_reshape.html deleted file mode 100644 index d149b6c0f..000000000 --- a/docs/reference/torch_reshape.html +++ /dev/null @@ -1,236 +0,0 @@ - - - - - - - - -Reshape — torch_reshape • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Reshape

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the tensor to be reshaped

    shape

    (tuple of ints) the new shape

    - -

    reshape(input, shape) -> Tensor

    - - - - -

    Returns a tensor with the same data and number of elements as input, -but with the specified shape. When possible, the returned tensor will be a view -of input. Otherwise, it will be a copy. Contiguous inputs and inputs -with compatible strides can be reshaped without copying, but you should not -depend on the copying vs. viewing behavior.

    -

    See torch_Tensor.view on when it is possible to return a view.

    -

    A single dimension may be -1, in which case it's inferred from the remaining -dimensions and the number of elements in input.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_arange(0, 4) -torch_reshape(a, list(2, 2))
    #> torch_tensor -#> 0 1 -#> 2 3 -#> [ CPUFloatType{2,2} ]
    b = torch_tensor(matrix(c(0, 1, 2, 3), ncol = 2, byrow=TRUE)) -torch_reshape(b, list(-1))
    #> torch_tensor -#> 0 -#> 1 -#> 2 -#> 3 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_result_type.html b/docs/reference/torch_result_type.html deleted file mode 100644 index a1f275a04..000000000 --- a/docs/reference/torch_result_type.html +++ /dev/null @@ -1,222 +0,0 @@ - - - - - - - - -Result_type — torch_result_type • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Result_type

    -
    - - -

    Arguments

    - - - - - - - - - - -
    tensor1

    (Tensor or Number) an input tensor or number

    tensor2

    (Tensor or Number) an input tensor or number

    - -

    result_type(tensor1, tensor2) -> dtype

    - - - - -

    Returns the torch_dtype that would result from performing an arithmetic -operation on the provided input tensors. See type promotion documentation -for more information on the type promotion logic.

    - -

    Examples

    -
    # \dontrun{ - -torch_result_type(tensor = torch_tensor(c(1, 2), dtype=torch_int()), 1.0)
    #> torch_Float
    # torch_result_type(tensor = torch_tensor(c(1, 2), dtype=torch_uint8()), torch_tensor(1)) -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_rfft.html b/docs/reference/torch_rfft.html deleted file mode 100644 index ffc88d168..000000000 --- a/docs/reference/torch_rfft.html +++ /dev/null @@ -1,324 +0,0 @@ - - - - - - - - -Rfft — torch_rfft • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Rfft

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor of at least signal_ndim dimensions

    signal_ndim

    (int) the number of dimensions in each signal. signal_ndim can only be 1, 2 or 3

    normalized

    (bool, optional) controls whether to return normalized results. Default: False

    onesided

    (bool, optional) controls whether to return half of results to avoid redundancy. Default: True

    - -

    Note

    - - -
    For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
    -repeatedly running FFT methods on tensors of same geometry with same
    -configuration. See cufft-plan-cache for more details on how to
    -monitor and control the cache.
    -
    - -

    rfft(input, signal_ndim, normalized=False, onesided=True) -> Tensor

    - - - - -

    Real-to-complex Discrete Fourier Transform

    -

    This method computes the real-to-complex discrete Fourier transform. It is -mathematically equivalent with torch_fft with differences only in -formats of the input and output.

    -

    This method supports 1D, 2D and 3D real-to-complex transforms, indicated -by signal_ndim. input must be a tensor with at least -signal_ndim dimensions with optionally arbitrary number of leading batch -dimensions. If normalized is set to True, this normalizes the result -by dividing it with \(\sqrt{\prod_{i=1}^K N_i}\) so that the operator is -unitary, where \(N_i\) is the size of signal dimension \(i\).

    -

    The real-to-complex Fourier transform results follow conjugate symmetry:

    -

    $$ - X[\omega_1, \dots, \omega_d] = X^*[N_1 - \omega_1, \dots, N_d - \omega_d], -$$ -where the index arithmetic is computed modulus the size of the corresponding -dimension, \(\ ^*\) is the conjugate operator, and -\(d\) = signal_ndim. onesided flag controls whether to avoid -redundancy in the output results. If set to True (default), the output will -not be full complex result of shape \((*, 2)\), where \(*\) is the shape -of input, but instead the last dimension will be halfed as of size -\(\lfloor \frac{N_d}{2} \rfloor + 1\).

    -

    The inverse of this function is torch_irfft.

    -

    Warning

    - - - -

    For CPU tensors, this method is currently only available with MKL. Use -torch_backends.mkl.is_available to check if MKL is installed.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(5, 5)) -torch_rfft(x, 2)
    #> torch_tensor -#> (1,.,.) = -#> 4.9202 0.0000 -#> 2.9093 2.7036 -#> 1.8227 -4.8232 -#> -#> (2,.,.) = -#> -2.0160 4.4730 -#> 1.8297 -3.0301 -#> 0.4639 0.6830 -#> -#> (3,.,.) = -#> -6.8659 1.3907 -#> -5.6917 -4.3527 -#> 2.7115 0.4562 -#> -#> (4,.,.) = -#> -6.8659 -1.3907 -#> -3.4394 -1.4155 -#> 4.7454 -1.6532 -#> -#> (5,.,.) = -#> -2.0160 -4.4730 -#> -1.0448 5.6595 -#> 5.7855 -3.2515 -#> [ CPUFloatType{5,3,2} ]
    torch_rfft(x, 2, onesided=FALSE)
    #> torch_tensor -#> (1,.,.) = -#> 4.9202 0.0000 -#> 2.9093 2.7036 -#> 1.8227 -4.8232 -#> 1.8227 4.8232 -#> 2.9093 -2.7036 -#> -#> (2,.,.) = -#> -2.0160 4.4730 -#> 1.8297 -3.0301 -#> 0.4639 0.6830 -#> 5.7855 3.2515 -#> -1.0448 -5.6595 -#> -#> (3,.,.) = -#> -6.8659 1.3907 -#> -5.6917 -4.3527 -#> 2.7115 0.4562 -#> 4.7454 1.6532 -#> -3.4394 1.4155 -#> -#> (4,.,.) = -#> -6.8659 -1.3907 -#> -3.4394 -1.4155 -#> 4.7454 -1.6532 -#> 2.7115 -0.4562 -#> -5.6917 4.3527 -#> -#> (5,.,.) = -#> -2.0160 -4.4730 -#> -1.0448 5.6595 -#> 5.7855 -3.2515 -#> 0.4639 -0.6830 -#> 1.8297 3.0301 -#> [ CPUFloatType{5,5,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_roll.html b/docs/reference/torch_roll.html deleted file mode 100644 index 5867dff58..000000000 --- a/docs/reference/torch_roll.html +++ /dev/null @@ -1,247 +0,0 @@ - - - - - - - - -Roll — torch_roll • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Roll

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    shifts

    (int or tuple of ints) The number of places by which the elements of the tensor are shifted. If shifts is a tuple, dims must be a tuple of the same size, and each dimension will be rolled by the corresponding value

    dims

    (int or tuple of ints) Axis along which to roll

    - -

    roll(input, shifts, dims=None) -> Tensor

    - - - - -

    Roll the tensor along the given dimension(s). Elements that are shifted beyond the -last position are re-introduced at the first position. If a dimension is not -specified, the tensor will be flattened before rolling and then restored -to the original shape.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_tensor(c(1, 2, 3, 4, 5, 6, 7, 8))$view(c(4, 2)) -x
    #> torch_tensor -#> 1 2 -#> 3 4 -#> 5 6 -#> 7 8 -#> [ CPUFloatType{4,2} ]
    torch_roll(x, 1, 1)
    #> torch_tensor -#> 7 8 -#> 1 2 -#> 3 4 -#> 5 6 -#> [ CPUFloatType{4,2} ]
    torch_roll(x, -1, 1)
    #> torch_tensor -#> 3 4 -#> 5 6 -#> 7 8 -#> 1 2 -#> [ CPUFloatType{4,2} ]
    torch_roll(x, shifts=list(2, 1), dims=list(1, 2))
    #> torch_tensor -#> 6 5 -#> 8 7 -#> 2 1 -#> 4 3 -#> [ CPUFloatType{4,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_rot90.html b/docs/reference/torch_rot90.html deleted file mode 100644 index 09927b2d5..000000000 --- a/docs/reference/torch_rot90.html +++ /dev/null @@ -1,248 +0,0 @@ - - - - - - - - -Rot90 — torch_rot90 • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Rot90

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    k

    (int) number of times to rotate

    dims

    (a list or tuple) axis to rotate

    - -

    rot90(input, k, dims) -> Tensor

    - - - - -

    Rotate a n-D tensor by 90 degrees in the plane specified by dims axis. -Rotation direction is from the first towards the second axis if k > 0, and from the second towards the first for k < 0.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_arange(0, 4)$view(c(2, 2)) -x
    #> torch_tensor -#> 0 1 -#> 2 3 -#> [ CPUFloatType{2,2} ]
    torch_rot90(x, 1, c(1, 2))
    #> torch_tensor -#> 1 3 -#> 0 2 -#> [ CPUFloatType{2,2} ]
    x = torch_arange(0, 8)$view(c(2, 2, 2)) -x
    #> torch_tensor -#> (1,.,.) = -#> 0 1 -#> 2 3 -#> -#> (2,.,.) = -#> 4 5 -#> 6 7 -#> [ CPUFloatType{2,2,2} ]
    torch_rot90(x, 1, c(1, 2))
    #> torch_tensor -#> (1,.,.) = -#> 2 3 -#> 6 7 -#> -#> (2,.,.) = -#> 0 1 -#> 4 5 -#> [ CPUFloatType{2,2,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_round.html b/docs/reference/torch_round.html deleted file mode 100644 index 002ae3df9..000000000 --- a/docs/reference/torch_round.html +++ /dev/null @@ -1,231 +0,0 @@ - - - - - - - - -Round — torch_round • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Round

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    round(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with each of the elements of input rounded -to the closest integer.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 0.8911 -#> -0.2131 -#> -0.4903 -#> -0.0724 -#> [ CPUFloatType{4} ]
    torch_round(a)
    #> torch_tensor -#> 1 -#> -0 -#> -0 -#> -0 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_rrelu_.html b/docs/reference/torch_rrelu_.html deleted file mode 100644 index dc2001c65..000000000 --- a/docs/reference/torch_rrelu_.html +++ /dev/null @@ -1,202 +0,0 @@ - - - - - - - - -Rrelu_ — torch_rrelu_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Rrelu_

    -
    - - - -

    rrelu_(input, lower=1./8, upper=1./3, training=False) -> Tensor

    - - - - -

    In-place version of torch_rrelu.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_rsqrt.html b/docs/reference/torch_rsqrt.html deleted file mode 100644 index fc8f39b62..000000000 --- a/docs/reference/torch_rsqrt.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Rsqrt — torch_rsqrt • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Rsqrt

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    rsqrt(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the reciprocal of the square-root of each of -the elements of input.

    -

    $$ - \mbox{out}_{i} = \frac{1}{\sqrt{\mbox{input}_{i}}} -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 0.5826 -#> -0.3344 -#> -0.2779 -#> -1.1775 -#> [ CPUFloatType{4} ]
    torch_rsqrt(a)
    #> torch_tensor -#> 1.3101 -#> nan -#> nan -#> nan -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_save.html b/docs/reference/torch_save.html deleted file mode 100644 index f735bb755..000000000 --- a/docs/reference/torch_save.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Saves an object to a disk file. — torch_save • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    This function is experimental, don't use for long -term storage.

    -
    - -
    torch_save(obj, path, ...)
    - -

    Arguments

    - - - - - - - - - - - - - - -
    obj

    the saved object

    path

    a connection or the name of the file to save.

    ...

    not currently used.

    - -

    See also

    - -

    Other torch_save: -torch_load()

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_selu_.html b/docs/reference/torch_selu_.html deleted file mode 100644 index adb79c4eb..000000000 --- a/docs/reference/torch_selu_.html +++ /dev/null @@ -1,202 +0,0 @@ - - - - - - - - -Selu_ — torch_selu_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Selu_

    -
    - - - -

    selu_(input) -> Tensor

    - - - - -

    In-place version of toch_selu.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_sigmoid.html b/docs/reference/torch_sigmoid.html deleted file mode 100644 index 9629d3032..000000000 --- a/docs/reference/torch_sigmoid.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Sigmoid — torch_sigmoid • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Sigmoid

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    sigmoid(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the sigmoid of the elements of input.

    -

    $$ - \mbox{out}_{i} = \frac{1}{1 + e^{-\mbox{input}_{i}}} -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 2.1600 -#> -1.3253 -#> -0.1559 -#> 0.1856 -#> [ CPUFloatType{4} ]
    torch_sigmoid(a)
    #> torch_tensor -#> 0.8966 -#> 0.2099 -#> 0.4611 -#> 0.5463 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_sign.html b/docs/reference/torch_sign.html deleted file mode 100644 index 9f51cbf1b..000000000 --- a/docs/reference/torch_sign.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Sign — torch_sign • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Sign

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    sign(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the signs of the elements of input.

    -

    $$ - \mbox{out}_{i} = \mbox{sgn}(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_tensor(c(0.7, -1.2, 0., 2.3)) -a
    #> torch_tensor -#> 0.7000 -#> -1.2000 -#> 0.0000 -#> 2.3000 -#> [ CPUFloatType{4} ]
    torch_sign(a)
    #> torch_tensor -#> 1 -#> -1 -#> 0 -#> 1 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_sin.html b/docs/reference/torch_sin.html deleted file mode 100644 index fdaa9c5db..000000000 --- a/docs/reference/torch_sin.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Sin — torch_sin • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Sin

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    sin(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the sine of the elements of input.

    -

    $$ - \mbox{out}_{i} = \sin(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 0.5115 -#> 0.7241 -#> -0.6876 -#> -0.3453 -#> [ CPUFloatType{4} ]
    torch_sin(a)
    #> torch_tensor -#> 0.4895 -#> 0.6625 -#> -0.6347 -#> -0.3384 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_sinh.html b/docs/reference/torch_sinh.html deleted file mode 100644 index 1f9c1b918..000000000 --- a/docs/reference/torch_sinh.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Sinh — torch_sinh • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Sinh

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    sinh(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the hyperbolic sine of the elements of -input.

    -

    $$ - \mbox{out}_{i} = \sinh(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 0.7504 -#> -0.3593 -#> -0.6244 -#> -1.7192 -#> [ CPUFloatType{4} ]
    torch_sinh(a)
    #> torch_tensor -#> 0.8228 -#> -0.3671 -#> -0.6658 -#> -2.7003 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_slogdet.html b/docs/reference/torch_slogdet.html deleted file mode 100644 index 4fc6eb514..000000000 --- a/docs/reference/torch_slogdet.html +++ /dev/null @@ -1,245 +0,0 @@ - - - - - - - - -Slogdet — torch_slogdet • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Slogdet

    -
    - - -

    Arguments

    - - - - - - -
    input

    (Tensor) the input tensor of size (*, n, n) where * is zero or more batch dimensions.

    - -

    Note

    - - -
    If ``input`` has zero determinant, this returns ``(0, -inf)``.
    -
    - -
    Backward through `slogdet` internally uses SVD results when `input`
    -is not invertible. In this case, double backward through `slogdet`
    -will be unstable in when `input` doesn't have distinct singular values.
    -See `~torch.svd` for details.
    -
    - -

    slogdet(input) -> (Tensor, Tensor)

    - - - - -

    Calculates the sign and log absolute value of the determinant(s) of a square matrix or batches of square matrices.

    - -

    Examples

    -
    # \dontrun{ - -A = torch_randn(c(3, 3)) -A
    #> torch_tensor -#> 0.0461 -1.3909 0.9825 -#> 0.5340 0.3877 -0.2309 -#> 0.3683 1.6290 0.3208 -#> [ CPUFloatType{3,3} ]
    #> torch_tensor -#> 1.094 -#> [ CPUFloatType{} ]
    #> torch_tensor -#> 0.0898445 -#> [ CPUFloatType{} ]
    torch_slogdet(A)
    #> [[1]] -#> torch_tensor -#> 1 -#> [ CPUFloatType{} ] -#> -#> [[2]] -#> torch_tensor -#> 0.0898445 -#> [ CPUFloatType{} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_solve.html b/docs/reference/torch_solve.html deleted file mode 100644 index b29abbc24..000000000 --- a/docs/reference/torch_solve.html +++ /dev/null @@ -1,259 +0,0 @@ - - - - - - - - -Solve — torch_solve • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Solve

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) input matrix \(B\) of size \((*, m, k)\) , where \(*\) is zero or more batch dimensions.

    A

    (Tensor) input square matrix of size \((*, m, m)\), where \(*\) is zero or more batch dimensions.

    out

    ((Tensor, Tensor) optional output tuple.

    - -

    Note

    - - -
    Irrespective of the original strides, the returned matrices
    -`solution` and `LU` will be transposed, i.e. with strides like
    -`B.contiguous().transpose(-1, -2).stride()` and
    -`A.contiguous().transpose(-1, -2).stride()` respectively.
    -
    - -

    torch.solve(input, A, out=None) -> (Tensor, Tensor)

    - - - - -

    This function returns the solution to the system of linear -equations represented by \(AX = B\) and the LU factorization of -A, in order as a namedtuple solution, LU.

    -

    LU contains L and U factors for LU factorization of A.

    -

    torch_solve(B, A) can take in 2D inputs B, A or inputs that are -batches of 2D matrices. If the inputs are batches, then returns -batched outputs solution, LU.

    - -

    Examples

    -
    # \dontrun{ - -A = torch_tensor(rbind(c(6.80, -2.11, 5.66, 5.97, 8.23), - c(-6.05, -3.30, 5.36, -4.44, 1.08), - c(-0.45, 2.58, -2.70, 0.27, 9.04), - c(8.32, 2.71, 4.35, -7.17, 2.14), - c(-9.67, -5.14, -7.26, 6.08, -6.87)))$t() -B = torch_tensor(rbind(c(4.02, 6.19, -8.22, -7.57, -3.03), - c(-1.56, 4.00, -8.67, 1.75, 2.86), - c(9.81, -4.09, -4.57, -8.61, 8.99)))$t() -out = torch_solve(B, A) -X = out[[1]] -LU = out[[2]] -torch_dist(B, torch_mm(A, X))
    #> torch_tensor -#> 7.09771e-06 -#> [ CPUFloatType{} ]
    # Batched solver example -A = torch_randn(c(2, 3, 1, 4, 4)) -B = torch_randn(c(2, 3, 1, 4, 6)) -out = torch_solve(B, A) -X = out[[1]] -LU = out[[2]] -torch_dist(B, A$matmul(X))
    #> torch_tensor -#> 6.14486e-06 -#> [ CPUFloatType{} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_sort.html b/docs/reference/torch_sort.html deleted file mode 100644 index e628801de..000000000 --- a/docs/reference/torch_sort.html +++ /dev/null @@ -1,263 +0,0 @@ - - - - - - - - -Sort — torch_sort • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Sort

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int, optional) the dimension to sort along

    descending

    (bool, optional) controls the sorting order (ascending or descending)

    out

    (tuple, optional) the output tuple of (Tensor, LongTensor) that can be optionally given to be used as output buffers

    - -

    sort(input, dim=-1, descending=False, out=None) -> (Tensor, LongTensor)

    - - - - -

    Sorts the elements of the input tensor along a given dimension -in ascending order by value.

    -

    If dim is not given, the last dimension of the input is chosen.

    -

    If descending is True then the elements are sorted in descending -order by value.

    -

    A namedtuple of (values, indices) is returned, where the values are the -sorted values and indices are the indices of the elements in the original -input tensor.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(3, 4)) -out = torch_sort(x) -out
    #> [[1]] -#> torch_tensor -#> -0.9253 -0.3520 -0.0946 1.1472 -#> -0.6827 0.1674 0.7136 1.4204 -#> -0.4754 -0.0864 0.5561 1.1917 -#> [ CPUFloatType{3,4} ] -#> -#> [[2]] -#> torch_tensor -#> 3 0 1 2 -#> 0 1 2 3 -#> 2 0 3 1 -#> [ CPULongType{3,4} ] -#>
    out = torch_sort(x, 1) -out
    #> [[1]] -#> torch_tensor -#> -0.6827 -0.0946 -0.4754 -0.9253 -#> -0.3520 0.1674 0.7136 0.5561 -#> -0.0864 1.1917 1.1472 1.4204 -#> [ CPUFloatType{3,4} ] -#> -#> [[2]] -#> torch_tensor -#> 1 0 2 0 -#> 0 1 1 2 -#> 2 2 0 1 -#> [ CPULongType{3,4} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_sparse_coo_tensor.html b/docs/reference/torch_sparse_coo_tensor.html deleted file mode 100644 index 8ce3c749f..000000000 --- a/docs/reference/torch_sparse_coo_tensor.html +++ /dev/null @@ -1,277 +0,0 @@ - - - - - - - - -Sparse_coo_tensor — torch_sparse_coo_tensor • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Sparse_coo_tensor

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    indices

    (array_like) Initial data for the tensor. Can be a list, tuple, NumPy ndarray, scalar, and other types. Will be cast to a torch_LongTensor internally. The indices are the coordinates of the non-zero values in the matrix, and thus should be two-dimensional where the first dimension is the number of tensor dimensions and the second dimension is the number of non-zero values.

    values

    (array_like) Initial values for the tensor. Can be a list, tuple, NumPy ndarray, scalar, and other types.

    size

    (list, tuple, or torch.Size, optional) Size of the sparse tensor. If not provided the size will be inferred as the minimum size big enough to hold all non-zero elements.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, infers data type from values.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    sparse_coo_tensor(indices, values, size=None, dtype=None, device=None, requires_grad=False) -> Tensor

    - - - - -

    Constructs a sparse tensors in COO(rdinate) format with non-zero elements at the given indices -with the given values. A sparse tensor can be uncoalesced, in that case, there are duplicate -coordinates in the indices, and the value at that index is the sum of all duplicate value entries: -torch_sparse_.

    - -

    Examples

    -
    # \dontrun{ - -i = torch_tensor(matrix(c(1, 2, 2, 3, 1, 3), ncol = 3, byrow = TRUE), dtype=torch_int64()) -v = torch_tensor(c(3, 4, 5), dtype=torch_float32()) -torch_sparse_coo_tensor(i, v)
    #> torch_tensor -#> [ SparseCPUFloatType{} -#> indices: -#> 0 1 1 -#> 2 0 2 -#> [ CPULongType{2,3} ] -#> values: -#> 3 -#> 4 -#> 5 -#> [ CPUFloatType{3} ] -#> size: -#> [2, 3] -#> ]
    torch_sparse_coo_tensor(i, v, c(2, 4))
    #> torch_tensor -#> [ SparseCPUFloatType{} -#> indices: -#> 0 1 1 -#> 2 0 2 -#> [ CPULongType{2,3} ] -#> values: -#> 3 -#> 4 -#> 5 -#> [ CPUFloatType{3} ] -#> size: -#> [2, 4] -#> ]
    -# create empty sparse tensors -S = torch_sparse_coo_tensor( - torch_empty(c(1, 0), dtype = torch_int64()), - torch_tensor(numeric(), dtype = torch_float32()), - c(1) -) -S = torch_sparse_coo_tensor( - torch_empty(c(1, 0), dtype = torch_int64()), - torch_empty(c(0, 2)), - c(1, 2) -) -# }
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_split.html b/docs/reference/torch_split.html deleted file mode 100644 index db9cbed72..000000000 --- a/docs/reference/torch_split.html +++ /dev/null @@ -1,227 +0,0 @@ - - - - - - - - -Split — torch_split • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Split

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    tensor

    (Tensor) tensor to split.

    split_size_or_sections

    (int) size of a single chunk or list of sizes for each chunk

    dim

    (int) dimension along which to split the tensor.

    - -

    TEST

    - - - - -

    Splits the tensor into chunks. Each chunk is a view of the original tensor.

    If `split_size_or_sections` is an integer type, then `tensor` will
    -be split into equally sized chunks (if possible). Last chunk will be smaller if
    -the tensor size along the given dimension `dim` is not divisible by
    -`split_size`.
    -
    -If `split_size_or_sections` is a list, then `tensor` will be split
    -into ``len(split_size_or_sections)`` chunks with sizes in `dim` according
    -to `split_size_or_sections`.
    -
    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_sqrt.html b/docs/reference/torch_sqrt.html deleted file mode 100644 index b0a3f0316..000000000 --- a/docs/reference/torch_sqrt.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Sqrt — torch_sqrt • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Sqrt

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    sqrt(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the square-root of the elements of input.

    -

    $$ - \mbox{out}_{i} = \sqrt{\mbox{input}_{i}} -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> 0.4471 -#> 1.6376 -#> 0.0918 -#> 0.6598 -#> [ CPUFloatType{4} ]
    torch_sqrt(a)
    #> torch_tensor -#> 0.6686 -#> 1.2797 -#> 0.3031 -#> 0.8123 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_square.html b/docs/reference/torch_square.html deleted file mode 100644 index d593f436d..000000000 --- a/docs/reference/torch_square.html +++ /dev/null @@ -1,230 +0,0 @@ - - - - - - - - -Square — torch_square • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Square

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    square(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the square of the elements of input.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.3828 -#> 0.0233 -#> -1.1883 -#> 1.0369 -#> [ CPUFloatType{4} ]
    torch_square(a)
    #> torch_tensor -#> 0.1466 -#> 0.0005 -#> 1.4121 -#> 1.0752 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_squeeze.html b/docs/reference/torch_squeeze.html deleted file mode 100644 index 3760e7030..000000000 --- a/docs/reference/torch_squeeze.html +++ /dev/null @@ -1,282 +0,0 @@ - - - - - - - - -Squeeze — torch_squeeze • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Squeeze

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int, optional) if given, the input will be squeezed only in this dimension

    out

    (Tensor, optional) the output tensor.

    - -

    Note

    - -

    The returned tensor shares the storage with the input tensor, -so changing the contents of one will change the contents of the other.

    -

    squeeze(input, dim=None, out=None) -> Tensor

    - - - - -

    Returns a tensor with all the dimensions of input of size 1 removed.

    -

    For example, if input is of shape: -\((A \times 1 \times B \times C \times 1 \times D)\) then the out tensor -will be of shape: \((A \times B \times C \times D)\).

    -

    When dim is given, a squeeze operation is done only in the given -dimension. If input is of shape: \((A \times 1 \times B)\), -squeeze(input, 0) leaves the tensor unchanged, but squeeze(input, 1) -will squeeze the tensor to the shape \((A \times B)\).

    - -

    Examples

    -
    # \dontrun{ - -x = torch_zeros(c(2, 1, 2, 1, 2)) -x
    #> torch_tensor -#> (1,1,1,.,.) = -#> 0 0 -#> -#> (2,1,1,.,.) = -#> 0 0 -#> -#> (1,1,2,.,.) = -#> 0 0 -#> -#> (2,1,2,.,.) = -#> 0 0 -#> [ CPUFloatType{2,1,2,1,2} ]
    y = torch_squeeze(x) -y
    #> torch_tensor -#> (1,.,.) = -#> 0 0 -#> 0 0 -#> -#> (2,.,.) = -#> 0 0 -#> 0 0 -#> [ CPUFloatType{2,2,2} ]
    y = torch_squeeze(x, 1) -y
    #> torch_tensor -#> (1,1,1,.,.) = -#> 0 0 -#> -#> (2,1,1,.,.) = -#> 0 0 -#> -#> (1,1,2,.,.) = -#> 0 0 -#> -#> (2,1,2,.,.) = -#> 0 0 -#> [ CPUFloatType{2,1,2,1,2} ]
    y = torch_squeeze(x, 2) -y
    #> torch_tensor -#> (1,1,.,.) = -#> 0 0 -#> -#> (2,1,.,.) = -#> 0 0 -#> -#> (1,2,.,.) = -#> 0 0 -#> -#> (2,2,.,.) = -#> 0 0 -#> [ CPUFloatType{2,2,1,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_stack.html b/docs/reference/torch_stack.html deleted file mode 100644 index 563a40774..000000000 --- a/docs/reference/torch_stack.html +++ /dev/null @@ -1,219 +0,0 @@ - - - - - - - - -Stack — torch_stack • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Stack

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    tensors

    (sequence of Tensors) sequence of tensors to concatenate

    dim

    (int) dimension to insert. Has to be between 0 and the number of dimensions of concatenated tensors (inclusive)

    out

    (Tensor, optional) the output tensor.

    - -

    stack(tensors, dim=0, out=None) -> Tensor

    - - - - -

    Concatenates sequence of tensors along a new dimension.

    -

    All tensors need to be of the same size.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_std.html b/docs/reference/torch_std.html deleted file mode 100644 index c8bb9b531..000000000 --- a/docs/reference/torch_std.html +++ /dev/null @@ -1,265 +0,0 @@ - - - - - - - - -Std — torch_std • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Std

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    unbiased

    (bool) whether to use the unbiased estimation or not

    dim

    (int or tuple of ints) the dimension or dimensions to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not.

    out

    (Tensor, optional) the output tensor.

    - -

    std(input, unbiased=True) -> Tensor

    - - - - -

    Returns the standard-deviation of all elements in the input tensor.

    -

    If unbiased is False, then the standard-deviation will be calculated -via the biased estimator. Otherwise, Bessel's correction will be used.

    -

    std(input, dim, unbiased=True, keepdim=False, out=None) -> Tensor

    - - - - -

    Returns the standard-deviation of each row of the input tensor in the -dimension dim. If dim is a list of dimensions, -reduce over all of them.

    -

    If keepdim is True, the output tensor is of the same size -as input except in the dimension(s) dim where it is of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting in the -output tensor having 1 (or len(dim)) fewer dimension(s).

    -

    If unbiased is False, then the standard-deviation will be calculated -via the biased estimator. Otherwise, Bessel's correction will be used.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(1, 3)) -a
    #> torch_tensor -#> -0.3162 0.4255 0.1976 -#> [ CPUFloatType{1,3} ]
    torch_std(a)
    #> torch_tensor -#> 0.379947 -#> [ CPUFloatType{} ]
    - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> 1.2036 -2.0630 -2.1182 -0.6214 -#> -1.6360 0.5014 -0.1266 -1.7918 -#> 0.2972 -0.5018 1.3086 1.4842 -#> 0.6903 -0.5105 0.5911 0.7067 -#> [ CPUFloatType{4,4} ]
    torch_std(a, dim=1)
    #> torch_tensor -#> 1.2400 -#> 1.0589 -#> 1.4759 -#> 1.4476 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_std_mean.html b/docs/reference/torch_std_mean.html deleted file mode 100644 index 7940b4467..000000000 --- a/docs/reference/torch_std_mean.html +++ /dev/null @@ -1,278 +0,0 @@ - - - - - - - - -Std_mean — torch_std_mean • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Std_mean

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    unbiased

    (bool) whether to use the unbiased estimation or not

    dim

    (int or tuple of ints) the dimension or dimensions to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not.

    - -

    std_mean(input, unbiased=True) -> (Tensor, Tensor)

    - - - - -

    Returns the standard-deviation and mean of all elements in the input tensor.

    -

    If unbiased is False, then the standard-deviation will be calculated -via the biased estimator. Otherwise, Bessel's correction will be used.

    -

    std_mean(input, dim, unbiased=True, keepdim=False) -> (Tensor, Tensor)

    - - - - -

    Returns the standard-deviation and mean of each row of the input tensor in the -dimension dim. If dim is a list of dimensions, -reduce over all of them.

    -

    If keepdim is True, the output tensor is of the same size -as input except in the dimension(s) dim where it is of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting in the -output tensor having 1 (or len(dim)) fewer dimension(s).

    -

    If unbiased is False, then the standard-deviation will be calculated -via the biased estimator. Otherwise, Bessel's correction will be used.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(1, 3)) -a
    #> torch_tensor -#> -0.8958 2.0764 0.0589 -#> [ CPUFloatType{1,3} ]
    torch_std_mean(a)
    #> [[1]] -#> torch_tensor -#> 1.51748 -#> [ CPUFloatType{} ] -#> -#> [[2]] -#> torch_tensor -#> 0.413156 -#> [ CPUFloatType{} ] -#>
    - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> 0.2699 -0.5021 -0.4712 1.0471 -#> -2.2339 0.6823 -0.9388 0.5461 -#> -0.4050 0.9288 0.8127 1.5763 -#> 1.1732 -0.2562 0.5626 0.8124 -#> [ CPUFloatType{4,4} ]
    torch_std_mean(a, 1)
    #> [[1]] -#> torch_tensor -#> 1.4429 -#> 0.6986 -#> 0.8327 -#> 0.4380 -#> [ CPUFloatType{4} ] -#> -#> [[2]] -#> torch_tensor -#> -0.2989 -#> 0.2132 -#> -0.0087 -#> 0.9955 -#> [ CPUFloatType{4} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_stft.html b/docs/reference/torch_stft.html deleted file mode 100644 index 5cd1c571f..000000000 --- a/docs/reference/torch_stft.html +++ /dev/null @@ -1,296 +0,0 @@ - - - - - - - - -Stft — torch_stft • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Stft

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor

    n_fft

    (int) size of Fourier transform

    hop_length

    (int, optional) the distance between neighboring sliding window frames. Default: None (treated as equal to floor(n_fft / 4))

    win_length

    (int, optional) the size of window frame and STFT filter. Default: None (treated as equal to n_fft)

    window

    (Tensor, optional) the optional window function. Default: None (treated as window of all \(1\) s)

    center

    (bool, optional) whether to pad input on both sides so that the \(t\)-th frame is centered at time \(t \times \mbox{hop\_length}\). Default: True

    pad_mode

    (string, optional) controls the padding method used when center is True. Default: "reflect"

    normalized

    (bool, optional) controls whether to return the normalized STFT results Default: False

    onesided

    (bool, optional) controls whether to return half of results to avoid redundancy Default: True

    - -

    Short-time Fourier transform (STFT).

    - - - - -

    Short-time Fourier transform (STFT).

    Ignoring the optional batch dimension, this method computes the following
    -expression:
    -
    - -

    $$ - X[m, \omega] = \sum_{k = 0}^{\mbox{win\_length-1}}% - \mbox{window}[k]\ \mbox{input}[m \times \mbox{hop\_length} + k]\ % - \exp\left(- j \frac{2 \pi \cdot \omega k}{\mbox{win\_length}}\right), -$$ -where \(m\) is the index of the sliding window, and \(\omega\) is -the frequency that \(0 \leq \omega < \mbox{n\_fft}\). When -onesided is the default value True,

    * `input` must be either a 1-D time sequence or a 2-D batch of time
    -  sequences.
    -
    -* If `hop_length` is ``None`` (default), it is treated as equal to
    -  ``floor(n_fft / 4)``.
    -
    -* If `win_length` is ``None`` (default), it is treated as equal to
    -  `n_fft`.
    -
    -* `window` can be a 1-D tensor of size `win_length`, e.g., from
    -  `torch_hann_window`. If `window` is ``None`` (default), it is
    -  treated as if having \eqn{1} everywhere in the window. If
    -  \eqn{\mbox{win\_length} &lt; \mbox{n\_fft}}, `window` will be padded on
    -  both sides to length `n_fft` before being applied.
    -
    -* If `center` is ``True`` (default), `input` will be padded on
    -  both sides so that the \eqn{t}-th frame is centered at time
    -  \eqn{t \times \mbox{hop\_length}}. Otherwise, the \eqn{t}-th frame
    -  begins at time  \eqn{t \times \mbox{hop\_length}}.
    -
    -* `pad_mode` determines the padding method used on `input` when
    -  `center` is ``True``. See `torch_nn.functional.pad` for
    -  all available options. Default is ``"reflect"``.
    -
    -* If `onesided` is ``True`` (default), only values for \eqn{\omega}
    -  in \eqn{\left[0, 1, 2, \dots, \left\lfloor \frac{\mbox{n\_fft}}{2} \right\rfloor + 1\right]}
    -  are returned because the real-to-complex Fourier transform satisfies the
    -  conjugate symmetry, i.e., \eqn{X[m, \omega] = X[m, \mbox{n\_fft} - \omega]^*}.
    -
    -* If `normalized` is ``True`` (default is ``False``), the function
    -  returns the normalized STFT results, i.e., multiplied by \eqn{(\mbox{frame\_length})^{-0.5}}.
    -
    -Returns the real and the imaginary parts together as one tensor of size
    -\eqn{(* \times N \times T \times 2)}, where \eqn{*} is the optional
    -batch size of `input`, \eqn{N} is the number of frequencies where
    -STFT is applied, \eqn{T} is the total number of frames used, and each pair
    -in the last dimension represents a complex number as the real part and the
    -imaginary part.
    -
    -.. warning::
    -  This function changed signature at version 0.4.1. Calling with the
    -  previous signature may cause error or return incorrect result.
    -
    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_sum.html b/docs/reference/torch_sum.html deleted file mode 100644 index ad2eabd38..000000000 --- a/docs/reference/torch_sum.html +++ /dev/null @@ -1,263 +0,0 @@ - - - - - - - - -Sum — torch_sum • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Sum

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.

    dim

    (int or tuple of ints) the dimension or dimensions to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not.

    - -

    sum(input, dtype=None) -> Tensor

    - - - - -

    Returns the sum of all elements in the input tensor.

    -

    sum(input, dim, keepdim=False, dtype=None) -> Tensor

    - - - - -

    Returns the sum of each row of the input tensor in the given -dimension dim. If dim is a list of dimensions, -reduce over all of them.

    -

    If keepdim is True, the output tensor is of the same size -as input except in the dimension(s) dim where it is of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting in the -output tensor having 1 (or len(dim)) fewer dimension(s).

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(1, 3)) -a
    #> torch_tensor -#> -0.6977 -0.5155 -1.9107 -#> [ CPUFloatType{1,3} ]
    torch_sum(a)
    #> torch_tensor -#> -3.12391 -#> [ CPUFloatType{} ]
    - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> -0.4190 0.0463 -0.7716 0.4229 -#> -1.2665 0.4791 -0.5515 -1.0623 -#> 1.1148 -1.2247 0.0682 1.1490 -#> -0.7653 -1.3195 0.4248 -0.6928 -#> [ CPUFloatType{4,4} ]
    torch_sum(a, 1)
    #> torch_tensor -#> -1.3360 -#> -2.0188 -#> -0.8302 -#> -0.1831 -#> [ CPUFloatType{4} ]
    b = torch_arange(0, 4 * 5 * 6)$view(c(4, 5, 6)) -torch_sum(b, list(2, 1))
    #> torch_tensor -#> 435 -#> 1335 -#> 2235 -#> 3135 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_svd.html b/docs/reference/torch_svd.html deleted file mode 100644 index e933a9b77..000000000 --- a/docs/reference/torch_svd.html +++ /dev/null @@ -1,274 +0,0 @@ - - - - - - - - -Svd — torch_svd • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Svd

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor of size \((*, m, n)\) where * is zero or more batch dimensions consisting of \(m \times n\) matrices.

    some

    (bool, optional) controls the shape of returned U and V

    compute_uv

    (bool, optional) option whether to compute U and V or not

    out

    (tuple, optional) the output tuple of tensors

    - -

    Note

    - -

    The singular values are returned in descending order. If input is a batch of matrices, -then the singular values of each matrix in the batch is returned in descending order.

    -

    The implementation of SVD on CPU uses the LAPACK routine ?gesdd (a divide-and-conquer -algorithm) instead of ?gesvd for speed. Analogously, the SVD on GPU uses the MAGMA routine -gesdd as well.

    -

    Irrespective of the original strides, the returned matrix U -will be transposed, i.e. with strides U.contiguous().transpose(-2, -1).stride()

    -

    Extra care needs to be taken when backward through U and V -outputs. Such operation is really only stable when input is -full rank with all distinct singular values. Otherwise, NaN can -appear as the gradients are not properly defined. Also, notice that -double backward will usually do an additional backward through U and -V even if the original backward is only on S.

    -

    When some = False, the gradients on U[..., :, min(m, n):] -and V[..., :, min(m, n):] will be ignored in backward as those vectors -can be arbitrary bases of the subspaces.

    -

    When compute_uv = False, backward cannot be performed since U and V -from the forward pass is required for the backward operation.

    -

    svd(input, some=True, compute_uv=True, out=None) -> (Tensor, Tensor, Tensor)

    - - - - -

    This function returns a namedtuple (U, S, V) which is the singular value -decomposition of a input real matrix or batches of real matrices input such that -\(input = U \times diag(S) \times V^T\).

    -

    If some is True (default), the method returns the reduced singular value decomposition -i.e., if the last two dimensions of input are m and n, then the returned -U and V matrices will contain only \(min(n, m)\) orthonormal columns.

    -

    If compute_uv is False, the returned U and V matrices will be zero matrices -of shape \((m \times m)\) and \((n \times n)\) respectively. some will be ignored here.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(5, 3)) -a
    #> torch_tensor -#> -0.7888 -0.7696 0.3986 -#> -0.7711 0.2121 -1.5684 -#> 0.3715 -0.0456 -1.0608 -#> 1.1539 -0.8844 -0.7384 -#> -1.3783 -0.2028 1.6554 -#> [ CPUFloatType{5,3} ]
    out = torch_svd(a) -u = out[[1]] -s = out[[2]] -v = out[[3]] -torch_dist(a, torch_mm(torch_mm(u, torch_diag(s)), v$t()))
    #> torch_tensor -#> 8.51333e-07 -#> [ CPUFloatType{} ]
    a_big = torch_randn(c(7, 5, 3)) -out = torch_svd(a_big) -u = out[[1]] -s = out[[2]] -v = out[[3]] -torch_dist(a_big, torch_matmul(torch_matmul(u, torch_diag_embed(s)), v$transpose(-2, -1)))
    #> torch_tensor -#> 2.71036e-06 -#> [ CPUFloatType{} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_symeig.html b/docs/reference/torch_symeig.html deleted file mode 100644 index 8a6a067ed..000000000 --- a/docs/reference/torch_symeig.html +++ /dev/null @@ -1,275 +0,0 @@ - - - - - - - - -Symeig — torch_symeig • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Symeig

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor of size \((*, n, n)\) where * is zero or more batch dimensions consisting of symmetric matrices.

    eigenvectors

    (boolean, optional) controls whether eigenvectors have to be computed

    upper

    (boolean, optional) controls whether to consider upper-triangular or lower-triangular region

    out

    (tuple, optional) the output tuple of (Tensor, Tensor)

    - -

    Note

    - -

    The eigenvalues are returned in ascending order. If input is a batch of matrices, -then the eigenvalues of each matrix in the batch is returned in ascending order.

    -

    Irrespective of the original strides, the returned matrix V will -be transposed, i.e. with strides V.contiguous().transpose(-1, -2).stride().

    -

    Extra care needs to be taken when backward through outputs. Such -operation is really only stable when all eigenvalues are distinct. -Otherwise, NaN can appear as the gradients are not properly defined.

    -

    symeig(input, eigenvectors=False, upper=True, out=None) -> (Tensor, Tensor)

    - - - - -

    This function returns eigenvalues and eigenvectors -of a real symmetric matrix input or a batch of real symmetric matrices, -represented by a namedtuple (eigenvalues, eigenvectors).

    -

    This function calculates all eigenvalues (and vectors) of input -such that \(\mbox{input} = V \mbox{diag}(e) V^T\).

    -

    The boolean argument eigenvectors defines computation of -both eigenvectors and eigenvalues or eigenvalues only.

    -

    If it is False, only eigenvalues are computed. If it is True, -both eigenvalues and eigenvectors are computed.

    -

    Since the input matrix input is supposed to be symmetric, -only the upper triangular portion is used by default.

    -

    If upper is False, then lower triangular portion is used.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(5, 5)) -a = a + a$t() # To make a symmetric -a
    #> torch_tensor -#> 2.1703 -0.5663 -0.5122 -0.2134 -0.0549 -#> -0.5663 0.9832 -0.9685 0.1017 0.9142 -#> -0.5122 -0.9685 -0.8703 0.7874 -0.6067 -#> -0.2134 0.1017 0.7874 2.8112 -0.1549 -#> -0.0549 0.9142 -0.6067 -0.1549 -0.4494 -#> [ CPUFloatType{5,5} ]
    o = torch_symeig(a, eigenvectors=TRUE) -e = o[[1]] -v = o[[2]] -e
    #> torch_tensor -#> -1.5747 -#> -0.9141 -#> 1.6122 -#> 2.4168 -#> 3.1047 -#> [ CPUFloatType{5} ]
    v
    #> torch_tensor -#> 0.1632 -0.0736 0.4932 0.7860 -0.3270 -#> 0.3015 -0.4689 0.6486 -0.5181 -0.0109 -#> 0.8988 -0.0414 -0.3445 0.1244 0.2372 -#> -0.1524 0.0538 0.3046 0.2248 0.9114 -#> 0.2266 0.8776 0.3530 -0.2188 -0.0780 -#> [ CPUFloatType{5,5} ]
    a_big = torch_randn(c(5, 2, 2)) -a_big = a_big + a_big$transpose(-2, -1) # To make a_big symmetric -o = a_big$symeig(eigenvectors=TRUE) -e = o[[1]] -v = o[[2]] -torch_allclose(torch_matmul(v, torch_matmul(e$diag_embed(), v$transpose(-2, -1))), a_big)
    #> [1] TRUE
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_t.html b/docs/reference/torch_t.html deleted file mode 100644 index 28630fff2..000000000 --- a/docs/reference/torch_t.html +++ /dev/null @@ -1,243 +0,0 @@ - - - - - - - - -T — torch_t • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    T

    -
    - - -

    Arguments

    - - - - - - -
    input

    (Tensor) the input tensor.

    - -

    t(input) -> Tensor

    - - - - -

    Expects input to be <= 2-D tensor and transposes dimensions 0 -and 1.

    -

    0-D and 1-D tensors are returned as is. When input is a 2-D tensor this -is equivalent to transpose(input, 0, 1).

    - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(2,3)) -x
    #> torch_tensor -#> -1.4813 0.4524 -0.0294 -#> 2.6447 -0.7806 0.5434 -#> [ CPUFloatType{2,3} ]
    torch_t(x)
    #> torch_tensor -#> -1.4813 2.6447 -#> 0.4524 -0.7806 -#> -0.0294 0.5434 -#> [ CPUFloatType{3,2} ]
    x = torch_randn(c(3)) -x
    #> torch_tensor -#> -0.0126 -#> -0.5420 -#> 0.5410 -#> [ CPUFloatType{3} ]
    torch_t(x)
    #> torch_tensor -#> -0.0126 -#> -0.5420 -#> 0.5410 -#> [ CPUFloatType{3} ]
    x = torch_randn(c(2, 3)) -x
    #> torch_tensor -#> -1.9746 -0.2671 0.6073 -#> -0.1863 0.6615 1.5133 -#> [ CPUFloatType{2,3} ]
    torch_t(x)
    #> torch_tensor -#> -1.9746 -0.1863 -#> -0.2671 0.6615 -#> 0.6073 1.5133 -#> [ CPUFloatType{3,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_take.html b/docs/reference/torch_take.html deleted file mode 100644 index da2dc588e..000000000 --- a/docs/reference/torch_take.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Take — torch_take • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Take

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    indices

    (LongTensor) the indices into tensor

    - -

    take(input, index) -> Tensor

    - - - - -

    Returns a new tensor with the elements of input at the given indices. -The input tensor is treated as if it were viewed as a 1-D tensor. The result -takes the same shape as the indices.

    - -

    Examples

    -
    # \dontrun{ - -src = torch_tensor(matrix(c(4,3,5,6,7,8), ncol = 3, byrow = TRUE)) -torch_take(src, torch_tensor(c(0, 2, 5), dtype = torch_int64()))
    #> torch_tensor -#> 8 -#> 3 -#> 7 -#> [ CPUFloatType{3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_tan.html b/docs/reference/torch_tan.html deleted file mode 100644 index 706fe948e..000000000 --- a/docs/reference/torch_tan.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -Tan — torch_tan • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Tan

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    tan(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the tangent of the elements of input.

    -

    $$ - \mbox{out}_{i} = \tan(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -1.1158 -#> 0.0583 -#> 0.2334 -#> -0.9159 -#> [ CPUFloatType{4} ]
    torch_tan(a)
    #> torch_tensor -#> -2.0440 -#> 0.0583 -#> 0.2377 -#> -1.3021 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_tanh.html b/docs/reference/torch_tanh.html deleted file mode 100644 index 6c41b01c4..000000000 --- a/docs/reference/torch_tanh.html +++ /dev/null @@ -1,234 +0,0 @@ - - - - - - - - -Tanh — torch_tanh • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Tanh

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    tanh(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the hyperbolic tangent of the elements -of input.

    -

    $$ - \mbox{out}_{i} = \tanh(\mbox{input}_{i}) -$$

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.5525 -#> -0.3071 -#> 0.8392 -#> -0.6511 -#> [ CPUFloatType{4} ]
    torch_tanh(a)
    #> torch_tensor -#> -0.5024 -#> -0.2978 -#> 0.6854 -#> -0.5724 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_tensor.html b/docs/reference/torch_tensor.html deleted file mode 100644 index cdb3308be..000000000 --- a/docs/reference/torch_tensor.html +++ /dev/null @@ -1,242 +0,0 @@ - - - - - - - - -Converts R objects to a torch tensor — torch_tensor • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Converts R objects to a torch tensor

    -
    - -
    torch_tensor(
    -  data,
    -  dtype = NULL,
    -  device = NULL,
    -  requires_grad = FALSE,
    -  pin_memory = FALSE
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    data

    an R atomic vector, matrix or array

    dtype

    a torch_dtype instance

    device

    a device creted with torch_device()

    requires_grad

    if autograd should record operations on the returned tensor.

    pin_memory

    If set, returned tensor would be allocated in the pinned memory.

    - - -

    Examples

    -
    # \dontrun{ -torch_tensor(c(1,2,3,4))
    #> torch_tensor -#> 1 -#> 2 -#> 3 -#> 4 -#> [ CPUFloatType{4} ]
    torch_tensor(c(1,2,3,4), dtype = torch_int())
    #> torch_tensor -#> 1 -#> 2 -#> 3 -#> 4 -#> [ CPUIntType{4} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_tensordot.html b/docs/reference/torch_tensordot.html deleted file mode 100644 index 19907a4d2..000000000 --- a/docs/reference/torch_tensordot.html +++ /dev/null @@ -1,222 +0,0 @@ - - - - - - - - -Tensordot — torch_tensordot • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Tensordot

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    a

    (Tensor) Left tensor to contract

    b

    (Tensor) Right tensor to contract

    dims

    (int or tuple of two lists of integers) number of dimensions to contract or explicit lists of dimensions for a and b respectively

    - -

    TEST

    - - - - -

    Returns a contraction of a and b over multiple dimensions.

    `tensordot` implements a generalized matrix product.
    -
    - - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_threshold_.html b/docs/reference/torch_threshold_.html deleted file mode 100644 index 6c0a17f21..000000000 --- a/docs/reference/torch_threshold_.html +++ /dev/null @@ -1,202 +0,0 @@ - - - - - - - - -Threshold_ — torch_threshold_ • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Threshold_

    -
    - - - -

    threshold_(input, threshold, value) -> Tensor

    - - - - -

    In-place version of torch_threshold.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_topk.html b/docs/reference/torch_topk.html deleted file mode 100644 index 48ee41174..000000000 --- a/docs/reference/torch_topk.html +++ /dev/null @@ -1,262 +0,0 @@ - - - - - - - - -Topk — torch_topk • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Topk

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    k

    (int) the k in "top-k"

    dim

    (int, optional) the dimension to sort along

    largest

    (bool, optional) controls whether to return largest or smallest elements

    sorted

    (bool, optional) controls whether to return the elements in sorted order

    out

    (tuple, optional) the output tuple of (Tensor, LongTensor) that can be optionally given to be used as output buffers

    - -

    topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)

    - - - - -

    Returns the k largest elements of the given input tensor along -a given dimension.

    -

    If dim is not given, the last dimension of the input is chosen.

    -

    If largest is False then the k smallest elements are returned.

    -

    A namedtuple of (values, indices) is returned, where the indices are the indices -of the elements in the original input tensor.

    -

    The boolean option sorted if True, will make sure that the returned -k elements are themselves sorted

    - -

    Examples

    -
    # \dontrun{ - -x = torch_arange(1., 6.) -x
    #> torch_tensor -#> 1 -#> 2 -#> 3 -#> 4 -#> 5 -#> [ CPUFloatType{5} ]
    torch_topk(x, 3)
    #> [[1]] -#> torch_tensor -#> 5 -#> 4 -#> 3 -#> [ CPUFloatType{3} ] -#> -#> [[2]] -#> torch_tensor -#> 4 -#> 3 -#> 2 -#> [ CPULongType{3} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_trace.html b/docs/reference/torch_trace.html deleted file mode 100644 index ce6a3a456..000000000 --- a/docs/reference/torch_trace.html +++ /dev/null @@ -1,214 +0,0 @@ - - - - - - - - -Trace — torch_trace • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Trace

    -
    - - - -

    trace(input) -> Tensor

    - - - - -

    Returns the sum of the elements of the diagonal of the input 2-D matrix.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_arange(1., 10.)$view(c(3, 3)) -x
    #> torch_tensor -#> 1 2 3 -#> 4 5 6 -#> 7 8 9 -#> [ CPUFloatType{3,3} ]
    torch_trace(x)
    #> torch_tensor -#> 15 -#> [ CPUFloatType{} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_transpose.html b/docs/reference/torch_transpose.html deleted file mode 100644 index 7b759e06f..000000000 --- a/docs/reference/torch_transpose.html +++ /dev/null @@ -1,235 +0,0 @@ - - - - - - - - -Transpose — torch_transpose • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Transpose

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim0

    (int) the first dimension to be transposed

    dim1

    (int) the second dimension to be transposed

    - -

    transpose(input, dim0, dim1) -> Tensor

    - - - - -

    Returns a tensor that is a transposed version of input. -The given dimensions dim0 and dim1 are swapped.

    -

    The resulting out tensor shares it's underlying storage with the -input tensor, so changing the content of one would change the content -of the other.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_randn(c(2, 3)) -x
    #> torch_tensor -#> 0.3114 -0.1716 0.4504 -#> -0.4723 -1.0927 2.1773 -#> [ CPUFloatType{2,3} ]
    torch_transpose(x, 1, 2)
    #> torch_tensor -#> 0.3114 -0.4723 -#> -0.1716 -1.0927 -#> 0.4504 2.1773 -#> [ CPUFloatType{3,2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_trapz.html b/docs/reference/torch_trapz.html deleted file mode 100644 index 93f50c75e..000000000 --- a/docs/reference/torch_trapz.html +++ /dev/null @@ -1,242 +0,0 @@ - - - - - - - - -Trapz — torch_trapz • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Trapz

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    y

    (Tensor) The values of the function to integrate

    x

    (Tensor) The points at which the function y is sampled. If x is not in ascending order, intervals on which it is decreasing contribute negatively to the estimated integral (i.e., the convention \(\int_a^b f = -\int_b^a f\) is followed).

    dim

    (int) The dimension along which to integrate. By default, use the last dimension.

    dx

    (float) The distance between points at which y is sampled.

    - -

    trapz(y, x, *, dim=-1) -> Tensor

    - - - - -

    Estimate \(\int y\,dx\) along dim, using the trapezoid rule.

    -

    trapz(y, *, dx=1, dim=-1) -> Tensor

    - - - - -

    As above, but the sample points are spaced uniformly at a distance of dx.

    - -

    Examples

    -
    # \dontrun{ - -y = torch_randn(list(2, 3)) -y
    #> torch_tensor -#> 0.0190 1.0024 1.9078 -#> -0.0511 -0.7302 0.0112 -#> [ CPUFloatType{2,3} ]
    x = torch_tensor(matrix(c(1, 3, 4, 1, 2, 3), ncol = 3, byrow=TRUE)) -torch_trapz(y, x = x)
    #> torch_tensor -#> 2.4765 -#> -0.7502 -#> [ CPUFloatType{2} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_triangular_solve.html b/docs/reference/torch_triangular_solve.html deleted file mode 100644 index a6be380cc..000000000 --- a/docs/reference/torch_triangular_solve.html +++ /dev/null @@ -1,256 +0,0 @@ - - - - - - - - -Triangular_solve — torch_triangular_solve • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Triangular_solve

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) multiple right-hand sides of size \((*, m, k)\) where \(*\) is zero of more batch dimensions (\(b\))

    A

    (Tensor) the input triangular coefficient matrix of size \((*, m, m)\) where \(*\) is zero or more batch dimensions

    upper

    (bool, optional) whether to solve the upper-triangular system of equations (default) or the lower-triangular system of equations. Default: True.

    transpose

    (bool, optional) whether \(A\) should be transposed before being sent into the solver. Default: False.

    unitriangular

    (bool, optional) whether \(A\) is unit triangular. If True, the diagonal elements of \(A\) are assumed to be 1 and not referenced from \(A\). Default: False.

    - -

    triangular_solve(input, A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor)

    - - - - -

    Solves a system of equations with a triangular coefficient matrix \(A\) -and multiple right-hand sides \(b\).

    -

    In particular, solves \(AX = b\) and assumes \(A\) is upper-triangular -with the default keyword arguments.

    -

    torch_triangular_solve(b, A) can take in 2D inputs b, A or inputs that are -batches of 2D matrices. If the inputs are batches, then returns -batched outputs X

    - -

    Examples

    -
    # \dontrun{ - -A = torch_randn(c(2, 2))$triu() -A
    #> torch_tensor -#> -0.3460 0.1356 -#> 0.0000 1.5035 -#> [ CPUFloatType{2,2} ]
    b = torch_randn(c(2, 3)) -b
    #> torch_tensor -#> -0.4014 -0.1958 0.0379 -#> -1.3143 -0.0766 -0.3524 -#> [ CPUFloatType{2,3} ]
    torch_triangular_solve(b, A)
    #> [[1]] -#> torch_tensor -#> 0.8174 0.5459 -0.2014 -#> -0.8742 -0.0509 -0.2344 -#> [ CPUFloatType{2,3} ] -#> -#> [[2]] -#> torch_tensor -#> -0.3460 0.1356 -#> 0.0000 1.5035 -#> [ CPUFloatType{2,2} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_tril.html b/docs/reference/torch_tril.html deleted file mode 100644 index 70db3daad..000000000 --- a/docs/reference/torch_tril.html +++ /dev/null @@ -1,258 +0,0 @@ - - - - - - - - -Tril — torch_tril • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Tril

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    diagonal

    (int, optional) the diagonal to consider

    out

    (Tensor, optional) the output tensor.

    - -

    tril(input, diagonal=0, out=None) -> Tensor

    - - - - -

    Returns the lower triangular part of the matrix (2-D tensor) or batch of matrices -input, the other elements of the result tensor out are set to 0.

    -

    The lower triangular part of the matrix is defined as the elements on and -below the diagonal.

    -

    The argument diagonal controls which diagonal to consider. If -diagonal = 0, all elements on and below the main diagonal are -retained. A positive value includes just as many diagonals above the main -diagonal, and similarly a negative value excludes just as many diagonals below -the main diagonal. The main diagonal are the set of indices -\(\lbrace (i, i) \rbrace\) for \(i \in [0, \min\{d_{1}, d_{2}\} - 1]\) where -\(d_{1}, d_{2}\) are the dimensions of the matrix.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(3, 3)) -a
    #> torch_tensor -#> -0.6849 0.8749 -0.7531 -#> -0.5497 -1.0238 0.3323 -#> -0.0980 0.0908 -0.4867 -#> [ CPUFloatType{3,3} ]
    torch_tril(a)
    #> torch_tensor -#> -0.6849 0.0000 0.0000 -#> -0.5497 -1.0238 0.0000 -#> -0.0980 0.0908 -0.4867 -#> [ CPUFloatType{3,3} ]
    b = torch_randn(c(4, 6)) -b
    #> torch_tensor -#> -0.7116 -0.9359 -1.5487 1.6909 0.9290 -1.8224 -#> 2.1791 -0.8098 1.4367 -0.5204 1.0782 -0.4998 -#> 1.3149 -1.0202 -0.4302 -0.5773 0.0928 -1.0440 -#> -1.7950 0.6438 -0.7581 0.0569 -1.0737 1.3707 -#> [ CPUFloatType{4,6} ]
    torch_tril(b, diagonal=1)
    #> torch_tensor -#> -0.7116 -0.9359 0.0000 0.0000 0.0000 0.0000 -#> 2.1791 -0.8098 1.4367 0.0000 0.0000 0.0000 -#> 1.3149 -1.0202 -0.4302 -0.5773 0.0000 0.0000 -#> -1.7950 0.6438 -0.7581 0.0569 -1.0737 0.0000 -#> [ CPUFloatType{4,6} ]
    torch_tril(b, diagonal=-1)
    #> torch_tensor -#> 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -#> 2.1791 0.0000 0.0000 0.0000 0.0000 0.0000 -#> 1.3149 -1.0202 0.0000 0.0000 0.0000 0.0000 -#> -1.7950 0.6438 -0.7581 0.0000 0.0000 0.0000 -#> [ CPUFloatType{4,6} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_tril_indices.html b/docs/reference/torch_tril_indices.html deleted file mode 100644 index 6874b11bb..000000000 --- a/docs/reference/torch_tril_indices.html +++ /dev/null @@ -1,251 +0,0 @@ - - - - - - - - -Tril_indices — torch_tril_indices • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Tril_indices

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    row

    (int) number of rows in the 2-D matrix.

    col

    (int) number of columns in the 2-D matrix.

    offset

    (int) diagonal offset from the main diagonal. Default: if not provided, 0.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, torch_long.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    layout

    (torch.layout, optional) currently only support torch_strided.

    - -

    Note

    - - -
    When running on CUDA, ``row * col`` must be less than \eqn{2^{59}} to
    -prevent overflow during calculation.
    -
    - -

    tril_indices(row, col, offset=0, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor

    - - - - -

    Returns the indices of the lower triangular part of a row-by- -col matrix in a 2-by-N Tensor, where the first row contains row -coordinates of all indices and the second row contains column coordinates. -Indices are ordered based on rows and then columns.

    -

    The lower triangular part of the matrix is defined as the elements on and -below the diagonal.

    -

    The argument offset controls which diagonal to consider. If -offset = 0, all elements on and below the main diagonal are -retained. A positive value includes just as many diagonals above the main -diagonal, and similarly a negative value excludes just as many diagonals below -the main diagonal. The main diagonal are the set of indices -\(\lbrace (i, i) \rbrace\) for \(i \in [0, \min\{d_{1}, d_{2}\} - 1]\) -where \(d_{1}, d_{2}\) are the dimensions of the matrix.

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_triu.html b/docs/reference/torch_triu.html deleted file mode 100644 index 4565014f0..000000000 --- a/docs/reference/torch_triu.html +++ /dev/null @@ -1,267 +0,0 @@ - - - - - - - - -Triu — torch_triu • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Triu

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    diagonal

    (int, optional) the diagonal to consider

    out

    (Tensor, optional) the output tensor.

    - -

    triu(input, diagonal=0, out=None) -> Tensor

    - - - - -

    Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices -input, the other elements of the result tensor out are set to 0.

    -

    The upper triangular part of the matrix is defined as the elements on and -above the diagonal.

    -

    The argument diagonal controls which diagonal to consider. If -diagonal = 0, all elements on and above the main diagonal are -retained. A positive value excludes just as many diagonals above the main -diagonal, and similarly a negative value includes just as many diagonals below -the main diagonal. The main diagonal are the set of indices -\(\lbrace (i, i) \rbrace\) for \(i \in [0, \min\{d_{1}, d_{2}\} - 1]\) where -\(d_{1}, d_{2}\) are the dimensions of the matrix.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(3, 3)) -a
    #> torch_tensor -#> -0.3956 -0.1868 0.0874 -#> -0.3459 -0.2626 -0.7964 -#> 0.5357 -0.4833 -0.2087 -#> [ CPUFloatType{3,3} ]
    torch_triu(a)
    #> torch_tensor -#> -0.3956 -0.1868 0.0874 -#> 0.0000 -0.2626 -0.7964 -#> 0.0000 0.0000 -0.2087 -#> [ CPUFloatType{3,3} ]
    torch_triu(a, diagonal=1)
    #> torch_tensor -#> 0.01 * -#> 0.0000 -18.6760 8.7416 -#> 0.0000 0.0000 -79.6368 -#> 0.0000 0.0000 0.0000 -#> [ CPUFloatType{3,3} ]
    torch_triu(a, diagonal=-1)
    #> torch_tensor -#> -0.3956 -0.1868 0.0874 -#> -0.3459 -0.2626 -0.7964 -#> 0.0000 -0.4833 -0.2087 -#> [ CPUFloatType{3,3} ]
    b = torch_randn(c(4, 6)) -b
    #> torch_tensor -#> -0.1247 0.3568 1.5481 0.9310 0.2551 -1.8148 -#> 0.7493 0.8313 -0.6427 0.3658 -0.2912 0.3553 -#> 0.9661 2.0171 0.9854 -0.1047 -1.6832 -0.0952 -#> 0.0011 0.5442 0.5278 -0.5429 0.4507 -0.8038 -#> [ CPUFloatType{4,6} ]
    torch_triu(b, diagonal=1)
    #> torch_tensor -#> 0.0000 0.3568 1.5481 0.9310 0.2551 -1.8148 -#> 0.0000 0.0000 -0.6427 0.3658 -0.2912 0.3553 -#> 0.0000 0.0000 0.0000 -0.1047 -1.6832 -0.0952 -#> 0.0000 0.0000 0.0000 0.0000 0.4507 -0.8038 -#> [ CPUFloatType{4,6} ]
    torch_triu(b, diagonal=-1)
    #> torch_tensor -#> -0.1247 0.3568 1.5481 0.9310 0.2551 -1.8148 -#> 0.7493 0.8313 -0.6427 0.3658 -0.2912 0.3553 -#> 0.0000 2.0171 0.9854 -0.1047 -1.6832 -0.0952 -#> 0.0000 0.0000 0.5278 -0.5429 0.4507 -0.8038 -#> [ CPUFloatType{4,6} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_triu_indices.html b/docs/reference/torch_triu_indices.html deleted file mode 100644 index 405d0bcf3..000000000 --- a/docs/reference/torch_triu_indices.html +++ /dev/null @@ -1,251 +0,0 @@ - - - - - - - - -Triu_indices — torch_triu_indices • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Triu_indices

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    row

    (int) number of rows in the 2-D matrix.

    col

    (int) number of columns in the 2-D matrix.

    offset

    (int) diagonal offset from the main diagonal. Default: if not provided, 0.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, torch_long.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    layout

    (torch.layout, optional) currently only support torch_strided.

    - -

    Note

    - - -
    When running on CUDA, ``row * col`` must be less than \eqn{2^{59}} to
    -prevent overflow during calculation.
    -
    - -

    triu_indices(row, col, offset=0, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor

    - - - - -

    Returns the indices of the upper triangular part of a row by -col matrix in a 2-by-N Tensor, where the first row contains row -coordinates of all indices and the second row contains column coordinates. -Indices are ordered based on rows and then columns.

    -

    The upper triangular part of the matrix is defined as the elements on and -above the diagonal.

    -

    The argument offset controls which diagonal to consider. If -offset = 0, all elements on and above the main diagonal are -retained. A positive value excludes just as many diagonals above the main -diagonal, and similarly a negative value includes just as many diagonals below -the main diagonal. The main diagonal are the set of indices -\(\lbrace (i, i) \rbrace\) for \(i \in [0, \min\{d_{1}, d_{2}\} - 1]\) -where \(d_{1}, d_{2}\) are the dimensions of the matrix.

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_true_divide.html b/docs/reference/torch_true_divide.html deleted file mode 100644 index d62715240..000000000 --- a/docs/reference/torch_true_divide.html +++ /dev/null @@ -1,233 +0,0 @@ - - - - - - - - -True_divide — torch_true_divide • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    True_divide

    -
    - - -

    Arguments

    - - - - - - - - - - -
    dividend

    (Tensor) the dividend

    divisor

    (Tensor or Scalar) the divisor

    - -

    true_divide(dividend, divisor) -> Tensor

    - - - - -

    Performs "true division" that always computes the division -in floating point. Analogous to division in Python 3 and equivalent to -torch_div except when both inputs have bool or integer scalar types, -in which case they are cast to the default (floating) scalar type before the division.

    -

    $$ - \mbox{out}_i = \frac{\mbox{dividend}_i}{\mbox{divisor}} -$$

    - -

    Examples

    -
    # \dontrun{ - -dividend = torch_tensor(c(5, 3), dtype=torch_int()) -divisor = torch_tensor(c(3, 2), dtype=torch_int()) -torch_true_divide(dividend, divisor)
    #> torch_tensor -#> 1.6667 -#> 1.5000 -#> [ CPUFloatType{2} ]
    torch_true_divide(dividend, 2)
    #> torch_tensor -#> 2.5000 -#> 1.5000 -#> [ CPUFloatType{2} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_trunc.html b/docs/reference/torch_trunc.html deleted file mode 100644 index c74cf9db9..000000000 --- a/docs/reference/torch_trunc.html +++ /dev/null @@ -1,231 +0,0 @@ - - - - - - - - -Trunc — torch_trunc • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Trunc

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    out

    (Tensor, optional) the output tensor.

    - -

    trunc(input, out=None) -> Tensor

    - - - - -

    Returns a new tensor with the truncated integer values of -the elements of input.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(4)) -a
    #> torch_tensor -#> -0.4632 -#> -1.3494 -#> 0.0517 -#> -1.1300 -#> [ CPUFloatType{4} ]
    torch_trunc(a)
    #> torch_tensor -#> -0 -#> -1 -#> 0 -#> -1 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_unbind.html b/docs/reference/torch_unbind.html deleted file mode 100644 index 4b1e3cee1..000000000 --- a/docs/reference/torch_unbind.html +++ /dev/null @@ -1,240 +0,0 @@ - - - - - - - - -Unbind — torch_unbind • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Unbind

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the tensor to unbind

    dim

    (int) dimension to remove

    - -

    unbind(input, dim=0) -> seq

    - - - - -

    Removes a tensor dimension.

    -

    Returns a tuple of all slices along a given dimension, already without it.

    - -

    Examples

    -
    # \dontrun{ - -torch_unbind(torch_tensor(matrix(1:9, ncol = 3, byrow=TRUE)))
    #> [[1]] -#> torch_tensor -#> 1 -#> 2 -#> 3 -#> [ CPUIntType{3} ] -#> -#> [[2]] -#> torch_tensor -#> 4 -#> 5 -#> 6 -#> [ CPUIntType{3} ] -#> -#> [[3]] -#> torch_tensor -#> 7 -#> 8 -#> 9 -#> [ CPUIntType{3} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_unique_consecutive.html b/docs/reference/torch_unique_consecutive.html deleted file mode 100644 index 0fbc2af9d..000000000 --- a/docs/reference/torch_unique_consecutive.html +++ /dev/null @@ -1,293 +0,0 @@ - - - - - - - - -Unique_consecutive — torch_unique_consecutive • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Unique_consecutive

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor

    return_inverse

    (bool) Whether to also return the indices for where elements in the original input ended up in the returned unique list.

    return_counts

    (bool) Whether to also return the counts for each unique element.

    dim

    (int) the dimension to apply unique. If None, the unique of the flattened input is returned. default: None

    - -

    TEST

    - - - - -

    Eliminates all but the first element from every consecutive group of equivalent elements.

    .. note:: This function is different from [`torch_unique`] in the sense that this function
    -    only eliminates consecutive duplicate values. This semantics is similar to `std::unique`
    -    in C++.
    -
    - - -

    Examples

    -
    # \dontrun{ -x = torch_tensor(c(1, 1, 2, 2, 3, 1, 1, 2)) -output = torch_unique_consecutive(x) -output
    #> [[1]] -#> torch_tensor -#> 1 -#> 2 -#> 3 -#> 1 -#> 2 -#> [ CPUFloatType{5} ] -#> -#> [[2]] -#> torch_tensor -#> [ CPULongType{0} ] -#> -#> [[3]] -#> torch_tensor -#> [ CPULongType{0} ] -#>
    torch_unique_consecutive(x, return_inverse=TRUE)
    #> [[1]] -#> torch_tensor -#> 1 -#> 2 -#> 3 -#> 1 -#> 2 -#> [ CPUFloatType{5} ] -#> -#> [[2]] -#> torch_tensor -#> 0 -#> 0 -#> 1 -#> 1 -#> 2 -#> 3 -#> 3 -#> 4 -#> [ CPULongType{8} ] -#> -#> [[3]] -#> torch_tensor -#> [ CPULongType{0} ] -#>
    torch_unique_consecutive(x, return_counts=TRUE)
    #> [[1]] -#> torch_tensor -#> 1 -#> 2 -#> 3 -#> 1 -#> 2 -#> [ CPUFloatType{5} ] -#> -#> [[2]] -#> torch_tensor -#> [ CPULongType{0} ] -#> -#> [[3]] -#> torch_tensor -#> 2 -#> 2 -#> 1 -#> 2 -#> 1 -#> [ CPULongType{5} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_unsqueeze.html b/docs/reference/torch_unsqueeze.html deleted file mode 100644 index bab4d422d..000000000 --- a/docs/reference/torch_unsqueeze.html +++ /dev/null @@ -1,232 +0,0 @@ - - - - - - - - -Unsqueeze — torch_unsqueeze • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Unsqueeze

    -
    - - -

    Arguments

    - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    dim

    (int) the index at which to insert the singleton dimension

    - -

    unsqueeze(input, dim) -> Tensor

    - - - - -

    Returns a new tensor with a dimension of size one inserted at the -specified position.

    -

    The returned tensor shares the same underlying data with this tensor.

    -

    A dim value within the range [-input.dim() - 1, input.dim() + 1) -can be used. Negative dim will correspond to unsqueeze -applied at dim = dim + input.dim() + 1.

    - -

    Examples

    -
    # \dontrun{ - -x = torch_tensor(c(1, 2, 3, 4)) -torch_unsqueeze(x, 1)
    #> torch_tensor -#> 1 2 3 4 -#> [ CPUFloatType{1,4} ]
    torch_unsqueeze(x, 2)
    #> torch_tensor -#> 1 -#> 2 -#> 3 -#> 4 -#> [ CPUFloatType{4,1} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_var.html b/docs/reference/torch_var.html deleted file mode 100644 index 33aa596d4..000000000 --- a/docs/reference/torch_var.html +++ /dev/null @@ -1,264 +0,0 @@ - - - - - - - - -Var — torch_var • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Var

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    unbiased

    (bool) whether to use the unbiased estimation or not

    dim

    (int or tuple of ints) the dimension or dimensions to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not.

    out

    (Tensor, optional) the output tensor.

    - -

    var(input, unbiased=True) -> Tensor

    - - - - -

    Returns the variance of all elements in the input tensor.

    -

    If unbiased is False, then the variance will be calculated via the -biased estimator. Otherwise, Bessel's correction will be used.

    -

    var(input, dim, keepdim=False, unbiased=True, out=None) -> Tensor

    - - - - -

    Returns the variance of each row of the input tensor in the given -dimension dim.

    -

    If keepdim is True, the output tensor is of the same size -as input except in the dimension(s) dim where it is of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting in the -output tensor having 1 (or len(dim)) fewer dimension(s).

    -

    If unbiased is False, then the variance will be calculated via the -biased estimator. Otherwise, Bessel's correction will be used.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(1, 3)) -a
    #> torch_tensor -#> 0.9097 -1.4605 -0.9481 -#> [ CPUFloatType{1,3} ]
    torch_var(a)
    #> torch_tensor -#> 1.55533 -#> [ CPUFloatType{} ]
    - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> 0.9322 -0.2661 -1.1364 -0.1596 -#> -0.8385 0.0366 -0.8830 -0.5310 -#> 1.6003 0.1409 -0.4186 2.4136 -#> -0.7193 -0.5766 0.0958 -0.3928 -#> [ CPUFloatType{4,4} ]
    torch_var(a, 1)
    #> torch_tensor -#> 1.4709 -#> 0.1046 -#> 0.2947 -#> 1.9483 -#> [ CPUFloatType{4} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_var_mean.html b/docs/reference/torch_var_mean.html deleted file mode 100644 index c96403f68..000000000 --- a/docs/reference/torch_var_mean.html +++ /dev/null @@ -1,277 +0,0 @@ - - - - - - - - -Var_mean — torch_var_mean • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Var_mean

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the input tensor.

    unbiased

    (bool) whether to use the unbiased estimation or not

    dim

    (int or tuple of ints) the dimension or dimensions to reduce.

    keepdim

    (bool) whether the output tensor has dim retained or not.

    - -

    var_mean(input, unbiased=True) -> (Tensor, Tensor)

    - - - - -

    Returns the variance and mean of all elements in the input tensor.

    -

    If unbiased is False, then the variance will be calculated via the -biased estimator. Otherwise, Bessel's correction will be used.

    -

    var_mean(input, dim, keepdim=False, unbiased=True) -> (Tensor, Tensor)

    - - - - -

    Returns the variance and mean of each row of the input tensor in the given -dimension dim.

    -

    If keepdim is True, the output tensor is of the same size -as input except in the dimension(s) dim where it is of size 1. -Otherwise, dim is squeezed (see torch_squeeze), resulting in the -output tensor having 1 (or len(dim)) fewer dimension(s).

    -

    If unbiased is False, then the variance will be calculated via the -biased estimator. Otherwise, Bessel's correction will be used.

    - -

    Examples

    -
    # \dontrun{ - -a = torch_randn(c(1, 3)) -a
    #> torch_tensor -#> 1.4242 -0.2759 0.7106 -#> [ CPUFloatType{1,3} ]
    torch_var_mean(a)
    #> [[1]] -#> torch_tensor -#> 0.728761 -#> [ CPUFloatType{} ] -#> -#> [[2]] -#> torch_tensor -#> 0.61961 -#> [ CPUFloatType{} ] -#>
    - -a = torch_randn(c(4, 4)) -a
    #> torch_tensor -#> 0.0532 -0.3304 -0.5824 1.8389 -#> -2.0310 -0.6095 -0.1087 0.3034 -#> -1.3414 1.7987 -0.3098 0.8658 -#> 0.0799 -0.7031 -0.5875 -1.0066 -#> [ CPUFloatType{4,4} ]
    torch_var_mean(a, 1)
    #> [[1]] -#> torch_tensor -#> 1.1034 -#> 1.4015 -#> 0.0538 -#> 1.4116 -#> [ CPUFloatType{4} ] -#> -#> [[2]] -#> torch_tensor -#> -0.8098 -#> 0.0389 -#> -0.3971 -#> 0.5004 -#> [ CPUFloatType{4} ] -#>
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_where.html b/docs/reference/torch_where.html deleted file mode 100644 index 414bbe04b..000000000 --- a/docs/reference/torch_where.html +++ /dev/null @@ -1,244 +0,0 @@ - - - - - - - - -Where — torch_where • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Where

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - -
    condition

    (BoolTensor) When True (nonzero), yield x, otherwise yield y

    x

    (Tensor) values selected at indices where condition is True

    y

    (Tensor) values selected at indices where condition is False

    - -

    Note

    - - -
    The tensors `condition`, `x`, `y` must be broadcastable .
    -
    - -
    See also [`torch_nonzero`].
    -
    - -

    where(condition, x, y) -> Tensor

    - - - - -

    Return a tensor of elements selected from either x or y, depending on condition.

    -

    The operation is defined as:

    -

    $$ - \mbox{out}_i = \left\{ \begin{array}{ll} - \mbox{x}_i & \mbox{if } \mbox{condition}_i \\ - \mbox{y}_i & \mbox{otherwise} \\ - \end{array} - \right. -$$

    -

    where(condition) -> tuple of LongTensor

    - - - - -

    torch_where(condition) is identical to -torch_nonzero(condition, as_tuple=True).

    - -

    Examples

    -
    
    -  
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_zeros.html b/docs/reference/torch_zeros.html deleted file mode 100644 index ba06eadd6..000000000 --- a/docs/reference/torch_zeros.html +++ /dev/null @@ -1,245 +0,0 @@ - - - - - - - - -Zeros — torch_zeros • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Zeros

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    size

    (int...) a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.

    out

    (Tensor, optional) the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned tensor. Default: if None, uses a global default (see torch_set_default_tensor_type).

    layout

    (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    - -

    zeros(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    - - - - -

    Returns a tensor filled with the scalar value 0, with the shape defined -by the variable argument size.

    - -

    Examples

    -
    # \dontrun{ - -torch_zeros(c(2, 3))
    #> torch_tensor -#> 0 0 0 -#> 0 0 0 -#> [ CPUFloatType{2,3} ]
    torch_zeros(c(5))
    #> torch_tensor -#> 0 -#> 0 -#> 0 -#> 0 -#> 0 -#> [ CPUFloatType{5} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/torch_zeros_like.html b/docs/reference/torch_zeros_like.html deleted file mode 100644 index 6f6fcc309..000000000 --- a/docs/reference/torch_zeros_like.html +++ /dev/null @@ -1,248 +0,0 @@ - - - - - - - - -Zeros_like — torch_zeros_like • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Zeros_like

    -
    - - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - - - - - -
    input

    (Tensor) the size of input will determine size of the output tensor.

    dtype

    (torch.dtype, optional) the desired data type of returned Tensor. Default: if None, defaults to the dtype of input.

    layout

    (torch.layout, optional) the desired layout of returned tensor. Default: if None, defaults to the layout of input.

    device

    (torch.device, optional) the desired device of returned tensor. Default: if None, defaults to the device of input.

    requires_grad

    (bool, optional) If autograd should record operations on the returned tensor. Default: False.

    memory_format

    (torch.memory_format, optional) the desired memory format of returned Tensor. Default: torch_preserve_format.

    - -

    zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor

    - - - - -

    Returns a tensor filled with the scalar value 0, with the same size as -input. torch_zeros_like(input) is equivalent to -torch_zeros(input.size(), dtype=input.dtype, layout=input.layout, device=input.device).

    -

    Warning

    - - - -

    As of 0.4, this function does not support an out keyword. As an alternative, -the old torch_zeros_like(input, out=output) is equivalent to -torch_zeros(input.size(), out=output).

    - -

    Examples

    -
    # \dontrun{ - -input = torch_empty(c(2, 3)) -torch_zeros_like(input)
    #> torch_tensor -#> 0 0 0 -#> 0 0 0 -#> [ CPUFloatType{2,3} ]
    # } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/utils_dataset.html b/docs/reference/utils_dataset.html deleted file mode 100644 index a4d271a03..000000000 --- a/docs/reference/utils_dataset.html +++ /dev/null @@ -1,192 +0,0 @@ - - - - - - - - -An abstract class representing a <code>Dataset</code>. — utils_dataset • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    All datasets that represent a map from keys to data samples should subclass -it. All subclasses should overwrite get_item, supporting fetching a -data sample for a given key. Subclasses could also optionally overwrite -lenght, which is expected to return the size of the dataset by many -~torch.utils.data.Sampler implementations and the default options -of ~torch.utils.data.DataLoader.

    -
    - -
    utils_dataset(..., name = NULL)
    - -

    Arguments

    - - - - - - -
    ...

    public methods for the dataset class

    - -

    Note

    - -

    ~torch.utils.data.DataLoader by default constructs a index -sampler that yields integral indices. To make it work with a map-style -dataset with non-integral indices/keys, a custom sampler must be provided.

    - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.4.1.9000.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/utils_dataset_tensor.html b/docs/reference/utils_dataset_tensor.html deleted file mode 100644 index 6c87496be..000000000 --- a/docs/reference/utils_dataset_tensor.html +++ /dev/null @@ -1,176 +0,0 @@ - - - - - - - - -Dataset wrapping tensors. — utils_dataset_tensor • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Each sample will be retrieved by indexing tensors along the first dimension.

    -
    - -
    utils_dataset_tensor(...)
    - -

    Arguments

    - - - - - - -
    ...

    tensors that have the same size of the first dimension.

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.4.1.9000.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/vision_make_grid.html b/docs/reference/vision_make_grid.html deleted file mode 100644 index e3c2b7b24..000000000 --- a/docs/reference/vision_make_grid.html +++ /dev/null @@ -1,229 +0,0 @@ - - - - - - - - -A simplified version of torchvision.utils.make_grid. — vision_make_grid • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Arranges a batch of (image) tensors in a grid, with optional padding between images. -Expects a 4d mini-batch tensor of shape (B x C x H x W).

    -
    - -
    vision_make_grid(
    -  tensor,
    -  scale = TRUE,
    -  num_rows = 8,
    -  padding = 2,
    -  pad_value = 0
    -)
    - -

    Arguments

    - - - - - - - - - - - - - - - - - - - - - - -
    tensor

    tensor to arrange in grid

    scale

    whether to normalize (min-max-scale) the input tensor

    num_rows

    number of rows making up the grid (default 8)

    padding

    amount of padding between batch images (default 2)

    pad_value

    pixel value to use for padding

    - - -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/with_enable_grad.html b/docs/reference/with_enable_grad.html deleted file mode 100644 index 77e29315c..000000000 --- a/docs/reference/with_enable_grad.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Enable grad — with_enable_grad • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Context-manager that enables gradient calculation. -Enables gradient calculation, if it has been disabled via with_no_grad.

    -
    - -
    with_enable_grad(code)
    - -

    Arguments

    - - - - - - -
    code

    code to be executed with gradient recording.

    - -

    Details

    - -

    This context manager is thread local; it will not affect computation in -other threads.

    - -

    Examples

    -
    # \dontrun{ - -x <- torch_tensor(1, requires_grad=TRUE) -with_no_grad({ - with_enable_grad({ - y = x * 2 - }) -}) -y$backward() -x$grad
    #> torch_tensor -#> 2 -#> [ CPUFloatType{1} ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - diff --git a/docs/reference/with_no_grad.html b/docs/reference/with_no_grad.html deleted file mode 100644 index 189941410..000000000 --- a/docs/reference/with_no_grad.html +++ /dev/null @@ -1,226 +0,0 @@ - - - - - - - - -Temporarily modify gradient recording. — with_no_grad • torch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - -
    - -
    -
    - - -
    -

    Temporarily modify gradient recording.

    -
    - -
    with_no_grad(code)
    - -

    Arguments

    - - - - - - -
    code

    code to be executed with no gradient recording.

    - - -

    Examples

    -
    # \dontrun{ -x <- torch_tensor(runif(5), requires_grad = TRUE) -with_no_grad({ - x$sub_(torch_tensor(as.numeric(1:5))) -})
    #> torch_tensor -#> -0.1943 -#> -1.1859 -#> -2.5961 -#> -3.7816 -#> -4.5816 -#> [ CPUFloatType{5} ]
    x
    #> torch_tensor -#> -0.1943 -#> -1.1859 -#> -2.5961 -#> -3.7816 -#> -4.5816 -#> [ CPUFloatType{5} ]
    x$grad
    #> torch_tensor -#> [ Tensor (undefined) ]
    -# } -
    -
    - -
    - - -
    - - -
    -

    Site built with pkgdown 1.5.1.

    -
    - -
    -
    - - - - - - - - -- GitLab
    -
    - - - - -
    - -
    -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    All functions

    -

    -
    -

    AutogradContext

    -

    Class representing the context.

    -

    as_array()

    -

    Converts to array

    -

    autograd_backward()

    -

    Computes the sum of gradients of given tensors w.r.t. graph leaves.

    -

    autograd_function()

    -

    Records operation history and defines formulas for differentiating ops.

    -

    autograd_grad()

    -

    Computes and returns the sum of gradients of outputs w.r.t. the inputs.

    -

    autograd_set_grad_mode()

    -

    Set grad mode

    -

    cuda_current_device()

    -

    Returns the index of a currently selected device.

    -

    cuda_device_count()

    -

    Returns the number of GPUs available.

    -

    cuda_is_available()

    -

    Returns a bool indicating if CUDA is currently available.

    -

    dataloader()

    -

    Data loader. Combines a dataset and a sampler, and provides -single- or multi-process iterators over the dataset.

    -

    dataloader_make_iter()

    -

    Creates an iterator from a DataLoader

    -

    dataloader_next()

    -

    Get the next element of a dataloader iterator

    -

    dataset()

    -

    An abstract class representing a Dataset.

    -

    torch_set_default_dtype() torch_get_default_dtype()

    -

    Gets and sets the default floating point dtype.

    -

    enumerate()

    -

    Enumerate an iterator

    -

    enumerate(<dataloader>)

    -

    Enumerate an iterator

    -

    install_torch()

    -

    Install Torch

    -

    is_dataloader()

    -

    Checks if the object is a dataloader

    -

    is_torch_dtype()

    -

    Check if object is a torch data type

    -

    is_torch_layout()

    -

    Check if an object is a torch layout.

    -

    is_torch_memory_format()

    -

    Check if an object is a memory format

    -

    is_torch_qscheme()

    -

    Checks if an object is a QScheme

    -

    kmnist_dataset()

    -

    Kuzushiji-MNIST

    -

    mnist_dataset()

    -

    MNIST dataset

    -

    nn_adaptive_log_softmax_with_loss()

    -

    AdaptiveLogSoftmaxWithLoss module

    -

    nn_batch_norm1d()

    -

    BatchNorm1D module

    -

    nn_batch_norm2d()

    -

    BatchNorm2D

    -

    nn_bce_loss()

    -

    Binary cross entropy loss

    -

    nn_bilinear()

    -

    Bilinear module

    -

    nn_celu()

    -

    CELU module

    -

    nn_conv1d()

    -

    Conv1D module

    -

    nn_conv2d()

    -

    Conv2D module

    -

    nn_conv3d()

    -

    Conv3D module

    -

    nn_conv_transpose1d()

    -

    ConvTranspose1D

    -

    nn_conv_transpose2d()

    -

    ConvTranpose2D module

    -

    nn_conv_transpose3d()

    -

    ConvTranpose3D module

    -

    nn_cross_entropy_loss()

    -

    CrossEntropyLoss module

    -

    nn_dropout()

    -

    Dropout module

    -

    nn_dropout2d()

    -

    Dropout2D module

    -

    nn_dropout3d()

    -

    Dropout3D module

    -

    nn_elu()

    -

    ELU module

    -

    nn_embedding()

    -

    Embedding module

    -

    nn_gelu()

    -

    GELU module

    -

    nn_glu()

    -

    GLU module

    -

    nn_hardshrink()

    -

    Hardshwink module

    -

    nn_hardsigmoid()

    -

    Hardsigmoid module

    -

    nn_hardswish()

    -

    Hardswish module

    -

    nn_hardtanh()

    -

    Hardtanh module

    -

    nn_identity()

    -

    Identity module

    -

    nn_init_calculate_gain()

    -

    Calculate gain

    -

    nn_init_constant_()

    -

    Constant initialization

    -

    nn_init_dirac_()

    -

    Dirac initialization

    -

    nn_init_eye_()

    -

    Eye initialization

    -

    nn_init_kaiming_normal_()

    -

    Kaiming normal initialization

    -

    nn_init_kaiming_uniform_()

    -

    Kaiming uniform initialization

    -

    nn_init_normal_()

    -

    Normal initialization

    -

    nn_init_ones_()

    -

    Ones initialization

    -

    nn_init_orthogonal_()

    -

    Orthogonal initialization

    -

    nn_init_sparse_()

    -

    Sparse initialization

    -

    nn_init_trunc_normal_()

    -

    Truncated normal initialization

    -

    nn_init_uniform_()

    -

    Uniform initialization

    -

    nn_init_xavier_normal_()

    -

    Xavier normal initialization

    -

    nn_init_xavier_uniform_()

    -

    Xavier uniform initialization

    -

    nn_init_zeros_()

    -

    Zeros initialization

    -

    nn_leaky_relu()

    -

    LeakyReLU module

    -

    nn_linear()

    -

    Linear module

    -

    nn_log_sigmoid()

    -

    LogSigmoid module

    -

    nn_log_softmax()

    -

    LogSoftmax module

    -

    nn_max_pool1d()

    -

    MaxPool1D module

    -

    nn_max_pool2d()

    -

    MaxPool2D module

    -

    nn_module()

    -

    Base class for all neural network modules.

    -

    nn_module_list()

    -

    Holds submodules in a list.

    -

    nn_multihead_attention()

    -

    MultiHead attention

    -

    nn_prelu()

    -

    PReLU module

    -

    nn_relu()

    -

    ReLU module

    -

    nn_relu6()

    -

    ReLu6 module

    -

    nn_rnn()

    -

    RNN module

    -

    nn_rrelu()

    -

    RReLU module

    -

    nn_selu()

    -

    SELU module

    -

    nn_sequential()

    -

    A sequential container

    -

    nn_sigmoid()

    -

    Sigmoid module

    -

    nn_softmax()

    -

    Softmax module

    -

    nn_softmax2d()

    -

    Softmax2d module

    -

    nn_softmin()

    -

    Softmin

    -

    nn_softplus()

    -

    Softplus module

    -

    nn_softshrink()

    -

    Softshrink module

    -

    nn_softsign()

    -

    Softsign module

    -

    nn_tanh()

    -

    Tanh module

    -

    nn_tanhshrink()

    -

    Tanhshrink module

    -

    nn_threshold()

    -

    Threshoold module

    -

    nn_utils_rnn_pack_padded_sequence()

    -

    Packs a Tensor containing padded sequences of variable length.

    -

    nn_utils_rnn_pack_sequence()

    -

    Packs a list of variable length Tensors

    -

    nn_utils_rnn_pad_packed_sequence()

    -

    Pads a packed batch of variable length sequences.

    -

    nn_utils_rnn_pad_sequence()

    -

    Pad a list of variable length Tensors with padding_value

    -

    nnf_adaptive_avg_pool1d()

    -

    Adaptive_avg_pool1d

    -

    nnf_adaptive_avg_pool2d()

    -

    Adaptive_avg_pool2d

    -

    nnf_adaptive_avg_pool3d()

    -

    Adaptive_avg_pool3d

    -

    nnf_adaptive_max_pool1d()

    -

    Adaptive_max_pool1d

    -

    nnf_adaptive_max_pool2d()

    -

    Adaptive_max_pool2d

    -

    nnf_adaptive_max_pool3d()

    -

    Adaptive_max_pool3d

    -

    nnf_affine_grid()

    -

    Affine_grid

    -

    nnf_alpha_dropout()

    -

    Alpha_dropout

    -

    nnf_avg_pool1d()

    -

    Avg_pool1d

    -

    nnf_avg_pool2d()

    -

    Avg_pool2d

    -

    nnf_avg_pool3d()

    -

    Avg_pool3d

    -

    nnf_batch_norm()

    -

    Batch_norm

    -

    nnf_bilinear()

    -

    Bilinear

    -

    nnf_binary_cross_entropy()

    -

    Binary_cross_entropy

    -

    nnf_binary_cross_entropy_with_logits()

    -

    Binary_cross_entropy_with_logits

    -

    nnf_celu() nnf_celu_()

    -

    Celu

    -

    nnf_conv1d()

    -

    Conv1d

    -

    nnf_conv2d()

    -

    Conv2d

    -

    nnf_conv3d()

    -

    Conv3d

    -

    nnf_conv_tbc()

    -

    Conv_tbc

    -

    nnf_conv_transpose1d()

    -

    Conv_transpose1d

    -

    nnf_conv_transpose2d()

    -

    Conv_transpose2d

    -

    nnf_conv_transpose3d()

    -

    Conv_transpose3d

    -

    nnf_cosine_embedding_loss()

    -

    Cosine_embedding_loss

    -

    nnf_cosine_similarity()

    -

    Cosine_similarity

    -

    nnf_cross_entropy()

    -

    Cross_entropy

    -

    nnf_ctc_loss()

    -

    Ctc_loss

    -

    nnf_dropout()

    -

    Dropout

    -

    nnf_dropout2d()

    -

    Dropout2d

    -

    nnf_dropout3d()

    -

    Dropout3d

    -

    nnf_elu() nnf_elu_()

    -

    Elu

    -

    nnf_embedding()

    -

    Embedding

    -

    nnf_embedding_bag()

    -

    Embedding_bag

    -

    nnf_fold()

    -

    Fold

    -

    nnf_fractional_max_pool2d()

    -

    Fractional_max_pool2d

    -

    nnf_fractional_max_pool3d()

    -

    Fractional_max_pool3d

    -

    nnf_gelu()

    -

    Gelu

    -

    nnf_glu()

    -

    Glu

    -

    nnf_grid_sample()

    -

    Grid_sample

    -

    nnf_group_norm()

    -

    Group_norm

    -

    nnf_gumbel_softmax()

    -

    Gumbel_softmax

    -

    nnf_hardshrink()

    -

    Hardshrink

    -

    nnf_hardsigmoid()

    -

    Hardsigmoid

    -

    nnf_hardswish()

    -

    Hardswish

    -

    nnf_hardtanh() nnf_hardtanh_()

    -

    Hardtanh

    -

    nnf_hinge_embedding_loss()

    -

    Hinge_embedding_loss

    -

    nnf_instance_norm()

    -

    Instance_norm

    -

    nnf_interpolate()

    -

    Interpolate

    -

    nnf_kl_div()

    -

    Kl_div

    -

    nnf_l1_loss()

    -

    L1_loss

    -

    nnf_layer_norm()

    -

    Layer_norm

    -

    nnf_leaky_relu()

    -

    Leaky_relu

    -

    nnf_linear()

    -

    Linear

    -

    nnf_local_response_norm()

    -

    Local_response_norm

    -

    nnf_log_softmax()

    -

    Log_softmax

    -

    nnf_logsigmoid()

    -

    Logsigmoid

    -

    nnf_lp_pool1d()

    -

    Lp_pool1d

    -

    nnf_lp_pool2d()

    -

    Lp_pool2d

    -

    nnf_margin_ranking_loss()

    -

    Margin_ranking_loss

    -

    nnf_max_pool1d()

    -

    Max_pool1d

    -

    nnf_max_pool2d()

    -

    Max_pool2d

    -

    nnf_max_pool3d()

    -

    Max_pool3d

    -

    nnf_max_unpool1d()

    -

    Max_unpool1d

    -

    nnf_max_unpool2d()

    -

    Max_unpool2d

    -

    nnf_max_unpool3d()

    -

    Max_unpool3d

    -

    nnf_mse_loss()

    -

    Mse_loss

    -

    nnf_multi_head_attention_forward()

    -

    Multi head attention forward

    -

    nnf_multi_margin_loss()

    -

    Multi_margin_loss

    -

    nnf_multilabel_margin_loss()

    -

    Multilabel_margin_loss

    -

    nnf_multilabel_soft_margin_loss()

    -

    Multilabel_soft_margin_loss

    -

    nnf_nll_loss()

    -

    Nll_loss

    -

    nnf_normalize()

    -

    Normalize

    -

    nnf_one_hot()

    -

    One_hot

    -

    nnf_pad()

    -

    Pad

    -

    nnf_pairwise_distance()

    -

    Pairwise_distance

    -

    nnf_pdist()

    -

    Pdist

    -

    nnf_pixel_shuffle()

    -

    Pixel_shuffle

    -

    nnf_poisson_nll_loss()

    -

    Poisson_nll_loss

    -

    nnf_prelu()

    -

    Prelu

    -

    nnf_relu() nnf_relu_()

    -

    Relu

    -

    nnf_relu6()

    -

    Relu6

    -

    nnf_rrelu() nnf_rrelu_()

    -

    Rrelu

    -

    nnf_selu() nnf_selu_()

    -

    Selu

    -

    nnf_smooth_l1_loss()

    -

    Smooth_l1_loss

    -

    nnf_soft_margin_loss()

    -

    Soft_margin_loss

    -

    nnf_softmax()

    -

    Softmax

    -

    nnf_softmin()

    -

    Softmin

    -

    nnf_softplus()

    -

    Softplus

    -

    nnf_softshrink()

    -

    Softshrink

    -

    nnf_softsign()

    -

    Softsign

    -

    nnf_tanhshrink()

    -

    Tanhshrink

    -

    nnf_threshold() nnf_threshold_()

    -

    Threshold

    -

    nnf_triplet_margin_loss()

    -

    Triplet_margin_loss

    -

    nnf_unfold()

    -

    Unfold

    -

    optim_adam()

    -

    Implements Adam algorithm.

    -

    optim_required()

    -

    Dummy value indicating a required value.

    -

    optim_sgd()

    -

    SGD optimizer

    -

    tensor_dataset()

    -

    Dataset wrapping tensors.

    -

    torch_abs

    -

    Abs

    -

    torch_acos

    -

    Acos

    -

    torch_adaptive_avg_pool1d

    -

    Adaptive_avg_pool1d

    -

    torch_add

    -

    Add

    -

    torch_addbmm

    -

    Addbmm

    -

    torch_addcdiv

    -

    Addcdiv

    -

    torch_addcmul

    -

    Addcmul

    -

    torch_addmm

    -

    Addmm

    -

    torch_addmv

    -

    Addmv

    -

    torch_addr

    -

    Addr

    -

    torch_allclose

    -

    Allclose

    -

    torch_angle

    -

    Angle

    -

    torch_arange

    -

    Arange

    -

    torch_argmax

    -

    Argmax

    -

    torch_argmin

    -

    Argmin

    -

    torch_argsort

    -

    Argsort

    -

    torch_as_strided

    -

    As_strided

    -

    torch_asin

    -

    Asin

    -

    torch_atan

    -

    Atan

    -

    torch_atan2

    -

    Atan2

    -

    torch_avg_pool1d

    -

    Avg_pool1d

    -

    torch_baddbmm

    -

    Baddbmm

    -

    torch_bartlett_window

    -

    Bartlett_window

    -

    torch_bernoulli

    -

    Bernoulli

    -

    torch_bincount

    -

    Bincount

    -

    torch_bitwise_and

    -

    Bitwise_and

    -

    torch_bitwise_not

    -

    Bitwise_not

    -

    torch_bitwise_or

    -

    Bitwise_or

    -

    torch_bitwise_xor

    -

    Bitwise_xor

    -

    torch_blackman_window

    -

    Blackman_window

    -

    torch_bmm

    -

    Bmm

    -

    torch_broadcast_tensors

    -

    Broadcast_tensors

    -

    torch_can_cast

    -

    Can_cast

    -

    torch_cartesian_prod

    -

    Cartesian_prod

    -

    torch_cat

    -

    Cat

    -

    torch_cdist

    -

    Cdist

    -

    torch_ceil

    -

    Ceil

    -

    torch_celu_

    -

    Celu_

    -

    torch_chain_matmul

    -

    Chain_matmul

    -

    torch_cholesky

    -

    Cholesky

    -

    torch_cholesky_inverse

    -

    Cholesky_inverse

    -

    torch_cholesky_solve

    -

    Cholesky_solve

    -

    torch_chunk

    -

    Chunk

    -

    torch_clamp

    -

    Clamp

    -

    torch_combinations

    -

    Combinations

    -

    torch_conj

    -

    Conj

    -

    torch_conv1d

    -

    Conv1d

    -

    torch_conv2d

    -

    Conv2d

    -

    torch_conv3d

    -

    Conv3d

    -

    torch_conv_tbc

    -

    Conv_tbc

    -

    torch_conv_transpose1d

    -

    Conv_transpose1d

    -

    torch_conv_transpose2d

    -

    Conv_transpose2d

    -

    torch_conv_transpose3d

    -

    Conv_transpose3d

    -

    torch_cos

    -

    Cos

    -

    torch_cosh

    -

    Cosh

    -

    torch_cosine_similarity

    -

    Cosine_similarity

    -

    torch_cross

    -

    Cross

    -

    torch_cummax

    -

    Cummax

    -

    torch_cummin

    -

    Cummin

    -

    torch_cumprod

    -

    Cumprod

    -

    torch_cumsum

    -

    Cumsum

    -

    torch_det

    -

    Det

    -

    torch_device()

    -

    Create a Device object

    -

    torch_diag

    -

    Diag

    -

    torch_diag_embed

    -

    Diag_embed

    -

    torch_diagflat

    -

    Diagflat

    -

    torch_diagonal

    -

    Diagonal

    -

    torch_digamma

    -

    Digamma

    -

    torch_dist

    -

    Dist

    -

    torch_div

    -

    Div

    -

    torch_dot

    -

    Dot

    -

    torch_float32() torch_float() torch_float64() torch_double() torch_float16() torch_half() torch_uint8() torch_int8() torch_int16() torch_short() torch_int32() torch_int() torch_int64() torch_long() torch_bool() torch_quint8() torch_qint8() torch_qint32()

    -

    Torch data types

    -

    torch_eig

    -

    Eig

    -

    torch_einsum

    -

    Einsum

    -

    torch_empty

    -

    Empty

    -

    torch_empty_like

    -

    Empty_like

    -

    torch_empty_strided

    -

    Empty_strided

    -

    torch_eq

    -

    Eq

    -

    torch_equal

    -

    Equal

    -

    torch_erf

    -

    Erf

    -

    torch_erfc

    -

    Erfc

    -

    torch_erfinv

    -

    Erfinv

    -

    torch_exp

    -

    Exp

    -

    torch_expm1

    -

    Expm1

    -

    torch_eye

    -

    Eye

    -

    torch_fft

    -

    Fft

    -

    torch_flatten

    -

    Flatten

    -

    torch_flip

    -

    Flip

    -

    torch_floor

    -

    Floor

    -

    torch_floor_divide

    -

    Floor_divide

    -

    torch_fmod

    -

    Fmod

    -

    torch_frac

    -

    Frac

    -

    torch_full

    -

    Full

    -

    torch_full_like

    -

    Full_like

    -

    torch_gather

    -

    Gather

    -

    torch_ge

    -

    Ge

    -

    torch_generator()

    -

    Create a Generator object

    -

    torch_geqrf

    -

    Geqrf

    -

    torch_ger

    -

    Ger

    -

    torch_gt

    -

    Gt

    -

    torch_hamming_window

    -

    Hamming_window

    -

    torch_hann_window

    -

    Hann_window

    -

    torch_histc

    -

    Histc

    -

    torch_ifft

    -

    Ifft

    -

    torch_imag

    -

    Imag

    -

    torch_index_select

    -

    Index_select

    -

    torch_inverse

    -

    Inverse

    -

    torch_irfft

    -

    Irfft

    -

    torch_is_complex

    -

    Is_complex

    -

    torch_is_floating_point

    -

    Is_floating_point

    -

    torch_isfinite

    -

    Isfinite

    -

    torch_isinf

    -

    Isinf

    -

    torch_isnan

    -

    Isnan

    -

    torch_kthvalue

    -

    Kthvalue

    -

    torch_strided() torch_sparse_coo()

    -

    Creates the corresponding layout

    -

    torch_le

    -

    Le

    -

    torch_lerp

    -

    Lerp

    -

    torch_lgamma

    -

    Lgamma

    -

    torch_linspace

    -

    Linspace

    -

    torch_load()

    -

    Loads a saved object

    -

    torch_log

    -

    Log

    -

    torch_log10

    -

    Log10

    -

    torch_log1p

    -

    Log1p

    -

    torch_log2

    -

    Log2

    -

    torch_logdet

    -

    Logdet

    -

    torch_logical_and

    -

    Logical_and

    -

    torch_logical_not

    -

    Logical_not

    -

    torch_logical_or

    -

    Logical_or

    -

    torch_logical_xor

    -

    Logical_xor

    -

    torch_logspace

    -

    Logspace

    -

    torch_logsumexp

    -

    Logsumexp

    -

    torch_lstsq

    -

    Lstsq

    -

    torch_lt

    -

    Lt

    -

    torch_lu()

    -

    LU

    -

    torch_lu_solve

    -

    Lu_solve

    -

    torch_masked_select

    -

    Masked_select

    -

    torch_matmul

    -

    Matmul

    -

    torch_matrix_power

    -

    Matrix_power

    -

    torch_matrix_rank

    -

    Matrix_rank

    -

    torch_max

    -

    Max

    -

    torch_mean

    -

    Mean

    -

    torch_median

    -

    Median

    -

    torch_contiguous_format() torch_preserve_format() torch_channels_last_format()

    -

    Memory format

    -

    torch_meshgrid

    -

    Meshgrid

    -

    torch_min

    -

    Min

    -

    torch_mm

    -

    Mm

    -

    torch_mode

    -

    Mode

    -

    torch_mul

    -

    Mul

    -

    torch_multinomial

    -

    Multinomial

    -

    torch_mv

    -

    Mv

    -

    torch_mvlgamma

    -

    Mvlgamma

    -

    torch_narrow

    -

    Narrow

    -

    torch_ne

    -

    Ne

    -

    torch_neg

    -

    Neg

    -

    torch_nonzero

    -

    Nonzero

    -

    torch_norm

    -

    Norm

    -

    torch_normal

    -

    Normal

    -

    torch_ones

    -

    Ones

    -

    torch_ones_like

    -

    Ones_like

    -

    torch_orgqr

    -

    Orgqr

    -

    torch_ormqr

    -

    Ormqr

    -

    torch_pdist

    -

    Pdist

    -

    torch_pinverse

    -

    Pinverse

    -

    torch_pixel_shuffle

    -

    Pixel_shuffle

    -

    torch_poisson

    -

    Poisson

    -

    torch_polygamma

    -

    Polygamma

    -

    torch_pow

    -

    Pow

    -

    torch_prod

    -

    Prod

    -

    torch_promote_types

    -

    Promote_types

    -

    torch_qr

    -

    Qr

    -

    torch_per_channel_affine() torch_per_tensor_affine() torch_per_channel_symmetric() torch_per_tensor_symmetric()

    -

    Creates the corresponding Scheme object

    -

    torch_quantize_per_channel

    -

    Quantize_per_channel

    -

    torch_quantize_per_tensor

    -

    Quantize_per_tensor

    -

    torch_rand

    -

    Rand

    -

    torch_rand_like

    -

    Rand_like

    -

    torch_randint

    -

    Randint

    -

    torch_randint_like

    -

    Randint_like

    -

    torch_randn

    -

    Randn

    -

    torch_randn_like

    -

    Randn_like

    -

    torch_randperm

    -

    Randperm

    -

    torch_range

    -

    Range

    -

    torch_real

    -

    Real

    -

    torch_reciprocal

    -

    Reciprocal

    -

    torch_reduction_sum() torch_reduction_mean() torch_reduction_none()

    -

    Creates the reduction objet

    -

    torch_relu_

    -

    Relu_

    -

    torch_remainder

    -

    Remainder

    -

    torch_renorm

    -

    Renorm

    -

    torch_repeat_interleave

    -

    Repeat_interleave

    -

    torch_reshape

    -

    Reshape

    -

    torch_result_type

    -

    Result_type

    -

    torch_rfft

    -

    Rfft

    -

    torch_roll

    -

    Roll

    -

    torch_rot90

    -

    Rot90

    -

    torch_round

    -

    Round

    -

    torch_rrelu_

    -

    Rrelu_

    -

    torch_rsqrt

    -

    Rsqrt

    -

    torch_save()

    -

    Saves an object to a disk file.

    -

    torch_selu_

    -

    Selu_

    -

    torch_sigmoid

    -

    Sigmoid

    -

    torch_sign

    -

    Sign

    -

    torch_sin

    -

    Sin

    -

    torch_sinh

    -

    Sinh

    -

    torch_slogdet

    -

    Slogdet

    -

    torch_solve

    -

    Solve

    -

    torch_sort

    -

    Sort

    -

    torch_sparse_coo_tensor

    -

    Sparse_coo_tensor

    -

    torch_split

    -

    Split

    -

    torch_sqrt

    -

    Sqrt

    -

    torch_square

    -

    Square

    -

    torch_squeeze

    -

    Squeeze

    -

    torch_stack

    -

    Stack

    -

    torch_std

    -

    Std

    -

    torch_std_mean

    -

    Std_mean

    -

    torch_stft

    -

    Stft

    -

    torch_sum

    -

    Sum

    -

    torch_svd

    -

    Svd

    -

    torch_symeig

    -

    Symeig

    -

    torch_t

    -

    T

    -

    torch_take

    -

    Take

    -

    torch_tan

    -

    Tan

    -

    torch_tanh

    -

    Tanh

    -

    torch_tensor()

    -

    Converts R objects to a torch tensor

    -

    torch_tensordot

    -

    Tensordot

    -

    torch_threshold_

    -

    Threshold_

    -

    torch_topk

    -

    Topk

    -

    torch_trace

    -

    Trace

    -

    torch_transpose

    -

    Transpose

    -

    torch_trapz

    -

    Trapz

    -

    torch_triangular_solve

    -

    Triangular_solve

    -

    torch_tril

    -

    Tril

    -

    torch_tril_indices

    -

    Tril_indices

    -

    torch_triu

    -

    Triu

    -

    torch_triu_indices

    -

    Triu_indices

    -

    torch_true_divide

    -

    True_divide

    -

    torch_trunc

    -

    Trunc

    -

    torch_unbind

    -

    Unbind

    -

    torch_unique_consecutive

    -

    Unique_consecutive

    -

    torch_unsqueeze

    -

    Unsqueeze

    -

    torch_var

    -

    Var

    -

    torch_var_mean

    -

    Var_mean

    -

    torch_where

    -

    Where

    -

    torch_zeros

    -

    Zeros

    -

    torch_zeros_like

    -

    Zeros_like

    -

    vision_make_grid()

    -

    A simplified version of torchvision.utils.make_grid.

    -

    with_enable_grad()

    -

    Enable grad

    -

    with_no_grad()

    -

    Temporarily modify gradient recording.

    -
    - - -
    - - - -